

Master’s Thesis

Analyzing the effectiveness of shellcode injectors

Chatzimangou Stamatios, MTE1636

Under the supervision of:
Dr. Christoforos Dadoyan, dadoyan@unipi.gr

Piraeus 2019

This thesis is dedicated to the people that supported me in the mission.

Special thanks to K for her patience.

Many thanks to Dadoyan as well for pushing me through this process.

 1

Table of Contents

TABLE OF CONTENTS ... 1

TABLE OF FIGURES ... 2

TABLE OF TABLES ... 4

ABSTRACT .. 5

1 MOTIVATION ... 6

2 SOFTWARE DOCUMENTATION ... 7

2.1 IMPLEMENTATION DETAILS ... 7
2.2 PLUGIN: ROPINJECTOR .. 10

2.2.1 Execution .. 10
2.2.2 Report .. 11

2.3 PLUGIN: SHELLTER .. 14
2.3.1 Execution .. 14
2.3.2 Report .. 15

2.4 PLUGIN: VIRUSTOTAL .. 17
2.4.1 Execution .. 17
2.4.2 Report .. 19

2.5 PLUGIN: INJECTOTAL.. 26
2.5.1 Execution .. 26
2.5.2 Report .. 26

2.6 CREATING A NEW PLUGIN ... 30

3 USE CASES .. 32

3.1 USE CASE: ROPINJECTOR ... 34
3.1.1 Primary Pathing Methods .. 34
3.1.2 Padded Shellcode ... 43
3.1.3 Sleep before payload execution ... 44
3.1.4 Hiding vs Deleting the Certificate ... 45
3.1.5 Conclusions .. 45

3.2 USE CASE: SHELLTER .. 46
3.2.1 Stealth vs No Stealth .. 46
3.2.2 Polymorphic Junk Code .. 47
3.2.3 Encoded Payloads .. 48
3.2.4 Combination of methods .. 51
3.2.5 Conclusions .. 51

4 CONCLUSIONS .. 53

REFERENCES .. 54

 2

Table of Figures

Figure 1. Flow chart of the tool execution ... 8
Figure 2. Flow chart of the execution of the ROPInjector plugin... 10
Figure 3. Execution of the ROPInjector plugin in command line ... 11
Figure 4. Statistics report from ROPInjector plugin execution .. 12
Figure 5. Gadgets Injected vs Gadgets not Injected comparison bar chart ... 13
Figure 6. Gadgets Injected with Pseudofunctions vs Gadgets Injected with Epilogue Extensions comparison bar chart 13
Figure 7. Gadgets in PE vs Gadgets Used comparison bar chart ... 13
Figure 8. Flow chart of the execution of the Shellter plugin ... 14
Figure 9. Execution of the Shellter plugin in command line .. 15
Figure 10. Shellter plugin report .. 16
Figure 11. Flow chart of the execution of VirusTotal plugin .. 18
Figure 12. Execution of the virustotal plugin in command line ... 19
Figure 13. VirusTotal sunburst and treemap charts generated from the VirusTotal plugin .. 19
Figure 14. VirusTotal Engines report statistics and information ... 20
Figure 15. Example of VirusTotal Engines report Engine spider chart ... 21
Figure 16. Expanded view of a specific antivirus engine ... 21
Figure 17. VirusTotal Signatures report statistics and information ... 22
Figure 18. Expanded view of a specific signature in VirusTotal Signatures report .. 22
Figure 19. Charts in the VirusTotal Signatures report ... 23
Figure 20. VirusTotal report statistics and information ... 24
Figure 21. Expanded view of a specific file in VirusTotal report .. 24
Figure 22. Example of VirusTotal report spider chart .. 25
Figure 23. Charts in the VirusTotal report .. 25
Figure 24. Flow chart of the execution of the Injectotal plugin ... 26
Figure 25. Execution of the Injectotal plugin in command line ... 26
Figure 26. Most effective antivirus engines section in Injectotal report ... 27
Figure 27. Shellcode detection per antivirus engine section in Injectotal report .. 27
Figure 28. Method detection per antivirus engine section in Injectotal report .. 28
Figure 29. Evasion rate per shellcode section in Injectotal report .. 28
Figure 30. Evasion rate per method section in Injectotal report ... 28
Figure 31. Evasion rate per file section in Injectotal report .. 29
Figure 32. Template plugin code snippet .. 30
Figure 33. Report navigation panel dynamically generated at each run of the tool depending on the plugin reports that exist
in the store ... 31
Figure 34 Detection rate of the Meterpreter Reverse TCP payload .. 33
Figure 35. Detection rate of the Shell Reverse TCP payload ... 33
Figure 36. Comparison of evasion ratios of ROPInjector for the reverse shell payload per file and methods entry, entry norop
nounroll, exit, exit norop nounroll ... 35
Figure 37. Comparison of evasion ratios of ROPInjector for the meterpreter payload per file and methods entry, entry norop
nounroll, exit, exit norop nounroll ... 36
Figure 38. Evasion and unique evasion ratio of ROPInjector for the reverse shell payload per method. 37
Figure 39. Evasion and unique evasion ratio of ROPInjector for the reverse meterpreter payload per method 37
Figure 40. Most effective antivirus engines for the ROP Entry method .. 38
Figure 41. Most effective antivirus engines for the ROP Exit method ... 40
Figure 42. Word cloud of signature keywords for the ROP Entry (left) and ROP Exit (right) methods 42
Figure 43. Pie charts of top signatures for the ROP Entry (left) and ROP Exit (right) methods ... 42
Figure 44. Semi pie charts of Engines triggered for the ROP Entry (left) and ROP Exit (right) methods 43
Figure 45. Evasion and unique evasion ratio of ROPInjector for the ROP Entry patching method and padded shellcode 43
Figure 46. Evasion and unique evasion ratio of ROPInjector for the ROP Entry patch method and padded shellcode 44

 3

Figure 47. Evasion and unique evasion ratio of ROPInjector with delay introduced before the execution of the shellcode ... 44
Figure 48. Evasion ratio of ROPInjector for the shellcodes shellrevtcp and metrevtcp using a hide and delete patching
method .. 45
Figure 49. Evasion ratio and unique evasion ratio of stealth and no stealth mode for payload shell_reverse_tcp.................. 46
Figure 50. Evasion ratio and unique evasion ratio of stealth and no stealth mode for payload meterpreter_reverse_tcp 46
Figure 51. Top signatures and signature keywords for stealth and no stealth methods .. 47
Figure 52. Evasion ratio and unique evasion ratio of stealth and no stealth mode using junk before payload execution for
payload shell_reverse_tcp ... 47
Figure 53. Evasion ratio and unique evasion ratio of stealth and no stealth mode using junk before payload execution for
payload meterpreter_reverse_tcp .. 48
Figure 54. Top signatures and signature keywords for stealth and no stealth methods with the junk flag enabled................ 48
Figure 55. Evasion ratio and unique evasion ratio of XOR, AND, NOT, SUB operations for payload shell_reverse_tcp 49
Figure 56. Evasion ratio and unique evasion ratio of XOR, AND, NOT, SUB operations for payload meterpreter_reverse_tcp
 ... 49
Figure 57. Evasion ratio and unique evasion ratio of combined encoding operations for payload shell_reverse_tcp 50
Figure 58. Evasion ratio and unique evasion ratio of combined encoding operations for payload meterpreter_reverse_tcp 50
Figure 59. Evasion ratio and unique evasion ratio of combined encoding operations per file for payload
meterpreter_reverse_tcp .. 50
Figure 60. Top signatures and signature keywords for encoding methods XOR,ADD,NOT, SUB .. 51
Figure 61. Evasion ratios of combined methods stealth, XOR and junk for payload shell_reverse_tcp and
meterpreter_reverse_tcp .. 51

 4

Table of Tables

Table 1. Plugin types and descriptions .. 7
Table 2. Arguments provided during execution of the tool ... 7
Table 3. Description of developed plugins ... 9
Table 4. ROPInjector plugin arguments ... 10
Table 5. ROPInjector report information and statistics ... 11
Table 6. Comparison bar chart information from the ROPInjector Graphs report .. 13
Table 7. Shellter plugin arguments .. 14
Table 8. Shellter report information .. 15
Table 9. VirusTotal plugin arguments .. 17
Table 10. Statistics and information in VirusTotal Engines report .. 20
Table 11. Statistics and information in VirusTotal Signatures report .. 21
Table 12. Statistics and information in VirusTotal report .. 23
Table 13. Injectotal plugin arguments ... 26
Table 14. Chart titles and descriptions of charts in Injectotal report .. 27
Table 15. New plugin requirements .. 30
Table 16. List of PE files used as carriers in the experiments .. 32
Table 17. List of ROPInjector patching methods tested .. 34
Table 18. Statistics from ROPInjector using the method ROP Entry and the shellcode reverse TCP shell for the carrier files . 34
Table 19. Statistics from ROPInjector using the method ROP Entry and the shellcode meterpreter reverse TCP for the carrier
files... 34
Table 20. Evasion ratios of ROPInjector for the reverse shell payload per file and methods entry, entry norop nounroll, exit,
exit norop nounroll .. 35
Table 21. Evasion ratios of ROPInjector for the meterpreter payload per file and methods entry, entry norop nounroll, exit,
exit norop nounroll .. 36
Table 22. Antivirus detections for the ROP Entry method ... 38
Table 23. Antivirus detections for the ROP Exit method ... 40
Table 24. List of Shellter patching methods tested ... 46
Table 25. Evasion ratios of Shellter methods .. 52

 5

Abstract

In this thesis we analyze the effectiveness of shellcode injectors regarding their ability to bypass antivirus engines. To assist
us in the process we have developed a tool written in Python 2.7 which automates the process of sample generation,
analysis of the infected files, statistics calculation and presentation of results. We demonstrate the usage and results of this
tool on two shellcode injectors, ROPInjector and Shellter. By generating a large sample of infected files and testing them
against the online service VirusTotal we are able to demonstrate the effectiveness of each shellcode injector to hide the
malicious payload as well as the effectiveness of antivirus engines to accurately detect the injected files. The output of this
work is a tool that facilitates and automates this process and the highlighting the strength and weaknesses of both the
shellcode injectors and the antivirus engines.

 6

1 Motivation

The motivation for this Thesis was to study shellcode injectors and outline their strength and weaknesses as well as

understand the effectiveness of antivirus engines against them. To assist us in this process we had to develop an

automated way in order to massively analyze samples of carrier files and generate meaningful statistics.

In an effort to make this work usable and useful for the future and anyone how might be interested in it, a tool was

developed with special care given to the design to make it as generic as possible and not shellcode injector specific

as well as extensible should anyone ever need to add to it additional functionality.

To test and demonstrate the usage of the tool two shellcode injectors were selected: ROPInjector [1] and Shellter

[2]. Results from the analysis of these injectors are included in this Thesis.

 7

2 Software Documentation

In this section we provide details for the implementation of the tool, the user documentation as well as instructions

on how to expand the functionality of the tool with additional plugins.

2.1 Implementation Details

The tool has been designed with the following requirements in mind:

 Automation: Time consuming processes like sample generation, analyzing evasion ratios and gathering data for
statistical purposes should be automated.

 Extensibility: New functionality should be added without having to edit the existing source code.

 Presentation: Analysis results should be searchable and exportable and presented in a user-friendly format.

 Execution Options: The user should be able to configure aspects of the analysis of the samples in each run of the
tool according to his needs.

To fulfill the aforementioned requirements the tool has been developed in a modular way, utilizing plugins for
implementing its functionality and carrying out various analysis tasks.

As different plugins are used for different operations (generation of samples, analyzing samples, creating cumulative
charts), a basic ordering mechanism has been implemented to ensure that plugins will be executed in a meaningful order.
Specifically plugins fall into one of the following categories, GENERATOR, ANALYZER, PRESENTER and are executed in this
order explicitly. A brief description of the categories is provided in the following table:

Table 1. Plugin types and descriptions

Plugin Type Description

GENERATOR
Plugins of this type are responsible for generating samples give input files, run modes and payloads
and are executed first.

ANALYZER
Plugins of this type are responsible for performing analysis task on the generated samples and are
executed after GENERATOR plugins.

PRESENTER
Plugins of this type are responsible for creating reports, charts and calculated statistics based on
analysis results and are executed last.

It is possible that a plugin may perform more than one of these operations (generation, analysis or presentation). If such is
the case the plugin is given the type that allows it to be executed faster in that chain (e.g. If a plugin is generating samples
and creates a report with statistics then it will be of type GENERATOR, if the plugin analyzes samples and generates a report
it will be of type ANALYZER etc..). This convention ensures that multiple plugins can be chained and run in the correct order.

It is also important to note at this point that if multiple plugins of the same type are selected then they will be executed
with the order that they were given in the command line.

Additionally, each plugin exposes and accepts a set of arguments allowing the user to configure its operation at run time.

The execution of the tool and the process described above are also depicted in the following flow chart while the user
arguments are described in the following table:

Table 2. Arguments provided during execution of the tool

Arguments Type Description

--level/-l
String
Choices [debug,info,warning,error,critical]

Sets the logging level for the tool and executed
plugins.

 8

--store/-s String

A store is a directory containing the output of
the plugins whether this is generated files,
results from analysis or reports. Sets the store
directory.

--plugin/-p
String
Choices [ropinjector,shelter,virustotal,injectotal]

Sets the plugin or plugins to run.

--open-browser/-o Boolean
Opens the report in a browser window at the
end of all plugins execution.

--export/-e Boolean Exports the report from the store

Figure 1. Flow chart of the tool execution

 9

To perform our experiments on the shellcode injectors, a total of four plugins are developed at the time of writing. A

brief description of the functionality provided by each plugin is given in the following table and a more detailed one in

the sections that follow.

Table 3. Description of developed plugins

Plugin Name Plugin Type Description

ROPInjector GENERATOR
This plugin is responsible for generating a carrier file samples using the ROPInjector
shellcode injector.

Shellter GENERATOR
This plugin is responsible for generating carrier file samples using the Shellter shellcode
injector.

VirusTotal ANALYZER
This plugin is responsible for analyzing the detection and evasion rates of the injected
files using the VirusTotal service.

Injectotal PRESENTER
This plugin is responsible for generating charts comparing the results of the virustotal
plugin analysis for the different methods, shellcodes and engines used in the generation
of the injected files.

 10

2.2 Plugin: ROPInjector

2.2.1 Execution

The ROPInjector plugin provides all the required functionality to automate the generation of infected samples using the
ROPInjector shellcode injector. Statistics provided by the ROPInjector regarding the injection are also provided as a report
by this plugin. The user is able to configure the following arguments at runtime.

Table 4. ROPInjector plugin arguments

Arguments Type Description

--rop-directory/-ropdir String A directory with binaries to infect with the ROPInjector.

--rop-shellcode/-ropshell String
A file or directory of shellcodes. If not specified the plugin will use
the revshell payload calling at 127.0.0.1:4444.

--rop-args-file/- ropargsf String
A file containing ROPInjector arguments in the following format
(text norop nounroll -d5) seperated by new lines.

--rop-args/-ropargs String
The arguments of ROPInjector to generate infected files (e.g. text
entry).

--rop-version/-ropver
Integer
Choices [1,2]

The version of ROPInjector to use for infection. Version 1 is the
original version published in 2015. Version 2 has been enriched with
more statistics and run modes.

--rop-skip/-ropskip Boolean
Skip the generation of samples and jump to report generation.
Useful for debugging reasons.

The execution of the plugin based on the arguments specified by the user is depicted in the following flow chart.

Figure 2. Flow chart of the execution of the ROPInjector plugin

 11

Figure 3. Execution of the ROPInjector plugin in command line

2.2.2 Report

The plugin will generate 2 reports with statistics, information for each one of the injected files and comparison graphs.
The first report is called ROPInjector and includes statistics and information from the injection of each file. Details regarding
the information is provided can be found in the next table.

Table 5. ROPInjector report information and statistics

Statistic / Information Description

ID
The ID of the file injected. The ID has the format filename / shellcode /
injection method.

PE Size Initial size of the PE file in Kbytes.

Shellcode Size Shellcode size in bytes.

Patch Size Patch size in bytes.

Gadgets in PE Number of candidate gadgets identified in the PE.

Instructions replaced with gadgets Number of instructions replaced by ROP gadgets.

Instructions non ropable
Number of Instructions that could not be transformed to ROP as they are not
supported by the tool.

Instructions replaced by injected
gadgets

Number of instructions replaced by injected gadgets.

Gadgets Injected Number of gadgets that were injected.

Gadgets injected with pseudofunctions
Number of instructions replaced by injected gadgets of instructions replaced
by injected using a pseudofunction.

 12

Gadgets injected with epilogue ext
Number of instructions replaced by injected gadgets using an existing function
epilogue extension.

.text ext Number of times that the text section was extended.

Gadgets Not Injected Number of gadgets that exist in the PE and were used by the ROPInjector.

(%) of Gadgets Injected (%)
Percentage of gadgets injected as opposed to the ones that were used from
the original PE.

(%) of Gadgets Used (%) Percentage of gadgets used from the candidate gadgets identified in the PE.

Gadget Segments Number of gadget segments.

Entry
Whether access is given to the shellcode during entry (run first) or during exit
(run last).

Delay The delay the shellcode sleeps before it runs in seconds.

No Rop Whether the original shellcode is transformed to ROP or is patched intact.

No Unroll Whether shellcode has been converted to ROP.

getPC Whether getPC constructs are replaced in the shellcode.

Inject Gadgets Whether missing gadgets were injected.

Hide Certificate Whether the certificate was hidden or deleted.

A sample screenshot from the generated report is provided below. All results in the table are searchable, sortable and
exportable.

Figure 4. Statistics report from ROPInjector plugin execution

The second report is called ROPInjector Graphs and includes 3 comparison charts with the following information:

 13

Table 6. Comparison bar chart information from the ROPInjector Graphs report

Chart Title Description

Gadgets Injected vs
Gadgets not Injected

This chart compares the gadgets that were injected in the PE versus the ones that were found
in the PE and where used by ROPInjector.

Gadgets Injected with
Pseudofunctions vs
Gadgets Injected with
Epilogue Extensions

This chart compares the gadgets that were injected by inserting a pseudofuntion in the PE
versus the ones that were injected by extending the epilogue of existing functions found in
the PE.

Candidate Gadgets in PE
vs Gadgets Used

This chart compares the candidate gadgets identified in the PE versus the ones that were
actually used for the injection.

A sample screenshot from each chart in this report can be found below.

Figure 5. Gadgets Injected vs Gadgets not Injected comparison bar chart

Figure 6. Gadgets Injected with Pseudofunctions vs Gadgets Injected with Epilogue Extensions comparison bar chart

Figure 7. Gadgets in PE vs Gadgets Used comparison bar chart

 14

2.3 Plugin: Shellter

2.3.1 Execution

The Shellter plugin provides all the required functionality to automate the generation of infected samples using the Shellter
shellcode injector.

Table 7. Shellter plugin arguments

Arguments Type Description

--shellter-directory/-stdir String A directory with binaries to infect with Shellter.

--shellter-args-file/-stargsf String
A file containing Shellter arguments in the following format (-a -s -p
meterpreter_reverse_tcp --lhost 192.168.233.100 --port 4444)
seperated by new lines.

--shellter-args/-stargs String
The arguments of Shellter to generate infected files (e.g. -a -p
shell_reverse_tcp --lhost 192.168.233.100 --port 4444).

--shellter-skip/-stskip Boolean
Skip the generation of samples and jump to report generation.
Useful for debugging reasons.

The execution of the plugin based on the arguments specified by the user is depicted in the following flow chart.

Figure 8. Flow chart of the execution of the Shellter plugin

 15

Figure 9. Execution of the Shellter plugin in command line

2.3.2 Report

The plugin generates one report with information from the output of the injection with Shellter. The report is called Shellter
and has the following information.

Table 8. Shellter report information

Information Description

ID
The ID of the injected file. The ID has the format filename / shellcode / injection
method.

Minimum Supported OS Version
The minimum required Windows version for the target application to run. This
information is taken directly from the PE header and might be not always
accurate.

Shellcode Size The size of the payload that was injected in the file.

Instructions Traced
The number of instructions traced by Shellter. In Auto Mode, Shellter will trace a
random number of instructions for a maximum time of approximately 30 seconds
in native Windows hosts and for 60 seconds when used in Wine.

Tracing Time The time that shellter was tracing instructions in minutes.

First Stage Filtering Time Time taken for first stage filtering to complete.

Second Stage Filtering Time Time taken for second stage filtering to complete.

Injection Virtual Address
The virtual address of the first instruction of the injected code

Injection File Offset
The offset of the first instruction of the injected code.

Original File Checksum The checksum of the file before the injection.

Injected File Checksum The checksum of the file after the injection.

Injection Verification Whether the injection was successful.

Packed Whether the file is packed.

 16

Elimination Status Whether data were eliminated on the injected file.

Elimination Data

Type of data eliminated from the injected file.

Reflective Loader

Whether a reflective loader is used.

Encode Payload Handling Whether encode-payload handling is enabled or disabled.

Handler Type The handler type selected for the injection.

A sample screenshot from the generated report is provided below.

Figure 10. Shellter plugin report

 17

2.4 Plugin: VirusTotal

2.4.1 Execution

The VirusTotal plugin provides the functionality required to massively submit files to the VirusTotal online service [3] for
analysis and retrieve the results. The plugin will also generate 4 reports based on the most effective Engines, most common
Signatures among the analyzed sample and most detected files.

Table 9. VirusTotal plugin arguments

Arguments Type Description

--virustotal-key/-vtkey String The VirusTotal API Key required to submit files.

--virustotal-limit/-vtlim Integer The limit of requests per minute.

--virustotal-dir/-vtdir String The directory of files to analyze.

--virustotal-recursion/-vtrec Boolean Whether the files will be detected recursively in the directory.

--virustotal-file-types/-vtfmt String The extension of the files that will be uploaded.

--virustotal-noscan/vtno Boolean
Fetch the VirusTotal reports for files already submitted. For the rest
of the files skip analysis.

--virustotal-mixscan/-vtmix Boolean
Fetch the VirusTotal reports for files already submitted. For the rest
of the files upload and fetch the report.

--virustotal-new/-vtnew Boolean Scan only files for which reports do not exist in the store.

--virustotal-immediate/-vtimm Integer

Send x requests for and then query for reports. This mode is useful
when scanning a large dataset with a limit in the requests per
minute and ensures that you will retrieve results as fast as possible.
This value should never be greater than vtlim.

--virustotal-skip/-vtskip Boolean
Skip plugin analysis and jump to report generation. Useful for
debugging reasons.

The execution of the plugin based on the arguments specified by the user is depicted in the following flow chart.

 18

Figure 11. Flow chart of the execution of VirusTotal plugin

 19

Figure 12. Execution of the virustotal plugin in command line

2.4.2 Report

Samples screenshots from the generated reports are provided below. The tool generates in total 4 reports.

The first report is the VirusTotal Dashboard which allows easy navigation between the engines, signatures and detected
files from the analyzed samples. A sample screenshot is provided below.

Figure 13. VirusTotal sunburst and treemap charts generated from the VirusTotal plugin

 20

The second report is called VirusTotal Engines and provides statistics for the effectiveness of each Antivirus Engine against
the analyzed sample. Information displayed on the report is provided below. Additionally 3 charts are provided: A semi
circle donut displaying the number of engines that managed to detect at least one file vs the number of engines that had no
detections, a spider chart displaying a keyword analysis on the signatures that were triggered for the analyzed sample and a
word cloud chart displaying the most prominent engines (meaning the ones with the most detections).

Table 10. Statistics and information in VirusTotal Engines report

Statistic / Information Description

Antivirus Engines The name of the antivirus engine.

Detections
The absolute value of the number of detections performed by the antivirus
engine.

Detection Ratio of Total Files (%)
The percentage of files detected from the antivirus engine from the total
analyzed sample.

Evasion Ratio of Total Files (%)
The percentage of files that evaded detection from the antivirus engine from the
total analyzed sample.

Unique Signatures
The same signature can be used to detect multiple infected files. This column will
display the number of unique signatures where used by the antivirus engine to
make the detection.

Spider Chart
A spider chart is generated for every engine. The plugin will perform a keyword
analysis on the signatures and display a spiderchart with the most common
keywords for each engine.

Figure 14. VirusTotal Engines report statistics and information

 21

Figure 15. Example of VirusTotal Engines report Engine spider chart

Figure 16. Expanded view of a specific antivirus engine

The third report is the VirusTotal Signatures report which includes information on the triggered signatures. This particular
report is useful for hinting what is detected by the antivirus engines on the analyzed samples. The following statistics and
information are provided in this report.

Table 11. Statistics and information in VirusTotal Signatures report

Statistic / Information Description

Signature Name The name of the signature that made the detection.

Total File Detections The absolute value of the number of detections performed by this signature.

 22

Unique File Names
The number of unique file names that were detected. (Useful when analyzing
samples generated using a different method or payload).

Appearance in Engines The number of engines that this signature appears in.

Figure 17. VirusTotal Signatures report statistics and information

Figure 18. Expanded view of a specific signature in VirusTotal Signatures report

Additionally the report includes 3 charts: a pie chart displaying the top 10 most frequent signatures, a word cloud with the
most prominent keywords in the signatures and a searchable and exportable table with the most frequent keyword
appearances.

 23

Figure 19. Charts in the VirusTotal Signatures report

Finally, the last report is the VirusTotal report which includes information on the engines and signatures that detected each
file as well as some cumulative stats on the detection of the total sample that was analyzed. Specifically the report includes
the following statistics.

Table 12. Statistics and information in VirusTotal report

Statistic / Information Description

File Path The path of the file that was analyzed.

File Name The name of the file that was analyzed..

Hashes The MD5, SHA1, SH256 hash of the file that was analyzed.

Scan Date The date that that the file was scanned by the VT online service.

Positives The number of Antivirus engines that detected the file.

Solutions Scanned The number of Antivirus solutions that scanned the file.

Detection Ratio (%) The percentage of positive detections for the file.

Evasion Ratio (%) The percentage of no detections for the file.

Unique Signatures The number of unique signatures that detected the file.

Unique Signature Detection Ratio (%)

The percentage of positive detections for the file based on the unique signatures
that detected it. It is not uncommon for different antivirus solutions to use the
same database of signatures. This metric assumes that if a file was detected with
the same signature from different engines then these detections will be counted
as 1 therefore decreasing the detection and increasing the evasion rates.

Unique Signature Evasion Ratio (%)

The percentage of no detections for the file based on the unique signatures. It is
not uncommon for different antivirus solutions to use the same database of
signatures. This metric assumes that if a file was detected with the same
signature from different engines then these detections will be counted as 1
therefore decreasing the detection and increasing the evasion rates.

Spider Chart
A spider chart is generated for every file. The plugin will perform a keyword
analysis on the signatures and display a spider chart with the most common
keywords for each file.

Results on VT A hyperlink to the VirusTotal scan results for the specific file.

 24

Screenshots from the report are provided below.

Figure 20. VirusTotal report statistics and information

Figure 21. Expanded view of a specific file in VirusTotal report

 25

Figure 22. Example of VirusTotal report spider chart

The VirusTotal report also includes 4 charts: a semi circle donut with the number of files that have been detected by at least
1 antivirus solution vs the ones that were not detected at all, a spider chart with the top 10 most effective Antivirus
Engines, a spider chart with the top 10 most frequent signatures and a spider chart with the top 10 most frequent signature
keywords.

Figure 23. Charts in the VirusTotal report

 26

2.5 Plugin: Injectotal

2.5.1 Execution

The Injectotal plugin calculates and generates a report with comparison charts and cumulative statistics from the virustotal
analysis results. The arguments to execute the plugin are described below.

Table 13. Injectotal plugin arguments

Arguments Type Description

--injtotal-directory/-injtotaldir String

A directory with virustotal results. The plugin assumes that the files
scanned from the virustotal plugin will be under the following
directory structure <method>\<shellcode>\<filename> in order to
be able to generate a meaningful.

The execution of the injectotal plugin is pretty straight forward as the user has little interaction with the plugin execution.

Figure 24. Flow chart of the execution of the Injectotal plugin

Figure 25. Execution of the Injectotal plugin in command line

2.5.2 Report

The plugin generates a report with a series of comparison charts. The report sections are described below.

 27

Table 14. Chart titles and descriptions of charts in Injectotal report

Chart Titles Description

Most effective antivirus engine
A series of pie charts displaying the top 10 antivirus engine with the most
detections for each method / shellcode combination

Shellcode detection per antivirus
engine

A series of bar charts comparing the number of detections of each antivirus per
shellcode for each method

Method detection per antivirus
engine

A series of bar charts comparing the number of detections of each antivirus per
method for each shellcode

Evasion rate per shellcode
A series of bar charts comparing the evasion and unique evasion ratios of each
shellcode and for each method for all files scanned

Evasion rate per method
A series of bar charts comparing the evasion and unique evasion ratios of each
method and for each shellcode for all files scanned

Evasion rate per file
A series of bar charts comparing the evasion and unique evasion of each method
per file and for each shellcode

Samples screenshots from the report are provided below.

Figure 26. Most effective antivirus engines section in Injectotal report

Figure 27. Shellcode detection per antivirus engine section in Injectotal report

 28

Figure 28. Method detection per antivirus engine section in Injectotal report

Figure 29. Evasion rate per shellcode section in Injectotal report

Figure 30. Evasion rate per method section in Injectotal report

 29

Figure 31. Evasion rate per file section in Injectotal report

 30

2.6 Creating a new plugin

A template and example plugin are provided with this tool. However in this section we are going to note the minimum
requirements that are needed in order to expand the tool functionality with new plugins.

Figure 32. Template plugin code snippet

The new plugin must have at least the following elements in order to be executed successfully by the tool:

Table 15. New plugin requirements

Requirement Explanation

Import of argparse module
The argparse module must be imported as it is mandatory for a plugin to return a
group of arguments even if that group is empty.

Import of logging module
Logging module must be imported and used within the plugin in order to ensure
that the plugin provides sufficient information during execution.

Variable plugin_type
The variable plugin_type must be set to one of the following values: GENERATOR,
ANALYZER, PRESENTER.

Function get_arguments
The function get_arguments must exist in order to provide the plugin arguments
to the tool and allow the user to control the execution of the plugin.

Function arguments_check
The function argument_check must exist. The function is called prior to the
plugin execution and is responsible for validating the user provided arguments.

Function process
The function process must exist. The function is responsible for executing the
plugin functionality according to the user provided arguments.

If the plugin generates a report then the report must be placed under the directory
<store_name>\<plugin_name>\report\<report name>.html otherwise it will not be identified by the tool. During each
execution the tool looks for the report directory in each plugin directory and creates a link to every html file (plugin report)
that exists inside them. In this way the tool cumulative report is updated with new information provided by the plugins as
more plugins are executed.

 31

Figure 33. Report navigation panel dynamically generated at each run of the tool depending on the plugin reports that exist in the

store

 32

3 Use Cases

In order to evaluate and confirm the effectiveness of ROPInjector and Shellter we have selected 9 32-bit executables
referenced in the next table for which we will run our tests.

Table 16. List of PE files used as carriers in the experiments

File Name File Size (KB) File Version Hash (SHA256)

Acrobat.exe 650 19.10.20069.49826
067c6f0396600b725030db136f7db6d30d8706bd9e1f3a0
7cee4931ed2a02d91

AcroRd32.exe 1423 11.0.8.4
ed820c61c179fa27bb63305b5c18dbe913aea38cecc27835
d3b3e51007e7d575

cmd.exe 305 6.3.9600.16384
e1a080e61fb1baf0da629d34baee6f0f9d0e0337bf6ced9f4
b3ab9b1c23d91ba

firefox.exe 439 63.0.3.6892
76e344a43910a45679f208f1414bd720ca8efe5ca207d441
79737da30aad090b

java.exe 187 8.0.192.12
b51c64c7ef4544dd04a76781e8be5b22482e7908b945528
b08c9da73f07b4e4e

nam.exe 1828 1.0a11a
5d329bb39ba744cdba5e1afe107551c18ba0acd46cb6764
391024a73aa2d583f

notepad++.exe 2783 7.6.0.0
c517690b5c9a83515b2d6aae6297990fc26ada6f06497507
af714b0f0ea4ee96

Rainmeter.exe 39 2.4.0.1678
00c8f2b58ffb318cf1031f58f4fe86a73bcb9716c707201211
4bd42f157dd071

wmplayer.exe 163 12.0.9600.19145
4e776d1969e18339bbc345ea281be3ebde034a4168e7266
f247c1e004f544da8

Regarding the selected shellcode, we will be using the popular reverse TCP shell and reverse TCP meterpreter of the
Metasploit Framework [4].

To put some perspective in the numbers that follow we are including screenshots from the VirusTotal Online Service for the
aforementioned payloads when generated as a PE from the MSF.

The evasion rate of both payloads is 27.53 % as seen from the screenshots below.

 33

Figure 34 Detection rate of the Meterpreter Reverse TCP payload

Figure 35. Detection rate of the Shell Reverse TCP payload

 34

Graphs and information in the next two sections have all been generated automatically by the tool.

3.1 Use Case: ROPInjector

In this section we will demonstrate the usage of the tool by use-casing it with the ROPInjector shellcode injector. We
analyze the various patch methods and techniques used by this shellcode injector and come with conclusions regarding its
ability to evade AV solutions.

3.1.1 Primary Pathing Methods

For each of the aforementioned PE and each shellcode we have tested 4 patching methods listed in the following table,
resulting in a total of 72 samples.

Table 17. List of ROPInjector patching methods tested

Patch Method Description

ROP Entry
The executable file is patched with the shellcode unrolled, converted to ROP and the entry point
before the original PE code.

ROP Exit
The executable file is patched with the shellcode unrolled, converted to ROP and the entry point
before the original program’s exit (hook ExitProcess or exit).

Shellcode Entry
(norop nounroll)

The executable file is patched with the shellcode intact and the entry point before the original PE
code.

Shellcode Exit
(norop nounroll)

The executable file is patched with the shellcode intact and the entry point before the original
program’s exit (hook ExitProcess or exit).

Statistics and information regarding the patched PE are generated in each run of the ROPInjector. In the next table we have
included the statistics for the sample files analyzed using the method ROP Entry and the shellcode reverse TCP shell. In the
below results the reverse tcp shellcode consisted of 193 instructions out of which 139 were replaced with gadgets by the
ROPInjector.

Table 18. Statistics from ROPInjector using the method ROP Entry and the shellcode reverse TCP shell for the carrier files

PE Name PE Size
(KB)

Candidate Gadgets
Found in PE

Gadgets
Injected

Gadgets Used
From PE

Gadgets
Injected (%)

Gadgets Used from PE
Candidate Gadgets (%)

Acrobat.exe 650 338 78 12 86.67 3.55

AcroRd32.exe 1423 5599 67 26 72.04 0.46

cmd.exe 305 608 76 16 82.61 2.63

firefox.exe 439 1634 65 28 69.89 1.71

java.exe 187 1148 76 18 80.85 1.57

nam.exe 1828 3515 67 25 72.83 0.71

notepad++.exe 2783 7778 55 41 57.29 0.53

Rainmeter.exe 39 11 83 0 100.00 0.00

wmplayer.exe 163 60 82 3 96.47 5.00

In the next table we have included the statistics for the sample files analyzed using the method ROP Entry and the shellcode
meterpreter reverse TCP. In the below results the shellcode consisted of 187 instructions out of which 129 were replaced
with gadgets by the ROPInjector.

Table 19. Statistics from ROPInjector using the method ROP Entry and the shellcode meterpreter reverse TCP for the carrier files

PE Name PE Size Candidate Gadgets Gadgets Gadgets Used Gadgets Gadgets Used from PE

 35

(KB) Found in PE Injected From PE Injected (%) Candidate Gadgets (%)

Acrobat.exe 650 338 77 8 90.59 2.37

AcroRd32.exe 1423 5599 67 19 77.91 0.34

cmd.exe 305 608 76 9 89.41 1.48

firefox.exe 439 1634 63 23 73.26 1.41

java.exe 187 1148 75 11 87.21 0.96

nam.exe 1828 3515 67 19 77.91 0.54

notepad++.exe 2783 7778 55 33 62.50 0.42

Rainmeter.exe 39 61 81 1 98.78 1.64

wmplayer.exe 163 60 80 2 97.56 3.33

We tested the evasion ratio of the infected files using the virustotal and injectotal plugins. The evasion results regarding
each file method and shellcode combination can be seen on the following graphs.

Figure 36. Comparison of evasion ratios of ROPInjector for the reverse shell payload per file and methods entry, entry norop nounroll,

exit, exit norop nounroll

Table 20. Evasion ratios of ROPInjector for the reverse shell payload per file and methods entry, entry norop nounroll, exit, exit norop

nounroll

File Name entry entry norop nounroll exit exit norop nounroll

cmd.exe 74.65 71.43 97.18 81.69

notepad++.exe 76.06 71.83 84.51 85.51

Acrobat.exe 82.86 74.65 100 84.51

wmplayer.exe 78.57 73.61 97.22 77.78

AcroRd32.exe 62.86 64.79 92.96 78.87

java.exe 69.44 69.01 92.86 74.29

firefox.exe 74.29 73.24 100 80

nam.exe 69.01 67.14 88.89 88.73

Rainmeter.exe 73.24 67.14 95.71 78.26

 36

Figure 37. Comparison of evasion ratios of ROPInjector for the meterpreter payload per file and methods entry, entry norop nounroll,

exit, exit norop nounroll

Table 21. Evasion ratios of ROPInjector for the meterpreter payload per file and methods entry, entry norop nounroll, exit, exit norop

nounroll

File Name entry entry norop nounroll exit exit norop nounroll

cmd.exe 88.89 71.43 97.14 80.28

notepad++.exe 77.94 71.43 84.72 83.1

Acrobat.exe 95.71 75 100 83.1

wmplayer.exe 91.18 74.29 97.18 77.46

AcroRd32.exe 64.79 63.89 92.96 77.14

java.exe 80 66.2 92.96 74.65

firefox.exe 88.89 70.42 100 78.87

nam.exe 73.13 67.61 88.89 87.32

Rainmeter.exe 85.51 67.14 95.77 76.06

We can observe that the executables generated by the ROPInjector using the ROP Exit method achieve the highest evasion
ratio. To put that in perspective cumulative evasion statistics have are calculated for each of the shellcode method
combinations from the injectotal plugin. In the analyzed sample the ROP Exit method scored an impressive 94.37 and 94.38
evasion ratio for the reverse tcp and reverse meterpreter payloads. The percentage shoots even higher to 96.02 and 96.03
if consider our defined metric of unique evasion ratio. It is also important to note that the unique evasion ratio for the rest
of the patching methods increases their evasion by 6-8%. As a reminder a unique evasion ratio assumes that detections
performed with the same signature name from different antivirus engines are considered as one single detection from one
antivirus engine as different products may use the same signature, heuristics or behavior database.

 37

Figure 38. Evasion and unique evasion ratio of ROPInjector for the reverse shell payload per method.

Figure 39. Evasion and unique evasion ratio of ROPInjector for the reverse meterpreter payload per method

Statistics regarding the effectiveness of each antivirus engine against the ROPInjector have also been calculated by the
injectotal plugin. For the analyzed sample and the methods ROP Entry and ROP Exit we include the top 10 most effective
antivirus engines per payload used. The numeric values next to the engine name refer to the number of files that were
detected from the solution for each method and shellcode combination. The detections of the remaining engines are
summarized in the other category. It is also important to note that for each case a maximum of 9 detections is possible (as
for each case 9 files are generated by the ropinjector).

 38

Figure 40. Most effective antivirus engines for the ROP Entry method

Table 22. Antivirus detections for the ROP Entry method

Shell Reverse TCP payload Metepreter Reverse TCP Payload

Engine Files Detected Engine Files Detected

MicroWorld-eScan 9 Rising 9

BitDefender 9 ESET-NOD32 9

ESET-NOD32 9 NANO-Antivirus 8

Rising 9 AVG 7

Emsisoft 9 Avast 7

MAX 9 Kaspersky 5

Arcabit 9 Avira 5

Ad-Aware 9 ZoneAlarm 5

GData 9 Cylance 4

NANO-Antivirus 8 Yandex 4

ALYac 8 MicroWorld-eScan 3

Cybereason 8 BitDefender 3

F-Secure 7 Ad-Aware 3

Avira 6 Emsisoft 3

AVG 6 Arcabit 3

Avast 6 MAX 3

Kaspersky 5 GData 3

ZoneAlarm 5 Cybereason 3

Ikarus 3 CMC 2

Antiy-AVL 3 Zillya 2

Yandex 3 Jiangmin 2

Qihoo-360 3 Antiy-AVL 2

CMC 2 Endgame 2

VIPRE 2 AhnLab-V3 2

Endgame 2 Ikarus 2

Zillya 2 Qihoo-360 2

 39

AhnLab-V3 2 McAfee 1

McAfee 1 Cyren 1

K7GW 1 F-Prot 1

K7AntiVirus 1 VBA32 1

F-Prot 1 Bkav 0

Cyren 1 CAT-QuickHeal 0

Jiangmin 1 VIPRE 0

VBA32 1 TheHacker 0

Bkav 0 K7GW 0

TotalDefense 0 K7AntiVirus 0

CAT-QuickHeal 0 Invincea 0

Cylance 0 Baidu 0

TheHacker 0 Babable 0

TrendMicro 0 Symantec 0

Baidu 0 TotalDefense 0

Babable 0 TrendMicro-HouseCall 0

Symantec 0 Paloalto 0

TrendMicro-HouseCall 0 ClamAV 0

Paloalto 0 Alibaba 0

ClamAV 0 ViRobot 0

Alibaba 0 AegisLab 0

ViRobot 0 Trustlook 0

SUPERAntiSpyware 0 Sophos 0

Trustlook 0 Comodo 0

Comodo 0 F-Secure 0

DrWeb 0 DrWeb 0

Invincea 0 TrendMicro 0

McAfee-GW-Edition 0 McAfee-GW-Edition 0

Fortinet 0 Trapmine 0

Trapmine 0 SentinelOne 0

Sophos 0 Webroot 0

Webroot 0 Fortinet 0

Kingsoft 0 Kingsoft 0

AegisLab 0 SUPERAntiSpyware 0

Avast-Mobile 0 Avast-Mobile 0

Microsoft 0 Microsoft 0

Acronis 0 TACHYON 0

AVware 0 Acronis 0

TACHYON 0 ALYac 0

Malwarebytes 0 AVware 0

Panda 0 Malwarebytes 0

Zoner 0 Panda 0

 40

Tencent 0 Zoner 0

SentinelOne 0 Tencent 0

eGambit 0 eGambit 0

CrowdStrike 0 CrowdStrike 0

Figure 41. Most effective antivirus engines for the ROP Exit method

Table 23. Antivirus detections for the ROP Exit method

Shell Reverse TCP payload Metepreter Reverse TCP Payload

Engine Files Detected Engine Files Detected

Kaspersky 5 Kaspersky 5

ZoneAlarm 5 ZoneAlarm 5

NANO-Antivirus 2 NANO-Antivirus 2

Ikarus 2 Endgame 2

Jiangmin 2 Ikarus 2

Antiy-AVL 2 Antiy-AVL 2

Endgame 2 AhnLab-V3 2

AhnLab-V3 2 MicroWorld-eScan 1

MicroWorld-eScan 1 BitDefender 1

ALYac 1 Avast 1

BitDefender 1 Rising 1

Avast 1 Emsisoft 1

Ad-Aware 1 F-Secure 1

Emsisoft 1 Jiangmin 1

F-Secure 1 ALYac 1

Avira 1 Avira 1

MAX 1 Arcabit 1

Arcabit 1 MAX 1

Rising 1 Ad-Aware 1

Yandex 1 Yandex 1

 41

GData 1 GData 1

AVG 1 AVG 1

Bkav 0 Cybereason 1

CMC 0 Bkav 0

CAT-QuickHeal 0 CMC 0

Malwarebytes 0 CAT-QuickHeal 0

VIPRE 0 McAfee 0

AegisLab 0 Cylance 0

Trustlook 0 VIPRE 0

K7GW 0 Trustlook 0

K7AntiVirus 0 K7GW 0

TrendMicro 0 K7AntiVirus 0

Baidu 0 Invincea 0

Babable 0 Baidu 0

F-Prot 0 Babable 0

Symantec 0 Cyren 0

TotalDefense 0 Symantec 0

TrendMicro-HouseCall 0 TotalDefense 0

ClamAV 0 TrendMicro-HouseCall 0

Alibaba 0 ClamAV 0

ViRobot 0 Alibaba 0

Tencent 0 ViRobot 0

Comodo 0 AegisLab 0

DrWeb 0 Comodo 0

Zillya 0 DrWeb 0

Invincea 0 Zillya 0

McAfee-GW-Edition 0 TrendMicro 0

Fortinet 0 McAfee-GW-Edition 0

Trapmine 0 Trapmine 0

TheHacker 0 TheHacker 0

Cyren 0 F-Prot 0

Webroot 0 Webroot 0

Kingsoft 0 Fortinet 0

SUPERAntiSpyware 0 Kingsoft 0

Avast-Mobile 0 SUPERAntiSpyware 0

Microsoft 0 Avast-Mobile 0

Sophos 0 Microsoft 0

Acronis 0 TACHYON 0

McAfee 0 Sophos 0

AVware 0 Acronis 0

TACHYON 0 VBA32 0

VBA32 0 AVware 0

 42

Cylance 0 Malwarebytes 0

Panda 0 Panda 0

Zoner 0 Zoner 0

ESET-NOD32 0 ESET-NOD32 0

SentinelOne 0 Tencent 0

eGambit 0 SentinelOne 0

Cybereason 0 eGambit 0

Paloalto 0 Paloalto 0

CrowdStrike 0 CrowdStrike 0

Qihoo-360 0 Qihoo-360 0

An interesting and scary observation on the above number is that many of the popular commercial solutions used widely in
organizations fail to score high in the detection of the infected binaries while less popular solutions are successfully in
detecting them.

By looking at the virustotal report for both the ROP Entry and the ROP Exit we can identify some interesting results. In the
case of ROP Entry among the most frequent keywords identified is the rozena – a malware that uses a meterpreter payload
to communicate to its CnC. However for the same files this is not the case for the ROP Exit method. Specifically the keyword
rozena appears 68 times in the ROP Entry method and only 2 in the ROP Exit. This is an indication that the ROP Exit method
not only achieves better evasion results but also succeeds in better hiding the nature of the payload it executes.

Figure 42. Word cloud of signature keywords for the ROP Entry (left) and ROP Exit (right) methods

Figure 43. Pie charts of top signatures for the ROP Entry (left) and ROP Exit (right) methods

 43

A noticeable difference also exists in the number of engines that have been triggered in each of the two methods.
Specifically a total of 50 engines (69.4%) have been triggered for at least one file for the ROP Entry method while only 34
(47.2%) have been triggered for the ROP Exit method.

Figure 44. Semi pie charts of Engines triggered for the ROP Entry (left) and ROP Exit (right) methods

3.1.2 Padded Shellcode

Based on the evasion results of each method we tested above, we observed that by delaying the execution of the shellcode
as is the case in the ROP Exit method, we have achieved very good evasion results. In order to confirm this idea we have
designed the following experiment. We have appended at the beginning of both payloads a padding of random assembly
instructions, namely: inc, dec, and, or, xor, not, cmp, neg, sub, add. We repeated this process for 50, 100 and 250
instructions and created 3 variations for each of the aforementioned payloads. We tested again the evasion results of the
ROP Entry patching method for the 6 shellcodes by generating a total of 54 samples.

Figure 45. Evasion and unique evasion ratio of ROPInjector for the ROP Entry patching method and padded shellcode

 44

Figure 46. Evasion and unique evasion ratio of ROPInjector for the ROP Entry patch method and padded shellcode

The padded shellcode proved to improve the evasion ratio of the ROP Entry method by approximately 7-10%. Overall by
padding the shellcode we have managed to achieve evasion results close to the ones of the ROP Exit method. Especially for
the case of the meterpreter reverse TCP payload the evasion has increased to a 92.74% for 250 instructions appended
before the shellcode execution.

3.1.3 Sleep before payload execution

We also we make use of the sleep capability of the ROPInjector that delays the execution of the shellcode. We test this for
5, 60 and 300 seconds delay and the methods ROP Entry, ROP Exit, Entry norop nounroll and Exit norop nounroll resulting in
a total 216 samples. The delay introduced before the execution is passed to the injected payload has no effect in the
evasion rates of the files. It is possible that this is due to the fact that some antivirus engines bypass sleep times when
analyzing code.

Figure 47. Evasion and unique evasion ratio of ROPInjector with delay introduced before the execution of the shellcode

 45

3.1.4 Hiding vs Deleting the Certificate

For the last experiment with this tool we are going to test if there is any difference between hiding and deleting the

certificate from a signed PE. For this reason the results that follow are only tested the 5 signed PEs from our original

sample namely: Acrobat.exe, AcroRd32.exe, firefox.exe, java.exe, notepad++.exe.

Figure 48. Evasion ratio of ROPInjector for the shellcodes shellrevtcp and metrevtcp using a hide and delete patching method

Although the evasion rates for these methods are very close, in the case were the certificate is deleted from the

infected files the evasion rate is slightly but steadily above the evasion rates of the files that have the certificate

hidden.

3.1.5 Conclusions

From our experiments above we have deduced the following interesting conclusions:

 The ROP Exit method is the most effective one comparing to the rest. The reason for that might be that the
antivirus engines mostly analyze the instructions during the entry of executables.

 Popular commercial Antivirus Solutions used widely in major organizations fail in many cases to detect the infected
file.

 The nature of the payload is hidden, as the signature used to detect it are in the majority of the cases either too
generic or inaccurate.

 A basic shellcode obfuscation helps to increase the evasion results. In our experiments just calling a number of
instructions before the execution of the malicious payload helped increasing the evasion results 7-10 % for the
ROP Entry method.

 A call to sleep is ineffective in helping increase the evasion ratio regardless of the time parameter.

 The certificate of signed binaries should be deleted from the infected file as hiding it will leave overlay data which
are detectable using static analysis.

 46

3.2 Use case: Shellter

In this section we analyze the effectiveness of Shellter shellcode injector.

3.2.1 Stealth vs No Stealth

We are going to test the two primary patching methods used by Shellter and identify the evasion ratios in each case. The
patching methods are described in the next table.

Table 24. List of Shellter patching methods tested

Patch Method Description

Stealth If stealth mode is enabled then Shellter preserves original functionality of the infected PE file.

No Stealth If stealth mode is disabled then Shellter does not preserve the original functionality of the infected
PE.

Figure 49. Evasion ratio and unique evasion ratio of stealth and no stealth mode for payload shell_reverse_tcp

Figure 50. Evasion ratio and unique evasion ratio of stealth and no stealth mode for payload meterpreter_reverse_tcp

 47

It is obvious by the charts above that returning to the normal execution flow after the payload execution achieves very
good anti-detection results. In the analyzed sample using stealth mode Shellter scored 85.42 and 82.58 for the
shell_reverse_tcp and the meterpreter_reverse_tcp payloads respectively and 88.94 and 86.85 if we consider the metric
unique evasion ration. Another important thing to note is that shellter is not very effective when it comes to hiding the
payload nature or the method used. Among the top triggered signatures and signature keywords are the following.

Figure 51. Top signatures and signature keywords for stealth and no stealth methods

From the charts above can see that the antivirus engines are able to detect that the files analyzed are patched, that the file
is possibly a form of shellcode and there are even signatures specifically for shellter.

3.2.2 Polymorphic Junk Code

Another run using stealth and no stealth mode was performed but this time the –junk argument has been used. The –junk
flag enables polymorphic junk code and produces a more complex output. This type of code added also serves for timing-
out some emulators and sandboxes provided that you might have to wait for a few seconds before the payload gets
executed. Evasion results used from this method are provided below.

Figure 52. Evasion ratio and unique evasion ratio of stealth and no stealth mode using junk before payload execution for payload

shell_reverse_tcp

 48

Figure 53. Evasion ratio and unique evasion ratio of stealth and no stealth mode using junk before payload execution for payload

meterpreter_reverse_tcp

It is clear from the results above that junk method increases the evasion ratio by a difference of approximately 5% in each
of the payloads and each of the methods. Similar to the previous experiment the analyzed samples are detected as patched
and related with shellcode however this time there is no signature related to the detection of the tool used like before.

Figure 54. Top signatures and signature keywords for stealth and no stealth methods with the junk flag enabled

3.2.3 Encoded Payloads

We have also tested Shellter’s capability to apply an encoding layer to the payload. Specifically Shellter provides the
following four encoding functions - XOR, AND, NOT, SUB. We are testing these encoding functions in order to identify
whether one of them is superior to the other and whether their usage helps increase the evasion ratio of the analyzed
carrier files.

 49

Figure 55. Evasion ratio and unique evasion ratio of XOR, AND, NOT, SUB operations for payload shell_reverse_tcp

Figure 56. Evasion ratio and unique evasion ratio of XOR, AND, NOT, SUB operations for payload meterpreter_reverse_tcp

The encoding function evasion ratios are similar to one another with the difference between them being less than
approximately 3%. It would also seem from the results above that there is no superior encoding function as for different
payloads different encoding functions score higher in the evasion ratio scale. It is also surprising that the encoding functions
are actually reducing the evasion ratio of the infected binaries.

We are going to repeat the process but this time we are going to combine multiple iterations of the encoding functions.
Results are again mixed with the evasion being lower than before.

 50

Figure 57. Evasion ratio and unique evasion ratio of combined encoding operations for payload shell_reverse_tcp

Figure 58. Evasion ratio and unique evasion ratio of combined encoding operations for payload meterpreter_reverse_tcp

In an attempt to understand this behavior we identified that file evasion ratios have great differences. For example for

the meterpreter_reverse_tcp payload the evasion of cmd.exe is 94.12% while the evasion of notepad++ is 71.43%.

Figure 59. Evasion ratio and unique evasion ratio of combined encoding operations per file for payload meterpreter_reverse_tcp

 51

Also by the signature analysis we can observe that when using any type of encoding more of the carrier files are being

detected as patched and the shellter related signatures have higher trigger rate.

Figure 60. Top signatures and signature keywords for encoding methods XOR,ADD,NOT, SUB

3.2.4 Combination of methods

Finally we combine the most evasive method from each category in order to attempt to reach the limits of the Shellter

shellcode injector and create a sample of very evasive binaries. Therefore we will be using the methods stealth with

junk before payload execution and XOR payload encoding. The results can be seen below.

Figure 61. Evasion ratios of combined methods stealth, XOR and junk for payload shell_reverse_tcp and meterpreter_reverse_tcp

This combination indeed achieves the highest evasion ratio so far when compared to the previous tests performed.

3.2.5 Conclusions

From our experiments with Shellter we have deduced the following interesting conclusions:

 52

 Shellter seems to achieve the highest evasion ratio when executed with a combination of methods used. The
highest evasion ratio was 89.12% for the payload meterpreter_reverse_tcp.

 Different carrier files may achieve very diverse evasion ratios.

 In several analyzed samples the infected file was detected as patched and in some occasions shellter was even
successfully detected by the antivirus engine as a signature indicating that the tool behavior has been analyzed and
modeled.

 Payload encoding does not help increase the evasion ratio of infected files when used on each own. In fact the
evasion ratio was reduced and more signatures were detected as patched.

A cumulative table comparing the results from the previous sections is included below.

Table 25. Evasion ratios of Shellter methods

 Evasion of shell_reverse_tcp (%) Evasion of meterpreter_reverse_tcp (%)

Stealth 85.42 82.58

No Stealth 75.2 77.98

Stealth Junk 88.51 84.71

No Stealth Junk 80.62 82.23

Stealth Encode ADD 82.77 83.37

Stealth Encode NOT 82.85 85.19

Stealth Encode SUB 82.61 81.33

Stealth Encode XOR 85.48 81.65

Stealth Encode XOR SUB NOT ADD 81.86 81.93

Stealth Encode ADDx12 74.95 77.53

Stealth Encode SUBx12 77.8 74.23

Stealth Encode (XOR SUB NOT ADD)x3 81.02 76.43

Stealth Encode XOR Junk 86.01 89.12

 53

4 Conclusions

Most antivirus engines rely on string signatures and heuristic analysis for the detection of malicious code. In the case of the
shellcode injectors that have been examined in this Thesis, string signatures proved to be ineffective as a combination of
polymorphic techniques and different patching methods would practically randomize the carrier files. Heuristic signatures
have had more success in detecting infected files but behavioral profiling was easily bypassed when methods for emulating
a benign behavior were utilized (junk or random code before the payload execution, return to normal execution flow after
payload execution, execute payload during exit etc…).

Another noticeable fact is that many of the popular and effective solutions [5] according to public ranking have failed to
detect the carrier files in several scenarios let alone detect accurately the nature of the payload. This is a worrying fact for
organizations that still rely solely to antivirus solutions for their endpoint’s protection.

From the analyzed shellcode injectors it seems that although being less popular and known, ROPInjector is more effective in

evading detection than shellter. This is probably due to the fact that the execution of the malicious payload is broken down

to ROP gadgets and injected in smaller parts in the carrier file. ROPInjector also attempts to use as much of the carrier’s file

code as possible and in case it is not able to, inject code in such a way as to emulate a real function. It should be noted that

its evasion ratio three years following its release has only dropped 1-2% from the numbers presented in Blackhat 2015. [6]

Shellter on the other hand, although less effective in antivirus evasion offers a number of options for manipulating and

transforming the payload before the injection on the carrier file. That said it is still a valid option for bypassing most of the

antivirus engines but should be used with caution as a lot of the times the evasion results between samples were very

diverse.

For the conclusions and comments regarding the effectiveness of antivirus engines and shellcode injectors it should also be

taken into consideration that test were performed using two of the most popular shellcodes from MSF, a well-known and

widely used exploitation framework. Using custom payloads would most likely, but without having evidence to support this,

result in greater evasion ratios from both shellcode injectors. Further manipulating the payload before the injection is also

bound to decrease detection as already proven in multiple scenarios. Summing up, the two key points for good evasion

results seems to be a) the injection entry point (at which point in the carrier files execution is the malicious code executed)

and b) the payload transformation (transforming or altering the payload to make it look as benign as possible).

Finally, the tool developed for the purpose of analyzing shellcode injector has still room from improvement. No work has

been done for statically analyzing the carrier files. Injection and manipulation of a PE file is a very tricky process and a lot of

the times the injection can easily be identified with static analysis methods. A potentially promising idea would be to

develop a plugin that would perform static analysis checks (checksum calculation and comparison, check for overlay data,

file metadata, checks with yara rules etc..).

 54

References

[1] Giorgos Poulios. (2019, Jan.) Github. [Online]. https://github.com/gpoulios/ROPInjector

[2] kyREcon. (2019, Jan.) Shellter. [Online]. https://www.shellterproject.com/

[3] VirusTotal. (2019, Jan.) [Online]. https://www.virustotal.com/#/home/upload

[4] Metasploit. (2019, Jan.) [Online]. https://www.metasploit.com/

[5] Gartner. (2019, Jan.) Magic Quadrant Report. [Online]. https://www.crowdstrike.com/resources/reports/2018-
gartner-magic-quadrant-endpoint-protection-platforms/

[6] George Poulios. (2019, Jan.) [Online]. https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-
Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion.pdf

[7] Python. (1, 2019) [Online]. https://www.python.org/

https://github.com/gpoulios/ROPInjector
https://www.shellterproject.com/
https://www.virustotal.com/#/home/upload
https://www.metasploit.com/
https://www.crowdstrike.com/resources/reports/2018-gartner-magic-quadrant-endpoint-protection-platforms/
https://www.crowdstrike.com/resources/reports/2018-gartner-magic-quadrant-endpoint-protection-platforms/
https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Xenakis-ROPInjector-Using-Return-Oriented-Programming-For-Polymorphism-And-Antivirus-Evasion.pdf
https://www.python.org/

