
UNIVERSITY OF PIRAEUS

DEPARTMENT OF DIGITAL SYSTEMS

Msc DIGITAL SYSTEMS AND SERVICES

MAJOR: BIG DATA AND ANALYTICS

Subject:

Parallel Processing of Spatio-textual Similarity Join Query

Pavlopoulos Nikolaos

ΜΕ 1727

Supervisor: C. Doulkeridis

Athens 2019

 2

 3

Abstract

With the rapid development of mobile Internet technology, Internet users are shifting

from desktop to mobile devices. Modern mobile devices (e.g., smartphones and tablets) are

equipped with GPS, which can help users to easily obtain their locations, and location-based

services (LBS) have been widely deployed. Users that consume location-based services are

generating more and more spatio-textual data, which contains both textual descriptions and

geographical locations.

A spatio-textual similarity join is an important operation in spatio-textual data integration,

which, given two sets of spatio-textual objects, finds all similar pairs from the two sets, where

the similarity can be quantified by combining spatial proximity and textual relevancy. As a

simpler example of spatio-textual query, a user that wants to find Points of Interest (POIs)

(i.e., hotels, restaurants), gives a position, a radius of search and some keywords which

describe the POI.

In contrast, the Spatio-Textual Similarity Join (STSJ) query returns all objects which are

close enough based on the radius and have high textual relevance. The main problem for this

operation is when the two datasets have large volumes and centralized computation is not

feasible or even practicable. Therefore, the necessity of scalable processing of large volumes

of datasets, motivates to use big data technologies in order to parallelize the computation and

achieve scalability.

 4

 5

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Christos Doulkeridis, for his support,

advising, guidance. Also, I would like to thank the PhD student Panagiotis Nikitopoulos for his

help and cooperation during the fulfillment of this thesis.

Last but not least, I would like to thank my family and friends for their support and

encouragement.

Nikolaos Pavlopoulos

Athens, March 2019

 6

 7

Table of Contents

1. Introduction ... 9

2. Related work on Spatio-textual Queries ... 11

2.1. Centralized ... 11

2.1.1. Spatial Keyword Queries ... 12

2.1.1.1. Based on Exact Matching .. 12

2.1.1.2. Based on Ranking ... 13

2.1.2. Reverse Queries ... 16

2.1.3. Mining .. 20

2.1.3.1. Clustering ... 20

2.1.3.2. Others .. 22

2.1.4. Others .. 22

2.2. Parallel / Distributed .. 26

2.2.1. Batch Processing .. 26

2.2.2. Streaming ... 28

3. Spatio-textual Similarity Join Query.. 32

3.1. Similarity Join on Centralized system .. 32

3.2. Similarity Join on Parallel/Distributed system ... 33

3.3. Partitioning Strategies for Spatio-Textual Similarity Join 33

4. Technologies .. 35

4.1. Apache Spark ... 35

4.1.1. Spark core .. 36

4.1.2. Spark SQL ... 36

4.1.3. Spark Streaming ... 37

4.1.4. MLlib Machine Learning Library .. 37

4.1.5. GraphX ... 38

5. Problem Statement .. 39

5.1. Euclidean distance.. 40

5.2. Jaccard similarity .. 40

6. Analysis of implementation .. 42

6.1. Techniques of partitioning .. 42

6.1.1. Partitioning data based on Horizontal Separation 42

6.1.2. Partitioning data based on Regular Grid ... 46

6.2. Query processing ... 49

6.2.1. Brute Force Algorithm .. 50

6.2.2. Plane Sweep Algorithm .. 51

 8

7. Experimental setup .. 53

7.1. Platform ... 53

7.2. Evaluation metrics .. 53

7.3. Datasets ... 53

7.3.1. Real datasets .. 54

7.3.2. Synthetic datasets .. 54

8. Experimental study .. 56

8.1. First experiment ... 56

8.1.1. Comparison of Horizontal Separation VS Regular Grid 56

8.1.2. Comparison of Plane Sweep VS Brute Force.. 58

 Second experiment .. 60

8.2. .. 60

9. Conclusion ... 64

10. References ... 65

 9

1. Introduction

Due to the existence of GPS and the ability of the applications to perform the position of

the user with a text, such as Google Maps, Twitter, Foursquare and TripAdvisor, spatio-textual

data are in the heart of research. Many researchers have discovered ways to analyze these

kinds of data, to find useful conclusions, about points of interest, comments of users about

places, and what is the common interest of the users. In addition, a recommendation system

would be an important application for users, who desire to find places or information based

on their common interests. Because of the popularity of the above applications, spatial and

textual data are increasing explosively and centralized systems are not able to manage this

volume of data. Thus, the necessity of creating new systems that could process data in parallel,

was necessary. There are a few frameworks that can manage data in parallel with batch

processing, such as Spark and Hadoop (Map-Reduce), and others with stream processing,

which process data in real time, such as Spark Streaming and Storm. These systems are called

Parallel / Distributed Systems and present better processing performance. However, the use

of these systems requires computing resources because of the parallel processing, which is

done in different machines or processors that are connected.

This thesis is divided in two main parts. First of all, the related work of managing spatio-

textual data is described. Different type of queries that have been studied is presented and its

problem statement are defined. The existing spatio-textual queries have been classified into

different categories based on the query that they solve. The two main categories are the

queries which have been implemented in Centralized and Parallel/Distributed systems. In this

category, there are sub-categories depending on the query that they solve. The creating

categories are captured in Figure 1 (Chapter 2).

Secondly, a type of query from the analyzed is selected and has been implemented in

Spark. The query is the Spatio-Textual Similarity Join (STSJ), which is an important operation

for reconciling different representations of an entity. Two objects are said to be similar if their

spatial and textual similarity is greater than the given thresholds. There are various ways to

quantify the spatial similarity and textual similarity. We have used the Euclidean distance as

the spatial similarity and the Jaccard similarity for the textual part. The problem statement of

this query is described below.

Given a collection of spatio-textual objects R = {r1, r2, ···, rn}, where each object r ∈ R

includes a textual description r.text, and a spatial location r.loc that is represented by two-

dimensional geographical coordinates a textual similarity threshold θ and a spatial distance

threshold e, the STSJ(R, θ, e) aims to find all the similar pairs (ri, rj) where simt(ri, rj) ≥ θ and

distl(ri, rj)≤ e,

STSJ(R, θ, e) = {(ri, rj)|ri, rj ∈ R, 1 ≤ i, j ≤ n, i ≠ j, simt(ri, rj) ≥ θ, distl(ri, rj) ≤ e}, where,

simt(ri, rj) is the Jaccard similarity between two objects, and distl(ri, rj) is the Euclidean distance

of two objects.

 10

This query has been studied in centralized systems (2.2.1.), where they split the space with

a regular grid in order to make the computation faster. On the other hand, similarity join has

been implemented in MapReduce (2.2.1), so as to manage huge volumes of data.

Due to the large volume of spatial and textual data, Spark is used to deal with this situation

and process data in an efficient way. The main problem that must be faced is the load

balancing of data, when they shared on different machines or processors. Therefore, different

ways of partitioning data based on geographical coordinates are studied, so as to achieve the

best performance of load balancing. Moreover, we have implemented two algorithms in order

to compute the similarity join query and find which of them has the best performance.

Last but not least, the structure that follows the diploma thesis is listed below.

 Chapter 2: related work on spatio-textual queries.

 Chapter 3: related work on this thesis statement, Spatio-textual Similarity Join

Query.

 Chapter 4: the distributed technology that has been used to manage this volume

of data (Apache Spark).

 Chapter 5: the problem statement of the implemented query and the functions of

similarity join which have been used.

 Chapter 6: analysis of the implementation for the similarity join query.

 Chapter 7: description of the platform, the evaluation metrics and the datasets

that have used.

 Chapter 8: experiments for the evaluation of the algorithms.

 Chapter 9: conclusion of thesis.

 Chapter 10: references.

 11

2. Related work on Spatio-textual Queries

In this chapter, the types of existing queries based on spatial and textual elements are

described. There are different variations of spatio-textual queries and many researchers are

dealing with these operations to improve them.

This thesis focuses on Parallel Processing Spatio-textual Similarity Join Query. Thus,

Similarity Join Queries in Centralized systems and in Parallel/Distributed systems will be

analyzed in the Section 3.

In the following, the taxonomy of spatio-textual queries is depicted to make an overview

of the structure that this chapter has.

2.1. Centralized

Centralized system is a system that runs in a single computer system and do not interact

with other computer systems. All the aspects of the system are concentrated in a single entity

and all calculations are done on one particular computer. There are a lot of variations of

spatio-textual queries which use a centralized system and will be analyzed below.

Figure 1: Taxonomy of Spatio-textual Queries.

 12

2.1.1. Spatial Keyword Queries

Spatial keyword queries are being supported in real-life applications, such as Google Maps

where points of interest can be retrieved, Foursquare where geo-tagged documents can be

retrieved, and Twitter where tweets can be retrieved. Spatial keyword querying is also

receiving increasing interest in the research community, where a range of techniques have

been proposed for efficiently query processing. Many types of spatial database queries have

been revisited for geo-textual data; and keyword queries have also been revisited in the

context of geo-textual data. A typical spatial keyword query finds the objects that best match

the location and keywords in the query. To address different use cases, many types of spatial

keyword queries, as well as accompany indexing and query processing techniques have been

proposed.

2.1.1.1. Based on Exact Matching

Spatial-keyword queries extend spatial queries by additionally taking into account the

textual content. The first category of spatial-keyword queries concerns exact matching

queries. Such queries seek objects that satisfy the spatial constraint (range or NN) and also

contain all query keywords in their textual descriptions.

Representative types of spatial keyword queries using exact matching are reviewed in [11]

and contain the Boolean range query and the Boolean kNN query. In the following, definitions

are provided along with examples, in order to ease understanding and be more

comprehensible.

 Boolean Range Query (BRQ): Given a set of query keywords K, a location p, and a radius

r, the Boolean range query retrieves the objects o: (a) whose textual description contains all

query keywords, and (b) located within distance r from the query location, i.e., d(p,o)<=r. For

example, a Boolean range query with K={tasty, pizza, cappuccino} and r=10km would retrieve

all objects whose text description contains the keywords tasty, pizza, and cappuccino and

whose location is within 10 km of the query location.

Boolean kNN Query (BkQ): Given a set of query keywords Q, a location p, and k the

number of objects to retrieve, the Boolean kNN query retrieves a set of k objects, each of

which covers all the keywords in Q. Objects are ranked according to their distances to p. For

example, a Boolean kNN query with Q={tasty, pizza, cappuccino} and k=10, would retrieve the

10 objects whose text description contains the keywords tasty, pizza, and cappuccino and are

the 10-NN to the location p.

These two types of queries have been evaluated with diverse spatial and textual indexing,

such as R-Tree based indices (IF-R*, R*-IF, KR*-Tree, IR2-Tree), grid based spatial-textual

indices (ST, TS).

Τhe most queries mainly focus on finding individual objects that each satisfy a query,

rather than finding groups of objects, where the objects in a group together satisfy a query.

 13

In [35], the problem of retrieving a Group of Spatio-Textual Objects (GSTO) such that the

group’s keywords cover the query’s keywords and such that the objects are nearest to the

query location and have the smallest inter-object distances, is defined.

To address the need for collective answers to spatial keyword queries, they assume a

database of spatio-textual objects and then consider the problem of how to retrieve a group

of spatio-textual objects that collectively meet the user’s needs, given as a location and a set

of keywords: (a) the textual description of the group of objects cover the query keywords; (b)

the objects are close to the query point; and (c) the objects in the group are close to each

other.

Specifically, given a set of spatio-textual objects D and a query q = (λ, ψ) where λ is a

location and ψ is a set of keywords, they consider three instantiations of the spatial group

keyword query. It turns out that the subproblems corresponding to the three instantiations

are all NP-hard.

 They aim to find a group of objects χ that cover the keywords in q such that the sum

of their spatial distances to the query is minimized.

 They aim to find a group of objects χ that cover the keywords in q such that the sum

of the maximum distance between an object in χ and q and the maximum distance

between two objects in χ is minimized.

 They aim to find a group of objects χ that cover the keywords in q such that the sum

of the minimum distance between an object in χ and q and the maximum distance

between two objects in χ is minimized.

They use the IR-Tree as the index structure in the algorithms and they illustrate how can

implement other indexes.

The same problem is dealt in [36], that retrieves a group of spatial objects which they meet

the first two of the three instantiations, that referred above.

Table 1: Overview of Based on Exact Matching Queries.

Query Spatial Distance Indexing

BRQ Euclidean R-Tree, Grid

BkQ Euclidean R-Tree, Grid

GSTO Euclidean IR-Tree

2.1.1.2. Based on Ranking

Apart from exact matching retrieval, several papers consider ranked retrieval of spatio-

textual objects, where a score quantifies the relevance of an object to the query. Typically,

the user is interested in the subset of objects with highest scores, thus top-k queries are used,

where the query result set consists of the k objects with highest scores.

 14

Top-k kNN Query (TkQ) [11]: Given a query q=(Q,p,k), where Q is a set of query keywords,

p is the query location, and k is the number of objects to retrieve, the top-k kNN query

retrieves a set of k objects ranked according to a score that takes into consideration spatial

proximity and text relevance. Specifically, the ranking score of object o is defined in the

following equation:

ST(o, q) = α · SDist(o.ρ, q.ρ) + (1 − α) · TRel(o.Q, q.Q),

where SDist(o.ρ, q.ρ) is the spatial proximity between o.ρ and q.ρ, TRel(o.Q, q.Q) is the text

relevance between o.Q and q.Q, and α ∈ [0, 1] is a query preference parameter that makes it

possible to balance the spatial proximity and text relevance. The spatial proximity is defined

as the normalized Euclidian distance: SDist(o.ρ, q.ρ) =
dist(o.ρ,q.ρ)

distmax
, where dist(o.ρ, q.ρ) is the

Euclidian distance between o and q, and distmax is the maximum distance between any two

objects in D. The text relevance TRel(o.Q, q.Q) can be computed using an information retrieval

model, here is used the language model. The same problem is dealt by [24] with the same

ranking function as previously.

Moreover, [2] presents the problem of Batch Processed Top-k Spatial-Textual Queries

(BPkQ), where the main difference with [11], is that this type of processing, answers a set of

queries in a single pass. It uses the same ranking functions for the spatial proximity and text

relevance, as mentioned above. They assume objects are stored on disk and indexed them

using a spatial-textual index, the IR-tree.

Different ways have been proposed in the literature on how to define the score function.

Except for the language model that is referred above, there are also various ranking functions.

The ranking functions are based on the text relevance between the query and each object.

Other information retrieval models are, cosine similarity, BM25 and Jaccard similarity.

In [16], another query type is proposed, called Top-k Spatio-Textual Preference Query

(STPQ), for ranked retrieval of data objects based on the textual relevance and the non-spatial

score of feature objects in their neighborhood. The score of a data object changes depending

on the query keywords, which renders techniques that rely on materialization. In the

following, the problem statement that solves this query type, is described.

Given an object dataset O and a set of c feature datasets {Fi | i ∈ [1, c]}, it is addressed the

problem of finding k data objects that have in their spatial proximity highly ranked feature

objects that are relevant to the given query keywords. Each data object p ∈ O has a spatial

location. Similarly, each feature object t ∈ Fi is associated with a spatial location, but also with

a non-spatial score t.s that indicates the goodness (quality) of t and its domain of values is the

range [0, 1]. Moreover, t is described by set of keywords t.W that capture the textual

description of the feature object t. The goal is to find data objects that have in their vicinity

feature objects that are of high quality and are relevant to the query keywords posed by the

user. Thus, the score of the feature object t captures not only the non-spatial score of the

feature, but also its textual similarity to a user specified set of query keywords. Therefore, the

problem definition is referred to a given query Q, defined by an integer k, a radius r and c-sets

of keywords Wi, find the k data objects p ∈ O with the highest spatio-textual score τ(p). Below,

analyzed the spatio-textual score functions.

 15

The preference score s(t) of feature object t based on a user-specified set of keywords W

is defined as: s(t) = (1 − λ) · t.s + λ · sim(t, W), where λ ∈ [0, 1] and sim() is a textual similarity

function. The textual similarity is equal to the Jaccard similarity between the keywords of the

feature objects and the user-specified keywords: sim(t, W) =
|𝑡.𝑊 ⋂ 𝑊|

|𝑡.𝑊 ⋃ 𝑊|
.

The preference score τi(p) of data object p based on the feature set Fi is defined as: τi(p) =

max{s(t) | t ∈ Fi : dist(p, t) ≤ r and sim(t, Wi) > 0}. The dist(p, t) denotes the spatial distance

between data object p and feature object t and is computed by the Euclidean distance

function.

The overall spatio-textual preference score τ(p) of data object p is defined as: τ(p) =

∑ 𝜏𝑖(𝑝)𝑖 𝜖 [1,𝑐] .

It is assumed that the data objects O are indexed by an R-tree, and for the feature objects,

it is important that the non-spatial score and the textual description are indexed additionally.

Their indexing approach maps the textual description of feature objects to a value based on

the Hilbert curve.

Another query based on a ranking, is called Finding Top-k Relevant Groups of Spatial Web

Objects (RGSWO). [34] proposes a type of query functionality that returns top-k groups of

objects, while taking into account aspects such as group density, distance to the query, and

relevance to the query keywords. Given a set of spatial web objects with spatial coordinates

and text descriptions, the top-k groups spatial keyword query takes a location and a set of

query keywords as arguments and returns k groups of objects such that the objects in a group

are close to each other, the group is close to the query location, and the objects in the group

are textually relevant to the query keywords. Below, is referred the problem statement and

are defined the distance and the textual relevance functions.

A top-k groups query q takes a triple of arguments (λ, φ, k), where q.λ is a point location,

q.φ is a set of keywords, and q.k is the number of groups in the result. It returns k subsets G1

, ..., Gk of D such that Gi ⊆ Di , i = 1,..., k, where D1 = D and Di =
𝐷

⋃ 𝐺𝑗
𝑖−1
𝑗=1

, i = 2, ..., k, and such that

there does not exist a subset G ⊆ Di for which Cost(q, G) < Cost(q, Gi), i = 1, ..., k.

The distance between a query location λ and a group G of objects, is defined as the

distance between the query location and the nearest object in the group: d(λ, G) = mino ∈ G||λ,

o.λ||, where ||·, ·|| denotes the Euclidian distance.

The text relevance is evaluated by the language models [25]. A text document is

represented by a vector where each dimension corresponds to a distinct term in the

document. The relevance of an object o to a query term, t ∈ q.φ, is defined as follows:

TR(t, o.φ) = (1 − γ)⋅
𝑡𝑓(𝑡, 𝑜.𝜑)

|𝑜.𝜑|
 + γ⋅

𝑡𝑓(𝑡, 𝐶𝑜𝑙𝑙)

|𝐶𝑜𝑙𝑙|
, where tf(t, o.φ) is the number of occurrences of

term t in o.φ, tf(t, Coll) is the count of term t in the collection Coll of D, and γ is a smoothing

parameter.

The indexing technique that used is the Group Extended R-Tree (GER-trees).

 16

Table 2: Overview of Based on Ranking Queries.

Query Spatial Distance Textual

Similarity

Indexing

TkQ Normalized

Euclidean

Language Model -

BPkQ Normalized

Euclidean

Language Model IR-Tree

STPQ Euclidean Jaccard R-Tree, Hilbert

Curve

RGSWO Euclidean Language Model GER-Trees

2.1.2. Reverse Queries

In many application scenarios, users cannot precisely formulate their keywords and

instead prefer to choose them from some candidate keyword sets. Moreover, in information

browsing applications, it is useful to highlight the objects with the tags (keywords) under

which the objects have high rankings. Driven by these applications, a query paradigm, namely

Reverse Keyword Search for Spatio-Textual Top-k Queries (RSTQ) [14], is proposed. It takes a

user location and a target object as inputs, and returns the keyword sets, derived from the

textual description of the target object, under which the target object will be a spatio-textual

top-k query result. Formally, the RSTQ is defined as follows.

Point-based RSTQ Query (PRSTQ): Given a target object o, a query point q.λ, an argument

k, as well as a list of keyword sets Ω, the RSTQ query finds a subset Ω' of Ω, satisfying that:

i) for any q.ψ 𝜖 (Ω – Ω’), rank(q, o) ≤ k,

ii) for any q.ψ 𝜖 (Ω – Ω’), rank(q, o) > k.

Region-based RSTQ Query (RRSTQ): Given a target object o, a query region Λ, an argument

k, as well as a list of keyword sets Ω, the RSTQ query finds a subset Ω' of Ω, satisfying that:

i) for any q.ψ 𝜖 Ω', V q.λ 𝜖 Λ, rank(q, o) ≤ k,

ii) for any q.ψ 𝜖 (Ω - Ω'), there is at least one point λ 𝜖 Λ such that if q.λ = λ, rank(q,

ο) > k.

To efficiently process point-based RSTQ queries, they propose a hybrid indexing structure,

called KcR-tree, and an efficient query processing algorithm.

Moreover, an interesting problem encountered in real-life applications that rely on spatio-

textual retrieval is how to improve the ranking of a spatio-textual object for as many users as

possible. In [5], to address this problem, they capitalize on reverse top-k queries, which

retrieve the set of users that have a given object in their top-k results. They model the problem

as a maximization of the cardinality of the reverse top-k result set, and they explore the

different combinations of keywords that will increase the query object’s rank for many users,

 17

when added to its textual annotation. They refer to this problem as Best-Terms Query (BTQ).

Below, the problem statement is described.

Given a set D of spatio-textual objects, a set of terms A = ⋃ 𝑜. 𝑇𝑜 𝜖 𝐷 , a set of queries U, a

scoring function f, an integer k, and a spatio-textual object q = <q.T, q.L> ∈ D, decide if there

is a set BT such that BT ⊆ A, BT ⋂ q.T = ∅, |BT| ≤ b for which it holds that I(q1) = U where q1 =

<q.T ⋃ BT, q.L>.

They propose a greedy algorithm, termed Best Term First (BTF), that provides an

approximate solution to the Best-terms problem. BTF takes as input an IR-tree index

containing the set of spatio-textual objects D, and an IR-tree index containing the set of user

preferences U. BTF extends the textual description of a spatio-textual object iteratively, which

forces the algorithm to scan the preferences set U multiple times. Thus, they present an

algorithm, named Graph-Based Term Selection (GBTS), which examines the set of preferences

only once and creates a graph of terms that provides an estimation of the influence gain any

combination of terms may provide.

Another approach on reverse queries is to find objects that take the query object as one

of their k most spatial-textual similar objects. This type of query is defined as Reverse Spatial

Textual k Nearest Neighbor (RSTkNN) query [15].

The document of an object is treated as a bag of weighted words using vector space

model. Formally, a document is defined as {<di, wi>}, i = 1,···, m, where wi is the weight of word

di. The weight could be computed by the well-known TF-IDF scheme. Let P be a universal

spatial object set. Each spatial object p ∈ P is defined as a pair (p.loc, p.vct), where p.loc

represents the spatial location information and p.vct is the associated text represented in

vector space model. The RSTkNN query is defined as follows.

Given a set of objects P and a query point q(loc, vct), RSTkNN(q, k, P) finds all objects in

the database that have the query point q as one of the k most “similar” neighbors among all

points in P, where the similarity metric combines the spatial distance and textual similarity.

The similarity metric, called spatial-textual similarity, is computed by the following

function:

SimST(p1, p2) = α ∗ SimS(p1.loc, p2.loc) + (1 − α) ∗ SimT(p1.vct, p2.vct), where,

 parameter α ∈ [0, 1] is used to adjust the importance of spatial proximity factor and

the textual similarity factor.

 SimS(p1.loc, p2.loc) = 1 −
𝑑𝑖𝑠𝑡 (𝑝1.𝑙𝑜𝑐,𝑝2.𝑙𝑜𝑐) −𝜑𝜍

𝜓𝜍− 𝜑𝜍
 , where the distance is computed by the

Euclidean distance, and φς, ψς denotes the minimum and maximum distance of pairs

of distinct objects in P.

 SimT(p1.vct, p2.vct) =
𝐸𝐽(𝑝1.𝑣𝑐𝑡,𝑝2.𝑣𝑐𝑡) − 𝜑𝑡

𝜓𝑡− 𝜑𝑡
 , where the textual similarity is computed by

the Jaccard similarity, ϕt and ψt are the minimum and maximum textual similarity of

pairs of distinct objects in the dataset, respectively

 18

To answer RSTkNN queries efficiently, it is proposed a hybrid index tree called IUR-tree

(Intersection-Union R-Tree) that effectively combines location proximity with textual

similarity.

Another problem that scientists occupy, is the Maximized Bichromatic Reverse Spatial

Textual k Nearest Neighbor (MaxBRSTkNN) query [3]. The problem is to find the location and

a set of keywords, that maximizes the size of bichromatic reverse spatial textual k nearest

neighbors. The most relevant query type to this problem is RSTkNN query, where an upper

and a lower bound estimation of similarity is computed between each node of the IUR-tree

and the k-th most similar object. A branch-and-bound algorithm is then used to answer the

RSTkNN query. In MaxBRSTkNN the computation of the bounds and the algorithm are

designed for the monochromatic case only since both the data objects and the query objects

belong to the same type, and the nodes of the tree store only one type of object.

Let D be a bichromatic dataset, where U is a set of users and O is a set of objects. Each

object o ∈ D is a pair (o.l, o.d), where o.l is the spatial location (point, rectangle, etc.) and o.d

is a set of keywords. Each user u ∈ U is also defined as a similar pair (u.l, u.d). A MaxBRSTkNN

query returns a location l ∈ L and a set W’ ⊆ W, |W’| ≤ ws such that, if ox.l = l and ox.d =

W’∪ox.d, the size of BRSTkNN of ox from U is maximized.

An object o is ranked based on a combined score of spatial proximity and textual relevance

with respect to a user u, specifically, using the following equation:

STS(o, u) = α · SS(o.l, u.l) + (1−α)·TS(o.d, u.d),

where SS(o.l, u.l) is the spatial proximity between locations, the textual relevance is

TS(o.d,u.d), and the preference parameter α ∈ [0,1] defines the importance of one relevance

measure relative to the other. The value of both measures are normalized within [0,1].

Spatial proximity: The spatial proximity of an object o with respect to a user u is:

SS(o.l, u.l) = 1 −
dist(o.l,u.l)

𝑑𝑚𝑎𝑥
 , where dist(o.l, u.l) is the minimum Euclidean distance, and dmax

is the maximum Euclidean distance between any two points in D.

Text relevance: The TF-IDF metric is used, in order to weight a term in a document based

on term frequency (TF) and inverse document frequency (IDF). The TF, tf(t, d), is the number

of times term t appears in document d, and IDF, idf(t, O) = log
|𝑂|

|𝑑 𝜖 𝑂, 𝑡𝑓(𝑡,𝑑)>0|
 measures the

importance of t in the set O. Here, the text relevance of an object o with respect to a user u

is: TS(o.d, u.d) = ∑ tf(t, o. d) × idf(t, O)𝑡 𝜖 𝑢.𝑑 .

To answer a MaxBRSTkNN query in the baseline approach, the score of the k-th ranked

object for each user must be determined. Computing the top-k objects for each user requires

retrieving the objects from disk, and the same objects might be retrieved multiple times for

different users. To overcome this drawback, they have extended the IR-tree, as MIR-tree, and

they compute the top-k objects of the users jointly using different pruning strategies, and

ensure that an object is retrieved only once.

In [38], the Reverse Top-k Keyword-Based Location Query (RTkKL), is defined. This type of

query takes a set of keywords, a query object q, and a number k as arguments, and it returns

 19

a spatial region such that any top-k spatial keyword query with the query keywords and a

location in this region would contain object q in its result.

Specifically, given a set ψ of query keywords, a query object q ∈ O, and a number k, the

RTkKL returns the maximum spatial region Vq such that q is contained in the result of any top-

k spatial keyword query with ψ as the keywords and any location in Vq as arguments.

Formally, Vq = {p ∈ Ω q ∈ Sk(p, ψ) ∧ q ∈ O}, where Sk(p, ψ) is the result of a top-k spatial

keyword search with p and ψ as arguments.

Top-k spatial keyword query: Given a point p ∈ Ω, a set ψ of keywords, and a number k,

the top-k spatial keyword query Sk(p, ψ) returns a set Sk of k spatial web objects with lowest

ranking scores:

∀o ∈ Sk, ∀o’ ∈ O − Sk, score(p, ψ, o) < score(p, ψ, o’)

Function score(), combines spatial proximity and textual relevance. When ψ is clear from the

context, |p, o| represents the score(p, ψ, o).

score(p, ψ, o) = ws · |p, o|E + wt · (1 − tr(ψ, o.ψ)), where |p, o|E denotes the Euclidean distance

between p and o.loc, and function tr(), computes the textual relevance between its two

arguments, by the cosine similarity function. The smaller the score of an object is, the more

relevant the object is to the query.

They propose an algorithm capable of computing approximate V-regions with quality

guarantees, based on Voronoi concepts, which are usually used for defining such kinds of

spatial regions. Given a set S of spatial point objects, the Voronoi cell for object q’ ∈ S is the

part of the space that contains all points in the underlying space that have q’ as their nearest

neighbor. Object q’ is called the cell’s site. This concept can be extended to k-nearest

neighbors. If the site of a Voronoi cell is a set s of objects (s ⊆ S and |s| = k), the cell is called

order-k Voronoi cell. Every point of the underlying space in the cell takes s as their k nearest

neighbors. To further accelerate V-region computation, they use a quad-tree for indexing the

solution space and an IR-tree for indexing the objects, and they show how to use the two

indexes in combination to enable pruning.

Table 3: Overview of Reverse Queries.

Query Spatial Distance Textual

Similarity

Indexing

PRSTQ, RRSTQ - - KcR-Tree

BTQ Normalized

Euclidean

Intersection of

terms

IR-Tree

RSTkNN Euclidean Jaccard, TF-IDF IUR-Tree

MaxBRSTkNN Normalized

Euclidean

TF-IDF MIR-Tree

RTkKL Euclidean Cosine Quad-Tree, IR-

Tree

 20

2.1.3. Mining

Mining spatio-textual data for knowledge discovery is a cumbersome task due to the

complexity of the data type and its representation. Spatial-Textual data can be mined or

analyzed to improve various location-based services. There are a lot of algorithms solving

mining problems, such as the problem of Clustering, Classification and Regression.

2.1.3.1. Clustering

Clustering itself is a central problem in computer science, so spatio-textual clustering can

play a key role in many applications.

The problem of Clustering Spatio-Textual (CST) data is studied in [26]. In particular, they

focus on extending the k-means algorithm for a massive volume of spatio-textual dataset to

be efficiently processed. K-means still remains one of the most popular data processing

algorithm over half a century especially due to its simplicity and scalability [25]. Since the key

process of k-means is to compute and update the mean value of each cluster, most k-means

family algorithms assume that each data object only contains numeric attributes. This

assumption makes a big challenge in applying the k-means algorithm to spatio-textual data as

each object contains both numeric (spatial) and non-numeric (textual) attributes. To address

the challenge above, they first observe that it suffices to compute the expected distance

between a random object in each cluster and the object under consideration rather than

measuring the distance from the virtually constructed spatio-textual centroid of a cluster. By

doing so, they can reduce the cost of computing pairwise textual distances. Furthermore, they

devise an effective technique for initializing k-means for spatio-textual data, which is

commonly the most important and challenging task for k-means derivatives to improve not

only the quality of resulting clusters but also the efficiency.

Their problem environment follows the many works in the literature of spatio-textual

similarity search, which is summarized as follows:

 We consider a set of spatio-textual objects, denoted by O = {o1, o2, …, o|O|}.

 Each object o ∈ O consists of two attributes, namely <loc, τ>, where loc is a geographic

location and τ = {t1, t2, …, t|τ|} is a set of keywords.

 Each keyword t ∈ o.τ is associated with a weight w(t), which represents the

significance of the keyword and is global for all objects. The most widely used value

for the keyword weight is the inverted document frequency (idf).

 The distance between two spatio-textual objects o1 and o2 is defined as:

Dist(o1, o2) = α⋅DistS(o1, o2) + (1 – α)⋅DistT(o1, o2),

where α is a user parameter to adjust the importance of spatial dimension or textual

dimension, DistS(*, *) is the Euclidean distance between o1.loc and o2.loc, and DistS(*,

*) is the weighted Jaccard distance between o1.τ and o2.τ defined as follows:

1 -
∑ 𝑤(𝑡)𝑡 𝜖 𝑜1.𝜏 ⋂ 𝑜2.𝜏

∑ 𝑤(𝑡)𝑡 𝜖 𝑜1.𝜏 ⋃ 02.𝜏
 .

 21

Note that α is not a parameter to be optimized in advance, but rather it represents a

user's intention on whether s/he is interested in the spatial aspect or the textual aspect of

the underlying dataset.

Then, their problem is formally defined as follows:

Given O, DistS(*, *), and a positive integer k, partition O into k disjoint clusters such that

the total intra cluster distance is minimized and the total inter cluster distance is maximized

with respect to DistS(*, *).

Furthermore, another approach of spatio-textual clustering is the Top-k Spatial Textual

Clusters (k-STC) query [37], that returns the top-k clusters that are located close to a given

query location, contain relevant objects with regard to given query keywords, and have an

object density that exceeds a given threshold. This query aims to support users who wish to

explore nearby regions with many relevant objects. It is used density-based clustering for

finding clusters. The two basic steps to compute the top-k STC query are to obtain the objects

that are relevant to the query keywords and to apply clustering to these objects. They consider

a cluster scoring function that favors clusters close to the query location and that contain

objects with high relevance with regard to the query keywords.

A top-k Spatial Textual Cluster (k-STC) query q = (λ, ψ, k, e, minpts) takes five arguments:

a point location λ, a set of keywords ψ, a number of requested object sets k, a distance

constraint e on neighborhoods, and the minimum number of objects minpts in a dense e-

neighborhood. It returns a list of k spatial textual clusters that minimize a scoring function and

that are in ascending order of their scores. The maximality of each cluster implies that the top-

k clusters do not overlap. The density requirement parameters e and minpts are able to

capture how far the user is willing to move before reaching another object.

Intuitively, a cluster with high text relevance and that is located close to the query location

should be given a high ranking in the result. Thus, they use the following scoring function:

 scoreq(R) = α · dq.λ(R) + (1 − α) · (1 − trq.ψ(R)),

where dq.λ(R) is the minimum spatial distance between the query location and the objects in

R and trq.ψ(R) is the maximum text relevance in R. The approaches we present are applicable

to scoring functions that are monotone with respect to both spatial distance and text

relevance. Parameter α is used to balance the spatial proximity and the text relevance of the

retrieved clusters. All spatial distances and text relevances are normalized to [0, 1].

Table 4: Overview of Clustering Queries.

Query Clustering

CTS K-Means

k-STC DBScan

 22

2.1.3.2. Others

Another pattern mining problem is proposed in [1], called Spatial-Textual Sequence

Pattern Mining. A Spatial-Textual sequence is a trajectory of locations with each location

having associated with it a set of activities/events or some other attributes. Mining Spatial-

Textual frequent sub-sequential patterns is one of the major challenge due to the complexity

of the data type, as we have to deal with not only two different dimensions, but also ordered

data and localization error of GPS.

Let I = (l1, i1),(l2, i2), . . . ,(lm, in) be a set of all items along with their locations. An itemset is

a non-empty subset of I and a sequence is an ordered list of itemsets. A sequence s is denoted

by <s1, s2, ... , sl>, where sj is an itemset and sj is also called an element of the sequence, and

denoted as (x1, x2, . . . , xm), where xk is an item-pair (with location). The number of instances

of item-location pairs in a sequence is called the length of the sequence. A sequence with

length l is called an l−sequence. A sequence α = <a1, a2, ..., an> is called a subsequence of

another sequence β = <b1, b2, ..., bm> and β a supersequence of α, denoted as β ⊆ α, if there

exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , an ⊆ bjn.

A sequence database S is a set of tuples <sid, s>, where sid is a sequence_id and s a

sequence. A tuple <sid, s> is said to contain a sequence α, if α is a subsequence of s. The

support of a sequence α in a sequence database S is the number of tuples in the database

containing α, i.e., supports(α) = |<sid, s> | (<sid, s> ∈ S) ∧ (α ⊆ s)|.

Given a positive integer min_support as the support threshold, a sequence α is called a

sequential pattern in sequence database S if supportS(α) ≥ min_support. A sequential pattern

with length l is called an l–pattern.

The problem here is to find frequent Spatial-Textual patterns from given Spatial-Textual

data. The locations can be of any type like the actual location or it can be the zip-code of the

area or it can be the city name/state name/country name. For assigning label to the locations

DBScan algorithm is used which work for given ρ value and minimum points. It gives the

clusters of locations and assign labels to them. They use these labels in the dataset for

locations. Also, Grid-based algorithm is used for labeling the locations. They use PrefixSpan

algorithm to solve this type of problem, in which item-location pair is taken as a prefix instead

of a single item.

2.1.4. Others

Apart from the categories that referred above, there are a lot of query variations that do

not match to any of these categories. These types of queries will be analyzed below, without

having any similarity to each other.

In [20], the problem of matching point sets based on the spatio-textual objects they

contain, is addressed. This is highly relevant for users associated with geolocated photos and

tweets. It is formally defined this problem as a Spatio-Textual Point-Set Join (STPSJoin) query,

 23

and it is introduced its top-k variant. Given sets of spatio-textual objects, each one belonging

to a specific entity, this query seeks pairs of entities that have similar spatio-textual objects.

The problem statement is defined as follows.

Given a database D of spatio-textual objects s created by different users U, where each

object o ∈ D is a triple o = <u, loc, doc>, where u ∈ U is the user associated with this object,

loc = <x, y> is a spatial point and doc is a set of keywords belonging to a set of users U, the

STPSJoin query is a tuple Q = <q.loc, q.doc, q.u> which returns a set R containing all pairs of

users (u, u’) such that u, u’ ∈ U, u ≺ u’, and σ(Du, Du’) ≥ q.u with respect to the spatial and

textual thresholds q.loc and q.doc. The spatial distance between two objects is calculated as

the Euclidean distance between their spatial locations, and their textual similarity as the

Jaccard similarity.

An extension of the STPSJoin query in which it is seeked only the k best pairs of users, in

terms of spatial and textual similarity of their objects, is the Top-k STPSJoin (kSTPSJoin) query.

Formally, the kSTPSJoin query is defined as follows.

Given a database D of spatio-textual objects belonging to a set of users U, the Top-k

STPSJoin query is a tuple Q = <q.loc, q.doc, k> which returns a set R containing k pairs of users

(u, u’) such that u, u’ ∈ U, u ≺ u’, and for any pair of users (v, v’) ɇ R it holds that σ(Du, Du’) ≥

σ(Dv, Dv’) for each (u, u’) ∈ R with respect to the spatial and textual thresholds q.loc and q.doc.

They present a baseline algorithm using grid partition for the evaluation of the STPSJoin

query, and they introduce methods that exploit a filter and refine strategy in combination with

spatio-textual indexes in order to direct the search. In addition, they explain how their

methods can be adapted to account for the kSTPSJoin query.

Another interesting query type is named Clue-Based Spatio-Textual Query (CSTQ) [23]. In

many scenarios, a user cannot provide enough information to pinpoint the POI (Point of

Interest) except some clue. Motivated by this observation, this work allows user providing

clue, i.e., some nearby POIs and the spatial relationships between them, in POI retrieval. The

objective is to retrieve k POIs from a POI database with the highest spatio-textual context

similarities against the clue.

The POI database is denoted as D. Each POI o ∈ D is represented as (o.id, o.loc, o.cid),

where o.id is the identity of o, o.loc refers to the location of o, and o.cid is the category identity

to indicate o. When querying a POI in a POI database, Clue is the user-provided information

which specifies the spatio-textual context of the querying POI. It includes the categories of

nearby POIs around the querying POI, called clue POIs, and the spatial relationships (i.e.,

distances and relative directions) between them (including the querying POI and clue POIs).

The definition of the CSTQ is referred below.

Given a POI database D, a CSTQ query QR(q, N, E) retrieves k POIs, A ⊆ DR(q.cid), such that

SCsim(q, oi) > SCsim(q, oj), oi ∈ A, oj ∈ DR(q.cid) \ A, where,

q is the querying POI, N \ {q} is the set of clue POIs, E is the set of edges which represent the

relative spatial relationships between the POIs in N, R is the region where the POIs in N are

located, DR(q.cid) be the POIs in D with the same category as q in region R, and the spatio-

textual context similarity between q and o is denoted as follows:

 24

SCsim(q, o) = 𝑚𝑎𝑥𝑞𝑚 𝜖 𝑇1, 𝑜𝑚 𝜖 𝑇2𝑆𝐶𝑠𝑖𝑚(𝑞, 𝑜, 𝑞𝑚 , 𝑜𝑚) , where, T1 = N \ {q} and T2 = DR(qm.cid)

\ {o}, SCsim(q, o, qm, om) := γ⋅𝑚𝑎𝑥𝑡⊆𝛷 𝑆𝐶𝑠𝑖𝑚(𝑁, 𝐼), and Φ is the set of all possible matching

instances of N in DR.

Also, this work has developed an index called roll-out-star R-tree (RSR-tree) to improve

the query processing efficiency.

In some cases, it is difficult for users to identify the exact keywords that describe their

query intent. After a user issues an initial query and gets back the result, the user may find

that some expected objects are missing and may wonder why. Specifically, objects that the

user expected to be in the result are missing. This suggests to the user that other useful

objects, that are as yet unknown to the user, may be missing from the result as well, and the

user has reason to question the overall utility of the query and its result. In this setting, the

utility of spatial keyword querying can be improved by offering functionality that explains to

the user why one or more expected objects are missing and how to minimally modify the

initial query so that the missing objects, and then potentially also other useful objects, become

part of the result.

Such scenarios call for support for why-not questions, which were first introduced by

Chapman and Jagadish [40]. In [39], is applied the query refinement model [41] to solve the

problem of answering why-not questions on spatial keyword top-k queries via keyword

adaption.

After a user issues a query q = (loc, doc0, k0, α) and receives the result, the user may

observe that one or more objects that were expected to be in the result are missing. The user

may then pose a why-not question with a set of missing objects M = {m1, m2, ..., mj}, asking

the system for a refined query q ′ = (loc, doc′, k′, α) the result of which contains the missing

objects. Since it is possible that no modified set of keywords can revive the missing objects,

we also consider the enlargement of k. It is adopted a penalty model [41], [42], that associates

a penalty with a refined query. It is defined as the weighted sum of the modifications of the

two parameters, i.e., ∆k and ∆doc. The penalty (cost) of a query q ′ that refines an original

query q is defined as follows:

Penalty(q, q′) = λ·
∆k

R(M,q) − 𝑘0
 + (1−λ)·

∆doc

|𝑑𝑜𝑐0 ∪ M.doc|
 ,

where λ is a user preference on the modification of q.k versus q.doc and R(M, q) = maxmi ∈ M

R(mi , q). Next, ∆k = max (0, k′ − k0) since for a refined query q ′, if R(M, q′) > k0, k′ must be no

smaller than R(M, q′) to revive the missing objects; otherwise, k′ can remain at k0. They

normalize ∆k by R(M, q) − k0, as a basic refined query is to keep the original query keywords

and enlarge k0 to R(M, q); for other refined queries that modify the query keywords to achieve

a lower penalty than that of this basic one, ∆k must not exceed R(M, q) − k0. Using the principle

of edit distance, the modification of query keywords ∆doc is quantified as the minimum count,

denoted as ED(doc0,doc′), of edit operations needed to transform doc0 to doc′ . For simplicity,

we consider two edit operations: insertion and deletion. Similarly, we normalize ED(doc0,doc′)

by the maximum possible number of edit operations needed to modify doc0 into a doc′ that

yields a query that retrieves all objects in M. This quantity is estimated as |doc0∪M .doc|,

where M.doc =⋃ 𝑚𝑖 . 𝑑𝑜𝑐𝑗
𝑖=1 . In other words, they just consider the keywords in M.doc, as

 25

adding a keyword not in M.doc would make the set of query keywords less relevant to the

user’s query intention, i.e., less relevant to the missing objects.

In addition, the Keyword-Adapted Why-Not Spatial Keyword Top-k Queries (KAWNQ) is

defined as follows:

Given a set D of spatial objects, a missing object set M ⊂ D, an original spatial keyword

query q = (loc, doc0, k0, α), the KAWNQ query returns the refined query q′ = (loc, doc′, k′, α),

with the lowest penalty cost that referred above, and the result of which contains all objects

in M.

They employ a hybrid index that estimates bounds on spatial distance and textual

similarity at the same time. This index, called the SetR-tree, is a variant of the IR-tree.

As it is observed, most of the queries during their processing use separate indices for space

and text, thus incurring the overhead of storing separate indices and joining their results.

Others proposed a combined index that either inserts terms into a spatial structure or add a

spatial structure to an inverted index.

In [17], a Spatio-Temporal Textual Index (ST2I) structure that supports the efficient

evaluation of both range and top-k queries with multiple constraint types is presented. This

indexing strategy uniformly handles text, space and time in a single structure, and is thus able

to efficiently evaluate queries that combine keywords with spatial and temporal constraints.

By using a single structure to index spatial, temporal and textual attributes together, ST2I is

able to uniformly handle different constraint types and filter over multiple dimensions

simultaneously, thus, reducing the number of irrelevant documents retrieved and

consequently, query execution time. ST2I extends kd-trees, in which it employes a block-based

storage at the leaf node level. This approach retains the flexibility of the kd-tree in supporting

multiple dimensions and at the same time scales to large data sets that do not fit in main

memory. Also, to incorporate text into this structure, ST2I uses an efficient technique to map

textual information (terms) into numbers. This mapping must be strictly monotone so as to

allow the inclusion of the mapped terms into a space-partitioning structure such as the kd-

tree. They employ two algorithms to encode and decode the terms that have linear complexity

in the size of the terms. The encoding and decoding operations are context free and can be

applied on the fly, without requiring intermediate storage or hash tables. In addition, the

approach supports evolving collections, where new terms are added dynamically.

Table 5: Overview of Other Queries.

Query Partitioning

STPSJoin, kSTPSJoin Grid

CSTQ RSR-Tree

KAWNQ SetR-Tree

 26

2.2. Parallel / Distributed

The era of Big Data has created the need of parallel and distributed processing. Parallel

and Distributed systems, are systems where computation is done in parallel, on multiple

concurrently used computing units. They may be different cores of the same processor,

different processors, or even different machines connected over a network. Apart from the

problems that may have a parallel system, they must cope with many new problems, such as

time synchronization, delays, communication problems between computing units, non-

shared memory, load balance between the machines and so on. Thus, there are a lot of new

frameworks, that support parallel batch processing such as, Spark and Hadoop (MapReduce),

and others that support parallel stream processing such as, Spark Streaming and Storm.

2.2.1. Batch Processing

With the popularity of GPS and their applications, the size of spatio-textual data is

increasing explosively, while the existing methods cannot deal with the spatio-textual massive

data. MapReduce [33], a distributed shared-nothing data-processing framework, provides a

method to deal with vast amount of data in a highly scalable and efficient fashion. The

MapReduce framework is built on top of a cluster that is composed of multiple commodity

machines. It allows to process massive data in parallel by splitting them into independent

chunks.

In the sub-section 2.1.1.2., the Top-k Spatio-Textual Preference Query is presented. Due

to the proliferation of the data, this query type must be implemented in a parallel and

distributed system. Thus, in [31], the problem of Parallel and Distributed Processing of Spatial

Preference Queries Using Keywords (SPQ) is studied, where the input data is stored in a

distributed way. Given a set of keywords, a set of spatial data objects and a set of spatial

feature objects that are additionally annotated with textual descriptions, the spatial

preference query using keywords retrieves the top-k spatial data objects ranked according to

the textual relevance of feature objects in their vicinity. This query type is processing-

intensive, especially for large datasets, since any data objects may belong to the result set

while the spatial range defines the score, and the k data objects with the highest score need

to be retrieved. The proposed solution has two notable features:

(a) they propose a grid-based partitioning method that uses careful duplication of feature

objects in selected neighboring cells and allows independent processing of subsets of input

data in parallel, thus establishing the foundations for a scalable query processing algorithm,

and

(b) they boost the query processing performance in each partition by introducing an early

termination mechanism that delivers the correct result by only examining few data objects.

Capitalizing on this, they implement parallel algorithms that solve the problem in the

MapReduce framework.

 27

In the following, the problem statement that solves this type of query is analyzed.

Given an object dataset O and a feature dataset F, which are horizontally partitioned and

distributed to a set of servers, the SPQ returns the k data objects {p1, ..., pk} from O with the

highest τ(pi) scores.

The score τ(p) of p based on feature dataset F, given the range-based neighborhood

condition r is defined as: τ(p) = max{w(f, q) | f ∈ F : d(p, f) ≤ r}, where w(f, q) is the textual

score which computed by the Jaccard similarity, and d(p, f) is the distance between p and f.

They propose an algorithm for solving the SPQ query, which relies on a grid-based

partitioning of the 2-dimensional space in order to identify subsets of the original data that

can be processed in parallel. It uses careful duplication of feature objects in selected

neighboring cells, in order to create independent work units, by the following assumption.

Given a parallel/distributed spatial preference query using keywords with radius r, any

feature object f ∈ Cj must be assigned to all other grid cells Ci(Ci ≠ Cj), if MINDIST(f, Ci) ≤ r.

In addition, they have proposed a thresholding mechanism that allows early termination of

query processing, that guarantees the correctness of the result.

Another framework, that supports a distributed in-memory data management system for

big spatio-textual data, is presented in [6], named as LocationSpark. It is built on top of Apache

Spark [10], a widely used distributed data processing system. Spark is a distributed

computation framework that allows users to work on distributed in-memory data without

worrying about data distribution and fault-tolerance. LocationSpark offers a rich set of spatial

query operators, e.g., range search, kNN, spatio-textual operation, spatial-join, and kNN-join.

LocationSpark stores spatial data as key-value pairs. A spatial tuple ti, contains a spatial

geometric key and a related value, namely ki and vi, respectively. The spatial data type of key

ki can be a two-dimensional point, e.g., latitude-longitude, a line-segment, a poly-line, a

rectangle, or a polygon. The value type vi can be specified by the user, e.g., a text type if the

data tuple is a tweet.

It builds two layers of spatial indexes, global and local. The global index partitions data

among the various nodes. To build a global index, LocationSpark samples the underlying data

to learn the data distribution in space. Then, LocationSpark builds the global index to ensure

that each data partition has the same amount of data. LocationSpark provides a grid and a

region quadtree as the global index. In addition, each data partition has a local index, which is

specified by the user. Here, for spatio-textual data, the IR-tree index is used.

Also, spatial data and queries are usually skewed. Some data partitions receive more

queries than others. Thus, LocationSpark has a query scheduler to mitigate query skew.

LocationSpark’s query executor is responsible for choosing proper spatial algorithms based on

the available spatial indexes and the registered queries. Skew is handled by distributing the

load over the slave nodes. Furthermore, in order to reduce the communication cost when

reading data that spans multiple partitions, LocationSpark uses a simple but efficient bloom

filter, termed as sFilter. sFilter can detect whether a spatial object is inside the spatial range

or not.

 28

Memory is a precious resource for distributed in-memory data management systems. To

deal with this situation, access frequencies and corresponding time stamps are recorded in

the spatial index. Then, LocationSpark detects the frequently accessed data by aggregating

access frequencies. Finally, it dynamically caches frequently accessed data into memory, and

stores the less frequently used data into HDFS.

2.2.2. Streaming

The problem of processing a large amount of continuous spatial-keyword queries over

streaming data, is essential in many applications such as location-based recommendation and

advertising, thanks to the proliferation of geo-equipped devices and the ensuing location-

based social media applications. While, there are several prior approaches aiming at providing

efficient query processing techniques for the problem, their approaches belong to spatial-first

indexing method which cannot well exploit the keyword distribution [30,28]. In addition, their

textual filtering techniques are built upon simple variants of traditional inverted indexes,

which do not perform well for the textual constraint imposed by the problem.

In [27], they investigate the problem of continuous spatial-keyword queries over spatial-

textual stream, they address the above limitations and provide a highly efficient solution

based on a adaptive index, named adaptive spatial-textual partition tree (AP-Tree). The AP-

Tree adaptively groups registered queries using keyword and spatial partitions, guided by a

cost model. Consider N denotes an AP-Tree node and there are three types of nodes: keyword

node (k-node), spatial node (s-node), and query node (q-node). An intermediate node is a

keyword (resp. spatial) node if keyword partition (resp. spatial partition) is adopted. They use

f to denote the fanout of the intermediate node. A leaf node of AP-Tree corresponds to a q-

node, and each query will be assigned to one or multiple query nodes according to its query

region and ordered query keywords.

Keyword Node: They assume there is a total order among keywords in the vocabulary V,

and keywords in each object and query are sorted accordingly. They delay the discussion of

the effect of keyword order strategy to the experimental part. Queries assigned to a node N

are partitioned into f ordered cuts according to their Nl-th keywords, where Nl is called the

partition offset of the node N. They have Nl ≤ Nl
* if N* is a descendant keyword node of N. An

ordered cut is an interval of the ordered keywords, denoted as c[wi , wj], where wi and wj (wi

≤ wj) are boundary keywords. For presentation simplicity, they use c[wi] to denote c[wi , wi] if

there is only one keyword in the cut.

Spatial Node: The space is recursively partitioned by spatial nodes. Let Nr denote the

region of a spatial node N, which will be divided into f grid cells. A query (q) on a spatial node

N is pushed to a grid cell c if q.r overlaps c or contains c. Note that, unlike the keyword node

in which a query is assigned to an unique cut, a spatial node may assign a query to multiple

cells.

Cost model: Given a set Q of queries, AP-Tree is constructed in a top-down manner. Thus,

they need to evaluate the goodness of a keyword or spatial partition such that the AP-Tree is

 29

adaptive to query workload. In this subsection, we propose a cost model to quantitatively

measure the matching cost for two partition methods. Given a node N and a set Q of queries

assigned to N, without further partition the matching cost contributed by N is IQI assuming

the average query verification cost is a unit time. Clearly, they can partition IQI queries into a

set P of f buckets by keyword partition or spatial partition to reduce the matching cost.

Throughout this paper, they might use bucket and cut, bucket and cell interchangeably for

better understanding of the idea.

Let B denote a bucket of the partition, they use w(B) to record its weight which is the

number of queries associated to B. By p(B) they mean the hit probability of the bucket B, (i.e.,

the probability that B is explored during the object matching). The expected matching cost

regarding partition p, denoted by C(P), is as follows.

C(P) = ∑ 𝑤(𝐵𝑖) × 𝑝(𝐵𝑖)
𝑓
𝑖=1 .

Given a partition P and a set of queries Q on the node, the calculation of w(B) is immediate

for each bucket B. They may derive the hit probability p(B) based on some distribution

assumptions or object workload. For analysis simplicity, they assume that p(B) = ∑ 𝑝(𝑤)𝑤 𝜖 𝐵

for keyword node, where p(w) is the hit probability of the keyword w. In case a set O of the

objects is available, it is trivial to derive hit probability of each individual keyword. Otherwise,

they assume the query keyword with high frequency among Q has better chance to appear in

object keywords; that is, they use query workload to simulate object workload. Specifically,

they set p(w) =
𝑓𝑟𝑒𝑞(𝑤)

∑ 𝑓𝑟𝑒𝑞(𝑤)𝑤 𝜖 𝑃
 , where freq(w) is the frequency of keyword w among all queries

in Q. Regarding spatial partition, we may simply assume the uniform distribution of the object

location, and hence p(B) =
𝐴𝑟𝑒𝑎(𝐵)

𝐴𝑟𝑒𝑎(𝑁)
 , where Area(B) is the area of the bucket (i.e., cell) B and

Area(N) is the region size of the node N. The hit probability calculation of each cell (bucket) is

immediate when object workload is available.

The AP-Tree also naturally indexes ordered keyword combinations. They present index

construction algorithm that seamlessly and effectively integrates keyword and spatial

partitions.

Moreover, in [19], are described the Publish/subscribe systems, that enable efficient and

effective information distribution by allowing users to register continuous queries with both

spatial and textual constraints. However, the explosive growth of data scale and user base has

posed challenges to the existing centralized publish/subscribe systems for spatio-textual data

streams. Thus, they propose a distributed publish/subscribe system, called PS2Stream, which

digests a massive spatio-textual data stream and directs the stream to target users with

registered interests. It achieves a better workload distribution in terms of both minimizing the

total amount of workload and balancing the load of workers. To achieve this, they propose a

new workload distribution algorithm considering both space and text properties of the data.

A spatio-textual object is defined as o = <text, loc>, where o.text is the textual content of

object o and o.loc is the geographical coordinate, i.e., latitude and longitude, of object o.

They aim at building a distributed publish/subscribe system over a stream of spatio-textual

objects. Users may express their interests on the spatio-textual objects with subscription

 30

queries. Each subscription query contains a Boolean keyword expression and a region. If a new

spatio-textual object falls in the specified region and satisfies the Boolean keyword expression

specified by a subscription query, the object will be pushed to the user who submits the query.

A subscription query is valid until the user drops it.

Spatio-Textual Subscription (STS) Query: A Spatio-Textual Subscription (STS) Query is

defined as q = <K, R>, where q.K is a set of query keywords connected by AND or OR operators,

and q.R denotes a rectangle region. A spatio-textual object o is a result of an STS query q if

o.text satisfies the boolean expression of q.K and o.loc locates inside q.R.

The large number of STS queries and high arrival rate of spatio-textual objects call for a

distributed solution. They build their system on a cluster of servers with several servers

playing the role of dispatchers, which distribute the workload to other servers. The workload

to their system includes the insertions and deletions of STS queries, and the matching

operations between STS queries and spatio-textual objects.

 Query insertion: On receiving a new STS query, the worker inserts it into an in-memory

index maintained in the worker.

 Query deletion: On receiving the indication of deleting an existing STS query, the

worker removes the query from the index.

 Matching a spatio-textual object: On receiving a spatio-textual object, the worker

checks whether the object can be a match for any STS query stored in the worker. If

yes, the matching result is forwarded to the merger.

In [7], a distributed in-memory spatio-textual stream processing system that extends

Storm, named as Tornado, is presented. To efficiently process spatio-textual streams, Tornado

introduces a spatio-textual indexing layer to the architecture of Storm [8]. The indexing layer

is adaptive, i.e., dynamically re-distributes the processing across the system according to

changes in the data distribution and/or query workload. In addition to keywords, higher-level

textual concepts are identified and are semantically matched against spatio-textual queries.

Tornado provides data de-duplication and fusion to eliminate redundant textual data.

Stream processing in Storm is implemented using three main components; spouts, bolts,

and topologies. A spout is a source of input data streams. A bolt is a data processing unit. A

topology is a directed graph that connects spouts and bolts to form a stream processing

pipeline. Apart from these three components, Tornado uses an adaptive indexing layer which

ensures that queries are not replicated and that the data is sent only to the relevant bolts.

Indexing in Tornado is distributed and is composed of a global spatial index, and local

spatio-textual indexes. All incoming data and queries navigate through the global index to be

assigned to a query processing unit (i.e., a bolt). To avoid performance bottlenecks, the global

index is replicated across several bolts. A local spatio-textual index is composed of multiple

in-memory k-d trees. Each non-leaf node in the k-d tree is augmented with an inverted list

that summarizes the textual contents of its child nodes. The inverted lists help speed-up the

processing of the spatio-textual queries.

Tornado is adaptive to changes in both the data and query workload. It uses Apache

ZooKeeper [9], an open-source distributed configuration and synchronization service, to

 31

synchronize the changes in the global index bolt. Zookeeper stores usage statistics (i.e., the

number of data objects and queries processed) from the data processing bolts. The index bolts

access these usage statistics from the zookeeper to detect when a change in the index is

needed.

 32

3. Spatio-textual Similarity Join Query

In this section, we study the Spatio-textual Similarity Join Query which this thesis

implements. We have referred the existing related work for this type of query and the systems

that it has implemented. Moreover, we study the proposed techniques of partitioning in the

sub-section 3.3.

3.1. Similarity Join on Centralized system

The set-similarity join has attracted significant interest. Spatio-Textual Similarity Join

Queries (ST-SJOIN) find application in a wide range of domains, where spatial and textual

information is available for a set of entities. The definition statement of a ST-SJOIN query is

described below.

Given two collections of objects R and S that carry both spatial and textual information,

the ST-SJOIN retrieves the subset J of R × S, such that for every (r, s) ∈ J, r is spatially close to

s, based on a distance threshold (i.e., distl(r, s) ≤ 𝜖, where distl denotes distance between

locations), and the set similarity between r and s also exceeds a threshold θ (i.e., simt(r, s) ≥ θ,

where simt denotes textual similarity).

In [29], they propose an evaluation of such ST-SJOIN queries, where their techniques are

orders of magnitude faster than baseline solutions. They define a spatio-textual object x as a

triplet (x.id, x.loc, x.text), modeling the identity, the location, and the textual description of x,

respectively. The entry x.loc takes values from the two-dimensional geographical space, while

x.text is a set of terms drawn from a finite global dictionary T = {t1, t2, ... , tn}. Each term t in

x.text could carry a weight (default weights are 1 for unweighted sets), modeling the relevance

of t to object x.

For every pair of spatio-textual objects x and y, they compute their spatial distance,

distl(x,y), with respect to x.loc and y.loc, as the Euclidean distance and their textual similarity,

simt(x,y), the set similarity between sets x.text and y.text, as the Jaccard similarity, simt(x,y) =
|𝑥.𝑡𝑒𝑥𝑡 ⋂ 𝑦.𝑡𝑒𝑥𝑡|

|𝑥.𝑡𝑒𝑥𝑡 ⋃ 𝑦.𝑡𝑒𝑥𝑡|
. Formally, given a collection of spatio-textual objects R, a spatial distance

threshold e and a textual similarity threshold θ, ST-SJOIN(R, e, θ) retrieves all pairs (x, y) with

x, y ∈ R, such that distl(x, y) ≤ e and simt(x, y) ≥ θ.

They use a dynamic grid partitioning, by extending the algorithm PPJoin to PPJoin-I.

Table 6: Overview of Similarity Queries.

Query Spatial

Distance

Textual

Similarity

Partitioning

ST-SJOIN Euclidean Jaccard Grid

 33

3.2. Similarity Join on Parallel/Distributed system

In 3.1, the Spatio-Textual Similarity Join (STSJ) query has referred, and in [32], is proposed

an efficient processing of this query using MapReduce. Given two collections of spatio-textual

objects with a spatial location and textual descriptions, STSJ is to finds out all similar object

pairs that have similar textual descriptions and are spatially close to each other. In [32],

Jaccard coefficient and Euclidean distance are used as the measures to qualify the textual

similarity and spatial similarity respectively, and their approaches can be easily extended to

support other similarity measures. They are proposed several approaches for spatio-textual

similarity join using MapReduce. The problem statement that has to solve the proposed

methods is the following.

Given a collection of spatio-textual objects R = {r1, r2, ···, rn}, where each object r ∈ R

includes a textual description r.text, which contains one or multiple tokens, and a spatial

location r.loc that is represented by two-dimensional geographical coordinates a textual

similarity threshold θ and a spatial distance threshold e, the STSJ(R, θ, e) aims to find all the

similar pairs (ri, rj) where simt(ri, rj) ≥ θ and distl(ri, rj)≤ e,

STSJ(R, θ, e) = {(ri, rj)|ri, rj ∈ R, 1 ≤ i, j ≤ n, i ≠ j, simt(ri, rj) ≥ θ, distl(ri, rj) ≤ e}, where,

simt(ri, rj) is the Jaccard similarity between two objects, and distl(ri, rj) is the Euclidean distance

of two objects.

Firstly, the tokens must be computed using MapReduce, which consists of two phases. In

the first phase, the original records are read by the map function, and it extracts the textual

part, tokenizes it into tokens and produces the output pairs for each token in the form of

(token, 1). Then, the second phase, the reduce function, receives as input the tokens with a

list of values, sums the values as count in the list for each token and outputs the results as

(token, count), sorted them in the ascending order of the frequencies in the shuffle. In the

following, the proposed methods are described.

 Baseline Spatio-Textual Similarity Join (STSJ-B)

 Spatio-Textual Similarity Join with Cprefix (STSJ-C)

 Spatio-Textual Similarity Join with KD-Tree (STSJ-K)

In the referred paper, the proposed methods are evaluated and the pros and cons are

analyzed.

3.3. Partitioning Strategies for Spatio-Textual Similarity Join

In [18], partitioning strategies over spatio-textual objects for tackling STJoin, are explored.

They propose two approaches and they evaluate each against the other. One approach is to

start with a spatial data structure, traverse regions and apply the algorithm for identifying

similar pairs of textual documents, called All-Pairs. The second approach is to construct a

 34

global index, but partition postings spatially and modify the All-Pairs algorithm to prune

candidates based on distance.

As it is mentioned before, in the spatio-textual similarity join (STJoin), we are given a

collection of objects with both texts and geo coordinates and wish to efficiently identify all

pairs of similar objects that are physically close. The two approaches are called Local Index

Approach and Global Index Approach. In both strategies, we could construct either a quadtree

or a grid, as the spatial data structure.

In the Local Index Approach, firstly, they build a PR-quadtree over the dataset. They use

the spatial range of (-180, -90, 180, 90). Given a distance threshold t, they recursively

decompose each node into four child nodes until the node contains less than b objects (by

default, one) or the size of the node is about to less than the threshold t. Each node maintains

a list of object ids. With this partitioning approach, when searching for similar objects for a

target object x, only objects in the same or neighbor nodes of the target object need to be

checked.

In the Global Index Approach, they build a global inverted index, and then partition each

postings list spatially. Objects are sorted by its z-order in each postings list. Thus, when they

are applying the All-Pairs algorithm, instead of iterating over the entire postings list, they only

need to consider the objects within certain range of z-orders. An efficient optimization, is that

we can avoid checking the pair (y, x) if we’ve already checked (x, y).

 35

4. Technologies

Due to the large volume of spatio-textual data, we need a big data technology to manage

these data in parallel. In this thesis, we have used Apache Spark, a distributed / parallel

system.

4.1. Apache Spark

Spark was initially started by Matei Zaharia at UC Berkeley's AMPLab in 2009, and open

sourced in 2010 under a BSD license. Apache Spark has as its architectural foundation the

resilient distributed dataset (RDD), a read-only multiset of data items distributed over a

cluster of machines, that is maintained in a fault-tolerant way. In Spark 1.x, the RDD was the

primary application programming interface (API), but as of Spark 2.x use of the Dataset API is

encouraged even though the RDD API is not deprecated. The RDD technology still underlies

the Dataset API.

Spark and its RDDs were developed in 2012 in response to limitations in the MapReduce

cluster computing paradigm, which forces a particular linear dataflow structure on distributed

programs: MapReduce programs read input data from disk, map a function across the

data, reduce the results of the map, and store reduction results on disk. Spark's RDDs function

as a working set for distributed programs that offers a (deliberately) restricted form of

distributed shared memory.

Spark facilitates the implementation of both iterative algorithms, that visit their data set

multiple times in a loop, and interactive/exploratory data analysis, i.e., the

repeated database-style querying of data. The latency of such applications may be reduced by

several orders of magnitude compared to a MapReduce implementation (as was common

in Apache Hadoop stacks). Among the class of iterative algorithms are the training algorithms

for machine learning systems, which formed the initial impetus for developing Apache Spark.

Apache Spark requires a cluster manager and a distributed storage system. For cluster

management, Spark supports standalone (native Spark cluster), Hadoop YARN, or Apache

Mesos. For distributed storage, Spark can interface with a wide variety, including Hadoop

Distributed File System (HDFS), MapR File System (MapR-FS), Cassandra, OpenStack

Swift, Amazon S3, Kudu, or a custom solution can be implemented. Spark also supports a

pseudo-distributed local mode, usually used only for development or testing purposes, where

distributed storage is not required and the local file system can be used instead; in such a

scenario, Spark is run on a single machine with one executor per CPU core.

Apache Spark consists of five main parts, Spark Core, Spark SQL, Spark Streaming, Machine

Learning Library MLlib, and GraphX.

https://en.wikipedia.org/wiki/Matei_Zaharia
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Fault-tolerant_computing
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Deprecated
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Dataflow
https://en.wikipedia.org/wiki/Map_(parallel_pattern)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Working_set
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Cluster_manager
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/Apache_Mesos
https://en.wikipedia.org/wiki/Apache_Mesos
https://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system
https://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system
https://en.wikipedia.org/wiki/MapR#MapR_converged_data_platform
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/OpenStack#Object_Storage_(Swift)
https://en.wikipedia.org/wiki/OpenStack#Object_Storage_(Swift)
https://en.wikipedia.org/wiki/Amazon_S3
https://en.wikipedia.org/wiki/Apache_Kudu
https://en.wikipedia.org/wiki/CPU_core

 36

4.1.1. Spark core

Spark Core is the foundation of the overall project. It provides distributed task

dispatching, scheduling, and basic I/O functionalities, exposed through an application

programming interface (for Java, Python, Scala, and R) centered on the RDD abstraction (the

Java API is available for other JVM languages, but is also usable for some other non-JVM

languages, such as Julia, that can connect to the JVM). This interface mirrors

a functional/higher-order model of programming: a "driver" program invokes parallel

operations such as map, filter or reduce on an RDD by passing a function to Spark, which then

schedules the function's execution in parallel on the cluster. These operations, and additional

ones such as joins, take RDDs as input and produce new RDDs. RDDs are immutable and their

operations are lazy; fault-tolerance is achieved by keeping track of the "lineage" of each RDD

(the sequence of operations that produced it) so that it can be reconstructed in the case of

data loss. RDDs can contain any type of Python, Java, or Scala objects.

Besides the RDD-oriented functional style of programming, Spark provides two restricted

forms of shared variables: broadcast variables reference read-only data that needs to be

available on all nodes, while accumulators can be used to program reductions in

an imperative style.

4.1.2. Spark SQL

Spark SQL is a component on top of Spark Core that introduced a data abstraction called

DataFrames, which provides support for structured and semi-structured data. Spark SQL

provides a domain-specific language (DSL) to manipulate DataFrames in Scala, Java,

or Python. It also provides SQL language support, with command-line interfaces

and ODBC/JDBC server. Although DataFrames lack the compile-time type-checking afforded

by RDDs, as of Spark 2.0, the strongly typed DataSet is fully supported by Spark SQL as well.

Figure 2: Architecture of Apache Spark.

https://en.wikipedia.org/wiki/I/O_interface
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Higher-order_programming
https://en.wikipedia.org/wiki/Filter_(computer_science)
https://en.wikipedia.org/wiki/Join_(database)
https://en.wikipedia.org/wiki/Immutable_object
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Semi-structured_data
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Java_Database_Connectivity

 37

4.1.3. Spark Streaming

Spark Streaming uses Spark Core's fast scheduling capability to perform streaming

analytics. It ingests data in mini-batches and performs RDD transformations on those mini-

batches of data. This design enables the same set of application code written for batch

analytics to be used in streaming analytics, thus facilitating easy implementation of lambda

architecture. However, this convenience comes with the penalty of latency equal to the mini-

batch duration. Other streaming data engines that process event by event rather than in mini-

batches include Storm and the streaming component of Flink. Spark Streaming has support

built-in to consume from Kafka, Flume, Twitter, ZeroMQ, Kinesis, and TCP/IP sockets.

In Spark 2.x, a separate technology based on Datasets, called Structured Streaming, that

has a higher-level interface is also provided to support streaming.

4.1.4. MLlib Machine Learning Library

Spark MLlib is a distributed machine-learning framework on top of Spark Core that, due

in large part to the distributed memory-based Spark architecture, is as much as nine times as

fast as the disk-based implementation used by Apache Mahout (according to benchmarks

done by the MLlib developers against the alternating least squares (ALS) implementations,

and before Mahout itself gained a Spark interface), and scales better than Vowpal

Wabbit. Many common machine learning and statistical algorithms have been implemented

and are shipped with MLlib which simplifies large scale machine learning pipelines, including:

 summary statistics, correlations, stratified sampling, hypothesis testing, random data

generation.

 classification and regression: support vector machines, logistic regression, linear

regression, decision trees, naive Bayes classification.

 collaborative filtering techniques including alternating least squares (ALS).

 cluster analysis methods including k-means, and latent Dirichlet allocation (LDA).

 dimensionality reduction techniques such as singular value decomposition (SVD),

and principal component analysis (PCA).

 feature extraction and transformation functions.

 optimization algorithms such as stochastic gradient descent, limited-memory BFGS(L-

BFGS).

https://en.wikipedia.org/wiki/Event_stream_processing
https://en.wikipedia.org/wiki/Event_stream_processing
https://en.wikipedia.org/wiki/Lambda_architecture
https://en.wikipedia.org/wiki/Lambda_architecture
https://en.wikipedia.org/wiki/Storm_(event_processor)
https://en.wikipedia.org/wiki/Apache_Flink
https://en.wikipedia.org/wiki/Apache_Kafka
https://en.wikipedia.org/wiki/Apache_Flume
https://en.wikipedia.org/wiki/Twitter#Implementation
https://en.wikipedia.org/wiki/ZeroMQ
https://en.wikipedia.org/wiki/Amazon_Web_Services#Database
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Apache_Mahout
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Scale_(computing)
https://en.wikipedia.org/wiki/Vowpal_Wabbit
https://en.wikipedia.org/wiki/Vowpal_Wabbit
https://en.wikipedia.org/wiki/Pipeline_(software)
https://en.wikipedia.org/wiki/Summary_statistics
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Stratified_sampling
https://en.wikipedia.org/wiki/Hypothesis_testing
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Support_vector_machines
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Data_transformation_(statistics)
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Limited-memory_BFGS

 38

4.1.5. GraphX

GraphX is a distributed graph-processing framework on top of Apache Spark. Because it

is based on RDDs, which are immutable, graphs are immutable and thus GraphX is unsuitable

for graphs that need to be updated, let alone in a transactional manner like a graph

database. GraphX provides two separate APIs for implementation of massively parallel

algorithms (such as PageRank): a Pregel abstraction, and a more general MapReduce style

API. Unlike its predecessor Bagel, which was formally deprecated in Spark 1.6, GraphX has full

support for property graphs (graphs where properties can be attached to edges and vertices).

GraphX can be viewed as being the Spark in-memory version of Apache Giraph, which

utilized Hadoop disk-based MapReduce.

Like Apache Spark, GraphX initially started as a research project at UC Berkeley's AMPLab

and Databricks, and was later donated to the Apache Software Foundation and the Spark

project.

https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Graph_database#Distributed_processing
https://en.wikipedia.org/wiki/Apache_Giraph

 39

5. Problem Statement

This thesis deals with finding similar spatio-textual objects from two sets of spatio-textual

data, based on given radius and similarity thresholds. The type of query is the Spatio-Textual

Similarity Join (STSJ) which is analyzed in Section 3 for centralized systems and for the

parallel/distributed systems with batch processing. This type of query has been studied in

previous research and the problem statement is referred below.

Given a collection of spatio-textual objects R = {r1, r2, ···, rn}, where each object r ∈ R

includes a textual description r.text, and a spatial location r.loc that is represented by two-

dimensional geographical coordinates a textual similarity threshold θ and a spatial distance

threshold e, the STSJ(R, θ, e) aims to find all the similar pairs (ri, rj) where simt(ri, rj) ≥ θ and

distl(ri, rj)≤ e

STSJ(R, θ, e) = {(ri, rj)|ri, rj ∈ R, 1 ≤ i, j ≤ n, i ≠ j, simt(ri, rj) ≥ θ, distl(ri, rj) ≤ e}

where simt(ri, rj) is the Jaccard similarity between two objects, and distl(ri, rj) is the Euclidean

distance of two objects.

Spatio-textual objects are described from their location and a text, as it is shown in Figure

3. These objects achieve a similarity join depending on the distance and textual thresholds.

For example, let distance threshold be 0,3 and textual threshold be 0,65. In the next figure,

the only points which achieve a similarity join are x1 and x2, because:

dist(x1, x2) <= 0,3 and

sim(x1, x2) = 2/3 = 0,66 >= 0,65.

All other occasions do not achieve a similarity join, because as we can notice, the textual

similarity is lower than 0,65.

Figure 3: Spatio-textual objects.

 40

These two functions that we have used for the similarity join, could vary depending on the

user desires. There are a lot of these measure functions, which some of them are described in

chapter 2.

5.1. Euclidean distance

The Euclidean distance between points p and q is the length of the line segment

connecting them. In Cartesian coordinates, if p = (x1, y1) and q = (x2, y2) are two points in

Euclidean 2-space, then the distance d(p, q) from p to q, or from q to p, is given by the formula:

d(p, q) = d(q, p) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

For instance, let p = (2, -1) and q = (-4, 7). The Euclidean distance of these two points is:

d(p, q) = √(2 − (−4))2 + (−1 − 7)2 = √36 + 64 = 10

5.2. Jaccard similarity

The Jaccard similarity of the text of two sets A and B, which have a whole set of words, is

the size of intersection divided by size of union of two sets. The formula that computes the

Jaccard similarity is the following:

J (A, B) =
|𝐴 ⋂ 𝐵|

|𝐴 ⋃ 𝐵|
 =

|𝐴 ⋂ 𝐵|

|𝐴|+|𝐵|−|𝐴 ⋂ 𝐵|
 ,

where,

|A ⋂ B| is the number of the intersecting words of A and B,

|A| is the number of words of A,

|B| is the number of words of B.

For example, given two sentences:

A: AI is our friend and it has been friendly.

B: AI and humans have always been friendly.

In order to calculate similarity using Jaccard similarity, we will first

perform lemmatization to reduce words to the same root word. In our case, “friend” and

“friendly” will both become “friend”, “has” and “have” will both become “has”. Drawing a

Venn diagram of the two sentences we get:

 41

For the above two sentences, depicted in Figure 3, we get Jaccard similarity
5

5+3+2
 =

0.5, which is size of intersection of the set divided by total size of set.

Figure 4: Venn diagram of Jaccard similarity.

 42

6. Analysis of implementation

In this thesis, partitioning strategies for spatio-textual objects are studied in order to

achieve the best load balancing. The two partitioning strategies which have been

implemented are based on the spatial part of the object. The first implementation is the

partitioning of data based on an Horizontal separation, whereas the second implementation

is the partitioning of data based on a Regular Grid.

In each partition, two algorithms which compute the STSJ query have been developed in

order to find similar objects. The first algorithm is a “Brute Force” algorithm, which checks

Euclidean distance and Jaccard similarity for each point of dataset “A” against all points of

dataset “B”. The second algorithm is based on Plane Sweep, which checks for each point only

those that are nearest based on a given radius.

It is important to be cleared that if we desire to compute the Spatio-textual similarity join

query with parallel processing, one technique of partitioning and one algorithm for the query

processing is necessary.

6.1. Techniques of partitioning

Two techniques of partitioning have been developed, in order to find which of these

achieve the best load balancing to the workers. These techniques are presented below, called

as Horizontal Separation and Regular Gird.

6.1.1. Partitioning data based on Horizontal Separation

During the first implementation, an horizontal separation of spatial data based on latitude

is defined. First of all, for the Spatio-Textual Similarity Join Query, we have two datasets, A

and B. Every dataset is read as a Spark Dataframe. For each dataset, a new column filling with

“A” or “B” is created that represents if the dataset is the A or the B. Then, the two Dataframes

are united and sorted by the latitude column.

Afterwards, we perform lemmatization in the column that corresponds to the text.

Lemmatization is a process in which words are cut and only the main body of each word

retains. For example, if we have the words “Human”, “humanity”, and “humanities”, the main

body of each word is the “human”, and it remains. As can be seen, the capital letters become

small. Moreover, there are a lot of stop-words in each sentence, which must be excluded from

the textual similarity, because they do not give any information. These kinds of words are

usually articles, pronouns and conjunctions. We used a list of 179 English stop-words.

Then, a column that shows the number of the row must be created, in order to make the

partitions. As it is referred, the table is sorted by latitude and is cut based on the number of

partitions, which the user gives. We first compute the size of the Dataframe and we divide it

 43

with the number of partitions and save this number as “x”. Therefore, the corresponding field

of a record depends on the integral part of the division “x” with the number of the row. For

example, let the size of the Dataframe be 3.000 records and the defined number of partitions

is 10, and so “x” = 3.000/10 = 300. Then, the partition in which each point corresponds is

computed by the integer part of the division row_number/300. Thus, the first 300 points will

be matched to the partition “0”, the next 300 points will be matched to the partition “1”, and

so on.

Figure 5, captures the finally table that is created after above processing. The explanation

of the datasets which have used, are presented in Section 7. The first column is the id of the

record, latitude and longitude are the geographical coordinates, DatasetID shows if the record

belongs to dataset A or B, Lemma is column that shows the keywords after lemmatization,

IncreasingID captures the row number of the record and grid shows the partition which this

record belongs.

Next step is the duplication of the points of the dataset B, based on the radius of search

that the user gives. There are some points that may be close enough, but they are on different

partitions. In the next figure (Figure 6), every point pi is described with its coordinates (xi, yi)

and “A” or “B”, depending on the dataset that it belongs. There are three partitions, “0”, “1”

and “2”. As you can see, the point p1 belongs in the partition “1”, as the p2. Given a radius (r),

a circle with center the point p1, which pertains to dataset B, is formed. As it appears in the

next figure, the points p2, p3 and p4 of dataset A belong in this circle. This means, that these

three points have Euclidean distance from point p1 lower than r. However, p2 and p4, belong

in different partitions, so p1 must be duplicated to partitions “0” and “2”, so as it can be

processed with other points of dataset A.

Figure 5: Structure of the creating table.

 44

Thus, based on the initial creation of partitions, we have to duplicate these points to the

corresponding partitions which are nearest because of the radius, in order to have these

points in the same partition, regardless of the fact that they are not. Firstly, we have to

compute the upper value of the latitude in each partition. Then, given the number of the cell

(i.e. partition) that corresponds each point of the dataset B, we check for each point of the

dataset B, all the previous cells in sequence if the distance (latitude – radius) is lower than the

upper value of the latitude of the previous cell. If it is true, the number of the cell (i.e. partition)

is appending in the list of cells that is nearest to the point. If it is false, we break the repetitive

search. Subsequently, we check all the next cells in sequence if the distance (latitude + radius)

of the point is greater than the upper value of the latitude of the next cell. If it is true, the

number of the cell (i.e. partition) is appending in the list of cells that is nearest to the point. If

it is false, we break the repetitive search.

In the next figure (Figure 7), there are 10 partitions and diverse points of dataset A or B.

We can observe the partition that each point belongs. As a result of the above processing, p1

which belongs to dataset B and to partition “0”, will be duplicated in “1”, because of the

defined radius. Such kind of duplication will be done for points p4, p6. However, p8 will not be

duplicated to partition “8”, though the radius shows that it had to, because it belongs to

dataset A and it has been referred that only the points of dataset B will be copied.

Figure 6: Duplication of points in Horizontal separation.

 45

Last step of the duplication of the points in the cells, is to duplicate the entire row with

each value of the partition list which has created. For instance, if a point due to the above

processing has the list [0, 1, 2] in the column that shows the corresponding partition, we

duplicate the entire row of the point 3 times. One for the partition “0”, one for the partition

“1” and one for the partition “2”.

With the above processing, we have created the number of partitions that corresponds

each value. Therefore, we can send each point to the partition, after first finding the distinct

values of the partitions.

Algorithm 1 describes the way that Horizontal Separation make the partitioning to the

workers.

Figure 7: Duplication of points of Dataset B in the whole space, that is created with Horizontal separation.

 46

6.1.2. Partitioning data based on Regular Grid

In the second implementation, data are partitioned by a regular grid, which is created

based on the coordinates of the first dataset. A Regular Grid is consisted of equal

parallelograms, which are the result of splitting the longitude axis to equal parts, and the

latitude axis to equal parts. In the case that the parts of longitude and latitude are equal, then

the parallelograms become squares.

First of all, we define which dataset will be the “A” and which the “B”. Then, in the dataset

“A”, we compute the minimum and the maximum values of the longitude and latitude. The

minimum point of the Regular grid, will be the (min longitude, min latitude). The maximum

point of the Regular grid, would be the (max longitude, max latitude).

Furthermore, we compute the equal parts that the longitude and the latitude axis have

been divided. Initially, we define the number of parts in which the two axis will be splitted. If

the splits of the longitude are 10, and so for latitude, the dimension of the Regular grid will be

10x10. As a result of this creation of grid, the Regular grid will contain 100 cells. The length of

the parts (i.e. the step) in longitude and latitude is computed by the following two formulas:

 1: Input p(d1, d2, r, splits)

 2: Function Horizontal_Separation:

 3: union d1, d2 as d

 4: sort d // by latitude

 5: for x 𝜖 d do

 6: l <- lemma(d(text)) //perform lemmatization on text

 7: end for

 8: size <- size(d) / splits

 9: for x 𝜖 d do

10: cellid <- int(row_number(x) / size)

11: end for

12: // duplicate points of dataset B to the nearest cells

13: bounds <- bounds(cells)

14: for x 𝜖 d do

15: if x 𝜖 d(B) then

16: if x(lat) + r > bounds or x(lat) – r < bounds then

17: duplicate point to these cells

18: end if

19: end if

20: end for

21: end Function

Algorithm 1: Pseudocode of Horizontal Separation.

 47

 stepLon = (maxLon - minLon) / splits

 stepLat = (maxLat - minLat) / splits

where,

maxLon and maxLat are the maximum values of latitude,

minLon and minLat are the minimum values of longitude, and

splits are the number of parts, in which axis is separated.

Moreover, we use another formula in order to compute in which cell of the Regular grid,

the point matches. Each cell will be named with a unique id number, from 0 to dimension of

Regular Grid minus 1. Thus, if we have a 5x5 Regular grid, the ids of the cell will range from 0

to 24. The formula which computes the above processing is the following:

cellID = int((x - minLon) / stepLon) * splits + int((y - minLat) / stepLat)

where,

minLon, stepLon, splits, minLat and stepLat, have referred above, and

x, y are the coordinates of the checked point.

The above formula has a peculiarity, which corresponds to the maximum point of the

regular grid to another cell outside the grid. In order to avoid this, we marginally increase the

maximum values of longitude and latitude of the Regular grid. Thus, the maximum point of

the grid has become (max longitude + 0.0000001, max latitude + 0.0000001).

In the following, we have to duplicate points of dataset B to the corresponding cells based

on the radius, such as in the first implementation. Each partition in the cluster will be a unique

cell of the grid. The computation in each cell of the nearest and similar points is independent

on the others. Thus, there may be points that are close enough and have high Jaccard

similarity, but they belong to different cells. To avoid this problem, we have to duplicate points

of dataset B to the cells that are nearest because of the radius.

Next figure (Figure 8), captures the reason why some points must be duplicated. For

example, p1 belongs to cell with number 8. Given a radius by a user, a circle is created which

captures the point that is near enough. Thus, p1 seems to be near to some points of the cells

7, 9, 12, 13, 14, and the point is copied to these cells. For the same reason, p2 must be copied

to cells 10, 11, 15, 17, 20, 21.

 48

Algorithm 2 describes the way that Regular Grid technique achieves the partitioning of
data.

Figure 8: Duplication of points in Regular Grid.

 49

6.2. Query processing

The query processing has been developed with two different algorithms, in order to find
which of these achieve the best performance. These algorithms are performed below, called
as Brute Force and Plane Sweep.

 1: Input p(d1, d2, r, splits)

 2: Function Regular_Grid:

 3: // find the minimum and maximum values of longitude and latitude in dataset A

 4: maxLat <- max(d1(lat)) + 0.000001

 5: maxLon <- max(d1(lon)) + 0.000001

 6: minLat <- min(d1(lat))

 7: minLon <- min(d1(lon))

 8: // compute the step in each axis

 9: stepLon <- (maxLon - minLon) / splits

10: stepLat <- (maxLat - minLat) / splits

11: for x 𝜖 d1 do

12: cellid <- int((x(lon) - minLon) / stepLon) * splits + int((x(lat) - minLat) / stepLat)

13: end for

14: for x 𝜖 d2 do

15: cellid <- int((x(lon) - minLon) / stepLon) * splits + int((x(lat) - minLat) / stepLat)

16: // duplicate points of dataset B to the nearest cells

17: if x near enough to other cells based on r then

18: duplicate point to these cells

19: end if

20: end for

21: union d1, d2 as d

22: for x 𝜖 d do

23: l <- lemma(d(text)) //perform lemmatization on text

24: end for

25: end Function

Algorithm 2: Pseudocode of Regular Grid.

 50

6.2.1. Brute Force Algorithm

The Brute Force algorithm computes the Euclidean distance and Jaccard similarity in each

partition, for each point of dataset B, against all points of dataset A.

First of all, the records of each partition are stored in a table. Then, each point of dataset

“B” is checked in sequence against all points of dataset “A”. Each time, the Euclidean distance

and the Jaccard similarity is computed in the same step. Thus, if a point of dataset “B” is near

and similar enough with a point of dataset “A”, we have a join.

In the next figure (Figure 9), let the parallelogram be a partition which has diverse points
of datasets A and B. Due to the above explanation, each point of dataset A is checked with all
points of dataset B. This exhaustive search is terminated when all points of dataset A are
checked against all of dataset B.

The complexity of this algorithm is O(M*N), where M is the number of points of dataset A

and N is the number of points of dataset B.

Algorithm 3 shows how Brute Force computes the similarity join query.

Figure 9: Query processing with Brute Force.

 1: Input q(pos, text, d, r, e)

 2: Function Brute_Force:

 3: for x 𝜖 d(A) do

 4: for y 𝜖 d(B) do

 5: if dist(x,y) <= r and sim(x,y) >= e then

 6: Achieve a join

 7: end if

 8: end for

 9: end for

10: end Function

Algorithm 3: Pseudocode of Brute Force.

 51

6.2.2. Plane Sweep Algorithm

Plane Sweep algorithm sort all values by longitude and compute the distance until the

longitude of a point is greater than the longitude of the checked point plus the radius. Then,

for these points, the Jaccard similarity is computed.

Firstly, the records in each partition are stored in a table. The table is sorted by the

longitude coordinate of the points. Then, we check each point against its next, till the

longitude of a point is greater than the longitude of the checked point adding the given radius.

Initially, for these points, the Euclidean distance is computed and if the points are close

enough, the Jaccard similarity is computed. If the Jaccard similarity is equal or greater than a

given number, we have a join.

The advantage of this algorithm is that we do not compute Euclidean distance and Jaccard

similarity for each point against all, but we stop the searching when the longitude of a point

is greater than the longitude of the checked point adding the defined radius. Moreover, an

efficient optimization, is that we can avoid checking the pair (y, x) if we’ve already checked (x,

y). Thus, we reduce the complexity of the algorithm.

In the next figure (Figure 10), we will explain with an example the way that Plane Sweep

compute the similarity join query. All points are sorted by the longitude coordinate of the

points. Given a radius (r), a circle which has in the center the first point is formed. As you can

observe, in the created circle, there are two points of dataset B which belongs to. Thus, the

Plane Sweep algorithm will only check these two points, and will terminate the searching for

the first point. This process is repeated for all the points.

The complexity of Plane Sweep will vary depending on the defined radius. The initially sort

of the table has a complexity of O(nlog(n)), where n is the total number of points in the

partition. Because of the early termination, we expect a lower complexity than the complexity

of Brute Force.

Figure 10: Query processing with Plane Sweep.

 52

Algorithm 4 captures how Plane Sweep algorithm computes the similarity join query.

 1: Input q(pos, text, d, r, e)

 2: Function Plane_Sweep:

 3: sort d //by longitude

 4: for x 𝜖 d do

 5: for y 𝜖 d+1 do // y takes values from next points of x

 6: If y(lon) < x(lon) + r then

 7: if dist(x,y) <= r then

 8: if sim(x,y) >= e then

 9: Achieve a join

10: end if

11: end if

12: else

13: break

14: end if

15: end for

16: end for

17: end Function

Algorithm 4: Pseudocode of Plane Sweep.

 53

7. Experimental setup

In this section, we present the platform in which we run our experiments and the
hardware specs. Also, we will describe the metrics which have used in order to evaluate the
performance of the algorithms. Furthermore, we will present the datasets that have used for
the experiments in section 8.

All algorithms are implemented in Python and more specific we have used the PySpark
library for the parallel processing.

7.1. Platform

We deployed our algorithms in a Spark cluster consisting of 5 nodes. Each of the nodes
has 8 GB of RAM, 1 disk with 60 GB for HDFS and 4 CPUs. All nodes run Ubuntu 16.04.

7.2. Evaluation metrics

There are diverse metrics that could be evaluated, such as the load balancing in each

partition, to avoid some workers having a high load of computation. Moreover, we measure

the time that each algorithm needs to be terminated and compute the similarity join. Also, we

measure the number of times that the functions Euclidean distance, Jaccard similarity are

used.

In the following, the metrics are listed following by the reason of choosing them.

 Time: we used this metric in order to find which algorithm achieves the fastest

computation.

 Load balancing: it is used so as to evaluate the techniques of partitioning.

 Standard deviation: this metric will also show which technique of partitioning is the

best.

 Counts of Euclidean distance function: this metric presents the number of times that

this function is used.

 Counts of Jaccard similarity function: this metric presents the number of times that

this function is used.

 Counts of similarity joins: it measures the number of points that are similar.

7.3. Datasets

We have evaluated our implementations in diverse datasets, in order to measure the
metrics which have referred above. We have used datasets form the real-world life, so as to
observe the performance in a real-life problem. Moreover, we have created a synthetic
dataset which follows a uniform distribution, in order to achieve our algorithms in these
datasets.

 54

7.3.1. Real datasets

We evaluate the implementation in a real-life problem, in which the real-life points do not
typically follow uniform distribution. The datasets have been downloaded from TripAdvisor.

The first dataset contains the ratings of users in diverse locations and the structure that
this file has is presented below:

 Rating: from 0 to 5 stars.

 Review: description of location.

 Title: name of location.

 Rtitle: summary of rating in a few words.

 Address: address of location.

 Latitude: geographical latitude of location.

 Longitude: geographical longitude of location.

The second dataset contains the ratings of users for diverse restaurants and the structure
of this dataset is seemed below:

 Rating: from 0 to 5 stars.

 Review: description of restaurant.

 Title: name of restaurant.

 Rtitle: summary of rating in a few words.

 Address: address of restaurant.

 Latitude: geographical latitude of restaurant.

 Longitude: geographical longitude of restaurant.

Table 7: Summary table of real datasets.

Parameter Dataset A Dataset B

Size 20 MB 11 MB

Records 50.000 30.000

Distribution Random Random

7.3.2. Synthetic datasets

Also, we have evaluated our implementation in datasets that follow a uniform distribution

and have high textual similarity. Datasets have been created with a spatio-textual data

generator, given the parameters that show below (Table 8).

 55

Table 1: Given parameters in the data generator.

Parameter Description Value A Value B

Entries How many entries are generated 200.000 100.000

Precision Precision of the decimal part 4 4

Max dimension Maximum dimension of points 100 100

Min textual

objects

Minimum number of keywords

that contains a point

4 3

Max textual

objects

Maximum number of keywords

that contains a point

7 6

The structure of these datasets is the same and it is presented below:

 Id: id of the record.

 Latitude: the latitude coordinate of the point.

 Longitude: the longitude coordinate of the point.

 Text: keywords which describe the record.

Table 8: Summary table of synthetic datasets.

Parameter Dataset A Dataset B

Size 10 MB 5 MB

Records 200.000 100.000

Distribution Uniform Uniform

 56

8. Experimental study

In this chapter, we evaluate the performance of the two technics of partitioning and the

two algorithms which compute the similarity join query.

It is divided in two experiments, where in the first we use real datasets for the evaluation,

in order to notice the performance in a real-life problem.

Afterwards, the best technique of partitioning and the best algorithm of similarity join are

chosen, and they are evaluated on synthetic data, which follow a uniform distribution.

8.1. First experiment

In the first experiment, two real datasets that have been downloaded from TripAdvisor

are used. We evaluate the implementation in a real-life problem, in which the real-life points

do not typically follow uniform distribution.

In the next table (Table 9), the parameters that have been used for the first experiment

are described.

Table 9: Parameters of the first experiment.

Parameter Description Value

r Radius of search 1°

e Threshold of textual similarity 0.7

d Splits of space 25

8.1.1. Comparison of Horizontal Separation VS Regular Grid

In this subsection, we compare the techniques of partitioning, in order to achieve the best

load balancing.

Figure 11 shows the load balancing achieved by the Horizontal separation in contrast with

Regular grid. Each partition captures the volume of data which contains.

 57

We can monitor that the Horizontal separation has achieved a very good load balancing,

because the line, which describes the number of elements in each partition, seems to be

almost straight.

Partition data by Regular Grid, seems to be an unbalanced way, because the line which

describes the volume of data in each partition is a crooked line. Also, even if we have defined

the splits equal to 25 (d =25), which means that we have a 5x5 regular grid, there are three

parallelograms in grid which have been empty.

Another measure that proves which technique achieves the best load balancing is the
standard deviation (Table 10). We observe that Horizontal Separation achieves low standard
deviation in contrast with the Regular Grid.

Table 10: Standard deviation of partitioning.

Partitioning Technique Standard Deviation

Horizontal Separation 348

Regular Grid 2758

For the above explanation, we choose that the best technique, which achieves the best

load balancing, is the Horizontal Separation. This technique will be used in the second

experiment.

0

2,000

4,000

6,000

8,000

10,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
o

in
ts

Partitions

Partitioning data with Regular Grid VS Horizontal
Separation

Regular Grid Horizontal Separation

Figure 11: Comparison of partitioning techniques.

 58

8.1.2. Comparison of Plane Sweep VS Brute Force

In this subsection, we compare the two algorithms which compute the similarity join

query, Plane Sweep and Brute Force. We will compare the time that each algorithm needs in

order to be terminated and show the results. Also, we will measure the number of times that

each function (Euclidean distance and Jaccard similarity) is applied to.

In the following figure (Figure 12), the execution time that each algorithm needs until the

termination, is captured. We can observe that the fastest algorithm is the Plane Sweep and

the best partitioning technique which make the fastest results is the Horizontal Separation.

Furthermore, we can notice huge differences between time in each algorithm and the fastest

is the Plane Sweep.

Moreover, the total counts of Euclidean vs Jaccard function that has applied to the

Horizontal Separation, are captured in Figure 13. It has applied a logarithmic scale to the y-

axis, because of the large deviations. As it has referred above, in Plane Sweep, the Euclidean

distance is applied first, and if the points are close enough given a radius, then the Jaccard

distance is applied. Thus, it is logical that the Euclidean function has used more times than the

Jaccard.

On the other hand, in Brute Force, the Euclidean and Jaccard function are applied at the

same time. So, the total counts for these functions are the same.

We can observe that in Horizontal Separation, the Plane Sweep algorithm needs less

computation to achieve the result, as we expect given the way that Plane Sweep works with

the early termination.

0

2,000

4,000

6,000

8,000

10,000

12,000

Plane Sweep Brute Force

Ex
ec

u
ti

o
n

 ti
m

e
(s

ec
)

Execution time of Plane Sweep VS Brute Force

Horizontal Separation Regular Grid

Figure 12: Total execution time of Plane Sweep VS Brute Force.

 59

For the Regular Grid, we can see the total number of counts for the functions in the next

figure (Figure 14). Again, it has applied a logarithmic scale in y-axis, in order to have a better

visualization. Because of the dividing of data has become in a blind way, without taking the

data into account, the points may be far enough to each other. Thus, we can observe that

counts in Plane Sweep are a few, because the searching terminates faster when the points are

far enough. On the other hand, in Brute Force, the counts of functions are not affected from

the distance of the points, because we check each point against all of the same partition that

they belong.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

Plane Sweep Brute Force

Total Counts of Euclidean VS Jaccard in Horizontal
Separation

Total counts of Euclidean function Total counts of Jaccard function

Figure 13: Total counts of Euclidean VS Jaccard function in Horizontal Separation.

Figure 14: Total counts of Euclidean VS Jaccard function in Regular Grid.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Plane Sweep Brute Force

Total counts of Euclidean VS Jaccard in Regular Grid

Total counts of Euclidean function Total counts of Jaccard function

 60

Last but not least, the dataset that we have used in the first experiment, has in the text

description a lot of words. So, it is difficult enough to achieve a similarity join, when the

similarity threshold is high. For this reason, we will execute a second experiment, using data

that follow a uniform distribution and has in the text description a few keywords, which in

many times would have a high similarity.

Due to the first experiment, taking account the performance of the algorithms and the

techniques of data dividing, we choose the Horizontal Separation technique for the

partitioning and the Plane Sweep for the similarity join.

8.2. Second experiment

In the next table (Table 9), the parameters of the second experiment are described. We

have chosen a small radius, because of the distribution that the datasets follow and we divide

the space into 20 parts.

Table 11: Parameters of the second experiment.

Parameter Description Value

r Radius of search 0.5°

e Threshold of textual similarity 0.7

d Splits of space 20

The load balancing of the partitions is captured in Figure 15. As we can observe, the

partitioning of the data seems to be balanced enough. The anomalies that we notice, are

because of the duplication of the data in the nearest cells based on the radius. In these

partitions, may there are a lot of points that are near to the limits that have been created

during the Horizontal separation.

 61

Figure 16-17, shows the number of times that the Euclidean distance and Jaccard similarity
functions have been used. As it has referred above, in Plane Sweep, the Euclidean distance is
applied first and if the data are near enough, then the Jaccard similarity is applied. Thus, it is
logical that the counts of Euclidean function are high enough than the counts of the Jaccard.
Also, the number that the functions are applied to, are independent of the data that each
partition contains, because the points may not be close enough.

0

5,000

10,000

15,000

20,000

25,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
o

in
ts

Partition

Load Balancing in Horizontal Separation

Figure 15: Load balancing in Horizontal Separation.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Counts Euclidean function

Figure 16: Counts of Euclidean distance function in each partition.

 62

In Figure 18, the number of similarity points in each partition are figured. This number of

joins is dependent on the similarity threshold that is defined.

5,300

5,400

5,500

5,600

5,700

5,800

5,900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Counts Jaccard function

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Counts similarity join

Figure 17: Counts of Jaccard similarity function in each partition.

Figure 18: Counts of similarity join points in each partition.

 63

Last figure (Figure 19), is the execution time that each partition needs in order to compute

the similarity join query.

0

200

400

600

800

1,000

1,200

1,400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ex
ec

u
ti

o
n

 ti
m

e
(s

ec
)

Execution time in each partition

Figure 19: Execution time of Plane Sweep in each partition.

 64

9. Conclusion

In conclusion, we have studied the related work that have been done in the research

community in spatio-textual queries. We have implemented the similarity join query, and we

examine different algorithms, Plane Sweep and Brute Force, to compute this type of query, in

order to find which of these achieve the best performance.

Due to the large volume of spatio-textual data, the main problem which we have met, was

the load balancing of data in the workers. We have implemented two different techniques of

partitioning, Horizontal Separation and Regular Grid. The partitioning is based on the spatial

part of the records, which after a lot of experiments seem to achieve better load balancing

than the partitioning based on the text. Regular Grid makes the partitions without see the

data, whereas Horizontal Separation is dynamically creates the partitions based on the points

of the datasets.

Because of the experiments that have been done in the chapter 5, we propose that the

best technique of partitioning is the Horizontal Separation. Also, the fastest algorithm of

computing the similarity join query is the Plane Sweep.

Future work in this implementation, may be to examine the performance of the algorithm

in a really huge volume dataset.

 65

10. References

[1] Krishan K. Arya, Vikram Goyal, Shamkant B. Navathe, Sushil K. Prasad: Mining Frequent

Spatial-Textual Sequence Patterns. DASFAA (2) 2015: 123-138.

[2] Farhana Murtaza Choudhury, J. Shane Culpepper, Zhifeng Bao, Timos Sellis:

Batch Processing of Top-k Spatial-Textual Queries. ACM Trans. Spatial Algorithms and

Systems 3(4): 13:1-13:40 (2018).

[3] Farhana Murtaza Choudhury, J. Shane Culpepper, Timos K. Sellis, Xin Cao: Maximizing

Bichromatic Reverse Spatial and Textual k Nearest Neighbor Queries. PVLDB 9(6): 456-

467 (2016).

[4] Farhana Murtaza Choudhury, J. Shane Culpepper, Timos K. Sellis: Batch processing of

Top-k Spatial-textual Queries. GeoRich@SIGMOD 2015: 7-12.

[5] Orestis Gkorgkas, Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørvåg: Maximizing

Influence of Spatio-Textual Objects Based on Keyword Selection. SSTD 2015: 413-430.

[6] MingJie Tang, Yongyang Yu, Qutaibah M. Malluhi, Mourad Ouzzani, Walid G. Aref:

LocationSpark: A Distributed In-Memory Data Management System for Big Spatial

Data. PVLDB9(13): 1565-1568 (2016).

[7] Ahmed R. Mahmood, Ahmed M. Aly, Thamir Qadah, El Kindi Rezig, Anas

Daghistani, Amgad Madkour, Ahmed S. Abdelhamid, Mohamed S. Hassan, Walid G.

Aref, Saleh M. Basalamah: Tornado: A Distributed Spatio-Textual Stream Processing

System. PVLDB 8(12): 2020-2023(2015).

[8] Storm. https://storm.apache.org/, 2015.

[9] ZooKeeper. https://zookeeper.apache.org/, 2015

[10] Spark. https://spark.apache.org/, 2015.

[11] Lisi Chen, Gao Cong, Christian S. Jensen, Dingming Wu: Spatial Keyword Query

Processing: An Experimental Evaluation. PVLDB 6(3): 217-228 (2013).

[12] Gao Cong, Christian S. Jensen: Querying Geo-Textual Data: Spatial Keyword Queries

and Beyond. SIGMOD Conference 2016: 2207-2212.

[13] Gary Marchionini: Exploratory search: from finding to understanding. Commun.

ACM 49(4): 41-46 (2006).

[14] Xin Lin, Jianliang Xu, Haibo Hu: Reverse Keyword Search for Spatio-Textual Top-k

Queries in Location-Based Services. IEEE Trans. Knowl. Data Eng. 27(11): 3056-3069 (2015).

[15] Jiaheng Lu, Ying Lu, Gao Cong: Reverse spatial and textual k nearest neighbor

search. SIGMOD Conference 2011: 349-360.

[16]George Tsatsanifos, Akrivi Vlachou: On Processing Top-k Spatio-Textual Preference

Queries. EDBT 2015: 433-444.

https://dblp.uni-trier.de/pers/hd/a/Arya:Krishan_K=
https://dblp.uni-trier.de/pers/hd/g/Goyal:Vikram
https://dblp.uni-trier.de/pers/hd/n/Navathe:Shamkant_B=
https://dblp.uni-trier.de/pers/hd/p/Prasad:Sushil_K=
https://dblp.uni-trier.de/db/conf/dasfaa/dasfaa2015-2.html#AryaGNP15
https://dblp.org/pers/hd/c/Choudhury:Farhana_Murtaza
https://dblp.org/pers/hd/c/Culpepper:J=_Shane
https://dblp.org/pers/hd/b/Bao:Zhifeng
https://dblp.org/db/journals/tsas/tsas3.html#ChoudhuryCBS18
https://dblp.org/db/journals/tsas/tsas3.html#ChoudhuryCBS18
https://dblp.org/pers/hd/c/Choudhury:Farhana_Murtaza
https://dblp.org/pers/hd/c/Culpepper:J=_Shane
https://dblp.org/pers/hd/c/Cao:Xin
https://dblp.org/db/journals/pvldb/pvldb9.html#ChoudhuryCSC16
https://dblp.org/pers/hd/c/Choudhury:Farhana_Murtaza
https://dblp.org/pers/hd/c/Culpepper:J=_Shane
https://dblp.org/db/conf/sigmod/georich2015.html#ChoudhuryCS15
https://dblp.org/pers/hd/g/Gkorgkas:Orestis
https://dblp.org/pers/hd/v/Vlachou:Akrivi
https://dblp.org/pers/hd/d/Doulkeridis:Christos
https://dblp.org/pers/hd/n/N=oslash=rv=aring=g:Kjetil
https://dblp.org/db/conf/ssd/sstd2015.html#GkorgkasVDN15
https://dblp.uni-trier.de/pers/hd/t/Tang:MingJie
https://dblp.uni-trier.de/pers/hd/y/Yu:Yongyang
https://dblp.uni-trier.de/pers/hd/m/Malluhi:Qutaibah_M=
https://dblp.uni-trier.de/pers/hd/o/Ouzzani:Mourad
https://dblp.uni-trier.de/pers/hd/a/Aref:Walid_G=
https://dblp.uni-trier.de/db/journals/pvldb/pvldb9.html#TangYMOA16
https://dblp.uni-trier.de/pers/hd/m/Mahmood:Ahmed_R=
https://dblp.uni-trier.de/pers/hd/a/Aly:Ahmed_M=
https://dblp.uni-trier.de/pers/hd/q/Qadah:Thamir
https://dblp.uni-trier.de/pers/hd/r/Rezig:El_Kindi
https://dblp.uni-trier.de/pers/hd/d/Daghistani:Anas
https://dblp.uni-trier.de/pers/hd/d/Daghistani:Anas
https://dblp.uni-trier.de/pers/hd/m/Madkour:Amgad
https://dblp.uni-trier.de/pers/hd/a/Abdelhamid:Ahmed_S=
https://dblp.uni-trier.de/pers/hd/h/Hassan:Mohamed_S=
https://dblp.uni-trier.de/pers/hd/a/Aref:Walid_G=
https://dblp.uni-trier.de/pers/hd/a/Aref:Walid_G=
https://dblp.uni-trier.de/pers/hd/b/Basalamah:Saleh_M=
https://dblp.uni-trier.de/db/journals/pvldb/pvldb8.html#MahmoodAQRDMAHA15
https://dblp.uni-trier.de/pers/hd/c/Cong:Gao
https://dblp.uni-trier.de/pers/hd/j/Jensen:Christian_S=
https://dblp.uni-trier.de/db/conf/sigmod/sigmod2016.html#CongJ16
https://dblp.uni-trier.de/pers/hd/m/Marchionini:Gary
https://dblp.uni-trier.de/db/journals/cacm/cacm49.html#Marchionini06
https://dblp.uni-trier.de/db/journals/cacm/cacm49.html#Marchionini06
https://dblp.uni-trier.de/pers/hd/l/Lin:Xin
https://dblp.uni-trier.de/pers/hd/x/Xu:Jianliang
https://dblp.uni-trier.de/pers/hd/h/Hu:Haibo
https://dblp.uni-trier.de/db/journals/tkde/tkde27.html#LinXH15
https://dblp.uni-trier.de/pers/hd/l/Lu:Jiaheng
https://dblp.uni-trier.de/pers/hd/l/Lu:Ying
https://dblp.uni-trier.de/pers/hd/c/Cong:Gao
https://dblp.uni-trier.de/db/conf/sigmod/sigmod2011.html#LuLC11
https://dblp.uni-trier.de/pers/hd/t/Tsatsanifos:George
https://dblp.uni-trier.de/pers/hd/v/Vlachou:Akrivi
https://dblp.uni-trier.de/db/conf/edbt/edbt2015.html#TsatsanifosV15

 66

[17] Tuan-Anh Hoang-Vu, Huy T. Vo, Juliana Freire: A Unified Index for Spatio-Temporal

Keyword Queries. CIKM 2016: 135-144.

[18] Jinfeng Rao, Jimmy J. Lin, Hanan Samet: Partitioning strategies for spatio-textual

similarity join.BigSpatial@SIGSPATIAL 2014: 40-49.

[19] Zhida Chen, Gao Cong, Zhenjie Zhang, Tom Z. J. Fu, Lisi Chen: Distributed

Publish/Subscribe Query Processing on the Spatio-Textual Data Stream. ICDE 2017: 1095-

1106.

[20] Christodoulos Efstathiades, Alexandros Belesiotis, Dimitrios Skoutas, Dieter Pfoser:

Similarity Search on Spatio-Textual Point Sets. EDBT 2016: 329-340.

[21] Sitong Liu, Yaping Chu, Huiqi Hu, Jianhua Feng, Xuan Zhu:

Top-k Spatio-textual Similarity Search. WAIM 2014: 602-614.

[22] Ahmed R. Mahmood, Walid G. Aref: Query Processing Techniques for Big Spatial-

Keyword Data. SIGMOD Conference 2017: 1777-1782.

[23] Junling Liu, Ke Deng, Huanliang Sun, Ge Yu, Xiaofang Zhou, Christian S. Jensen: Clue-

based Spatio-textual Query. PVLDB 10(5): 529-540 (2017).

[24] Gao Cong, Christian S. Jensen, Dingming Wu: Efficient Retrieval of the Top-k Most

Relevant Spatial Web Objects. PVLDB 2(1): 337-348 (2009).

[25] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, Sergei

Vassilvitskii: Scalable K-Means++. PVLDB 5(7): 622-633 (2012).

[26] Dong-Wan Choi, Chin-Wan Chung: A K-partitioning algorithm for clustering large-

scale spatio-textual data. Inf. Syst. 64: 1-11(2017).

[27] Xiang Wang, Ying Zhang, Wenjie Zhang, Xuemin Lin, Wei Wang: AP-Tree: Efficiently

support continuous spatial-keyword queries over stream. ICDE 2015: 1107-1118.

[28] Guoliang Li, Yang Wang, Ting Wang, Jianhua Feng: Location-aware

publish/subscribe. KDD 2013: 802-810.

[29] Panagiotis Bouros, Shen Ge, Nikos Mamoulis: Spatio-textual similarity joins. PVLDB

6(1): 1-12 (2012).

[30] Lisi Chen, Gao Cong, Xin Cao: An efficient query indexing mechanism for filtering geo-

textual data. SIGMOD Conference 2013: 749-760.

[31] Christos Doulkeridis, Akrivi Vlachou, Dimitris Mpestas, Nikos Mamoulis: Parallel and

Distributed Processing of Spatial Preference Queries using Keywords. EDBT 2017: 318-329.

[32] Yu Zhang, Youzhong Ma, Xiaofeng Meng: Efficient Spatio-textual Similarity Join Using

MapReduce. WI-IAT (2) 2014: 52-59.

[33] Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large

clusters. Commun. ACM 51(1): 107-113 (2008).

https://dblp.uni-trier.de/pers/hd/h/Hoang=Vu:Tuan=Anh
https://dblp.uni-trier.de/pers/hd/v/Vo:Huy_T=
https://dblp.uni-trier.de/pers/hd/f/Freire:Juliana
https://dblp.uni-trier.de/db/conf/cikm/cikm2016.html#Hoang-VuVF16
https://dblp.uni-trier.de/pers/hd/r/Rao:Jinfeng
https://dblp.uni-trier.de/pers/hd/l/Lin:Jimmy_J=
https://dblp.uni-trier.de/pers/hd/s/Samet:Hanan
https://dblp.uni-trier.de/db/conf/gis/bigspatial2014.html#RaoLS14
https://dblp.org/pers/hd/c/Chen:Zhida
https://dblp.org/pers/hd/c/Cong:Gao
https://dblp.org/pers/hd/z/Zhang:Zhenjie
https://dblp.org/pers/hd/f/Fu:Tom_Z=_J=
https://dblp.org/db/conf/icde/icde2017.html#ChenCZFC17
https://dblp.uni-trier.de/pers/hd/e/Efstathiades:Christodoulos
https://dblp.uni-trier.de/pers/hd/b/Belesiotis:Alexandros
https://dblp.uni-trier.de/pers/hd/s/Skoutas:Dimitrios
https://dblp.uni-trier.de/pers/hd/p/Pfoser:Dieter
https://dblp.uni-trier.de/db/conf/edbt/edbt2016.html#EfstathiadesBSP16
https://dblp.uni-trier.de/pers/hd/l/Liu:Sitong
https://dblp.uni-trier.de/pers/hd/c/Chu:Yaping
https://dblp.uni-trier.de/pers/hd/h/Hu:Huiqi
https://dblp.uni-trier.de/pers/hd/f/Feng:Jianhua
https://dblp.uni-trier.de/pers/hd/z/Zhu:Xuan
https://dblp.uni-trier.de/db/conf/waim/waim2014.html#LiuCHFZ14
https://dblp.uni-trier.de/pers/hd/m/Mahmood:Ahmed_R=
https://dblp.uni-trier.de/pers/hd/a/Aref:Walid_G=
https://dblp.uni-trier.de/db/conf/sigmod/sigmod2017.html#MahmoodA17
https://dblp.uni-trier.de/pers/hd/c/Cong:Gao
https://dblp.uni-trier.de/pers/hd/j/Jensen:Christian_S=
https://dblp.uni-trier.de/pers/hd/w/Wu_0001:Dingming
https://dblp.uni-trier.de/db/journals/pvldb/pvldb2.html#CongJW09
https://dblp.uni-trier.de/pers/hd/b/Bahmani:Bahman
https://dblp.uni-trier.de/pers/hd/m/Moseley:Benjamin
https://dblp.uni-trier.de/pers/hd/v/Vattani:Andrea
https://dblp.uni-trier.de/pers/hd/k/Kumar_0001:Ravi
https://dblp.uni-trier.de/pers/hd/v/Vassilvitskii:Sergei
https://dblp.uni-trier.de/pers/hd/v/Vassilvitskii:Sergei
https://dblp.uni-trier.de/db/journals/pvldb/pvldb5.html#BahmaniMVKV12
https://dblp.org/pers/hd/c/Chung:Chin=Wan
https://dblp.org/db/journals/is/is64.html#ChoiC17
https://dblp.uni-trier.de/pers/hd/w/Wang_0007:Xiang
https://dblp.uni-trier.de/pers/hd/z/Zhang_0001:Ying
https://dblp.uni-trier.de/pers/hd/z/Zhang:Wenjie
https://dblp.uni-trier.de/pers/hd/l/Lin:Xuemin
https://dblp.uni-trier.de/pers/hd/w/Wang_0011:Wei
https://dblp.uni-trier.de/db/conf/icde/icde2015.html#WangZZLW15
https://dblp.uni-trier.de/pers/hd/l/Li_0001:Guoliang
https://dblp.uni-trier.de/pers/hd/w/Wang:Yang
https://dblp.uni-trier.de/pers/hd/w/Wang:Ting
https://dblp.uni-trier.de/pers/hd/f/Feng:Jianhua
https://dblp.uni-trier.de/db/conf/kdd/kdd2013.html#LiWWF13
https://dblp.uni-trier.de/pers/hd/c/Chen:Lisi
https://dblp.uni-trier.de/pers/hd/c/Cong:Gao
https://dblp.uni-trier.de/pers/hd/c/Cao:Xin
https://dblp.uni-trier.de/db/conf/sigmod/sigmod2013.html#ChenCC13
https://dblp.uni-trier.de/pers/hd/z/Zhang:Yu
https://dblp.uni-trier.de/pers/hd/m/Ma:Youzhong
https://dblp.uni-trier.de/pers/hd/m/Meng:Xiaofeng
https://dblp.uni-trier.de/db/conf/webi/webi2014-2.html#ZhangMM14
https://dblp.uni-trier.de/pers/hd/d/Dean:Jeffrey
https://dblp.uni-trier.de/pers/hd/g/Ghemawat:Sanjay
https://dblp.uni-trier.de/db/journals/cacm/cacm51.html#DeanG08

 67

[34] Anders Skovsgaard, Christian S. Jensen: Finding top-k relevant groups of spatial web

objects. VLDB J. 24(4): 537-555 (2015).

[35] Xin Cao, Gao Cong, Tao Guo, Christian S. Jensen, Beng Chin Ooi: Efficient Processing

of Spatial Group Keyword Queries. ACM Trans. Database Syst. 40(2): 13:1-13:48 (2015).

[36] Xin Cao, Gao Cong, Christian S. Jensen, Beng Chin Ooi: Collective spatial keyword

querying. SIGMOD Conference 2011: 373-384.

[37] Dingming Wu, Christian S. Jensen: A Density-Based Approach to the Retrieval of Top-

K Spatial Textual Clusters. CIKM 2016: 2095-2100.

[38] Xike Xie, Xin Lin, Jianliang Xu and Christian S. Jensen. Reverse Keyword-Based Location

Search. ICDE 2017: 375-386.

[39] Lei Chen, Jianliang Xu, Xin Lin, Christian S. Jensen, Haibo Hu: Answering why-not

spatial keyword top-k queries via keyword adaption. ICDE 2016: 697-708.

[40] Adriane Chapman, H. V. Jagadish: Why not? SIGMOD Conference 2009: 523-534.

[41] Lei Chen, Xin Lin, Haibo Hu, Christian S. Jensen, Jianliang Xu: Answering why-not

questions on spatial keyword top-k queries. ICDE2015: 279-290.

[42] Yunjun Gao, Qing Liu, Gang Chen, Baihua Zheng, Linlin Zhou: Answering Why-not

Questions on Reverse Top-k Queries. PVLDB 8(7): 738-749 (2015).

[43] Thaleia Dimitra Doudali, Ioannis Konstantinou, Nectarios Koziris: Spaten: A spatio-

temporal and textual big data generator. BigData 2017: 3416-3421.

https://dblp.uni-trier.de/pers/hd/c/Chapman:Adriane
https://dblp.uni-trier.de/pers/hd/j/Jagadish:H=_V=
https://dblp.uni-trier.de/db/conf/sigmod/sigmod2009.html#ChapmanJ09
https://dblp.uni-trier.de/pers/hd/c/Chen_0031:Lei
https://dblp.uni-trier.de/pers/hd/l/Lin:Xin
https://dblp.uni-trier.de/pers/hd/h/Hu:Haibo
https://dblp.uni-trier.de/pers/hd/j/Jensen:Christian_S=
https://dblp.uni-trier.de/pers/hd/x/Xu:Jianliang
https://dblp.uni-trier.de/db/conf/icde/icde2015.html#ChenLHJX15
https://dblp.uni-trier.de/pers/hd/g/Gao:Yunjun
https://dblp.uni-trier.de/pers/hd/l/Liu_0008:Qing
https://dblp.uni-trier.de/pers/hd/c/Chen_0001:Gang
https://dblp.uni-trier.de/pers/hd/z/Zheng:Baihua
https://dblp.uni-trier.de/pers/hd/z/Zhou:Linlin
https://dblp.uni-trier.de/db/journals/pvldb/pvldb8.html#GaoL0ZZ15
https://dblp.uni-trier.de/pers/hd/d/Doudali:Thaleia_Dimitra
https://dblp.uni-trier.de/pers/hd/k/Konstantinou:Ioannis
https://dblp.uni-trier.de/pers/hd/k/Koziris:Nectarios
https://dblp.uni-trier.de/db/conf/bigdataconf/bigdataconf2017.html#DoudaliKK17

	1. Introduction
	2. Related work on Spatio-textual Queries
	2.1. Centralized
	2.1.1. Spatial Keyword Queries
	2.1.1.1. Based on Exact Matching
	2.1.1.2. Based on Ranking

	2.1.2. Reverse Queries
	2.1.3. Mining
	2.1.3.1. Clustering
	2.1.3.2. Others

	2.1.4. Others

	2.2. Parallel / Distributed
	2.2.1. Batch Processing
	2.2.2. Streaming

	3. Spatio-textual Similarity Join Query
	3.1. Similarity Join on Centralized system
	3.2. Similarity Join on Parallel/Distributed system
	3.3. Partitioning Strategies for Spatio-Textual Similarity Join

	4. Technologies
	4.1. Apache Spark
	4.1.1. Spark core
	4.1.2. Spark SQL
	4.1.3. Spark Streaming
	4.1.4. MLlib Machine Learning Library
	4.1.5. GraphX

	5. Problem Statement
	5.1. Euclidean distance
	5.2. Jaccard similarity

	6. Analysis of implementation
	6.1. Techniques of partitioning
	6.1.1. Partitioning data based on Horizontal Separation
	6.1.2. Partitioning data based on Regular Grid

	6.2. Query processing
	6.2.1. Brute Force Algorithm
	6.2.2. Plane Sweep Algorithm

	7. Experimental setup
	7.1. Platform
	7.2. Evaluation metrics
	7.3. Datasets
	7.3.1. Real datasets
	7.3.2. Synthetic datasets

	8. Experimental study
	8.1. First experiment
	8.1.1. Comparison of Horizontal Separation VS Regular Grid
	8.1.2. Comparison of Plane Sweep VS Brute Force

	1.1. Second experiment
	8.2.

	9. Conclusion
	10. References

