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Abstract 

 

With the rapid development of mobile Internet technology, Internet users are shifting 

from desktop to mobile devices. Modern mobile devices (e.g., smartphones and tablets) are 

equipped with GPS, which can help users to easily obtain their locations, and location-based 

services (LBS) have been widely deployed. Users that consume location-based services are 

generating more and more spatio-textual data, which contains both textual descriptions and 

geographical locations.  

A spatio-textual similarity join is an important operation in spatio-textual data integration, 

which, given two sets of spatio-textual objects, finds all similar pairs from the two sets, where 

the similarity can be quantified by combining spatial proximity and textual relevancy. As a 

simpler example of spatio-textual query, a user that wants to find Points of Interest (POIs) 

(i.e., hotels, restaurants), gives a position, a radius of search and some keywords which 

describe the POI.  

In contrast, the Spatio-Textual Similarity Join (STSJ) query returns all objects which are 

close enough based on the radius and have high textual relevance. The main problem for this 

operation is when the two datasets have large volumes and centralized computation is not 

feasible or even practicable. Therefore, the necessity of scalable processing of large volumes 

of datasets, motivates to use big data technologies in order to parallelize the computation and 

achieve scalability. 
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1. Introduction 
 

Due to the existence of GPS and the ability of the applications to perform the position of 

the user with a text, such as Google Maps, Twitter, Foursquare and TripAdvisor, spatio-textual 

data are in the heart of research. Many researchers have discovered ways to analyze these 

kinds of data, to find useful conclusions, about points of interest, comments of users about 

places, and what is the common interest of the users. In addition, a recommendation system 

would be an important application for users, who desire to find places or information based 

on their common interests. Because of the popularity of the above applications, spatial and 

textual data are increasing explosively and centralized systems are not able to manage this 

volume of data. Thus, the necessity of creating new systems that could process data in parallel, 

was necessary. There are a few frameworks that can manage data in parallel with batch 

processing, such as Spark and Hadoop (Map-Reduce), and others with stream processing, 

which process data in real time, such as Spark Streaming and Storm. These systems are called 

Parallel / Distributed Systems and present better processing performance. However, the use 

of these systems requires computing resources because of the parallel processing, which is 

done in different machines or processors that are connected.  

This thesis is divided in two main parts. First of all, the related work of managing spatio-

textual data is described. Different type of queries that have been studied is presented and its 

problem statement are defined. The existing spatio-textual queries have been classified into 

different categories based on the query that they solve. The two main categories are the 

queries which have been implemented in Centralized and Parallel/Distributed systems. In this 

category, there are sub-categories depending on the query that they solve. The creating 

categories are captured in Figure 1 (Chapter 2). 

Secondly, a type of query from the analyzed is selected and has been implemented in 

Spark. The query is the Spatio-Textual Similarity Join (STSJ), which is an important operation 

for reconciling different representations of an entity. Two objects are said to be similar if their 

spatial and textual similarity is greater than the given thresholds. There are various ways to 

quantify the spatial similarity and textual similarity. We have used the Euclidean distance as 

the spatial similarity and the Jaccard similarity for the textual part. The problem statement of 

this query is described below. 

Given a collection of spatio-textual objects R = {r1, r2, ···, rn}, where each object r ∈ R 

includes a textual description r.text, and a spatial location r.loc that is represented by two-

dimensional geographical coordinates a textual similarity threshold θ and a spatial distance 

threshold e, the STSJ(R, θ, e) aims to find all the similar pairs (ri, rj) where simt(ri, rj) ≥ θ and 

distl(ri, rj)≤ e, 

STSJ(R, θ, e) = {(ri, rj)|ri, rj ∈ R, 1 ≤ i, j ≤ n, i ≠ j, simt(ri, rj) ≥ θ, distl(ri, rj) ≤ e}, where, 

simt(ri, rj) is the Jaccard similarity between two objects, and distl(ri, rj) is the Euclidean distance 

of two objects. 
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This query has been studied in centralized systems (2.2.1.), where they split the space with 

a regular grid in order to make the computation faster. On the other hand, similarity join has 

been implemented in MapReduce (2.2.1), so as to manage huge volumes of data.  

Due to the large volume of spatial and textual data, Spark is used to deal with this situation 

and process data in an efficient way. The main problem that must be faced is the load 

balancing of data, when they shared on different machines or processors. Therefore, different 

ways of partitioning data based on geographical coordinates are studied, so as to achieve the 

best performance of load balancing. Moreover, we have implemented two algorithms in order 

to compute the similarity join query and find which of them has the best performance. 

Last but not least, the structure that follows the diploma thesis is listed below. 

 Chapter 2: related work on spatio-textual queries. 

 Chapter 3: related work on this thesis statement, Spatio-textual Similarity Join 

Query.   

 Chapter 4: the distributed technology that has been used to manage this volume 

of data (Apache Spark). 

 Chapter 5: the problem statement of the implemented query and the functions of 

similarity join which have been used. 

 Chapter 6: analysis of the implementation for the similarity join query. 

 Chapter 7: description of the platform, the evaluation metrics and the datasets 

that have used. 

 Chapter 8: experiments for the evaluation of the algorithms. 

 Chapter 9: conclusion of thesis. 

 Chapter 10: references. 
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2. Related work on Spatio-textual Queries 
 

In this chapter, the types of existing queries based on spatial and textual elements are 

described. There are different variations of spatio-textual queries and many researchers are 

dealing with these operations to improve them.  

This thesis focuses on Parallel Processing Spatio-textual Similarity Join Query. Thus, 

Similarity Join Queries in Centralized systems and in Parallel/Distributed systems will be 

analyzed in the Section 3.   

In the following, the taxonomy of spatio-textual queries is depicted to make an overview 

of the structure that this chapter has. 

 

 

 

2.1. Centralized 

 

Centralized system is a system that runs in a single computer system and do not interact 

with other computer systems. All the aspects of the system are concentrated in a single entity 

and all calculations are done on one particular computer. There are a lot of variations of 

spatio-textual queries which use a centralized system and will be analyzed below. 

 

 

 

 

Figure 1: Taxonomy of Spatio-textual Queries. 
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2.1.1. Spatial Keyword Queries 

 

Spatial keyword queries are being supported in real-life applications, such as Google Maps 

where points of interest can be retrieved, Foursquare where geo-tagged documents can be 

retrieved, and Twitter where tweets can be retrieved. Spatial keyword querying is also 

receiving increasing interest in the research community, where a range of techniques have 

been proposed for efficiently query processing. Many types of spatial database queries have 

been revisited for geo-textual data; and keyword queries have also been revisited in the 

context of geo-textual data. A typical spatial keyword query finds the objects that best match 

the location and keywords in the query. To address different use cases, many types of spatial 

keyword queries, as well as accompany indexing and query processing techniques have been 

proposed. 

 

2.1.1.1. Based on Exact Matching 

 

Spatial-keyword queries extend spatial queries by additionally taking into account the 

textual content. The first category of spatial-keyword queries concerns exact matching 

queries. Such queries seek objects that satisfy the spatial constraint (range or NN) and also 

contain all query keywords in their textual descriptions. 

Representative types of spatial keyword queries using exact matching are reviewed in [11] 

and contain the Boolean range query and the Boolean kNN query. In the following, definitions 

are provided along with examples, in order to ease understanding and be more 

comprehensible.    

 Boolean Range Query (BRQ): Given a set of query keywords K, a location p, and a radius 

r, the Boolean range query retrieves the objects o: (a) whose textual description contains all 

query keywords, and (b) located within distance r from the query location, i.e., d(p,o)<=r. For 

example, a Boolean range query with K={tasty, pizza, cappuccino} and r=10km would retrieve 

all objects whose text description contains the keywords tasty, pizza, and cappuccino and 

whose location is within 10 km of the query location. 

Boolean kNN Query (BkQ): Given a set of query keywords Q, a location p, and k the 

number of objects to retrieve, the Boolean kNN query retrieves a set of k objects, each of 

which covers all the keywords in Q. Objects are ranked according to their distances to p. For 

example, a Boolean kNN query with Q={tasty, pizza, cappuccino} and k=10, would retrieve the 

10 objects whose text description contains the keywords tasty, pizza, and cappuccino and are 

the 10-NN to the location p. 

These two types of queries have been evaluated with diverse spatial and textual indexing, 

such as R-Tree based indices (IF-R*, R*-IF, KR*-Tree, IR2-Tree), grid based spatial-textual 

indices (ST, TS).  

Τhe most queries mainly focus on finding individual objects that each satisfy a query, 

rather than finding groups of objects, where the objects in a group together satisfy a query. 
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In [35], the problem of retrieving a Group of Spatio-Textual Objects (GSTO) such that the 

group’s keywords cover the query’s keywords and such that the objects are nearest to the 

query location and have the smallest inter-object distances, is defined. 

To address the need for collective answers to spatial keyword queries, they assume a 

database of spatio-textual objects and then consider the problem of how to retrieve a group 

of spatio-textual objects that collectively meet the user’s needs, given as a location and a set 

of keywords: (a) the textual description of the group of objects cover the query keywords; (b) 

the objects are close to the query point; and (c) the objects in the group are close to each 

other.  

Specifically, given a set of spatio-textual objects D and a query q = (λ, ψ) where λ is a 

location and ψ is a set of keywords, they consider three instantiations of the spatial group 

keyword query. It turns out that the subproblems corresponding to the three instantiations 

are all NP-hard.  

 They aim to find a group of objects χ that cover the keywords in q such that the sum 

of their spatial distances to the query is minimized.  

 They aim to find a group of objects χ that cover the keywords in q such that the sum 

of the maximum distance between an object in χ and q and the maximum distance 

between two objects in χ is minimized.  

 They aim to find a group of objects χ that cover the keywords in q such that the sum 

of the minimum distance between an object in χ and q and the maximum distance 

between two objects in χ is minimized. 

They use the IR-Tree as the index structure in the algorithms and they illustrate how can 

implement other indexes. 

The same problem is dealt in [36], that retrieves a group of spatial objects which they meet 

the first two of the three instantiations, that referred above.  

 

Table 1: Overview of Based on Exact Matching Queries. 

Query Spatial Distance Indexing 

BRQ Euclidean R-Tree, Grid 

BkQ Euclidean R-Tree, Grid 

GSTO Euclidean IR-Tree 

 

 

2.1.1.2. Based on Ranking 

 

Apart from exact matching retrieval, several papers consider ranked retrieval of spatio-

textual objects, where a score quantifies the relevance of an object to the query. Typically, 

the user is interested in the subset of objects with highest scores, thus top-k queries are used, 

where the query result set consists of the k objects with highest scores. 
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Top-k kNN Query (TkQ) [11]: Given a query q=(Q,p,k), where Q is a set of query keywords, 

p is the query location, and k is the number of objects to retrieve, the top-k kNN query 

retrieves a set of k objects ranked according to a score that takes into consideration spatial 

proximity and text relevance. Specifically, the ranking score of object o is defined in the 

following equation:  

ST(o, q) = α · SDist(o.ρ, q.ρ) + (1 − α) · TRel(o.Q, q.Q), 

where SDist(o.ρ, q.ρ) is the spatial proximity between o.ρ and q.ρ, TRel(o.Q, q.Q) is the text 

relevance between o.Q and q.Q, and α ∈ [0, 1] is a query preference parameter that makes it 

possible to balance the spatial proximity and text relevance. The spatial proximity is defined 

as the normalized Euclidian distance: SDist(o.ρ, q.ρ) = 
dist(o.ρ,q.ρ) 

distmax
, where dist(o.ρ, q.ρ) is the 

Euclidian distance between o and q, and distmax is the maximum distance between any two 

objects in D. The text relevance TRel(o.Q, q.Q) can be computed using an information retrieval 

model, here is used the language model. The same problem is dealt by [24] with the same 

ranking function as previously.  

Moreover, [2] presents the problem of Batch Processed Top-k Spatial-Textual Queries 

(BPkQ), where the main difference with [11], is that this type of processing, answers a set of 

queries in a single pass. It uses the same ranking functions for the spatial proximity and text 

relevance, as mentioned above. They assume objects are stored on disk and indexed them 

using a spatial-textual index, the IR-tree. 

Different ways have been proposed in the literature on how to define the score function. 

Except for the language model that is referred above, there are also various ranking functions. 

The ranking functions are based on the text relevance between the query and each object. 

Other information retrieval models are, cosine similarity, BM25 and Jaccard similarity.  

In [16], another query type is proposed, called Top-k Spatio-Textual Preference Query 

(STPQ), for ranked retrieval of data objects based on the textual relevance and the non-spatial 

score of feature objects in their neighborhood. The score of a data object changes depending 

on the query keywords, which renders techniques that rely on materialization. In the 

following, the problem statement that solves this query type, is described. 

Given an object dataset O and a set of c feature datasets {Fi | i ∈ [1, c]}, it is addressed the 

problem of finding k data objects that have in their spatial proximity highly ranked feature 

objects that are relevant to the given query keywords. Each data object p ∈ O has a spatial 

location. Similarly, each feature object t ∈ Fi is associated with a spatial location, but also with 

a non-spatial score t.s that indicates the goodness (quality) of t and its domain of values is the 

range [0, 1]. Moreover, t is described by set of keywords t.W that capture the textual 

description of the feature object t. The goal is to find data objects that have in their vicinity 

feature objects that are of high quality and are relevant to the query keywords posed by the 

user. Thus, the score of the feature object t captures not only the non-spatial score of the 

feature, but also its textual similarity to a user specified set of query keywords. Therefore, the 

problem definition is referred to a given query Q, defined by an integer k, a radius r and c-sets 

of keywords Wi, find the k data objects p ∈ O with the highest spatio-textual score τ(p). Below, 

analyzed the spatio-textual score functions. 
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The preference score s(t) of feature object t based on a user-specified set of keywords W 

is defined as: s(t) = (1 − λ) · t.s + λ · sim(t, W), where λ ∈ [0, 1] and sim() is a textual similarity 

function. The textual similarity is equal to the Jaccard similarity between the keywords of the 

feature objects and the user-specified keywords: sim(t, W) = 
|𝑡.𝑊 ⋂ 𝑊|

|𝑡.𝑊 ⋃ 𝑊|
. 

The preference score τi(p) of data object p based on the feature set Fi is defined as: τi(p) = 

max{s(t) | t ∈ Fi : dist(p, t) ≤ r and sim(t, Wi) > 0}. The dist(p, t) denotes the spatial distance 

between data object p and feature object t and is computed by the Euclidean distance 

function. 

The overall spatio-textual preference score τ(p) of data object p is defined as: τ(p) = 

∑ 𝜏𝑖(𝑝)𝑖 𝜖 [1,𝑐] . 

It is assumed that the data objects O are indexed by an R-tree, and for the feature objects, 

it is important that the non-spatial score and the textual description are indexed additionally. 

Their indexing approach maps the textual description of feature objects to a value based on 

the Hilbert curve. 

Another query based on a ranking, is called Finding Top-k Relevant Groups of Spatial Web 

Objects (RGSWO). [34] proposes a type of query functionality that returns top-k groups of 

objects, while taking into account aspects such as group density, distance to the query, and 

relevance to the query keywords. Given a set of spatial web objects with spatial coordinates 

and text descriptions, the top-k groups spatial keyword query takes a location and a set of 

query keywords as arguments and returns k groups of objects such that the objects in a group 

are close to each other, the group is close to the query location, and the objects in the group 

are textually relevant to the query keywords. Below, is referred the problem statement and 

are defined the distance and the textual relevance functions. 

A top-k groups query q takes a triple of arguments (λ, φ, k), where q.λ is a point location, 

q.φ is a set of keywords, and q.k is the number of groups in the result. It returns k subsets G1 

, ..., Gk of D such that Gi ⊆ Di , i = 1,..., k, where D1 = D and Di = 
𝐷

⋃ 𝐺𝑗
𝑖−1
𝑗=1

, i = 2, ..., k, and such that 

there does not exist a subset G ⊆ Di for which Cost(q, G) < Cost(q, Gi), i = 1, ..., k. 

The distance between a query location λ and a group G of objects, is defined as the 

distance between the query location and the nearest object in the group: d(λ, G) = mino ∈ G||λ, 

o.λ||, where ||·, ·|| denotes the Euclidian distance. 

The text relevance is evaluated by the language models [25]. A text document is 

represented by a vector where each dimension corresponds to a distinct term in the 

document. The relevance of an object o to a query term, t ∈ q.φ, is defined as follows:  

TR(t, o.φ) = (1 − γ )⋅
𝑡𝑓(𝑡,   𝑜.𝜑)

|𝑜.𝜑|
 + γ⋅

𝑡𝑓(𝑡,   𝐶𝑜𝑙𝑙)

|𝐶𝑜𝑙𝑙|
, where tf(t, o.φ) is the number of occurrences of 

term t in o.φ, tf(t, Coll) is the count of term t in the collection Coll of D, and γ is a smoothing 

parameter. 

The indexing technique that used is the Group Extended R-Tree (GER-trees).  
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Table 2: Overview of Based on Ranking Queries. 

Query Spatial Distance Textual 

Similarity 

Indexing 

TkQ Normalized 

Euclidean 

Language Model - 

BPkQ Normalized 

Euclidean 

Language Model IR-Tree 

STPQ Euclidean Jaccard R-Tree, Hilbert 

Curve 

RGSWO Euclidean Language Model GER-Trees 

 

 

2.1.2. Reverse Queries 

 

In many application scenarios, users cannot precisely formulate their keywords and 

instead prefer to choose them from some candidate keyword sets. Moreover, in information 

browsing applications, it is useful to highlight the objects with the tags (keywords) under 

which the objects have high rankings. Driven by these applications, a query paradigm, namely 

Reverse Keyword Search for Spatio-Textual Top-k Queries (RSTQ) [14], is proposed. It takes a 

user location and a target object as inputs, and returns the keyword sets, derived from the 

textual description of the target object, under which the target object will be a spatio-textual 

top-k query result. Formally, the RSTQ is defined as follows. 

Point-based RSTQ Query (PRSTQ): Given a target object o, a query point q.λ, an argument 

k, as well as a list of keyword sets Ω, the RSTQ query finds a subset Ω' of Ω, satisfying that:  

i) for any q.ψ 𝜖 (Ω – Ω’), rank(q, o) ≤ k, 

ii) for any q.ψ 𝜖 (Ω – Ω’), rank(q, o) > k. 

Region-based RSTQ Query (RRSTQ): Given a target object o, a query region Λ, an argument 

k, as well as a list of keyword sets Ω, the RSTQ query finds a subset Ω' of Ω, satisfying that:  

i) for any q.ψ 𝜖 Ω', V q.λ 𝜖 Λ, rank(q, o) ≤ k,  

ii) for any q.ψ 𝜖 (Ω - Ω'), there is at least one point λ 𝜖 Λ such that if q.λ = λ, rank(q, 

ο) > k. 

To efficiently process point-based RSTQ queries, they propose a hybrid indexing structure, 

called KcR-tree, and an efficient query processing algorithm. 

Moreover, an interesting problem encountered in real-life applications that rely on spatio-

textual retrieval is how to improve the ranking of a spatio-textual object for as many users as 

possible. In [5], to address this problem, they capitalize on reverse top-k queries, which 

retrieve the set of users that have a given object in their top-k results. They model the problem 

as a maximization of the cardinality of the reverse top-k result set, and they explore the 

different combinations of keywords that will increase the query object’s rank for many users, 
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when added to its textual annotation. They refer to this problem as Best-Terms Query (BTQ). 

Below, the problem statement is described. 

Given a set D of spatio-textual objects, a set of terms A = ⋃ 𝑜. 𝑇𝑜 𝜖 𝐷 , a set of queries U, a 

scoring function f, an integer k, and a spatio-textual object q = <q.T, q.L> ∈ D, decide if there 

is a set BT such that BT ⊆ A, BT ⋂ q.T = ∅, |BT| ≤ b for which it holds that I(q1) = U where q1 = 

<q.T ⋃ BT, q.L>. 

They propose a greedy algorithm, termed Best Term First (BTF), that provides an 

approximate solution to the Best-terms problem. BTF takes as input an IR-tree index 

containing the set of spatio-textual objects D, and an IR-tree index containing the set of user 

preferences U. BTF extends the textual description of a spatio-textual object iteratively, which 

forces the algorithm to scan the preferences set U multiple times. Thus, they present an 

algorithm, named Graph-Based Term Selection (GBTS), which examines the set of preferences 

only once and creates a graph of terms that provides an estimation of the influence gain any 

combination of terms may provide. 

Another approach on reverse queries is to find objects that take the query object as one 

of their k most spatial-textual similar objects. This type of query is defined as Reverse Spatial 

Textual k Nearest Neighbor (RSTkNN) query [15].  

The document of an object is treated as a bag of weighted words using vector space 

model. Formally, a document is defined as {<di, wi>}, i = 1,···, m, where wi is the weight of word 

di. The weight could be computed by the well-known TF-IDF scheme. Let P be a universal 

spatial object set. Each spatial object p ∈ P is defined as a pair (p.loc, p.vct), where p.loc 

represents the spatial location information and p.vct is the associated text represented in 

vector space model. The RSTkNN query is defined as follows. 

Given a set of objects P and a query point q(loc, vct), RSTkNN(q, k, P) finds all objects in 

the database that have the query point q as one of the k most “similar” neighbors among all 

points in P, where the similarity metric combines the spatial distance and textual similarity. 

The similarity metric, called spatial-textual similarity, is computed by the following 

function: 

SimST(p1, p2) = α ∗ SimS(p1.loc, p2.loc) + (1 − α) ∗ SimT(p1.vct, p2.vct), where, 

 parameter α ∈ [0, 1] is used to adjust the importance of spatial proximity factor and 

the textual similarity factor. 

 SimS(p1.loc, p2.loc) = 1 − 
𝑑𝑖𝑠𝑡 (𝑝1.𝑙𝑜𝑐,𝑝2.𝑙𝑜𝑐) −𝜑𝜍 

𝜓𝜍− 𝜑𝜍
 , where the distance is computed by the 

Euclidean distance, and φς, ψς denotes the minimum and maximum distance of pairs 

of distinct objects in P. 

 SimT(p1.vct, p2.vct) = 
𝐸𝐽(𝑝1.𝑣𝑐𝑡,𝑝2.𝑣𝑐𝑡) − 𝜑𝑡

𝜓𝑡− 𝜑𝑡
 , where the textual similarity is computed by 

the Jaccard similarity, ϕt and ψt are the minimum and maximum textual similarity of 

pairs of distinct objects in the dataset, respectively  
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To answer RSTkNN queries efficiently, it is proposed a hybrid index tree called IUR-tree 

(Intersection-Union R-Tree) that effectively combines location proximity with textual 

similarity.  

Another problem that scientists occupy, is the Maximized Bichromatic Reverse Spatial 

Textual k Nearest Neighbor (MaxBRSTkNN) query [3]. The problem is to find the location and 

a set of keywords, that maximizes the size of bichromatic reverse spatial textual k nearest 

neighbors. The most relevant query type to this problem is RSTkNN query, where an upper 

and a lower bound estimation of similarity is computed between each node of the IUR-tree 

and the k-th most similar object. A branch-and-bound algorithm is then used to answer the 

RSTkNN query. In MaxBRSTkNN the computation of the bounds and the algorithm are 

designed for the monochromatic case only since both the data objects and the query objects 

belong to the same type, and the nodes of the tree store only one type of object. 

Let D be a bichromatic dataset, where U is a set of users and O is a set of objects. Each 

object o ∈ D is a pair (o.l, o.d), where o.l is the spatial location (point, rectangle, etc.) and o.d 

is a set of keywords. Each user u ∈ U is also defined as a similar pair (u.l, u.d). A MaxBRSTkNN 

query returns a location l ∈ L and a set W’ ⊆ W, |W’| ≤ ws such that, if ox.l = l and ox.d = 

W’∪ox.d, the size of BRSTkNN of ox from U is maximized. 

An object o is ranked based on a combined score of spatial proximity and textual relevance 

with respect to a user u, specifically, using the following equation:  

STS(o, u) = α · SS(o.l, u.l) + (1−α)·TS(o.d, u.d),  

where SS(o.l, u.l) is the spatial proximity between locations, the textual relevance is 

TS(o.d,u.d), and the preference parameter α ∈ [0,1] defines the importance of one relevance 

measure relative to the other. The value of both measures are normalized within [0,1]. 

Spatial proximity: The spatial proximity of an object o with respect to a user u is:  

SS(o.l, u.l) = 1 − 
dist(o.l,u.l) 

𝑑𝑚𝑎𝑥
 , where dist(o.l, u.l) is the minimum Euclidean distance, and dmax 

is the maximum Euclidean distance between any two points in D. 

Text relevance: The TF-IDF metric is used, in order to weight a term in a document based 

on term frequency (TF) and inverse document frequency (IDF). The TF, tf(t, d), is the number 

of times term t appears in document d, and IDF, idf(t, O) = log
|𝑂|

|𝑑 𝜖 𝑂,   𝑡𝑓(𝑡,𝑑)>0|
 measures the 

importance of t in the set O. Here, the text relevance of an object o with respect to a user u 

is: TS(o.d, u.d) = ∑ tf(t, o. d) × idf(t, O)𝑡 𝜖 𝑢.𝑑 . 

To answer a MaxBRSTkNN query in the baseline approach, the score of the k-th ranked 

object for each user must be determined. Computing the top-k objects for each user requires 

retrieving the objects from disk, and the same objects might be retrieved multiple times for 

different users. To overcome this drawback, they have extended the IR-tree, as MIR-tree, and 

they compute the top-k objects of the users jointly using different pruning strategies, and 

ensure that an object is retrieved only once.  

In [38], the Reverse Top-k Keyword-Based Location Query (RTkKL), is defined. This type of 

query takes a set of keywords, a query object q, and a number k as arguments, and it returns 
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a spatial region such that any top-k spatial keyword query with the query keywords and a 

location in this region would contain object q in its result.  

Specifically, given a set ψ of query keywords, a query object q ∈ O, and a number k, the 

RTkKL returns the maximum spatial region Vq such that q is contained in the result of any top-

k spatial keyword query with ψ as the keywords and any location in Vq as arguments.  

Formally, Vq = {p ∈ Ω q ∈ Sk(p, ψ) ∧ q ∈ O}, where Sk(p, ψ) is the result of a top-k spatial 

keyword search with p and ψ as arguments. 

Top-k spatial keyword query: Given a point p ∈ Ω, a set ψ of keywords, and a number k, 

the top-k spatial keyword query Sk(p, ψ) returns a set Sk of k spatial web objects with lowest 

ranking scores:  

∀o ∈ Sk, ∀o’ ∈ O − Sk, score(p, ψ, o) < score(p, ψ, o’) 

Function score(), combines spatial proximity and textual relevance. When ψ is clear from the 

context, |p, o| represents the score(p, ψ, o).  

score(p, ψ, o) = ws · |p, o|E + wt · (1 − tr(ψ, o.ψ)), where |p, o|E denotes the Euclidean distance 

between p and o.loc, and function tr(), computes the textual relevance between its two 

arguments, by the cosine similarity function. The smaller the score of an object is, the more 

relevant the object is to the query. 

They propose an algorithm capable of computing approximate V-regions with quality 

guarantees, based on Voronoi concepts, which are usually used for defining such kinds of 

spatial regions. Given a set S of spatial point objects, the Voronoi cell for object q’ ∈ S is the 

part of the space that contains all points in the underlying space that have q’ as their nearest 

neighbor. Object q’ is called the cell’s site. This concept can be extended to k-nearest 

neighbors. If the site of a Voronoi cell is a set s of objects (s ⊆ S and |s| = k), the cell is called 

order-k Voronoi cell. Every point of the underlying space in the cell takes s as their k nearest 

neighbors. To further accelerate V-region computation, they use a quad-tree for indexing the 

solution space and an IR-tree for indexing the objects, and they show how to use the two 

indexes in combination to enable pruning. 

 

Table 3: Overview of Reverse Queries. 

Query Spatial Distance Textual 

Similarity 

Indexing 

PRSTQ, RRSTQ - - KcR-Tree 

BTQ Normalized 

Euclidean 

Intersection of 

terms 

IR-Tree 

RSTkNN Euclidean Jaccard, TF-IDF IUR-Tree 

MaxBRSTkNN Normalized 

Euclidean 

TF-IDF MIR-Tree 

RTkKL Euclidean Cosine Quad-Tree, IR-

Tree 
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2.1.3. Mining 

 

Mining spatio-textual data for knowledge discovery is a cumbersome task due to the 

complexity of the data type and its representation. Spatial-Textual data can be mined or 

analyzed to improve various location-based services. There are a lot of algorithms solving 

mining problems, such as the problem of Clustering, Classification and Regression. 

 

2.1.3.1. Clustering 

 

Clustering itself is a central problem in computer science, so spatio-textual clustering can 

play a key role in many applications. 

The problem of Clustering Spatio-Textual (CST) data is studied in [26]. In particular, they 

focus on extending the k-means algorithm for a massive volume of spatio-textual dataset to 

be efficiently processed. K-means still remains one of the most popular data processing 

algorithm over half a century especially due to its simplicity and scalability [25]. Since the key 

process of k-means is to compute and update the mean value of each cluster, most k-means 

family algorithms assume that each data object only contains numeric attributes. This 

assumption makes a big challenge in applying the k-means algorithm to spatio-textual data as 

each object contains both numeric (spatial) and non-numeric (textual) attributes. To address 

the challenge above, they first observe that it suffices to compute the expected distance 

between a random object in each cluster and the object under consideration rather than 

measuring the distance from the virtually constructed spatio-textual centroid of a cluster. By 

doing so, they can reduce the cost of computing pairwise textual distances. Furthermore, they 

devise an effective technique for initializing k-means for spatio-textual data, which is 

commonly the most important and challenging task for k-means derivatives to improve not 

only the quality of resulting clusters but also the efficiency. 

Their problem environment follows the many works in the literature of spatio-textual 

similarity search, which is summarized as follows: 

 We consider a set of spatio-textual objects, denoted by O = {o1, o2, …, o|O|}. 

 Each object o ∈ O consists of two attributes, namely <loc, τ>, where loc is a geographic 

location and τ = {t1, t2, …, t|τ|} is a set of keywords. 

 Each keyword t ∈ o.τ is associated with a weight w(t), which represents the 

significance of the keyword and is global for all objects. The most widely used value 

for the keyword weight is the inverted document frequency (idf). 

 The distance between two spatio-textual objects o1 and o2 is defined as:  

Dist(o1, o2) = α⋅DistS(o1, o2) + (1 – α)⋅DistT(o1, o2),  

where α is a user parameter to adjust the importance of spatial dimension or textual 

dimension, DistS(*, *) is the Euclidean distance between o1.loc and o2.loc, and DistS(*, 

*) is the weighted Jaccard distance between o1.τ and o2.τ defined as follows:  

1 - 
∑ 𝑤(𝑡)𝑡 𝜖 𝑜1.𝜏 ⋂ 𝑜2.𝜏

∑ 𝑤(𝑡)𝑡 𝜖 𝑜1.𝜏 ⋃ 02.𝜏
 . 
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Note that α is not a parameter to be optimized in advance, but rather it represents a 

user's intention on whether s/he is interested in the spatial aspect or the textual aspect of 

the underlying dataset. 

Then, their problem is formally defined as follows: 

Given O, DistS(*, *), and a positive integer k, partition O into k disjoint clusters such that 

the total intra cluster distance is minimized and the total inter cluster distance is maximized 

with respect to DistS(*, *). 

Furthermore, another approach of spatio-textual clustering is the Top-k Spatial Textual 

Clusters (k-STC) query [37], that returns the top-k clusters that are located close to a given 

query location, contain relevant objects with regard to given query keywords, and have an 

object density that exceeds a given threshold. This query aims to support users who wish to 

explore nearby regions with many relevant objects. It is used density-based clustering for 

finding clusters. The two basic steps to compute the top-k STC query are to obtain the objects 

that are relevant to the query keywords and to apply clustering to these objects. They consider 

a cluster scoring function that favors clusters close to the query location and that contain 

objects with high relevance with regard to the query keywords. 

A top-k Spatial Textual Cluster (k-STC) query q = (λ, ψ, k, e, minpts) takes five arguments: 

a point location λ, a set of keywords ψ, a number of requested object sets k, a distance 

constraint e on neighborhoods, and the minimum number of objects minpts in a dense e-

neighborhood. It returns a list of k spatial textual clusters that minimize a scoring function and 

that are in ascending order of their scores. The maximality of each cluster implies that the top-

k clusters do not overlap. The density requirement parameters e and minpts are able to 

capture how far the user is willing to move before reaching another object.  

Intuitively, a cluster with high text relevance and that is located close to the query location 

should be given a high ranking in the result. Thus, they use the following scoring function: 

 scoreq(R) = α · dq.λ(R) + (1 − α) · (1 − trq.ψ(R)),  

where dq.λ(R) is the minimum spatial distance between the query location and the objects in 

R and trq.ψ(R) is the maximum text relevance in R. The approaches we present are applicable 

to scoring functions that are monotone with respect to both spatial distance and text 

relevance. Parameter α is used to balance the spatial proximity and the text relevance of the 

retrieved clusters. All spatial distances and text relevances are normalized to [0, 1]. 

 

Table 4: Overview of Clustering Queries. 

Query Clustering 

CTS K-Means 

k-STC DBScan 
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2.1.3.2. Others 

 

Another pattern mining problem is proposed in [1], called Spatial-Textual Sequence 

Pattern Mining. A Spatial-Textual sequence is a trajectory of locations with each location 

having associated with it a set of activities/events or some other attributes. Mining Spatial-

Textual frequent sub-sequential patterns is one of the major challenge due to the complexity 

of the data type, as we have to deal with not only two different dimensions, but also ordered 

data and localization error of GPS. 

Let I = (l1, i1),(l2, i2), . . . ,(lm, in) be a set of all items along with their locations. An itemset is 

a non-empty subset of I and a sequence is an ordered list of itemsets. A sequence s is denoted 

by <s1, s2, ... , sl>, where sj is an itemset and sj is also called an element of the sequence, and 

denoted as (x1, x2, . . . , xm), where xk is an item-pair (with location). The number of instances 

of item-location pairs in a sequence is called the length of the sequence. A sequence with 

length l is called an l−sequence. A sequence α = <a1, a2, ..., an> is called a subsequence of 

another sequence β = <b1, b2, ..., bm> and β a supersequence of α, denoted as β ⊆ α, if there 

exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn. 

A sequence database S is a set of tuples <sid, s>, where sid is a sequence_id and s a 

sequence. A tuple <sid, s> is said to contain a sequence α, if α is a subsequence of s. The 

support of a sequence α in a sequence database S is the number of tuples in the database 

containing α, i.e., supports(α) = |<sid, s> | (<sid, s> ∈ S) ∧ (α ⊆ s)|. 

Given a positive integer min_support as the support threshold, a sequence α is called a 

sequential pattern in sequence database S if supportS(α) ≥ min_support. A sequential pattern 

with length l is called an l–pattern.  

The problem here is to find frequent Spatial-Textual patterns from given Spatial-Textual 

data. The locations can be of any type like the actual location or it can be the zip-code of the 

area or it can be the city name/state name/country name. For assigning label to the locations 

DBScan algorithm is used which work for given ρ value and minimum points. It gives the 

clusters of locations and assign labels to them. They use these labels in the dataset for 

locations. Also, Grid-based algorithm is used for labeling the locations. They use PrefixSpan 

algorithm to solve this type of problem, in which item-location pair is taken as a prefix instead 

of a single item. 

 

2.1.4. Others 

 

Apart from the categories that referred above, there are a lot of query variations that do 

not match to any of these categories. These types of queries will be analyzed below, without 

having any similarity to each other.  

In [20], the problem of matching point sets based on the spatio-textual objects they 

contain, is addressed. This is highly relevant for users associated with geolocated photos and 

tweets. It is formally defined this problem as a Spatio-Textual Point-Set Join (STPSJoin) query, 
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and it is introduced its top-k variant. Given sets of spatio-textual objects, each one belonging 

to a specific entity, this query seeks pairs of entities that have similar spatio-textual objects. 

The problem statement is defined as follows. 

Given a database D of spatio-textual objects s created by different users U, where each 

object o ∈ D is a triple o = <u, loc, doc>, where u ∈ U is the user associated with this object, 

loc = <x, y> is a spatial point and doc is a set of keywords belonging to a set of users U, the 

STPSJoin query is a tuple Q = <q.loc, q.doc, q.u> which returns a set R containing all pairs of 

users (u, u’) such that u, u’ ∈ U, u ≺ u’, and σ(Du, Du’) ≥ q.u with respect to the spatial and 

textual thresholds q.loc and q.doc. The spatial distance between two objects is calculated as 

the Euclidean distance between their spatial locations, and their textual similarity as the 

Jaccard similarity. 

An extension of the STPSJoin query in which it is seeked only the k best pairs of users, in 

terms of spatial and textual similarity of their objects, is the Top-k STPSJoin (kSTPSJoin) query. 

Formally, the kSTPSJoin query is defined as follows. 

Given a database D of spatio-textual objects belonging to a set of users U, the Top-k 

STPSJoin query is a tuple Q = <q.loc, q.doc, k> which returns a set R containing k pairs of users 

(u, u’) such that u, u’ ∈ U, u ≺ u’, and for any pair of users (v, v’) ɇ R it holds that σ(Du, Du’) ≥ 

σ(Dv, Dv’) for each (u, u’) ∈ R with respect to the spatial and textual thresholds q.loc and q.doc. 

They present a baseline algorithm using grid partition for the evaluation of the STPSJoin 

query, and they introduce methods that exploit a filter and refine strategy in combination with 

spatio-textual indexes in order to direct the search. In addition, they explain how their 

methods can be adapted to account for the kSTPSJoin query. 

Another interesting query type is named Clue-Based Spatio-Textual Query (CSTQ) [23]. In 

many scenarios, a user cannot provide enough information to pinpoint the POI (Point of 

Interest) except some clue. Motivated by this observation, this work allows user providing 

clue, i.e., some nearby POIs and the spatial relationships between them, in POI retrieval. The 

objective is to retrieve k POIs from a POI database with the highest spatio-textual context 

similarities against the clue.  

The POI database is denoted as D. Each POI o ∈ D is represented as (o.id, o.loc, o.cid), 

where o.id is the identity of o, o.loc refers to the location of o, and o.cid is the category identity 

to indicate o. When querying a POI in a POI database, Clue is the user-provided information 

which specifies the spatio-textual context of the querying POI. It includes the categories of 

nearby POIs around the querying POI, called clue POIs, and the spatial relationships (i.e., 

distances and relative directions) between them (including the querying POI and clue POIs). 

The definition of the CSTQ is referred below. 

Given a POI database D, a CSTQ query QR(q, N, E) retrieves k POIs, A ⊆ DR(q.cid), such that 

SCsim(q, oi) > SCsim(q, oj), oi ∈ A, oj ∈ DR(q.cid) \ A, where, 

q is the querying POI, N \ {q} is the set of clue POIs, E is the set of edges which represent the 

relative spatial relationships between the POIs in N, R is the region where the POIs in N are 

located, DR(q.cid) be the POIs in D with the same category as q in region R, and the spatio-

textual context similarity between q and o is denoted as follows: 
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SCsim(q, o) = 𝑚𝑎𝑥𝑞𝑚 𝜖 𝑇1,   𝑜𝑚 𝜖 𝑇2𝑆𝐶𝑠𝑖𝑚(𝑞, 𝑜, 𝑞𝑚 , 𝑜𝑚) , where, T1 = N \ {q} and T2 = DR(qm.cid) 

\ {o}, SCsim(q, o, qm, om) := γ⋅𝑚𝑎𝑥𝑡⊆𝛷 𝑆𝐶𝑠𝑖𝑚(𝑁, 𝐼), and Φ is the set of all possible matching 

instances of N in DR. 

Also, this work has developed an index called roll-out-star R-tree (RSR-tree) to improve 

the query processing efficiency. 

In some cases, it is difficult for users to identify the exact keywords that describe their 

query intent. After a user issues an initial query and gets back the result, the user may find 

that some expected objects are missing and may wonder why. Specifically, objects that the 

user expected to be in the result are missing. This suggests to the user that other useful 

objects, that are as yet unknown to the user, may be missing from the result as well, and the 

user has reason to question the overall utility of the query and its result. In this setting, the 

utility of spatial keyword querying can be improved by offering functionality that explains to 

the user why one or more expected objects are missing and how to minimally modify the 

initial query so that the missing objects, and then potentially also other useful objects, become 

part of the result. 

Such scenarios call for support for why-not questions, which were first introduced by 

Chapman and Jagadish [40]. In [39], is applied the query refinement model [41] to solve the 

problem of answering why-not questions on spatial keyword top-k queries via keyword 

adaption.  

After a user issues a query q = (loc, doc0, k0, α) and receives the result, the user may 

observe that one or more objects that were expected to be in the result are missing. The user 

may then pose a why-not question with a set of missing objects M = {m1, m2, ..., mj}, asking 

the system for a refined query q ′ = (loc, doc′, k′, α) the result of which contains the missing 

objects. Since it is possible that no modified set of keywords can revive the missing objects, 

we also consider the enlargement of k. It is adopted a penalty model [41], [42], that associates 

a penalty with a refined query. It is defined as the weighted sum of the modifications of the 

two parameters, i.e., ∆k and ∆doc. The penalty (cost) of a query q ′ that refines an original 

query q is defined as follows:  

Penalty(q, q′ ) = λ· 
∆k

R(M,q) − 𝑘0 
 + (1−λ)·

∆doc 

|𝑑𝑜𝑐0 ∪ M.doc|
 , 

where λ is a user preference on the modification of q.k versus q.doc and R(M, q) = maxmi ∈ M 

R(mi , q). Next, ∆k = max (0, k′ − k0) since for a refined query q ′, if R(M, q′) > k0, k′ must be no 

smaller than R(M, q′) to revive the missing objects; otherwise, k′ can remain at k0. They 

normalize ∆k by R(M, q) − k0, as a basic refined query is to keep the original query keywords 

and enlarge k0 to R(M, q); for other refined queries that modify the query keywords to achieve 

a lower penalty than that of this basic one, ∆k must not exceed R(M, q) − k0. Using the principle 

of edit distance, the modification of query keywords ∆doc is quantified as the minimum count, 

denoted as ED(doc0,doc′), of edit operations needed to transform doc0 to doc′ . For simplicity, 

we consider two edit operations: insertion and deletion. Similarly, we normalize ED(doc0,doc′) 

by the maximum possible number of edit operations needed to modify doc0 into a doc′ that 

yields a query that retrieves all objects in M. This quantity is estimated as |doc0∪M .doc|, 

where M.doc =⋃ 𝑚𝑖 . 𝑑𝑜𝑐𝑗
𝑖=1 . In other words, they just consider the keywords in M.doc, as 
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adding a keyword not in M.doc would make the set of query keywords less relevant to the 

user’s query intention, i.e., less relevant to the missing objects. 

In addition, the Keyword-Adapted Why-Not Spatial Keyword Top-k Queries (KAWNQ) is 

defined as follows: 

Given a set D of spatial objects, a missing object set M ⊂ D, an original spatial keyword 

query q = (loc, doc0, k0, α), the KAWNQ query returns the refined query q′ = (loc, doc′, k′, α), 

with the lowest penalty cost that referred above, and the result of which contains all objects 

in M. 

They employ a hybrid index that estimates bounds on spatial distance and textual 

similarity at the same time. This index, called the SetR-tree, is a variant of the IR-tree. 

As it is observed, most of the queries during their processing use separate indices for space 

and text, thus incurring the overhead of storing separate indices and joining their results. 

Others proposed a combined index that either inserts terms into a spatial structure or add a 

spatial structure to an inverted index.  

In [17], a Spatio-Temporal Textual Index (ST2I) structure that supports the efficient 

evaluation of both range and top-k queries with multiple constraint types is presented. This 

indexing strategy uniformly handles text, space and time in a single structure, and is thus able 

to efficiently evaluate queries that combine keywords with spatial and temporal constraints. 

By using a single structure to index spatial, temporal and textual attributes together, ST2I is 

able to uniformly handle different constraint types and filter over multiple dimensions 

simultaneously, thus, reducing the number of irrelevant documents retrieved and 

consequently, query execution time. ST2I extends kd-trees, in which it employes a block-based 

storage at the leaf node level. This approach retains the flexibility of the kd-tree in supporting 

multiple dimensions and at the same time scales to large data sets that do not fit in main 

memory. Also, to incorporate text into this structure, ST2I uses an efficient technique to map 

textual information (terms) into numbers. This mapping must be strictly monotone so as to 

allow the inclusion of the mapped terms into a space-partitioning structure such as the kd-

tree. They employ two algorithms to encode and decode the terms that have linear complexity 

in the size of the terms. The encoding and decoding operations are context free and can be 

applied on the fly, without requiring intermediate storage or hash tables. In addition, the 

approach supports evolving collections, where new terms are added dynamically. 

 

Table 5: Overview of Other Queries. 

Query Partitioning 

STPSJoin, kSTPSJoin Grid 

CSTQ RSR-Tree 

KAWNQ SetR-Tree 
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2.2. Parallel / Distributed 

 

The era of Big Data has created the need of parallel and distributed processing. Parallel 

and Distributed systems, are systems where computation is done in parallel, on multiple 

concurrently used computing units. They may be different cores of the same processor, 

different processors, or even different machines connected over a network. Apart from the 

problems that may have a parallel system, they must cope with many new problems, such as 

time synchronization, delays, communication problems between computing units, non-

shared memory, load balance between the machines and so on. Thus, there are a lot of new 

frameworks, that support parallel batch processing such as, Spark and Hadoop (MapReduce), 

and others that support parallel stream processing such as, Spark Streaming and Storm.  

 

2.2.1. Batch Processing 

 

With the popularity of GPS and their applications, the size of spatio-textual data is 

increasing explosively, while the existing methods cannot deal with the spatio-textual massive 

data. MapReduce [33], a distributed shared-nothing data-processing framework, provides a 

method to deal with vast amount of data in a highly scalable and efficient fashion. The 

MapReduce framework is built on top of a cluster that is composed of multiple commodity 

machines. It allows to process massive data in parallel by splitting them into independent 

chunks. 

In the sub-section 2.1.1.2., the Top-k Spatio-Textual Preference Query is presented. Due 

to the proliferation of the data, this query type must be implemented in a parallel and 

distributed system. Thus, in [31], the problem of Parallel and Distributed Processing of Spatial 

Preference Queries Using Keywords (SPQ) is studied, where the input data is stored in a 

distributed way. Given a set of keywords, a set of spatial data objects and a set of spatial 

feature objects that are additionally annotated with textual descriptions, the spatial 

preference query using keywords retrieves the top-k spatial data objects ranked according to 

the textual relevance of feature objects in their vicinity. This query type is processing-

intensive, especially for large datasets, since any data objects may belong to the result set 

while the spatial range defines the score, and the k data objects with the highest score need 

to be retrieved. The proposed solution has two notable features:  

(a) they propose a grid-based partitioning method that uses careful duplication of feature 

objects in selected neighboring cells and allows independent processing of subsets of input 

data in parallel, thus establishing the foundations for a scalable query processing algorithm, 

and  

(b) they boost the query processing performance in each partition by introducing an early 

termination mechanism that delivers the correct result by only examining few data objects. 

Capitalizing on this, they implement parallel algorithms that solve the problem in the 

MapReduce framework. 
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In the following, the problem statement that solves this type of query is analyzed. 

Given an object dataset O and a feature dataset F, which are horizontally partitioned and 

distributed to a set of servers, the SPQ returns the k data objects {p1, ..., pk} from O with the 

highest τ(pi) scores. 

The score τ(p) of p based on feature dataset F, given the range-based neighborhood 

condition r is defined as: τ(p) = max{w(f, q) | f ∈ F : d(p, f) ≤ r}, where w(f, q) is the textual 

score which computed by the Jaccard similarity, and d(p, f) is the distance between p and f. 

They propose an algorithm for solving the SPQ query, which relies on a grid-based 

partitioning of the 2-dimensional space in order to identify subsets of the original data that 

can be processed in parallel. It uses careful duplication of feature objects in selected 

neighboring cells, in order to create independent work units, by the following assumption. 

Given a parallel/distributed spatial preference query using keywords with radius r, any 

feature object f ∈ Cj must be assigned to all other grid cells Ci(Ci ≠ Cj), if MINDIST(f, Ci) ≤ r. 

In addition, they have proposed a thresholding mechanism that allows early termination of 

query processing, that guarantees the correctness of the result. 

Another framework, that supports a distributed in-memory data management system for 

big spatio-textual data, is presented in [6], named as LocationSpark. It is built on top of Apache 

Spark [10], a widely used distributed data processing system. Spark is a distributed 

computation framework that allows users to work on distributed in-memory data without 

worrying about data distribution and fault-tolerance. LocationSpark offers a rich set of spatial 

query operators, e.g., range search, kNN, spatio-textual operation, spatial-join, and kNN-join. 

LocationSpark stores spatial data as key-value pairs. A spatial tuple ti, contains a spatial 

geometric key and a related value, namely ki and vi, respectively. The spatial data type of key 

ki can be a two-dimensional point, e.g., latitude-longitude, a line-segment, a poly-line, a 

rectangle, or a polygon. The value type vi can be specified by the user, e.g., a text type if the 

data tuple is a tweet. 

It builds two layers of spatial indexes, global and local. The global index partitions data 

among the various nodes. To build a global index, LocationSpark samples the underlying data 

to learn the data distribution in space. Then, LocationSpark builds the global index to ensure 

that each data partition has the same amount of data. LocationSpark provides a grid and a 

region quadtree as the global index. In addition, each data partition has a local index, which is 

specified by the user. Here, for spatio-textual data, the IR-tree index is used.  

Also, spatial data and queries are usually skewed. Some data partitions receive more 

queries than others. Thus, LocationSpark has a query scheduler to mitigate query skew. 

LocationSpark’s query executor is responsible for choosing proper spatial algorithms based on 

the available spatial indexes and the registered queries. Skew is handled by distributing the 

load over the slave nodes. Furthermore, in order to reduce the communication cost when 

reading data that spans multiple partitions, LocationSpark uses a simple but efficient bloom 

filter, termed as sFilter. sFilter can detect whether a spatial object is inside the spatial range 

or not. 
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Memory is a precious resource for distributed in-memory data management systems. To 

deal with this situation, access frequencies and corresponding time stamps are recorded in 

the spatial index. Then, LocationSpark detects the frequently accessed data by aggregating 

access frequencies. Finally, it dynamically caches frequently accessed data into memory, and 

stores the less frequently used data into HDFS. 

 

2.2.2. Streaming 

 

The problem of processing a large amount of continuous spatial-keyword queries over 

streaming data, is essential in many applications such as location-based recommendation and 

advertising, thanks to the proliferation of geo-equipped devices and the ensuing location-

based social media applications. While, there are several prior approaches aiming at providing 

efficient query processing techniques for the problem, their approaches belong to spatial-first 

indexing method which cannot well exploit the keyword distribution [30,28]. In addition, their 

textual filtering techniques are built upon simple variants of traditional inverted indexes, 

which do not perform well for the textual constraint imposed by the problem.  

In [27], they investigate the problem of continuous spatial-keyword queries over spatial-

textual stream, they address the above limitations and provide a highly efficient solution 

based on a adaptive index, named adaptive spatial-textual partition tree (AP-Tree). The AP-

Tree adaptively groups registered queries using keyword and spatial partitions, guided by a 

cost model. Consider N denotes an AP-Tree node and there are three types of nodes: keyword 

node (k-node), spatial node (s-node), and query node (q-node). An intermediate node is a 

keyword (resp. spatial) node if keyword partition (resp. spatial partition) is adopted. They use 

f to denote the fanout of the intermediate node. A leaf node of AP-Tree corresponds to a q-

node, and each query will be assigned to one or multiple query nodes according to its query 

region and ordered query keywords.  

Keyword Node: They assume there is a total order among keywords in the vocabulary V, 

and keywords in each object and query are sorted accordingly. They delay the discussion of 

the effect of keyword order strategy to the experimental part. Queries assigned to a node N 

are partitioned into f ordered cuts according to their Nl-th keywords, where Nl is called the 

partition offset of the node N. They have Nl ≤ Nl
* if N* is a descendant keyword node of N. An 

ordered cut is an interval of the ordered keywords, denoted as c[wi , wj], where wi and wj (wi 

≤ wj) are boundary keywords. For presentation simplicity, they use c[wi] to denote c[wi , wi] if 

there is only one keyword in the cut. 

Spatial Node: The space is recursively partitioned by spatial nodes. Let Nr denote the 

region of a spatial node N, which will be divided into f grid cells. A query (q) on a spatial node 

N is pushed to a grid cell c if q.r overlaps c or contains c. Note that, unlike the keyword node 

in which a query is assigned to an unique cut, a spatial node may assign a query to multiple 

cells. 

Cost model: Given a set Q of queries, AP-Tree is constructed in a top-down manner. Thus, 

they need to evaluate the goodness of a keyword or spatial partition such that the AP-Tree is 
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adaptive to query workload. In this subsection, we propose a cost model to quantitatively 

measure the matching cost for two partition methods. Given a node N and a set Q of queries 

assigned to N, without further partition the matching cost contributed by N is IQI assuming 

the average query verification cost is a unit time. Clearly, they can partition IQI queries into a 

set P of f buckets by keyword partition or spatial partition to reduce the matching cost. 

Throughout this paper, they might use bucket and cut, bucket and cell interchangeably for 

better understanding of the idea. 

Let B denote a bucket of the partition, they use w(B) to record its weight which is the 

number of queries associated to B. By p(B) they mean the hit probability of the bucket B, (i.e., 

the probability that B is explored during the object matching). The expected matching cost 

regarding partition p, denoted by C(P), is as follows.   

C(P) = ∑ 𝑤(𝐵𝑖) × 𝑝(𝐵𝑖)
𝑓
𝑖=1 .  

Given a partition P and a set of queries Q on the node, the calculation of w(B) is immediate 

for each bucket B. They may derive the hit probability p(B) based on some distribution 

assumptions or object workload. For analysis simplicity, they assume that p(B) = ∑ 𝑝(𝑤)𝑤 𝜖 𝐵  

for keyword node, where p(w) is the hit probability of the keyword w. In case a set O of the 

objects is available, it is trivial to derive hit probability of each individual keyword. Otherwise, 

they assume the query keyword with high frequency among Q has better chance to appear in 

object keywords; that is, they use query workload to simulate object workload. Specifically, 

they set p(w) = 
𝑓𝑟𝑒𝑞(𝑤)

∑ 𝑓𝑟𝑒𝑞(𝑤)𝑤 𝜖 𝑃
 , where freq(w) is the frequency of keyword w among all queries 

in Q. Regarding spatial partition, we may simply assume the uniform distribution of the object 

location, and hence p(B) = 
𝐴𝑟𝑒𝑎(𝐵)

𝐴𝑟𝑒𝑎(𝑁)
 , where Area(B) is the area of the bucket (i.e., cell) B and 

Area(N) is the region size of the node N. The hit probability calculation of each cell (bucket) is 

immediate when object workload is available. 

The AP-Tree also naturally indexes ordered keyword combinations. They present index 

construction algorithm that seamlessly and effectively integrates keyword and spatial 

partitions.  

Moreover, in [19], are described the Publish/subscribe systems, that enable efficient and 

effective information distribution by allowing users to register continuous queries with both 

spatial and textual constraints. However, the explosive growth of data scale and user base has 

posed challenges to the existing centralized publish/subscribe systems for spatio-textual data 

streams. Thus, they propose a distributed publish/subscribe system, called PS2Stream, which 

digests a massive spatio-textual data stream and directs the stream to target users with 

registered interests. It achieves a better workload distribution in terms of both minimizing the 

total amount of workload and balancing the load of workers. To achieve this, they propose a 

new workload distribution algorithm considering both space and text properties of the data. 

A spatio-textual object is defined as o = <text, loc>, where o.text is the textual content of 

object o and o.loc is the geographical coordinate, i.e., latitude and longitude, of object o. 

They aim at building a distributed publish/subscribe system over a stream of spatio-textual 

objects. Users may express their interests on the spatio-textual objects with subscription 
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queries. Each subscription query contains a Boolean keyword expression and a region. If a new 

spatio-textual object falls in the specified region and satisfies the Boolean keyword expression 

specified by a subscription query, the object will be pushed to the user who submits the query. 

A subscription query is valid until the user drops it. 

Spatio-Textual Subscription (STS) Query: A Spatio-Textual Subscription (STS) Query is 

defined as q = <K, R>, where q.K is a set of query keywords connected by AND or OR operators, 

and q.R denotes a rectangle region. A spatio-textual object o is a result of an STS query q if 

o.text satisfies the boolean expression of q.K and o.loc locates inside q.R. 

The large number of STS queries and high arrival rate of spatio-textual objects call for a 

distributed solution. They build their system on a cluster of servers with several servers 

playing the role of dispatchers, which distribute the workload to other servers. The workload 

to their system includes the insertions and deletions of STS queries, and the matching 

operations between STS queries and spatio-textual objects. 

 Query insertion: On receiving a new STS query, the worker inserts it into an in-memory 

index maintained in the worker. 

 Query deletion: On receiving the indication of deleting an existing STS query, the 

worker removes the query from the index. 

 Matching a spatio-textual object: On receiving a spatio-textual object, the worker 

checks whether the object can be a match for any STS query stored in the worker. If 

yes, the matching result is forwarded to the merger. 

In [7], a distributed in-memory spatio-textual stream processing system that extends 

Storm, named as Tornado, is presented. To efficiently process spatio-textual streams, Tornado 

introduces a spatio-textual indexing layer to the architecture of Storm [8]. The indexing layer 

is adaptive, i.e., dynamically re-distributes the processing across the system according to 

changes in the data distribution and/or query workload. In addition to keywords, higher-level 

textual concepts are identified and are semantically matched against spatio-textual queries. 

Tornado provides data de-duplication and fusion to eliminate redundant textual data. 

Stream processing in Storm is implemented using three main components; spouts, bolts, 

and topologies. A spout is a source of input data streams. A bolt is a data processing unit. A 

topology is a directed graph that connects spouts and bolts to form a stream processing 

pipeline. Apart from these three components, Tornado uses an adaptive indexing layer which 

ensures that queries are not replicated and that the data is sent only to the relevant bolts. 

Indexing in Tornado is distributed and is composed of a global spatial index, and local 

spatio-textual indexes. All incoming data and queries navigate through the global index to be 

assigned to a query processing unit (i.e., a bolt). To avoid performance bottlenecks, the global 

index is replicated across several bolts. A local spatio-textual index is composed of multiple 

in-memory k-d trees. Each non-leaf node in the k-d tree is augmented with an inverted list 

that summarizes the textual contents of its child nodes. The inverted lists help speed-up the 

processing of the spatio-textual queries. 

Tornado is adaptive to changes in both the data and query workload. It uses Apache 

ZooKeeper [9], an open-source distributed configuration and synchronization service, to 
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synchronize the changes in the global index bolt. Zookeeper stores usage statistics (i.e., the 

number of data objects and queries processed) from the data processing bolts. The index bolts 

access these usage statistics from the zookeeper to detect when a change in the index is 

needed. 
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3. Spatio-textual Similarity Join Query 
 

In this section, we study the Spatio-textual Similarity Join Query which this thesis 

implements. We have referred the existing related work for this type of query and the systems 

that it has implemented. Moreover, we study the proposed techniques of partitioning in the 

sub-section 3.3. 

 

3.1. Similarity Join on Centralized system 

 

The set-similarity join has attracted significant interest. Spatio-Textual Similarity Join 

Queries (ST-SJOIN) find application in a wide range of domains, where spatial and textual 

information is available for a set of entities. The definition statement of a ST-SJOIN query is 

described below. 

Given two collections of objects R and S that carry both spatial and textual information, 

the ST-SJOIN retrieves the subset J of R × S, such that for every (r, s) ∈ J, r is spatially close to 

s, based on a distance threshold (i.e., distl(r, s) ≤ 𝜖, where distl denotes distance between 

locations), and the set similarity between r and s also exceeds a threshold θ (i.e., simt(r, s) ≥ θ, 

where simt denotes textual similarity).  

In [29], they propose an evaluation of such ST-SJOIN queries, where their techniques are 

orders of magnitude faster than baseline solutions. They define a spatio-textual object x as a 

triplet (x.id, x.loc, x.text), modeling the identity, the location, and the textual description of x, 

respectively. The entry x.loc takes values from the two-dimensional geographical space, while 

x.text is a set of terms drawn from a finite global dictionary T = {t1, t2, ... , tn}. Each term t in 

x.text could carry a weight (default weights are 1 for unweighted sets), modeling the relevance 

of t to object x. 

For every pair of spatio-textual objects x and y, they compute their spatial distance, 

distl(x,y), with respect to x.loc and y.loc, as the Euclidean distance and their textual similarity, 

simt(x,y), the set similarity between sets x.text and y.text, as the Jaccard similarity, simt(x,y) = 
|𝑥.𝑡𝑒𝑥𝑡 ⋂ 𝑦.𝑡𝑒𝑥𝑡|

|𝑥.𝑡𝑒𝑥𝑡 ⋃ 𝑦.𝑡𝑒𝑥𝑡|
. Formally, given a collection of spatio-textual objects R, a spatial distance 

threshold e and a textual similarity threshold θ, ST-SJOIN(R, e, θ) retrieves all pairs (x, y) with 

x, y ∈ R, such that distl(x, y) ≤ e and simt(x, y) ≥ θ. 

They use a dynamic grid partitioning, by extending the algorithm PPJoin to PPJoin-I. 

 

Table 6: Overview of Similarity Queries. 

Query Spatial 

Distance 

Textual 

Similarity 

Partitioning 

ST-SJOIN Euclidean Jaccard Grid 
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3.2. Similarity Join on Parallel/Distributed system 

 

In 3.1, the Spatio-Textual Similarity Join (STSJ) query has referred, and in [32], is proposed 

an efficient processing of this query using MapReduce. Given two collections of spatio-textual 

objects with a spatial location and textual descriptions, STSJ is to finds out all similar object 

pairs that have similar textual descriptions and are spatially close to each other. In [32], 

Jaccard coefficient and Euclidean distance are used as the measures to qualify the textual 

similarity and spatial similarity respectively, and their approaches can be easily extended to 

support other similarity measures. They are proposed several approaches for spatio-textual 

similarity join using MapReduce. The problem statement that has to solve the proposed 

methods is the following. 

Given a collection of spatio-textual objects R = {r1, r2, ···, rn}, where each object r ∈ R 

includes a textual description r.text, which contains one or multiple tokens, and a spatial 

location r.loc that is represented by two-dimensional geographical coordinates a textual 

similarity threshold θ and a spatial distance threshold e, the STSJ(R, θ, e) aims to find all the 

similar pairs (ri, rj) where simt(ri, rj) ≥ θ and distl(ri, rj)≤ e, 

STSJ(R, θ, e) = {(ri, rj)|ri, rj ∈ R, 1 ≤ i, j ≤ n, i ≠ j, simt(ri, rj) ≥ θ, distl(ri, rj) ≤ e}, where, 

simt(ri, rj) is the Jaccard similarity between two objects, and distl(ri, rj) is the Euclidean distance 

of two objects. 

Firstly, the tokens must be computed using MapReduce, which consists of two phases. In 

the first phase, the original records are read by the map function, and it extracts the textual 

part, tokenizes it into tokens and produces the output pairs for each token in the form of 

(token, 1). Then, the second phase, the reduce function, receives as input the tokens with a 

list of values, sums the values as count in the list for each token and outputs the results as 

(token, count), sorted them in the ascending order of the frequencies in the shuffle. In the 

following, the proposed methods are described. 

 Baseline Spatio-Textual Similarity Join (STSJ-B) 

 Spatio-Textual Similarity Join with Cprefix (STSJ-C) 

 Spatio-Textual Similarity Join with KD-Tree (STSJ-K) 

In the referred paper, the proposed methods are evaluated and the pros and cons are 

analyzed. 

 

3.3. Partitioning Strategies for Spatio-Textual Similarity Join 

 

In [18], partitioning strategies over spatio-textual objects for tackling STJoin, are explored. 

They propose two approaches and they evaluate each against the other. One approach is to 

start with a spatial data structure, traverse regions and apply the algorithm for identifying 

similar pairs of textual documents, called All-Pairs. The second approach is to construct a 
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global index, but partition postings spatially and modify the All-Pairs algorithm to prune 

candidates based on distance. 

As it is mentioned before, in the spatio-textual similarity join (STJoin), we are given a 

collection of objects with both texts and geo coordinates and wish to efficiently identify all 

pairs of similar objects that are physically close. The two approaches are called Local Index 

Approach and Global Index Approach. In both strategies, we could construct either a quadtree 

or a grid, as the spatial data structure. 

In the Local Index Approach, firstly, they build a PR-quadtree over the dataset. They use 

the spatial range of (-180, -90, 180, 90). Given a distance threshold t, they recursively 

decompose each node into four child nodes until the node contains less than b objects (by 

default, one) or the size of the node is about to less than the threshold t. Each node maintains 

a list of object ids. With this partitioning approach, when searching for similar objects for a 

target object x, only objects in the same or neighbor nodes of the target object need to be 

checked. 

In the Global Index Approach, they build a global inverted index, and then partition each 

postings list spatially. Objects are sorted by its z-order in each postings list. Thus, when they 

are applying the All-Pairs algorithm, instead of iterating over the entire postings list, they only 

need to consider the objects within certain range of z-orders. An efficient optimization, is that 

we can avoid checking the pair (y, x) if we’ve already checked (x, y). 
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4. Technologies 
 

Due to the large volume of spatio-textual data, we need a big data technology to manage 

these data in parallel. In this thesis, we have used Apache Spark, a distributed / parallel 

system. 

 

4.1. Apache Spark 

 

Spark was initially started by Matei Zaharia at UC Berkeley's AMPLab in 2009, and open 

sourced in 2010 under a BSD license. Apache Spark has as its architectural foundation the 

resilient distributed dataset (RDD), a read-only multiset of data items distributed over a 

cluster of machines, that is maintained in a fault-tolerant way. In Spark 1.x, the RDD was the 

primary application programming interface (API), but as of Spark 2.x use of the Dataset API is 

encouraged even though the RDD API is not deprecated. The RDD technology still underlies 

the Dataset API.  

Spark and its RDDs were developed in 2012 in response to limitations in the MapReduce 

cluster computing paradigm, which forces a particular linear dataflow structure on distributed 

programs: MapReduce programs read input data from disk, map a function across the 

data, reduce the results of the map, and store reduction results on disk. Spark's RDDs function 

as a working set for distributed programs that offers a (deliberately) restricted form of 

distributed shared memory. 

Spark facilitates the implementation of both iterative algorithms, that visit their data set 

multiple times in a loop, and interactive/exploratory data analysis, i.e., the 

repeated database-style querying of data. The latency of such applications may be reduced by 

several orders of magnitude compared to a MapReduce implementation (as was common 

in Apache Hadoop stacks). Among the class of iterative algorithms are the training algorithms 

for machine learning systems, which formed the initial impetus for developing Apache Spark. 

Apache Spark requires a cluster manager and a distributed storage system. For cluster 

management, Spark supports standalone (native Spark cluster), Hadoop YARN, or Apache 

Mesos. For distributed storage, Spark can interface with a wide variety, including Hadoop 

Distributed File System (HDFS), MapR File System (MapR-FS), Cassandra, OpenStack 

Swift, Amazon S3, Kudu, or a custom solution can be implemented. Spark also supports a 

pseudo-distributed local mode, usually used only for development or testing purposes, where 

distributed storage is not required and the local file system can be used instead; in such a 

scenario, Spark is run on a single machine with one executor per CPU core. 

Apache Spark consists of five main parts, Spark Core, Spark SQL, Spark Streaming, Machine 

Learning Library MLlib, and GraphX. 
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4.1.1. Spark core 

 

Spark Core is the foundation of the overall project. It provides distributed task 

dispatching, scheduling, and basic I/O functionalities, exposed through an application 

programming interface (for Java, Python, Scala, and R) centered on the RDD abstraction (the 

Java API is available for other JVM languages, but is also usable for some other non-JVM 

languages, such as Julia, that can connect to the JVM). This interface mirrors 

a functional/higher-order model of programming: a "driver" program invokes parallel 

operations such as map, filter or reduce on an RDD by passing a function to Spark, which then 

schedules the function's execution in parallel on the cluster. These operations, and additional 

ones such as joins, take RDDs as input and produce new RDDs. RDDs are immutable and their 

operations are lazy; fault-tolerance is achieved by keeping track of the "lineage" of each RDD 

(the sequence of operations that produced it) so that it can be reconstructed in the case of 

data loss. RDDs can contain any type of Python, Java, or Scala objects. 

Besides the RDD-oriented functional style of programming, Spark provides two restricted 

forms of shared variables: broadcast variables reference read-only data that needs to be 

available on all nodes, while accumulators can be used to program reductions in 

an imperative style.  

 

4.1.2. Spark SQL 

 

Spark SQL is a component on top of Spark Core that introduced a data abstraction called 

DataFrames, which provides support for structured and semi-structured data. Spark SQL 

provides a domain-specific language (DSL) to manipulate DataFrames in Scala, Java, 

or Python. It also provides SQL language support, with command-line interfaces 

and ODBC/JDBC server. Although DataFrames lack the compile-time type-checking afforded 

by RDDs, as of Spark 2.0, the strongly typed DataSet is fully supported by Spark SQL as well. 

Figure 2: Architecture of Apache Spark. 
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4.1.3. Spark Streaming 

 

Spark Streaming uses Spark Core's fast scheduling capability to perform streaming 

analytics. It ingests data in mini-batches and performs RDD transformations on those mini-

batches of data. This design enables the same set of application code written for batch 

analytics to be used in streaming analytics, thus facilitating easy implementation of lambda 

architecture. However, this convenience comes with the penalty of latency equal to the mini-

batch duration. Other streaming data engines that process event by event rather than in mini-

batches include Storm and the streaming component of Flink. Spark Streaming has support 

built-in to consume from Kafka, Flume, Twitter, ZeroMQ, Kinesis, and TCP/IP sockets.  

In Spark 2.x, a separate technology based on Datasets, called Structured Streaming, that 

has a higher-level interface is also provided to support streaming. 

 

4.1.4. MLlib Machine Learning Library 

 

Spark MLlib is a distributed machine-learning framework on top of Spark Core that, due 

in large part to the distributed memory-based Spark architecture, is as much as nine times as 

fast as the disk-based implementation used by Apache Mahout (according to benchmarks 

done by the MLlib developers against the alternating least squares (ALS) implementations, 

and before Mahout itself gained a Spark interface), and scales better than Vowpal 

Wabbit. Many common machine learning and statistical algorithms have been implemented 

and are shipped with MLlib which simplifies large scale machine learning pipelines, including: 

 summary statistics, correlations, stratified sampling, hypothesis testing, random data 

generation. 

 classification and regression: support vector machines, logistic regression, linear 

regression, decision trees, naive Bayes classification. 

 collaborative filtering techniques including alternating least squares (ALS). 

 cluster analysis methods including k-means, and latent Dirichlet allocation (LDA). 

 dimensionality reduction techniques such as singular value decomposition (SVD),  

and  principal component analysis (PCA). 

 feature extraction and transformation functions. 

 optimization algorithms such as stochastic gradient descent, limited-memory BFGS(L-

BFGS). 
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4.1.5. GraphX 

 

GraphX is a distributed graph-processing framework on top of Apache Spark. Because it 

is based on RDDs, which are immutable, graphs are immutable and thus GraphX is unsuitable 

for graphs that need to be updated, let alone in a transactional manner like a graph 

database. GraphX provides two separate APIs for implementation of massively parallel 

algorithms (such as PageRank): a Pregel abstraction, and a more general MapReduce style 

API. Unlike its predecessor Bagel, which was formally deprecated in Spark 1.6, GraphX has full 

support for property graphs (graphs where properties can be attached to edges and vertices).  

GraphX can be viewed as being the Spark in-memory version of Apache Giraph, which 

utilized Hadoop disk-based MapReduce.  

Like Apache Spark, GraphX initially started as a research project at UC Berkeley's AMPLab 

and Databricks, and was later donated to the Apache Software Foundation and the Spark 

project. 

 

 

  

https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
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https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/PageRank
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https://en.wikipedia.org/wiki/Apache_Giraph
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5. Problem Statement 
 

This thesis deals with finding similar spatio-textual objects from two sets of spatio-textual 

data, based on given radius and similarity thresholds.  The type of query is the Spatio-Textual 

Similarity Join (STSJ) which is analyzed in Section 3 for centralized systems and for the 

parallel/distributed systems with batch processing. This type of query has been studied in 

previous research and the problem statement is referred below. 

Given a collection of spatio-textual objects R = {r1, r2, ···, rn}, where each object r ∈ R 

includes a textual description r.text, and a spatial location r.loc that is represented by two-

dimensional geographical coordinates a textual similarity threshold θ and a spatial distance 

threshold e, the STSJ(R, θ, e) aims to find all the similar pairs (ri, rj) where simt(ri, rj) ≥ θ and 

distl(ri, rj)≤ e 

STSJ(R, θ, e) = {(ri, rj)|ri, rj ∈ R, 1 ≤ i, j ≤ n, i ≠ j, simt(ri, rj) ≥ θ, distl(ri, rj) ≤ e} 

where simt(ri, rj) is the Jaccard similarity between two objects, and distl(ri, rj) is the Euclidean 

distance of two objects. 

Spatio-textual objects are described from their location and a text, as it is shown in Figure 

3. These objects achieve a similarity join depending on the distance and textual thresholds. 

For example, let distance threshold be 0,3 and textual threshold be 0,65. In the next figure, 

the only points which achieve a similarity join are x1 and x2, because: 

dist(x1, x2) <= 0,3 and 

sim(x1, x2) = 2/3 = 0,66 >= 0,65. 

All other occasions do not achieve a similarity join, because as we can notice, the textual 

similarity is lower than 0,65. 

 

 

Figure 3: Spatio-textual objects. 
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These two functions that we have used for the similarity join, could vary depending on the 

user desires. There are a lot of these measure functions, which some of them are described in 

chapter 2.   

 

5.1. Euclidean distance 

 

The Euclidean distance between points p and q is the length of the line segment 

connecting them. In Cartesian coordinates, if p = (x1, y1) and q = (x2, y2) are two points in 

Euclidean 2-space, then the distance d(p, q) from p to q, or from q to p, is given by the formula: 

d(p, q) = d(q, p) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

For instance, let p = (2, -1) and q = (-4, 7). The Euclidean distance of these two points is: 

d(p, q) = √(2 − (−4))2 +  (−1 −  7)2 = √36 + 64 = 10 

 

5.2. Jaccard similarity 

 

The Jaccard similarity of the text of two sets A and B, which have a whole set of words, is 

the size of intersection divided by size of union of two sets. The formula that computes the 

Jaccard similarity is the following: 

J (A, B) = 
|𝐴 ⋂ 𝐵|

|𝐴 ⋃ 𝐵|
 = 

|𝐴 ⋂ 𝐵|

|𝐴|+|𝐵|−|𝐴 ⋂ 𝐵|
 ,  

where, 

|A ⋂ B| is the number of the intersecting words of A and B, 

|A| is the number of words of A,  

|B| is the number of words of B.  

 

For example, given two sentences: 

A: AI is our friend and it has been friendly. 

B: AI and humans have always been friendly. 

In order to calculate similarity using Jaccard similarity, we will first 

perform lemmatization to reduce words to the same root word. In our case, “friend” and 

“friendly” will both become “friend”, “has” and “have” will both become “has”. Drawing a 

Venn diagram of the two sentences we get: 
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For the above two sentences, depicted in Figure 3, we get Jaccard similarity 
5

5+3+2
 = 

0.5, which is size of intersection of the set divided by total size of set.  

 

 

  

Figure 4: Venn diagram of Jaccard similarity. 
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6. Analysis of implementation 
 

In this thesis, partitioning strategies for spatio-textual objects are studied in order to 

achieve the best load balancing. The two partitioning strategies which have been 

implemented are based on the spatial part of the object. The first implementation is the 

partitioning of data based on an Horizontal separation, whereas the second implementation 

is the partitioning of data based on a Regular Grid. 

In each partition, two algorithms which compute the STSJ query have been developed in 

order to find similar objects. The first algorithm is a “Brute Force” algorithm, which checks 

Euclidean distance and Jaccard similarity for each point of dataset “A” against all points of 

dataset “B”. The second algorithm is based on Plane Sweep, which checks for each point only 

those that are nearest based on a given radius.  

It is important to be cleared that if we desire to compute the Spatio-textual similarity join 

query with parallel processing, one technique of partitioning and one algorithm for the query 

processing is necessary.  

 

6.1. Techniques of partitioning 
 

Two techniques of partitioning have been developed, in order to find which of these 

achieve the best load balancing to the workers. These techniques are presented below, called 

as Horizontal Separation and Regular Gird.  

 

6.1.1. Partitioning data based on Horizontal Separation 
 

During the first implementation, an horizontal separation of spatial data based on latitude 

is defined. First of all, for the Spatio-Textual Similarity Join Query, we have two datasets, A 

and B. Every dataset is read as a Spark Dataframe. For each dataset, a new column filling with 

“A” or “B” is created that represents if the dataset is the A or the B. Then, the two Dataframes 

are united and sorted by the latitude column.  

Afterwards, we perform lemmatization in the column that corresponds to the text. 

Lemmatization is a process in which words are cut and only the main body of each word 

retains. For example, if we have the words “Human”, “humanity”, and “humanities”, the main 

body of each word is the “human”, and it remains. As can be seen, the capital letters become 

small. Moreover, there are a lot of stop-words in each sentence, which must be excluded from 

the textual similarity, because they do not give any information. These kinds of words are 

usually articles, pronouns and conjunctions. We used a list of 179 English stop-words.  

Then, a column that shows the number of the row must be created, in order to make the 

partitions. As it is referred, the table is sorted by latitude and is cut based on the number of 

partitions, which the user gives. We first compute the size of the Dataframe and we divide it 
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with the number of partitions and save this number as “x”. Therefore, the corresponding field 

of a record depends on the integral part of the division “x” with the number of the row. For 

example, let the size of the Dataframe be 3.000 records and the defined number of partitions 

is 10, and so “x” = 3.000/10 = 300. Then, the partition in which each point corresponds is 

computed by the integer part of the division row_number/300. Thus, the first 300 points will 

be matched to the partition “0”, the next 300 points will be matched to the partition “1”, and 

so on. 

Figure 5, captures the finally table that is created after above processing. The explanation 

of the datasets which have used, are presented in Section 7. The first column is the id of the 

record, latitude and longitude are the geographical coordinates, DatasetID shows if the record 

belongs to dataset A or B, Lemma is column that shows the keywords after lemmatization, 

IncreasingID captures the row number of the record and grid shows the partition which this 

record belongs.  

 

 

Next step is the duplication of the points of the dataset B, based on the radius of search 

that the user gives. There are some points that may be close enough, but they are on different 

partitions. In the next figure (Figure 6), every point pi is described with its coordinates (xi, yi) 

and “A” or “B”, depending on the dataset that it belongs. There are three partitions, “0”, “1” 

and “2”. As you can see, the point p1 belongs in the partition “1”, as the p2. Given a radius (r), 

a circle with center the point p1, which pertains to dataset B, is formed. As it appears in the 

next figure, the points p2, p3 and p4 of dataset A belong in this circle. This means, that these 

three points have Euclidean distance from point p1 lower than r. However, p2 and p4, belong 

in different partitions, so p1 must be duplicated to partitions “0” and “2”, so as it can be 

processed with other points of dataset A. 

 

Figure 5: Structure of the creating table. 
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Thus, based on the initial creation of partitions, we have to duplicate these points to the 

corresponding partitions which are nearest because of the radius, in order to have these 

points in the same partition, regardless of the fact that they are not. Firstly, we have to 

compute the upper value of the latitude in each partition. Then, given the number of the cell 

(i.e. partition) that corresponds each point of the dataset B, we check for each point of the 

dataset B, all the previous cells in sequence if the distance (latitude – radius) is lower than the 

upper value of the latitude of the previous cell. If it is true, the number of the cell (i.e. partition) 

is appending in the list of cells that is nearest to the point. If it is false, we break the repetitive 

search. Subsequently, we check all the next cells in sequence if the distance (latitude + radius) 

of the point is greater than the upper value of the latitude of the next cell. If it is true, the 

number of the cell (i.e. partition) is appending in the list of cells that is nearest to the point. If 

it is false, we break the repetitive search.  

In the next figure (Figure 7), there are 10 partitions and diverse points of dataset A or B. 

We can observe the partition that each point belongs. As a result of the above processing, p1 

which belongs to dataset B and to partition “0”, will be duplicated in “1”, because of the 

defined radius. Such kind of duplication will be done for points p4, p6. However, p8 will not be 

duplicated to partition “8”, though the radius shows that it had to, because it belongs to 

dataset A and it has been referred that only the points of dataset B will be copied. 

 

Figure 6: Duplication of points in Horizontal separation. 
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Last step of the duplication of the points in the cells, is to duplicate the entire row with 

each value of the partition list which has created. For instance, if a point due to the above 

processing has the list [0, 1, 2] in the column that shows the corresponding partition, we 

duplicate the entire row of the point 3 times. One for the partition “0”, one for the partition 

“1” and one for the partition “2”. 

With the above processing, we have created the number of partitions that corresponds 

each value. Therefore, we can send each point to the partition, after first finding the distinct 

values of the partitions. 

Algorithm 1 describes the way that Horizontal Separation make the partitioning to the 

workers.   

 

Figure 7: Duplication of points of Dataset B in the whole space, that is created with Horizontal separation. 
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6.1.2. Partitioning data based on Regular Grid 
 

In the second implementation, data are partitioned by a regular grid, which is created 

based on the coordinates of the first dataset. A Regular Grid is consisted of equal 

parallelograms, which are the result of splitting the longitude axis to equal parts, and the 

latitude axis to equal parts. In the case that the parts of longitude and latitude are equal, then 

the parallelograms become squares.  

First of all, we define which dataset will be the “A” and which the “B”. Then, in the dataset 

“A”, we compute the minimum and the maximum values of the longitude and latitude. The 

minimum point of the Regular grid, will be the (min longitude, min latitude). The maximum 

point of the Regular grid, would be the (max longitude, max latitude).  

Furthermore, we compute the equal parts that the longitude and the latitude axis have 

been divided. Initially, we define the number of parts in which the two axis will be splitted. If 

the splits of the longitude are 10, and so for latitude, the dimension of the Regular grid will be 

10x10. As a result of this creation of grid, the Regular grid will contain 100 cells. The length of 

the parts (i.e. the step) in longitude and latitude is computed by the following two formulas: 

  1: Input p(d1, d2, r, splits) 

  2: Function Horizontal_Separation: 

  3: union d1, d2 as d 

  4: sort d   // by latitude      

  5: for x 𝜖 d do 

  6:     l <- lemma(d(text))   //perform lemmatization on text 

  7: end for 

  8: size <- size(d) / splits 

  9: for x 𝜖 d do  

10:      cellid <- int(row_number(x) / size)     

11: end for 

12: // duplicate points of dataset B to the nearest cells 

13: bounds <- bounds(cells) 

14: for x 𝜖 d do 

15:      if x 𝜖 d(B) then 

16:       if x(lat) + r > bounds or x(lat) – r < bounds then 

17:   duplicate point to these cells 

18:  end if 

19:     end if 

20: end for 

21: end Function 

  

 

 

 

Algorithm 1: Pseudocode of Horizontal Separation. 
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 stepLon = (maxLon - minLon) / splits 

 stepLat = (maxLat - minLat) / splits 

where, 

maxLon and maxLat are the maximum values of latitude, 

minLon and minLat are the minimum values of longitude, and 

splits are the number of parts, in which axis is separated. 

Moreover, we use another formula in order to compute in which cell of the Regular grid, 

the point matches. Each cell will be named with a unique id number, from 0 to dimension of 

Regular Grid minus 1. Thus, if we have a 5x5 Regular grid, the ids of the cell will range from 0 

to 24. The formula which computes the above processing is the following: 

cellID = int((x - minLon) / stepLon) * splits + int((y - minLat) / stepLat) 

where, 

minLon, stepLon, splits, minLat and stepLat, have referred above, and 

x, y are the coordinates of the checked point. 

The above formula has a peculiarity, which corresponds to the maximum point of the 

regular grid to another cell outside the grid. In order to avoid this, we marginally increase the 

maximum values of longitude and latitude of the Regular grid. Thus, the maximum point of 

the grid has become (max longitude + 0.0000001, max latitude + 0.0000001). 

In the following, we have to duplicate points of dataset B to the corresponding cells based 

on the radius, such as in the first implementation. Each partition in the cluster will be a unique 

cell of the grid. The computation in each cell of the nearest and similar points is independent 

on the others. Thus, there may be points that are close enough and have high Jaccard 

similarity, but they belong to different cells. To avoid this problem, we have to duplicate points 

of dataset B to the cells that are nearest because of the radius. 

Next figure (Figure 8), captures the reason why some points must be duplicated. For 

example, p1 belongs to cell with number 8. Given a radius by a user, a circle is created which 

captures the point that is near enough. Thus, p1 seems to be near to some points of the cells 

7, 9, 12, 13, 14, and the point is copied to these cells. For the same reason, p2 must be copied 

to cells 10, 11, 15, 17, 20, 21.   
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Algorithm 2 describes the way that Regular Grid technique achieves the partitioning of 
data. 

Figure 8: Duplication of points in Regular Grid. 



 49 

 

 

6.2. Query processing 
 

The query processing has been developed with two different algorithms, in order to find 
which of these achieve the best performance. These algorithms are performed below, called 
as Brute Force and Plane Sweep. 

 

 

 

 

 

  1: Input p(d1, d2, r, splits) 

  2: Function Regular_Grid: 

  3: // find the minimum and maximum values of longitude and latitude in dataset A  

  4: maxLat <- max(d1(lat)) + 0.000001 

  5: maxLon <- max(d1(lon)) + 0.000001      

  6: minLat <- min(d1(lat)) 

  7: minLon <- min(d1(lon)) 

  8: // compute the step in each axis 

  9: stepLon <- (maxLon - minLon) / splits    

10: stepLat <- (maxLat - minLat) / splits 

11: for x 𝜖 d1 do 

12:      cellid <- int((x(lon) - minLon) / stepLon) * splits + int((x(lat) - minLat) / stepLat) 

13: end for 

14: for x 𝜖 d2 do 

15:      cellid <- int((x(lon) - minLon) / stepLon) * splits + int((x(lat) - minLat) / stepLat) 

16:      // duplicate points of dataset B to the nearest cells 

17:     if x near enough to other cells based on r then 

18:  duplicate point to these cells 

19:     end if 

20: end for 

21: union d1, d2 as d 

22: for x 𝜖 d do 

23:     l <- lemma(d(text))   //perform lemmatization on text 

24: end for 

25: end Function 

  

 

 

 

Algorithm 2: Pseudocode of Regular Grid. 
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6.2.1. Brute Force Algorithm 
 

The Brute Force algorithm computes the Euclidean distance and Jaccard similarity in each 

partition, for each point of dataset B, against all points of dataset A.  

First of all, the records of each partition are stored in a table. Then, each point of dataset 

“B” is checked in sequence against all points of dataset “A”. Each time, the Euclidean distance 

and the Jaccard similarity is computed in the same step. Thus, if a point of dataset “B” is near 

and similar enough with a point of dataset “A”, we have a join. 

In the next figure (Figure 9), let the parallelogram be a partition which has diverse points 
of datasets A and B. Due to the above explanation, each point of dataset A is checked with all 
points of dataset B. This exhaustive search is terminated when all points of dataset A are 
checked against all of dataset B.     

 

  

 

 

 

 

 

 

The complexity of this algorithm is O(M*N), where M is the number of points of dataset A 

and N is the number of points of dataset B.    

Algorithm 3 shows how Brute Force computes the similarity join query.  

 

  

 

 

 

 

 

 

 

 

Figure 9: Query processing with Brute Force. 

 1: Input q(pos, text, d, r, e) 

 2: Function Brute_Force: 

 3: for x 𝜖 d(A) do 

 4:     for y 𝜖 d(B) do 

 5:  if dist(x,y) <= r and sim(x,y) >= e then 

 6:   Achieve a join 

 7:  end if 

 8:     end for 

 9: end for 

10: end Function 

  

 

 

 

Algorithm 3: Pseudocode of Brute Force. 
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6.2.2. Plane Sweep Algorithm 
 

Plane Sweep algorithm sort all values by longitude and compute the distance until the 

longitude of a point is greater than the longitude of the checked point plus the radius. Then, 

for these points, the Jaccard similarity is computed. 

Firstly, the records in each partition are stored in a table. The table is sorted by the 

longitude coordinate of the points. Then, we check each point against its next, till the 

longitude of a point is greater than the longitude of the checked point adding the given radius. 

Initially, for these points, the Euclidean distance is computed and if the points are close 

enough, the Jaccard similarity is computed. If the Jaccard similarity is equal or greater than a 

given number, we have a join. 

The advantage of this algorithm is that we do not compute Euclidean distance and Jaccard 

similarity for each point against all, but we stop the searching when the longitude of a point 

is greater than the longitude of the checked point adding the defined radius. Moreover, an 

efficient optimization, is that we can avoid checking the pair (y, x) if we’ve already checked (x, 

y). Thus, we reduce the complexity of the algorithm. 

In the next figure (Figure 10), we will explain with an example the way that Plane Sweep 

compute the similarity join query. All points are sorted by the longitude coordinate of the 

points. Given a radius (r), a circle which has in the center the first point is formed. As you can 

observe, in the created circle, there are two points of dataset B which belongs to. Thus, the 

Plane Sweep algorithm will only check these two points, and will terminate the searching for 

the first point. This process is repeated for all the points.          

        

 

 

 

 

 

 

 

 

The complexity of Plane Sweep will vary depending on the defined radius. The initially sort 

of the table has a complexity of O(nlog(n)), where n is the total number of points in the 

partition. Because of the early termination, we expect a lower complexity than the complexity 

of Brute Force.        

 

 

Figure 10: Query processing with Plane Sweep. 
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Algorithm 4 captures how Plane Sweep algorithm computes the similarity join query. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 1: Input q(pos, text, d, r, e) 

 2: Function Plane_Sweep: 

 3: sort d    //by longitude 

 4: for x 𝜖 d do 

 5:     for y 𝜖 d+1 do   // y takes values from next points of x 

 6:  If y(lon) < x(lon) + r then 

 7:   if dist(x,y) <= r then  

 8:     if sim(x,y) >= e then 

 9:     Achieve a join 

10:    end if 

11:   end if 

12:  else 

13:   break 

14:  end if 

15:     end for 

16: end for 

17: end Function 

  

 

 

 

Algorithm 4: Pseudocode of Plane Sweep. 
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7. Experimental setup  
 

In this section, we present the platform in which we run our experiments and the 
hardware specs. Also, we will describe the metrics which have used in order to evaluate the 
performance of the algorithms. Furthermore, we will present the datasets that have used for 
the experiments in section 8.  

All algorithms are implemented in Python and more specific we have used the PySpark 
library for the parallel processing. 

 

7.1. Platform 
 

We deployed our algorithms in a Spark cluster consisting of 5 nodes. Each of the nodes 
has 8 GB of RAM, 1 disk with 60 GB for HDFS and 4 CPUs. All nodes run Ubuntu 16.04. 

 

7.2. Evaluation metrics 
 

There are diverse metrics that could be evaluated, such as the load balancing in each 

partition, to avoid some workers having a high load of computation. Moreover, we measure 

the time that each algorithm needs to be terminated and compute the similarity join. Also, we 

measure the number of times that the functions Euclidean distance, Jaccard similarity are 

used.  

In the following, the metrics are listed following by the reason of choosing them. 

 Time: we used this metric in order to find which algorithm achieves the fastest 

computation. 

 Load balancing: it is used so as to evaluate the techniques of partitioning. 

 Standard deviation: this metric will also show which technique of partitioning is the 

best. 

 Counts of Euclidean distance function: this metric presents the number of times that 

this function is used. 

 Counts of Jaccard similarity function: this metric presents the number of times that 

this function is used. 

 Counts of similarity joins: it measures the number of points that are similar.  

 

7.3. Datasets 
 

We have evaluated our implementations in diverse datasets, in order to measure the 
metrics which have referred above. We have used datasets form the real-world life, so as to 
observe the performance in a real-life problem. Moreover, we have created a synthetic 
dataset which follows a uniform distribution, in order to achieve our algorithms in these 
datasets.  
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7.3.1. Real datasets 
 

We evaluate the implementation in a real-life problem, in which the real-life points do not 
typically follow uniform distribution. The datasets have been downloaded from TripAdvisor.  

The first dataset contains the ratings of users in diverse locations and the structure that 
this file has is presented below: 

 Rating: from 0 to 5 stars. 

 Review: description of location. 

 Title: name of location. 

 Rtitle: summary of rating in a few words. 

 Address: address of location. 

 Latitude: geographical latitude of location. 

 Longitude: geographical longitude of location. 

The second dataset contains the ratings of users for diverse restaurants and the structure 
of this dataset is seemed below: 

 Rating: from 0 to 5 stars. 

 Review: description of restaurant. 

 Title: name of restaurant. 

 Rtitle: summary of rating in a few words. 

 Address: address of restaurant. 

 Latitude: geographical latitude of restaurant. 

 Longitude: geographical longitude of restaurant. 

 

Table 7: Summary table of real datasets. 

Parameter Dataset A Dataset B 

Size 20 MB 11 MB 

Records 50.000 30.000 

Distribution Random Random 

 

 

7.3.2. Synthetic datasets 
 

Also, we have evaluated our implementation in datasets that follow a uniform distribution 

and have high textual similarity. Datasets have been created with a spatio-textual data 

generator, given the parameters that show below (Table 8). 
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Table 1: Given parameters in the data generator. 

Parameter Description Value A Value B 

Entries How many entries are generated 200.000 100.000 

Precision Precision of the decimal part 4 4 

Max dimension Maximum dimension of points 100 100 

Min textual 

objects 

Minimum number of keywords 

that contains a point 

4 3 

Max textual 

objects 

Maximum number of keywords 

that contains a point 

7 6 

 

 

The structure of these datasets is the same and it is presented below: 

 Id: id of the record. 

 Latitude: the latitude coordinate of the point. 

 Longitude: the longitude coordinate of the point. 

 Text: keywords which describe the record. 
 

 

Table 8: Summary table of synthetic datasets. 

Parameter Dataset A Dataset B 

Size 10 MB 5 MB 

Records 200.000 100.000 

Distribution Uniform Uniform 
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8. Experimental study 
 

In this chapter, we evaluate the performance of the two technics of partitioning and the 

two algorithms which compute the similarity join query.  

It is divided in two experiments, where in the first we use real datasets for the evaluation, 

in order to notice the performance in a real-life problem.  

Afterwards, the best technique of partitioning and the best algorithm of similarity join are 

chosen, and they are evaluated on synthetic data, which follow a uniform distribution. 

 

8.1. First experiment 

 

In the first experiment, two real datasets that have been downloaded from TripAdvisor 

are used. We evaluate the implementation in a real-life problem, in which the real-life points 

do not typically follow uniform distribution.  

In the next table (Table 9), the parameters that have been used for the first experiment 

are described. 

 

Table 9: Parameters of the first experiment. 

Parameter Description Value 

r Radius of search 1° 

e Threshold of textual similarity 0.7 

d Splits of space 25 

 

 

8.1.1. Comparison of Horizontal Separation VS Regular Grid 

 

In this subsection, we compare the techniques of partitioning, in order to achieve the best 

load balancing. 

Figure 11 shows the load balancing achieved by the Horizontal separation in contrast with 

Regular grid. Each partition captures the volume of data which contains.  
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We can monitor that the Horizontal separation has achieved a very good load balancing, 

because the line, which describes the number of elements in each partition, seems to be 

almost straight. 

Partition data by Regular Grid, seems to be an unbalanced way, because the line which 

describes the volume of data in each partition is a crooked line. Also, even if we have defined 

the splits equal to 25 (d =25), which means that we have a 5x5 regular grid, there are three 

parallelograms in grid which have been empty.    

Another measure that proves which technique achieves the best load balancing is the 
standard deviation (Table 10). We observe that Horizontal Separation achieves low standard 
deviation in contrast with the Regular Grid. 

 

Table 10: Standard deviation of partitioning. 

Partitioning Technique Standard Deviation 

Horizontal Separation 348 

Regular Grid 2758 

 

For the above explanation, we choose that the best technique, which achieves the best 

load balancing, is the Horizontal Separation. This technique will be used in the second 

experiment. 
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Figure 11: Comparison of partitioning techniques. 
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8.1.2. Comparison of Plane Sweep VS Brute Force 

 

In this subsection, we compare the two algorithms which compute the similarity join 

query, Plane Sweep and Brute Force. We will compare the time that each algorithm needs in 

order to be terminated and show the results. Also, we will measure the number of times that 

each function (Euclidean distance and Jaccard similarity) is applied to.    

In the following figure (Figure 12), the execution time that each algorithm needs until the 

termination, is captured. We can observe that the fastest algorithm is the Plane Sweep and 

the best partitioning technique which make the fastest results is the Horizontal Separation. 

Furthermore, we can notice huge differences between time in each algorithm and the fastest 

is the Plane Sweep.  

 

 

 

Moreover, the total counts of Euclidean vs Jaccard function that has applied to the 

Horizontal Separation, are captured in Figure 13. It has applied a logarithmic scale to the y-

axis, because of the large deviations. As it has referred above, in Plane Sweep, the Euclidean 

distance is applied first, and if the points are close enough given a radius, then the Jaccard 

distance is applied. Thus, it is logical that the Euclidean function has used more times than the 

Jaccard.  

On the other hand, in Brute Force, the Euclidean and Jaccard function are applied at the 

same time. So, the total counts for these functions are the same.   

We can observe that in Horizontal Separation, the Plane Sweep algorithm needs less 

computation to achieve the result, as we expect given the way that Plane Sweep works with 

the early termination. 
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Figure 12: Total execution time of Plane Sweep VS Brute Force. 
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For the Regular Grid, we can see the total number of counts for the functions in the next 

figure (Figure 14). Again, it has applied a logarithmic scale in y-axis, in order to have a better 

visualization. Because of the dividing of data has become in a blind way, without taking the 

data into account, the points may be far enough to each other. Thus, we can observe that 

counts in Plane Sweep are a few, because the searching terminates faster when the points are 

far enough. On the other hand, in Brute Force, the counts of functions are not affected from 

the distance of the points, because we check each point against all of the same partition that 

they belong. 
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Figure 14: Total counts of Euclidean VS Jaccard function in Regular Grid. 
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Last but not least, the dataset that we have used in the first experiment, has in the text 

description a lot of words. So, it is difficult enough to achieve a similarity join, when the 

similarity threshold is high. For this reason, we will execute a second experiment, using data 

that follow a uniform distribution and has in the text description a few keywords, which in 

many times would have a high similarity. 

Due to the first experiment, taking account the performance of the algorithms and the 

techniques of data dividing, we choose the Horizontal Separation technique for the 

partitioning and the Plane Sweep for the similarity join.   

 

8.2. Second experiment 

 

In the next table (Table 9), the parameters of the second experiment are described. We 

have chosen a small radius, because of the distribution that the datasets follow and we divide 

the space into 20 parts. 

 

Table 11: Parameters of the second experiment. 

Parameter Description Value 

r Radius of search 0.5° 

e Threshold of textual similarity 0.7 

d Splits of space 20 

 

 

The load balancing of the partitions is captured in Figure 15. As we can observe, the 

partitioning of the data seems to be balanced enough. The anomalies that we notice, are 

because of the duplication of the data in the nearest cells based on the radius. In these 

partitions, may there are a lot of points that are near to the limits that have been created 

during the Horizontal separation. 
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Figure 16-17, shows the number of times that the Euclidean distance and Jaccard similarity 
functions have been used. As it has referred above, in Plane Sweep, the Euclidean distance is 
applied first and if the data are near enough, then the Jaccard similarity is applied. Thus, it is 
logical that the counts of Euclidean function are high enough than the counts of the Jaccard. 
Also, the number that the functions are applied to, are independent of the data that each 
partition contains, because the points may not be close enough. 

 

 

0

5,000

10,000

15,000

20,000

25,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
o

in
ts

Partition

Load Balancing in Horizontal Separation

Figure 15: Load balancing in Horizontal Separation. 
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In Figure 18, the number of similarity points in each partition are figured. This number of 

joins is dependent on the similarity threshold that is defined.  
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Figure 18: Counts of similarity join points in each partition. 
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Last figure (Figure 19), is the execution time that each partition needs in order to compute 

the similarity join query. 
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Figure 19: Execution time of Plane Sweep in each partition. 
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9. Conclusion 
 

In conclusion, we have studied the related work that have been done in the research 

community in spatio-textual queries. We have implemented the similarity join query, and we 

examine different algorithms, Plane Sweep and Brute Force, to compute this type of query, in 

order to find which of these achieve the best performance.  

Due to the large volume of spatio-textual data, the main problem which we have met, was 

the load balancing of data in the workers. We have implemented two different techniques of 

partitioning, Horizontal Separation and Regular Grid. The partitioning is based on the spatial 

part of the records, which after a lot of experiments seem to achieve better load balancing 

than the partitioning based on the text. Regular Grid makes the partitions without see the 

data, whereas Horizontal Separation is dynamically creates the partitions based on the points 

of the datasets. 

Because of the experiments that have been done in the chapter 5, we propose that the 

best technique of partitioning is the Horizontal Separation. Also, the fastest algorithm of 

computing the similarity join query is the Plane Sweep. 

Future work in this implementation, may be to examine the performance of the algorithm 

in a really huge volume dataset. 
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