
Design and Implementation of a NoSQL
Data Access Interface

Nikolaos Koutroumanis

Supervisor: Assistant Prof. Christos Doulkeridis

Postgraduate Studies Programme “Digital Systems & Services”
Area of Study “Big Data and Analytics”

Department of Digital Systems
University of Piraeus

This dissertation is submitted for the degree of
Master of Science

April 2019

This thesis is dedicated to Nikolaos Bellias.

Acknowledgements

I would like to render my warmest thanks to my supervisor, Assistant Professor Christos
Doulkeridis for his invaluable guidance, advice, encouragement and academic stimulus. It
was a pleasure to be under his supervision for second time, since I kept learning fundamentals
of conducting scientific research. His knowledge and experience has really inspired me and
helped for completing this thesis.

I would like also to express my gratitude to Panagiotis Nikitopoulos for his indications on
the code and the fruitful discussions we had during my thesis preparation. I greatly value the
personal rapport that Panagiotis and I have forged. Special mention goes to Akrivi Vlachou
and Orestis Telelis with whom we had illuminating discussions and excellent collaboration
during my studies. Last but not least, my sincere thanks goes to the rest teaching stuff of
our department for imparting the knowledge of data science and responding promptly to my
questions.

Abstract

In recent years, the development of positioning technologies and the prevalence of GPS-
equipped devices have generated vast amount of data with location and time information.
Uber, one of the most known transportation network companies, records about 15 million
trips every day over 600 cities worldwide. A Uber car drives a passenger from a departure to
a destination location. During a trip, the embedded GPS of the car reports its geo-location
in time, and the sequence of these locations forms a trajectory. Foursquare, a location
technology company that provides an application for personalized recommendations of
places on mobile devices, reports 8 million check-ins on a daily basis from its users. Many
challenges arise with the rapid expansion of spatial and spatio-temporal data in volume and
velocity, but the main target that remains is their efficient management and access.

The amount of such data exceeds the storage and processing capabilities of a single
machine, thus distributed database systems are adopted. Namely, NoSQL databases provide
a promising solution for handling massive data, offering high performance, availability
and scalability. Many NoSQL databases do not support directly spatial or spatio-temporal
indexing, but several studies propose techniques and methods for supporting this type of
data. Targeting to provide a unified way to access big data stored in NoSQL databases, we
present an API that makes the procedure of data accessing simple, hiding implementation
details. The API can stitch together with analytics tasks, as it offers many primitives and
operators for expressing data access operations. In addition to the offered functionality, the
API is extended to spatial and spatio-temporal data access. Moreover, we conduct extensive
experiments on MongoDB database with real and synthetic mobility dataset, so as to study
its performance in terms of efficiency and scalability for spatial and spatio-temporal data.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Goals of the thesis . 1
1.2 Document structure . 2

2 Review of NoSQL solutions for spatial and spatio-temporal data 3
2.1 NoSQL stores . 3

2.1.1 MongoDB . 4
2.1.2 Elasticsearch . 6
2.1.3 Apache Hbase . 7

2.2 MongoDB data indexing . 8
2.3 Underlying structure of spatial indexes of NoSQL stores 10
2.4 Techniques for managing mobility data on NoSQL stores 11

3 NoSQL data access API implementation 15
3.1 API Description . 15
3.2 API Documentation . 18

3.2.1 Setting up a connection to a NoSQL database 18
3.2.2 Query primitives and operators . 19
3.2.3 Use case of spatial and spatio-temporal query operations 26

3.3 API Architecture . 28
3.3.1 Packages and classes . 28
3.3.2 Connector and connection manager 34

3.4 Extending the API for supporting a NoSQL database system 37

x Table of contents

4 Description of query types 39
4.1 Aggregation pipeline stages & API operators 39
4.2 Geospatial query operators & API geographical operators 40
4.3 Serving k-NN over spatial circle queries 42

5 Experimental evaluation 45
5.1 Experimental study of spatial filtering . 47

5.1.1 Performance of spatial filtering with and without index 48
5.1.2 Minumum overhead of spatial filtering 51
5.1.3 Scalability of spatial filtering . 52

5.2 Experimental study of spatio-temporal filtering 54
5.2.1 Performance of spatio-temporal filtering with compound and spatial

index . 55
5.2.2 Minumum overhead of spatio-temporal filtering 57
5.2.3 Scalability of spatio-temporal filtering 58

5.3 Experimental study of k-NN spatial queries 60

6 Conclusions and future work 69

References 71

List of figures

3.1 Class diagram of gr.unipi.api.nosqldb package. Interfaces, classes, abstract
classes and enum classes are illustrated with green, blue red and orange color
respectively. 35

3.2 Class diagram of API operators. Interfaces, classes and abstract classes are
illustrated with green, blue and red color respectively. 36

4.1 The procedure of producing a histogram of a dataset containing points, by
using the grid partitioning method. 42

4.2 The circle query that will be performed if the desired (k) neighbors is set
equal or less than 3. The bold blue line is the radius of the (red) circle query
which contains the cell 5. 44

4.3 The circle query will be performed if the desired (k) neighbors are set equal
of greater than 4. The bold blue line is the radius of the (red) circle query
which contains the cells 1-9. The orange box represents the larger cells which
is examined in order to determine if it contains at least k points. 44

5.1 Data distribution of RE dataset. 46
5.2 Illustration of the bounding rectangle in which the synthetic data was gener-

ated. The coordinates (longitude, latitude) of the lower and upper bounds are
(20.1500,34.9199) and (26.6041, 41.8269) respectively. 46

5.3 Illustration of QS
1 spatial range query in red color, covering the area of Piraeus. 49

5.4 Illustration of QS
2 spatial range query in blue color, covering the area of

Athens and Piraeus. The rectangle with the red color is the QS
1 spatial query. 49

5.5 Performance of the size factors of QS
5 on RE dataset. 53

5.6 Output size (# counted documents) of the size factors of QS
5 on RE dataset. . 53

5.7 Performance of the size factors of QS
6 on SYNTH1 (red color) and SYNTH2

(blue color) datasets. 54

xii List of figures

5.8 Output size (# counted documents) of the size factors of QS
6 on SYNTH1 (red

color) and SYNTH2 (blue color) datasets. The scale of y axis is logarithmic. 54
5.9 Performance of the size factors of QST

5 on RE dataset. 59
5.10 Output size (# counted documents) of the size factors of QST

5 on RE dataset. 59
5.11 Performance of the size factors of QST

6 on SYNTH1 (red color) and SYNTH2
(blue color) datasets. 60

5.12 Output size (# counted documents) of the size factors of QST
6 on SYNTH1

(red color) and SYNTH2 (blue color) datasets. The scale of y axis is logarithmic. 60
5.13 m1 average graph of k-NN queries, served by RE dataset histograms 63
5.14 m2 average graph of k-NN queries, served by RE dataset histograms 64
5.15 m1 average graph of k-NN queries, served by SYNTH1 dataset histograms . 65
5.16 m2 average graph of k-NN queries, served by SYNTH1 dataset histograms . 66
5.17 m1 average graph of k-NN queries, served by SYNTH2 dataset histograms . 67
5.18 m2 average graph of k-NN queries, served by SYNTH2 dataset histograms . 68

List of tables

3.1 Supported Query Primitives . 20
3.2 Supported Comparison Operators . 21
3.3 Supported Boolean Operators . 22
3.4 Supported Geographical Operators . 23
3.5 Offered Aggregate Operators . 25
3.6 Offered Sort Operators . 25

5.1 Mobility Datasets . 47
5.2 Spatial Indexes . 48
5.3 Spatial rectangle queries QS

1, QS
2 . 48

5.4 Performance of spatial rectangle queries QS
1, QS

2 with spatial (2d sphere)
index usage . 50

5.5 Performance of spatial rectangle queries QS
1, QS

2 without spatial index usage 50
5.6 Spatial tiny circle queries QS

3, QS
4 . 51

5.7 Performance of tiny circle queries QS
3, QS

4 with spatial index usage 51
5.8 Spatial Circle Queries QS

5, QS
6 with size factor 52

5.9 Performance on varying the size factors for circle queries QS
5, QS

6 with spatial
index usage . 52

5.10 Compound Indexes . 55
5.11 Spatio-temporal box queries QST

1 , QST
2 . 55

5.12 Performance of spatio-temporal box queries QST
1 , QST

2 with spatial ((2d
sphere) index usage . 56

5.13 Performance of spatio-temporal box queries QST
1 , QST

2 with compound index
usage . 56

5.14 Spatial tiny cylinder queries QST
3 , QST

4 . 57
5.15 Performance of tiny cylinder queries QST

3 , QST
4 with compound index usage 57

5.16 Spatial cylinder queries QST
5 , QST

6 with size factor 58

xiv List of tables

5.17 Performance on varying the size factors for cylinder queries QST
5 , QST

6 with
compound index usage . 58

5.18 m1 elements of k-NN queries, served by RE dataset histograms 63
5.19 m2 elements of k-NN queries, served by RE dataset histograms 64
5.20 m1 elements of k-NN queries, served by SYNTH1 dataset histograms 65
5.21 m2 elements of k-NN queries, served by SYNTH1 dataset histograms 66
5.22 m1 elements of k-NN queries, served by SYNTH2 dataset histograms 67
5.23 m2 elements of k-NN queries, served by SYNTH2 dataset histograms 68

Chapter 1

Introduction

Nowadays, with the prevalence of GPS-enabled mobile devices, a huge amount of information
tagged with geographic location is generated. Many are the challenges that data management
systems face, since spatio-temporal data is increasing in an unprecedented rate in volume
and velocity. The adoption of a NoSQL database system instead of a relational datababase
allows the management of voluminous data, as they provide scalable distributed storage and
querying. However, many of them do not support directly spatial or spatio-temporal indexing,
but many studies propose techniques and methods for supporting this type of data.

Motivated by the lack of an unified language that could operate upon NoSQL storages,
we present an API for accessing data on such storages. Every NoSQL storage has its own
query language, putting a burden to developers who want to access the stored data. The API
supports query primitives and operators for the formation of access operations. Since our
primary interest is spatio-temporal data, we integrate to the API the functionality of accessing
spatio-temporal data.

1.1 Goals of the thesis

This thesis aims at implementing a developer-friendly interface for accessing data stored in
NoSQL stores. The interface was designed on the basis of providing a toolbox of functions
for expressing data access operations in an abstract and unified way upon agnostic NoSQL
systems. This facilitates to a great extent the procedure of data accessing, since the user
focuses only to the task of forming operations through comprehensive query primitives and
operators. The functionality of the interface is extended to spatial and spatio-temporal data,
being thus capable of accessing mobility data.

The API is instantiated over MongoDB. We focus on the use-cases of spatio-temporal
data accessing, and therefore we study thoroughly the performance of MongoDB in terms of

2 Introduction

efficiency and scalability on such data. Our objective is to acquire a deeper understanding of
performance issues for this database, as it can support geospatial data and index types for
performing spatial queries. By taking into account that MongoDB does not support k-NN
type queries, we adopt an approach based on grid partitioning for serving such queries via
the implemented API.

1.2 Document structure

The remaining of this document is structured as follows:

• Chapter 2 covers the state-of-the-art in the field of NoSQL solutions for spatial and
spatio-temporal data, providing some techniques and methods for managing such data.
The review of the related work shows that some of the NoSQL databases provide
spatial indexes, addressing the problem of managing spatial data at scale.

• Chapter 3 delineates the implementation of the NoSQL data access API which provides
a unified and simple way for accessing data on NoSQL storages. A usage documenta-
tion of the API is listed, and use cases of accessing spatial and spatio-temporal data
type are presented. API’s architecture is also demonstrated, in order to provide a deep
insight of its structure.

• Chapter 4 describes the query types of MongoDB that are used from the implemented
API for performing queries. An approach is presented for performing k-NN queries, as
they are not supported in MongoDB.

• Chapter 5 reports a detailed experimental evaluation on MongoDB, regarding spatial
and spatio-temporal data. Three experimental studies are conducted over three mobility
datasets, so as to acquire a deep understanding about the efficiency and scalability
when utilizing the built-in spatial and compound indexes.

• Chapter 6 summarizes the conclusions drawn from the thesis and reports the possible
future work.

Chapter 2

Review of NoSQL solutions for spatial
and spatio-temporal data

In this section, we review scalable and distributed storage solutions for voluminous spatial
and spatio-temporal data that need to be persistently stored.

The modern trend for scalable storage of massive data sets is by means of a NoSQL
store [3, 6]. The exact choice depends on numerous parameters, including the type of data,
the data access patterns, the purpose of data processing (read/write, read-only, etc.), as well as
any special requirements with respect to the consistency, availability, and partition-tolerance
(also known as CAP).

In the context of the thesis, spatial and spatio-temporal data is of our primary interest. We
turn our attention towards support of such kind of data in NoSQL systems, by using built-in
indexes and functionality. This involves the overview of existing NoSQL systems and their
capabilities for managing this kind of data.

2.1 NoSQL stores

The categorization of NoSQL stores is based on the underlying data model that is sup-
ported. Essentially, a data model specifies how real-world entities and their relationships are
represented and operated [15]. Thus, NoSQL stores are mainly classified into: key-value,
wide-column, document, and graph stores.

Today, there exist literally dozens of NoSQL systems, each targeting a vertical dimension
of the big data management landscape. We select a couple of representative NoSQL systems
to delineate from each category, using as selection criterion its popularity and wide user base.
Then, some of the selected NoSQL stores are presented in more detail. We focus on any

4 Review of NoSQL solutions for spatial and spatio-temporal data

built-in support or functionality for handling spatial data, which is of major importance. Our
selection is as follows:

• Document-stores: MongoDB (Section 2.1.1), Elasticsearch (Section 2.1.2)

• Wide-column: HBase (Section 2.1.3)

2.1.1 MongoDB

MongoDB1 is one of the most known and widely-used NoSQL databases. Its data model is
document-oriented, meaning that instead of storing records in tables like other databases, it
stores documents in collections. Documents are binary JSON documents (BSON) composed
of field-and-value pairs which are stored in collections.

Collections are containers for structurally (or conceptually) similar documents which are
not forced to have the same fields. Collections are stored in databases.

Databases are namespaces for physical grouping of collections. In other words, databases
hold collections of documents. Each database has its own set of files on the file system.

The lack of a pre-defined schema offered by documents confers some advantages.
Schema-less models can handle the cases of storing data whose schema is changing frequently.
Moreover, every document stores in fields all of the information related to it, supporting
sub-documenting (a document can be nested in a document). This is beneficial for queries
because no joins are required since every document includes all of its required data. For that
reason, MongoDB does not support join operations. [1].

A document-based model leads to denormalized data sets, because related data are
replicated across several documents. Consequently, this results to a hierarchical data structure.
Suppose that we are modeling products for an e-commerce site. A normalized relational
data model would require a query with joins in order to fetch all of the information about a
product in contract to the document model in which we would have to read a single document
that contains all of the product’s information.

Many databases (especially the relational ones) are difficult to scale horizontally which is
essential for handling vast databases because they are distributed across multiple machines.
MongoDB was designed to be easy to scale by making the horizontal scaling manageable.
This is achieved by supporting sharding. Similar to that feauture, MongoDB supports also
data replication for automated failover via replica set.

A way to administer the MongoDB database is to use its command shell which is a
tool based on the JavaScript language. The shell is similar to MySQL’s shell, but the big

1https://docs.mongodb.com/manual/

https://docs.mongodb.com/manual/

2.1 NoSQL stores 5

difference is that SQL is not used. Another way is to use a driver which is offered in many
languages such as C, C++, Java, Scala, Python and etc. A driver is the code that provides
functionality to query, read, write and run commands on the database.

Like other databases, MongoDB provides the tools for atomic operations meaning that a
single document can be processed. This is supported by the command findAndModify which
allows to atomically update a document (or a sub-document if included) and return it in the
same round-trip. Atomic update can not be interrupted by other operations. If a user tries to
change a found document before we modify it, must wait until the atomic update finishes.
A special feature of findAndModify command is that it returns the document after updating
it. This is useful because if we fetch and then update a document, changes may be made to
that document by another user between those two operations. In general terms, the atomic
update capability is big. It enables to build job queues and state machines, being thus able
to implement basic transactional semantics. This expands the range of applications we can
build by using the MongoDB. Furthermore, the option of operating on multiple documents is
available via the updateMany command. Although the operation as a whole is not atomic,
the modification of each document that occur is atomic.

The concept of CRUD operations exist in MongoDB, offered by its query language.

• Create operation adds new documents to a collection of a database. If the collection
does not exist, the collection is created with the first document insertion.

• Read operation retrieves documents from a collection. Query criteria can be specified
for fetching the needed documents. Criteria is expressed by operators.

• Update operation modifies existing document/s in a collection. Criteria can be specified
so as to identify the documents to update.

• Delete operation removes document/s from a collection. Criteria can be specified in
order to identify the documents to delete.

MongoDB supports comparison, logical, element, evaluation, geospatial, array and
bitwise operators for forming a query criteria.

• Comparison operators specify a range of values on a field

• Logical operators are used to define the logical relationship between operators

• Element operators specify criteria about the contained fields of documents

• Evaluation operators specify miscellaneous criteria on a field such as matching a given
modulo operation on a field

6 Review of NoSQL solutions for spatial and spatio-temporal data

• Geospatial operators specify a geospatial criteria on a field

• Array operators specify a criteria that is applied on the elements of an array field

• Bitwise operators specify a criteria that is applied on a binary field

2.1.2 Elasticsearch

Elasticsearch is a document-oriented database. It can be used in several ways such as search
engine, analytics framework and Data store (mainly for log). It has a schema-less data store.
The main data container is called index and is considered similar to the database in relational
databases. In an index, the data is groupped in mappings similar to tables in relational
databases. A mapping is composed of records stored as JSON object that contain fields.[13]

Elasticsearch supports sharding in order to manage the volumes of records Every record is
stored only in one shard, so many operations that require loading of records and modifications
are achieved without hitting all the shards.

The supported operations are divided into;

• Cluster\Index Operations - All write operations are locking and at first are applied to
the master node and then to the secondary node. Read operations are broadcasted to
all nodes

• Document Operations - All write operations are locking only for a single hit shard.
Read operations are balanced among all the shard replicas.

Elasticsearch natively supports storing geolocation types; special types called Geo-Shapes,
that allow localizing a document with geographical coordinates (longitude, latitude). These
types are represented as GeoJSON objects.

The Geo-Shape data type facilitates the indexing of arbitrary geo shapes such as rectangles
and polygons. This type is indexed by decomposing the shape into a triangular mesh and
indexing each triangle as a 7 dimension point in a BKD tree. This has the advantage of
providing perfect spatial resolution (down to 1e-7 decimal degree precision) because of using
an encoded vector representation for the computation of spatial relations of the original shape
instead of a raster-grid representation.2

2https://www.elastic.co/guide/

https://www.elastic.co/guide/

2.1 NoSQL stores 7

2.1.3 Apache Hbase

Apache Hbase3 is an implementation of Google’s Bigtable [4] for the Hadoop ecosystem.
The data model is the same as Cassandra’s (and Bigtable’s) described above. One important
distinction is that in Hbase there is no need for the valueless column design. The are no
data types like String, int or long. Everything is stored as a byte array in a cell by using a
serialization framework. So, the database gives out byte arrays which are implicitly converted
to the data equivalent representation. At the conceptual level, Hbase table can be seen a set
of rows, but in fact it is stored as per a column family. When a table is created, the name
of the column family and the number of the contained columns must be already decided. A
Column can be added at a column family at any point in time while storing the data [14].

In Hbase, large read and write operations are avoided since rows are divided into column
families, enabling horizontal and vertical scaling of tables. Table is composed of the following
components;

• Row

– Column Family

* Column

· Cell

Row is a unique key for every record in a table. Internally, it is stored as a byte array no
matter what data type we choose as row key.

Column Family is a group of columns. A table contains columns families which are
stored separately on disk. This is advantageous because we can retriece columns faster.

Column is a set of data values
Cell is the smallest basic unit of storage in a column where the actual value is stored.

Cells are accessed by using <row, columnfamily:column, version> tuple.
Hbase provides several advanced features such as:

• Filters allow the user to specify the subset of objects from the query result that will be
returned to the client. The benefit is that they run on the server-side, thus reducing the
amount of data that needs to be transferred. Examples include filtering rows based on
key prefixes or some regular expression. Filters can also be combined in a FilterList (a
set of filters), which is applicable on the result using either AND or OR semantics.

3https://hbase.apache.org/

https://hbase.apache.org/

8 Review of NoSQL solutions for spatial and spatio-temporal data

• Coprocessors provide even more flexibility than filters in terms of querying. They are
essentially user code that can be deployed in the Hbase cluster. Mainly, there are 2
types of coprocessors:

– Observers, where for each base operation, i.e., put, the user can deploy custom
code in form of hooks that can either pre-process the input parameters or post-
process the results.

– Endpoints, that act like functions and can be invoked through Remote Procedure
Calls (RPC).

Hbase supports Range Scans and Prefix Range Scans, which is the same as a Range Scan
and a PrefixFilter.

2.2 MongoDB data indexing

An index is a data structure which can speed up the query evaluation process, by enabling
efficient search over stored data, avoiding the need to process every stored element. An index
however, inflicts an additional cost for write operations and storage space, since it needs to
update and store the corresponding index. Indexes are generally considered to be a crucial
aspect of data management, and most database management systems support several index
types.

MongoDB supports indexing on stored documents, by using a data structure called B-
Tree [5]. It assigns a document id on every stored document, which is a unique identifier,
that is indexed by default. This index, also called the primary index, accelerates the process
of document search based on a provided document id. MognoDB also supports indexing of
any other field of the stored documents. These indexes, also called secondary indexes, can be
created and configured by the database administrator, in order to speed up query execution
for queries with predicates on the indexed fields. A list of supported secondary indexes is
provided in the following:

• Single-field index - In addition to the primary key which is indexed by default, a custom
field of a document collection can be indexed with either an ascending or descending
order. A single-field index is actually a B-Tree index, which supports efficient equality
matches and range queries.

• Compound-key index - This index resembles to the single-field index with the difference
that it indexes two or more fields of documents. At most, 32 fields can be indexed by
using a compound index.

2.2 MongoDB data indexing 9

• Text index - This index is oriented on text search queries. It supports indexing of fields
which contain unstructured text content.

• Multikey index - This index can be used over fields of array type, indexing either an
array of scalar values (e.g. string, numbers) or an array of nested documents.

• 2dsphere index - This is a spatial index that indexes geometries projected on an earth-
like sphere. The indexed field should be a GeoJSON object or a legacy coordinate pair
(for point geometries).

• 2d index - This is a spatial index like the 2dsphere index, with the difference that it cal-
culates geometries on a two-dimensional plane (in other words it supports calculation
on a flat, euclidean plane). The indexed field should be a legacy coordinate pair.

• geoHaystack index - This is a special spatial index that aims to improve the efficiency
of queries concerning a flat geometry over a small geographic area. It stores buckets
of documents which are located on the same geographic area in order to improve the
performance of spatial queries over that area.

• Hashed index - This index maintains entries with hashes of the values of the field that
is indexed. It is utilized for sharding support by using hashed shard keys. In order to
compute the hash of the value of the index field, a hashing function is used.

The supported MongoDB’s indexes have properties, defining rules about the indexed data.
Every index type can have one or more of the following properties:

• Unique index - This index type restricts the indexed values to be unique. By default,
MongoDB creates a unique single-field index for storing the primary key of each
document.

• Partial index - Only specific values of field/s are indexed, specified by a filter expression.
It is reasonable that partial indexes usually have lower storage requirements, since they
contain less values than expected.

• Case insensitive index - This index is used for string fields, performing comparisons
without considering case sensitivity.

• TTL index - This index is a single-field index with the property of removing automati-
cally the documents from a collection after a certain amount of time or at a specific
clock time. If the document does not contain the indexed field, the document will not
be removed.

10 Review of NoSQL solutions for spatial and spatio-temporal data

• Sparse index - This index contains only entries for documents that contain a value for
the indexed field, even if that value is null. If a document does not contain the indexed
field, it will not be indexed. Primary indexes cannot be configured as sparse type.

In order to benefit by the natively supported indices provided by MongoDB, we need to
know in advance the spatial and temporal fields from every data source. Provided with the
spatial and temporal fields, we will create a spatial 2dsphere index on longitude and latitude
fields and a single-field index on date field for all of our document collections. These indices,
are expected to increase the efficiency on queries with spatial and/or temporal predicates.

2.3 Underlying structure of spatial indexes of NoSQL stores

The majority of document-oriented NoSQL stores (e.g. MongoDB) provide many types of
indexes for data as RDBMSs do. Spatial and spatio-temporal indexes are also provided, but
their underlying structure is not based on the data structures that used in relational databases
([10], [7]). Wide-column stores do not provide directly spatial indexes at all, but many works
that are related to the efficient managing of spatial and spatio-temporal data upon this kind of
NoSQL database exist (Section 2.4).

The spatial index approaches used in RDBMSs have been proved to be efficient in
databases that operate on a centralized machine, but R-Trees have severe difficulties on
parallelizing. QuadTrees are more suited for clusters but are inefficient for non-point data
since the indexing overhead is increased for geometries [11]. These difficulties point towards
to the need of a robust distributed spatial and spatio-temporal index mechanism for NoSQL
storages.

Thus, most of the existing spatial indexes on NoSQL stores use the geohash method
for handling spatial and spatio-temporal data in a distributed way. Geohash was invented
by Gustavo Niemeyer, specifying a point as an encoded string of bits, in which every bit
indicates the divisions of the longitude and latitude ([-180, 180] x [-90, 90]) rectangle. The
division starts from splitting the rectangle into two squares ([-180, 0] x [-90, 90]) and ([0,
180] x [-90, 90]). Points belonging to the left of the vertical division begin with 0 and the
one in the right with 1. Then the next split that occurs is horizontal. The points below
the horizontal split receive 0 and the ones above 1. The splitting continues until achieving
the desired resolution [8]. By storing points as encoded strings (geohashes), the stores are
capable of distributing them accross a cluster, enabling thus horizontal scalability for spatial
data.

2.4 Techniques for managing mobility data on NoSQL stores 11

2.4 Techniques for managing mobility data on NoSQL stores

Several studies exist for spatial and spatio-temporal index techniques upon NoSQL databases.
Many of them focus on column-oriented NoSQL databases ([12], [8], [16], [2]) as they do
not provide directly a spatial index mechanism because of their underlying data structure.
There are also several studies for spatial and spatio-temporal data management on document-
oriented NoSQL stores. Below, we delineate those that use MongoDB, as this is the primary
database we focus in this thesis.

SIFT [11] is a distributed spatial index whose structure is based on a tree combining fea-
tures from both R-Trees [10] and QuadTrees [7]. Specifically, spatial objects are represented
as MBRs (like in R-Tree) in a structure that resembles to QuadTrees’ structure. Every node
of the tree is given a bounding box being a logical storage for spatial objects. Parent nodes
enclose the bounding box of their children, so the root node is the bounding box of the entire
space. SIFT is unbalanced and can remain unbalanced without performance detioration.
It does not impose a bound on the number of objects stored per node. It only imposes a
bound for the available memory; this means that a node can contain more spatial objects than
another node. Owing to the fact that the tree remains unbalanced, it is not necessary of object
movement when nodes are created or destroyed. Thus, high ingestion rate can be reached.
Also, the performance of queries are efficient because of skew mitigation.

The skewing problem is known for impairing the load balancing of the data in a cluster.
In this work, it is addressed by adding dimension on the spatial data derived from their
characteristics. This happens because the follwing assumption in the work is made; if it is
impossible to obtain uniform partitioning of spatial data in its native dimensional space N,
then is it possible to be obtained in a higher dimensional space. In other words, by adding
a couple of dimensions to spatial data results in a higher probability of achieving uniform
distribution.

MongoDB uses the Google’s S2 Geometry Library for spatial indexing. This is an open-
source library that utilizes the Hilbert space-filling curve for performing geometric operations
on a sphere. SIFT reuses the S2 library by utilizing a related space-filling curve. It provides
the following three library modules; KeyGenerator, QueryPlanner and ShardManager. Each
of the modules have a unique role for the spatial index mechanism provision. The MongoDb
codebase was modified for SIFT implementation.

The KeyGenerator module is used for the determination of the tree node(s) in which the
geometry would be stored, deleted or modified. It generates the (one-dimensional) key(s) that
represents specific tree node(s). Given these tree node(s), ShardManager finds the owning
partition(s) of node(s), and forwards the data to the corresponding partition(s). Then, the
server (partition) is responsible for the data processing on a B-Tree index.

12 Review of NoSQL solutions for spatial and spatio-temporal data

In case of data retrieval, the ShardManager module determines the partitions that should
be contacted. Specifically, the contained geometry in a given query is examined as if it is
to be stored, thus determining its supposed location. Then, the SIFT querying algorithm
(QueryPlanner module) is used to find the potential tree node(s) that need to be queried. The
query is forwarded to the owning partition(s) of the candidate node(s), and the nodes are
searched.

ST-Hash [9] extends the Geohash space-partitioning index (Section 2.3) by adding the
temporal dimension in it. The 3D data structure is converted into a sequence of characters
(1D String) which are stored in MongoDB. It supports both box and cylinder spatio-temporal
queries since the index is a spatio-temporal space consisting of subspaces defined by a unique
ST-Hash String.

Only one collection is used to store the trajectory data. Each trajectory point is stored as a
JSON format document in the collection, containing fields with values that represent different
kind of information. The fields encompass data that are correlated with the point’s location
stigma (longitude, latitude), temporal stigma (Date) and other features of the stigma such as
its ID which correspond to a specific moving object (Taxi). Also, a field called ST-Hash is
used for indexing purposes, storing both the spatial and the temporal part of the point (as its
name signifies), in a hashed string. A B-Tree index is constructed on this field in order to
accelerate spatio-temporal queries.

The ST-Hash field consists a string composed of the point’s stigma year, a dashed
character (-) and a sequence of five characters. The sequence of the five characters is an
encoded representation of the rest of the temporal part (month, day, hour, minute, seconds)
and the location (longitude-latitude) of the point. An instance of such a string is "2015-
Re+BP". The encoding procedure includes the conversion of the values of longitude, latitude
and date (without the year) to a long binary code. Then, the binary code is separated and every
smaller part is converted to a character using the Base64 binary-to-text encoding schema,
forming ultimately a string.

The hashed strings, implicitly represents a cube in the three-dimensional space, where
each dimension corresponds to the longitude axis, latitude axis and time axis. The whole
spatio-temporal cube is formed by smaller cubes where each one is labeled by a an ST-Hash
String. When a spatio-temporal query is performed, the given coordinates and time are
defined by upper P1(x1,y1, t1) and lower P2(x2,y2, t2) bounding points. These points are
encoded, producing two hashed strings. Then, the B-Tree index is used in order to match
some of the hashed strings contained in the range of the two hashed strings. In other words,
the spatio-temporal query is depicted by a cube where the intersection with the ST-Hash
labeled cubes is returned as result. Indexing the encoded strings that represent the spatio-

2.4 Techniques for managing mobility data on NoSQL stores 13

temporal part of a point, reduces to a large extend the number of points that have to be
accessed during search operations.

Chapter 3

NoSQL data access API implementation

3.1 API Description

The implementation of the API was based on the concept of creating a toolbox of data query
primitives for NoSQL database systems. The main objective of this idea was to facilitate
the process of accessing the data stored in a NoSQL database for the developers who need
to serve their purposes by performing query operations. Actually, this is accomplished by
providing a user-friendly data access interface for expressing and performing queries in a
simple and unified manner. Simple due to hiding as many implementation details as possible
(such as establishing a database connection to a cluster of computing machines) and thus
focusing only to the process of querying the data. Unified because a set of well-defined
query primitives (functions) are provided, through which common data access tasks can be
expressed abstractly (as a sequence of query primitives) and performed on different NoSQL
stores. Also, a set of operators are provided for defining the functional behaviour of some
primitives.

In a few words, the API groups most of the common (widely-used) query primitives
and offers them in a comprehensive manner for performing query operations on NoSQL
databases. This relieves the developers from using directly a native NoSQL database API
(such as the MongoDB Java Driver for the MongoDB database), who would be loaded with
the task of "translating" the desired query operation to the corresponding commands of the
native API. Essentially, this is done by the API. Its functional part exploits the native libraries
of the supported NoSQL databases. All of the supported query primitives and operators are
implemented upon the functions of the native libraries that reflect their functionality. The
API maps the supported query primitives and operators with its functional part which is
hidden from users since the goal is to provide abstraction.

16 NoSQL data access API implementation

The supported query primitives cover most of the ordinary querying operations like
fetching a field that fulfills a specific condition or fetching a sorted field in ascending order.
The primitives were designed to be flexible in terms of expressing simple and complex
query operations as well. This is possible because the primitives can be used in combination
with each other and in combination with the provided operators which customize their
behaviour. A simple operation e.g. grouping the values of a field to find the distinct ones,
can be imprinted by an individual (distinct) primitive, whereas a complex operation can be
expressed as a primitive combined with operators affecting over one dimension of data. In
addition to the common operators such as the boolean and the comparison ones, the API
supports also operators oriented to spatial (two-dimensional) and spatio-temporal (three-
dimensional) data. This type of operators named Geographical Operators (or Geo-Operators
in short) enables access to mobility data.

Listing 3.1: Find the max value of a field and count the number of records of a MongoDB
collection by using the implemented API

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import gr.unipi.api.nosqldb.NoSqlDbSystem;

3 import java.util.Optional;

4

5 public static void main(String args[]){

6 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.MongoDB().host("83.212.102.163")

7 .database("test").username("user").password("pass").port(28017).build();

8

9 NoSqlDbOperators noSqlDbOp = noSqlDbSystem.operateOn("geoPoints");

10

11 Optional<Double> max = noSqlDbOp.max("aField");

12

13 int count = noSqlDbOp.count();

14

15 noSqlDbSystem.closeConnection();

16 }

3.1 API Description 17

Listing 3.2: Find the max value of a field and count the number of records of a MongoDB
collection by using its native API (Java Driver)

1 import com.mongodb.MongoClient;

2 import com.mongodb.MongoClientOptions;

3 import com.mongodb.MongoCredential;

4 import com.mongodb.ServerAddress;

5 import com.mongodb.client.MongoCollection;

6 import com.mongodb.client.MongoCursor;

7 import org.bson.Document;

8 import org.bson.conversions.Bson;

9

10 import java.util.ArrayList;

11 import java.util.List;

12

13 public static void main(String args[]){

14 MongoCredential credential = MongoCredential.createCredential("user", "test",

15 "pass".toCharArray());

16

17 MongoClientOptions options = MongoClientOptions.builder().build();

18

19 MongoClient mongoClient = new MongoClient(new ServerAddress("83.212.102.163",

20 28017), credential, options);

21

22 MongoCollection mongoCollection = mongoClient.getDatabase("test")

23 .getCollection("geoPoints");

24

25 List<Bson> b1 = new ArrayList<>();

26 b1.add(Document.parse("{ $group: { _id:null, max_val: { $max:\"$aField\"} } }"));

27

28 MongoCursor<Document> cursor1 = (MongoCursor<Document>) mongoCollection

29 .aggregate(b1).iterator();

30

31 int max = cursor1.next().getInteger("max_val");

32

33 cursor1.close();

34

35 List<Bson> b2 = new ArrayList<>();

36 b2.add(Document.parse("{ $count: \"totalRecords\" }"));

37

38 MongoCursor<Document> cursor2 = (MongoCursor<Document>) mongoCollection

39 .aggregate(b1).iterator();

40

41 int count = cursor2.next().getInteger("totalRecords");

42

43 cursor2.close();

44

45 mongoClient.close();

46 }

18 NoSQL data access API implementation

3.2 API Documentation

The API was developed in Java programming language, offering various query data operations
stored in NoSQL database systems.

3.2.1 Setting up a connection to a NoSQL database

In order to access the data on a NoSQL store via the API, a connection to the database should
be set up at first. This can be done easily by using one of the below code Listings (3.3 or 3.4)
that indicate a connection to a specific NoSQL system (MongoDB database). The NoSQL
system is defined directly after having called the NoSqlDbSystem object. Then, by calling its
rest methods, the required database credentials are provided.

The difference between the two Listings is the integration of Apache Spark processing
engine. By integrating a Spark session into the API, the user is able to export the results
of the data operations to Dataset<Row> (a.k.a. Dataframe) object (see the query primitive
toDataframe on Table 3.1). This enables the parallel processing of data on a distributed
environment.

Line 9 of the Listing 3.3 and line 16 of the Listing 3.4 define the table (or collection
for the Document-oriented NoSQL databases) which will be accessed for performing data
querying operations. Also, the lines 13 and 20 of the two Listings respectively, close any open
connection to the NoSQL system. If a user opens simultaneously connections on different
NoSQL database systems for querying multiple data sources, then all of them can be closed
at once by calling NoSqlDbSystem.closeConnections().

The code Listings of subsections 3.2.2 and 3.2.3 are declared in the static method
doOperations of the classes DataOperations or DataOperationsWithSpark for demonstrating
examples of operations via the API. It is implied that they are called from one of the below
two Listings (lines 11 and 18 correspondingly).

3.2 API Documentation 19

Listing 3.3: Set up a connection to a NoSQL database

1 import gr.unipi.api.nosqldb.*;

2

3 public class NoSqlDbQueryOperations {

4 public static void main(String args[]) {

5

6 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.MongoDB().host("83.212.102.163")

7 .database("test").username("user").password("pass").port(28017).build();

8

9 NoSqlDbOperators noSqlDbOp = noSqlDbSystem.operateOn("collection");

10

11 DataOperations.doOperations(noSqlDbOp) //doing data query operations

12

13 noSqlDbSystem.closeConnection();

14 }

15 }

Listing 3.4: Set up a connection to a NoSQL database by combining it with a Spark Session

1 import gr.unipi.api.nosqldb.*;

2 import org.apache.spark.sql.SparkSession;

3

4 public class NoSqlDbQueryOperations {

5 public static void main(String args[]) {

6

7 NoSqlDbSystem.initialize();

8

9 SparkSession session = SparkSession.builder().master("local")

10 .appName("MongoSparkConnectorIntro").getOrCreate();

11

12 NoSqlDbSystem noSqlDbSystem = NoSqlDbSystem.MongoDB().host("83.212.102.163")

13 .database("test").username("user").password("pass").port(28017)

14 .sparkSession(session).build();

15

16 NoSqlDbOperators noSqlDbOp = noSqlDbSystem.operateOn("collection");

17

18 DataOperationsWithSpark.doOperations(noSqlDbOp) //doing data query operations

19

20 noSqlDbSystem.closeConnection();

21 session.close();

22 }

23 }

3.2.2 Query primitives and operators

The API offers the query primitives listed on the Table 3.1, the Filter type operators listed on
the Tables 3.2, 3.3, 3.4, the Aggregate operators listed on the Table 3.5 and the Sort operators
listed on the Table 3.6.

The functionality of the query primitives is described as follows;

20 NoSQL data access API implementation

Table 3.1 Supported Query Primitives

Primitives Arguments Phase
filter (FilterOperator fop, FilterOperator... fops) Definition

groupBy (String fieldName, AggregateOperator... aops) Definition
distinct (String fieldName) Definition

max (String fieldName) Execution
min (String fieldName) Execution
sum (String fieldName) Execution
avg (String fieldName) Execution
sort (SortOperator sop, SortOperator... sops) Definition
limit (int limit) Definition

project (String fieldName, String... fieldNames) Definition
toDataframe () Execution

• filter - performs filter operation/s given some (at least one) FilterOperator object type
arguments. More than one defined arguments entails that they are operands of an and
(∩) boolean operator.

• groupBy - performs a group operation on a field, the name of which is passed as the
first argument. Specifically, it arranges the identical values of a specific field into
groups. It can be optionally used in conjunction with aggregate operators (functions)
which are passed as AggregateOperator object type arguments after the field name. If
aggregate operators are not defined, the primitive acts as a distinct statement, finding
the unique values of the field.

• distinct - performs a distinct operation on a field, finding the distinct (different) values.
The name of the field is passed as an argument.

• max - finds the maximum value of a field, the name of which is passed as an argument.

• min - finds the minimum value of a field, the name of which is passed as an argument.

• sum - finds the sum value of a field, the name of which is passed as an argument.

• avg - finds the average value of a field, the name of which is passed as an argument.

• sort - performs sort operation/s given some (at least one) SortOperator object type
arguments. If more than one SortOperator object arguments are declared, then they
will be performed sequentially.

• limit - performs a limit operation concerning the records, retaining a specific number
of them which is passed as an argument.

3.2 API Documentation 21

• project - performs a project operation concerning the fields, retaining those of which
name are passed as argument

• toDataframe - fetches the results as a Dataset<Row> (a.k.a. Dataframe) object given
that the user has created a spark session.

The primitives that correlate with the definition phase can be used in conjunction with each
other as many times as needed (Listing 3.5). They are lazy in nature meaning that they define
a sequence of operations without being performed in fact. These operations are executed
when a primitive belonging to the execution phase is called, returning either a primitive data
type (int for the count query primitive) or a reference type (Optional<Double> for the max,
min, avg query primitives and Dataset<Row> for the toDataframe primitive) that can be
exploited afterwards.

By using the filter primitive more than once entails that all of their arguments are operands
of an and (∩) boolean operator.

Listing 3.5: Definition and Execution Phase of Primitives

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3

4 public class DataOperationsWithSpark {

5 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

6

7 Dataset<Row> dataset = noSqlDbOp.filter(...).filter(...) //definition phase

8 .groupBy(...).sort(...).project(...) //definition phase

9 .toDataframe(); //execution phase

10 }

11 }

Table 3.2 Supported Comparison Operators

Comparison Operators Arguments
eq (String fieldName, T1 fieldValue)
gt (String fieldName, T2 fieldValue)
gte (String fieldName, T2 fieldValue)
lt (String fieldName, T2 fieldValue)
lte (String fieldName, T2 fieldValue)
ne (String fieldName, T1 fieldValue)

T1 ∈ [short, int, long, float, double, boolean, Date, String]
T2 ∈ T1 - [boolean, String]

22 NoSQL data access API implementation

The Comparison operators can be used as arguments of the filter query primitive since
they are a subtype of FilterOperator type. Their functionality is described as follows;

• eq - selects the records whose values of a specific field (its name is passed as the first
argument) equals (=) to a given value (passed as the second argument).

• gt - selects the records whose values of a specific field (its name is passed as the first
argument) is greater than (>) to a given value (passed as the second argument).

• gte - selects the records whose values of a specific field (its name is passed as the
first argument) is greater than or equal (≥) to a given value (passed as the second
argument).

• lt - selects the records whose values of a specific field (its name is passed as the first
argument) is less than (<) to a given value (passed as the second argument).

• lte - selects the records whose values of a specific field (its name is passed as the first
argument) is less than or equal (≤) to a given value (passed as the second argument).

• ne - selects the records whose values of a specific field (its name is passed as the first
argument) is not equal (̸=) to a given value (passed as the second argument).

Listing 3.6: Example of using a comparison operator - Find all of the 5 Star hotels in Greece

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3 import static gr.unipi.api.filterOperator.FilterOperators.*;

4

5 public class DataOperationsWithSpark {

6 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

7

8 Dataset<Row> dataset = noSqlDbOp.filter(eq("star", 5)).toDataframe();

9 }

10 }

Table 3.3 Supported Boolean Operators

Boolean Operators Arguments
or (FilterOperator fop1, FilterOperator fop2, FilterOperator... fops)

and (FilterOperator fop1, FilterOperator fop2, FilterOperator... fops)

The Boolean operators can be used as arguments of the filter query primitive since they
are a subtype of FilterOperator type. Their functionality is described as follows;

3.2 API Documentation 23

• or - performs the logical or (∪) operation by selecting the records that satisfy the
expression of at least one FilterOperation object types that are passed as arguments (at
least two are needed).

• and - performs the logical and (∩) operation by selecting the records that satisfy the
expression of all FilterOperation object types that are passed as arguments (at least two
are needed).

Listing 3.7: Example of using a boolean operator - Find all of the 5 Star hotels in Greece
located in the city of Piraeus

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3 import static gr.unipi.api.filterOperator.FilterOperators.*;

4

5 public class DataOperationsWithSpark {

6 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

7

8 Dataset<Row> dataset = noSqlDbOp

9 .filter(and(eq("star", 5), eq("city","Piraeus"))).toDataframe();

10 }

11 }

Table 3.4 Supported Geographical Operators

Geographical Operators Arguments

inGeoPolygon
(String fieldName, Coordinates c1, Coordinates c2,

Coordinates c3, Coordinates... cs)

inGeoBox
(String fieldName, Coordinates lowerBoundPoint,

Coordinates upperBoundPoint)
inGeoCircleKm (String fieldName, Coordinates point, double radius)

inGeoCircleMeters (String fieldName, Coordinates point, double radius)
inGeoCircleMiles (String fieldName, Coordinates point, double radius)
nearestNeighbors (String fieldName, Coordinates point, int neighbors)

The Geographical operators can be used as arguments of the filter query primitive since
they are a subtype of FilterOperator type. Their functionality is described as follows;

• inGeoPolygon - selects the records whose spatial extent that is represented by a specific
field (its name is passed as the first argument), is entirely within a polygon. The
polygon is defined by its corner points (its coordinates are passed as arguments - at
least three are needed).

24 NoSQL data access API implementation

• inGeoBox - selects the records whose spatial extent that is represented by a specific
field (its name is passed as the first argument), is entirely within a box. The box is
defined by its lower and upper bounding points (the coordinates of which are passed as
the second and third argument respectively).

• inGeoCircleKm - selects the records whose spatial extent that is represented by a
specific field (its name is passed as the first argument), is entirely within a circle. The
circle is defined by its center point (the coordinates of which are passed as the second
argument) and its radius in the kilometer unit (passed as the third argument).

• inGeoCircleMeters - selects the records whose spatial extent that is represented by a
specific field (its name is passed as the first argument), is entirely within a circle. The
circle is defined by its center point (the coordinates of which are passed as the second
argument) and its radius in the meter unit (passed as the third argument).

• inGeoCircleMiles - selects the records whose spatial extent that is represented by a
specific field (its name is passed as the first argument), is entirely within a circle. The
circle is defined by its center point (the coordinates of which are passed as the second
argument) and its radius in the mile unit (passed as the third argument).

• nearestNeighbors - selects a specified number of records (passed as the third argument)
whose spatial extent that is represented by a specific field (its name is passed as the
first argument), is the nearest to a specific point (the coordinates of which are passed
as the second argument).

Listing 3.8: Example of using a geographical operator - Find the 10 nearest hotels from a
location

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import gr.unipi.api.filterOperator.geographicalOperator.Coordinates;

3 import org.apache.spark.sql.*;

4 import static gr.unipi.api.filterOperator.FilterOperators.*;

5

6 public class DataOperationsWithSpark {

7 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

8

9 Dataset<Row> dataset = noSqlDbOp.filter(nearestNeighbors("location",

10 Coordinates.newCoordinates(23.65, 37.94), 10)).toDataframe();

11 }

12 }

The Aggregate operators can be used as arguments of the groupBy query primitive,
performing an operation for each resulting group. Their functionality is described as follows;

3.2 API Documentation 25

Table 3.5 Offered Aggregate Operators

Aggregate Operators Arguments
max (String fieldName)
min (String fieldName)
avg (String fieldName)
sum (String fieldName)

count ()

• max - finds the maxiumum value of a field (whose name is passed as an argument) for
each group.

• min - finds the minimum value of a field (whose name is passed as an argument) for
each group.

• avg - calculates the average value of a field (whose name is passed as an argument) for
each group.

• sum - calculates the sum value of a field (whose name is passed as an argument) for
each group.

• count - calculates for each group the number of identical values that formed the group.

Listing 3.9: Example of using an aggregate operator - For every city in Greece find how many
5 Star hotels exist and an average price per day

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import org.apache.spark.sql.*;

3 import static gr.unipi.api.aggregateOperator.AggregateOperators.*;

4 import static gr.unipi.api.filterOperator.FilterOperators.*;

5

6 public class DataOperationsWithSpark {

7 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

8

9 Dataset<Row> dataset = noSqlDbOp.filter(eq("star", 5))

10 .groupBy("city", count(), avg("approximate_price_per_day")).toDataframe();

11 }

12 }

Table 3.6 Offered Sort Operators

Sort Operators Arguments
asc (String fieldName)

desc (String fieldName)

26 NoSQL data access API implementation

The Sort operators can be used as arguments of the sort query primitive. Their functional-
ity is described as follows;

• asc - sorts a given field (whose name is passed as an argument) in ascending order.

• desc - sorts a given field (whose name is passed as an argument) in descending order.

Listing 3.10: Example of using a sort operator - Find all of the 5 Star hotels in Greece located
in the city of Piraeus and sort them in ascending order by their approximate price per day

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import gr.unipi.api.sortOperator.SortOperators;

3 import org.apache.spark.sql.*;

4 import static gr.unipi.api.filterOperator.FilterOperators.*;

5

6 public class DataOperationsWithSpark {

7 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

8

9 Dataset<Row> dataset = noSqlDbOp

10 .filter(and(eq("star", 5), eq("city","Piraeus")))

11 .sort(SortOperator.asc("approximate_price_per_day")).toDataframe();

12 }

13 }

3.2.3 Use case of spatial and spatio-temporal query operations

The geo-operators of Table 3.4 give access to mobility data as they can be used for expressing
either spatial or spatio-temporal query operations. The listings below concern the cases of
spatial range (rectangle and circle) query operations and spatio-temporal range (box and
cylinder) query operations.

Listing 3.11: Spatial rectangle query operation - Count the points that are in a specific spatial
rectangle given the coordinates of its lower and upper bounds

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import gr.unipi.api.filterOperator.geographicalOperator.Coordinates;

3 import static gr.unipi.api.filterOperator.FilterOperators.*;

4

5 public class DataOperations {

6 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

7

8 int count = noSqlDbOp.filter(inGeoBox("location",

9 Coordinates.newCoordinates(23.65, 37.94),

10 Coordinates.newCoordinates(23.67, 37.96))).count();

11 }

12 }

3.2 API Documentation 27

Listing 3.12: Spatial circle query operation - Count the points that are at most 300 meters far
from a point given its coordinates

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import gr.unipi.api.filterOperator.geographicalOperator.Coordinates;

3 import static gr.unipi.api.filterOperator.FilterOperators.*;

4

5 public class DataOperations {

6 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

7

8 int count = noSqlDbOp.filter(inGeoCircleMeters("location",

9 Coordinates.newCoordinates(23.65, 37.94), 300)).count();

10 }

11 }

Listing 3.13: Spatiotemporal box query operation - Count the points that are in a specific
spatial rectangle given a particular time period defined by lower and upper bounds

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import gr.unipi.api.filterOperator.geographicalOperator.Coordinates;

3 import java.text.SimpleDateFormat;

4 import java.util.Date;

5 import static gr.unipi.api.filterOperator.FilterOperators.*;

6

7 public class DataOperations {

8 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

9

10 SimpleDateFormat s = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS") ;

11 Date d1 = s.parse("2017-12-01T00:00:00.000Z"); //lower time bound

12 Date d2 = s.parse("2017-12-04T23:59:59.000Z"); //upper time bound

13

14 int count = noSqlDbOp.filter(and(inGeoBox("location",

15 Coordinates.newCoordinates(23.65, 37.94),

16 Coordinates.newCoordinates(23.67, 37.96)), gte(d1), lte(d2))).count();

17 }

18 }

28 NoSQL data access API implementation

Listing 3.14: Spatiotemporal cylinder query operation - Count the points that are in a specific
spatial circle given a particular time period defined by lower and upper bounds

1 import gr.unipi.api.nosqldb.NoSqlDbOperators;

2 import gr.unipi.api.filterOperator.geographicalOperator.Coordinates;

3 import java.text.SimpleDateFormat;

4 import java.util.Date;

5 import static gr.unipi.api.filterOperator.FilterOperators.*;

6

7 public class DataOperations {

8 public static void doOperations(NoSqlDbOperators noSqlDbOp) {

9

10 SimpleDateFormat s = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS") ;

11 Date d1 = s.parse("2017-12-01T00:00:00.000Z"); //lower time bound

12 Date d2 = s.parse("2017-12-04T23:59:59.000Z"); //upper time bound

13

14 int count = noSqlDbOp.filter(and(inGeoCircleMeters("location",

15 Coordinates.newCoordinates(23.65, 37.94), 300), gte(d1), lte(d2))).count();

16 }

17 }

3.3 API Architecture

3.3.1 Packages and classes

The API is composed of following standard classes and interfaces, arranged in packages.

• gr.unipi.api

– Operator interface

This interface contains an abstract method for every NoSQL system (e.g. Mon-
goDB) that is supported from the API. Each of the defined methods return an
object type that can be utilized from a specific NoSQL database, expressing an op-
erator. The interface is extended by the FilterOperator interface and implemented
by the AggregateOperator and the SortOperator abstract class.

• gr.unipi.api.nosqldb

– NoSqlDbSystem class

This class is implemented with the builder design pattern since it is used directly
from the users of the API for defining the NoSQL database, its ip, its port, its
credentials and the table name for performing query operations.

– NoSqlDbOperators interface

3.3 API Architecture 29

This interface defines all of the offering query primitives of the API. It is imple-
mented by XOperators classes where X is the name of a NoSQL database such
as MongoDB. Essentially, these classes implement the query primitives for a
specific NoSQL database system.

– NoSqlDbConnector interface

This interface represents a NoSQL database connector (its requiring elements for
establishing a connection), defining all of the methods that should be implemented
by a connector of a specific NoSQL database system. It accepts as a generic
parameter the object type that represents an established connection to a specific
NoSQL database. The connector classes which implement the interface are
named XConnector where X is the name of a NoSQL database.

– NoSqlDbConnectionManager

This class represents the connection manager of a NoSQL database, defining
abstract methods that should be implemented for a connection manager of a
specific NoSQL database system. It accepts as a generic parameter the object
type that represents the connection to a specific NoSQL database for storing it
to a HashMap. There are some methods that are already implemented in this
class (getConnection) since their functionality is common to all NoSQL database
systems. The ConnectionManager classes which extend the abstract class are
named XConnectionManager where X is the name of a NoSQL database.

– NoSqlDb enum class

This class defines for every supported NoSQL database system an enum type.
Its abstract methods are implemented in the body of each enum type, mapping
thus the offered abstraction level (NoSQLConnector and NoSQLDbOperators
interface) with object types that are oriented to a specific NoSQL database system.

• gr.unipi.api.filterOperator

– FilterOperator interface

This interface defines the FilterOperator type for the Filter operators. It is imple-
mented by the ComparisonOperator, GeographicalOperator and LogicalOperator
abstract classes.

– FilterOperators class

This class contains static methods, offering to the API users all of the instantiable
classes that are subtypes of FilterOperator type.

30 NoSQL data access API implementation

• gr.unipi.api.filterOperator.comparisonOperator

– ComparisonOperator abstract class

This class defines the ComparisonOperator type for the Comparison operators. It
is extended by all classes of the same package. It contains two instance variables
whose types are String and generic (the generic type is passed as a parameter),
storing a field name and a value respectively. These variables are utilized by all
children classes in order to apply a specific type of comparison operator.

– OperatorEqual class

This class represents the equal condition that is applied on a field, given a specific
value. It accepts a generic parameter that defines the type of value. The class or
its parent class (ConditionOperator) should override the methods that are declared
in Operator Interface.

– OperatorGreaterThan class

This class represents the greater than condition that is applied on a field, given a
specific value. It accepts a generic parameter that defines the type of value. The
class or its parent class (ConditionOperator) should override the methods that are
declared in Operator Interface.

– OperatorGreaterThanEqual class

This class represents the greater than or equal condition that is applied on a field,
given a specific value. It accepts a generic parameter that defines the type of value.
The class or its parent class (ConditionOperator) should override the methods
that are declared in Operator Interface.

– OperatorLessThan class

This class represents the less than condition that is applied on a field, given a
specific value. It accepts a generic parameter that defines the type of value. The
class or its parent class (ConditionOperator) should override the methods that are
declared in Operator Interface.

– OperatorLessThanEqual class

This class represents the less than or equal condition that is applied on a field,
given a specific value. It accepts a generic parameter that defines the type of value.
The class or its parent class (ConditionOperator) should override the methods
that are declared in Operator Interface.

– OperatorNotEqual class

3.3 API Architecture 31

This class represents not equal condition that is applied on a field, given a specific
value. It accepts a generic parameter that defines the type of value. The class or
its parent class (ConditionOperator) should override the methods that are declared
in Operator Interface.

• gr.unipi.api.filterOperator.geographicalOperator

– Coordinates class

This class represents the coordinates of a point. It contains two instance variables
whose types are double, storing the longitude and latitude value.

– GeographicalOperator abstract class

This class defines the GeographicalOperator type for the Geographical operators.
It is extended by the abstract classes GeographicalOperatorBasedOnPoints and
GeographicalOperatorBasedOnSinglePoint. It contains two instance variables
whose types are String and array of coordinates, storing a field name and coordi-
nates. These variables are utilized by children classes in order to apply a specific
type of geographical operator.

– GeographicalOperatorBasedOnPoints abstract class

This class represents a geographical operator that is applied on a specific field
based on multiple coordinates (up to one pair). It is extended by OperatorInGeo-
graphicalBox and OperatorInGeographicalPolygon classes.

– GeographicalOperatorBasedOnSinglePoint abstract class

This class represents a geographical operator that is applied on a specific field
based on one coordinates pair. It is extended by OperatorInGeographicalCircle
and OperatorNearestNeighbors classes.

– OperatorInGeographicalBox class

This class represents a box geographical operator that is applied a field, given
its minimum and upper bound coordinates. The class or its parent class (Geo-
graphicalOperatorBasedOnPoints) should override the methods that are declared
in Operator Interface.

– OperatorInGeographicalCircle class This class represents a circle geographical
operator that is applied a field, given the coordinates of the center of the circle
and a radius (in meters) which is stored as a double instance variable. The class
or its parent class (GeographicalOperatorBasedOnSinglePoint) should override
the methods that are declared in Operator Interface.

32 NoSQL data access API implementation

– OperatorInGeographicalPolygon class

This class represents a polygon geographical operator that is applied a field, given
its coordinates (at least three are needed for polygon formation). The class or its
parent class (GeographicalOperatorBasedOnPoints) should override the methods
that are declared in Operator Interface.

– OperatorNearestNeighbors class

This class represents a nearest neighbor geographical operator that is applied a
field, given a coordinates pair and a number of neighbors (k) which is stored as an
integer instance variable. Based on the coordinates, the operator finds the radius
of the circle that contains for certain at least k neighbors. Radius determination is
achieved by exploiting histrograms that store the number of points in each cell
that have been resulted from equi-width space partitioning.

• gr.unipi.api.filterOperator.logicalOperator

– LogicalOperator abstract class

This class defines the LogicalOperator type for the Logical operators. It is ex-
tended by all classes of the same package. It contains an instance variable whose
type is FilterOperator array, storing FilterOperator object types. This enables the
children classes to apply a specific logical type on many filter operators.

– OperatorAnd class

This class represents the and operator (∩) that is applied on two or more filter
operators. The class or its parent class (LogicalOperator) should override the
methods that are declared in Operator Interface.

– OperatorOr class

This class represents the or (∪) operator that is applied on two or more filter
operators. The class or its parent class (LogicalOperator) should override the
methods that are declared in Operator Interface.

• gr.unipi.api.aggregateOperator

– AggregateOperator abstract class

This class defines the AggregateOperator type for the Aggregate operators. It is
extended by all classes of the same package. It includes two instance variables
whose types are String, storing a field name and an alias. All of the children
classes apply a specific aggregate operator on the field name, projecting the result
with the alias.

3.3 API Architecture 33

– AggregateOperators class

This class contains static methods, offering to the API users all of the instantiable
classes that are subtypes of AggregateOperator type.

– OperatorAvg class

This class represents the average aggregator that is applied on a given field,
projecting its result with an alias. The class or its parent class (AggregateOperator)
should override the methods that are declared in Operator Interface.

– OperatorCount class

This class represents the count aggregator that is applied on the records, projecting
its result with an alias. When the class is instantiated, the field name that is passed
on its parent class is empty since it is not used. The class or its parent class
(AggregateOperator) should override the methods that are declared in Operator
Interface.

– OperatorMax class

This class represents the max aggregator that is applied on a given field, projecting
its result with an alias. The class or its parent class (AggregateOperator) should
override the methods that are declared in Operator Interface.

– OperatorMin class

This class represents the min aggregator that is applied on a given field, projecting
its result with an alias. The class or its parent class (AggregateOperator) should
override the methods that are declared in Operator Interface.

– OperatorSum class

This class represents the sum aggregator that is applied on a given field, projecting
its result with an alias. The class or its parent class (AggregateOperator) should
override the methods that are declared in Operator Interface.

• gr.unipi.api.sortOperator

– SortOperator abstract class

This class defines the SortOperator type for the Sort operators. It is extended
by all classes of the same package. It contains two instance variables whose
types are String and int, storing a field and and an order (1 for ascending, -1 for
descending). This enables the children classes to apply a specific sorting on a
field.

34 NoSQL data access API implementation

– SortOperators class

This class contains static methods, offering to the API users all of the instantiable
classes that are subtypes of SortOperator type.

– OperatorAsc class

This class represents the ascending sorting of values that is applied on a field.
The class or its parent class (SortOperator) should override the methods that are
declared in Operator Interface.

– OperatorDesc class

This class represents the descending sorting of values that is applied on a field.
The class or its parent class (SortOperator) should override the methods that are
declared in Operator Interface.

3.3.2 Connector and connection manager

A NoSqlDbConnectionManager type class is a singleton class named XConnectionManager
where X is a NoSql database system. This class stores for the X database all of the open
connections that have not been closed in order to reuse them, avoiding thus the overhead of a
new connection establishment. Open connections are stored in a HashMap where the key
is a Connector type class and the value is an object that represents an open connection of
X database system. When defining the parameters that are required for accessing a NoSQL
database (see code lines 6-7 and 12-14 of Listings 3.3 and 3.4 respectively), a Connector
type object is created on the background and checked if it is contained in the HashMap. If
the connector is contained in the HashMap, then its value is used directly for accessing the
database. Otherwise, the connector creates a connection and is subsequently stored with the
established connection in the HashMap. A XConnectionManager singleton class is used only
from the XOperators class which is a type of NoSqlDbOperators object.

A Connector class type (XConnector) represents all of the elements needed for establish-
ing a connection (ip, port, username, password and database name) on a specific database
(X). The connection is established by the connector only if it is not contained in the HashMap
that is managed from a ConnectionManager. A XConnector class is created by the method
createNoSqlDbConnector of X enum type of the NoSqlDb enum class.

3.3 API Architecture 35

N
o
S
q
lD

b

O
p
er

a
to

rs

M
o
n
g
o
D

B

O
p
er

a
to

rs

X

O
p
er

a
to

rs
..
.

N
o
S
q
lD

b

C
o
n
n
ec

to
r

M
o
n
g
o
D

B

C
o
n
n
ec

to
r

X

C
o
n
n
ec

to
r

..
.

N
o
S
q
lD

b

C
o
n
n
ec

ti
o
n

M
a
n
ag

er

M
o
n
g
o
D

B

C
o
n
n
ec

ti
o
n

M
a
n
ag

er

X

C
o
n
n
ec

ti
o
n

M
a
n
ag

er

..
.

N
o
S
q
lD

b
N

o
S
q
lD

b

S
y
st

e
m

Fi
g.

3.
1

C
la

ss
di

ag
ra

m
of

gr
.u

ni
pi

.a
pi

.n
os

ql
db

pa
ck

ag
e.

In
te

rf
ac

es
,c

la
ss

es
,a

bs
tra

ct
cl

as
se

s
an

d
en

um
cl

as
se

s
ar

e
ill

us
tra

te
d

w
ith

gr
ee

n,
bl

ue
re

d
an

d
or

an
ge

co
lo

rr
es

pe
ct

iv
el

y.

36 NoSQL data access API implementation

G
eo

g
ra

p
h
ic

a
l

O
p
er

a
to

r

B
as

e
d
O

n

S
in

g
le

P
o
in

t

O
p
er

a
to

r

F
il
te

r

O
p
er

a
to

r

S
o
rt

O
p
er

a
to

r

G
eo

g
ra

p
h
ic

a
l

O
p
er

a
to

r

G
eo

g
ra

p
h
ic

a
l

O
p
er

a
to

r

B
as

e
d
O

n

P
o
in

ts

O
p
er

a
to

rI
n

G
eo

g
ra

p
h
ic

a
l

B
o
x

O
p
er

a
to

rI
n

G
eo

g
ra

p
h
ic

a
l

C
ir

cl
e

O
p
er

a
to

rI
n

G
eo

g
ra

p
h
ic

a
l

P
o
ly

g
o
n

O
p
er

a
to

r

N
ea

re
st

N
ei

g
h
b
o
rs

L
o
g
ic

a
l

O
p
er

a
to

r

O
p
er

a
to

r

A
n
d

O
p
er

a
to

r

O
r

C
o
m

p
ar

is
o
n

O
p
er

a
to

r

O
p
er

a
to

r

E
q
u
al

O
p
er

a
to

r

G
re

at
er

T
h
a
n

O
p
er

a
to

r

G
re

at
er

T
h
a
n

E
q
u
al

O
p
er

a
to

r

L
es

sT
h
a
n

O
p
er

a
to

rL
e
ss

T
h
a
n
E

q
u
al

O
p
er

a
to

r

N
o
tE

q
u
al

O
p
er

a
to

r

A
sc

O
p
er

a
to

r

D
es

c

A
g
g
re

g
at

e

O
p
er

a
to

r

O
p
er

a
to

r

C
o
u
n
t

O
p
er

a
to

r

A
v
g

O
p
er

a
to

r

M
a
x

O
p
er

a
to

r

M
in

O
p
er

a
to

r

S
u
m

Fi
g.

3.
2

C
la

ss
di

ag
ra

m
of

A
PI

op
er

at
or

s.
In

te
rf

ac
es

,
cl

as
se

s
an

d
ab

st
ra

ct
cl

as
se

s
ar

e
ill

us
tr

at
ed

w
ith

gr
ee

n,
bl

ue
an

d
re

d
co

lo
r

re
sp

ec
tiv

el
y.

3.4 Extending the API for supporting a NoSQL database system 37

3.4 Extending the API for supporting a NoSQL database
system

To extend the API for supporting a NoSQL database system named X, at first, the following
classes should be created in package gr.unipi.api.nosqldb;

• XOperators

• XConnector

• XConnectionManager

These classes should be arranged in the class hierarchy as shown in Figure 3.1, implement-
ing their parents abstract methods. The generic type arguments of classes XConnector and
XConnectionManager must be an object type through which the database can be managed.
This type is offered by the native client API of database.

The XConnector class should implement the methods createConnection, hashCode and
equals which are used in the XConnectionManager for creating and storing a connection to
the HashMap. This class must contain only the elements as instance variables that are used
for the connection establishment via the native API of the database. The functionality of
equal method should be based on the defined instance variables.

The XConnectionManager class must be a singleton class, implementing the closeCon-
nection and closeConnections methods, used for closing open connections through the object
whose type is defined by the generic argument.

XConnectionManager and XConnector classes are used in the XOperators class (XCon-
nector type object is passed as an argument through constructor). The XOperators class
implements all of the query primitive methods that are defined in the NoSqlDbOperators
interface.

In order to get the expression of an operator in Y object type which we assume that it
can be used by the NoSQL database for performing operations, a method getY has to be
declared in Operator interface and be implemented from all classes whose name start from
the ’Operator’ word (Fig. 3.2). The methods getY are called from the object type parameters
of the query primitives in XOperators class. Note that the primitives that belong to the
definition phase (Table 3.1) should store the Y object types to a list. The query primitives
belonging to the execution phase will use this list, the passed connector and the connection
manager for performing operations on the database.

Furthermore, an enum type named X has to be declared in the NoSqlDb enum class and
implement all of its abstract methods. This enum type should be also declared in a new static
method that returns a Builder object type in NoSqlDbSystem class.

Chapter 4

Description of query types

In this section we describe the query operator types that are used for accessing the MongoDB
through the NoSQL data access API, focusing on the spatial query types. We also report a
technique for performing k-NN spatial queries upon MongoDB, considering that they are not
supported.

4.1 Aggregation pipeline stages & API operators

Since the API provides the flexibility of executing a sequence of operations (query prim-
itives), we use for the MongoDB database the provided aggregation pipeline framework.
The framework is modeled on the concept of data processing pipelines, meaning that the
documents enter a multi-stage pipeline that transforms them into aggregated results. By
defining multiple primitives (Listing 3.5 in subsection 3.2.2), multiple stages are declared in
the pipeline. The stages are executed in sequence, composing a series of operations that are
performed on the documents.

All of the aggregate operators that are passed as arguments in the group by primitive
(Table 3.1) and the max, min, sum avg and distinct primitives are declared in the $group
stage. The group stage, groups documents by some specified expression and outputs to the
next stage a document for each distinct grouping. The limit, sort and project primitives
are declared in the $limit, $sort and $project stages. The $limit stage, limits the number
of documents passed to the next stage in the pipeline. The $sort stage, sorts all input
documents and returns them to the pipeline in sorted order. The $project stage, passes along
the documents with the requested fields to the next stage in the pipeline. All of the filter
operators that are passed as arguments in the filter primitive, are declared in the $match stage,
except the nearestNeighbors geographical operator which is declared in the $geoNear stage.
The $match stage, filters the documents to pass only the documents that match the specified

40 Description of query types

condition(s) to the next pipeline stage. The $geoNear stage, outputs documents in order of
nearest to farthest from a specified point.

Pipeline stages have a limit of 100 megabytes of RAM. MongoDB produces an error if
this limit is exceeded. To handle the limit for large datasets, we can use the allowDiskUse
option which enables aggregation pipeline stages to write data to temporary files. Moreover,
the $geoNear stage should be declared as the first stage of the pipeline. This means that
the geographical nearestNeighbors operator should be passed as an argument only to the
first-declared (filter) primitive in the NoSQL data access API, when operating on MongoDB.

4.2 Geospatial query operators & API geographical oper-
ators

All of the geographical operators of the API are declared in the $match stage of the ag-
gregation pipeline framework, except the nearestNeighbors geographical operator which
is declared in the $geoNear stage. The geographical box and polygon operators, use the
$geoWithin with the $geometry query operator of MongoDB, selecting documents with
geospatial data that exists entirely within a specified shape under the $match stage (List-
ing 4.1). The geographical circle operator uses the $geoWithin with the $centerSphere query
operator of MongoDB, selecting documents within the bounds of the circle under the $match
stage (Listing 4.2). The geographical nearestNeighbors operator is declared directly under
the $geoNear stage (Listing 4.3). This stage outputs sorted documents by their distance from
a specific point (nearest to farthest). A maximum distance can be set from the center point
in order to limit the results to those documents that fall within the distance (circle query).
Similarly, minimum distance can be set from the center point so as to limit the results to
those documents that fall outside the distance. Maximum and minimum distances can be
combined, forming thus an annulus query.

The $geoWithin query operator does not require a geospatial index for its performance.
However, a geospatial index will improve query performance. Both of the offered spatial
indexes (2d and 2dSphere) support $geoWithin. The $geoNear stage does require a geospatial
index for its performance.

4.2 Geospatial query operators & API geographical operators 41

Listing 4.1: Format of match stage with $geoWithin and $geoWithin geospatial query opera-
tors

1 db.geoPoints.aggregate([

2 {

3 $match:{

4 <location field>:{

5 $geoWithin:{

6 $geometry:{

7 type:"Polygon",

8 coordinates:[<coordinates>]

9 }

10 }

11 }

12 }

13 }

14])

Listing 4.2: Format of match stage with $geoWithin and $centerSphere geospatial query
operators

1 db.geoPoints.aggregate([

2 {

3 $match:{

4 <location field>:{

5 $geoWithin:{

6 $centerSphere:[

7 [<x>, <y>], <radius>]

8 }

9 }

10 }

11 }

12])

Listing 4.3: Format of geoNear stage

1 db.geoPoints.aggregate([

2 {

3 $geoNear:{

4 near:{

5 type:"Point",

6 coordinates:[<x>, <y>]

7 },

8 distanceField:"dist.calculated",

9 maxDistance: <radius in meters>,

10 includeLocs:"dist.location",

11 num:5,

12 spherical:true

13 }

14 }

15])

42 Description of query types

4.3 Serving k-NN over spatial circle queries

Considering that MongoDB does not support k-NN type queries, we manage to perform such
queries over spatial circle queries.

Specifically, given a specified point and the number of neighboors (k), we perform a circle
query with an approximated radius, so that it will return at least k documents. The circle
query is performed by using the $geoNear stage as it outputs documents in order of nearest
to farthest from a specified point. This facilitates the cases where the fetched documents are
more than k, as the results are limited to the first k since they are sorted by distance.

The ideal condition of executing k-NN queries over circle queries would be to know the
exact radius that would return precisely k results. By finding the radius for the query that will
return at least k results, limits the circle query to be executed only once for serving a k-NN
query. However, the trap of radius overestimation exists (finding a far larger radius than the
actual). It should be mentioned that the occurrence of overestimation state depends on the
distribution of the data. For instance, if data follows uniform distribution, overestimation of
the radius will not be occurred.

The approach that is adopted for the determination of the radius of a circle query that
returns at least k documents, is based on the grid partitioning method on the 2D space. This
approach results to space cells whose number depends on the number of splits on the two
dimensions. For each cell, the number of the contained points is calculated and then stored
in an in-memory key-value data structure. The key and the value represent respectively the
unique number of a cell and the number of points that encloses. This key-value data structure
constitutes a histogram and is extracted to a serializable form on the magnetic disk. The
procedure of histogram’s creation presumes the scanning of the whole dataset and therefore
is considered as a pre-processing step (Figure 4.1).

Fig. 4.1 The procedure of producing a histogram of a dataset containing points, by using the
grid partitioning method.

4.3 Serving k-NN over spatial circle queries 43

Having the histogram been formed, it can be exploited directly for serving k-NN queries
over circle queries. Assuming that our dataset contains coordinates of restaurants and we
want to find the k nearest restaurants from a given point (red point in Figure 4.2), our
algorithm firstly finds the point’s cell id (which is 5). Then, by using the histogram, the
number of contained restaurants in the cell is found. If more than k restaurants are enclosed
(or equal), the distances from the point to the four corners of the cell are calculated (blue
lines). From the found distances, the radius of the circle query that will be performed is set
to the maximum one (bold blue line). By setting the radius to the maximum distance from
the calculated distances, we make sure that the cell will be totally included in the (red) circle
query (and a part outside of it). Thus, we definitely expect that the circle query will return
at least k restaurants. If less than k restaurants are included in the cell, the number of the
included restaurants of the adjacent cells are summed up and added to the restaurants of the
cells that have already been examined (cell 5). By scanning the adjacent cells is like forming
a larger cell (orange box in Figure 4.3) and determining the enclosed restaurants of it (by
using the histogram). If the resulting number of restaurants are equal or more than k, then the
distances from the given point to the four corners of the larger cell are calculated. From the
found distances, the radius of the circle query that will be performed is set to the maximum
one (bold blue line). By setting the radius to the maximum distance from the calculated
distances, we make sure that the larger (orange) cell will be totally included in the (red) circle
query (and a part outside of it). If the resulting number of restaurants is less than k, the same
procedure is applied and a larger cell is examined every time. The procedure is repeated until
the resulting number is equal or greater than k.

The implemented algorithm has two advantages in terms of performance:

• When a larger cell is formed, the number of the contained points of the cells that
have been examined so far (not the adjacent cells), is already summed up and cached.
Therefore, when adjacent cells are examined, there is no reason of scanning all of the
cells that constitute the larger cell.

• The radius is calculated in the final stage of the algorithm’s execution - when the final
larger cell has been formed, including at least k points. The calculation of the radius
has a constant performance since only the distances from the point to the four corners
are computed.

The performance of our algorithm is affected if numerous cells are to be accessed in order
to reach at least k neighbors. To some extent, this can be alleviated if the space partitioning
result to less cells.

44 Description of query types

Fig. 4.2 The circle query that will be performed if the desired (k) neighbors is set equal or
less than 3. The bold blue line is the radius of the (red) circle query which contains the cell 5.

Fig. 4.3 The circle query will be performed if the desired (k) neighbors are set equal of
greater than 4. The bold blue line is the radius of the (red) circle query which contains the
cells 1-9. The orange box represents the larger cells which is examined in order to determine
if it contains at least k points.

Chapter 5

Experimental evaluation

In this chapter, extensive experiments are conducted on mobility data stored in MongoDB
database so as to study the performance of querying spatial and spatio-temporal data on
NoSQL Document Stores.

The following three mobility datasets are used;

• Real mobility dataset (hereafter RE) - This dataset contains 35.5 million points of
trajectories, formed by the GPS traces of transport vehicles in the region of Greece.
The points are located on the road network (or near the road due to noisy location
information provided by GPS measurement). The trajectories cover the time period
01/06/2017 - 30/06/2018. The mobility data is illustated in Figure 5.1

• Synthetic mobility dataset (hereafter SYNTH1) - This dataset was generated with 35.5
million spatio-temporal points in the region of Greece (specifically in the bounding
rectangle illustrated in Figure 5.2), covering the same timespan as the real mobility
dataset does. Both spatial and temporal generated information follows uniform distri-
bution. As a result, the points may not exist only on the road network, but anywhere in
the specified area.

• Synthetic mobility dataset (×2) (hereafter SYNTH2) - This dataset has the same
features as the synthetic mobility dataset does have, being twice the size as it contains
71 (35.5×2) million spatio-temporal points.

These datasets were inserted in separate databases of a MongoDB single-node instance,
installed on a computer equipped with 3.6GHZ Intel core i7-4790 processor, 16GB DDR3
1600MHz RAM, 1TB hard disk drive and Ubuntu 18.04.1 LTS operating system. The version
of the used MongoDB database was 4.0.3.

46 Experimental evaluation

Fig. 5.1 Data distribution of RE dataset. Fig. 5.2 Illustration of the bounding rectan-
gle in which the synthetic data was generated.
The coordinates (longitude, latitude) of the
lower and upper bounds are (20.1500,34.9199)
and (26.6041, 41.8269) respectively.

The three datasets exist in the form of CSV files and are parsed record by record in order
to be inserted in the databases of MongoDB instance. The CSV files that compose each
dataset contain the following columns;

1. Object (Vehicle) ID

2. Longitude

3. Latitude

4. Date

These columns are inserted as fields of every document in the databases. Object ID column
is inserted as String format, longitude and latitude columns as GeoJSON object and date
column as Date format. The values of the columns of the synthetic CSV datasets are
uniformly distributed in their respective ranges (the Object ID values were generated as two
underscore-separated random three-digit Integers).

5.1 Experimental study of spatial filtering 47

We notice that the size of the datasets (Table 5.1) on the MongoDB is different than their
corresponding size on the magnetic disk (CSV files) since the data is stored compressed
(snappy block compression is used).

The spatial index that is used for the experiments purposes is the 2d sphere index that
MongoDB offers, built on the GeoJSON field. This index supports queries on an earth-like
sphere. It matches our case since the datasets we are using contain geographical coordinates.
MongoDB also offers the 2d index, supporting queries on a two-dimensional plane.

All of the performed queries are executed in the context of experimental procedures in
cold state, meaning that the system’s cache has been previously cleaned. A query execution
is equivalent to a count operation, calculating number of points that are contained in it. In
some cases we execute the queries 3 times consecutively so as to specify the utility of cache.

Table 5.1 Mobility Datasets

Dataset # Points Size on Size on # CSV files
MongoDB Magnetic Disk of dataset

RE 35.5 million 1.35 GB 1.93 GB 10,328
SYNTH1 35.5 million 1.97 GB 1.77 GB 10,328
SYNTH2 71 million 3.94 GB 3.54 GB 20,656

5.1 Experimental study of spatial filtering

In this section we investigate the performance of spatial range queries on MongoDB by
exploiting the offered 2d sphere spatial index. We conduct three sets of experiments on the
datasets RE, SYNTH1 and SYNTH2. In the first set (subsection 5.1.1), we study the case
of rectangular spatial queries with and without using a spatial index, in order to obtain a
quantitative view of how much time can be saved by using the appropriate built-in indexes.
In the second set (subsection 5.1.2), we study the minimum time needed to perform a spatial
range query on the stored data. This experiment, facilitates our experimental study towards
defining a minimum overhead needed to query the MongoDB instance, which might be
affected by the network overhead, and other internal MongoDB operations. In the third set
(subsection 5.1.3), we study the scalability of range spatial queries by experimenting with
various range sizes.

48 Experimental evaluation

Table 5.2 Spatial Indexes

Dataset
Spatial index Spatial index

construction time size
RE 2.15 min 417.21 MB

SYNTH1 2.68 min 498.64 MB
SYNTH2 5.4 min 994.64 MB

As shown in Table 5.2, the spatial index size of the SYNTH2 dataset is approximately
twice the size compared to the indexes of the other datasets as it contains double number of
points, requiring more time for its construction. The indexes of other two datasets have a
small size difference because the RE dataset is a little bit smaller than the SYNTH1. This has
a small impact on their index construction time.

5.1.1 Performance of spatial filtering with and without index

In this set of experiments, we study for each dataset the effect of the 2dsphere index on
the performance of a rectangular query (Tables 5.4 and 5.5). Simultaneously, we study the
benefits gained from the usage of MongoDB internal cache by executing each query three
times. The first query execution evaluates query results in cold state, meaning that the data
reside in hard disk drives, and no data have been loaded in MongoDB caches. The other
two executions, evaluate the query results in warm state, since a subset of the stored data is
already loaded in MongoDB caches by previous query executions. We pick the rectangular
queries shown in Table 5.3, which are executed on the respective datasets.

Table 5.3 Spatial rectangle queries QS
1, QS

2

QS
1 QS

2

Lower spatial bound (lon, lat) (23.6266, 37.9262) (23.5500, 37.9262)
Upper spatial bound (lon, lat) (23.6682, 37.9477) (23.9500, 38.3000)

Area 8.71 km2 1452.93 km2

5.1 Experimental study of spatial filtering 49

Fig. 5.3 Illustration of QS
1 spatial range query in red color, covering the area of Piraeus.

Fig. 5.4 Illustration of QS
2 spatial range query in blue color, covering the area of Athens and

Piraeus. The rectangle with the red color is the QS
1 spatial query.

50 Experimental evaluation

Table 5.4 Performance of spatial rectangle queries QS
1, QS

2 with spatial (2d sphere) index
usage

Run time QS
1 - RE QS

2 - SYNTH1 QS
2 - SYNTH2

execution dataset dataset dataset
1 65.90 sec 783.16 sec 1581.34 sec
2 1.29 sec 0.54 sec 1.96 sec
3 1.27 sec 0.53 sec 1.77 sec

Examined
508,444 167,627 334,720

index keys
Counted

294,961 120,091 239,281
documents

Table 5.5 Performance of spatial rectangle queries QS
1, QS

2 without spatial index usage

Run time QS
1 - RE QS

2 - SYNTH1 QS
2 - SYNTH2

execution dataset dataset dataset
1 26.76 sec 34.50 sec 66.30 sec
2 18.53 sec 20.41 sec 45.39 sec
3 18.51 sec 20.40 sec 45.54 sec

Comparing the Tables 5.4 and 5.5, we notice that querying the MongoDB with a 2d
sphere index in cold cache state, more time is required than without using index. Since the
index of each dataset is relatively large, MongoDB needs additional time to load the index
in main memory before being able to query it. This results to additional reads from disk,
requiring thus more time for the execution of a query.

The queries are executed faster in warm state than in cold state in both cases. The
difference between the warm and cold state is much more sensible when index is used.
This happens because the index is loaded (maintained) in main memory in warm state, thus
accelerating the execution of a query. Also, when using index, the execution time of a query
in warm state depends on the number of documents (counted documents for our queries) that
are retrieved. For example, QS

2 was executed on SYNTH1 dataset in less time than QS
1 on RE

dataset and QS
3 on SYNTH2 dataset, as fewer documents were counted.

Furthemore, despite that QS
1 examines more documents on RE dataset than QS

2 on the
other datasets, it requires less time for its execution in cold state when index is used. QS

2

covers 170.5 times more area than QS
1, requiring to access more blocks on disk because a

larger part of the corresponding indexes should to be loaded in-memory for QS
2 than QS

1.

5.1 Experimental study of spatial filtering 51

5.1.2 Minumum overhead of spatial filtering

In this set of experiments, we measure the time needed to retrieve just a single document
from each dataset that is stored in a collection of a distinct database, when using a spatial
circular range as filtering criterion (Table 5.6).

Table 5.6 Spatial tiny circle queries QS
3, QS

4

QS
3 QS

4

Center coordinates (lon, lat) (25.751467, 35.023487) (22.317873, 38.565775)
Radius 0.02 m 0.02 m
Area 0.0012 m2 0.0012 m2

Table 5.7 Performance of tiny circle queries QS
3, QS

4 with spatial index usage

QS
3 - RE QS

4 - SYNTH1 QS
4 - SYNTH2

dataset dataset dataset
Execution

289 msec 276 msec 322 msec
time

Examined
17 13 14

index keys
Counted

1
documents

Table 5.7 reports for each dataset the minimum required time for the execution of a
spatial range (circle) query in cold cache by using index. The minimum overhead is found by
selecting the queries QS

3 and QS
4 which fetch (count in our case) only a single document from

the respective datasets. QS
3 requires 13ms more for its execution on RE than QS

4 execution on
SYNTH1, as 4 more index keys are examined. Additionally, the execution of QS

4 on SYNTH2
requires a few more milliseconds than its execution on SYNTH1, although the examined keys
are about the same (the difference is 1). The extra overhead of SYNTH2 results from its index
size, as it contains double entries from SYNTH1.

52 Experimental evaluation

5.1.3 Scalability of spatial filtering

In this set of experiments, we study the time needed for each dataset to evaluate range
queries over increasing range sizes. We pick the circle queries shown in Table 5.8. For every
subsequent size factor, the range size doubles.

Table 5.8 Spatial Circle Queries QS
5, QS

6 with size factor

QS
5 QS

6

Size factor Radius Area Radius Area
f1 2.18 × 1 km 14.93 km2 27.165 × 1 km 2318.29 km2

f2 2.18 × 2 km 59.72 km2 27.165 × 2 km 9273.19 km2

f3 2.18 × 4 km 238.88 km2 27.165 × 4 km 37092.77 km2

f4 2.18 × 8 km 955.52 km2 27.165 × 8 km 148371.08 km2

Center coordinates
(23.7613, 37.9864)

(lon, lat)

Table 5.9 Performance on varying the size factors for circle queries QS
5, QS

6 with spatial index
usage

Size QS
5 - RE QS

6 - SYNTH1 QS
6 - SYNTH2

factor dataset dataset dataset
f1 75.80 sec 916.46 sec 1831.92 sec

Execution f2 213.12 sec 964.05 sec 1928.85 sec
time f3 264.45 sec 977.97 sec 2008.73 sec

f4 282.22 sec 1026.89 sec 2263.99 sec

f1 421,934 190,235 379,813
Counted f2 1,456,145 759,739 1,516,315
documents f3 6,517,900 3,035,062 6,068,820

f4 11,817,952 12,138,692 24,275,830

Table 5.9 shows how a spatial range (circle) query scales on each dataset in cold cache
state by using index. By increasing the radius of the respective query that is performed on
each dataset, we notice that more time is needed for its execution (Figure 5.5 and 5.7). This
is reasonable because the covered area of the query gets larger and thus more documents are
fetched (Figure 5.6 and 5.8). This results to access more disk blocks, loading a larger part of
the index in the main memory as the queries are executed in cold cache.

5.1 Experimental study of spatial filtering 53

 0

 50

 100

 150

 200

 250

 300

f1 f2 f3 f4

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Size factor of Q
S
5

Fig. 5.5 Performance of the size factors of QS
5 on RE dataset.

0*10
0

2*10
6

4*10
6

6*10
6

8*10
6

10*10
6

12*10
6

f1 f2 f3 f4

C
o

u
n

te
d

 d
o

c
u

m
e

n
ts

Size factor of Q
S
5

Fig. 5.6 Output size (# counted documents) of the size factors of QS
5 on RE dataset.

54 Experimental evaluation

 0

 500

 1000

 1500

 2000

 2500

f1 f2 f3 f4

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Size factor of Q
S
6

Fig. 5.7 Performance of the size factors of QS
6 on SYNTH1 (red color) and SYNTH2 (blue

color) datasets.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

f1 f2 f3 f4

C
o

u
n

te
d

 d
o

c
u

m
e

n
ts

Size factor of Q
S
6

Fig. 5.8 Output size (# counted documents) of the size factors of QS
6 on SYNTH1 (red color)

and SYNTH2 (blue color) datasets. The scale of y axis is logarithmic.

5.2 Experimental study of spatio-temporal filtering

In this section we investigate the performance of spatio-temporal range queries on MongoDB
by exploiting the offered compound index (spatial index combined with the time field). We
conduct three sets of experiments on the datasets RE, SYNTH1 and SYNTH2. In the first set
(subsection 5.2.1), we study the case of box spatio-temporal queries by using compound and

5.2 Experimental study of spatio-temporal filtering 55

spatial index, in order to obtain a quantitative view of how much time can be saved by using
the appropriate built-in indexes. In the second set (subsection 5.2.2), we study the minimum
time needed to perform a spatio-temporal range query on the stored data. This experiment,
facilitates our experimental study towards defining a minimum overhead needed to query the
MongoDB instance, which might be affected by the network overhead, and other internal
MongoDB operations. In the third set(subsection 5.2.3), we study the scalability of range
spatio-temporal queries by experimenting with various range sizes.

Table 5.10 Compound Indexes

Dataset
Compound index Compound index
construction time size

RE 3.05 min 747.68 MB
SYNTH1 3.80 min 840.17 MB
SYNTH2 7.46 min 1677.66 MB

As shown in Table 5.10, the compound index size of the SYNTH2 dataset is approximately
twice the size compared to the indexes of the other datasets as it contains double number of
spatio-temporal points, requiring more time for its construction. The indexes of other two
datasets have a small size difference because the RE dataset is a little bit smaller than the
SYNTH1. This has a small impact on their index construction time.

5.2.1 Performance of spatio-temporal filtering with compound and spa-
tial index

In this set of experiments, we study for each dataset the effect of the compound index on the
performance of a box query (Tables 5.13 and 5.12). Simultaneously, we study the benefits
gained from the usage of MongoDB internal cache by executing each query three times as
we did with the rectangular queries in subsection 5.1.1. We pick the box queries shown in
Table 5.11, which are executed on the respective datasets.

Table 5.11 Spatio-temporal box queries QST
1 , QST

2

QST
1 QST

2

Spatial Part Same as QS
1 Same as QS

2

Lower time bound 2017-06-29 00:00:00
Upper time bound 2017-12-31 23:59:59

56 Experimental evaluation

Table 5.12 Performance of spatio-temporal box queries QST
1 , QST

2 with spatial ((2d sphere)
index usage

Run time QST
1 - RE QST

2 - SYNTH1 QST
2 - SYNTH2

execution dataset dataset dataset
1 69.35 sec 785.97 sec 1585.26 sec
2 1.28 sec 0.55 sec 2.14 sec
3 1.27 sec 0.55 sec 1.96 sec

Table 5.13 Performance of spatio-temporal box queries QST
1 , QST

2 with compound index
usage

Run time QST
1 - RE QST

2 - SYNTH1 QST
2 - SYNTH2

execution dataset dataset dataset
1 31.68 sec 515.51 sec 1121.744 sec
2 0.79 sec 0.41 sec 0.83 sec
3 0.79 sec 0.39 sec 0.82 sec

Examined
456,047 167,644 334,737

index keys
Counted

127,133 60,969 121,296
documents

Comparing the Tables 5.13 and 5.12, we notice that spatio-temporal queries are executed
faster on compound index than on spatial index, both in cold and warm state. By executing a
spatio-temporal query with spatial index, the query is first filtered on its spatial part, and then
on its temporal part. When using a compound index for such queries, spatial and temporal
part is filtered simultaneously as its structure holds references to two fields (location and
time field).

By using a compound index, the execution time of a query in warm state depends on the
number of documents (counted documents for our queries) that are retrieved. For example,
QST

2 was executed on SYNTH1 dataset in less time than QST
1 on RE dataset and QST

3 on
SYNTH2 dataset, as fewer documents were counted.

The queries are executed faster in warm state than in cold state in both cases. The
difference between the warm and cold state is much more sensible when index is used.
This happens because the index is loaded (maintained) in main memory in warm state, thus
accelerating the execution of a query. Also, when using index, the execution time of a query
in warm state depends on the number of documents (counted documents for our queries) that

5.2 Experimental study of spatio-temporal filtering 57

are retrieved. For example, QS
2 was executed on SYNTH1 dataset in less time than QS

1 on RE
dataset and QS

3 on SYNTH2 dataset, as fewer documents were counted.
Moreover, despite that QST

1 examines more documents on RE dataset than QST
2 on the

other datasets, it requires less time for its execution in cold state when index is used. QST
2

covers 170.5 times more space than QST
1 , requiring to access more blocks on disk because a

larger part of the corresponding compound indexes should to be loaded in-memory for QST
2

than QST
1 .

5.2.2 Minumum overhead of spatio-temporal filtering

Table 5.14 Spatial tiny cylinder queries QST
3 , QST

4

QST
3 QST

4

Spatial Part Same as QS
3 Same as QS

4

Lower time bound 2018-02-22 08:55:52 2018-04-30 18:49:49
Upper time bound 2018-02-22 08:55:54 2018-04-30 18:49:51

Table 5.15 Performance of tiny cylinder queries QST
3 , QST

4 with compound index usage

QST
3 - RE QST

4 - SYNTH1 QST
4 - SYNTH2

dataset dataset dataset
Execution

292 msec 283 msec 317 msec
time

Examined
17 13 14

index keys
Counted

1
documents

Table 5.15 reports for each dataset the minimum required time for the execution of a spatio-
temporal range (cylinder) query in cold cache by using compound index. The minimum
overhead is found by selecting the queries QST

3 and QST
4 which fetch (count in our case) only

a single document from the respective datasets. QST
3 requires 9ms more for its execution

on RE than QST
4 execution on SYNTH1, as 4 more index keys are examined. Additionally,

the execution of QST
4 on SYNTH2 requires a few more milliseconds than its execution on

SYNTH1, although the examined keys are about the same (the difference is 1). The extra
overhead of SYNTH2 results from its index size, as it contains double entries from SYNTH1.

58 Experimental evaluation

5.2.3 Scalability of spatio-temporal filtering

Table 5.16 Spatial cylinder queries QST
5 , QST

6 with size factor

QST
5 QST

6

Size Lower time Upper time Spatial Spatial
factor bound bound part part

f1
2017-09-30 Same as Same as

23:59:59 f1 of QS
5 f1 of QS

6

f2
2017-12-31 Same as Same as

2017-06-29 23:59:59 f2 of QS
5 f2 of QS

6

f3
00:00:00 2018-03-31 Same as Same as

23:59:59 f3 of QS
5 f3 of QS

6

f4
2018-06-30 Same as Same as

23:59:59 f4 of QS
5 f4 of QS

6

Table 5.17 Performance on varying the size factors for cylinder queries QST
5 , QST

6 with
compound index usage

Size QST
5 - RE QST

6 - SYNTH1 QST
6 - SYNTH2

factor dataset dataset dataset
f1 16.35 sec 458.02 sec 889.94 sec

Execution f2 102.91 sec 952.27 sec 1909.68 sec
time f3 208.37 sec 969.54 sec 1973.13 sec

f4 278.63 sec 1009.24 sec 2263.58 sec

f1 69,750 48,816 97,263
Counted f2 544,977 385,385 768,719
documents f3 4,550,150 2,283,537 4,565,344

f4 11,817,952 12,138,692 24,275,830

Table 5.17 shows how a spatio-temporal range (cylinder) query scales on each dataset in
cold cache state by using index. By increasing the radius of the respective query that is
performed on each dataset, we notice that more time is needed for its execution (Figure 5.9
and 5.11). This is reasonable because the covered space of the query gets larger and thus
more documents are fetched (Figure 5.10 and 5.12). This results to access more disk blocks,

5.2 Experimental study of spatio-temporal filtering 59

loading a larger part of the index in the main memory as the queries are executed in cold
cache.

 0

 50

 100

 150

 200

 250

 300

f1 f2 f3 f4

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Size factor of Q
ST
5

Fig. 5.9 Performance of the size factors of QST
5 on RE dataset.

0*10
0

2*10
6

4*10
6

6*10
6

8*10
6

10*10
6

12*10
6

f1 f2 f3 f4

C
o

u
n

te
d

 d
o

c
u

m
e

n
ts

Size factor of Q
ST
5

Fig. 5.10 Output size (# counted documents) of the size factors of QST
5 on RE dataset.

60 Experimental evaluation

 0

 500

 1000

 1500

 2000

 2500

f1 f2 f3 f4

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Size factor of Q
ST
6

Fig. 5.11 Performance of the size factors of QST
6 on SYNTH1 (red color) and SYNTH2 (blue

color) datasets.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

f1 f2 f3 f4

C
o

u
n

te
d

 d
o

c
u

m
e

n
ts

Size factor of Q
ST
6

Fig. 5.12 Output size (# counted documents) of the size factors of QST
6 on SYNTH1 (red

color) and SYNTH2 (blue color) datasets. The scale of y axis is logarithmic.

5.3 Experimental study of k-NN spatial queries

In this section we conduct experiments with k-NN spatial queries so as to study the effect of
both k parameter and the number of buckets that compose the histogram that is used. The
number of buckets are resulted from the number of splits that are defined for partitioning the
2d space in which the data exist. As described in section 4.3, the k-NN queries are executed

5.3 Experimental study of k-NN spatial queries 61

upon range queries by using histograms, in order to determine of the radius of the circle
query that would fetch at least k documents. This is considered as an approximate way to
find the radius, whereas the ideal case would be to know beforehand the radius of the circle
query that would return exactly k documents. For this reason, we define the following two
metrics (fractions) that represent the deviation of the ideal and the approximated (found)
query.

• Radius fraction r′−r
r (hereafter m1) - Represents the percentage deviation of the found

radius (r’) and the actual radius (r) of the circle query for fetching exactly k documents.

• Returned documents fraction n′−n
n (hereafter m2) - Represents the percentage deviation

of the fetched number of documents (n’) and the actual number of documents (n - is
equivalent to k) that should be fetched from the circle query.

The two metrics indicate the additional cost that is spent for a k-NN query, caused by the
radius approximation of the circle query that is executed over it. In case we knew for a k-NN
query the corresponding range query that would return exact k documents, no additional cost
would occur.

For RE, SYNTH1 and SYNTH2 datasets we build two histograms by partitioning the space
in which the data exist, composed of 200 x 200 cells and 300 x 300 cells; the 2d space that
is taken into account for being partitioned for the three datasets is illustrated in Figure 5.2.
We measure m1 and m2 for some k parameters (10, 50, 100, 300, 800) on each dataset, by
executing 250 generated k-NN queries. Specifically, we record the averages of the metrics,
the minimum observed values, the maximum observed values and the standard deviation of
them. The coordinates of the k-NN queries are chosen randomly from existing points of the
datasets.

Tables 5.18, 5.20 and 5.22 show the measured elements of m1 for the datasets. We notice
that the average values of 300 x 300 histograms are lower than their respective values of 200
x 200 histograms. This is reasonable because the calculated radiuses of the circle queries
are more close to the actual radiuses when histogram is consisted of more (smaller) cells
since the accuracy increases. Also, as the number of the requested neighboors (k) increases,
the average value is getting lower because the formed radiuses are capable of serving more
neighboors, without the need taking account adjacent cells. Furthermore, the average values
of RE dataset are much greater than those of the other two datasets due to data skewing;
some cells contain thousands of points and other cells just a few. This is reflected on the
values of standard deviation.

Tables 5.19, 5.21 and 5.23 show the measured elements of m2 for the datasets. The
average values of 300 x 300 histograms are lower than their respective values of 200 x 200

62 Experimental evaluation

histograms due to the fact that more (smaller) cells are to return less results. Also, as the
number of the requested neighboors (k) increases, the average value is getting lower because
cells are capable of returning more results than requested neighboors, without the need of
taking account adjacent cells. Similarly to m1, the average values of RE dataset are much
greater than those of SYNTH1 and SYNTH2 due to data skewing, reflected on the high values
of standard deviation.

5.3 Experimental study of k-NN spatial queries 63

Table 5.18 m1 elements of k-NN queries, served by RE dataset histograms

200 x 200 cells

k Avg Min Max Std
10 3444.43 24.78 33924.73 5410.30
50 1437.03 15.71 17366.66 2362.32

100 1342.30 6.19 22124.50 2714.06
300 630.93 1.66 21190.27 1803.62
800 233.36 1.19 2901.41 470.72

300 x 300 cells

k Avg Min Max Std
10 1847.50 12.32 19722.72 2833.86
50 874.80 1.55 14953.80 1562.66

100 687.51 4.29 14952.77 1538.13
300 478.71 2.03 19880.47 1535.57
800 160.02 0.69 1324.43 249.73

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 50 10
0

30
0

80
0

m
1
 a

v
e

ra
g

e

 R
E

 d
a

ta
s
e

t

Nearest neighbors (k)

200 x 200 cells
300 x 300 cells

Fig. 5.13 m1 average graph of k-NN queries, served by RE dataset histograms

64 Experimental evaluation

Table 5.19 m2 elements of k-NN queries, served by RE dataset histograms

200 x 200 cells

k Avg Min Max Std
10 54082.22 134.60 265691.50 62233.96
50 13167.18 26.66 58128.70 14610.84
100 7023.66 20.95 34789.97 7471.16
300 2034.13 3.21 8919.23 2288.55
800 924.25 1.60 4129.90 965.61

300 x 300 cells

k Avg Min Max Std
10 35962.81 101.0 161644.6 38541.95
50 7295.60 1.40 30910.36 6905.46
100 3079.17 11.23 15638.52 3287.25
300 1136.93 2.18 5426.03 1162.19
800 420.90 1.22 1984.61 428.36

0x10
0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

6x10
4

10 50 10
0

30
0

80
0

m
2
 a

v
e

ra
g

e

 R
E

 d
a

ta
s
e

t

Nearest neighbors (k)

200 x 200 cells
300 x 300 cells

Fig. 5.14 m2 average graph of k-NN queries, served by RE dataset histograms

5.3 Experimental study of k-NN spatial queries 65

Table 5.20 m1 elements of k-NN queries, served by SYNTH1 dataset histograms

200 x 200 cells

k Avg Min Max Std
10 18.37 8.81 39.02 4.76
50 7.24 4.28 11.18 1.33

100 4.84 2.87 6.90 0.91
300 2.34 1.32 3.61 0.50
800 1.11 0.39 3.23 0.40

300 x 300 cells

k Avg Min Max Std
10 12.17 6.87 24.10 3.02
50 4.55 2.73 6.23 0.79

100 2.87 1.54 4.15 0.59
300 1.25 0.48 2.97 0.39
800 2.16 1.14 2.63 0.24

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

10 50 10
0

30
0

80
0

m
1
 a

v
e

ra
g

e

 S
Y

N
T

H
1

 d
a

ta
s
e

t

Nearest neighbors (k)

200 x 200 cells
300 x 300 cells

Fig. 5.15 m1 average graph of k-NN queries, served by SYNTH1 dataset histograms

66 Experimental evaluation

Table 5.21 m2 elements of k-NN queries, served by SYNTH1 dataset histograms

200 x 200 cells

k Avg Min Max Std
10 318.32 156.40 578.0 85.34
50 64.93 29.72 113.80 18.65

100 33.54 14.58 53.80 9.85
300 10.33 4.16 18.70 3.23
800 3.53 0.87 11.73 1.58

300 x 300 cells

k Avg Min Max Std
10 145.97 43.00 259.7 44.16
50 29.94 12.60 48.06 7.85

100 13.79 5.14 23.26 4.24
300 4.09 1.32 10.63 1.60
800 8.97 2.97 11.86 1.55

 0

 50

 100

 150

 200

 250

 300

 350

10 50 10
0

30
0

80
0

m
2
 a

v
e

ra
g

e

 S
Y

N
T

H
1

 d
a

ta
s
e

t

Nearest neighbors (k)

200 x 200 cells
300 x 300 cells

Fig. 5.16 m2 average graph of k-NN queries, served by SYNTH1 dataset histograms

5.3 Experimental study of k-NN spatial queries 67

Table 5.22 m1 elements of k-NN queries, served by SYNTH2 dataset histograms

200 x 200 cells

k Avg Min Max Std
10 28.63 15.99 51.01 6.99
50 11.02 6.49 16.19 2.08

100 7.26 4.50 10.02 1.28
300 3.72 2.25 5.24 0.63
800 1.92 0.88 2.80 0.41

300 x 300 cells

k Avg Min Max Std
10 18.43 9.57 31.66 4.51
50 6.86 3.78 10.94 1.22

100 4.60 2.75 6.52 0.87
300 2.16 1.10 3.23 0.47
800 2.54 0.32 4.05 1.23

 0

 5

 10

 15

 20

 25

 30

10 50 10
0

30
0

80
0

m
1
 a

v
e

ra
g

e

 S
Y

N
T

H
2

 d
a

ta
s
e

t

Nearest neighbors (k)

200 x 200 cells
300 x 300 cells

Fig. 5.17 m1 average graph of k-NN queries, served by SYNTH2 dataset histograms

68 Experimental evaluation

Table 5.23 m2 elements of k-NN queries, served by SYNTH2 dataset histograms

200 x 200 cells

k Avg Min Max Std
10 710.09 346.70 1184.40 194.74
50 138.05 53.36 223.48 39.98

100 66.39 30.22 110.15 19.52
300 21.41 9.37 37.35 5.80
800 7.68 2.22 13.07 2.35

300 x 300 cells

k Avg Min Max Std
10 303.69 145.90 495.9 82.81
50 60.08 24.78 102.12 16.11

100 30.30 9.93 50.76 9.00
300 9.08 3.18 15.78 2.91
800 13.05 0.76 24.29 8.14

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 50 10
0

30
0

80
0

m
2
 a

v
e

ra
g

e

 S
Y

N
T

H
2

 d
a

ta
s
e

t

Nearest neighbors (k)

200 x 200 cells
300 x 300 cells

Fig. 5.18 m2 average graph of k-NN queries, served by SYNTH2 dataset histograms

Chapter 6

Conclusions and future work

This thesis introduces an API that allows unified access to data, stored in NoSQL databases.
The API offers query primitives and a set of operators for expressing access operations over
NoSQL databases. Its functionality is extended on spatio-temporal data, since spatial and
spatio-temporal operators are provided, enabling thus access to mobility data. The API is
implemented on top of MongoDB and its concept is demonstrated in practice.

Another objective of this thesis was the experimental evaluation of the performance
of MongoDB on spatio-temporal data. According to Chapter 5, MongoDB does perform
efficiently spatial and spatio-temporal queries when using the built-in spatial and compound
indexes respectively. The most recent-read values of the indexes are kept in-memory, allowing
efficient index use for read operations. In other words, MongoDB caches the recent-used
parts of the indexes. Furthermore, MongoDB scales when performing queries by using
indexes; queries that scan a large part of indexes, require more time for their execution than
queries that scan just a few index values.

Concerning the adopted approach for serving k-NN queries, we notice that histograms
that are composed of higher number of buckets, determine more accurately the radius of the
circle queries that are to be executed. However, there is a trade-off between the accuracy of
radius determination and the size of histograms; creating histograms with a higher number of
buckets, requires higher storage cost. The approach demonstrates to be efficient for datasets
that follow uniform distribution. It is not suitable for skewed datasets because the formed
circle queries that serve k-NN types, fetch much more results than the requested (k).

Many are the directions for future work. First, the API could be extended to support
other type of NoSQL stores such as column-wide and graph databases. Second, the provided
geographical operators could be enriched for supporting specialized mobility operators, like
trajectory similarity search. Also, the adopted approach for serving k-NN queries could be
based on Quad-Trees instead of grid partitioning. This would result to space partitioning

70 Conclusions and future work

with buckets of similar counts, being suitable for skewed data. Moreover, new techniques
could be explored for performing spatio-temporal queries, as many NoSQL stores do not
support indexes for such data.

References

[1] Banker, K., Bakkum, P., Verchand, S., Garrett, D., and Hawkins, T. (2014). MongoDB in
Action. Manning.

[2] Brahim, M. B., Drira, W., Filali, F., and Hamdi, N. (2016). Spatial data extension for
cassandra nosql database. J. Big Data, 3:11.

[3] Cattell, R. (2010). Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4):12–27.

[4] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra,
T., Fikes, A., and Gruber, R. E. (2008). Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS), 26(2):4.

[5] Comer, D. (1979). The ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137.

[6] Davoudian, A., Chen, L., and Liu, M. (2018). A survey on NoSQL stores. ACM Comput.
Surv., 51(2):40:1–40:43.

[7] Finkel, R. A. and Bentley, J. L. (1974). Quad trees a data structure for retrieval on
composite keys. Acta Inf., 4(1):1–9.

[8] Fox, A. D., Eichelberger, C. N., Hughes, J. N., and Lyon, S. (2013). Spatio-temporal
indexing in non-relational distributed databases. In Proceedings of the 2013 IEEE In-
ternational Conference on Big Data, 6-9 October 2013, Santa Clara, CA, USA, pages
291–299.

[9] Guan, X., Bo, C., Li, Z., and Yu, Y. (2017). ST-hash: An efficient spatiotemporal index
for massive trajectory data in a nosql database. In 25th International Conference on
Geoinformatics, Geoinformatics 2017, Buffalo, NY, USA, August 2-4, 2017, pages 1–7.

[10] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In
SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA, June 18-21,
1984, pages 47–57.

[11] Iyer, A. P. and Stoica, I. (2017). A scalable distributed spatial index for the internet-of-
things. In Proceedings of the 2017 Symposium on Cloud Computing, SoCC 2017, Santa
Clara, CA, USA, September 24-27, 2017, pages 548–560.

[12] Nishimura, S., Das, S., Agrawal, D., and El Abbadi, A. (2011). MD-HBase: A
scalable multi-dimensional data infrastructure for location aware services. In 12th IEEE
International Conference on Mobile Data Management, MDM 2011, Luleå, Sweden, June
6-9, 2011, Volume 1, pages 7–16.

72 References

[13] Paro, A. (2013). ElasticSearch Cookbook. Packt.

[14] Shriparv, S. (2014). Learning HBase. Packt.

[15] Silberschatz, A., Korth, H. F., and Sudarshan, S. (1996). Data models. ACM Comput.
Surv., 28(1):105–108.

[16] Zhang, N., Zheng, G., Chen, H., Chen, J., and Chen, X. (2014). Hbasespatial: A
scalable spatial data storage based on hbase. In 13th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, TrustCom 2014, Beijing,
China, September 24-26, 2014, pages 644–651.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Goals of the thesis
	1.2 Document structure

	2 Review of NoSQL solutions for spatial and spatio-temporal data
	2.1 NoSQL stores
	2.1.1 MongoDB
	2.1.2 Elasticsearch
	2.1.3 Apache Hbase

	2.2 MongoDB data indexing
	2.3 Underlying structure of spatial indexes of NoSQL stores
	2.4 Techniques for managing mobility data on NoSQL stores

	3 NoSQL data access API implementation
	3.1 API Description
	3.2 API Documentation
	3.2.1 Setting up a connection to a NoSQL database
	3.2.2 Query primitives and operators
	3.2.3 Use case of spatial and spatio-temporal query operations

	3.3 API Architecture
	3.3.1 Packages and classes
	3.3.2 Connector and connection manager

	3.4 Extending the API for supporting a NoSQL database system

	4 Description of query types
	4.1 Aggregation pipeline stages & API operators
	4.2 Geospatial query operators & API geographical operators
	4.3 Serving k-NN over spatial circle queries

	5 Experimental evaluation
	5.1 Experimental study of spatial filtering
	5.1.1 Performance of spatial filtering with and without index
	5.1.2 Minumum overhead of spatial filtering
	5.1.3 Scalability of spatial filtering

	5.2 Experimental study of spatio-temporal filtering
	5.2.1 Performance of spatio-temporal filtering with compound and spatial index
	5.2.2 Minumum overhead of spatio-temporal filtering
	5.2.3 Scalability of spatio-temporal filtering

	5.3 Experimental study of k-NN spatial queries

	6 Conclusions and future work
	References

