

UNIVERSITY OF PIRAEUS

DEPARTMENT O F DIGITAL

SYSTEMS

POSTGRADUATE PROGRAM “DIGITAL COMMUNICATIONS AND SYSTEMS”

Introduction, Overview & Experimentation Analysis of

ETSI Open Source Management & Orchestration (OSM

MANO) Architecture

Master Thesis

Candidate Advisor

Kapridakis Iosif Prof. Angelos Rouskas

Piraeus, September 2018

Contents
Acronyms ... 0

Abstract ... 1

Scope and approach .. 2

1) Introduction ... 3

1.2) Limitation of the existing model use. ... 4

1.3) Overview and Advantages .. 5

2) NFV Framework ... 7

2.1) History .. 7

2.2) High level Analysis .. 8

2.3) Lower Level Analysis ... 9

2.3.1) VIM: ... 10

2.3.2) Virtualized Network Functions Manager-Layer .. 10

2.3.3) Operational and Orchestration Layer ... 11

2.3.4) NFV Reference Points .. 12

2.3.5) Summarization .. 13

3) Motivation, Interdependence, Considerations. .. 14

3.1) Motivation .. 14

3.2) Integration of SDN and NFV ... 15

3.3) Cloud Platforms .. 17

3.4) LXD .. 19

3.5) OPENSTACK .. 21

3.6) OpenDaylight .. 23

3.7) NFV Design Considerations .. 24

4) OSM MANO Project ... 26

4.1) OSM History .. 26

4.2) Why OSM? .. 26

4.3) Scope of OSM ... 27

4.4) OSM Mapping to ETSI NFV MANO ... 28

4.5) MANO Software Components .. 31

4.5.1) Interface .. 31

4.5.2) EPA .. 32

4.5.3) Network Service Descriptor (nsd:nsd) ... 32

4.5.4) Virtual Network Function Descriptor .. 34

4.5.5) Virtual Link Descriptor (nsd:vld) .. 39

4.5.6) VNF Forwarding Graph Descriptor .. 40

4.5.7) MANO YANG Models ... 41

4.6) OSM Low Level Analysis ... 42

4.7) OSM MANO: openMANO ... 44

4.8) OSM MANO key Components ... 44

4.8.1) OPENVIM: the VIM module ... 45

4.8.2) Openmano / OSM client .. 46

4.8.3) Structure / Concept of the VNF ... 47

4.8.4) OPENMANO VNF Descriptor ... 47

4.8.5) OSM GUI .. 49

4.8.6) CHARMS .. 51

4.9) Day 1 and Day 2 Configuration. .. 52

4.10) What’s new with OSM release THREE .. 54

4.11) Installing OSM release Three ... 55

4.12) Installing OpenVIm ... 58

5) NFV in Market. .. 62

5.1) MANO Category. .. 62

5.2) Infrastructure Category. ... 64

ANNEX A .. 65

Conclusions .. 73

ANNEX B .. 75

References ... 78

Acronyms
API Application Programming Interface
BSS Business Support System
CAPEX Capital Expenditures
CLI Command Line Interface
COTS Commercial Off-the-Shelf
CPE Customer Premises Equipment
IM Information Model
ISP Internet Service Provider
DC Data Centre
DCI Data Centre Interconnect
DHCP Dynamic Host Configuration Protocol
EMS Element Management System
EPC Evolved Packet Core
EPS Evolved Packet System
ETSI European Telecommunications Standards Institute
FW Firewall
GRE Generic Routing Encapsulation
HA High Availability
IOT Internet of Things
IMS IP Multimedia Subsystem
IPMI Intelligent Platform Management Interface
L3VPN Layer 3 Virtual Private Network
LAN Local Area Network
LISP Locator/ID Separation Protocol
LSO Lifecycle Service Orchestration
LTE Long-Term Evolution
MANO Management and Orchestration
MPLS Multi-Protocol Label Switching
NAT Network Address Translation
NF Network Function
NFFG NF Forwarding Graph (ETSI Terminology for chaining)
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NFVO Network Function Virtualization Orchestrator
NS Network Service
NSD Network Service Descriptor
NSH Network Services Header (Service chaining encapsulation)
NVGRE Network Virtualization Using Generic Routing Encapsulation
NVO Network Virtualization Overlay
ODL OpenDaylight SDN Controller
OLT Optical Line Terminal
OPEX Operating Expense

OSS Open Source Software
OSS Operations Support System
POC Proof of Concept
POD Point of Delivery
PNF Physical Network Function
PNFD Physical Network Function Descriptor
PGW Packet Data Network Gateway
REST Representational State Transfer
SDN Software-Defined Networking
SF Service Function
SFC Service Function Chaining (IETF Terminology)
SNMP Simple Network Management Protocol
SFF Service Function Forwarder
SFP Service Function Path
SMBs Small and Medium Business
UI User Interface
VLAN Virtual Local Area Network
VLD Virtual Link Descriptor
VNF Virtual Network Function
VNFC VNF Component
VNFD Virtual Network Function Descriptor
VNFM Virtual Network Function Manager
VNFFG Virtual Network Function Forwarding Graph
VNFFGD Virtual Network Function Forwarding Graph Descriptor
VIM Virtual Infrastructure Manager
VRF Virtual Routing and Forwarding
VXLAN Virtual Extensible Local Area Network
VXLAN-GPE Virtual Extensible LAN Generic Protocol Extension
WAN Wide Area Network
YAML Yet Another Markup Language
YANG Yet Another Next Generation
XML Extensible Markup Language

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

1

Abstract
In the first part of this thesis we are going to cover an introduction of ETSI NFV

Framework and the architecture around it. Mention will be made in the current network

architecture and the limitation of existing mode, the advantages of new technologies

and a history behind NFV Framework. Afterwards an in depth theoretical study of high

and low level of ETSI MANO, in order for the reader to get familiarize with all the layers

surround it such as VIM, VNFM, Operation and Orchestration layer and NFV reference

points.

Second part of this thesis is dedicated in the OSM MANO, an ETSI hosted open

source MANO, closely aligned with ETSI NFV. Reader will educate upon OSM history, the

scope of NFV, the mapping of OSM to ETSI NFV MANO, MANOs software components

such as Interfaces, EPA characteristics, NSDs, VNFDs and VLD. We will cover how OSM

MANO is architected, the key components of it, how every key component is configured

and the interconnections between them. As NFV are using also SDN technologies, we

will also mention how NFV and SDN are collaborated in order that this new network

model, of detached software from hardware will be a common established ground, in

the future. We will also briefly mention some of the projects that help OSM MANO

come to life (LXD, Cloud Platforms, Openstack, OpenDayLight).

In the third and last section of this thesis we will see how OSM is installed, what

are the specifications around it, a day 0 to day 2 configuration, OSM three new features

compared with one and two, and our experiences and problems with the installation.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

2

Scope and approach

Working as a network engineer in a modest small domestic company, the author

of this thesis has to tackle various challenges. Taking into consideration the reduced

budget policy of the industry nowadays, network engineers come across a network

model controlled, to a large extent, by vendors software and hardware, controlled

resources with proprietary tools end exceedingly expensive licenses to unlock features

of a router or firewall p.ex. surprisingly already purchased. In a fast-growing

environment like this, network engineers need to be fast in thinking onto provisioning

and troubleshooting of services. Moreover, vendors hardware, overtime, is being

declared Out of Service, Out of Support, Out of Sales thus making it an unusable box of

working RAM, working CPU, and working functionalities. At this point we have to

mention that in some cases the provisioning and the troubleshooting of vendor boxes is

not implemented by company’s network engineers but by vendors, because difficult

tasks knowledge is not publicly known, creating time gap, operation cost and manhours

wasted. With all the above the motivation for the elaboration of this thesis is to

examine technologies and projects that tackle these challenges. Projects that use

existing hardware, with fast deployment and economic solutions, with no need of

special hardware and proprietary tools, scalable, flexible, vendor independent and

opened sourced, manageable by company’s personnel. Scope of this thesis is to

examine ETSI NFV framework, Operation, usability, and also to study OSM MANO as a

tool that will question the above challenges, resulting a more vendor free, fast easily

operational monitoring network environment.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

3

1) Introduction

In the recent years of Networking Architecture there is a new approach towards

the infrastructure - Physical and the principals around them.

Vendors and Telco’s Research and Developing are focusing more on the

exploitation of existing resources rather than investing in new hardware.

The need of new services and the constant switching of networks, and the need

of 'on the fly change' of a network, accentuate the necessity of a new model approach.

Until now we had a physical hardware operating the resources - services for which they

were entrusted, thus any change in the networking table or service was service

affecting. The new model and approach now is to decouple network table and services

from the physical appliance, virtualize functions, introducing the NFV (Network

Functions Virtualization).

NFV is a revolutionary way handling operation configuration and management

on the Infrastructure. The above decoupling liberates and abilities a fast configuration

dynamic ('on the fly’) change towards services application requirement and network

change. Datacenter Infrastructure (Servers, switches, storage etc.) from the static used

type will be transformed into a dynamic more agile environment. VNF virtualizes those

functions, eliminating the need for specific hardware dedicated on a specific service or

function.

The functionality of a physical hardware is transformed into a virtual instance

usually termed as virtual machines (VM) which has the ability to function like a

conventional hardware. VNFs act as building blocks that can then be chained together to

create comprehensive communication services. Chains can be modified dynamically to

leverage complex service topologies via VNF orchestration.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

4

1.2) Limitation of the existing model use.

With the upcoming rise of technology in new and traditional continent users -

IoT-, increase in capacity bandwidth, hardware resources, infrastructure overall is

mandatory, causing a respectively increase of costs. Infrastructure models, as until now,

have limitation to reciprocate in those demands compared with operational, scalability-

flexibility, and management costs.

Scalability: Resources of hardware and software vendors devices have

limitations over the fast change of network tables and usage. More network usage

requires more resources needed by the machine its self, and more resources needed,

require more power on the hardware box to couple these necessities.

Flexibility: Vendors equipment are using a proprietary model structure. Each

hardware has a specific -and only- use, handling its software and hardware functions.

Expansion in services and resources demand new licenses from its vendor appliance

thus importing limitations at flexibility combining hardware and software to new usages.

Monitoring Management: Existing network devices are using SNMP, syslog,

Netflow or comparable systems to gather information about Monitoring. But some

devices are using a non-standarized MIB library or their interpretation syslog messages.

This makes difficult to Operators to have one Operation Management Tool. Also, some

Vendors in depth analytics Management Tools are not available from the beginning but

need of silence, increasing costs.

Time gap: From the perspective of Service Providers, this new dynamically

shifted environment causes new needs in services that require new hardware and

Software demands, to keep up with the fast-growing usage of network. SPs need to

constantly upgrade their network equipment, depending on the new releases of

Vendors and also constant redesign of network to meet the new demands. The

complexity of these decisions results a time gap between implementation and offering

to customers.

Operation costs: Most of the time SPs have a support contract with a specific

Vendor and a highly trained team to Operate on Vendors machines. Group training on a

specific Vendors equipment results a difficulty in changing Vendors as new training is

needed and also time to get familiar with new hardware.

Network upgrade cost: Up until now network maintenance on devices includes a

team designing the new upgrade and personnel to perform physical and software

changes to apply them. Because of the Service affection due to maintenances these

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

5

kinds of changes are performed during of business hour resulting a increasing of costs

and personnel usage.

Over/under capacity: Existing network implementation results services and

capacity cannot be scaled up or down on-demand nor can be scaled based on

geographic demand. Reduced operational efficiency due to the diversity of the network

infrastructure and management platforms. Lack of orchestration leads to manual

installation and inability to modify the capacity on-demand. [1]

For reasons above a new model approach was needed to compensate with new

needs. NFV architecture environment visualizes network functions making these

functions to coexist in several network devices with dissimilar vendors machines. De-

attaching software from hardware machine provides a variety of solutions depending of

the needs. Scalability and flexibility to network usage, sharing the existing resources,

reducing the cost of ownership providing new services on demand and capacity

solutions.

1.3) Overview and Advantages

In generally, better use of network resources as well as increased network scalability

and agility is greatly aided by the use of VNFs. Additionally, as VNFs take the place of

physical hardware, further advantages ensue, such as increase of available physical

space, reduction of power consumption and operational and capital expenditure.

Hardware flexibility: NFV architecture combines memory, network capability,

storage of the traditional physical hardware of many vendors into a dynamic block

usage. Service providers can now choose from several vendors appliances to provide

sources to their own need of a Network. Also, service providers can reuse existing

machines from their data-center.

Cost: Having the ability to deploy new services onto the existing Infrastructure

thus reducing operator CAPEX (Capital Expenses) and OPEX (Operational Expenses)

through reduced equipment costs and reduced power consumption.

Monitoring management: Operation architect over a wide range of Vendors

devices and controlling the Network Functions through a single spot gives the ability of

one universal monitoring tool analyzing-reporting the network function availability and

needs to provision.

Reduced time gap: NFV network services can be deployed on demand 'on the fly'

depending on the usage and the needs. Adding - removing, provision functions and

capacity, automatically from software tools, without the need of onsite personnel or

installation, thus reducing costs. Functions and operations that reduce the time to apply

the new services need to consumers.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

6

Operation cost: Unhooking Software from hardware gives the freedom to deploy

to a common entity different NFVs. Service providers utilize this freedom to existing

machines so new services can be deployed without the need of a maintenance window

or purchasing new hardware and software specific for that necessity, therefore

Operational cost drops.

Network upgrade: Maintenance of a network to meet modern needs, upgrading

and re-provision of it, could be decided on the fly, without complex design and Service

affecting downtime. New services creation on demand absorbing resources from the

existing machines combining them to new releases.

Vendor independence: With the NFV architecture, comping resources from

several machines, shifting weight to Software than hardware its self, Service Providers

are not

restricted to usually one Vendor. Multiple machine can handle the same Network

functions to support network and services. p.ex A bug on a hardware machine won’t be

Service affecting as Network Function will be automatically moved to another machine,

giving the opportunity to personnel to fix the bug or use the machine for another

function that doesn’t conflict the above.

 Security: Security is a constant challenge in network environments. A secure

path is required that will allow operators to manage and provision the network, whilst

enabling their customers to use their private virtual services-environment.

 Automation: With NFV Management and Orchestration Framework (NFV-MANO)

all above mentioned performances can be handle automatically, with no personnel on

site to move physically links to hardware entities, scaling up or down the capacities or

services involved to Network Functions with a centralized perspective. [2]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

7

Image 1. NFV Benefits
[http://ptgmedia.pearsoncmg.com/images/chap1_9780134463056/elementLinks/01fig18_alt.jpg]

2) NFV Framework
In this chapter we will reference out a short history analysis of the Framework

introduced and also the High and Low-level analysis of it. High level analysis introduces,

in an abstract way, the key structures of ETSIs NFV blocks and their functionalities,

where Low level analysis consists of a more detailed reference of the individual

components, such as blocks and reference points and their, occasionally, overlapping

functions.

2.1) History

Current network architecture management is vendor defined and has limited

room for customization. Only with vendors support can enhancements introduced in

management capabilities or new requirements be implemented. On the other hand,

with the introduction of virtualized network's architecture, a multitude of resources are

available, managed and operated in a variety of levels, more detailed and individual.

Automation, coordination and interconnection of functional blocks and layers,

introduced by the NFV Architectural Framework, are more agile and scalable. [1]

This results to the need for another functional block to the framework that

communicates with and manages both the VNF and NFVI blocks. This block manages the

deployment and interconnections of the VNFs on the hardware and allocates the

hardware resources to these VNFs.

The inherent ability of the MANO block to fully supervise and manage the

entities, enables it to be fully aware of their operational state, utilization and usage

statistics, thus making it an excellent interface for gathering and utilizing data by the

billing and operational systems. [3]

To unsure the standardization of this framework in In October 2012, a

specification group, "Network Functions Virtualization", published a white paper at a

conference in Darmstadt, Germany, on software-defined networking (SDN) and

OpenFlow. The group, part of the European Telecommunications Standards Institute

(ETSI), was made up of representatives from the telecommunication industry from

Europe and beyond (AT&T, BT, Deutsche Telekom, Orange, Telecom Italia, Telefonica

and Verizon). Now, years later, a large community of experts are working intensely to

develop the required standards for NFV as well as sharing their experiences of its

development and early implementation. ETSI counts over 245 individual companies as

its members, among which 37 of the world’s biggest service providers as well as

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

8

telecoms and IT vendors. ETSI has successfully completed Phase 3 of its work with the

publication of ETSI Group Specifications. These specifications, build on the third release

of ETSI documents published in October 2017 include an infrastructure overview,

updated architectural framework, and descriptions of the compute, hypervisor and

network domains of the infrastructure. These specifications also include service quality

metrics, security and trust, resilience and Management and Orchestration (MANO).

Following the white paper publication, numerous more in-depth material has been

released, namely a standard terminology definition and use cases scenarios for NFV

which prospective Network Virtualization vendors and operators refer to. [4]

2.2) High level Analysis

As mentioned earlier NFV allows developing Software to run on different identity

devices sharing the hardware, the exact antithesis of the traditional network

architecture. The key components of the ETSI - NFV Architecture is composed of three

major structure units.

1) Network functions virtualization infrastructure (NFVI)

2) Virtual Network Functions (VNF)

3) Network functions virtualization management and orchestration architectural

framework (NFV-MANO Architectural Framework)

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

9

Image 2. High level ETSI NFV Framework
[http://ptgmedia.pearsoncmg.com/images/chap1_9780134463056/elementLinks/01fig03_alt.jpg]

1) NFVI: Refers to the area of all hardware and software components who build the area

to host the VNF. Hardware for the Virtual Machines, Software for the Virtualization and

the Virtualized resources.

2) VNF: Software executions of Network Functions that are stationed over the NFVI.

3) NFV-MANO: Gathers of the information for the functions, interfaces, repositories and

reference points of Network Functions for managing and orchestrate over them. An

independent block that communicates with VNF and NFVI blocks and creates/deletes

resources.

VNFs can be allocated as a multifunction of VNF working together or as standalone. The

protocols used to a Network Function that are being virtualized into a VNF do need to

be aware of the virtualized execution. p.ex. we could have 2 stand-alone VNFs (a) DNS,

(b) Mail Server that run separately from each other and are not physically connected

handling by one 'higher' VNF that is responsible for the interconnection.

As for mentioned earlier with the specific architecture we have detached Software for

hardware machine, so all these VNFs can be implemented into several hardware

machines that have Processors, Memory, Storage and minimum of one network

interface. Moreover, with this architecture we can have a combination of several

machines working together to provide p.ex. more memory to a specific Network

Function when need. Resulting a cluster of resources independent from each other to

provide to the necessitate uses. [5]

2.3) Lower Level Analysis

As part of the Low-level analysis MANO Frame can be analyzed in three block

functions as below:

- Virtualized Infrastructure Manager (VIM)

- Virtualized Network Function Manager (VNFM)

- NFV Orchestrator (NFVO)

Also, we will refer to NFV Framework layers,

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

10

2.3.1) VIM:

As part of MANO block, VIM is responsible for managing the resources, storage

computing networking, the virtualized hardware and the correspondence with the

Virtualization layer. So, VIM has all the information needed to manage hardware

resources and performance (availability, status, power and utilization). VIM can control

the resources for the NFVi parallel working with other blocks (VIM or other) to

determine the amount of resources needed for Network Functions both on the same

Point of present or across the domain assigned to, but also into multiple NFVI.

The role of a VIM is to configure the compute, hypervisor and infrastructure

network domains. As mentioned earlier there is a correlation between NFVI and VIM.

NFVIs through the Virtualization Layer join the hardware physical resources to Virtual

Hardware. Such as Computing, Storage and Network resources are perceived as Virtual

Computing, Storage and Network, as per ETSI framework. Therefore Computing (CPU

plus Memory) can be converted to pool and be used by different host through a cluster

formatted resource. Virtual Storage can be formatted into NAS topology and be

assigned or de-assigned to devices when needed. Respectively Virtual Networking can

combine NICs available ports from routers, switches Optical transponders and Wi-Fi to

provide capacity when needed. It must be mentioned that these functional blocks are

independent from each other and not mandatory to run on a single device. The whole

process and management of this function is managed from VIM.

2.3.2) Virtualized Network Functions Manager-Layer

The VNFM is responsible for the lifecycle management of VNF instances. Each

Network Function is associated with one VNFM. A VNFM could be assigned into one or

multiple VNF instances same or different type. As a Network Function is designed to

work in any hardware device that has the generic functions required but isn’t aware of

which device is running on. Thus, when a VNF requires more resources a forwarded

message will occur from the VNFM informing the VIM that more resources are needed

and that message will be transferred to the VM through Virtualization layer locating the

required resources.

As mentioned earlier a network service could be associated with one or more

NFVs. In the multiple form of NFVs some functions may have correlated holdings in

other VNFs or would require a specific flow of execution. Responsible for that is VNF-

Forwarding-Graph (VNF-FG) or service chaining (create, query, update, delete), e.g by

creating, maintaining the virtual networks, Virtual Links, subnets, and ports.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

11

The Element Management is responsible for the FCAPS (Fault, Configuration,

Performance, Accounting, Security) management of VNF’s network application.

 Fault management for the network functions which are provided by the VNF.

 Configuration for the network functions which are provided by the VNF.

 Accounting for the usage of VNF functions.

 Performance Measurement results collection for the functions provided by the

VNF.

 Security management for the VNF functions.

To perform those functions that require exchanges of information regarding the

NFVI Resources associated with the VNF, the EM is aware of virtualization and

cooperates with the VNF Manager. It also intercommunicates with the VNFs to reach

the VNFM, providing a proxy to the VNFM for management as well as operations of the

VNFs. The FCAPS are still managed by VNFM, but it can be supported by the EM to

interact with the VNF for this form of management. [5]

2.3.3) Operational and Orchestration Layer

From, the reference point of Service Providers, transition to NFV architecture

model won’t cause the reorganization of management tools. OSS/BSS systems could

easily transact to NFV through NFVO. NFVO supervises end-to-end services deployed in

communication with VIM and NFVManager.

This layer handles the information’s about the resources from VIM’s managing

and also across multiple VIMs, through Resource Orchestration. Moreover, through

Service Orchestration has the management of Network Services, plus has the

management of Network Service and Network services instantiation such as query,

scaling, updating queries, management performance collective information plus

termination of above. It also manages the initiation of VNFM and NFVs, validates the

resources needed NFVI for a service instance through VNF manager. Furthermore, NFVO

manages the creation, update and delete of Forwarding Graphs.

Independently of any VIMs and while utilizing the Resource Orchestration

functionality (RO), the NFVO supplies services that assist accessing the NFVI resources,

as well as handling of VNF instances pooling resources with the NFVI.

As a summarization of the above we can split this layer into two functionalities between

the Resource Orchestration that allocates and manages NFVI resources to the VIMs

referred to and the Service Orchestration, that defines the interconnection of NFVIs

used by VNFs providing a Service.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

12

2.3.4) NFV Reference Points

In the NFV framework key role in the interconnection between logical functional blocks

have the Reference Points. They play a key role to implement a service instance as they

are responsible to ensure that flow of information between block is consistent and

exchange information needed between those logical blocks. Below is a detailed report

of those Reference Points in correlation to the boundaries happening and each

responsibility.

Os-Ma-nfvo. This reference point is responsible for information exchange between

OSS/BSS and NFVO, pertaining VNF package management, VNF and Network Service

lifecycle management (instantiating, updating, querying, scaling, and terminating) and

Network Service policy management such as authorization and access. Additionally, it

forwards usage, events, and network performance Service Instances to OSS/BSS and

querying VNF instances and network services to NFVO.

Ve-Vnfm-vnf. This reference point is responsible for information exchange between VNF

and VNFM, responsible for instantiating, querying, updating, scaling (up or down) and

terminating the VMs. It is also responsible for VNF function, events and configuration

from VNFM to VNF as well as events and configuration from VNF to VNFM.

Ve-Vnmf-em. This reference point is responsible for information exchange between

VNFM and EM. Ve-Vnmf-em, handles the same information exchange (instantiating,

querying, updating, scaling up or down and terminating the VMs, configuration

exchange), between VNFM and EM.

Nf-Vi. It is responsible for information exchange between NFVI and VIM. This reference

point creates, configures and removes inter VM connections; allocates, updates,

migrates and terminates VMs. Moreover, it transfers information to the VIM regarding

usage records, failure events and configuration, for NFVI resources (virtual, software,

physical).

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

13

Or-Vnfm. This reference point is responsible for information exchange between NFVO

and VNFM. Forwards state and events information to the VNF. It also handles

instantiation, updates, scales, state and termination package query of the VNF.

Or-Vi. This reference point is responsible for information exchange between NFVO and

VIM. It supports configuration, events, results and usage of NFVI to NFVO, handles VNF

image update, allocation/deallocation. Finally, it communicates the updates, releases

and reservations of NFVI resources.

Vi-Vnfm. This reference point is responsible for information exchange between VIM and

VNFM. It handles NFVI resource information (reservation, allocation and release) and

passes information of measurements results, usage and events used by VNF for a

specific NFVI resource.

Vn-Nf. This reference point is responsible for information exchange between NFVI and

VNF. It communicates information regarding performance, lifecycle, and portability

requirements of VNF. [1]

Image 3. Reference Points
[http://ptgmedia.pearsoncmg.com/images/chap1_9780134463056/elementLinks/01fig07_alt.jpg]

2.3.5) Summarization

A summarization and end-to-end view of Orchestration.

-The full view of a Service Instance is perceptible by NFVO.

-Required NFVs are triggered by NFVO and communicated to VNFManager.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

14

-VNFM then calculated the needed VMs and resources to that particular instance and

passes this information to NFVO in order to satisfy VNF needs.

-Validation of resources needed to the particular instance and requesting these

resources, if available.

-That request is passed through to VIM to locate and create and apply those needs to

VMs.

-VIM passes information through Virtualization Layer for that creation.

-VMs are created.

-VIM is responding back to NFVO for the competition of resources creation.

-VNFM is informed by NFVO that the requested VM are available.

-VNFM instantiates the available VNFs.

-VNF configures accordingly the VNFs.

-VNFs created successfully so VNFManager interacts with NFVO reporting that VNFs are

successfully created, configured and available to use.

3) Motivation, Interdependence, Considerations.
In this chapter we will analyze the motive behind the development of NFV

environment in relation with new network design architecture inserted, alongside with

other new technologies such as the overlapping function of SDN and NFV. Furthermore,

we analyze how these two new models operate together and the differences between

them. Another aspect is the insertion of new Operating Systems - Platform – Project and

the use of them in the OSM MANO. We will summarize some key characteristics of the

new technologies used such as Cloud Computing and Projects such as LXD, Openstack

and OpenDayLight. Lastly reference will be made into the NFV Design Considerations.

3.1) Motivation

The management of NFV environments is a challenging task in itself because of the

huge amount of data available, with several VNFs migrations in the total network

environment, dynamic resource allocation, requirements of tenants, and the

information of VNFs. Moreover, information about the physical infrastructure, such as

CPU, memory resources, bandwidth etc. All the above describe a highly dynamic

environment and network that network engineers must address in a production

network. From engineer’s perspective we have to understand and integrate:

 Number of packets processed and the available resources to them.

 Geographically necessity of resources, and the conflicts around VNFs.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

15

 Service infrastructure requirements, both physical and virtual.

 Production of future network expansion.

All the above reasons force the community and the industry to produce a highly

adaptive, standardized model, convenient and easy to use, ready to reduce operating

and complexity costs.

3.2) Integration of SDN and NFV

Due to the dynamic network requirements of cloud data-centers, Software Defined

Networks were born by Open Network Foundation that introduced the term. Key

aspects of SDN are the following:

 Automation of the network lifecycle management reducing operational costs

and improving users experience.

 Centralization of the control management functions, as they are decoupled from

physical hardware imported to the cloud.

 Abstraction of management through APIs with direct network interaction. [6]

SDN has been equally exciting as NFV, and both of them are highly complementary

but not depended from each other. SDN and NFV decouple Hardware from Software,

but with different trajectories. While NFV is trying to consolidate many network

functions running on switches, servers, storage, with high level automated

management, and quick on-the-fly implementations, SDN tries to enhance network

performance, simplify network installations, ease maintenance procedures.

Traditional router network function through routers, with the FIB (Forwarding

Information Database) network packets are processed on the data plane passing

information to the right path with the appropriate routing information.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

16

Image 4. Traditional router Data, Control plane
[https://i2.wp.com/www.networkset.net/wp-content/uploads/2010/07/cef.png?resize=500%2C300]

Packets entering router are processed to the data plane. Control plane with

Routing Information (data)Base (RIB) and Label Information Base (LIB) process them in

software and used to populate FIB and the LFIB. Routing tables, neighbors, and network

management is held in control plane. Packet without a known FIB entry, router passed it

to control plane, to make the appropriate decision and pass the information ruled to FIB

again. [7]

With the centralization of the SDN devices, a controller has information about the

network neighbors, making the appropriate traffic routing decisions.

Image 5. SDN high level architecture. [
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf]

 In the image above, we see the SDNs high-level architecture

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

17

 Infrastructure layer communicates with network devices forwarding information,

with predefined interfaces. Formed by the network elements (NE) that provide

flow switching and other data-plane functions. Software defined controller

knows the network structure and services processed and it can make the

appropriate optimal traffic decisions.

 Application layer is held by Operating/Business Applications, associated with the

network. This association is performed through APIs, consuming SDN services.

 Control layer contains the network intelligence and manages the network

forwarding behavior through an open interface such as OpenFlow-based on the

applications requirements. Also, control layer makes abstraction views of the

network and thus simplifies maintenance or security.

Summing up NFV and SDN have common goals towards networking and complete

each other. SDN can support NFV infrastructures providing scalable and on-demand

networking according to the changing VNF connectivity requirements for both virtual

and physical networking infrastructures. Classic networking is shifting into an improved

vendor independent automation and management network with finer granularity of

control. The acceleration of new service innovation is enabled with programmability by

operators, enterprises, independent vendors and users.

3.3) Cloud Platforms

Cloud computing is a significant advancement in the delivery of information

technology and services. By providing on demand access to a shared pool of computing

resources in a self-service, dynamically scaled and metered manner, cloud computing

offers compelling advantages in cost, speed, and efficiency.

Contrary to traditionally deployments that require applications to be bound to a

particular infrastructure, cloud brings in capabilities to allow applications to be

dynamically deployed onto the appropriate infrastructure at runtime. This elastic aspect

of Cloud computing allows applications to scale and grow on demand without needing

traditional patches of upgrades.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

18

Image 6. Conceptual Architectural Model
[https://www.nist.gov/sites/default/files/documents/itl/cloud/SP_500_293_volumeII.pdf]

Cloud Computing inserts the concepts of resource pooling, virtualization, dynamic

provisioning, utility and commodity computing within the public Cloud or create a

private Cloud that meets these needs. What Cloud computing is trying to achieve is self-

service provisioning across tenants. Those tenants could be a project, division or even a

different company. Major categories of models associated with cloud computing are:

 Infrastructure as a Service (IaaS): Managed by the service providers, VMs are

available to customers with the physical hardware (servers, storage and

networking).

 Platform as a Service (PaaS): Managed by the service provider and all the details

about the physical and virtual equipment abstracted from the developer, the

platform for programmers is provided as a service.

 Software as a Service (SaaS): Managed by the service provider, an application is

made available to customers, while all the details of the underlying platform are

abstracted.

The key components of the Cloud infrastructure are summarized below.

 The logical abstraction layer that pools the physical resources which support the

Cloud Infrastructure.

 Cloud Builder that configures and operates the Cloud platforms and

infrastructure as a Service.

 Cloud Application Builder that develops applications for the Cloud and deploys

them on the PaaS (Platform as a Service) platform and offer as SaaS (Software as

a Service) services. Cloud Builders support multiple application builders and

applications.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

19

 SaaS consumers that consume the software services and Cloud Application

Builder support multiple SaaS consumers. Also, a hybrid model is available to

SaaS consumers with functionalities partly provided by classic IT or internal

private Cloud on one hand and public Cloud on the other.

 Cloud Application Builder and Cloud Builder supported by the Cloud

Management infrastructure.

 Application management, provided by the Cloud Builder to manage and

provision applications deployed on the Cloud, includes the self-service

capabilities. [8]

Centralized command and control becomes a must while the need for automated

provisioning of virtual networking equipment almost becomes a requirement, with the

parallel usage of existing physical devices and new virtual ones. This is the optimum

place of cloud computing, SDN and NFV. It is important to link the development

environment with the production environment, allowing patches and upgrades to be

deployed quickly and SDN and NFV can help in this, building fenced networks for

development, quality assurance, production thus resulting in fewer errors. Also,

complementary they bring down the cost of procuring and deploying hardware, and

consequently the CAPEX for the telecom operator comes down significantly.

Issue NFV Cloud Computing

Approach Service/Function
Abstraction

Computing Abstraction

Formalization ETSI NFV Industry Standard
Group

DMTF Cloud Management
Working Group

Latency Expectations for low latency Some latency is acceptable

Infrastructure Heterogeneous transport
(Optical, Ethernet, Wireless)

Homogeneous transport
(Ethernet)

Protocol Multiple Control Protocols
(e.g OpenFlow, SNMP)

OpenFlow

Table 1. Comparison of NFV in Telecommunication network and Cloud Computing.
[http://www.maps.upc.edu/rashid/files/NFVSURVEY.pdf]

3.4) LXD

Linux containers daemon (LXD) are self-contained execution environments—with

their own, isolated CPU, memory, block I/O, and network resources—that share the

kernel of the host operating system, seemingly like a VM, thus increasing speed and

density. LXD was created by Stéphane Graber, who works for Canonical.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

20

Compared to traditional server virtualization, containers are an appealing

proposition in an application environment that has web-scale requirements. Containers

decouple applications from operating systems, which means that users can have a clean

and minimal Linux operating system and run everything else in one or more isolated

container.

Canonical points out that:

 LXD achieve 14.5 times greater density than KVM (Kernel-based Virtual

Machine).

 LCD launches instances 94% faster than KVM.

 LXD provides 57% less latency than KVM.

LXD behaves exactly as hypervisor but eliminates the overhead of virtualization or

machine emulation. LXD’s density relies on the fact that the same kernel is managing all

the workload processes, thus improving quality of service and latency issues. LXD

services higher density than KVM, as the underlying hypervisor can handle common

processes more effectively. [9]

Image 7. Graphical depiction of LXD usage [LXD Containers - Ubuntu Submit 2015]

 LXD run on any architecture (Intel, AMD, IBM) and in any cloud.

 They are compatible with existing Linux container technologies.

 Bring storage, network, and remote API interfaces to containers.

 Compatible with any Linux distro (Ubuntu, RedHat, CentOS)

Below is an example of the display of installed LXD in OSM MANO host environment,

showing the Host environment that incorporates the host containers as the image

above.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

21

+--

| Host System

| eth0: 192.168.10.1

| +--

| | | Host Container |

| | | eth0:10.10.10.2 |

| | | lxdbr0: 10.122.240.1 |

| | +-------------+----------+-----------+------------+

| | +----------v-----------+ +----------v-----------+ +----------v

| | | SO-ub | | RO | | VCA

| | | eth0: 10.122.240.73 | | eth0: 10.122.240.90 | | eth0:10.143.142.216

| | | | | | | lxdbr0:10.44.127.1

Image 8. LXC list of installed OSM release three.

3.5) OPENSTACK

On May 2018 Openstack foundation released the media a presentation

expounds choosing MANO OSM for the right Orchestrator into End-to-End NFV with

Openstack [10]

Openstack is an open-source platform framework enabling cloud deployment

and management suitable for IaaS (Infrastructure as a Service) service models.

OpenStack began in 2010, with its initial release, as a joint project of Rackspace Hosting

and NASA. As of 2016, it is managed by the OpenStack Foundation, a non-profit

corporate entity established in September 2012, with more than 500 companies joined.

[11]

Openstack choose OSM MANO from Openstacks tacker, OpenBaton, ONAP

(Open Network Automation Platform) as it is a proven working solution, with large

community activity and not technical deformations.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

22

Image 9. OpenStack and OSM MANO
[https://qnpic1.fangketong.net/201809/14/20180914_18133_1197475_3.png%21web]

The OpenStack architecture is built upon RESTful modular services. End users can

interact either through the APIs or the provided CLIs and dashboards. Openstack

supports telemetry, orchestration and advanced network services.

Image 10. Openstack and NFV
[https://wiki.opnfv.org/display/INF/OpenStack]

OpenStack is fundamental to the Virtualized Infrastructure Manager (VIM) as part of

the Management and Orchestration (MANO) function that controls the assignment of

virtualized compute, storage and network resources from the NFVI to support the VNFs.

The primary OpenStack projects involved are:

 Nova: OpenStack Compute for managing bare metal or virtual servers.

 Cinder: OpenStack Block Storage for virtual storage

 OpenStack Networking (code named Neutron) providing virtual networking [12]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

23

OpenStack provides all the functionalities required to control and manage an NFVI by

handling the Virtual Machines that host and run the VNFs, including the creation and

management of IP addresses and the networks between them.

3.6) OpenDaylight

OpenDayLight is a collaborative open source project hosted by The Linux

Foundation. (2013). The software is written in Java programming language and the goal

of the project is to promote network functions virtualization (NFV) as also software-

defined networking (SDN).

It is characterized by highly availability, scalability, and modularity. Modern

heterogeneous multi-vendor networks can be ‘fed’ by its multi-protocol controller

infrastructure built for SDN deployments. OpenDaylight provides a model-driven service

abstraction platform that allows users to write apps that easily work across a wide

variety of hardware and south-bound protocols. [13]

Image 11. Open Day Light and OSM.
[http://vialimachicago.com/review-nfv-architecture-ideas/what-is-the-best-nfv-orchestration-platform-a-review-of-

14]

The OpenDaylight architecture includes:

 The controller platform, which contains services and applications which

implement controller logic independently of the underlying network

technologies below.

 Southbound interfaces and protocol plugins. OpenDaylight offers a ModelDriven

Service Abstraction Layer (MD-SAL) which allows applications to control a broad

range of underlying networking technologies.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

24

 On top of the components above, there are the several north-bound APIs, the

AAA (Authentication, Authorization and Accounting) layer and the DLUX

Interface framework. [14]

Image 12. OpenDayLight Architectural Framework.
[https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Framework]

3.7) NFV Design Considerations

With the steady growth of NFV, it is vital to point out that Virtualization of Network

Services into virtual instances, is not only sufficient. Along with the QoS and SLA

assurance for NFV to be acceptable, they have to meet the following requirements:

 Vertical Integration: NFV enlarges carriers’ network architecture with its nature

to decouple hardware and software generalization. NFV is a complex project

with multiple technologies, interfaces and vendors. Thus, it is important that

vertical cloud platform integration is performed smoothly and quickly.

 Network Service Deployment: Since multiple components, in current networks,

are provided by different vendors and involved during processes, interoperability

can cause problems in Network Service deployment. From OSS/BSS up to NFVO,

VNFM, VIM, Cloud OS and COTS. Descriptors, such as NSD, VNFD should also

follow the standardized format for a successful service instantiation.

 Service Assurance: Functionality is equivalent to Service performance and high

availability. When there is a failure in the network, the information should be

propagated quickly to the upper layers, so that each component can use this

information effectively. Automation is a key factor in NFV lifecycle management

and different components or blocks, have self-healing mechanisms build in.

These mechanisms are triggered under specific conditions, such as notifications

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

25

that have been received from the network. This information is vital for a

successful recovery, without unexpected outages.

 Software Upgrade: Changes in software of a component, or block, in any layer,

could cause problems to the other layers. This could impact existing services and

their users. Upgrades must be checked before applying and there should be a

roleback procedure in case of a failure upgrade.

 Security: Both the NFVI physical and virtual resources should be protected. Plus,

processes, policies and practices.

 Heterogeneity: NFV platform must be open to run applications from different

vendors, also ISPs should have the flexibility to choose from different hardware

and software.

 Automation: Automation of processes is important to the success of NFV. In

order NFV to succeed that automation should remain and expand. [15]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

26

4) OSM MANO Project

4.1) OSM History

OSM was originally design by operators to coordinate the production of NFV

networks. The project, meeting the standards of ETSI NFV, primarily distributes an open

source Management and Orchestrator (MANO) stack. It is worth mentioning that it was

released in Github (Git-repository hosting service) under Apache 2 license.

Following the NFV Framework-History section, it’s worth mentioning that its

publications have moved from pre-standardization studies to detailed specifications

(Release 2 and Release 3) and the early Proof of Concepts (PoCs) efforts have evolved

and led to interoperability events (Plugtests). Community is still working intensely to

develop the required standards for NFV as well as sharing their experiences of NFV

implementation and testing. [16]

Telefónica, BT, Canonical, Intel, Mirantis, RIFT.io, Telekom Austria Group, and

Telenor are some of OSM’s founding members while its initial participants include Benu

Networks, Brocade, Comptel, Dell, Indra, Korea Telecom, Metaswitch, RADWare, Red

Hat, Sandvine, SK Telecom, Sprint, Telmex, xFlow and 6WIND.

4.2) Why OSM?

The author of this thesis found the operating principals fascinating. The open

source principal and the community model that all parts are helping with testing and

bug fixes making the project open for individuals as us to get familiar with, and

companies to adapt their current network in a same horizontal procedure as a standard.

As mentioned above the OSM Project is a wide-open community driven by

Service Providers requirements and supported by key players in the industry of

virtualization space. OSM MANO embraces the complexity required for deployments in

field. At real time and real scenarios. With EPA support, Multi-VIM operation, Multi-site

activity, and the detachment of RO and SO. It also provides a CLI and GUI configuration

tool, plus is multi-vendor making it friendly for network engineers. Moreover, OSM

MANO has a comprehensive set of L2 network connections. This combination hides the

low-level complexity to network engineers while assures consistent deployments.

All the above make the specific project simple, easy to use and adapt to current

network challenges.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

27

4.3) Scope of OSM

Current MANO approaches and Static/ Traditional Operators are focused

partially either on the L3 and part of L2 process or either on Layer 2 and Layer 1., but

never through the above Layers, and cloud operations are involved with Layer 0. OSMs

scope is to cover all the Layers from 3 into 1 with the ability to talk as an entity with

Cloud Operation. Also delineates a clear movement between the layers and modules,

broadly aligned with ETSI-NFV.

The scope of the OSM model can be summarized into four Architectural

principals alongside with 4 Layers show and analyzed below.

Table 2. Layers of the NFV approach

Layering: real operation is multi-layered by nature, but current mano approaches

are partial.

Abstraction: The new challenges in the Network Industry require a flexible and a

scalable network. There is a need for abstraction to provide the originally intended

independence that will allow networks to scale as required. OSM is trying to provide

that required abstraction through the network, moving up/down the layers offering

clear differentiation in the levels of abstraction/details presented.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

28

Modularity: Two of the key components of the ETSI NFV architectural framework

are the NFV Orchestrator and VNF Manager, known as NFV MANO. Service

orchestration is also required for operators to enable true NFV services. Open Source

software can make the application of an NFV Architecture (following ETSI standards)

easier, supply the ETSI ISG NFV with crucial feedback, while making NFV

implementations’ interoperability all the more likely. Even within layers, clear

modularity enabled with plugin model preferred to facilitate module replacements as

OSM community develops.

Simplicity: OSM says that it has a one click installation and also that the big

community supporting the OSM with seeding codes can hide the complexity around the

project helping network engineers focus on their activity. Plus, GUI/CLI tools helping the

user configuration.

4.4) OSM Mapping to ETSI NFV MANO

In this section we are going to see how the ETSI NFV Model is being incorporated

into the OSM Model.

In the below image is illustrated the approximate mapping of scope between the OSM

components and the ETSI NFV MANO logical view.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

29

Image 13. OSM Mapping to ETSI NFV MANO
[OSM release three – white paper]

Run-Time Scope

The run-time scope of OSM includes:

 An Automated Service Orchestration environment that permits and makes the

functional concerns of the multitude of lifecycle phases of a NFV based complex

service, easier.

 A superset of ETSI NFV MANO where the significant supplementary area of the

scope includes Service Orchestration and provision for SDN control.

 Provision of a plugin model for the incorporation of various SDN controllers.

 Provision of a plugin model for the incorporation of various VIMs.

 A reference VIM, developed for Enhanced Platform Awareness (EPA) so as to

allow high performance VNF deployment.

 An incorporated “Generic” VNFM, also supporting a “Specific” one.

 Provision for Physical Network Functions incorporation into an automated

Network Service deployment.

 Supporting both Greenfield and Brownfield scenarios.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

30

 A variety of tools and interfaces (GUI, CLI, Client and REST) allowing access to all

features.

Design-Time Scope

The design-time scope of OSM includes:

 Network Service Definition, CRUD operations (Create/Read/Update/Delete).

 Model-Driven environment with Data Models aligned with ETSI NFV

 VNF Package Generation simplification.

 A Graphical User Interface (GUI) to reduce the network service design time. [17]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

31

4.5) MANO Software Components

We previously covered the functions of VIM, NFVO and VNFM. In order to

analyze the structure of MANO we have to refer some other chains and functions. The

sections of Interfaces use and characteristics, EPA attributes, YANG models, NSD and

VNFD Descriptors will follow in order to get familiar with the functionality of OSM.

Image 14. The NFV MANO Architecture
[https://wiki.sdn.ieee.org/pages/viewpage.action?pageId=65780]

4.5.1) Interface

The Os-ma-nfvo (Os-Ma in image 14) interface is designed with open, standards-

based APIs, such as NETCONF and REST, and common information models, such as

YANG. This specific layout allows upper-level orchestrators, such as Business Process

Orchestrators or Service Orchestrators, to automate the entire service bring up process.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

32

4.5.2) EPA

In an architecture such as a legacy, chassis-based deployment, network function

suppliers have chosen a specific CPU for the network function guarantying the

bandwidth and latency across the chassis. On the contrary, Datacenter Architecture

Virtual machines may be allocated in several physical hosts anywhere within the same

datacenter, and both the host and the physical links between these hosts can be

oversubscribed. As on the physical host the CPU cores of a specific virtual machine may

belong to different sockets, this could result to memory access and cache issues. The

aforementioned divergence could cause VNFs with performance characteristics

differences to emerge. Enhanced Platform Awareness supported by OSM can solve

these issues. The Virtualized Infrastructure Manager during the initial allocation of

virtual machines can discover EPA attributes. Among the VNF instantiation process, VNF

request characteristics are compared to the abilities of the virtual machine, in order to

allocate workload placement across the corresponding VMs. This design also supports

placements such as:

 High data rate workloads, such as load balancing, hugepage setup, CPU pinning,

and PCI pass through.

 Best-effort workloads, such as statistics gathering or log output.

 Workloads that form part of the same network service (same service chain) in

the same switching domain.

 Distributing workloads, such as firewalling, DHCP, or other premise-related tasks,

to a remote customer premise device.

 Advanced security capabilities, such as Quick Assist Technology (QAT) crypto

assist and Trusted Platform Module. [18]

4.5.3) Network Service Descriptor (nsd:nsd)

Used for designing the service chains, the network service descriptor (NSD) is the

top-level constructor. The NSD is used by the NFV orchestrator to instantiate a network

service, consisting of static information elements. Also, it has four elements:

 Virtual network function (VNF) information.

 Physical network function (PNF) information.

 Virtual Link (VL) information.

 VNF forwarding graph (VNFFG) information.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

33

The NSD references one or more VNFDs. These VNFs are connected VLDs, and the traffic

flow in the service chain is determined by VNFFGD. The NSD also opens a number of

connection points, permitting connections to other network services.

Image 15. High Level Object Model for NSD [OSM information model-
https://osm.etsi.org/wikipub/images]

NSD Data Model: Catalog for the network service descriptor.

nsd:connection-point : list of references to network service connection points.

nsd:constituent-vnfd: list of Virtual Network Function Descriptors (VNFDs) that are part

of this network service.

nsd:scaling-group-descriptor: Scaling group descriptor within this network service,

defines a group of VNFs

nsd:placement-groups: list of placement groups at the network service level.

nsd:ip-profiles: List of IP profiles that characterize the IP parameters for the virtual link.

nsd:vnf-dependency: List of VNF dependencies of the Network Service Descriptor (NSD).

nsd:monitoring-param: List of monitoring parameters from VNFs to communicate with

the Network Service Record (NSR).

nsd:input-parameter-xpath: List of customizable (during instantiation) XPaths to

parameters within the Network Service Descriptor.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

34

nsd:parameter-pool: Pool of parameter values whence to draw during network service

configuration.

nsd:service-primitive: Network service-level service primitives for the Network Service

Descriptor.

nsd:initial-config-primitive: NSD initial set of configuration primitives which are

implemented at network service.

nsd:terminate-config-primitive: List of configuration primitives, implemented before

shutting down the network service.

nsd:cloud-config: NSD cloud configuration parameters to include a list of public keys

user wants to inject into each VM as part of network service instantiation. [18]

4.5.4) Virtual Network Function Descriptor

The virtual network function descriptor (VNFD) is a deployment template that

describes the attributes of a single VNF, used primarily by the VNF manager (VNFM) in

the process of VNF instantiation and lifecycle management of a VNF instance. Provided

information in the VNFD is also used by the NFV orchestrator (NFVO) to manage and

orchestrate network services and virtualized resources on the NFV infrastructure (NFVI).

VNFD also contains of the followings:

 VNF images, containing the application and the Launchpad.

 Connection points and virtual links, KPI requirements and interfaces, utilized by

MANO functional blocks to provide the appropriate virtual links.

 Virtual deployment unit (VDU) that determine the VM/VNFC requirements

(compute, storage, and network).

 Platform resource requirements, (CPU, interfaces, memory, and network).

 Special characteristics associated with performance as well as EPA attributes.

 Scaling properties.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

35

Image 16. High Level Object Model for VFND [OSM information model-
https://osm.etsi.org/wikipub/images]

The above image figures the High-level object model for VFND. The VNFD

contains sets of VDUs, internal and external connection points as well as internal virtual

links. The internal aspects (connection points and virtual links) characterize the

connections of the VMs inside the VNF. On the other hand, NSD uses the external

connection points in order to chain VNFs. Apart from getting information about EPA

attributes, VM image and flavor, the VDUs also define the individual VNF parts.

During the process of VNF instantiation and during lifecycle management of a

VNF instance, VNFM uses a VNFD. Analytically, the information that is provided in the

VNFD is been used also by the NFVO to orchestrate and manage virtualized resources

and network services on the NFVI. Elements in the VDU (Virtual Deployment Unit)

determine software components and the compute resources. The VDU handles

information about software components, networking resources, CPU, memory and

storage in the VM. So as, any individual VNF has external and internal connection points,

abstracting the virtual interface used by the container/ VM, each virtual interface inside

the VM has assigned a connection point. In order to connect VNFC internals to VNF,

internal connections points are being used. These connection points, (internal or

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

36

external), are connected using virtual link and each virtual link has references, two or

more connection points as seen in the above image. [18]

VNFD has also EPA capabilities captured in the VNFD Virual Deployment Unit.

Those elements in summarization are:

 Hugepages: The CPU marks the RAM used, by a process, consuming memory.

Many platforms default allocate value as frames of 4K bytes RAM. Those frames

of bytes are being called pages and can be swapped to disk, etc. Since the

Operating Systems and the CPU has to remember everything, from which page

to the stored place, as process address space is virtual, it is understandable that

the more pages to process, the more time is needed to locate the mapped

memory. A process of 2GB of memory consumption, is translated to 524288

entries to look up (2GB / 4K), and if one Page Table Entry consume 8bytes, that's

approximately 4MB (524288 * 8) to look-up. [19] Without standard 4k pages and

the use of hugepages we can improve network performance. Fewer pages are

needed and there are fewer Translation Look-aside Buffers (TLBs, high speed

translation caches).

 CPU Pinning: Processor affinity, or CPU pinning, is called the process that enables

the binding or unbinding a process to a specific central processing unit (CPU) or

ranges of CPUs. These processes will be executed on the pinned CPU or CPUs

and not in any CPU available. At the time of resource allocation, each item in the

queue, has a tag indicating its designated processor. [20] Often in OpenStack

deployments, hosts are configured to permit over-commit of CPUs.

Default scheduler in Openstack attempts to launch a maximal number of VMs

per host rather than optimizing the individual VM’s performance, leading to

conflicts occurring between two guests VMs. There could be extended periods

when the guest vCPU is not scheduled by the host, and thus leading to latency.

To avoid a latency issue, the guest should be pinned to a dedicated physical CPU.

 Guest NUMA Awareness: The NUMA (Non-uniform memory access) topology

and CPU pinning features in OpenStack provide high-level control over how

instances run on hypervisor CPUs and the topology of virtual CPUs available to

instances. These features help minimize latency and maximize performance. In

the traditional symmetric multiprocessing (SMP) architectures, all of the

available CPUs access the same memory. With the growing of CPU, and as

modern CPUs are faster than the memory they use, the memory bus starts to

have a bottleneck effect, as data remain in the queue to be processed, not

feeding the CPU. In contrast with the above, in a NUMA system, memory is

https://en.wikipedia.org/wiki/Symmetric_multiprocessing

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

37

separated into multiple memory nodes (or cells), associated with particular CPUs.

Ensuring that all memory accesses are local to the NUMA node and can be

accessed faster than the other memory nodes, thus avoiding latency. [5] When

running workloads on NUMA hosts, the CPUs executing the processes should be

on the same node as the memory used. [21]

 PCI Pass-Through: The PCI device passthrough capability allows a physical PCI

device, from the host machine, to be assigned directly to a guest machine. The

guest OS drivers are using the device hardware directly without relying on any

driver capabilities from the host OS. [22] Guest virtual machines might need

direct access to the PCI devices to avoid contention with other VMs. In addition,

PCI pass-through significantly improves performance since the hypervisor layer is

bypassed.

 Data Direct I/O: Direct I/O is a feature that supports direct reads/writes from/to

storage device to/from user memory space bypassing system page cache. By

most operating systems, buffered I/O is, in most cases, the default I/O mode

enabled. [23] In the specific case, Intels’ DDIO makes the processor cache the

primary source and destination of the I/O data rather than main memory,

helping to deliver lower latency, lower power consumption and increased

bandwidth. [24]

 Cache Monitoring Technology: Intel's Cache Monitoring Technology (CMT)

provides visibility into shared platform resource utilization (via L3 cache

occupancy), which enables improve application profiling, better scheduling,

improved determinism, and improved platform visibility to track down

applications which may be over-utilizing shared resources and thus reducing the

performance of other co-running applications. [25]

 Cache Allocation Technology: Intel Cache Allocation Technology (CAT) allows an

operating system, hypervisor, or similar system management agent to specify

the amount of L3 cache space an application can fill. [26]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

38

VNFD Data Model (vnfd:vnfd): Descriptor details for the Virtual Network Function (VNF).

vnfd:vnf-configuration: Holds information about the VNF configuration for the

management interface.

config-method:script: Script container for configuring the VNF. This script will be

executed in the Launchpad, and all required dependencies for the script should be

available in the Launchpad system.

config-method:juju: Juju container for configuring the VNF.

service-primitive:parameter: List of parameters to the primitive.

vnfd:mgmt-interface: Interface over which the VNF is managed.

vnfd:internal-vld: List of internal Virtual Link Descriptors (VLDs). The internal VLDs detail,

basic topology connectivity (E-LAN) between VNFC internal components, within the

system.

vnfd:ip-profiles: List of IP profiles that describe the IP characteristics for the virtual link.

ip-profile-params:dns-server: List of DNS servers associated with this IP profile.

ip-profile-params:dhcp-params: Container for DHCP parameters.

vnfd:connection-point: List of external connection points, in which each VNF,has one or

more points that are used to connect a VNF to other VNFs or to external networks and

exposes these connection points to the orchestrator (NFVO).

vnfd:vm-flavor: Describes another term for a VM instance.

vnfd:guest-epa: Describes geust OS EPA attributes.

vnfd:vswitch-epa: Describes Open vSwitch EPA attributes.

vnfd:hypervisor-epa: Describes Hypervisors EPA attributes.

vnfd:host-epa: Determines host-level EPA attributes.

vnfd:alarm: Describes alarm information.

vnfd:image-properties: Supplies checksum file and image name of VM during the

launch.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

39

vnfd:internal-connection-point: Describing a list of internal connection points that are

used to connect the VNF components internal to the VNF. Each VNFC has zero to more

internal connection points.

vnfd:internal-interface: Describing a list of internal interfaces for VNF enabling intra-VNF

traffic.

vnfd:external-interface: List of external interfaces for VNF enabling intra-VNF traffic.

vnfd:volumes: Defines disk volumes to be attached to the VDU, such as when a VNF

requires multiple disks to boot the virtual machine.

vnfd:vdu-dependency: List of virtual deployment unit (VDU) dependencies, from which

the orchestrator determines the order of startup among the VDUs.

vnfd:monitoring-param: List of monitoring parameters at the VNF level.

vnfd:placement-groups: List of placement groups at VNF level. The placement group

construct defines the compute resource placement strategy in a cloud environment.

VDU Data Model (vnfd:vdu)

Another key part of VNFD is VDU. VDUs are virtual machines that host the network

function. Some of the functionalities involved in the processes of a VDU are the above.

 Virtual machine specification

 Computation properties such as number of CPUs, number of cores per CPU,

number of threads per core, RAM size, disk size and memory page size.

 Storage requirements

 Initiation and termination scripts

 High availability redundancy model

 Scale out/scale in limits

4.5.5) Virtual Link Descriptor (nsd:vld)

A virtual link descriptor (VLD) is a deployment template that describes the resource

requirements needed for a link between VNFs, PNFs and endpoints of the network

service, that are available in the NFVI. The NFVO can select an option after evaluating

the VNFFG to determine the appropriate NFVI to be used based on functional and other

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

40

needs such as regulatory requirements and geographical needs. As always in ETSIs

MANO, network connections are defined by virtual links plus its connection points,

described as below.

 Connection of a network service to the outside world, such as the network

service endpoint, described in the NSD.

 Connections between VNFs within a network service, such as the external

interface of the VNF, described in the VNFD.

 Connections between VMs, described in the VNFC.

Also, we have to mention that there are two types of virtual links in the VLD, containing

Quality of Service and bandwidth information requirements of the interconnection.

 The internal virtual links, which can be connected to external VNF interfaces and

VNFCs.

 The external virtual links, which can be connected to network service endpoints

and external VNF interfaces

4.5.6) VNF Forwarding Graph Descriptor (nsd:vnffgd)

Specified by a network service provider, a virtual network function forwarding graph

(VNFFG) is a graph of bi-directional logical links that connect network function nodes,

where at least one node is a VNF through which network traffic is directed. The VNFFG

model is defined at the network service level. One or more VNFFG descriptors can be

defined in the network service descriptor (NSD).

A VNFFG model consists of a list of rendered service path (RSP) and list of classifier

components.

Rsp: List of the Rendered Service Paths (RSP) for the VNFFGD.

rsp:vnfd-connection-point-ref: List of references to connection points.

classifier:match-attributes: A list of packet filters that identifies the packet stream to be

fed to the RSP.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

41

4.5.7) MANO YANG Models

YANG is a data modeling language used to design configuration and state data

manipulated by the Network Configuration (NETCONF) Protocol [RFC 6241], NETCONF

remote procedure calls, and NETCONF notifications.

nsd.yang Model

The nsd.yang file defines the Network Service Descriptor (NSD), the top-level

deployment of a network service. The nsd module contains attributes for a group of

network functions, which together constitute a service definition. These attributes

contain the relationship requirements of the VNFs which are chained together as a

service. The NSD references one or more VNFDs, as well as other descriptors that are

used for designing the service chains. [27], [28].

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

42

4.6) OSM Low Level Analysis

In this section we will analyze the Low-Level design of OSM MANO Architecture

and key software components of its function. Introducing the UI, RO, SO, VCA and their

operation.

Image 17. OSM Architecture
[OSM release three – white paper]

In the above image we can see the analytic OSM Architecture. With the User

Interface, Service Orchestrator, Resource Orchestrator, DevOps, Monitoring Tools

deployed, and the OSM data model (IM).

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

43

Image 18. Today’s OSM simplified Architecture
[OSM release three – white paper]

In the image above, we can see the simplified OSM Architecture, containing the

OSM scope (UI, SO, VCA, RO) and the VIM and NFVI (outside of OSM scope). User from

CLI or GUI can interact with the Service Orchestrator, and vice versa. Service

Orchestrator interacts with VCA and RO.

Resource Orchestrator is responsible for providing the interface into RO and for

deployment and the interconnection with required resources, interacting with Openvim

Controller and OpenStack controller. Also, it provides accurate assignment of resources

at VM level and the proper assignment of interfaces I/O to the VM.

VNF Configuration and Abstraction is handling the VNF Modeling and

Configuration through proxy charms, with primitives and attributes. It also responsible

for actions and notification from and to the VNFs and Element Managers (EM). When

assisted by Juju, it gives the facility to create generic or specific indirect-mode VNFMs,

via charms that can support the interface the VNF/EM chooses to export.

Lastly Service orchestrator is handling the end to end services. Providing the

primary API endpoint into OSM. Handling lifecycle management and service execution.

It is also responsible of supporting the concept of multi-tenancy, project, users, and

role-based access control. [29]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

44

4.7) OSM MANO: openMANO

Part of OSM MANO project, was an open source project released in GitHub

under Apache 2 license. It is a python-based code, with 45k code lines and 38 forks.

Is a practical implementation of the reference architecture for Management &

Orchestration (MANO) under standardization at ETSI’s NFV ISG. OpenMANO follows an

NFVO-centric approach, granting the deterministic allocation of resources and with a

simplified VNF instance lifecycle management at the NFVO (VNF instantiation and

termination). OpenMANO is friendly for Network engineers and has embeded network

scenarios. It provides NFVO and VIM with CLI and GUI, supporting EPA-aware High

performance VNFs. Is has REST-BASED APIs and is OpenStack friendly. It also has multi-

vendor capabilities by design. OpenMANO works with Network Scenarios via

descriptors, providing enhanced platform awareness (EPA) natively.

4.8) OSM MANO key Components

The following section covers a more in depth of the characteristics of OSM.

Analyzing the configuration available through Python CLI and GUI interface. Covering

how every section of component is communicating with each other.

Openmano was composed by 3 software modules.

 Openvim (Server and client)

 Openmano (server and client)

 Openmano-gui (web interface)

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

45

Image 19. OpenMANO components and logical interconnections
https://osm.etsi.org/wikipub/images/2/OSM(16)000020_MWC_demo_components__OpenMANO.pdf]

Openmano is responsible for the tenant and the datacenter management, VNF

catalogue management, Network scenarios catalogue management, the Network

Services deployment and the VNF, and also is responsible simplified VNF life cycle

management. While Openvim computes node management, the management of NFVI

tenant, images, flavors, Network and ports. Virual Machines are deployed with EPA

management, natively and bridged layer 2 networks.

4.8.1) OPENVIM: the VIM module

 Openvim was originally part of OpenMANO. It was an open source project

implementing ETSI MANO stack, such as VIM (openvim), NFVO+VNFM (openmano)

along with GUI (openmano-gui). With the creation of ETSI Open Source MANO (OSM),

the NFVO+VNFM (openmano) was contributed to OSM as seed code. [30] Openvim with

the interaction of OpenFlow Controller (floodlight/OpenDay Light) synthesize the NFV

VIM. Openvim is responsible for the interaction with compute nodes through libvirt. It is

tested on compute nodes based on Intel Xeon E5 processors, LINUX as host Operating

System, KVM as hypervisor. Also, we have to mention here that Openflow switch is

controlled by proactive rules and that image storage is based on NAS.

Openvim has 5 modes to be runed as illustrated below.

MODE Purpose Required Infrastracture

Normal Regular operation Compute nodes
OpenFlowswitch

Host only Deploy without OpenFlowswitch and
controller

Compute nodes

Development VNF development (deploys withoutEPA) Low Performance
compute node

Test Test openMANO installation and API -

OF only Test openflowintegration Openflow Switch
Table 3. Modes of Openvim Configuration. This thesis testing installation was run into

test mode.

Openvim Main Characteristics

 Host Management: Host addition is done manually through a host descriptor file

and hosts can be administratively set up or down.

 Tenant Management: Tenants delimit the property and scope of flavors, images,

vms, nets.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

46

 Network Management: Networks are pure Layer 2 networks. With PtP used to

create E-line service between two data plane interfaces, data used to create E-

LAN service with data plane interfaces and bridge-data, used to create an E-LAN

service based on pre-provisioned linux bridges.

 Port management: The ports are attached to networks similar to OpenStack.

There are two types of ports. Instance-related ports, with VM interfaces created

and deleted as part of the VM life cycle and External Ports, set explicitly by the

network administrator in order to define connections to PNF or external

networks physically attached to the Openflow switch.

 Image Management: Disk images to be use for a virtual machine. supports of

incremental images.

 Flavor management: Are a description of virtual machines requirement regarding

number of CPUs, memory and NICs.

 VM instance management: Besides traditional actions (create, delete, list),

allows actions over VMs (shutdown, start, pause, resume, rebuild, reboot)

Below you can find an output of the openvim usage through the CLI, and the configure

choices available.

$ openvim -h usage: openvim [-h] [--version]

{config,image-list,image-create,image-delete,image-edit,vm-list,vmcreate,vm-

delete,vm-edit,vm-shutdown,vm-start,vm-rebuild,vm-reboot,vm-

createImage,portlist,port-create,port-delete,port-edit,port-attach,port-detach,host-

list,host-add,hostremove,host-edit,host-up,host-down,net-list,net-create,net-

delete,net-edit,net-up,netdown,flavor-list,flavor-create,flavor-delete,flavor-edit,tenant-

list,tenantcreate,tenant-delete,tenant-edit,openflow-port-list,openflow-clear-

all,openflow-netreinstall,openflow-net-list}

4.8.2) Openmano / OSM client.

As we analyze previously, openMANO has the characteristics of hiding the

complexity to the network engineers, as it does not handle or computes nodes, VMs and

manages only nodes and links. Computes VNF and NS definitions via descriptors.

Additionally, operates NS instances creation and termination and the associated VNF

creation.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

47

In the matter of tenant management, which intended to create groups of

resources and delimit the property and scope of VNF and NS, and the actions over them

(instantiation, termination), are separate from the openvims tenant space. They are

handled by different programs with different databases.

Concerning the Datacenter management, a new datacenter must be added in

order to interact with a specific pool of resources. Datacenters are not directly available

to tenants, so an openmano tenant must be attached to a datacenter and a VIM tenant,

therefore datacenter nets can be inherited as external networks to be used. A

datacenter is characterized by the type, openvim (by default) or openstack, the URL of

the VIM that manages the specific datacenter, and the VIM configuration attributes.

4.8.3) Structure / Concept of the VNF.

As we previously stated a VNF is a software-based network function that can be

deployed on an NFV datacenter, with is structure VNFCs/VMs, plus internal and external

connections. In the below image we can see an example of a single VM VNF and a multi

VM VNF.

4.8.4) OPENMANO VNF Descriptor

Image 20. Example of a single VM VNF and a multi VM VNF
[https://image.slidesharecdn.com/2-150616082339-lva1-app6892/95/introduction-to-open-mano-27-

638.jpg?cb=1434444766]

The VNF descriptor is categorized by:

 Name: Unique name of the VNF

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

48

 External connections: External interfaces of that VNF that can be connected in an

NS to other VNFs or networks, properties: name, type, such as

management/bridge/data and mapping to a VNF structure)

 Internal connections: Defining how VNFC/VMs are interconnected. This attribute

is only required when a VNF consists several VMs. Properties: name, type, such

as management/bridge/data and a list of interconnected VNFC/VMs (and their

interfaces).

 VNFC: List of components virtual machines this VNF is composed of.

 VNFC properties: name and the image path. At the time of a new VNF is added to

the catalogue, openvim creates new VM images for each given VNFC, based on

that particular part.

VNFCs properties are categorized in the traditional requirements such as

 vcpus: number of virtual CPUs

 ram: number of virtual CPUs

 bridge-ifaces: virtio interfaces with no high I/O performance requirements. They

will be attached to Linux bridges in the host.

And the EPA properties requirements:

 numas: CPU, memory and interface requirements for high I/O performance.

Another key component of mano is the Network Service Descriptor.

NS are topologies of VNFs and their interconnections external and internal.

Here is an example of a simple network scenario and a complex with 3 nodes, and their

interconnections.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

49

Image 21. Example of a simple and complex NS scenario
[https://image.slidesharecdn.com/2-150616082339-lva1-app6892/95/introduction-to-open-mano-27-

638.jpg?cb=1434444767]

Openmanos’ Network Service Descriptor is categorized by:

 name: unique name of the network scenario.

 Topology: defines the VNFs and the networks interconnecting them.

 VNF: name and VNF model (id or name) and match a previously created

VNF.

 Netwoks: name

 Type of network: name of the network (in case of external/public datacenter

network), bridge (for control plane internal/private networks), dataplane

(for data plane internal/private networks).

 List: list of VNFs and interfaces connected to that network.

Below you can find an output of the openmano usage through the CLI, and the configure

choices available.

$ openmano -h usage: openmano [-h] [--version] {config,vnf-create,vnf-list,vnf-

delete,scenario-create,scenariolist,scenario-delete,scenario-deploy,scenario-

verify,instance-scenario-list,instancescenario-delete,tenant-create,tenant-

delete,tenant-list,tenant-edit,datacenteredit,datacenter-create,datacenter-

delete,datacenter-list,datacenter-attach,datacenterdetach,datacenter-net-

edit,datacenter-net-update,datacenter-net-delete,datacenter-netlist}

4.8.5) OSM GUI

OSM mano comes with a graphical user interface to accelerate the network service

design time phase and deploy the VNF. It can be accessed via Firefox or Chrome

(default). GUI characteristics are:

 Access to network scenario definitions and instances.

 Drag and drop scenario builder with access to the VNF catalogue

 Actions between instances over a network scenario VNF, into a NS (stop,

shutdown, delete, deploy) and over specific VNF instances.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

50

Image 22. OSM GUIs composer, containing NSD and VNF.

Image 23. OSM GUI composer, containing vnfd.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

51

4.8.6) CHARMS

Another key aspect of the OSM MANO project are charms. VNF’s operational

procedures are embedded in the VNF Package, and are encapsulated in charms, which

are controlled by VCA.

Image 24. OSM MANO workflow
[http://www.visualpcs.com/open-source-mano-osm-addressing-interoperability-challenges-in-nfv/]

A charm is a collection of scripts and metadata that encapsulate the distilled

DevOps knowledge of experts in a particular product. These charms make it easy to

reliably and repeatedly deploy applications, then scale them as required with minimal

effort.

Driven by Juju, these charms manage the complete lifecycle of the application, including

installation, configuration, clustering, and scaling.

A charm is a set of actions and hooks. With actions to be programs, and hooks are

events/signals. For commodity and reusability, those actions and hooks are grouped in

layers. A charm will always have one layer, and that layer has incorporated some actions

and hooks, also that specific layer can import other layers. The resulting charm has all

the actions and hooks from all the layers joined together, plus additional default actions

and hooks.

The SO directs the RO to create a virtual machine using the selected VNF image. When

that has successfully completed, the SO will instantiate a LXD container, managed by

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

52

Juju, with the proxy charm. The proxy charm will then communicate with the VNF virtual

machine to do Day 1 configuration. [31]

4.9) Day 1 and Day 2 Configuration.

In this chapter we are going to see the Day 1, 2 configuration flows of OSM

MANO project with charms. With VNF descriptors map charm actions to VNF primitives,

thus providing a full set of enablers for NFV management.

Image 25. OSM block at Instantiation time

Day-1 Configuration

At instantiation time, Day-0, the OSM Northbound API creates a new Network Service

instance, while VNF Descriptor injects the basic configuration settings (SSH keys,

hostname, user-data, scripting) via charms actions. Also, Network Service Descriptor has

the initial config and scripting.

Day-2 Configuration

During day-2 configuration, OSMs NB API gets the NS instance records and calls NS or

VNF primitive. At the same time VNFD has the config primitive with charms actions, also

NSD has the service primitive and scripts.

Day-2 Scaling

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

53

At day-2 scaling time, OSM NB API gets the NS instance record and scales in/out the

instance. VNFD via charms actions is injected with the basic configuration of cloud

initiation, while NSD initiates scaling groups and pre/post scaling primitives.

In the below images we can see how the instantiation is sequenced and actions taking

place, from the Launchpad to the VNF use.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

54

Images 26. Examples of instantiation sequence diagram.
[https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf]

4.10) What’s new with OSM release THREE

Release THREE also includes the support of projects. A “project” is used to group

things such as VNFDs, NSDs, NS instances, and datacenters (VIMs). These projects are

shared spaces where users can access and operate a given set of Network Services (NS)

and Virtual Network Functions (VNF), enabling collaborative work with orchestration.

Also, for release three security has been updated, providing extensions related to access

control security. Furthermore OSM 3 allows the definition of different roles, defined by

admin user, with different sets of privileges. All users are mapped to at least one of

these roles. It has been engineered and tested to be in support of Operators RFx

processes, quick installation in VNF vendor, system integrator and operator

environments. OSM 3 enhances interoperability with other components (VNFs, VIMs,

SDN controllers, monitoring tools) and provides a plug-in framework to make platform

maintenance and extensions significantly easier to provide and support.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

55

 Multi-tenancy & RBAC

 Monitoring Module

 Enhanced VIM support & emulation, support including different generations and

versions of Openstack, VMWare, and AWS

 NB API Consolidation

 Affinity/Anti-Affinity Rules

 CI/CD Workflow

 Information Model Consolidation

 Use of Generic VNFM

 Restructure of NFVO and VNFM into SO/RO/VCA

4.11) Installing OSM release Three

In this section an analysis will be made on how the OSM MANO is installed and

configured through the wiki of OSM release three. Minimum requirements of the

installation along with a step by step configuration.

Release Three was presented at November 2017.

https://osm.etsi.org/wikipub/index.php/OSM_Release_THREE

Image 27. OSM interaction with VIM and VNF.
[https://osm.etsi.org/wikipub/index.php/OSM_Release_THREE]

https://osm.etsi.org/wikipub/index.php/OSM_Release_THREE

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

56

OSM talks to the VIM for the deployment of VNFs and VLs connecting them and OSM

talks to the VNFs deployed in a VIM to run day-0, day-1 and day-2 configuration

primitives.

In order for OSM to work, it is assumed that, each VIM has an API endpoint reachable

from OSM, each VIM has a so-called management network which provides IP address to

VNFs and that management network is reachable from OSM.

The recommended requirement to run OSM are:

 8 CPUs, 16 GB RAM, 80GB disk and a single interface with Internet access

 Ubuntu16.04 (64-bit variant required) as base image

(http://releases.ubuntu.com/16.04/), configured to run LXD containers.

There are multiple options for installing OSM, including:

 Installing into LXC containers

 From binaries

 From source code

 From prepared LXC images

 Installing into Docker Containers

 wget https://osm-download.etsi.org/ftp/osm-3.0-three/install_osm.

sh

 chmod +x install_osm.sh

 ./install_osm.sh

Installation of OSM Client. From version v3.0.2 the OSM installer installs OSM client by

default in your system, so there is no need of installation. If we type osm into CLI we will

see the output. For the installation of OSM client we have:

curl http://osm-download.etsi.org/repository/osm/debian/ReleaseTHREE/OS

M%20ETSI%20Release%20Key.gpg | sudo apt-key add -

sudo add-apt-repository -y "deb [arch=amd64] http://osm-download.etsi.o

rg/repository/osm/debian/ReleaseTHREE stable osmclient"

sudo apt-get update

sudo apt-get install -y python-osmclient

https://osm-download.etsi.org/ftp/osm-3.0-three/install_osm.sh
https://osm-download.etsi.org/ftp/osm-3.0-three/install_osm.sh
http://osm-download.etsi.org/repository/osm/debian/ReleaseTHREE/OSM%20ETSI%20Release%20Key.gpg
http://osm-download.etsi.org/repository/osm/debian/ReleaseTHREE/OSM%20ETSI%20Release%20Key.gpg
http://osm-download.etsi.org/repository/osm/debian/ReleaseTHREE
http://osm-download.etsi.org/repository/osm/debian/ReleaseTHREE

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

57

We need to specify the OSM host, either via an environment variable or via the osm

command line.

export OSM_HOSTNAME=`lxc list | awk '($2=="SO-ub"){print $6}'`

export OSM_RO_HOSTNAME=`lxc list | awk '($2=="RO"){print $6}'`

From the OSM client we have the below options:

config-agent-add

 config-agent-delete

 config-agent-list

 ns-create

 ns-delete

 ns-list

 ns-monitoring-show

 ns-scale

 ns-scaling-show

 ns-show

 nsd-delete

 nsd-list

 ro-dump

 upload-package

 vcs-list

 vim-create

 vim-delete

 vim-list

 vim-show

 vnf-list

 vnf-monitoring-show

 vnf-show

 vnfd-delete

 vnfd-list

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

58

If the installation is complete without any problem or need of troubleshooting the GUI

should be accessible. Login with admin/admin credentials.

The IP of the user interface is the IP created by lxd, and the port is 8443.

At this time, with the below commands, VIM List and Network Service Descriptors list

will show empty.

osm vim-list

osm nsd-list

Next, we should ensure that components have been adequately integrated during the

installation process

SO - RO - SO - VCA Config Agent.

Associate a VIM (or VIMs) to OSM

OpenStack (real, or VIM Emulator)

VMWare VCD

Amazon Web Services

4.12) Installing OpenVIm

In order to run openvim in normal mode and deploy dataplane VNFs, an

appropriate infrastructure is required. Below a reference architecture for an openvim-

based DC deployment.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

59

Image 28. Openvim Infrastructure
[https://osm.etsi.org/wikipub/index.php/OSM_Release_THREE]

 Openvim needs to be accessible from Resource Orchestrator.

 To make its API accessible from Resource Orchestrator (openmano). (Vim mgmt.)

 To be connected to all compute servers through a network. (DC infrastructure)

 To offer management IP addresses to VNFs for VNF configuration from CM.

Telco/VNF mgmt.

The compute nodes besides been connected to the DC infrastructure Network must

be connected also to two additional networks.

 Telco/VNF management network (juju server), used by CM (Configuration

Management) to configure the VNFs, and

 Inter-DC-network, in order to connect two sites.

Openvim is installed using:

wget -O install-openvim.sh "https://osm.etsi.org/gitweb/?p=osm/openvim.

git;a=blob_plain;f=scripts/install-openvim.sh;hb=1ff6c02ecff38378a4d736

6e223cefd30670602e"

chmod +x install-openvim.sh

sudo ./install-openvim.sh -q # --help for help on options

https://osm.etsi.org/gitweb/?p=osm/openvim.git;a=blob_plain;f=scripts/install-openvim.sh;hb=1ff6c02ecff38378a4d7366e223cefd30670602e
https://osm.etsi.org/gitweb/?p=osm/openvim.git;a=blob_plain;f=scripts/install-openvim.sh;hb=1ff6c02ecff38378a4d7366e223cefd30670602e
https://osm.etsi.org/gitweb/?p=osm/openvim.git;a=blob_plain;f=scripts/install-openvim.sh;hb=1ff6c02ecff38378a4d7366e223cefd30670602e

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

60

OSM also supports different kind of VIM like Oenstack, VMware vCloud Director,

Amazon Web Services. Also, OSM can manage external SDN controllers to perform the

dataplane underlay network connectivity on behalf of the VIM.

Announcing the OpenVim site:

osm vim-create --name openvim-site --auth_url http://x.x.x.x:9080/openv

im --account_type openvim --description "Openvim site" --tenant osm --u

ser dummy --password dummy

or openstack

osm vim-create --name openstack-site --user admin --password userpwd --

auth_url http://x.x.x.x:5000/v2.0 --tenant admin --account_type opensta

ck

Uploading VNF image to VIM.

In the osm ftp server there are examples of VNF and NS images.

https://osm-download.etsi.org/ftp/osm-3.0-three/examples

To onboard an image into openvim we must copy our image to the NSF shared folder

and execute

openvim image-create --name cirros034 --path /mnt/openvim-nfs/cirros-0.

3.4-x86_64-disk.img

Onboarding a VNF.

There are two ways to onboard a VNF. Either from GUI or via the OSM client.

From the OSM client we execute

osm upload-package cirros_vnf.tar.gz

osm vnfd-list

And from the UI, we go to GatalogImportVNFD, and drag and drop the selected .tar

http://x.x.x.x:9080/openvim
http://x.x.x.x:9080/openvim
http://x.x.x.x:5000/v2.0
https://osm-download.etsi.org/ftp/osm-3.0-three/examples

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

61

Image 29. OSM Composer
[https://osm.etsi.org/wikipub/index.php/OSM_Release_THREE]

Onboarding a NS.

Again, there are two ways to onboard a NS.

From OSM client we execute

osm upload-package cirros_2vnf_ns.tar.gz

osm nsd-list

or via UI we follow Catalog  Import and drag and drop the selected .tar

Insatiate the NS

From the osm client we execute

osm ns-create --nsd_name cirros_2vnf_ns --ns_name <ns-instance-name> --

vim_account <data-center-name>

osm ns-list

and from the user interface we follow Launchpad  Insatiate  Select the NS to be

instantiated  next  add name to the NS instance  Launch.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

62

Image 30. NSD Insatiate
[https://osm.etsi.org/wikipub/index.php/OSM_Release_THREE]

5) NFV in Market.
In order to illustrate the response of the NFV we had to cover how the network industry

incorporates the new NFV Architecture. Thus, in this section there is reference about

NFV implementations and products from industry. Tables below show the available

products in the market, organized by category, open source, standardization and the

subcategory including their applications. Major companies have products using the NFV

Architecture both open source and not.

5.1) MANO Category.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

63

Company OPNFV ETSI NFV ISG Sub-Category

Brocade SDN Controller Y Y

Orchestration, VNF Manager, OpenFlow

management for underlying PNF. Netconf

configuration management for VNF and PNF.

Overlay Management for OVSDB
Cisco Virtual Topology N N

SDN SW overlay provisioning and management

system

Cisco Network Services

Orchestrator
N N

Orchestration

Cisco Elastic Services

Controller
N N

Orchestration, VNF Manager, VIM

Juniper Networks Contrail
Y Y

Orchestration, VNF Manager, Virtualized

Infrastructure Manager

Ensemble Orchestrator Y Y Orchestration, VNF Manager

Affirmed Mobile Content

Cloud
N N

Orchestration

 Chameleon SDS N Y Orchestration

Anuta Network NCX N Y Orchestration, VNF Manager

Athena
N N

Orchestration, VNF Manager, Virtualized

Infrastructure Manager

Avaya SDN Fx Architecture N N Orchestration, Virtualized Infrastructure Manager

Brocade VNF Manager Y Y VNF Manager

Ubuntu OpenStack Y Y Virtualized Infrastructure Manager

CA Virtual Network

Assurance
N N

Orchestration, VNF Manager, Virtualized

Infrastructure Manager

 Exanova Service Intelligence
N Y

Service Assurance; related to TRAM

Blue Planet Y Y Orchestration

Ericsson Network & Cloud

Manager
Y Y

Orchestration, VNF Manager

 Network Virtuora OM & RV N N Orchestration, VNF Manager

Huawei FusionSphere
Y Y

Orchestration, VNF Manager, Virtualized

Infrastructure Manager

MRV Pro-Vision N Y Orchestration

NI - Controller N N Orchestration

NI – Framework N N Orchestration

NEC Orchestrator
Y Y

Orchestration, VNF Manager, Virtualized

Infrastructure Manager

CloudBand (Nokia)

Y Y

Orchestration, VNF Manager, Virtualized

Infrastructure Manager, Network service

orchestrator

Network Service Orchestrator

Solution (Oracle)
Y Y

Orchestration

PLUMgrid OpenStack

Networking Suite
N N

Orchestration, VNF Manager, Virtualized

Infrastructure Manager

CloudShell (Qualisystems) N N Orchestration, Virtualized Infrastructure Manager

 ETX-2I vCPE Platform (RAD) N Y Orchestration, Virtualized Infrastructure Manager

CloudMetroo 100 (TELCO

Systems)
N N

Virtualized Infrastructure Manager

 vCloud NFV Platform
Y Y

Virtualized Infrastructure Manager, Day 2 Operations

Management

MANO Category

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

64

5.2) Infrastructure Category.

Table 4 . NFV in Market [SDx Central, Market Report, Mega NFV Report Pt. 1: MANO and

NFVI]

Company OPNFV ETSI NFV ISG Sub-Category

Cisco NFV Infrastructure N N

NFV HW platform, NFV SW platform, VIM, HW acceleration,

SW acceleration, Element Management System, value-

added SW tools

 Titanium Server Y Y NFV Software Platform

6WINDGate Packet Processing Software N Y

6WindGate is a software networking stacks that can be

used to remove Linux Bottlenecks in the creation of NFV

6WIND Virtual Accelerator Y Y SW Acceleration

FSP 150 ProVM (adva) Y Y EMS, HW acceleration, SW acceleration, NFV hardware

Fast Path Accelerator (Aricent) N Y SW acceleration, SDK to build NFV solutions

Calvium ThunderX Y Y NFV Hardware Platform

Corsa 10G/100G SDN Switches N Y NFV Hardware Platform

Dell Open Networking Switches Y N NFV Hardware Platform

EMC Provider Cloud Systems Y Y NFV Hardware Platform, NFV Software Platform

Ericsson Cloud Execution Environment Y Y

HW acceleration, SW acceleration, NFV hardware platform,

NFV software platform

NPS-400 Network Processor N N HW acceleration

HPE NFV System Family (HP) Y Y NFV Software Platform

Intel Open Network Platform Server Y Y

NFV Hardware Platform, NFV Software Platform, SDK to

build NFV solutions

Mellanox MSX1410-OCP N N HW Acceleration, SW Acceleration, NFV Hardware Platform

 Midokura Enterprise MidoNet Y N NFV Software Platform

Netronome Agile CX N N HW Acceleration, SW Acceleration, NFV Hardware Platform

NoviFlow NoviSwitch N Y NFV Hardware Platform, NFV Software Platform

 NoviWare N Y NFV Software Platform

Nuage Networks VSP N N

NFV software platform. The VSP consists of software-based

policy management and analytics, SDN controller,

virtualized routing, and switching

Red Hat NFV Platform Y Y NFV Software Platform

Infrastructure Category

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

65

ANNEX A
In this chapter we will analyze the experience installing OSM MANO from our

perspective. The aim was to install OSM MANO and thus get familiar with open source

MANO for NFV. We used a laptop with 4 physical CPUs and 4 GB RAM, with Ubuntu

16.04. Minimum requirements for OSM MANO is 4CPUs and 8 GB RAM, with 40 GB disk

and a single interface with internet access.

Installing from binaries (as it is recommended) was more than 90 minutes. The

preparation of LXC images was up to 10 minutes and adding the VIM emulator is more

than 10 minutes.

From the beginning we had problems installing the OSM as it was constantly failing to

install. As you can see below:

so_is_up: FATAL error: OSM Failed to startup. SO failed to startup

BACKTRACE:

FATAL /tmp/installosm.qvR4J3/jenkins/common/logging 39

After troubleshooting this, we had problems connecting to the UI, as we could ping the

UI, but we couldn’t connect from Chrome Browser.

ERROR: Command failed: "/usr/rift/container_tools/mkcontainer --modes U

I-base --rw-version ${PLATFORM_VERSION}"

Ξ£Ξ±Ξ² 06 Ξ™Ξ±Ξ½ 2018 08:23:37 ΞΌΞΌ EET main: UI install complete.

Return code was 1

Ξ£Ξ±Ξ² 06 Ξ™Ξ±Ξ½ 2018 08:23:37 ΞΌΞΌ EET main: FATAL error: UI insta

ll failed

BACKTRACE:

FATAL /tmp/installosm.fYaiE4/jenkins/common/logging 39

Also, we had problems connecting to the OSM client, as connection was refused. We

addressed these problems reconfiguring Iptables manually, getting access to the UI.

During the troubleshooting and the configuration, it was obvious that the laptop

couldn’t handle the Processes for mentioned, as it was constantly lagging and freeze up.

Several installations were done, with different options tested but either we had to

troubleshoot in order to move forward, and either Laptop was under-functioning.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

66

We took the decision to upload the installation to the cloud. We choose Microsoft Azure

Cloud Services, and we have committed 8 CPUs and 32 GB RAM with Ubuntu 16.04.

Below you would find some output charts of the installation process CPU usage and the

Disk Write bytes.

Image 31. CPU usage during installation.

As you can see this is a demanding installation. At the pick of the installation we had

94,5 % CPU usage of the 8 committed CPUs.

Installation was successful, and we had connection with the UI without troubleshooting.

We ensured that components have been adequately integrated during the installation

process.

Image 32. Accounts.

And we have associated a VIM emulator to OSM.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

67

Image 33. Output osm vim-list.

Then we checked the accounts of the OSM.

Below is an output of the RO account installation.

Image 34. RO accounts.

We can see the RO account name, ROs container IP, the corresponding API port, the

Default tenant id and Juju installation.

Image 35. Juju account.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

68

Consequently, we tried to upload NS / VNF packages from here:

https://osm-download.etsi.org/ftp/osm-3.0-three/examples/cirros_2vnf_ns/

We have uploaded them with both ways. Through CLI and through the UI. OSM

suggested that we should upload VNFs firstly and then the NS, as NS usually contain

references to existing VNFs.

Below you are able to see the successfully uploaded VNF and NS.

Image 36. Installed VNF and NS.

Also, through OSM client we can the above NS /VNF by executing osm vnfd-list and osm

nsd-list

https://osm-download.etsi.org/ftp/osm-3.0-three/examples/cirros_2vnf_ns/

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

69

Image 37. Output osm vnfd-list, osm nsd-list

Proving that NSD and VNF were successfully onboarded.

We then tried to upload an example network package with our installed VIM emulator.

Below you can see the topology of the example uploaded. It is called Pingpong. Powered

by Paderborn University.

Image 38. Pingpong Topology.

The example states the two VNFs (ping, pong) are managed through mngmt_vl and we

will try to ping from one to another, and vice versa.

In the below image you can see the Pingpong NSD preview.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

70

Image 39. Pingpong NSD preview

Also, in the OSM client CLI we can see the new VNFs and NS uploaded.

Image 40. Output nsd-list

After that we have tried to initiate the VNFs.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

71

Image 41. Initiation

And we got a fail message in the initiation of the Network Services.

Image 42. Fail message on initiate.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

72

The problem was as we have found out that the juju failed communicating with the

OSM.

Image 43. Juju connection failure.

We have tried to troubleshoot this problem but with no success. Also, we have studied

the Troubleshooting guide of OSM Release three, but there was no success. We also,

tried to restart the VCA but it didn’t work.

Image 44. Output osm config-agent-list

Services RO and SO, in the OSM MANO, were working properly as you can see below.

RO Service

Image 45. RO status

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

73

SO status

Image 46. SO status

Conclusions

In this last section we are going to share our comments and thoughts with our

experience with OSM MANO.

 Firstly, it was very difficult to install OSM MANO three into a common laptop/PC,

as the minimum requirements were unapproachable. First step installation fails were

very common and even thought we managed to overcome there were problems

configuring iptables, firewall in order to communicate with OSM GUI at the proper

suggested port. (Several times we had connection refused reply although we had

followed installation guide step by step). Moreover, after installation finished, laptop/PC

was always crashing and lagging, due to the CPU overload. As installation to a common

laptop was not reliable, author tried to take advantage company’s resources but with no

success. Due to GDPR and the fact that a public IP was needed in order to control this

project, permission was denied for security reasons. In order to overcome this problem

we uploaded project to a well-known cloud computing platform purchasing minimum

requirements. As a result, we managed to overcome all the above problems,

communicating with GUI. Thereafter we had several other problems getting all the

services to communicate and configure properly the test example. We had a stalemate

with juju configuration thus we were unable to initiate the test example.

 Judging from a network engineers point of view OSM MANO has to overcome

some problems in order to be introduced to company’s environment shifting to this new

network model. We strongly believe that a more detailed installation guide would help

network engineers and people testing OSM MANO, as existing ones cover the basics,

lack in illustration, and also some previous knowledge of python is needed to

understand the interconnections between blocks and their functionality.

Also, we believe that troubleshooting guides should be more developed

explaining all the details in installation by step-by-step presentations. Network

Engineers are not always familiar with python and charms, so it is difficult for us to

troubleshoot problems concerning the OSM MANO.

As this is an open environment we believe that an option of an installed VM with

all the installed components of OSM MANO should be available to be downloaded. In

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

74

that case network engineers could focus on the OSM MANO functions and not on the

installation. They could get more familiar with the product thus introducing this exciting

new environment in a job-related environment.

Lastly, we think that in order to OSM MANO to be a common ground in industry,

more POC (Proof of Concept) presentations must be given, than the two available [OSM

three – white paper], for more people to be convinced to bring this project into real

industry environment applications.

Nevertheless, OSM MANO is constantly changing, with new releases every six

months, with tested new environments. The community is seeding code in order to

make OSM MANO more agile and simple. An exciting new environment that would

determine the future network.

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

75

ANNEX B

In this annex we have some examples diagrams of a how a Multivim environment and

OSM DC Infrastructure are connected using OpenVim, Openstack and OSM controller.

Also the last images shows a logical diagram of OSMs VNFD.

Image 47. MultiVIM infrastructure
[https://osm.etsi.org/wikipub/index.php/OSM_Release_THREE]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

76

Image 48. OSM DC Infrastructure
[https://osm.etsi.org/wikipub/index.php/OSM_Release_THREE]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

77

Image 49. OSM VNFD Model
[https://osm.etsi.org/wikipub/images]

Image 50. OSM NSD Model
[https://osm.etsi.org/wikipub/images]

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

78

References

[1] Network Functions Virtualization (NFV) with a Touch of SDN , By Rajendra

Chayapathi, Syed F. Hassan, Paresh Shah Jan 25, 2017

[2] https://www.networkcomputing.com/networking/5-nfv-benefits-trends-driving-

them/1187036662

[3] https://www.networkworld.com/article/3253118/virtualization/what-is-nfv-and-

what-are-its-cost-performance-and-scaling-benefits.html

[4] https://en.wikipedia.org/wiki/Network_function_virtualization

[5]https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v01

0101p.pdf

[6] https://www.opennetworking.org/, Open Networking Foundation

[7] The Control Plane, Data Plane and Forwarding Plane in Networks, by BRENT

SALISBURY

[8] Meridian: An SDN Platform for Cloud Network Services, Mohammad Banikazemi,

David Olshefski, Anees Shaikh, John Tracey, and Guohui Wang, IBM T. J. Watson

Research Center

[9] https://linuxcontainers.org/lxd/introduction/

[10] [https://www.openstack.org/assets/presentation-media/Achieving-end-to-end-

NFV-with-OpenStack-and-Open-Source-MANO.pdf

[11] https://en.wikipedia.org/wiki/OpenStack

[12] https://www.openstack.org/assets/telecoms-and-nfv/OpenStack-Foundation-NFV-

Report.pdf

[13] https://wiki.opendaylight.org/view/Main_Page

[14]

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Framework

[15] https://www.gsma.com/futurenetworks/wp-

content/uploads/2017/05/Virtualisation.pdf

[16] https://www.etsi.org/technologies-clusters/technologies/nfv

[17] https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-

FINAL.pdf

http://www.informit.com/store/network-functions-virtualization-nfv-with-a-touch-of-9780134463056?w_ptgrevartcl=The+Journey+to+Network+Functions+Virtualization+(NFV)+Era_2755705
http://www.informit.com/authors/bio/01116f8f-f844-4d70-a866-0795e645c706
http://www.informit.com/authors/bio/01116f8f-f844-4d70-a866-0795e645c706
http://www.informit.com/authors/bio/68b4db7a-3f83-4106-acf6-6e1926c4fad2
http://www.informit.com/authors/bio/014a3748-9cd6-485e-b8b2-d440d5727637
https://www.networkworld.com/article/3253118/virtualization/what-is-nfv-and-what-are-its-cost-performance-and-scaling-benefits.html
https://www.networkworld.com/article/3253118/virtualization/what-is-nfv-and-what-are-its-cost-performance-and-scaling-benefits.html
https://en.wikipedia.org/wiki/Network_function_virtualization
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://networkstatic.net/author/brent/
http://networkstatic.net/author/brent/
https://linuxcontainers.org/lxd/introduction/
https://en.wikipedia.org/wiki/OpenStack
https://www.openstack.org/assets/telecoms-and-nfv/OpenStack-Foundation-NFV-Report.pdf
https://www.openstack.org/assets/telecoms-and-nfv/OpenStack-Foundation-NFV-Report.pdf
https://wiki.opendaylight.org/view/Main_Page
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Framework
https://www.gsma.com/futurenetworks/wp-content/uploads/2017/05/Virtualisation.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2017/05/Virtualisation.pdf
https://www.etsi.org/technologies-clusters/technologies/nfv
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.pdf

Master Thesis: Introduction, Overview & Experimentation Analysis of ETSI Open Source

Management & Orchestration (OSM MANO) Architecture

79

[18] Network Functions Virtualisation (NFV); Management and Orchestration, by ETSI GS

NFV-MAN 001 V1.1.1 (2014-12)

[19] https://wiki.debian.org/Hugepages

[20] http://www.tmurgent.com/WhitePapers/ProcessorAffinity.pdf

[21] https://docs.openstack.org/nova/pike/admin/cpu-topologies.html

[22] https://libvirt.org/guide/html/Application_Development_Guide-Device_Config-

PCI_Pass.html

[23] https://github.com/facebook/rocksdb/wiki/Direct-IO

[24] https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html

[25] https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-

technology-use-models-and-data

[26] https://software.intel.com/en-us/articles/introduction-to-cache-allocation-

technology

[27] OSM_R2_Information_Model.pdf, July 19th, 2017

[28] Osm-r1-information-model-descriptors.pdf, October 3, 2016

[29] OSM release three – white paper, ETSI OSM Community, October 2017

[30] https://github.com/nfvlabs/openvim

[31]

https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_charm_(Release_THR

EE)

https://wiki.debian.org/Hugepages
http://www.tmurgent.com/WhitePapers/ProcessorAffinity.pdf
https://docs.openstack.org/nova/pike/admin/cpu-topologies.html
https://libvirt.org/guide/html/Application_Development_Guide-Device_Config-PCI_Pass.html
https://libvirt.org/guide/html/Application_Development_Guide-Device_Config-PCI_Pass.html
https://github.com/facebook/rocksdb/wiki/Direct-IO
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://github.com/nfvlabs/openvim

