\S% University Of Piraeus
/ll -

| pus Department of Digital Systems

m
Postgraduate Programme "Digital Systems Security”

Master’s Thesis

Analyzing the effectiveness of shellcode injectors

Chatzimangou Stamatios, MTE1636

Under the supervision of:
Dr. Christoforos Dadoyan, dadoyan@unipi.gr

Piraeus 2019

This thesis is dedicated to the people that supported me in the mission.
Special thanks to K for her patience.

Many thanks to Dadoyan as well for pushing me through this process.

Table of Contents

TABLE OF CONTENTScooeiiiiiiiiiititttieeeitetiteeeeeeeeeeeeeeeeeteeeeeeseseeeeeeseseesssssssssesssns 1
TABLE OF FIGURESccovviiiitiiiiiiiieitiiiieeeeteeeeeeeeeeeeeeeeeeeeetesestesseettessesssesessessssssessns 2
TABLE OF TABLEScccoetiiiiiiiiitiiiiiitiieteeteeeeeeeeeeeeeeeeeeeeteeeteeeesteteettteetessesssesesesssns 4
Y E 3812 L Y 5
1 IMIOTIVATION ...cciiiiiiiiiiiieiiiieeeieitensieiiensieitensiettsssiessssssesssssssssssssssssnssssssnssssssnsssssssssssssnsssssssssssssnsssssnssssssnssssssnnsssssnnssssanne 6
2 SOFTWARE DOCUMENTATION ..ccuuiitieiiiiteniiiienieiiensieissssisissssieisssssessssssesssssssssssssssssssssssnsssssssssssssnsssssanssssssnssssssnsssssansans 7
2.1 IMPLEMENTATION DETAILS ..vttiiutteeestieeesntteeesuteeeesuteeesssueeeesssaeessaseeessssseeesassseesssseessnssseesassseessnsesessnsseeessnsseeesnsssessssseessnnnne 7
2.2 PLUGIN: ROPINJECTOR ... vttt eitteeeesutteeeeitteeessuuneesstaeesssteeesassseessnsseesassseeesassseesssseesesssseesanssesssnsseeessnsseessssseesssssseessnseeeans 10
2.2.1 EXECULION ...ttt ettt ettt e e e e ettt e e e e e s st e e e e e et et e e e e e eaaasnseeeeeesenassneneas 10
2.2.2 REPOIE e 11

23 PLUGINZ SHELLTER . utttteeittteesitteeesittee e ettt e sutteessabeeeeeateeesasteessabeeeeaasbeeesaabbeessabeeeeeabeeesansbeeesanseaesaabeeeeeanbeeesansbeeesnseeennn 14
2.3.1 EXCCULION ... 14
2.3.2 REPOIT ...ttt ettt e et e et e e st e e e st e s 15

2.4 PLUGIN: VIRUSTOTAL 1ettteiutieeestteeeesutteeeseteeessuuaeessasaeesassteessassseeesssseesassseeesasssessssssesssssseesanssessssssseessnsseesssssseessssseessnsesenns 17
2.4.1 EXCCULION ... 17
2.4.2 REPOIE e, 19

2.5 PLUGIN INJECTOTAL. .ttt ettt eeittee ettt e e ettt e s tetee s sttt e e eateeesubteeesateeeeeabeeesaasbeeesasbeaeeaabeeesaasbeeesanseeeeaabbeeeannbeeesaasbeeesnseeannn 26
2.5.1 EXECULION ...ttt ettt et et e e ettt e e e e e sttt e e e e e et et e e e e e eaaasnseeeeeesenannneeeas 26
2.5.2 REPOIE e, 26

2.6 CREATING A NEW PLUGIN 1.uuttteeeutieeeeutreeesuseesessseeesassesssnuseesesssesesanssesssnsssssssssssesasssssssssssesessssssssnssesssssssessssseeessssssesssseeenns 30

B U 1] 3 7] N 32
3.1 USE CASE: ROPINJECTOR...ceuttteutttetteestte ettt entteesuteesueeesuteesueeesseesaseeessteesseeesaseesseeesaseenseeesaseeseeessbeeseeesabeeseeesaneennteesaseennees 34
3.1.1 Primary PAtRING METROGSoeveeeeeieieiee ettt e e e ettt a e e e e e e ettt eaaaeeessssssaseaaesessassssseaaasessnsranees 34
3.1.2 [2lo o [0 [=T0 Y 1 1=1 | (ol 1o [OOSR UPPPUPPPII 43
3.1.3 Sleep Defore PAYIOAA XECULIONcccuueeeeieeeeeieeeeeeee e e tee e et tee e e et e e e ettt e e et aeeetteaeeetsaeeessssasesasssaeasseseenses 44
3.14 Hiding vs DeIEting the COrtifiCAte.uurimiueeieiiiieeeeeeeeeeeee e ette e e ettt e e et e e ettt e e e e tta e e e ssaa e e saaeeatsaseessssasessssnann 45
3.1.5 CONCIUSIONS ..ottt ettt et ettt e ea e at e eat e ettt e s at e et e at e et e ste et e sateensteenaseenaseenaneenaseas 45

3.2 USE CASE: SHELLTER ...t eutttetteeteeesteeestteesueeesseeesusessuseesaseasseeessseasseeessseeseeesaseenseeessseeseeessseanseeensseeseeesnteennteesaseennseesaseennes 46
3.2.1 SEEAILN VS INO SEEAIEA ...ttt ettt ettt s e st e st e saseesateasaseesaseenaseenas 46
3.2.2 POIYMOIPRIC JUNK COUE ...ttt ettt e ettt e e ettt e s st e e sttt e e e st e e s e stea s s sseaasansteassssnassassenean 47
3.2.3 34 [olo e =0 [o}V Lo Yo Lo KPS 48
3.24 COMBINATION Of MEEROTS........eeeeeeieeeeee et e ettt e et e e ettt e e ettt e e et e e e st tse e e e astsaseeasaaeeastsaaeatsasaessssasessssnaan 51
3.2.5 CONCIUSIONS ...ttt ettt e e et e e ettt e e ettt e et e e e st e e e sttt e e astaaeeatbeaeenasbeaenssnesssseneas 51

A CONGCLUSIONS......cueeiiiiiiiiiiinteettisissssssssstesssissesssssssssssssssssssssssssssasssssssssssssssssssssssssssssnsessssssss 53
REFERENCEScuuueetiiiiiiiiinneeeiiiisissssnssestssesssssssssssssssssssssssssssssessssssssssssssesssssssssssnnsnens 54

Table of Figures

Figure 1. FIow chart Of the t00] @XECULIONuiii e e e et e e et e e e st e e e et ta e e seasaeeessseeeesatseeeensaeeessseeaans
Figure 2. Flow chart of the execution of the ROPInjector plugin

Figure 3. Execution of the ROPInjector plugin in command line

Figure 4. Statistics report from ROPInjector plugin @XECULIONccicuiiieeiiii ettt e e e e e are e e s ebe e e enta e e eennneas
Figure 5. Gadgets Injected vs Gadgets not Injected comparison bar chartccccooiiiiiiiiiiii e 13
Figure 6. Gadgets Injected with Pseudofunctions vs Gadgets Injected with Epilogue Extensions comparison bar chart......... 13
Figure 7. Gadgets in PE vs Gadgets Used comparison bar Chartcoouioiiiiiiiiiiiie et 13
Figure 8. Flow chart of the execution of the Shellter PIUGINc...oo i 14
Figure 9. Execution of the Shellter plugin in COMMANd lINEcc.uiiiiiiiie e e e et saaaeas 15
[T U T O Y oY= [L= oY U= I =Y o Yo Y SRS 16
Figure 11. Flow chart of the execution of VirusTotal PIUSINeeiiiiiii et etee e et e e e e are e e earaeas 18
Figure 12. Execution of the virustotal plugin in cOMMaNd lINEcocuiiiiiiiiiii e e 19
Figure 13. VirusTotal sunburst and treemap charts generated from the VirusTotal plugin.... .19
Figure 14. VirusTotal Engines report statistics and information ... e 20
Figure 15. Example of VirusTotal Engines report ENgine spider Chart........coouiiiieeiiiiiieiiie et 21
Figure 16. Expanded view of a SPecific antiVirus ENGINEooiiiii ittt e e e e e e e e eata e e e s bae e e earaeeennnanas 21
Figure 17. VirusTotal Signatures report statistics and informationccoeoiciii e e 22
Figure 18. Expanded view of a specific signature in VirusTotal Signatures reportccccvieeeiieeeiciee e e e 22
Figure 19. Charts in the VirusTotal SIZNatures FEPOITcccciiii ettt et e e et e e e e tae e e sta e e e eata e e erataaeesabaeeeentaeeennsaeas 23
Figure 20. VirusTotal report statistics and informationcoouiiiiiiiiiii e et 24
Figure 21. Expanded view of a specific file in VirusTotal FePOrt.......coouiiiiiiiiieiieee ettt 24
Figure 22. Example of VirusTotal report SpIider Chart.........ooueoeiiiiiiiieiece ettt sttt st sbee s s 25
Figure 23. Charts in the VIrUSTOTAl FEPOITooiiiiee ettt e e e e rte e e e st e e e e tte e e eeabaeeesabaeeeanssaeeeansaaeeansbeeeenntaesennsanns 25
Figure 24. Flow chart of the execution of the Injectotal plugin.................... .26
Figure 25. Execution of the Injectotal plugin in command line26
Figure 26. Most effective antivirus engines section in Injectotal report .27
Figure 27. Shellcode detection per antivirus engine section in Injectotal report........ccccciieiecier s 27
Figure 28. Method detection per antivirus engine section in INjectotal rePOrtc.cevevciieieiier s e 28
Figure 29. Evasion rate per shellcode section in INJEctotal rEPOItuviieiiii i e 28
Figure 30. Evasion rate per method section in INJECTOtal FEPOIt.....ciiiiii i e eaeeeas 28
Figure 31. Evasion rate per file section in INJECLOTAl rEPOIT..........uii i e e et e e e e e s ba e e e eare e e earaeas 29
Figure 32. Template plUgin COAE SNIPPEL . ..uuiiiiieie e e e e e e e e e e st e e e e e e e sesaataareeaeeessantrareeeeeesnssrannaeens 30
Figure 33. Report navigation panel dynamically generated at each run of the tool depending on the plugin reports that exist
TR o [T o T T T T PO U ST PUPRSPPRRPPPRRTR 31
Figure 34 Detection rate of the Meterpreter Reverse TCP Payloadcccviiiieiiiriiiiie et e e 33
Figure 35. Detection rate of the Shell Reverse TCP Payloadoviiiiiiiiciii sttt ee e e e e e eeenaeeas 33
Figure 36. Comparison of evasion ratios of ROPInjector for the reverse shell payload per file and methods entry, entry norop
NOUNTOll, eXit, @XIt NOFOP NOUNIOIL.....cciii et e e e e e et e e e e e e s e s aataeeeeeeseaaataeseeeesessastbaneeeseessnsasaneeens 35
Figure 37. Comparison of evasion ratios of ROPInjector for the meterpreter payload per file and methods entry, entry norop
NOUNTOll, eXit, €XIt NOFOP NOUNIOIL.....cciii e e et e e e e e et e e e e e e e e e s aataeseaeeseaaataeseeaesesastbaseeeesesaansrraeeaans 36
Figure 38. Evasion and unique evasion ratio of ROPInjector for the reverse shell payload per method.cccovveeernernneen. 37
Figure 39. Evasion and unique evasion ratio of ROPInjector for the reverse meterpreter payload per method 37
Figure 40. Most effective antivirus engines for the ROP Entry Methodoocuiiriiiii i 38
Figure 41. Most effective antivirus engines for the ROP EXit MEthOd...........ooieuiiiiiiiii e 40
Figure 42. Word cloud of signature keywords for the ROP Entry (left) and ROP Exit (right) methodscccccccocviieenirnennen. 42
Figure 43. Pie charts of top signatures for the ROP Entry (left) and ROP Exit (right) methodscccoveieeiieeiccieeecceee e, 42
Figure 44. Semi pie charts of Engines triggered for the ROP Entry (left) and ROP Exit (right) methodsc.cccoveeerireannnenn. 43
Figure 45. Evasion and unique evasion ratio of ROPInjector for the ROP Entry patching method and padded shellcode........ 43
Figure 46. Evasion and unique evasion ratio of ROPInjector for the ROP Entry patch method and padded shellcode............ 44

Figure 47. Evasion and unique evasion ratio of ROPInjector with delay introduced before the execution of the shellcode ...44
Figure 48. Evasion ratio of ROPInjector for the shellcodes shellrevtcp and metrevtcp using a hide and delete patching

(0714 Vo o I PP 45
Figure 49. Evasion ratio and unique evasion ratio of stealth and no stealth mode for payload shell_reverse_tcp.................. 46
Figure 50. Evasion ratio and unique evasion ratio of stealth and no stealth mode for payload meterpreter_reverse_tcp.....46
Figure 51. Top signatures and signature keywords for stealth and no stealth methodsccccccooiiiiiiiiniiieee 47
Figure 52. Evasion ratio and unique evasion ratio of stealth and no stealth mode using junk before payload execution for
(oY Lo o I o 1= I =Y 6 < o« J SRS 47
Figure 53. Evasion ratio and unique evasion ratio of stealth and no stealth mode using junk before payload execution for
o)V LoF: [o I g g To 1T oY = Y g =LY/ T Y < 1 o « SRS 48
Figure 54. Top signatures and signature keywords for stealth and no stealth methods with the junk flag enabled................ 48
Figure 55. Evasion ratio and unique evasion ratio of XOR, AND, NOT, SUB operations for payload shell_reverse_tcp............ 49
Figure 56. Evasion ratio and unique evasion ratio of XOR, AND, NOT, SUB operations for payload meterpreter_reverse_tcp
... 49
Figure 57. Evasion ratio and unique evasion ratio of combined encoding operations for payload shell_reverse_tcp............. 50

Figure 58. Evasion ratio and unique evasion ratio of combined encoding operations for payload meterpreter_reverse_tcp 50
Figure 59. Evasion ratio and unique evasion ratio of combined encoding operations per file for payload
LTS o= o o S G <A oY o] o RS

Figure 60. Top signatures and signature keywords for encoding methods XOR,ADD,NOT, SUB
Figure 61. Evasion ratios of combined methods stealth, XOR and junk for payload shell_reverse_tcp and
L0 0T AT T = =T G A= § < o o N 51

Table of Tables

Table 1. Plugin types and dESCIIPLIONSiiiciieeiiiieeeeiiee et e ettt e e et e e s rte e e e s te e e e eataeesaasaeeesasseeeassaeesansseeesnsseeeastaeesansseessnsseeaans 7
Table 2. Arguments provided during execution Of the tOO...........ceieiiii i e erre e e s aree e 7
Table 3. Description Of dEVEIOPEA PIUINS.......eiiii et e e e e e e e e e s eta e e e staeeeesataeessasaeeeessseeeeastseeesnsseessnsseeeans 9
Table 4. ROPINJECLOr PIUGIN @IrZUMENTSoiiiciiieeiiieeeeiee e eeite e e st ee e ettt eeseteeeesataeeeesstaeesassseeessseeeaastaeeeanssseesansseeesnsseeeenssneesnnsnees 10
Table 5. ROPInjector report information and STatiStiCSeeevieriiiiiiii e st 11
Table 6. Comparison bar chart information from the ROPInjector Graphs report..........cceeieiiieriieeiieniieeee e 13
Table 7. Shellter PIUGIN @rBUMENTScouii ittt ettt e s bt e bt e s b et e bt e s b e e e bt e sabeeebeesabeeebeesabeeeseenane 14
Table 8. Shellter report INFOrMAtIONcoi ittt b e bt e e bt e sb e e bt e sbeesbeesabeeenneenane 15
Table 9. VirusTotal PIUGIN @rBUMENTESoii ettt e e et e e e e e e st e e e et taeeeeasaeeessseeeeastaeeesnssaeesnsaeeesssaeesansseeesnnsnens 17
Table 10. Statistics and information in VirusTotal ENGINES rEPOITeiiieiiiiiiiiee et stre e e ete e e e e e etre e e e aen e e ennaeas 20
Table 11. Statistics and information in VirusTotal SigNatures rePOrtccueeiiciiee ettt e e e e e e eara e e e earaeas 21
Table 12. Statistics and information in ViruSTOtal FEPOIT.......ocueiiiiiiiiiiiii ettt ettt s e saee e 23
Table 13. Injectotal PIUGIN @rBUMENTScocuiiiiieie ettt ettt e st e bt e s bt e bt e s bt e e bt e sabeeebeesabeesabeesabeeeseenane 26
Table 14. Chart titles and descriptions of charts in Injectotal rePOrtociiiiiiiiii e 27
Table 15. NeW PIUZIN FEQUITEMENTS ...cocutiiiiiiiieeiie ettt ettt et e st e et e st e e e bt e s bt e e sbte s beesbeesabeeebeesabeeebeesabeeeabeesabeesseesabeeenseenane 30
Table 16. List of PE files used as carriers in the eXPerimMENTSccciiiiiiiiieeiiieee et e e et e e eesbe e e e ebee e e e tbeeeeeasaeeearaeas 32
Table 17. List of ROPInjector patching Methods tESTEAueii i et e et e e e st e e e e s aba e e e eataeeearaeas 34

Table 18. Statistics from ROPInjector using the method ROP Entry and the shellcode reverse TCP shell for the carrier files .34
Table 19. Statistics from ROPInjector using the method ROP Entry and the shellcode meterpreter reverse TCP for the carrier

L1 (=T PP P OO TUPRN 34
Table 20. Evasion ratios of ROPInjector for the reverse shell payload per file and methods entry, entry norop nounroll, exit,
EXIT NOTOP NOUNTOIL .ttt ettt e s bt e bt e st e e bt e s a bt e e bt e e be e e beesabeeeabeesabeeesee e bt e esaneebeeesabeenteenaneennees 35
Table 21. Evasion ratios of ROPInjector for the meterpreter payload per file and methods entry, entry norop nounroll, exit,
[I aTe e o Lo TUT Yo | U URUUSUUPROE 36
Table 22. Antivirus detections for the ROP ENtry Method...........c..oooiiiiii ittt et 38
Table 23. Antivirus detections for the ROP EXit METNOTiiuiiiiiiiiiicic et et sae e s ba e e aee e 40
Table 24. List of Shellter patching Methods TESTEMciiiciiiii et e e s e e e s ae e e e saaeeesnraeas 46
Table 25. Evasion ratios of Shellter METNOMSooiviiiiiiii ettt ssbe e e saeesbaeenaeeeaee 52

Abstract

In this thesis we analyze the effectiveness of shellcode injectors regarding their ability to bypass antivirus engines. To assist
us in the process we have developed a tool written in Python 2.7 which automates the process of sample generation,
analysis of the infected files, statistics calculation and presentation of results. We demonstrate the usage and results of this
tool on two shellcode injectors, ROPInjector and Shellter. By generating a large sample of infected files and testing them
against the online service VirusTotal we are able to demonstrate the effectiveness of each shellcode injector to hide the
malicious payload as well as the effectiveness of antivirus engines to accurately detect the injected files. The output of this
work is a tool that facilitates and automates this process and the highlighting the strength and weaknesses of both the
shellcode injectors and the antivirus engines.

1 Motivation

The motivation for this Thesis was to study shellcode injectors and outline their strength and weaknesses as well as
understand the effectiveness of antivirus engines against them. To assist us in this process we had to develop an
automated way in order to massively analyze samples of carrier files and generate meaningful statistics.

In an effort to make this work usable and useful for the future and anyone how might be interested in it, a tool was
developed with special care given to the design to make it as generic as possible and not shellcode injector specific
as well as extensible should anyone ever need to add to it additional functionality.

To test and demonstrate the usage of the tool two shellcode injectors were selected: ROPInjector [1] and Shellter
[2]. Results from the analysis of these injectors are included in this Thesis.

2 Software Documentation

In this section we provide details for the implementation of the tool, the user documentation as well as instructions
on how to expand the functionality of the tool with additional plugins.

2.1 Implementation Details
The tool has been designed with the following requirements in mind:

e Automation: Time consuming processes like sample generation, analyzing evasion ratios and gathering data for
statistical purposes should be automated.

e Extensibility: New functionality should be added without having to edit the existing source code.

e Presentation: Analysis results should be searchable and exportable and presented in a user-friendly format.

e Execution Options: The user should be able to configure aspects of the analysis of the samples in each run of the
tool according to his needs.

To fulfill the aforementioned requirements the tool has been developed in a modular way, utilizing plugins for
implementing its functionality and carrying out various analysis tasks.

As different plugins are used for different operations (generation of samples, analyzing samples, creating cumulative
charts), a basic ordering mechanism has been implemented to ensure that plugins will be executed in a meaningful order.
Specifically plugins fall into one of the following categories, GENERATOR, ANALYZER, PRESENTER and are executed in this
order explicitly. A brief description of the categories is provided in the following table:

Table 1. Plugin types and descriptions

Plugin Type Description

Plugins of this type are responsible for generating samples give input files, run modes and payloads

GENERATOR)

and are executed first.

Plugins of this type are responsible for performing analysis task on the generated samples and are
ANALYZER .

executed after GENERATOR plugins.
PRESENTER Plugins of this type are responsible for creating reports, charts and calculated statistics based on

analysis results and are executed last.

It is possible that a plugin may perform more than one of these operations (generation, analysis or presentation). If such is
the case the plugin is given the type that allows it to be executed faster in that chain (e.g. If a plugin is generating samples
and creates a report with statistics then it will be of type GENERATOR, if the plugin analyzes samples and generates a report
it will be of type ANALYZER etc..). This convention ensures that multiple plugins can be chained and run in the correct order.

It is also important to note at this point that if multiple plugins of the same type are selected then they will be executed
with the order that they were given in the command line.

Additionally, each plugin exposes and accepts a set of arguments allowing the user to configure its operation at run time.

The execution of the tool and the process described above are also depicted in the following flow chart while the user
arguments are described in the following table:

Table 2. Arguments provided during execution of the tool

Arguments Type Description

String Sets the logging level for the tool and executed
--level/-I . . . - .

Choices [debug,info,warning,error,critical] plugins.

--store/-s String

String

--plugin/-
plugin/-p Choices [ropinjector,shelter,virustotal,injectotal]

--open-browser/-o Boolean

--export/-e Boolean

A store is a directory containing the output of
the plugins whether this is generated files,
results from analysis or reports. Sets the store
directory.

Sets the plugin or plugins to run.

Opens the report in a browser window at the
end of all plugins execution.

Exports the report from the store

Load Available Plugins

No

| FParse Command Line Options

User Input Valid

Yes

Check Selected Plugin Arguments

Y

Plugin Arguments Valid

Yes

Order Plugins

A4

Execute Plugins

Y

Figure 1. Flow chart of the tool execution

Create Report

To perform our experiments on the shellcode injectors, a total of four plugins are developed at the time of writing. A
brief description of the functionality provided by each plugin is given in the following table and a more detailed one in
the sections that follow.

Table 3. Description of developed plugins

Plugin Name Plugin Type Description
This plugin is responsible for generating a carrier file samples using the ROPInjector
shellcode injector.
This plugin is responsible for generating carrier file samples using the Shellter shellcode
injector.
This plugin is responsible for analyzing the detection and evasion rates of the injected
files using the VirusTotal service.

This plugin is responsible for generating charts comparing the results of the virustotal
Injectotal PRESENTER plugin analysis for the different methods, shellcodes and engines used in the generation
of the injected files.

ROPInjector GENERATOR
Shellter GENERATOR

VirusTotal ANALYZER

2.2 Plugin: ROPInjector

2.2.1 Execution
The ROPInjector plugin provides all the required functionality to automate the generation of infected samples using the
ROPInjector shellcode injector. Statistics provided by the ROPInjector regarding the injection are also provided as a report

by this plugin. The user is able to configure the following arguments at runtime.

Table 4. ROPInjector plugin arguments

Arguments Type Description
--rop-directory/-ropdir String A directory with binaries to infect with the ROPInjector.
. A file or directory of shellcodes. If not specified the plugin will use
--rop-shell - hell t
rop-shellcode/-ropshe String the revshell payload calling at 127.0.0.1:4444.
T e) Strin A file containing ROPInjector arguments in the following format
p-arg parg g (text norop nounroll -d5) seperated by new lines.
. The arguments of ROPInjector to generate infected files (e.g. text
--rop-args/-ropargs String

entry).

The version of ROPInjector to use for infection. Version 1 is the
original version published in 2015. Version 2 has been enriched with
more statistics and run modes.

Skip the generation of samples and jump to report generation.
Useful for debugging reasons.

Integer

--rop-version/-ropver Choices [1,2]

--rop-skip/-ropskip Boolean

The execution of the plugin based on the arguments specified by the user is depicted in the following flow chart.

-ropskip provided? No—»| Gather binaries -ropargsf provided?

-Yes—»| Gather run modes from file I—

No

Ye;—)l Gather run modes from input l—
ND—)l Set run mode to text entry I—

-ropargs provided?

> Gather shellcodes
Ve from directory or file

Set shellcode to
shell_reverse_tcp 127.0.0.1:4444

Yes—»| Set ROP version
No- Set ROP version to 2

-ropver provided?

Y

Create Report I ROPify files| [+

Figure 2. Flow chart of the execution of the ROPInjector plugin

E¥ Command Prompt

2.2.2 Report

-1 info -s r-u:.p-Fir'l.'l -p r"ljpir'lj
pshell ™. .\ropin

The plugin will generate 2 reports with statistics, information for each one of the injected files and comparison graphs.
The first report is called ROPInjector and includes statistics and information from the injection of each file. Details regarding
the information is provided can be found in the next table.

Table 5. ROPInjector report information and statistics

Statistic / Information Description

ID

PE Size

Shellcode Size

Patch Size

Gadgets in PE

Instructions replaced with gadgets

Instructions non ropable

Instructions replaced by injected
gadgets

Gadgets Injected

Gadgets injected with pseudofunctions

The ID of the file injected. The ID has the format filename / shellcode /
injection method.

Initial size of the PE file in Kbytes.

Shellcode size in bytes.

Patch size in bytes.

Number of candidate gadgets identified in the PE.

Number of instructions replaced by ROP gadgets.

Number of Instructions that could not be transformed to ROP as they are not
supported by the tool.

Number of instructions replaced by injected gadgets.

Number of gadgets that were injected.

Number of instructions replaced by injected gadgets of instructions replaced
by injected using a pseudofunction.

Gadgets injected with epilogue ext
.text ext

Gadgets Not Injected

(%) of Gadgets Injected (%)

(%) of Gadgets Used (%)

Number of instructions replaced by injected gadgets using an existing function
epilogue extension.

Number of times that the text section was extended.

Number of gadgets that exist in the PE and were used by the ROPInjector.

Percentage of gadgets injected as opposed to the ones that were used from
the original PE.

Percentage of gadgets used from the candidate gadgets identified in the PE.

Gadget Segments Number of gadget segments.
Whether access is given to the shellcode during entry (run first) or during exit
Entry
(run last).
Delay The delay the shellcode sleeps before it runs in seconds.
No Rop Whether the original shellcode is transformed to ROP or is patched intact.
No Unroll Whether shellcode has been converted to ROP.
getPC Whether getPC constructs are replaced in the shellcode.
Inject Gadgets Whether missing gadgets were injected.

Hide Certificate

Whether the certificate was hidden or deleted.

A sample screenshot from the generated report is provided below. All results in the table are searchable, sortable and

exportable.

Show| 25 v entries

Showing 1 10 25 of 72 entries

Generated at: 2019-01-20 16:34:48

Copy csv Excel PDF Print Search.
<>
iz <is <g> injected
replaced replaced injected with (%) of <g>
PE Size Shellcode Gadgets in with <i> non by injected Gadgets with epilogue <g> Not Injected (%) of <g> Gadget
D (KB) Size Patch Size PE gadgets ropable gadgets Injected pseudofunc ext _text ext Injected (%) Used (%) Segments
notepad++.exe | 2783 324 1786 78 1391193 54/193 8/139 55 0185 55755 0 4 5729 053 69
shellrevicp.txt / exit
Show| 10 v enfries Search:
Entry Delay No Rop No Unroll getPC Inject Gadgets Hide Certificate
False 0 False False False True False
Showing 1to 1 of 1 entries Previous n Next
notepad++.exe | 2763 324 1786 7778 1391193 54/193 96/139 55 0/55 55/55 0 41 5729 053 69
© shellrevicp.txt/
entry
notepad++.exe / 2783 333 1649 778 1291187 584187 96/129 55 0/55 55/55 0 33 6250 042 62
9 metrevicp.txt exit
notepa++.exe | 2783 333 1649 778 1291187 581187 96/129 55 0/58 55/55 0 3 6250 0.42 62
9 metrevtep.txt f entry
AcroRd32.exe | 1423 324 1853 5599 1331193 541193 13713 67 3167 64767 0 2% 7204 0.46 69
9 Shellrevtep.txt f exit
AcroRd32.exe | 1423 324 1853 5599 1391193 54/193 137139 67 3/67 64/67 0 % 7204 0.46 69
© shellrevicp.txt /
entry
AcroRd32.exe | 1423 333 1738 5599 1291187 581187 107129 67 3167 64767 0 19 781 034 62
@ metrevicp.txt [exit
~ AcroRd32.exe | 1423 333 1738 5599 1291187 58/ 187 110/129 67 3/87 64 /67 0 19 791 034 62

Figure 4. Statistics report from ROPInjector plugin execution

The second report is called ROPInjector Graphs and includes 3 comparison charts with the following information:

Table 6. Comparison bar chart information from the ROPInjector Graphs report

Chart Title Description

Gadgets Injected vs This chart compares the gadgets that were injected in the PE versus the ones that were found
Gadgets not Injected in the PE and where used by ROPInjector.

Gadgets Injected with
Pseudofunctions vs
Gadgets Injected with
Epilogue Extensions

This chart compares the gadgets that were injected by inserting a pseudofuntion in the PE
versus the ones that were injected by extending the epilogue of existing functions found in
the PE.

Candidate Gadgets in PE This chart compares the candidate gadgets identified in the PE versus the ones that were
vs Gadgets Used actually used for the injection.

A sample screenshot from each chart in this report can be found below.

Gadgets Injected vs Gadgets Not Injected

100

82

75
18

82
78 76 76
67 65 67
55
0
@
26 28 25
5
16 18
12
B — —

Acrobat exe / revshell.bet .. AcroRd32 exe / revshell tx_cmd.exe | revshell.txt / en.._firefox exe | revshell.txt | java.exe / revshellbxt / en. nam.exe | revshell.txt / en.. notepad++.exe / revshell . Rainmeter.exe | revshell b _shellter.exe / revshell bxt /. wmplayer.exe / revshell tx

@ Gadgets Injected @ cGadgets Not Injected

Figure 5. Gadgets Injected vs Gadgets not Injected comparison bar chart

Gadgets Injected with Pseudofunctions vs Gadgets Injected with Epilogue Extensions

80
75
75 72 74 73
64 67
55
51
50
38 38
25
14
6 7
3 2 2

. — - o o [—

Acrobat.exe / revshell.txt ... AcroRd32 exe | revshell.tx.. cmd exe | revshell.txt / en. . firefox_exe | revshell txt java.exe / revshell.txt / en... nam_exe | revshell.txt / en... notepad++.exe [revshell . Rainmeter.exe / revshell.tx.._shellter.exe | revshell txt wmplayer_exe / revshell.tx

@ Pseudofunctions @ Epilogue Extensions

Figure 6. Gadgets Injected with Pseudofunctions vs Gadgets Injected with Epilogue Extensions comparison bar chart

Gadgets in PE vs Gadgets Used

sk 7778
6k 5599
4k 3515
2k 1634 1763
1148
2% 28 25 4 61 60
0 — 12 _ 16 18 2 18 3
Acrobat.exe | revshell.txt ... AcroRd32.exe | revshell.tx...cmd.exe / revshell.txt [en... firefox exe | revshell.txt java.exe | revshell.txt / en... nam.exe [revshell.txt / en... notepad++.exe / revshell.... Rainmeter.exe / revshell.tx..shellter.exe / revshell txt wmplayer.exe / revshell.tx

@ Gadgets in PE ® Gadgets Used

Figure 7. Gadgets in PE vs Gadgets Used comparison bar chart

2.3 Plugin: Shellter

2.3.1 Execution

The Shellter plugin provides all the required functionality to automate the generation of infected samples using the Shellter
shellcode injector.

Table 7. Shellter plugin arguments
Arguments Type Description

--shellter-directory/-stdir String A directory with binaries to infect with Shellter.

A file containing Shellter arguments in the following format (-a -s -p
--shellter-args-file/-stargsf String meterpreter_reverse_tcp --lhost 192.168.233.100 --port 4444)
seperated by new lines.

The arguments of Shellter to generate infected files (e.g. -a -p

el e e String shell_reverse_tcp --lhost 192.168.233.100 --port 4444).

Skip the generation of samples and jump to report generation.

—shellter-skip/-stskip Boolean Useful for debugging reasons.

The execution of the plugin based on the arguments specified by the user is depicted in the following flow chart.

-stskip provided? No—>»| Gather binaries -stargsf provided?

Yes—| Gather run modes from file |—

-stargs provided?

Yes—)l Gather run modes from input l—

Set run mode to -a -p shell_reverse_tcp
—lhost 127.0.0.1 —-port 4444

A4

Create Report [« I Inject files with Shellter| I<

Figure 8. Flow chart of the execution of the Shellter plugin

B Sheller Instructions: 33586 Time Elapsed: 16 secs - m} X

-p me
4444

Figure 9. Execution of the Shellter plugin in command line

2.3.2 Report

The plugin generates one report with information from the output of the injection with Shellter. The report is called Shellter
and has the following information.

Table 8. Shellter report information

Information Description

The ID of the injected file. The ID has the format filename / shellcode / injection

ID
method.
The minimum required Windows version for the target application to run. This
Minimum Supported OS Version information is taken directly from the PE header and might be not always
accurate.
Shellcode Size The size of the payload that was injected in the file.

The number of instructions traced by Shellter. In Auto Mode, Shellter will trace a
Instructions Traced random number of instructions for a maximum time of approximately 30 seconds
in native Windows hosts and for 60 seconds when used in Wine.

Tracing Time The time that shellter was tracing instructions in minutes.
First Stage Filtering Time Time taken for first stage filtering to complete.
Second Stage Filtering Time Time taken for second stage filtering to complete.

. . The virtual address of the first instruction of the injected code
Injection Virtual Address

N . The offset of the first instruction of the injected code.
Injection File Offset

Original File Checksum The checksum of the file before the injection.
Injected File Checksum The checksum of the file after the injection.
Injection Verification Whether the injection was successful.
Packed Whether the file is packed.

Elimination Status Whether data were eliminated on the injected file.

Elimination D
Linatieninsts Type of data eliminated from the injected file.

Reflective Loader . .
Whether a reflective loader is used.

Encode Payload Handling Whether encode-payload handling is enabled or disabled.

Handler Type The handler type selected for the injection.

A sample screenshot from the generated report is provided below.

Show 25 ¥ entries Generated at: 2019-02-09 23:10:19

Showing 1 to 25 of 36 entries

Search:
Minimum First Stage Second Stage Injection
Supported 0S5 Shellcode Instructions Tracing Time Filtering Time Filtering Time Virtual Injection File Injection Original File Injected File Injection
D 1¥ Version Size Traced (mins) (mins) (mins) Address Offset Section Checksum Checksum Verification
o wmplayer exe / shell_reverse_tcp/ 6.3 281 5382 0395 0 0 0x4023d2 0x17d2 text 0x386e4 0x32104 Verified!
stealth
@ Wmplayerexe shell reverse tcp | | 63 281 5382 0399 0 0 0xd023d2 0x17d2 text 0x386e4 0x29616 Verified!
nostealth
o Vmplaerexe/ 63 281 5332 0373 0 0 0x4028d3 Ox1ed3 text 0x336e4 0x33d47 Verified!
meterpreter_reverse_tcp / stealth
wmplayer.exe / 63 281 5382 04 0 0 0x4023d7 0x17d7 text 0x336e4 0x2baas, Verified!
© meterpreter_reverse_tcp /
nostealth
@ Rainmeterexe | shell reverss tcp 6.1 281 872 0137 0 0 0x40120a 0x80a text 0x13207 Oxe3le Verified!
i stealth
o Rainmeter.exe / shell_reverse_tep 5.1 281 872 0.135 0 0 0x401360 0x7b0 text 0x18a07 Oxed5¢ Verified!
/nostealth
o Rainmeter exe / 51 281 872 0.154 0 0 0x40120a 0x60a text 0x18a07 Ox11c34 Verified!
meterpreter_reverse_tep / stealth
Rainmeter exe / 51 281 872 0148 0 0 0x4013d2 0x7d2 text 0x18a07 0x96ac Verified!
© meterpreter_reverse_icp /
nostealth
o notepad++exe / shell_reverse_tcp 5.1 281 80716 0535 0.0096 0.00107 0x536185 0x136385 text 0x2c228d 0x2c0bd4 Verified!
1 stealth
o notepad++ exe f shell_reverse_tcp 5.1 281 80771 0531 0.0096 0 0x512f01 0x112301 text 0x2c228d 0x2b85af Verified!
/nostealth
o Mtepadtrexe/ 51 281 80751 0534 0.00853 0.00107 0x536186 0x136386 text 0x2c228d 0x2c5¢06 Verified!
meterpreter_reverse_lcp / stealth
notenad+ axa 5 281 80761 0634 000853 000107 x5 17084 0x112794 toxt 0x2c278d 0x7h634n Verified!

Figure 10. Shellter plugin report

16

2.4 Plugin: VirusTotal

2.4.1 Execution
The VirusTotal plugin provides the functionality required to massively submit files to the VirusTotal online service [3] for
analysis and retrieve the results. The plugin will also generate 4 reports based on the most effective Engines, most common

Signatures among the analyzed sample and most detected files.

Table 9. VirusTotal plugin arguments

Arguments Type Description
--virustotal-key/-vtkey String The VirusTotal APl Key required to submit files.
--virustotal-limit/-vtlim Integer The limit of requests per minute.
--virustotal-dir/-vtdir String The directory of files to analyze.
--virustotal-recursion/-vtrec Boolean Whether the files will be detected recursively in the directory.
--virustotal-file-types/-vtfmt String The extension of the files that will be uploaded.
. Fetch the VirusTotal reports for files already submitted. For the rest
--virustotal-noscan/vtno Boolean .) .
of the files skip analysis.
. . . Fetch the VirusTotal reports for files already submitted. For the rest
--virustotal-mixscan/-vtmix Boolean .
of the files upload and fetch the report.
--virustotal-new/-vtnew Boolean Scan only files for which reports do not exist in the store.
Send x requests for and then query for reports. This mode is useful
. . . . when scanning a large dataset with a limit in the requests per
--virustotal-immediate/-vtimm Integer . & & . . < 2 .
minute and ensures that you will retrieve results as fast as possible.
This value should never be greater than vtlim.
. . . Skip plugin analysis and jump to report generation. Useful for
--virustotal-skip/-vtskip Boolean P plug ¥ jume portg

debugging reasons.

The execution of the plugin based on the arguments specified by the user is depicted in the following flow chart.

Gather binaries

% recursively from directory ~vtnew provided?

Yefb‘ Keep files not analyzed

-vtskip provided? -vtrec provided?

No No

|

Gather binaries
from directory Keep all files

Are there remaining

files for analysis ? is mode -noescan or mixscan?

Yes
Fetch file VT report

Report exists in VT? Ye Save VT report
3

No No

Y

Create plugin report fio

Upload file for analysis
and save scan id

Is mode -mixscan? Yes»

o No

Upload files for analysis

i ? Yes—»| € ’ i o
Is mode -immscan and save scan id Is imm limit reached?

No Yes

Upload file for analysis
and save scan id

Are there remaining
scan ids
from uploaded files?

Are there remaining
scan ids
from uploaded files?

Yes->| Fetch file report H Save VT report to disk

Fetch file reports

Yes

Save VT reports to disk

Figure 11. Flow chart of the execution of VirusTotal plugin

the followin
es in di C

per minute...

Figure 12. Execution of the virustotal plugin in command line

2.4.2 Report

Samples screenshots from the generated reports are provided below. The tool generates in total 4 reports.

The first report is the VirusTotal Dashboard which allows easy navigation between the engines, signatures and detected
files from the analyzed samples. A sample screenshot is provided below.

VirusTotal Sunburst Chart

Zeuo

Generated at: 2019-01-20
Kaspersky

VirusTotal Treemap Chart
Kaspersky.

spzrzyazsaxe el
Java exe:22570) 3¢5,

- gppa

NANO-Antvirus | Rising

E
3
z
&
S

CATY
Qui E_kHeam

Aegi »sLal:l

Figure 13. VirusTotal sunburst and treemap charts generated from the VirusTotal plugin

The second report is called VirusTotal Engines and provides statistics for the effectiveness of each Antivirus Engine against
the analyzed sample. Information displayed on the report is provided below. Additionally 3 charts are provided: A semi
circle donut displaying the number of engines that managed to detect at least one file vs the number of engines that had no
detections, a spider chart displaying a keyword analysis on the signatures that were triggered for the analyzed sample and a
word cloud chart displaying the most prominent engines (meaning the ones with the most detections).

Table 10. Statistics and information in VirusTotal Engines report

Statistic / Information Description

Antivirus Engines The name of the antivirus engine.

The absolute value of the number of detections performed by the antivirus
engine.
The percentage of files detected from the antivirus engine from the total
analyzed sample.
The percentage of files that evaded detection from the antivirus engine from the
total analyzed sample.
The same signature can be used to detect multiple infected files. This column will
Unique Signatures display the number of unique signatures where used by the antivirus engine to
make the detection.
A spider chart is generated for every engine. The plugin will perform a keyword
Spider Chart analysis on the signatures and display a spiderchart with the most common
keywords for each engine.

Detections
Detection Ratio of Total Files (%)

Evasion Ratio of Total Files (%)

Generated at: 2019-01-20 17:43:23

swrort trojan
-8~ Microworld—eScan

50 -+ cMC
CAT-QuickHeal

-4 Mcafee

- Cylance

e VIPRE
BitDefender

sepv
1J0S0I1N

NotTriggered

uoseasaqhy
l1opusjeang

GData

K7GW
Ave
TE”gmesd malware rozenaa - KZAntiVirus aviea
riggerel F-Prot s e ® -
o ESET-NOD32 {Arcabit; NANO-Antivirus
- Kaspersky ESET-NOD32
t gen vy
heur
Results based on a total of 72 scanned files
Show Al v entries
Showing 1 to 72 of 72 entries
Copy csv Excel PDF Print Search
Antivirus Engine Detections Detection Ratio of Total Files (%) Evasion Ratio of Total Files (%) Unigue Signatures Spider Chart
© Kaspersky 50 69.44 3056 3 ®
© ZoneAlarm 50 69.44 3056 3 &
© MicroWorld-eScan 48 66.67 3333 38 @
© BitDefender 48 66.67 38 @
© NANO-Antivirus 48 66.67 3 P

Figure 14. VirusTotal Engines report statistics and information

Detected Files Orientation

packed

backdoar

bdf

trojan

-8 Keyword frequency

generic

heur

Figure 15. Example of VirusTotal Engines report Engine spider chart

Show | Al v entries

Showing 1 to 72 of 72 entries

Copy || CSV || Excel PDF || Prnt
Antivirus Engine Detections Detection Ratio of Total Files (%) Evasion Ratio of Total Files (%) Unique Signatures

© Kaspersky 50 59.44 30.56 3

show 10 v entres

Showing 1 to 10 of 50 entries

Copy || CSV || Excel || POF || Print

File Path File Name Hashes signature

CilUsersistam\D y p java.exe md5: 767880bC8 11ea5c7631e285300380507 Packed Win32.BDF.a
shat: 2ea971fbcf4150r210a0¢d085055€a911c5b125,
sha256: Ocdfc9ccfesBefeab7 9a71c955021d5d56easobe038coafd1ee dcbdelivab

G:\Users|Stam\D finalir ntry\shellrevtcp AcroRd32.exe md5: 14e82c83c2adb753870a5906316161d9 Packed Win32.BDF.a
shat: 687259772960ab0b31ec0n8d7aeT2a1b1E54e56d,
sNa256: bb55C551dabeal0n3905417604976359 7619320860607 4900Ta701140Mm4

C:lUsersiStam\D finalir ntry\shellrevcp nam.exe md5: bAf166415318550867593c5658€125¢D, Packed Win32.BDF.a
shat: 98985faf7a531512eB7155d8MbichdB765164ach.
shaz56: fc30677400903a32191342997038 1efa26add0ceab3s6148b0ad

CilUsersiStam\D p exe mds: 231398d7325. dd7428911d316 HEUR:Trojan.w
shat: 687a65165C1aea305206C3329079e32e808913 1€,
sha256: 104c1b62b3239dcH719a78e20bcF19cd5451771d9ba785bbba0e33dBaI936

G:\Users\Stam\D finalir lentry norop vtcp Acrobatexe md5: 65a381eaa7acchbi67cecOseteoc2. HEUR:Trojan.Win32. Generic
shat: 4643a3bb2e8a5692c2005C11ea79c60ebedb2le]
sNa256: 12¢244d06¢25Ta4e54bad01e5c6e7acac30Mabbe9sd a446094c917219e

C:lUsersiStam\D finalir lexit norop nounr md5: aBf31007d501c281089961607a73d46b. HEUR:Trojan.Win32. Generic

Figure 16. Expanded view of a specific antivirus engine

P

Search

Spider Chart

&

Search

Scan Date

2019-01-20 12:53:45

2019-01-20 12:53.00

2019-01-20 12:54:15

2019-01-20 14:36:08

2019-01-20 12:55:28

2019-01-20 14:37:11

Viewon VT

=,

The third report is the VirusTotal Signatures report which includes information on the triggered signatures. This particular
report is useful for hinting what is detected by the antivirus engines on the analyzed samples. The following statistics and
information are provided in this report.

Table 11. Statistics and information in VirusTotal Signatures report

Statistic / Information Description

The name of the signature that made the detection.

Signature Name

Total File Detections

The absolute value of the number of detections performed by this signature.

Unique File Names

The number of unique file names that were detected. (Useful when analyzing
samples generated using a different method or payload).

Appearance in Engines

The number of engines that this signature appears in.

Showing 1 to 25 of 233 entries

| Copy || csv || Excel | PDF

Print

Signature Name

HEUR:Trojan.Win32.Generic
Gen:Variant.Jaik.5656

a variant of Win32/Rozena.ED

0 © © ©

Trojan:Win32/Swrort.A

© Trojan.Win32.Shellcode.ewfvwj

Total File Detections 1 Unique File Names
88 9
45 8
36 9
36 9
26 9

Figure 17. VirusTotal Signatures report statistics and information

Showing 1 to 25 of 233 entries

Signature Name

@ HEUR:Trojan.Win32.Generic
Show 10 v entries

Showing 1 to 10 of 88 entries

‘ Copy H csv H Excel ‘ PDF H Print
File Path File Name |7
C:\Users\Stam\D p\poil pinj \entry P .exe
C:\Users|Stam\D p\poil pinje \entry p .exe

C:\Users\Stam\Di

C:\Users\Stam\Di

evtep

evtep

wmplayer.exe

wmplayer.exe

Total File Detections 17 Unique File Names
88 9
Hashes

md5: a308b28ab41404d81f325037265¢ef61,
sha1: 7e17bb70312f12e99976eb7dealc3d84eb81afc5,

sha256: 204ebc87c6hc7 1a26be2db32bbed7d1aaffi66f7 12bf7 91586257 31981f9551

md5: a308b28ab41404d81f325037265cef61,
shatl: 7e17bh70312f12e99976eh7dealc3d84ebs1aic5,

sha258: 204ebc87cBbc71a26be2db32bbed7d1aaffi66f7 12bf79f5862573f981f9551

md5: 510078fa109994d0525e3569ef021894,
shal: d28aeBa2e53060fe 1480e1b5f4e5e739e602678c,
sha256:

37d929a83b8e80dbbc74a2e8955e323678872¢3580870d45ffba12bal7e428b

md5: 510078fa109994d0525e3569ef021894,
sha1: d28aeBa2e53060fe 1480e1b5fde5e739e602678c,
sha256

Figure 18. Expanded view of a specific signature in VirusTotal Signatures report

Search:

Appearance in Engines

Appearance in Engines

Engine

Kaspersky

ZoneAlarm

Kaspersky

ZoneAlarm

Search:

Search

Scan Date
2019-01-20
12:55:18

2019-01-20
12:55:18

2019-01-20
13:05:45

2019-01-20
13:05:45

View on
vT

-

Additionally the report includes 3 charts: a pie chart displaying the top 10 most frequent signatures, a word cloud with the
most prominent keywords in the signatures and a searchable and exportable table with the most frequent keyword

appearances.

Top Signatures

/ HEUR:Trojan.wWin32.Generic
Gen:variant Jaik.5656

a variant of
Win32/Rozena.ED

Trojan:Win32/Swrort.A

others Trojan.win32.shellcode. ewfuwj

Results based on a total of 72 scanned files

Show 25 v entries

Top word occurances in signatures Showing 1 to 5 of 140 entries
) Copy csv Excel PDF Print
- Search:
o !
: [ST Word Appearance
° i~ 9
s generic
N =]
] trojan 350
3 gen z
M £ win 354
H
m rozenaa 266

gen

Figure 19. Charts in the VirusTotal Signatures report

158

Previous 2 3 4 5 28 Next

Finally, the last report is the VirusTotal report which includes information on the engines and signatures that detected each
file as well as some cumulative stats on the detection of the total sample that was analyzed. Specifically the report includes

the following statistics.

Table 12. Statistics and information in VirusTotal report

Statistic / Information

File Path

File Name

Hashes

Scan Date
Positives

Solutions Scanned
Detection Ratio (%)
Evasion Ratio (%)

Unique Signatures

Unique Signature Detection Ratio (%)

Unique Signature Evasion Ratio (%)

Spider Chart

Results on VT

Description

The path of the file that was analyzed.

The name of the file that was analyzed..

The MD5, SHA1, SH256 hash of the file that was analyzed.

The date that that the file was scanned by the VT online service.

The number of Antivirus engines that detected the file.

The number of Antivirus solutions that scanned the file.

The percentage of positive detections for the file.

The percentage of no detections for the file.

The number of unique signatures that detected the file.

The percentage of positive detections for the file based on the unique signatures
that detected it. It is not uncommon for different antivirus solutions to use the
same database of signatures. This metric assumes that if a file was detected with
the same signature from different engines then these detections will be counted
as 1 therefore decreasing the detection and increasing the evasion rates.

The percentage of no detections for the file based on the unique signatures. It is
not uncommon for different antivirus solutions to use the same database of
signatures. This metric assumes that if a file was detected with the same
signature from different engines then these detections will be counted as 1
therefore decreasing the detection and increasing the evasion rates.

A spider chart is generated for every file. The plugin will perform a keyword
analysis on the signatures and display a spider chart with the most common

keywords for each file.

A hyperlink to the VirusTotal scan results for the specific file.

Screenshots from the report are provided below.

Show 25 v entries

Showing 1 o 25 of 72 entries

Search:
Unique Unique
Evasion Signature Signature
Scan Solutions Detection Ratio Unique Detection Evasion Spider Results
File Path File Name Hashes Date. Positives |7 Scanned Ratio (%) (%) Signatures Ratio (%) Ratio (%) Chart onVT
c: y! AcroRd32.exe ma5: 14e82c53c23db753870259063/6161d9, 2019-01- 26 70 3714 62.86 18 29.03 7097 @ B
5} relverop It 672597 oGOt oD a5 2550 a &
sha256: onssaser 12:53:00
C: ntry AcroRd32.exe ma5: 48533ac520183c8M1b32e23e5154219¢, 2019-01- 26 72 36.11 63.89 18 28.12 71.88 @ Bt
] roronmoceollonsenny It 7 sdabesad3Ae3agooRAmeT 3300843905 o =
sha256:
1411e2%e71d 12:55:55
C: ntry\ AcroRd32.exe ma5: a2f0ff 17 1fbG664e7 1cb58587850c258. 2019-01- 25 KAl 321 64.79 19 2923 7077 @ Bt
5] meverie Tt AMROS0cSSacies Ear DTS 005 a =
sha256: 12:50-25
C: ntry AcroRd32.exe ma5: cBf521ac264a16d70830acc21237b 117, 2019-01- 25 KAl 321 64.79 17 26.98 73.02 @ Bt
5] rorop mourmRenclrerey e b =
sha256: , e 12:58:24
C: ntry java.exe ma5: 310838b5cc5323c45032ade2ea4ateet, 2019-01- 24 KAl 33.80 66.20 17 26.56 7344 @ Bt
5] roron mocreemseny 47 1304 4SeeeAeAOOA T OA24850, b =
sha256:
125614
C: ntry Rainmeter.exe ~ mad5: 27a3ach2b026/3adba54ab76251e45, 2019-01- 23 70 32.86 67.14 15 2419 7581 @ Bt
51 roronmocreollomsenny et TS0 BB O SO 2SeEBS0550, b =
sha256: 143503
ca ntry nam.exe md5: £a8d194606¢3008090408859c117a3eb, 2019-01- 23 70 32.86 67.14 15 2419 7581 e =
5l oron R ot 50T A AdGSGaNzDeD 0007 ST TSB0eDd0, b =
e 9d3edeefBT3a’ 1af3fe21. 12:59:31
C: ntry nam.exe ma5: badf726b201681b96abdIbce3Se 1e9df, 2019-01- 23 KAl 3239 67.61 15 2381 76.19 @ B
51 roronmocreollomsenny vt 15551 3200 BeadGETaaToc0RT 330035 b =
sha256:
90cf8d3T: 113e0036cad171 12:57.06
Figure 20. VirusTotal report statistics and information
Show | 25 v entries
Showing 1 to 25 of 72 entries
Search:
Unique Unique
Evasion Signature Signature
Scan Solutions Detection Ratio Unique Detection Evasion Spider Results
File Path File Name Hashes Date Positives |7 Scanned Ratio (%) (%) Signatures Ratio (%) Ratio (%) Chart onVT
c: n AcroRd32.exe ma5: 14e82c63c2adb7 5367025906316 161d9, 2019-01- 26 70 3714 62.86 18 29.03 70.97 @ =
s et 4725977 oadann scOBToe ATESHe550 m]
sha2s6: 12:53:00
1o
Show 10 v entries
Showing 1to 10 of 70 entries.
Search:

Cyren

NANO-Antivirus
Antiy-AVL
Ikarus

cmc

Rising

Arcabit

Detection

Win32:Trojan-gen

in32:Trojan-gen

W32/Rozena D genlEldorado

'W32/Rozena D genlEldorado

Virus Win32. Gen.ccr

Trojan/Win32.AGeneric

Trojan Win32 Rozena

Trojan.Win32.0bfuscated. 110

Trojan Rozenal8 6D/N3#87%

Trojan.Jaik D1618

(RDM+-cmRtazo1WfuPddcJXkta\WVs

Figure 21. Expanded view of a specific file in VirusTotal report

17 Antivirus Engine Version
18.4.3895.0
18.4.3895.0
47.1.166
6201
1.0.134.24576
3.0.01
0152
1.1.0977
250024

1.0.0.837

Antivirus Engine Update Time

20190120

20190120

20190120

20190120

20190120

20190120

20190120

20190120

20190120

20190120

broions [2

34|56 |7 Net

24

File Orientation

malicious

bdf

packed

obfuscated

gen
win
10
variant
jaik
trojan
rozena

-# Keyword frequency

Figure 22. Example of VirusTotal report spider chart

The VirusTotal report also includes 4 charts: a semi circle donut with the number of files that have been detected by at least
1 antivirus solution vs the ones that were not detected at all, a spider chart with the top 10 most effective Antivirus
Engines, a spider chart with the top 10 most frequent signatures and a spider chart with the top 10 most frequent signature

keywords.

Detected e
Files

sased on a total of 72 scanned files

Kaspersky
Ad- Zoneatarm
Aware
50,
Arcabit MicroWorld-
eScan
MAX BitDefender
Emsisoft NANG-
Rising Antivirus

- Engine Detections

Figure 23. Charts in the VirusTotal report

Virus. Win32 Gen_cemw

HEUR Trojan Win32 Generic
Trojan.Win32.Meterpreter Cen:Variant Jaik. 5656

HackTool Swrort!1.6477

a
(CLASSIC) variant

of

Win32/Rozena ED

Trojan‘Win32, Swrort A

Win32 Trojan- Trojan Win32 Shellcode ewfww

GEBn-Variant Mikey. 91860

-8 Signature Frequency

Generated at: 2019-02-06 19:26:27

generic
swrort trojan
rozena win
malware rozenaa
variant gen
heur

-8 Keyword Frequency

2.5 Plugin: Injectotal

2.5.1 Execution

The Injectotal plugin calculates and generates a report with comparison charts and cumulative statistics from the virustotal

analysis results. The arguments to execute the plugin are described below.

Table 13. Injectotal plugin arguments

Arguments Type Description

A directory with virustotal results. The plugin assumes that the files

--injtotal-directory/-injtotaldir String

be able to generate a meaningful.

scanned from the virustotal plugin will be under the following
directory structure <method>\<shellcode>\<filename> in order to

The execution of the injectotal plugin is pretty straight forward as the user has little interaction with the plugin execution.

l: Start } »| Read VirusTotal results

Y
Create report (—| l Process results I |

Figure 24. Flow chart of the execution of the Injectotal plugin

E¥ Command Prompt -

_:hl:ll'l pljir'IIEr". -1 info -s r'wjerlEE[: ¥y -p _"Lr'le tal —it‘ljtljt.:'lldir" ropsleep

\ropsleepi

with the following o :inj
dir

Figure 25. Execution of the Injectotal plugin in command line

2.5.2 Report

The plugin generates a report with a series of comparison charts. The report sections are described below.

Table 14. Chart titles and descriptions of charts in Injectotal report

Chart Titles . Description -

A series of pie charts displaying the top 10 antivirus engine with the most

Most effective antivirus engine . L.
& detections for each method / shellcode combination

Shellcode detection per antivirus A series of bar charts comparing the number of detections of each antivirus per
engine shellcode for each method
Method detection per antivirus A series of bar charts comparing the number of detections of each antivirus per
engine method for each shellcode

A series of bar charts comparing the evasion and unique evasion ratios of each
shellcode and for each method for all files scanned

A series of bar charts comparing the evasion and unique evasion ratios of each
method and for each shellcode for all files scanned

A series of bar charts comparing the evasion and unique evasion of each method
per file and for each shellcode

Evasion rate per shellcode

Evasion rate per method

Evasion rate per file

Samples screenshots from the report are provided below.

Most effective antivirus engines

entry revshell entry metrevicp

/[Avast: 9 [Awast: 9
|

ESET-NOD32: 9 Ikarus: 9

ESET-NOD32: 9

others: 51 ——__ Rising: 9

AVG: 9
AVC: 9
MAMO-Antivirus: 8§
"~ NANO-Antivirus: 8 .
Avira: 8
Ikarus: 7

others: 178 McAfee: 8

F-Secure: 5 - T Zillya: 6

Kaspersky- 5 Fortinet: 6

Figure 26. Most effective antivirus engines section in Injectotal report

Shellcode detection per antivirus engine

entry

Evasion Rate

7 7
6
s
5 4
222 2 2
1
000000 0 unn 000 | oooco| of fJoo 00 n.n u.n nu.n)
8 o s
¥ R o <«
- &

7

‘uun‘ oulll.on

7 7
222 2
00 uIII oooo| (oo .no II. [o

® mewevicp @ revshell

Figure 27. Shellcode detection per antivirus engine section in Injectotal report

Method detection per antivirus engine
revshell

Evasion Rate

3

5
2 2 z
1 1
offofloo nn oooo nnuuun l ooffoflo llmee l nnl

a
z
1 1 1 [| 1
ogfloof{gooccocogogooogoofiffgoogoooo un

5
3
2
uuunIn Ilunlnn nuuulnnnlnulnnn
w“
&

o 0
S & & & S R O N R S S 0P £ & ¢ P P
& b7 ¥ o € & ¢ (F P O F P T F PP E \\0404"»‘ R & & S
%.2‘/14’(,‘:&‘} Q@HQM\\QQQA‘(\ $6 e T T T I S wﬂgiﬁsch@ob* s‘ﬁd@@q@a&% 5 & S &v\@‘boaqhb@@é\\ &g Qe\cﬁ
& PSR R & ESE 5’ R ;&‘ N ¥ o
& &7 & & 3 < o 5
& ¢ v & R & v
e < & e
<&

® ety @ exit

Figure 28. Method detection per antivirus engine section in Injectotal report

Evasion rate per shellcode

entry entry

Evasion Rate Unique Signature Evasion Rate

100 100
80.35 83.11
75 75
64.51
5848

& &
3 3

= 50 = 50
= =

25 25

o o

entry entry
@ metrevicp @® revshell @ metrevicp ® revshell

Figure 29. Evasion rate per shellcode section in Injectotal report

Evasion rate per method

revshell revshell

Evasion Rate Unique Signature Evasion Rate

100

100
87.28 89.12
80.35 83.11

75 75
r r
o o
= =

2 50 = 0
- -

25 25

o o

revshell revshell

@ entry D exit © entry P exit

Figure 30. Evasion rate per method section in Injectotal report

Evasion rate per file
revshell

Evasion Rate

100
9143 87.32 85.92 90 88.89 8841
31.43 B0.88 81.69
75 71.83
b62_36
@
3
= 50
-
25
o
cmd.exe notepad+-+.exe Acrobat.exe wmplayer.exe AcroRd32.exe java.exe firefox.exe nam.exe Rainmeter.exe
@ entry 0 exit
revshell
Unique Signature Evasion Rate
100
9275 91.3 9265 91.43
- - 89.71
85.51 ’ 83.82 g3 00
75 7015 68.75
D
=1
= 50
-
25
o
cmd_exe notepad++.exe Acrobat.exe wmplayer.exe AcroRd32.exe java_exe firefox.exe nam.exe Rainmeter.exe

@® enuy O exit

Figure 31. Evasion rate per file section in Injectotal report

2.6 Creating a new plugin

A template and example plugin are provided with this tool. However in this section we are going to note the minimum
requirements that are needed in order to expand the tool functionality with new plugins.

plugin_name= _ na
plugin_type

logging.info(kwargs

Figure 32. Template plugin code snippet

The new plugin must have at least the following elements in order to be executed successfully by the tool:

Table 15. New plugin requirements

Requirement Explanation

The argparse module must be imported as it is mandatory for a plugin to return a
group of arguments even if that group is empty.

Logging module must be imported and used within the plugin in order to ensure
that the plugin provides sufficient information during execution.

The variable plugin_type must be set to one of the following values: GENERATOR,
ANALYZER, PRESENTER.

The function get_arguments must exist in order to provide the plugin arguments
to the tool and allow the user to control the execution of the plugin.

The function argument_check must exist. The function is called prior to the
plugin execution and is responsible for validating the user provided arguments.
The function process must exist. The function is responsible for executing the
plugin functionality according to the user provided arguments.

Import of argparse module
Import of logging module
Variable plugin_type
Function get_arguments
Function arguments_check

Function process

If the plugin generates a report then the report must be placed wunder the directory
<store_name>\<plugin_name>\report\<report name>.html otherwise it will not be identified by the tool. During each
execution the tool looks for the report directory in each plugin directory and creates a link to every html file (plugin report)
that exists inside them. In this way the tool cumulative report is updated with new information provided by the plugins as

more plugins are executed.

% Pointer Report - temp

Injectotal ROPInjector Graphs ROPInjector Shellter VirusTotal Dashboard VirusTotal Engines VirusTotal Signatures VirusTotal

Figure 33. Report navigation panel dynamically generated at each run of the tool depending on the plugin reports that exist in the
store

3 Use Cases

In order to evaluate and confirm the effectiveness of ROPInjector and Shellter we have selected 9 32-bit executables
referenced in the next table for which we will run our tests.

Table 16. List of PE files used as carriers in the experiments

File Name File Size (KB) File Version Hash (SHA256)

Acrobat.exe 650 19.10.20069.49826 3?;:2;(;312622%3225103%b136f7db6d30d8706bd981f3ao
AcroRd32.exe 1423 11.0.8.4 322226152177&?(?5235b63305b5C18dbengaeagSCECCZ7835
cmd.exe 305 6.3.9600.16384 E:gggii;glgbla;:da629d34baee6f0f9d0e0337bf6ced9f4
firefox.exe 439 63.0.3.6892 ;Sgigizgg::g;ggg79f208fl414bd720caSefe5ca207d441
TR 187 8.0.192.12 2(5)228227721;357112324376781e8be5b22482e7908b945528
ham.exe 1828 1.0alla 5d329bb39ba744cdba5elafe107551c18balacd46cb6764

391024a73aa2d583f

e 2783 76.00 :?;zfsgfgseziaeizssﬁb2d63ae6297990fc26ad36f06497507
Rainmeter.exe 39 24.0.1678 28;?‘22555871:33;?“031f58f4fe86a73bcb9716c707201211
e e 163 12.0.9600.19145 ;12e4777c61<1109064i;112322bbc345ea281be3ebde034a4168e7266

Regarding the selected shellcode, we will be using the popular reverse TCP shell and reverse TCP meterpreter of the
Metasploit Framework [4].

To put some perspective in the numbers that follow we are including screenshots from the VirusTotal Online Service for the
aforementioned payloads when generated as a PE from the MSF.

The evasion rate of both payloads is 27.53 % as seen from the screenshots below.

EXI

Detection Details

Acronis
AhnLab-v3
Arcabit

AVG
BitDefender
CAT-QuickHeal
Comodo
Cybereason
Cyren
eGambit
Endgame
ESET-NOD32
F-Secure

GData

50 engines detected this file

SHA-256 15eb2fee1da6a21af83ac5b59497f4f26b1e3fb1d8b993c651a02ec75f6edbcf
File name metrevicp.exe
File size 72.07 KB

Lastanalysis ~ 2019-02-10 12:35:33 UTC

Community

A suspicious Ad-Aware A Trojan.CryptZ.Gen

A Trojan/Win32.shellR1283 AlYac A TroEncrypzcen

A Trojan.CryptZ.Gen Avast A ‘Win32:SwPatch [Wrm]

A Win32:5wPatch [Wrm] Avira A TR/Crypt.EPACK.Gen2

A Trojan.CryptZ.Gen Bkav A ‘W32 FamVT.RorenNHc.Trojan
A Trojan.Swrort.A ClamAv A Win.Trojan.MSShellcode-7
A TrojWareWin32 Rozena A@4jwdqr Crowdstrike Falcon A malicious_confidence 100% (D)
A malicious.09bec5 Cylance A Unsafe

A vwa2sswrorta Drweb A Trojanswrort

A Trojan.Generic Emsisoft A Trojan.CryptZ.Gen (B)

A malicious (high confidence) eScan A Trojan.CryptZ.Gen

A avariant of Win32/Rozena.ED F-Prot A W32/Swrort.A

A\ Trojan TRICrypt EPACK.Gen2 Fortinet A waiswrortcir

A Trojan.CryptZ.Gen Ikarus A Trojan.Win32.Swrort

Figure 34 Detection rate of the Meterpreter Reverse TCP payload

i'.')h
e/

EX

Detection Details

Acronis
AhnLab-v3
Arcabit

AVG
BitDefender
CAT-QuickHeal
Comodo
Cybereason
Cyren
eGambit
Endgame
ESET-NOD32
F-Secure

GData

50 engines detected this file

SHA-256 557f52e121560ea5bc60073481da58d331e3ebc04428abe3bd7fe22777971a1a
File name shellrevtcp.exe
File size 7207 KB

Last analysis 2019-02-1012:35:53 UTC

Community

A suspicious Ad-Aware A DeepScan:Generic.RozenaA A335F21C
A TrojEn/Win3zshell.r1282 Alyac A\ DecpScan:Generic Rozenaa A335F21C
A DeepScan:Generic. RozenaA A335F21C Avast A ‘Win32:SwPatch [wrm]
A Win32:SwPatch [Wrm] Avira A TR/Crypt EPACK.Gen2
A DeepScan:Generic.RozenaA . A335F21C Bkav A W32, FamVT.RorenNHc.Trojan
A Trojan.Swrort.A ClamaAy A Win.Trojan.MSShellcode-7
A TrojWareWin32.Rozena A@4jwdar Crowdstrike Falcon A\ malicious_confidence_100% (D)
A malicious.6cac97 Cylance A Unsafe
A w32sswrortp Drweb A Trojanswrort1
DeepScan:Generic.RozenaA.A335F21C
A Trojan.Generic Emsisoft A s
B)
A malicious (high confidence) eScan A DeepScan:Generic.RozenaA . A335F21C
A a variant of Win32/Rozena.ED F-Prot A W32/Swrort.D
A\ Trojan TRICrypt EPACK Gen2 Fortinet A w3iswrortcir
A DeepScan:Generic.RozenaA A335F21C Ikarus A Trojan.Win32.5wrort

Figure 35. Detection rate of the Shell Reverse TCP payload

33

Graphs and information in the next two sections have all been generated automatically by the tool.

3.1 Use Case: ROPInjector

In this section we will demonstrate the usage of the tool by use-casing it with the ROPInjector shellcode injector. We
analyze the various patch methods and techniques used by this shellcode injector and come with conclusions regarding its
ability to evade AV solutions.

3.1.1 Primary Pathing Methods

For each of the aforementioned PE and each shellcode we have tested 4 patching methods listed in the following table,
resulting in a total of 72 samples.

Table 17. List of ROPInjector patching methods tested

Patch Method Description

The executable file is patched with the shellcode unrolled, converted to ROP and the entry point

E

ROP Entry before the original PE code.

. The executable file is patched with the shellcode unrolled, converted to ROP and the entry point
ROP Exit .) . . .

before the original program’s exit (hook ExitProcess or exit).

Shellcode Entry The executable file is patched with the shellcode intact and the entry point before the original PE
(norop nounroll) code.
Shellcode Exit The executable file is patched with the shellcode intact and the entry point before the original
(norop nounroll) program’s exit (hook ExitProcess or exit).

Statistics and information regarding the patched PE are generated in each run of the ROPInjector. In the next table we have
included the statistics for the sample files analyzed using the method ROP Entry and the shellcode reverse TCP shell. In the
below results the reverse tcp shellcode consisted of 193 instructions out of which 139 were replaced with gadgets by the
ROPInjector.

Table 18. Statistics from ROPInjector using the method ROP Entry and the shellcode reverse TCP shell for the carrier files

PE Name PE Size Candidate Gadgets Gadgets Gadgets Used Gadgets Gadgets Used from PE
(KB) Found in PE Injected From PE Injected (%) Candidate Gadgets (%)
Acrobat.exe 650 338 78 12 86.67 3.55
AcroRd32.exe 1423 5599 67 26 72.04 0.46
cmd.exe 305 608 76 16 82.61 2.63
firefox.exe 439 1634 65 28 69.89 1.71
java.exe 187 1148 76 18 80.85 1.57
nam.exe 1828 3515 67 25 72.83 0.71
notepad++.exe 2783 7778 55 41 57.29 0.53
Rainmeter.exe 39 11 83 0 100.00 0.00
wmplayer.exe 163 60 82 3 96.47 5.00

In the next table we have included the statistics for the sample files analyzed using the method ROP Entry and the shellcode
meterpreter reverse TCP. In the below results the shellcode consisted of 187 instructions out of which 129 were replaced
with gadgets by the ROPInjector.

Table 19. Statistics from ROPInjector using the method ROP Entry and the shellcode meterpreter reverse TCP for the carrier files
PE Name PE Size Candidate Gadgets Gadgets Gadgets Used Gadgets Gadgets Used from PE

Found in PE Injected From PE Injected (%)

Candidate Gadgets (%)

Acrobat.exe 650 338 77 8 90.59 2.37
AcroRd32.exe 1423 5599 67 19 77.91 0.34
cmd.exe 305 608 76 9 89.41 1.48
firefox.exe 439 1634 63 23 73.26 1.41
java.exe 187 1148 75 11 87.21 0.96
nam.exe 1828 3515 67 19 77.91 0.54
notepad++.exe 2783 7778 55 33 62.50 0.42
Rainmeter.exe 39 61 81 1 98.78 1.64
wmplayer.exe 163 60 80 2 97.56 3.33

We tested the evasion ratio of the infected files using the virustotal and injectotal plugins. The evasion results regarding
each file method and shellcode combination can be seen on the following graphs.

100

v |
(=] LF

Yalues

Fa
%

LU 8551
81.69
| ‘ |?" ‘ |u
o |

cmd_exe notepad++.exe

Acrobat.exe wmplayer.exe AcroRd32 exe

® enuy

shellrevicp

Evasion Rate

92.96

[} 92.86 [M]
84.51 y
7857 77.78 78.87 80
6 7429
69.44 69.01
| | | | |

java.exe firefox.exe

entry norop nounroll ® exit @ exit norop nounroll

85.89

A
73.24
|5 71

nam.exe Rainmeter.exe

Figure 36. Comparison of evasion ratios of ROPInjector for the reverse shell payload per file and methods entry, entry norop nounroll,

exit, exit norop nounroll

Table 20. Evasion ratios of ROPInjector for the reverse shell payload per file and methods entry, entry norop nounroll, exit, exit norop

nounroll

File Name entry norop nounroll exit exit norop nounroll

cmd.exe 74.65 71.43 97.18 81.69
notepad++.exe 76.06 71.83 84.51 85.51
Acrobat.exe 82.86 74.65 100 84.51
wmplayer.exe 78.57 73.61 97.22 77.78
AcroRd32.exe 62.86 64.79 92.96 78.87
java.exe 69.44 69.01 92.86 74.29
firefox.exe 74.29 73.24 100 80
nam.exe 69.01 67.14 88.89 88.73
Rainmeter.exe 73.24 67.14 95.71 78.26

metrevicp

Evasion Rate

1o " 91.18 92 96 9296
EELE - 8889 88.89
8472 & 8551 &
3028 83.1
77.46 78.87
- 75 74.2
=]
64.79 o7-61
wn
2
= 50
=3
25
0
cmd_exe notepad++.exe Acrobat.exe wmplayer.exe AcroRd32.exe java.exe firefox.exe nam.exe Rainmeter.exe
® enuy entry norop nounroll ® exit @ exit norop nounroll

Figure 37. Comparison of evasion ratios of ROPInjector for the meterpreter payload per file and methods entry, entry norop nounroll,
exit, exit norop nounroll

Table 21. Evasion ratios of ROPInjector for the meterpreter payload per file and methods entry, entry norop nounroll, exit, exit norop

nounroll

File Name entry entry norop nounroll exit exit norop nounroll

cmd.exe ' 88.89 71.43 97.14 80.28
notepad++.exe 77.94 71.43 84.72 83.1
Acrobat.exe 95.71 75 100 83.1
wmplayer.exe 91.18 74.29 97.18 77.46
AcroRd32.exe 64.79 63.89 92.96 77.14
java.exe 80 66.2 92.96 74.65
firefox.exe 88.89 70.42 100 78.87
nam.exe 73.13 67.61 88.89 87.32
Rainmeter.exe 85.51 67.14 95.77 76.06

We can observe that the executables generated by the ROPInjector using the ROP Exit method achieve the highest evasion
ratio. To put that in perspective cumulative evasion statistics have are calculated for each of the shellcode method
combinations from the injectotal plugin. In the analyzed sample the ROP Exit method scored an impressive 94.37 and 94.38
evasion ratio for the reverse tcp and reverse meterpreter payloads. The percentage shoots even higher to 96.02 and 96.03
if consider our defined metric of unique evasion ratio. It is also important to note that the unique evasion ratio for the rest
of the patching methods increases their evasion by 6-8%. As a reminder a unique evasion ratio assumes that detections
performed with the same signature name from different antivirus engines are considered as one single detection from one
antivirus engine as different products may use the same signature, heuristics or behavior database.

shellrevtcp shellrevtcp

Evasion Rate Unigque Signature Evasion Rate
100 100
8786
i 81.07 8038
- 7846
7343

75 70.33 75

w
2 o

3

§ 50 _z 50

=
25 25
0
shellrevic, 0
. shellrevtcp
ntry nounroll
: em : E"Fw nerop m: ® entry @ entry norop nounroll
T (13 - -
exi eXIt norop nounrol ® exit @ exit norop nounroll

Figure 38. Evasion and unique evasion ratio of ROPInjector for the reverse shell payload per method.

metrevtcp metrevtcp

Evasion Rate Unique Signature Evasion Rate

100

100
37.01
82.93 =nsil 5595
- 79.78 77.76
75 69.7 75
w w
o o
=1 3
3 50 = 50
= -
25 25
o 0
metrevtcp metrevtep
® entry ® entry norop nounroll ® enuy @ entry norop nounroll
® exit @ exit norop nounroll ® exit @ exit norop nounroll

Figure 39. Evasion and unique evasion ratio of ROPInjector for the reverse meterpreter payload per method

Statistics regarding the effectiveness of each antivirus engine against the ROPInjector have also been calculated by the
injectotal plugin. For the analyzed sample and the methods ROP Entry and ROP Exit we include the top 10 most effective
antivirus engines per payload used. The numeric values next to the engine name refer to the number of files that were
detected from the solution for each method and shellcode combination. The detections of the remaining engines are
summarized in the other category. It is also important to note that for each case a maximum of 9 detections is possible (as

for each case 9 files are generated by the ropinjector).

Top antivirus for entry shellrevtcp

MicroWorld-eScan: 9

BitDefender: 9

P ESET-NOD32: 9
_4 —— Emsisoft: 9

MAX: 9

others: 80 ———

" Arcabit: 9

| \\ Ad-Aware: 9

NANO-Antivirus: 8 ~ GData: 9

Top antivirus for entry metrevtcp

[e

ESET-NOD32: 9

others: 44 — ‘__..-—-' NANO-Antivirus: 8
{ ‘/ AVG: 7
o Avast:7
. Kaspersky: 5
Yandex: 4 - Avira: 5
Cylance: 4 ZoneAlarm: 5

Figure 40. Most effective antivirus engines for the ROP Entry method

Table 22. Antivirus detections for the ROP Entry method
Shell Reverse TCP payload
Files Detected

Engine

Metepreter Reverse TCP Payload
Engine

Files Detected

MicroWorld-eScan 9 Rising 9
BitDefender 9 ESET-NOD32 9
ESET-NOD32 9 NANO-Antivirus 8
Rising 9 AVG 7
Emsisoft 9 Avast 7
MAX 9 Kaspersky 5
Arcabit 9 Avira 5
Ad-Aware 9 ZoneAlarm 5
GData 9 Cylance 4
NANO-Antivirus 8 Yandex 4
ALYac 8 MicroWorld-eScan 3
Cybereason 8 BitDefender 3
F-Secure 7 Ad-Aware 3
Avira 6 Emsisoft 3
AVG 6 Arcabit 3
Avast 6 MAX 3
Kaspersky 5 GData 3
ZoneAlarm 5 Cybereason 3
lkarus 3 CMC 2
Antiy-AVL 3 Zillya 2
Yandex 3 Jiangmin 2
Qihoo-360 3 Antiy-AVL 2
cMmC 2 Endgame 2
VIPRE 2 AhnlLab-v3 2
Endgame 2 lkarus 2
Zillya 2 Qihoo-360 2

w
o

McAfee-GW-Edition

McAfee-GW-Edition

Fortinet

Trapmine

AhnLab-Vv3 2 McAfee 1
McAfee 1 Cyren 1
K7GW 1 F-Prot 1
K7AntiVirus 1 VBA32 1
F-Prot 1 Bkav 0
Cyren 1 CAT-QuickHeal 0
Jiangmin 1 VIPRE 0
VBA32 1 TheHacker 0
Bkav 0 K7GW 0
TotalDefense 0 K7AntiVirus 0
CAT-QuickHeal 0 Invincea 0
Cylance 0 Baidu 0
TheHacker 0 Babable 0
TrendMicro 0 Symantec 0
Baidu 0 TotalDefense 0
Babable 0 TrendMicro-HouseCall 0
Symantec 0 Paloalto 0
TrendMicro-HouseCall 0 ClamAV 0
Paloalto 0 Alibaba 0
ClamAV 0 ViRobot 0
Alibaba 0 AegisLab 0
ViRobot 0 Trustlook 0
SUPERANtiSpyware 0 Sophos 0
Trustlook 0 Comodo 0
Comodo 0 F-Secure 0
DrWeb 0 DrWeb 0
Invincea 0 TrendMicro 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Trapmine SentinelOne
Sophos Webroot
Webroot Fortinet
Kingsoft Kingsoft
AegisLab SUPERANtiSpyware
Avast-Mobile Avast-Mobile
Microsoft Microsoft
Acronis TACHYON
AVware Acronis
TACHYON ALYac
Malwarebytes AVware
Panda Malwarebytes
Zoner Panda

w
(o}

Tencent 0 Zoner 0
SentinelOne 0 Tencent 0
eGambit 0 eGambit 0
CrowdStrike 0 CrowdStrike 0
Top antivirus for exit shellrevicp Top antivirus for exit metrevitcp
Kaspersky: 5
Kaspersky: 5 /
others: 12 —__ others: 13 —
™ ZoneAlarm: 5
ZoneAlarm: 5

AlLYac: 1 / ‘_ MNANO-Antivirus: 2 / ‘— NANO-Antivirus: 2
MicroWorld—eScan: 1 . Ikarus: 2 Avast- 1 — Endgarme: 2

Annlab-V3: 2 - Jiangmin: 2 BitDefender: 1 T lkarus: 2

Endgame: 2 * Antiy-AVL: 2 Ahnlabv3: 2 7 Antiy-AVL: 2

Figure 41. Most effective antivirus engines for the ROP Exit method

Table 23. Antivirus detections for the ROP Exit method

Shell Reverse TCP payload Metepreter Reverse TCP Payload

Engine Files Detected Engine Files Detected
Kaspersky 5 Kaspersky 5
ZoneAlarm 5 ZoneAlarm 5
NANO-Antivirus 2 NANO-Antivirus 2
lkarus 2 Endgame 2
Jiangmin 2 lkarus 2
Antiy-AVL 2 Antiy-AVL 2
Endgame 2 Ahnlab-V3 2
AhnlLab-V3 2 MicroWorld-eScan 1
MicroWorld-eScan 1 BitDefender 1
AlYac 1 Avast 1
BitDefender 1 Rising 1
Avast 1 Emsisoft 1
Ad-Aware 1 F-Secure 1
Emsisoft 1 Jiangmin 1
F-Secure 1 AlYac 1
Avira 1 Avira 1
MAX 1 Arcabit 1
Arcabit 1 MAX 1
Rising 1 Ad-Aware 1
Yandex 1 Yandex 1

H
o

GData GData

AVG AVG

Bkav Cybereason
cMmcC Bkav
CAT-QuickHeal cMmC
Malwarebytes CAT-QuickHeal
VIPRE McAfee
AegisLab Cylance
Trustlook VIPRE
K7GW Trustlook
K7AntiVirus K7GW
TrendMicro K7AntiVirus
Baidu Invincea
Babable Baidu
F-Prot Babable
Symantec Cyren
TotalDefense Symantec

TrendMicro-HouseCall

TotalDefense

ClamAV

TrendMicro-HouseCall

O 0O 00 0o 00000000l oo ool 0ol ool oo oo ojlo oo o ool oo o r| K

Alibaba ClamAV
ViRobot Alibaba
Tencent ViRobot
Comodo AegisLab
DrWeb Comodo
Zillya DrWeb
Invincea Zillya
McAfee-GW-Edition TrendMicro
Fortinet McAfee-GW-Edition
Trapmine Trapmine
TheHacker TheHacker
Cyren F-Prot
Webroot Webroot
Kingsoft Fortinet
SUPERANtiSpyware Kingsoft
Avast-Mobile SUPERANtiSpyware
Microsoft Avast-Mobile
Sophos Microsoft
Acronis TACHYON
McAfee Sophos
AVware Acronis
TACHYON VBA32
VBA32 AVware

O 0O 0000000000l 0o oo ool ool oo o ool oo R P K

H
=

Cylance 0 Malwarebytes 0
Panda 0 Panda 0
Zoner 0 Zoner 0
ESET-NOD32 0 ESET-NOD32 0
SentinelOne 0 Tencent 0
eGambit 0 SentinelOne 0
Cybereason 0 eGambit 0
Paloalto 0 Paloalto 0
CrowdStrike 0 CrowdStrike 0
Qihoo-360 0 Qihoo-360 0

An interesting and scary observation on the above number is that many of the popular commercial solutions used widely in
organizations fail to score high in the detection of the infected binaries while less popular solutions are successfully in
detecting them.

By looking at the virustotal report for both the ROP Entry and the ROP Exit we can identify some interesting results. In the
case of ROP Entry among the most frequent keywords identified is the rozena — a malware that uses a meterpreter payload
to communicate to its CnC. However for the same files this is not the case for the ROP Exit method. Specifically the keyword
rozena appears 68 times in the ROP Entry method and only 2 in the ROP Exit. This is an indication that the ROP Exit method
not only achieves better evasion results but also succeeds in better hiding the nature of the payload it executes.

Top word occurances in signatures

Top word occurances in signatures

inay

- auauab

win

malware

trojan 5

variant

Q
M omer

generic

==
3
| =T
Figure 42. Word cloud of signature keywords for the ROP Entry (left) and ROP Exit (right) methods

Top Signatures Top Signatures

Cen-Variant_Jaik 5656 / HEUR:Trojan_Win32_Generic
/ Gen:Variant_Jai
/

/ Win32:Trojan-gen ‘ Win32:Malware—gen
o Trojan (004943941) Trojan/Win32_AGeneric
/'./-" a variant of Win32 /Rozena_ ED others ———| ‘ FileRepMalware
A— — Trojan Win32 Rozena ﬁ-ﬁ-/’ generic.ml
-Q"“m_ Virus. Win32_Gen_comw / \\
\\\" Mal/ Ceneric-5 // \
! Trojan.Cen.2 Trojan Win32 Rozena ——— |)

Trojan._Jaik. D1618

Artemis
others

Trojan.GCeneric!83.C3 (CLOUD)

Riskware (0040eff71)

Trojan:Win32/Azden.Aldl -~ PUA-Win32/Presenoker

Figure 43. Pie charts of top signatures for the ROP Entry (left) and ROP Exit (right) methods

A noticeable difference also exists in the number of engines that have been triggered in each of the two methods.
Specifically a total of 50 engines (69.4%) have been triggered for at least one file for the ROP Entry method while only 34
(47.2%) have been triggered for the ROP Exit method.

Triggerad Triggered
Antivirus Engines: 50, Percentage: 69.4% Antivirus Engines: 34, Percentage: 47.2%

Not Triggered

Engines
Triggered

Engines
Triggered

Figure 44. Semi pie charts of Engines triggered for the ROP Entry (left) and ROP Exit (right) methods

3.1.2 Padded Shellcode

Based on the evasion results of each method we tested above, we observed that by delaying the execution of the shellcode
as is the case in the ROP Exit method, we have achieved very good evasion results. In order to confirm this idea we have
designed the following experiment. We have appended at the beginning of both payloads a padding of random assembly
instructions, namely: inc, dec, and, or, xor, not, cmp, neg, sub, add. We repeated this process for 50, 100 and 250
instructions and created 3 variations for each of the aforementioned payloads. We tested again the evasion results of the
ROP Entry patching method for the 6 shellcodes by generating a total of 54 samples.

entry entry

Evasion Rate Unigue Signature Evasion Rate

85.95

8293 80.38

73.43

Values
Values

entry entry

® metrevicp ® shellrevicp ® metrevicp ® shellrevicp

Figure 45. Evasion and unique evasion ratio of ROPInjector for the ROP Entry patching method and padded shellcode

entry entry

Evasion Rate Unique Signature Evasion Rate
100 39.93 100 91.55
86.78 8544 84.72
80.04 7936 7849
75 75
B B
% 50 '_3_5 50
= =
25 25
o 0
entry entry
® padl 00metrevicp @ padl00shellrevicp ® padl 00metrevicp @ padl00shellrevicp
® pad250metrevicp @ pad250shellrevicp ® pad250metrevicp @® pad?50shellrevicp
@ pad50metrevicp @ pad50shellrevicp @® pad50metrevicp @® pad50shellrevicp

Figure 46. Evasion and unique evasion ratio of ROPInjector for the ROP Entry patch method and padded shellcode

The padded shellcode proved to improve the evasion ratio of the ROP Entry method by approximately 7-10%. Overall by
padding the shellcode we have managed to achieve evasion results close to the ones of the ROP Exit method. Especially for
the case of the meterpreter reverse TCP payload the evasion has increased to a 92.74% for 250 instructions appended

before the shellcode execution.

3.1.3 Sleep before payload execution

We also we make use of the sleep capability of the ROPInjector that delays the execution of the shellcode. We test this for
5, 60 and 300 seconds delay and the methods ROP Entry, ROP Exit, Entry norop nounroll and Exit norop nounroll resulting in
a total 216 samples. The delay introduced before the execution is passed to the injected payload has no effect in the
evasion rates of the files. It is possible that this is due to the fact that some antivirus engines bypass sleep times when

analyzing code.

shellrevtcp metrevtcp
Evasion Rate Evasion Rate
100 7855788 100 8025 7866783
. 75 69.34 67.25 g : . . 75] 66.5667.3 A
] 5 &
2 50 = 2 50
o III Ilililll - > 25 Ilililll
o o
shellrevtcp METrevicp
@ entry —-d 300 @ entry -d 300
® entry-dS ® enuy-d5
® enury -d 60 ® entry -d 60
entry norop nounroll -d 300 entry norop nounroll —-d 300
@ entry norop nounroll -d 5 @ entry norop nounroll -d 5
@ entry norop nounroll -d 60 @ entry norop nounroll -d 60
® exit-d 300 ® exit-d 300
® exit-dS5 ® exit-d5
® exit-d 60 ® exit-d60
127 1727

Figure 47. Evasion and unique evasion ratio of ROPInjector with delay introduced before the execution of the shellcode

3.1.4 Hiding vs Deleting the Certificate

For the last experiment with this tool we are going to test if there is any difference between hiding and deleting the
certificate from a signed PE. For this reason the results that follow are only tested the 5 signed PEs from our original
sample namely: Acrobat.exe, AcroRd32.exe, firefox.exe, java.exe, notepad++.exe.

100

75

50

Values

25

metrevicp
shellrevtcp
Evasion Rate
Evasion Rate 100
91.74 90.48
B9.96 B89.76
76.15 75.06
75
67.62 66.75
o
—E_‘ 50
=
25
0
shellrevtcp metrevicp
@ entry ® entry hidecert ® entry @ entry hidecert
® exit exit hidecert @ exit exit hidecert

Figure 48. Evasion ratio of ROPInjector for the shellcodes shellrevtcp and metrevtcp using a hide and delete patching method

Although the evasion rates for these methods are very close, in the case were the certificate is deleted from the
infected files the evasion rate is slightly but steadily above the evasion rates of the files that have the certificate

hidden.

3.1.5

Conclusions

From our experiments above we have deduced the following interesting conclusions:

The ROP Exit method is the most effective one comparing to the rest. The reason for that might be that the
antivirus engines mostly analyze the instructions during the entry of executables.

Popular commercial Antivirus Solutions used widely in major organizations fail in many cases to detect the infected
file.

The nature of the payload is hidden, as the signature used to detect it are in the majority of the cases either too
generic or inaccurate.

A basic shellcode obfuscation helps to increase the evasion results. In our experiments just calling a number of
instructions before the execution of the malicious payload helped increasing the evasion results 7-10 % for the
ROP Entry method.

A call to sleep is ineffective in helping increase the evasion ratio regardless of the time parameter.

The certificate of signed binaries should be deleted from the infected file as hiding it will leave overlay data which
are detectable using static analysis.

3.2 Use case: Shellter
In this section we analyze the effectiveness of Shellter shellcode injector.

3.2.1 Stealth vs No Stealth

We are going to test the two primary patching methods used by Shellter and identify the evasion ratios in each case. The
patching methods are described in the next table.

Table 24. List of Shellter patching methods tested

Patch Method Description
Stealth If stealth mode is enabled then Shellter preserves original functionality of the infected PE file.
No Stealth If stealth mode is disabled then Shellter does not preserve the original functionality of the infected
PE.
shell_reverse_tcp shell_reverse_tcp
Evasion Rate Unique Signature Evasion Rate

100 100

8542

88.94
81.02
75.2

75 75
wn wn
o o
3 3

= 50 = 50
= =

25 25

0 0

shell_reverse_tcp shell_reverse_tcp
@ nostealth ® stealth [] Ith o

Figure 49. Evasion ratio and unique evasion ratio of stealth and no stealth mode for payload shell_reverse_tcp

meterpreter_reverse_tcp meterpreter_reverse_tcp

Evasion Rate Unigue Signature Evasion Rate

100 100
86.85

B2.58 831
77.98
75 75
50 50
25 25
o

meterpreter_reverse_tcp

Values
Walues

meterpreter_reverse_tcp

@ nostealth ® stealth @ nostealth ® stealth

Figure 50. Evasion ratio and unique evasion ratio of stealth and no stealth mode for payload meterpreter_reverse_tcp

It is obvious by the charts above that returning to the normal execution flow after the payload execution achieves very
good anti-detection results. In the analyzed sample using stealth mode Shellter scored 85.42 and 82.58 for the
shell_reverse_tcp and the meterpreter_reverse_tcp payloads respectively and 88.94 and 86.85 if we consider the metric
unique evasion ration. Another important thing to note is that shellter is not very effective when it comes to hiding the
payload nature or the method used. Among the top triggered signatures and signature keywords are the following.

Top Signatures Top word occurances in signatures

Trojan.Patched SAP.Cen -) : | _
HEUR:Trojan. Win32_Generic)) P ' P
f gen ' patched E ;
_—— Win32:Swrort-5 [Trj]
others B] - i
: Trojan:Win32/Swrort.A i E r°j a n :
~ Trojan.Win32 Swrort (=]
-
J -

i T iShelcode P rozenaa _generic _

des

DeepScan:Generic.RozenaA 15BCI5BD ——— A Mal/Shellter-E

Iueasdaap
R L

Trojan_Patched SAP.Gen (B)

Figure 51. Top signatures and signature keywords for stealth and no stealth methods

From the charts above can see that the antivirus engines are able to detect that the files analyzed are patched, that the file
is possibly a form of shellcode and there are even signatures specifically for shellter.

3.2.2 Polymorphic Junk Code

Another run using stealth and no stealth mode was performed but this time the —junk argument has been used. The —junk
flag enables polymorphic junk code and produces a more complex output. This type of code added also serves for timing-
out some emulators and sandboxes provided that you might have to wait for a few seconds before the payload gets
executed. Evasion results used from this method are provided below.

shell_reverse_tcp shell_reverse_tcp

Evasion Rate Unique Signature Evasion Rate

100 100
83851

91.13
85.19
8062

Values
Values

shell_reverse_tcp shell_reverse_tcp

@ nostealth —junk ® stealth —junk @ nostealth ——junk @ stealth —junk

Figure 52. Evasion ratio and unique evasion ratio of stealth and no stealth mode using junk before payload execution for payload
shell_reverse_tcp

meterpreter_reverse_tcp
Evasion Rate
100

8223 84.71

meterpreter_reverse_tcp

Values

@ nostealth —junk ® stealth ——junk

Values

@ nostealth —junk

meterpreter_reverse_tcp

Unigue Signature Evasion Rate

88.36

86.42

meterpreter_reverse_tcp

@ stealth ——junk

Figure 53. Evasion ratio and unique evasion ratio of stealth and no stealth mode using junk before payload execution for payload

meterpreter_reverse_tcp

It is clear from the results above that junk method increases the evasion ratio by a difference of approximately 5% in each
of the payloads and each of the methods. Similar to the previous experiment the analyzed samples are detected as patched
and related with shellcode however this time there is no signature related to the detection of the tool used like before.

Top Signatures

Trojan.Patched SAP.Cen

Win32:Swrort-5 [Trj]

© Trojan.Win32 Swrort

Trojan:Win32/Swrort A

AT / HEUR:Trojan Win32_Generic
\ Win_Trojan.MSShellcode-7
3 '___,,---' Generic_RozenaA E6GFD10FF

“ HackTool Swrort!1.6477
Trojan.Patched.SAP.Cen (B) (CLASSIC)

Trojan Swrort ~—

Top word occurances in signatures

itrojan 5
il . gen | %swrortt

Figure 54. Top signatures and signature keywords for stealth and no stealth methods with the junk flag enabled

3.2.3 Encoded Payloads

We have also tested Shellter’s capability to apply an encoding layer to the payload. Specifically Shellter provides the
following four encoding functions - XOR, AND, NOT, SUB. We are testing these encoding functions in order to identify
whether one of them is superior to the other and whether their usage helps increase the evasion ratio of the analyzed

carrier files.

shell_reverse_tcp shell_reverse_tcp

8277

@ stealth encode ADD ® stealth encode NOT @ stealth encode ADD ® stealth encode NOT
@ stealth encode SUB @ stealth encode XOR @ stealth encode SUB @ stealth encode XOR

Evasion Rate Unigue Signature Evasion Rate

100 100

82.85 82.61 85.48

75
30
23

0

shell_reverse_tcp

Values
Walues

0

shell_reverse_tcp

Figure 55. Evasion ratio and unique evasion ratio of XOR, AND, NOT, SUB operations for payload shell_reverse_tcp

meterpreter_reverse_tcp meterpreter_reverse_tcp

Evasion Rate Unique Signature Evasion Rate

100 100
8661 87.9 8559 85.71

8337 83.19 8133 81.65
75 75
50 50
25 25
0

0

Values
Values

meterpreter_reverse_tcp meterpreter_reverse_tcp

@ stealth encode ADD @ stealth encode NOT @ stealth encode ADD ® stealth encode NOT
@ stealth encode SUB @ stealth encode XOR @ stealth encode SUB @ stealth encode XOR

Figure 56. Evasion ratio and unique evasion ratio of XOR, AND, NOT, SUB operations for payload meterpreter_reverse_tcp

The encoding function evasion ratios are similar to one another with the difference between them being less than
approximately 3%. It would also seem from the results above that there is no superior encoding function as for different
payloads different encoding functions score higher in the evasion ratio scale. It is also surprising that the encoding functions
are actually reducing the evasion ratio of the infected binaries.

We are going to repeat the process but this time we are going to combine multiple iterations of the encoding functions.
Results are again mixed with the evasion being lower than before.

shell_reverse_tcp shell_reverse_tcp

Evasion Rate Unique Signature Evasion Rate

100 100
86.3
81.86 81.02 79.74 8224 84.95
7495
75 75
n 0
o o
:. 50 _:_‘ 50
= =
25 25
o 0
shell_reverse_tcp shell_reverse_tcp
@ stealth encode XOR SUB NOT ADD @ stealth encode XOR SUB NOT ADD
@ stealth encode ADD ADD ADD ADD ADD ADD ADD ADD ADD @ stealth encode ADD ADD ADD ADD ADD ADD ADD ADD ADD
@ stealth encode SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB S... @ stealth encode SUB SUB SUB SUB SUB SUEB SUB SUB SUB SUE S...
stealth encode XOR SUB NOT ADD XOR SUB NOT ADD XOR 5U... stealth encode XOR SUB NOT ADD XOR SUB NOT ADD XOR 5U...

Figure 57. Evasion ratio and unique evasion ratio of combined encoding operations for payload shell_reverse_tcp

meterpreter_reverse_tcp meterpreter_reverse_tcp
Evasion Rate Unique Signature Evasion Rate
100 100
8193 86.36 8091
N 77.53 7423 76.43 7908 .
75 75
g g
= 50 % 50
= =
25 25
0 0

meterpreter_reverse_tcp meterpreter_reverse_tcp

@ stealth encode XOR SUB NOT ADD @ stealth encode XOR SUB NOT ADD

@ stealth encode ADD ADD ADD ADD ADD ADD ADD ADD ADD __. @ stealth encode ADD ADD ADD ADD ADD ADD ADD ADD ADD .

@ stealth encode SUB SUB SUB SUE SUB SUB SUB SUB SUB SUB S @ stealth encode SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB S
stealth encode XOR SUB NOT ADD XOR SUB NOT ADD XOR 5U... stealth encode XOR SUB NOT ADD XOR SUB NOT ADD XOR SU....

Figure 58. Evasion ratio and unique evasion ratio of combined encoding operations for payload meterpreter_reverse_tcp

In an attempt to understand this behavior we identified that file evasion ratios have great differences. For example for
the meterpreter_reverse_tcp payload the evasion of cmd.exe is 94.12% while the evasion of notepad++ is 71.43%.

meterpreter_reverse_tcp
Evasion Rate

100

97.1 . 97.1 3 79.71 84.29
7608 7439 74.29 _ 70 73.91 73.91
- 66.67 61.97 TS
61.43 B 5857 ElLE
]
2 50
=
235
0

cmd.exe notepad++.exe wmplayer.exe AcroRd32 exe java.exe nam.exe Rainmeter.exe

@ stealth encode XOR SUB NOT ADD
stealth encode ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD

@ stealth encode SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB
@ stealth encode XOR SUE NOT ADD XOR SUB NOT ADD XOR SUE NOT ADD

Figure 59. Evasion ratio and unique evasion ratio of combined encoding operations per file for payload meterpreter_reverse_tcp

Also by the signature analysis we can observe that when using any type of encoding more of the carrier files are being
detected as patched and the shellter related signatures have higher trigger rate.

Top Signatures Top word occurances in signatures

» Trojan Patched SAP_Gen

rezenaa

a variant of Win32 /RozenaWl —— ML Attribute_HighConfidence

HEUR:Trojan.Win32.Generic i in
others ——__ -]
| §° B -
‘-" o Mal/Shellter-B) - t rol a n :
/ \ Trojan:Win32/Swrort A generic % -
“—— Trojan Win32 Swrort ;) patched 3 3

BScope_Trojan_Swrort Trojan_Patched SAP.Gen (B)

Figure 60. Top signatures and signature keywords for encoding methods XOR,ADD,NOT, SUB

3.2.4 Combination of methods

Finally we combine the most evasive method from each category in order to attempt to reach the limits of the Shellter
shellcode injector and create a sample of very evasive binaries. Therefore we will be using the methods stealth with
junk before payload execution and XOR payload encoding. The results can be seen below.

stealth encode XOR junk

Evasion Rate

100
89.12
75
s
o
2 50
-
25

stealth encode XOR junk

® meterpreter_reverse_tcp @ shell_reverse_tcp

Figure 61. Evasion ratios of combined methods stealth, XOR and junk for payload shell_reverse_tcp and meterpreter_reverse_tcp

This combination indeed achieves the highest evasion ratio so far when compared to the previous tests performed.

3.2.5 Conclusions

From our experiments with Shellter we have deduced the following interesting conclusions:

e Shellter seems to achieve the highest evasion ratio when executed with a combination of methods used. The
highest evasion ratio was 89.12% for the payload meterpreter_reverse_tcp.
e Different carrier files may achieve very diverse evasion ratios.
e In several analyzed samples the infected file was detected as patched and in some occasions shellter was even
successfully detected by the antivirus engine as a signature indicating that the tool behavior has been analyzed and

modeled.

e Payload encoding does not help increase the evasion ratio of infected files when used on each own. In fact the
evasion ratio was reduced and more signatures were detected as patched.

A cumulative table comparing the results from the previous sections is included below.

Table 25. Evasion ratios of Shellter methods

Stealth

No Stealth

Stealth Junk

No Stealth Junk

Stealth Encode ADD

Stealth Encode NOT

Stealth Encode SUB

Stealth Encode XOR

Stealth Encode XOR SUB NOT ADD
Stealth Encode ADDx12

Stealth Encode SUBx12

Stealth Encode (XOR SUB NOT ADD)x3
Stealth Encode XOR Junk

Evasion of shell_reverse_tcp (%)
85.42
75.2
88.51
80.62
82.77
82.85
82.61
85.48
81.86
74.95
77.8
81.02
86.01

Evasion of meterpreter_reverse_tcp (%)

82.58
77.98
84.71
82.23
83.37
85.19
81.33
81.65
81.93
77.53
74.23
76.43
89.12

4 Conclusions

Most antivirus engines rely on string signatures and heuristic analysis for the detection of malicious code. In the case of the
shellcode injectors that have been examined in this Thesis, string signatures proved to be ineffective as a combination of
polymorphic techniques and different patching methods would practically randomize the carrier files. Heuristic signatures
have had more success in detecting infected files but behavioral profiling was easily bypassed when methods for emulating
a benign behavior were utilized (junk or random code before the payload execution, return to normal execution flow after
payload execution, execute payload during exit etc...).

Another noticeable fact is that many of the popular and effective solutions [5] according to public ranking have failed to
detect the carrier files in several scenarios let alone detect accurately the nature of the payload. This is a worrying fact for
organizations that still rely solely to antivirus solutions for their endpoint’s protection.

From the analyzed shellcode injectors it seems that although being less popular and known, ROPInjector is more effective in
evading detection than shellter. This is probably due to the fact that the execution of the malicious payload is broken down
to ROP gadgets and injected in smaller parts in the carrier file. ROPInjector also attempts to use as much of the carrier’s file
code as possible and in case it is not able to, inject code in such a way as to emulate a real function. It should be noted that
its evasion ratio three years following its release has only dropped 1-2% from the numbers presented in Blackhat 2015. [6]

Shellter on the other hand, although less effective in antivirus evasion offers a number of options for manipulating and
transforming the payload before the injection on the carrier file. That said it is still a valid option for bypassing most of the
antivirus engines but should be used with caution as a lot of the times the evasion results between samples were very
diverse.

For the conclusions and comments regarding the effectiveness of antivirus engines and shellcode injectors it should also be
taken into consideration that test were performed using two of the most popular shellcodes from MSF, a well-known and
widely used exploitation framework. Using custom payloads would most likely, but without having evidence to support this,
result in greater evasion ratios from both shellcode injectors. Further manipulating the payload before the injection is also
bound to decrease detection as already proven in multiple scenarios. Summing up, the two key points for good evasion
results seems to be a) the injection entry point (at which point in the carrier files execution is the malicious code executed)
and b) the payload transformation (transforming or altering the payload to make it look as benign as possible).

Finally, the tool developed for the purpose of analyzing shellcode injector has still room from improvement. No work has
been done for statically analyzing the carrier files. Injection and manipulation of a PE file is a very tricky process and a lot of
the times the injection can easily be identified with static analysis methods. A potentially promising idea would be to
develop a plugin that would perform static analysis checks (checksum calculation and comparison, check for overlay data,
file metadata, checks with yara rules etc..).

References

[1] Giorgos Poulios. (2019, Jan.) Github. [Online]. https://github.com/gpoulios/ROPInjector
[2] kyREcon. (2019, Jan.) Shellter. [Online]. https://www.shellterproject.com/

[3] VirusTotal. (2019, Jan.) [Online]. https://www.virustotal.com/#/home/upload

[4] Metasploit. (2019, Jan.) [Online]. https://www.metasploit.com/

[5] Gartner. (2019, Jan.) Magic Quadrant Report. [Online]. https://www.crowdstrike.com/resources/reports/2018-
gartner-magic-quadrant-endpoint-protection-platforms/

[6] George Poulios. (2019, Jan.) [Online]. https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-
Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion.pdf

[7] Python. (1, 2019) [Online]. https://www.python.org/

https://github.com/gpoulios/ROPInjector
https://www.shellterproject.com/
https://www.virustotal.com/#/home/upload
https://www.metasploit.com/
https://www.crowdstrike.com/resources/reports/2018-gartner-magic-quadrant-endpoint-protection-platforms/
https://www.crowdstrike.com/resources/reports/2018-gartner-magic-quadrant-endpoint-protection-platforms/
https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion.pdf
https://www.python.org/

