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ABSTRACT

The Artificial Immune Recognition System (AIRS) is an immune-inspired supervised learning al-
gorithm that has been shown to perform competitively on some common datasets. The purpose
of this thesis is the presentation of an alternative formulation of the Artificial Immune Recognition
System, followed by a comparative study with emphasis on classification accuracy, data reduction
capability and algorithmic efficiency in order to evaluate the performance difference between the
proposed version of AIRS and the original AIRS classifier. The comparison suggests that the pro-
posed formulation holds significant performance advantages over the original AIRS algorithm and
further exploration of the main functionality of the algorithm could identify and address deficiencies
that leave AIRS lacking in future research.

O AIRS cival évag aAyopiBuog pabnong ue emmipAewn tou éxel OciCel oTi PTTOPEl va TTETUXE
QVTAYWVIOTIKG OTTOTEAEOPATA O KATOIO yvwoTa oeT dedopévwy. O OKOTTOG aQuTAG NG
TTapouoag epyaciag €ival n Tmapoudiaon WIag eVOANOKTIKAG Slaudpewaong Tou aAyopiBuou
AIRS, ouvodeuduevn amd pia GUYKPITIKA PEAETN pE Eu@acn OTn agloAdynon Tng akpifelag
Tagivounong, Tng duvatotntag peiwong Twv dedoPEVWV Kal TG AAYopIBUIKAG atTodoTIKOTNTAG,
akoAouBoUpevn atrd eKTiUNGN, HECW TTEIPAUATIKWY ATTOTEAEOUATWY, TNG Olapopds atTédoong
METAEU TNG TTpoTEIVOUEVNG €KOOXAG Tou aAyopiBuou kai Tou auBevrikou AIRS tagivountn. H
oUyKpIoN UTTOONAWVEI OTi N TTPOTEIVOPEVN €KDOXN EXEI ONUAVTIKO TTAEOVEKTNUO ammddoong a€
ox€on HE ToV TTPWTOTUTTO AAYOPIBUO Kal TTEPAITEPW avalrTnon TnNG KUPIAG AEITOUPYIKOTNTAG TOU
aAyopiBuou Ba pTTopoUCE va VTOTTIOE! KAl VO AVTIMETWTTIOE! AveTTApKeIEG Tou AIRS, BeATILvVovTag
TEPAITEPW TAV ATTOSO0N TOU.
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1 Introducton

1.1 Objective of the Thesis

The hypothesis of the thesis is that an alternative formulation of the Artificial Immune Recognition
System (AIRS), an established immune-inspired supervised learning algorithm, that exhibits better
results than the original formulation, can be developed by undertaking some key modifications.
With this hypothesis in mind, the primary goal of this work is to present a proposed alternative
implementation of the AIRS algorithm, named iAIRS, and explore the classification capabilities
and other properties of the proposed new algorithm in comparison to the original version through
a detailed presentation of the newly developed iAIRS learning algorithm and a comparison of its
performance both on synthetic and real world data sets to the performance of the original AIRS
algorithm.

The algorithm that serves as the basis for our proposed alternative formulation, AIRS, exhibits
several desirable characteristics for supervised learning paradigm. These include one-shot and
continuous learning, data reduction capabilities, and competitive classification accuracy (Watkins,
2001). In that regard, the main objective of this work is to develop a novel formulation of AIRS
that further improves the aforementioned characteristics of AIRS and performs better, especially
on the more challenging data sets.

1.2 Theoretical Background

1.2.1 Machine Learning

The ability to learn is one of most distinctive characteristics of human behaviour. It is a process
that includes the acquisition of new skills through interaction with the surrounding environment,
accurate representations, discovery of new knowledge through observation and experimentation
and generalization of new knowledge among others.

On the other hand, machine learning is a term that applies to a broad range of computer pro-
grams that use statistical techniques to improve its performance through training with data without
being explicitly programmed (Koza et al., 1996). A more formal definition of the algorithms stud-
ied in the machine learning field is provided by (Mitchell, 1997): "A computer program is said to
learn from experience E with respect to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with experience E.”

Machine learning constitutes an integral part of artificial intelligence and machine learning al-
gorithms overcome the necessity to follow strictly static program instructions to solve problems by
learning from and making prediction on data. As such, machine learning is employed in a range
of applications where programming explicit algorithms is difficult or infeasible. Such applications
include email filtering, computer vision and data mining.

Machine learning tasks are typically classified into two categories, unsupervised learning and
supervised learning. In supervised learning, the system is presented with example data inputs
and their desired outputs, or labels, and the goal is to discover a general rule that successfully
maps inputs to outputs through the learning process. In unsupervised learning, on the other hand,
no labels are given to the system, leaving it on its own to find patterns in its input.

1.2.2 Classification
Machine learning applications, concerning the desired output of a machine-learned system, in-
volve some of the following:

+ Classification

* Regression

* Clustering

* Density estimation

+ Dimensionality reduction

In this thesis, the focus is on classification, namely the problem of identifying to which of a

An Alternative Formulation of the Atrtificial 2
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set of categories a new observation belongs. Classification is typically tackled in a supervised
manner where inputs are divided into two or more classes, and the system must produce a model
that successfully assigns unseen data instances to one or more these classes.

The algorithms, such as the AIRS algorithm, that implement classification are usually referred
as classifiers. Classification can be thought as part of the more general problem of pattern recog-
nition, which is the assignment of some sort of output value to a presented observation.

Classification can also be considered as two separate problems, binary classification and multi-
class classification. Binary classification involves only two classes, while multi-class classification
involves assigning an object to one of several classes.

The performance of a classifier depends on the characteristics of the data to be classified and
as such there is no single that works best for all given problems, meaning that various empirical
tests have to be performed to find the suitable classifier for the specific data to be classified.

Some examples of classification algorithms include:
» Perceptron

» Support vector machines

* Quadratic classifiers

» Kernel estimation

» Decision trees

* Neural networks

» Learning vector quantization

1.2.3 Feature Vectors and Distance Metrics

In machine learning, most algorithms describe an individual observation using a feature vector of
measurable properties of the observation. These properties are termed features and they may be
binary, categorical, ordinal, integer-valued or real-valued.

The vector space associated with these vectors is known as the feature space and often in
order to reduce the dimensionality of the feature space, dimensionality reduction techniques are
employed.

Additionally, most classifiers require the use of similarity measures or distance metrics, which
are real-valued functions that quantify the similarity or dissimilarity between two objects, respec-
tively. Many machine learning algorithms, such as K Nearest Neighbour (KNN), heavily rely on
the distance metric for their performance.

Distance functions provide a way to measure how close two feature vectors are, and thus are
often used as error or cost functions to be minimized in an optimization problem. Some of the
most well-known similarity/distance measures in machine learning include:

» Euclidean Distance

Manhattan Distance

Minkowski Distance

» Cosine Similarity

» Pearson Correlation Coefficient
Jaccard Similarity

1.3 Organization

The remainder of this thesis is organized as follows:
+ Section 2 presents some key natural and artificial immunological concepts that are essential
to the development of AIRS and the field of artificial immune systems in general.
» Section 3 provides an overview of AIRS and presents an analytical description of the pro-
posed novel implementation of the AIRS algorithm, named iAIRS, as well as a discussion of
the key modifications made on the AIRS algorithm.

An Alternative Formulation of the Atrtificial 3
Immune Recognition System Learning Algorithm



MetarmTuyiakr AlaTpiBA AnunTtpng MNatgirgdyAou

+ Section 4 provides an experimental evaluation of the iAIRS algorithm and a comparative
analysis between the novel iAIRS implementation and the original AIRS algorithm, demon-
strating their behaviour and classification capability on synthetic and real-world data sets.

+ Section 5 briefly discusses the decision process of the algorithm, offering an alternative to
the unweighted majority vote process of AIRS.

» Section 6 offers conclusions and points of future research.

2 Natural and Artificial Immune Systems

2.1 Principal Immunological Concepts

In this section some basic principles of natural immune systems, fundamental to the development
of AIRS algorithm, are explored.

To begin with, the most essential immunological concept embodied in the AIRS algorithm is
the representation of the B cell. The large number of B cells in natural immune systems allows
for adaptive immunological responses. This is possible because of a process of immunological
functions like recognition, stimulation and clonal proliferation.

A population of antibodies exist on the surface of each B cell which serve as the primary binding
site to foreign cells, thus providing the recognition capability of the B cell. However, it is the B
cell itself, that provide the immune response to an antigen through the process of stimulation.
Specifically, a B cell becomes more stimulated as the degree of binding between the antibodies
and antigens on its surface intensifies. These stimulated B cells, then, undergo a cloning and
mutation process and rapidly proliferate. These offsprings of the original B cells then respond to
the threatening antigens.

The immunological concept of the B cell, explained above, is quintessential in the field of artifi-
cial immune systems for pattern recognition, as the recognition mechanism embodies the antibody-
antigen binding principle. In particular, distance metrics, such as the Euclidean distance (Knight
and Timmis, 2002) or the Hamming distance (de Castro and Zuben, 2002), between a simulated
cell’'s feature vector and a training data instance’s feature vector determine the level of binding
between antibodies of the cell and antigens of the foreign presence.

However, not all the mechanisms in AIRS algorithm are necessarily precise translations from
natural immune functions. This is the case with the concept of the artificial recognition ball (ARB)
which can be thought as a representation of a number of B cells sharing the same antibody, with
this number of cells representing the resources this ARB possesses (Timmis and Neal, 2000). The
concept of ARB and resource competition will be further covered in the following sections.

As we discussed earlier, stimulated B Cells respond to a foreign presence by producing mu-
tated offsprings to attack and destroy it. In addition to the primary immune response, a secondary
response involves the cells that are the most adept at counteracting the given antigen are pro-
vided with longer lifespans and are known as memory cells (de Castro and Zuben, 2002). These
memory cells are rapidly stimulated and produce a great number of offsprings when the immune
system encounters the same or a similar antigen again. Most importantly, the ability of the mem-
ory cells to not only respond to the antigen that they originally respond, but also to generalize the
response to similarly structured antigens.

Finally, another principal immunological concept for the development of the AIRS algorithm is
that of the immune network theory, that suggests that the immune responses are not only bases
on the interaction of B cells and antigens but also the interactions of B Cells with each other, as
they provide a stimulation and suppression effect on one another and these effects play a crucial
role on how the memory of the system is retained. One of the key points for the translation of this
concept into the field of artificial immune systems is the idea of inter-cell affinity and link formation
(Timmis, 2000). This link formation occurs when two ARBs show significant affinity for each other.
While, the immune network theory is not explicitly incorporated in the AIRS algorithm, the concept
of inter-cell affinity plays a significant role as it provides the concept of a data reduction mechanism.
Specifically, the AIRS algorithm, after training, typically has fewer memory cells than the original
training data instances and this is achieved through memory cell replacement based on the inter-
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cell affinity of a newly introduced memory cell and an established memory cell.

In the following sections, we examine how these principles have been used in the development
of artificial immune systems and presenting the precursors to the AIRS classification paradigm.

2.2 Artificial Immune Systems

Artificial immune systems (AIS) is an emerging machine learning technology inspired by theo-
retical immunology and observed immune functions effectively protecting our bodies from micro-
organisms, bacteria, and viruses and it has been widely used in machine learning, abnormal diag-
nosis, and production scheduling among other (Timmis et al., 2004). Work done by many theoret-
ical immunologists, such as Perelson (1989), is a source of inspiration for researchers developing
AIS as they use useful immune mechanisms as metaphors to help in the development of artificial
intelligence technology for problem solving. The primary applications of Artificial Immune Systems
include:

+ Clustering and Classification,

» Anomaly Detection/Intrusion Detection,

* Optimization,

+ Automatic Control,

* Bioinformatics,

+ Information Retrieval and Data Mining,

+ User Modelling/Personalized Recommendation and
* Image Processing

To apply the term AIRS to a given system, there must be a level of immunology involved, an in-
corporated immune principle such as the clonal and the negative selection, or an immune network
model. Some of the most important properties of the immune system that are of interest to com-
puting (Dasgupta, 1998) and are incorporated by artificial immune systems can be summarised
as follows:

+ Pattern Recognition: The immune system has the ability to recognise, identify and respond
to a broad range of different patterns through various functions like surface molecules binding
to antigens or the use of lymphokines to recognize molecular signals.

« Diversity: There are various types of elements (cells, molecules, proteins) and processes
that are utilized in the maintenance of the immune system. A process that assists with
diversity in the immune system is that of somatic hypermutation. In this process, the immune
system responds to invading antigens with reproducing immune cells, during which, they are
subjected to a somatic mutation process that allow the creation of novel receptor molecules,
thus increasing the diversity of the immune receptors (Kepler and Perelson, 1993).

* Learning: The aforementioned mechanism of somatic hypermutation also allows the im-
mune system to successfully respond to any invading pathogen. This process is known as
affinity maturation (Berek and Ziegner, 1993), and allows the immune system to become
increasingly better at the task of pattern recognition.

* Memory: After the immune systems responds to a given antigen, some sets of cell are
endowed with increased lifespans with the purpose to provide faster and stronger immune
responses to future infections by the same antigens.

« Distributivity: There is inherent distribution within the immune system and therefore there is
no need of centralized control as immune cells are distributed all over the body, with each
one of them specifically stimulated to respond to invading new antigens.

+ Self-regulation: Immune systems dynamics are such that the immune cell population is the
result of local interactions and not of centralized control. After an infection has been suc-
cessfully combated, it returns to its normal state, until it is needed to respond again at some
point to another antigen.

» Metadynamics: The creation of new cells and molecules is constant, as well as the elimina-
tion of those are too old or not useful. This cycle of constant creation, recruitment and death

An Alternative Formulation of the Atrtificial 5
Immune Recognition System Learning Algorithm



MetarmTuyiakr AlaTpiBA AnunTtpng MNatgirgdyAou

of immune cells is known as metadynamics in theoretical immunology (Varela et al., 1988).

* Immune Network: In 1974, the immune network theory was proposed (Jerne, 1974) as an
alternative explanation of how the immune system functions. It was suggested that the im-
mune system is a dynamic system whose cells and molecules are capable of recognizing
each other, thus creating a network of communication within the organism. This network
forms the basis for immunological memory to be achieved.

2.3 AIlS-Based Classification

There are various artificial immune models or algorithms at present, but the focus of this thesis
will be on a supervised classification algorithm known as Artificial Immune Recognition System
(AIRS). AIRS was proposed by Watkins et al. (2004) and is based on RLAIS (Timmis and Neal,
2001) and is one of the most competitive AlS-Based classification algorithms, especially for deal-
ing with non-linear high-space classification problems (Goodman et al., 2003). Once the training
of AIRS is completed, the set of evolved memory cells can be regarded as an extension classi-
fier of k-near neighbour (KNN), while possessing greater generalization than traditional KNN. In
pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-parametric method used
for classification and regression. Concerning classification, k-nearest neighbor is an extensively
used algorithm owing to its simplicity, ease of implementation and effectiveness.

The development of AlS-Based classification techniques, such as AIRS, were inspired by exist-
ing machine learning paradigms that exploit immune mechanism for unsupervised learning, where
the class of data is unknown, and specifically aiNet (Castro and Zuben, 2000), an learning algo-
rithm that employs the metaphor of the immune network theory and applies it to data clustering.
Experimentation with the aiNet algorithm revealed that evolved artificial immune networks, when
combined with traditional statistical analysis tools, were very effective at extracting interesting and
useful clusters from data sets. Additionally, the aiNet algorithm can be utilized as a data com-
pression technique since it produces a significantly smaller number of memory cells than that of
the initial set of antigenic patterns. Moreover, aiNet may be employed as a dimension reduction
technique when the utilized distance function can serve as a correlation measure between a given
a pair of feature vectors. These feature vectors, however, correspond to a column-wise interpre-
tation of the original data set, such that the resulting memory antibodies may be considered as an
alternative feature set for the original data points.

AIRS is a population-based learning classifier system inspired from the learning mechanisms of
human immune system, such as antigen-antibody binding, affinity maturation and clone expansion
among others. The primary mechanism of AIRS for producing the evolved memory set is the
concept of artificial recognition ball (ARB) through competition for limited resources among the
population (Timmis and Neal, 2001). The ARB, or else B lymphocyte, is composed of an antibody
molecule, a number of resources held by the ball and the current stimulation value within the
antigen—antibody shape-space and it is when many antigens exist in the radius of an ARB that the
characteristics of this group of antigens can be recognized and remembered. This mechanism
determines the survival and reproduction of each cell, thus reinforcing the classification ability of
the system.

In addition, as the primary goal of AIRS is the development of a set of competent memory cells,
evolved from an initial population of molecules, there is need of a fithess concept incorporated in
the system that allows the evaluation of the recognition ability of any given cell is. In the case
of the AIRS algorithm, fitness is determined by the stimulation response of a antibody molecule
to a presented antigenic pattern and according to this value the limited number of resources is
allocated among the population of antibodies. As it is clear, this enforces a great deal of selective
pressure towards better pattern recognition and ensures the survival of only those cells that will
provide the highest classification accuracy.

As mentioned before, the purpose of this work is to propose a novel formulation of the es-
tablished AIRS algorithm. This formulation is partly inspired by the negative selection algorithm,
aiming to improve the efficiency of the learning process and achieve the development of evolved
memory cells of higher quality that would improve the classification accuracy and the data reduc-
tion capabilities of the AIRS algorithm.

An Alternative Formulation of the Atrtificial 6
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The Negative Selecion algorithm proposed by Forrest et al. (1994) is a supervised learning al-
gorithm, with application to computer security, network security and anomalies detection problems,
that is based on the principles of self/non-self discrimination in the natural immune system. This
discrimination is possible through the generation of T-Cells, which undergo a censoring process,
known as negative selection, where cells that react against self-proteins are destroyed and such
only those that bind to self-proteins are allowed to live.

Basically our proposed version of AIRS, partly inspired by the concept of negative selection,
involves a similar censoring technique to the aforementioned fitness concept of AIRS, such that
the evaluation of the recognition ability of each antibody molecule is not only determined to its
stimulation reaction to a currently presented antigenic pattern but also its stimulation reaction to
the closest (to the currently presented antigen) antigenic pattern of different class, preferably mini-
mizing it in order to further enforce the selective pressure into the evolution of antibody molecules.

In the following section, this matter is properly addressed as it includes a detailed description
of the modifications made on the learning process of AIRS, as well as a thorough presentation of
the proposed novel formulation of AIRS, called iAIRS.

3 An Alternative Implementation of the Artificial Imnmune Recog-
nition System Learning Algorithm (iAIRS)

3.1 Overview of the AIRS Algorithm

This section presents an conceptual overview of the AIRS algorithm. Namely, it presents funda-
mental principles employed by the AIRS algorithm which are also employed for the most part by
our alternative implementation of the algorithm. In the following sections a formal description of
the proposed novel implementation, which is named iAIRS, is presented and the changes that
have been made to the original AIRS algorithm are thoroughly explained. The presented overview
of AIRS and the notation used in the description of iAIRS algorithm follows closely the work of
Sotiropoulos and Tsihrintzis (2017a).

The fundamental principles of the AIRS algorithm may be summarized as follows:
1. Initialization:

(a) Data normalization: All antigenic attribute vectors are normalized such that the range
of each attribute lies strictly in the [0, 1] interval. In addition, the distance measured
between any two antigenic patterns must also be in the [0, 1] interval.

(b) Affinity threshold computation: The affinity threshold is calculated according to the
mean affinity between antigens in the training dataset.

(c) Memory cells initialization: The memory cell pool for each class of training antigenic
patterns is set to be null.

(d) Antibody cells initialization: The set of antibody molecules for each class of training
antigenic patterns is set to be null.

2. Antigenic presentation: for each antigenic pattern do:

(a) Memory cell identification: The memory cell presenting the highest stimulation level to
the currently presented antigen. If the memory cell pool of the same class as the cur-
rently presented antigen is empty, then this antigen is incorporated within the memory
cell pool. Additionally, the current antigen is denoted as the matching memory cell.

(b) Antibody molecules generation: Once the matching memory antibody has been de-
noted, it is subsequently utilized in order to create a number of mutated clones. These
mutated clones of the matching memory cell will eventually be added to the available
antibodies repertoire. Specifically, the number of mutated clones to be created is pro-
portional to the stimulation level of the matching memory cell to the current antigenic
pattern. The mutation routine, in particular, is performed element-wise for each con-
stituent of the antibody attribute string to be mutated. Additionally, the mutation or not
of a specific antibody is randomly taken such that a number of Mutation Rate antibodies
will be finally modified for each attribute. The mutation range for each attribute is also

An Alternative Formulation of the Atrtificial 7
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(d)

(e)

proportional to the stimulation level of the matching memory cell, while the mutation
magnitude is an uniformly distributed randomly chosen value in the [0, 1] range.

Stimulations computation: Each antibody in the available repertoire is presented with
the current antigen to compute the corresponding stimulation level.

Actual learning process: The objective of this process is the development of a candidate
memory cell which is the most successful in correctly classifying the current antigenic
pattern. Hence, this step strictly concerns the antibody molecules belonging to the same
class with the currently presented antigen. The following steps are repeated until the
average stimulation level of the available antibodies repertoire becomes greater than
or equal to a predefined stimulation threshold:

(i) Stimulations normalization: The stimulation level for each antibody is normalized
across the whole antibodies repertoire.

(i) Resource allocation: Based on the aforementioned normalized stimulation value,
a number of limited resources are allocated to each antibody molecule.

(iii) Competition for limited resources: In the event of the finite number of resources
distributed across the population exceeds a predefined maximum value, resources
are removed from the least stimulated antibody until the total number of resources
in the population returns to the number of resources allowed. Moreover, antibodies
that have no resources are removed from the available antibodies repertoire.

(iv) Stimulations computation: Estimate the stimulation level for each available anti-
body to the currently presented antigenic pattern.

(v) Candidate memory cell identification: The antibody with the highest stimulation
level to the currently presented antigen is denoted as the candidate memory cell.

(vi) Mutation of surviving antibody molecules: All antibodies in the population are given
the opportunity to generate mutated clones, even if the stopping criterion is met.

Memory cell introduction: The last step in the learning process is the possible introduc-
tion of the developed candidate memory cell into the memory cell pool. If the candidate
memory cell is more stimulated by the current training antigen than the matching mem-
ory cell, then the candidate memory cell is incorporated within the set of memory cells.
Whether the candidate memory cell eventually replaces the matching memory cell that
was previously identified is dictated by the affinity threshold calculated initially, as if the
affinity between the matching memory cell and the candidate memory cell is less than
the product of the affinity threshold and the affinity threshold scalar, then the matching
memory cell is removed from the set of memory cells and is replaced by the candidate
memory cell.

3. Classification: The classification occurs using a k-Nearest Neighbour approach. The stim-

ulation level for each memory cell to each data instance is estimated. The classification of
a data instance is determined via a majority vote of the outputs of the k most stimulated
memory cells.

3.2 The iAIRS Learning Algorithm

In this section, a proposed alternative formulation of the AIRS algorithm is described thoroughly
as a tour of the training routine of the proposed algorithm, named iAIRS, is presented.

3.2.1 Notation

The following notation will be adapted throughout the formulation of the iAIRS learning algorithm:
» AT denotes the Affinity Threshold.

ATS denotes the Affinity Threshold Scalar.
CR denotes the Clonal Rate.

MR denotes the Mutation Rate.

HCR denotes the Hyper Clonal Rate.

An Alternative Formulation of the Atrtificial 8
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TR denotes the number of Total Resources, which is the maximum number of resources
allowed within the system.

* RA denotes the number of Resources Allocated within the system during the training process
on a particular antigenic pattern.

NRR is the Number of Resources to be Removed in case RA > TR.
C denotes the number of classes pertaining to a given classification problem.

DT denotes the Distance Threshold, which determines the Stimulation Threshold ST of
each antigenic pattern.

DTS denotes the Distance Threshold Scalar.

* Ag € M« 1 is the matrix storing the complete set of training antigenic patterns. This matrix
may be considered as being constructed by the following concatenation of matrices:

Ag = [AgY;...; Ag'D] (3.1)

where Ag(k) € My, x 1. denotes the sub-matrix storing the training instances for the k-th class
of patterns, such that:

C
M ="M (3.2)

k=1
while 4¢*") denotes the sub-matrix storing the training instances for all classes of patterns

except the k-th class.

*« Ab € My« is the matrix storing the available antibody repertoire for the complete set of
classes pertaining to the classification problem under investigation. This matrix may be
considered as being constructed by the following concatenation of matrices:

Ab = [AbD); 5 Ap(O)] (3.3)

where Ab*) ¢ Mn, x1 denotes the sub-matrix storing the available antibodies for the k-th
class of patterns, such that:

c
N = ZN’“ (3.4)
k=1

* S € M4y is the vector storing the stimulation levels to the currently presented antigenic
pattern for the complete set of available antibodies in the repertoire. This vector may be
considered as being constructed by the following concatenation of matrices:

S=[sW, .., 8] (3.5)

where S*) ¢ M, n, denotes the sub-vector storing the stimulation levels of the available
antibodies for the k-th class of patterns to the current antigen which is also of the same
classification.

* R € M,y is the vector storing the resources allocated for the complete set of available
antibodies in the repertoire after the presentation of the current antigenic instance. This
vector may be considered as being constructed by the following concatenation of matrices:

R=[RW,... R (3.6)

where R*%) ¢ M, <N, denotes the sub-vector storing the resources allocated for the available
antibodies of the k-th class of patters after the presentation of the current antigenic instance
which is also of the same classification.

* M e M,,«r, is the matrix storing the memory antibodies for each class of patterns pertaining

An Alternative Formulation of the Atrtificial 9
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to a given classification problem. This matrix may be thought of as being constructed by the
following concatenation of matrices:

M= [MWY; . M) (3.7)

where M) ¢ M., x 1. denotes the sub-matrix storing the memory antibodies for the k-th
class of patterns such that:

m =

Mo

mk (3:8)

k=1

* s € M4 denotes the vector storing the average stimulation level of the available antibodies
for each class of patterns, such that:

s=[sM; ;s (3.9)

3.2.2 Analytical Description of iAIRS training routine

The analytical description of our variation of AIRS algorithm, illustrated in figures 3.1, 3.2 and 3.3,
involves the following steps:

An Alternative Formulation of the Atrtificial 10
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1. Initialization:
(a) Compute the matrix D € M, x of distances between all possible pairs of antigens in

Ag, where the utilized distance function is:
1
VL

The Normalized Euclidean Distance provides an affinity measure for which the distance
value between any given pair of antigenic pattern lies within the [0, 1] interval such that:

D(Agi, Agj) = —=IlAg; — Agill (3.10)

0 < D(Agi, Agj) <1, Vi e [M], Vj € [M] (3.11)
(b) Compute the affinity threshold (AT) according to the following equation:
M M

i i i > > D(Agi, Ag)) (3.12)

i=1 j=1

(c) Initialize matrices Ab, M and vectors S, R according to the following equations:

AR [],Vk € [C] (3.13)
S®)  [],Vk € [C] (3.14)
R®) « [],Vk € [C] (3.15)
M®) — [],Vk € [C] (3.16)
such that:
Ny, + [],Vk € [C] (3.17)
my, + [],Vk € [C] (3.18)

where [ ] denotes the empty matrix or the empty vector.
2. For each class k € [C], of patterns do:
+ For each antigenic pattern Ag](.k) € My« , where j € [My], do:

(a) Determine the normalized euclidean distance d between Ag(.k) and its nearest antigenic

pattern of different class Ag;(kl), where k' # k

Ag/-(k,) =arg min D(Ag(-k)7 ag) (3.19)
J agEAg(k/> J
d = minD(Ag{", g/ (3.20)

and compute the corresponding stimulation threshold ST}

ST; =1—DT-d (3.21)

(b) Create the corresponding artificial antigenic pattern sAg; € M«

sAg; = Ag") + DT - DTS - Dif f(Ag'™, A¢*)) (3.22)

where Diff(Ag](»k),Ag;(kl)) € M« denotes the element-wise subtraction array of
Agék) and Ag;(k,), according to the equation:

Diff(A,B) =< AW — B AE) _pl) (3.23)

An Alternative Formulation of the Atrtificial 14
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(c) Determine the matching memory cell (m?)

Ag]('k)v J: ]-;
ny = (3.24)

m
arg max stimulation(Ag§k)7m), otherwise.
mEM;k)

and corresponding stimulation level (éé‘?)

. ; ) k) - ) ; .
sf =0.5- stzmulatzon(Ag§ ), mf) + 0.5 - stimulation(sAg;, m;“) (3.25)

The stimulation level for a given pair of vectors x, y is given by the following equation:

stimulation(z,y) = 1 — D(z,y) (3.26)

such that the distance D(x,y) is once given by Eq.(3.10).

(d) Compute the matrix C*) € My, of mutated clones, originating from the matching
memory cell mé‘ where the number of produced antibodies Nc is given by the following
equation:

N,=HCR-CR-3& (3.27)

The computation of matrix C'*) requires the computation of two auxiliary random ma-
trix P; € Mnecxr and Q; € Mpy.xr such that their elements P;(l,p) and Q;(l,p) are
uniformly distributed in the [0,1] interval, where | € [N¢] and p € [L]. Matrix C®) | then,
may be computed according to the following equation:

cwmmzﬁﬁ@+&5&@m@meMM<M& (3.28)
J

“(p), otherwise

where 05(p) = 0.5 Dif f(sAg;(p), 1 (p)) + 0.5 - Dif f(Ag\" (p), 1 (p)) and Dif f is
once given by Eq.(3.23) . Finally, matrix Ab*) and variable N, are updated according
to the following equations:

AR — [AbR); 0 (3.29)
Ny, = Nj, + N, (3.30)

(e) Compute the sub-matrix S](.'“) € M« n, containing the stimulations of the available an-
tibodies for the k-th class of patterns after the presentation of the j-th antigen of the
k-th class Agj(-k) and its corresponding artificial antigen sAg; according to the following
equation:

S](-k) (1) =0.5- stimulation(Agj(-k), Abgk)) + 0.5 - stimulation(sAgj, Abgk)), (3.31)
Vi € [Ni] '
Compute the average stimulation level for the k-th class of patterns after the presenta-

tion of the j-th antigenic instance Ag§k) originating from the same class and its corre-
sponding artificial antigen sAg; according to the following equations:

N
s;(k) = Z stimulation(Ag](-k),Abl(-k)), Vi € [Ng] (3.32)

i=1

An Alternative Formulation of the Atrtificial 15
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Ny,
si(k) = > stimulation(sAg;, Ab)), Vi € [Ny] (3.33)
=1
(f) Actual learning process: While s;(k) < ST} and s’ (k) < ST}, do:
i. Normalize stimulations of the antibodies according to the following equations:

Sjimin = min 5,(0) (3.34)
k k), .
Sjimaz = max 57 (0) (3.35)
gtk _ gk
S (4) o L Zgmin (3.36)
i ) )
Sj,rnam - Sijin

ii. Compute the sub-vector R;k) € M« n, of the available antibody resources for the

k-th class of patterns after the presentation of the j-th antigen from the same class,
according to the following equation:

R (i) = 8™(i) - CR, Vi € [Ny (3.37)

iii. Compute the number of resources allocated by the complete set of antibodies for
the current class and antigen according to the following equation:

Ny
RA=>"R{M(i) (3.38)
=1

iv. Compute the number of resources to be removed according to the following equa-
tion:

NRR=RA-TR (3.39)

v. Re-order the elements in matrix Ab*) and vectors S*) and R*) according to the
permutation 7 : [Ny] — [Ng], such that:

A — (AR (3.40)
S m(5) (3.41)
R + m(R{) (342)

This permutation rearranges the elements in R;k), so that:
R (i) < RP(i+1), vie [Ny — 1 (3.43)

vi. Compute the vector I](k) € Mix,, where pn < Nk, such that:

™ = {r e [Ny Y R () < NRR} (3.44)
=1
vii. Compute the optimal value +, given by the following equation:

7 = arg max a;-“ (r) (3.45)
ielj(.’“)

An Alternative Formulation of the Atrtificial 16
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where af(r) denotes the partial sum of the r first elements in ng) given by the
following equation:

r

oh(r) =Y R (3.46)
=1
viii. Compute the remaining number of allocated resources according to the following
equation:
N
RA= > RV (3.47)
i=r41
This number corresponds to the amount of system wide resources after the removal
of the 7 least stimulated antibodies. This value, however, yields a remaining number
of resources to be removed which is, once again, given by Eq.(3.39) such that:
0< NRR < RV (7 +1) (3.48)
ix. Eliminate # + 1-th antibody, such that:
R (7 +1) « RM (7 +1) ~ NRR (3.49)
which finally yields NRR = 0 and R'*) (7 + 1) > 0.
x. Remove the 7 least stimulated elements from the available antibodies repertoire
corresponding to the current class and antigen according to the following equation:
AR AR {Ap | Ap)y (3.50)
and re-estimate the number of antibodies for the current class of patterns as:
Ny < Nj, — 7 (3.51)
xi. Re-estimate vector S](.k) containing the stimulations for the available an-
tibodies against the current antigen and associated class according to
Eq.(3.31).Subsequently, re-estimate the corresponding average stimulation levels
sgk) and s;.("’) according to Eq.(3.32) and Eq.(3.33).
xii. Determine the candidate memory cell m;f and corresponding stimulation level §§
according to the following equations:
ko . . (k)
my =arg max stimulation(Ag;™",m) (3.52)
55 = stimulation(Ag;k), ﬁlf) (3.53)
xiii. Compute the matrix C*) ¢ M, « 1, of mutated offsprings corresponding to the
surviving antibodies, such that:
Ny,
Ne =Y Ne(i) (3.54)
i=1
The number of mutated clones to be produced from each surviving antibody will be
given by:
N.(i) = 5 (i) - CR (3.55)
An Alternative Formulation of the Artificial 17

Immune Recognition System Learning Algorithm



MetarmTuyiakr AlaTpiBA AnunTtpng MNatgirgdyAou

In this context, matrix C*) of mutated clones may be considered as constructed
through the following concatenation process:

C® = [CM; .., (3.56)

Determining sub-matrices é}’”,\ﬁ : Ne(i) # 0 requires the computation of two
random matrices P; € My.xr and Q; € Mn.x 1, such that their elements Q, (I, p)
are uniformly distributed in the [0,1] interval where [ € [N¢] and p € [L]. The

elements of matrix C‘i(k) may be then computed by the following equation:

0, py = [AN"®) 05 Pill,p) - 8(p), Q3(1.p) < ME; 357)
v Abgk)(p), otherwise '

where 6% (p) = 0.5- Dif f(sAg;(p), Ab{™ (p)) +0.5- Dif f(Ag{” (p), A" (p)). Finally,
matrix Ab(¥) and variable NN, are updated according to the following equations:

AR — [AbR); O (3.58)
Nj « Ny + N, (3.59)

(g) Memory cell introduction: If 55.’“) > 52-(’“), where 53(’“) = stz‘mulation(Agj(-k),m;?), then:
i, dem = D(m", 1)
i. Ifd., <ATS - AT then:

— Update the sub-matrix M *) of memory cells for the class of the currently pre-
sented matrix and the corresponding number of memory cells m; according to
the following equations:

M® — ME)N\ {mk} (3.60)
my — my — 1 (361)

These operations correspond to the substitution of the matching memory cell
with the candidate memory cell.

iii. Incorporate the candidate memory cell within the sub-matrix of memory cells per-
taining to the same class as the currently presented antigenic pattern according to
the following equations:

M® — [M®); k] (3.62)
my — my + 1 (3.63)
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3.3 Points of Change

In this section, the main points of change that have been made to the original AIRS algorithm and
differentiate the proposed alternative iAIRS from the original version are thoroughly discussed.

3.3.1 Stopping Criterion and Evolution of Memory Cells

Several studies in the field of Artificial Immune Systems have offered insight into why AIRS per-
forms as it does and identified some deficiencies. It has been suggested (McEwan and Hart, 2009)
that the algorithm has an overly elitist selection criteria as only the best matching memory cell ini-
tiates a response, and only the best matching mutant becomes a candidate memory cell. Also,
"best” implies simply closeness rather than a more general criterion of *fittest”, while AIRS is further
limited because there is no feedback between data of different classes. The training process is
blind to any ambiguity in the regions where data of different classes overlap. Therefore, in order
to improve compression, generalisation and discrimination it could be beneficial to implement a
variant stimulation threshold to be lower in coherent, homogeneous regions and higher in ambigu-
ous regions by utilizing information about data of different class when a given antigenic pattern is
presented. In order to address some of these deficiencies, modifications to be made to the training
process of the algorithm are proposed.

In the original version of AIRS, Stimulation Threshold is a hyper-parameter between 0 and 1
and is used as the main stopping criterion for the training of an antigen, as only when the average
stimulation level of the antibodies of each class is greater than the Stimulation Threshold, does
training of the particular antigen stops. In addition, Stimulation Threshold as a hyper-parameter
is a user-defined value that remains fixed throughout the training process of all antigenic patterns,
meaning the stopping criterion is the same for all antigenic patterns used for training and the spe-
cific conditions of each antigen are not involved in shaping the stopping criterion that determines
when its training can be stopped. Therefore, a more flexible stopping criterion, one that is shaped
by the specific conditions surrounding each antigen, is implemented in iAIRS.

To begin with, Stimulation Threshold as an user-defined hyper-parameter is substituted for two
new hyper-parameters, named Distance Threshold and Distance Threshold Scalar, that define a
variant stopping criterion adapted to the conditions surrounding the currently presented antigen.
More specifically, for each antigenic pattern presented, Stimulation Threshold is calculated by
determining the normalized euclidean distance d between the currently presented antigenic pattern
and its closest antigenic pattern of different class as defined by Eq.3.21. Distance Threshold is a
value that is multiplied by d to define the Stimulation Threshold for each antigen.

The reasoning behind this modification is that because the Stimulation Threshold defines how
“close” or stimulated to a specific antigen the candidate memory cell is going to be, with the imple-
mentation of this modification, the "closer” an antigen is to an antigenic pattern of different class
the stricter the criterion to stop its training is going to be while the developed candidate memory cell
is going to be correspondingly “closer” to the currently presented antigen. Essentially, by making
the Stimulation Threshold proportional to the distance between the specific antigen and its clos-
est antigenic pattern of different class a possible overlapping between the candidate memory cell
and an antigenic pattern of different class can be avoided as long as Distance Threshold value is
between 0 and 1 without unnecessarily applying a strict stopping criterion to all training antigenic
patterns, but only to those that is needed. As a result, it allows for a greater generalization in
coherent areas while at the same time providing finer granularity in the more ambiguous areas.

Another implemented change affecting the stopping criterion and the development of the candi-
date memory cell is the creation of a secondary artificial antigenic pattern sAg; for each presented
antigenic pattern Ag](.k) as described by Eq. 3.22. To further clarify, the artificial antigenic pattern
is created so that its euclidean distance from the antigenic pattern Agj(.k) is equal to DTS - DT - d,
while its euclidean distance from the closest antigenic pattern of different class Ag'.(k/) is equal to
DTS - DT -d+ DT - d, meaning that is an synthetic antigenic pattern created to be further from
the closest antigenic pattern of different class Ag}(k/) than the currently presented antigen Agﬁk)
by DT - d (or differently put 1 — ST;). DTS is the value that determines how “far” from the cur-

An Alternative Formulation of the Atrtificial 19
Immune Recognition System Learning Algorithm



MetarmTuyiakr AlaTpiBA AnunTtpng MNatgirgdyAou

rently presented antigen Ag§k), and also the closest antigen of different class, Ag.;(k/), the artificial
antigenic pattern is going to be.

Furthermore, in the iAIRS implementation the stimulation level is calculated as the average of
two stimulation sub-levels, one for antibodies presented with the current antigenic pattern Agj(.k)
and one for antibodies presented with the artificial antigenic pattern s Ag;, as given by the equations
Eq.3.24 and Eq. 3.31.

Finally, for the training of a currently presented antigen Ag§k) to be stopped not only the average
stimulation level of the available antibodies to the currently presented antigen must be greater than
the stimulation threshold ST}, but the average stimulation level of the same available antibodies
to the artificial antigenic pattern s Ag; must also be greater than the stimulation threshold.

The purpose of these changes is to target and train for antibodies that not only are adequately
stimulated to a specific antigen but at the same time are adequately remote from the closest
antigenic pattern of different class to this specific antigen. In the following figures, the effect of
these changes to the stopping criterion and development of a candidate memory antibody are
illustrated.

Target
Stimulation
Area

radius =1 — ST

Figure 3.4: Target Stimulation Area-AIRS
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Figure 3.5: Target Stimulation Area-iAIRS,DT=0.5,DTS=1
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Figure 3.6: Target Stimulation Area-iAIRS,DT=0.5,DTS=1.5
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3.3.2 Mutation Process

The mutation process of AIRS is another possible area of modification and improvement. Studies
(McEwan and Hart, 2009) have questioned the purpose of the random search nature of the muta-
tion process of AIRS, suggesting that it has almost no positive effect on classifiers performance.

AIRS employs an mutation mechanism that is based on purely random changes meaning de-
creasing of the quality of cells is possible as they may randomly move to less productive areas
in the search space. On top of that, AIRS has an particularly elitist selection criteria where only
the best matching mutant becomes a candidate memory cell. One hypothesis of this work is that
the mutation mechanism, as implemented in AIRS, is unnecessarily hindering the algorithmic ef-
ficiency and needs to be modified. The proposed modification is that instead of purely random
mutations, more focused yet still random mutations of features could be applied.

In the mutation routine of the original version of AIRS, the mutation range for each element to be
altered is proportional to the stimulation level of the matching memory cell or surviving antibody,
while the mutation magnitude is a value randomly chosen according to the uniform distribution
in the [0,1] interval, meaning that the mutated clones can end up moving away from their original
position in any possible direction. As a result, a number of antibodies could end up less stimulated

to the currently presented antigen Ag§k) and of poorer quality than before the mutation occurred.
This negative impacts the run-time complexity of the algorithm, especially when dealing with high-
dimensional antigenic patterns, as the purely random changes of features mean that satisfying the
stopping criterion is becoming difficult to be achieved. Therefore, to achieve a more focused and

directed exploration of the search space, the mutation process was modified accordingly.

The modified mutation process is described by equation 3.28. Concisely, the mutation range
for each attribute is proportional to the average of the attribute difference between the current
antigen Agﬁk) and the matching memory cell (or antibody) and the attribute difference of the artificial
antigenic pattern sAg; and the matching memory cell (or antibody). As in the original version, the
magnitude of the mutation for each attribute is a value randomly chosen according to the uniform
distribution in the [0, 1] interval. The goal of implementing this modification, is to allow for a more
focused and efficient refinement of the cells while preserving the diversification through exploration.
The aforementioned changes are illustrated in the following figures.
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4 Experimental Evaluation

4.1 Objective and Methodology of Experimentation

This section presents a number of experimental test results performed. The main objective of these
experimental tests was the performance comparison between our proposed implementation of the
AIRS algorithm (iAIRS) and the original AIRS, as well as the evaluation of the novel implementation,
iAIRS, as a valid alternative machine learning paradigm. The focus of this comparative analysis
will be on three of the more important features of the AIRS algorithm: classification accuracy, data
reduction and algorithmic efficiency.

In order to achieve this, the experimental evaluation included extensive tests on various test
data sets, both synthetic and real. To allow for comparison between the two versions of the algo-
rithm, the experiments performed on the original AIRS were also performed on the new formulation
of AIRS (iAIRS) following a certain methodology.

The methodology followed involved grid searching to optimally configure the system and find
the best test results of both algorithms on each data set. In addition, K-Fold cross-validation was
applied to estimate the generalization performance. More specifically, for each testing data set a
ten-fold cross validation was employed with each result representing an average of one run across
these ten divisions. Finally, the random number generation was set to default settings in order to
insure comparability and reproducibility of the test results.

4.1.1 Grid Searching

Grid search is one of the most widely used strategies for hyper-parameter optimization and is
an exhaustive searching through a manually specified subset of the hyper-parameter space of a
learning algorithm.

In the original AIRS, grid searching was employed to optimally tune two hyper-parameters
which are Stimulation Threshold (ST) and Affinity Threshold Scalar (ATS). While in the proposed
iIAIRS implementation, grid searching was employed to optimally tune three hyper-parameters
which are Distance Threshold (DT), Affinity Threshold Scalar (ATS) and Distance Threshold Scalar.
All the other hyper-parameters values were fixed for all conducted tests that will be presented in
the following sections, as shown in table 4.1.

Common Testing Input Values

Training data percentage | 0.9
Clonal rate 4
Hyper mutation rate 4
Total resources 20
Nearest Neighbors 5
Mutation Rate 0.6

Table 4.1: Testing Input Values

In addition, because of the different nature of the two algorithms and especially the differences
between the Stimulation Threshold in AIRS and the Distance Threshold in iAIRS as described in
section 3.3.1 the manually specified subset for the Stimulation Threshold hyper-parameter in AIRS
grid searching consisted of the average of Stimulation Thresholds (STj) of each training antigen
for each corresponding Distance Threshold tested in iAIRS grid searching, as illustrated in figure
3.7. All other hyper-parameter values were the same on both versions.

Ultimately, the objective was to find the optimal configuration for both algorithms that yielded
the best test results and compare them in terms of test accuracy, number of memory antibodies
and overall algorithmic efficiency.
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4.1.2 K-Fold Cross-Validation

K-fold cross-validation is a validation technique for assessing how the results of a statistical analy-
sis will generalize to an independent data set. In other words, itis used to estimate the performance
of a predictive model in practice. Specifically, it involves the random partitioning of the data set
into k equal sized sub-samples. Of the k sub-samples, one of them is retained as the testing
set, the sub-sample of the original dataset against which the model is tested, and the rest k-1
sub-samples are retained as the training set that will be used to train the model. This process is
repeated k times, with each of the k sub-samples used only once as the test data. Ultimately, the k
test results will be averaged to produce a single test result. The main advantage of this technique
is that all observations are used exactly once for testing.

In our test experiments, for each class we used 90% of its antigens for training the model,
rounding up if necessary to get a whole number of antigens. To achieve this, the process explained
above will be repeated ten times for each class. For example if a class consists of 100 antigens,
in each iteration 10 antigens will be regarded as test data and the rest will be regarded as training
data. More specifically, in the first iteration the first ten of the antigens will be chosen as the test
data and so forth till the tenth iteration as shown by the following figure.
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Figure 4.1: 10-fold Cross-Validation

4.2 The Test Data Sets
4.2.1 Synthetic Test Data Sets

In our comparative analysis, we used both synthetic and real test data sets. The reason we used
synthetic test data sets was that it allowed for creating various difficult classification problems to
test against.

For the creation of the synthetic data sets the mvnrnd function in MATLAB was utilized, a func-
tion which generates multivariate normal distributed random numbers. The input values are the
mean MU which is a 1 — by — d vector with d being the number of dimensions, the covariance matrix
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SIGMA that is d — by — d matrix and CASES which is the number of antigens to be generated. In
our case, SIGMA is the identity covariance matrix meaning all dimensions are statistically inde-
pendent, and the variance of the data along each of the dimensions is equal to one. The return is
a CASES — by — d matrix, which is essentially a class of synthetic data. The process is repeated
for each class ,finally creating the complete synthetic data set.

The process is described by the following equations.

AgF = munrnd(MU, SIGM A, CASES) (4.1)
MU = [mu', mu?, ..., mu?], where mu' = mu? = ... = mu? 4.2)
SIGMA =14 (4.3)

A example of two synthetic classes of 2-d synthetic classes with MU; = 2 and MU, = 3 is
shown in the following figure.

Figure 4.2: Synthetic 2-D Data Set M U,=2,MU,=3

4.2.2 Real Test Data Sets

In our comparative analysis, we also included testing experiments on two real-world data sets.
The first is an open collection of 1000 pieces from 10 classes of modern music. More specifically,
this collection contains 100 pieces, each of thirty second duration, from each of the ten classes
of western music. Each piece is represented by a specific set of 30 objective features as shown
below.
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Class ID | Label
C1 Blues
C2 Classical
C3 Country
C4 Disco
C5 Hip-Hop
C6 Jazz

Cc7 Metal
C8 Pop

C9 Reggae
Cc10 Rock

Table 4.2: Classes of
western music

Feature ID | Feature name

1 Mean Centroid
2 Mean Rolloff

3 Mean Flux

4 Mean Zero-crossings
5 STD of Centroid
6 STD of Rolloff

7 STD of Flux

8 STD of Zero-crossings
9 Low Energy
[10...19] | MFCCs

20 Beat AO

21 Beat A1

22 Beat RA

23 Beat P1

24 Beat P2

25 Beat Sum

26 Pitch FAO

27 Pitch UPO

28 Pitch FPO

29 Pitch IPO

30 Pitch Sum

Table 4.3: Feature vector constituents-feature.mat

The other real data set we use is the Wisconsin Diagnostic Breast Cancer data set. The data
set used in this paper is publicly available and was created by Dr. William H. Wolberg, physician
at the University Of Wisconsin Hospital at Madison, Wisconsin, USA.

This data set contains 569 observations regarding breast cancer diagnosis from two classes,
benign and malign. These observations are represented by 30 features that are computed from
a digitized image of a fine needle aspirate (FNA) of a breast mass. The benign class contains
212 observations while the malign class contains 356, meaning the data set is imbalanced. Each
feature is evaluated on a scale of 1 to 10, with 1 being the closest to benign and 10 the closest to
malignant.
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Feature ID | Feature name
Radius

Texture
Perimeter

Area
Smoothness
Compactness
Concavity
Concave Points
Symmetry

0 Fractal Dimension

=2 OO N OO | W N~

Table 4.4: Feature vector constituents-WDBC.mat

4.2.3 Normalization

Normalization of data consists of linearly transforming the data according to the following equation.

, o —min(x)
T max(x) — min(z) (4-4)

where z is the original value and 2’ is the normalized value.

The objective of this method is to rescale the range of features in [0,1]. This is necessary
because our classifiers calculate the distance between two points utilizing the Euclidean distance.
If one of the features has a broad range of values, the distance will be governed by this particular
feature. Therefore, the range of all features should be normalized so that each feature contributes
approximately proportionately to the final distance.

4.3 Experimental Results
4.3.1 Synthetic Test Data Set Results

To allow for comparison between the two versions of the algorithm, the same experiments that
were performed on the original AIRS were also performed on the alternative formulation iAIRS,
testing them against various synthetic data sets previously discussed in Section 4.2.1. In this
section, we present both the best classification results against testing subsets and the best classi-
fication results against all data points for each version of the algorithm following the methodology
discussed in Section 4.1.
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Synthetic Test 1 - Data Set Information
Classes | MU | Cases | Dimensions
C1 2 100 2
C2 4 100 2

Table 4.5: Data set information-Synthetic Test 1

Synthetic Test 1 - C1 vs C2 Synthetic Test 1 - C1 vs C2

AIRS best overall result | Value AIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.02 Affinity threshold scalar 0.21
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9917 Stimulation threshold 0.9833
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 90% Test Result 92%
Training Result 92.44% Training Result 91.72%
Overall Result 92.20% Overall Result 91.75%
Mean Memory Antibodies | 141.5 Mean Memory Antibodies | 44.9

Table 4.6: AIRS classification results-Synthetic Test 1

Synthetic Test 1 - C1 vs C2 Synthetic Test 1 - C1 vs C2

IAIRS best overall result | Value iAIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.03 Affinity threshold scalar 0.22
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.2 Distance threshold 0.3
Distance threshold scalar | 0.25 Distance threshold scalar | 0.5
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 91.5% Test Result 92.50%
Training Result 92.83% Training Result 91.44%
Overall Result 92.70% Overall Result 91.55%
Mean Memory Antibodies | 128.1 Mean Memory Antibodies | 38.6

Table 4.7: iAIRS classification results-Synthetic Test 1
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Synthetic Test 2 - Data Set Information

Classes | MU | Cases | Dimensions
C1 2 100 50
C2 25 100 50

Table 4.8: Data set information-Synthetic Test 2

Synthetic Test 2 - C1 vs C2

Synthetic Test 2 - C1 vs C2

AIRS best overall result | Value AIRS best test result | Value
Input Values Input Values
Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.01 Affinity threshold scalar 0.20
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9910 Stimulation threshold 0.9819
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results
Test Result 93.50% Test Result 94%
Training Result 93.11% Training Result 92.83%
Overall Result 93.15% Overall Result 92.95%
Mean Memory Antibodies | 180 Mean Memory Antibodies | 180
Table 4.9: AIRS classification results-Synthetic Test 2
Synthetic Test 2 - C1 vs C2 Synthetic Test 2 - C1 vs C2
IAIRS best overall result | Value iAIRS best test result | Value
Input Values Input Values
Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.56 Affinity threshold scalar 0.48
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.5 Distance threshold 04
Distance threshold scalar | 1.5 Distance threshold scalar | 1
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results
Test Result 93.50% Test Result 96.50%
Training Result 95.89% Training Result 94.72%
Overall Result 95.65% Overall Result 94.90%
Mean Memory Antibodies | 176.9 Mean Memory Antibodies | 179.8
Table 4.10: iAIRS classification results-Synthetic Test 2
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Synthetic Test 3 - Data Set Information

Classes | MU | Cases | Dimensions
C1 2 100 2
C2 4 100 2
C3 6 100 2

Table 4.11: Data set information-Synthetic Test 3

Synthetic Test 3 - C1 vs C2 vs C3

Synthetic Test 3 - C1 vs C2 vs C3

AIRS best overall result \ Value

AIRS best test result | Value

Input Values

Input Values

_Training data percentage | 0.9 _Training data percentage | 0.9
Affinity threshold scalar 0.02 Affinity threshold scalar 0.17
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9973 Stimulation threshold 0.9879
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

“Test Result 87.33% “Test Result 88.33%
Training Result 89.93% Training Result 87.96%
Overall Result 89.67% Overall Result 88%
Mean Memory Antibodies | 241.9 Mean Memory Antibodies | 65.5

Table 4.12: AIRS classification results-Synthetic Test 3

Synthetic Test 3 - C1 vs C2 vs C3

Synthetic Test 3 - C1 vs C2 vs C3

IAIRS best overall result | Value

iAIRS best test result | Value

Input Values

Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.02 Affinity threshold scalar 0.18
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.2 Distance threshold 0.5
Distance threshold scalar | 0.5 Distance threshold scalar | 1.5
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 87% Test Result 90%
Training Result 90.67% Training Result 87.11%
Overall Result 90.30% Overall Result 87.40%
Mean Memory Antibodies | 207.3 Mean Memory Antibodies | 80.3

Table 4.13: iAIRS classification results-Synthetic Test 3

An Alternative Formulation of the Artificial
Immune Recognition System Learning Algorithm

34



MetarmTuyiakr AlaTpiBA

AnunTtpng MNatgirgdyAou

Synthetic Test 4 - Data Set Information

Classes | MU | Cases | Dimensions
C1 2 100 2
C2 4 100 2
C3 6 100 2
C4 8 100 2

Table 4.14: Data set information-Synthetic Test 4

Synthetic Test 4 - C1 vs C2 vs C3 vs C4

Synthetic Test 4 - C1 vs C2 vs C3 vs C4

AIRS best overall result | Value AIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.02 Affinity threshold scalar 0.12
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9963 Stimulation threshold 0.9922
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 84.75% Test Result 86.50%
Training Result 88.39% Training Result 86.50%
Overall Result 88.03% Overall Result 86.50%
Mean Memory Antibodies | 303.4 Mean Memory Antibodies | 101.5

Table 4.15: AIRS classification results-Synthetic Test 4

Synthetic Test 4 - C1 vs C2 vs C3 vs C4

Synthetic Test 4 - C1 vs C2 vs C3 vs C4

IAIRS best overall result | Value iAIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.02 Affinity threshold scalar 0.14
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.2 Distance threshold 0.2
Distance threshold scalar | 0.5 Distance threshold scalar | 0.5
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 85.75% Test Result 88.50%
Training Result 89.28% Training Result 86.19%
Overall Result 88.92% Overall Result 86.43%
Mean Memory Antibodies | 293.5 Mean Memory Antibodies | 87.8

Table 4.16: iAIRS classification results-Synthetic Test 4
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Synthetic Test 5 - Data Set Information
Classes | MU | Cases | Dimensions
C1 2 100 2
C2 4 100
C3 6 100
C4 8 100
C4 10 100

NN NN

Table 4.17: Data set information-Synthetic Test 5

Synthetic Test5- C1Tvs C2vs C3vs C4  Synthetic Test5- C1vs C2vs C3 vs C4

vs C5 vs C5

AIRS best overall result | Value AIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.01 Affinity threshold scalar 0.1
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9969 Stimulation threshold 0.9907
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 83.20% Test Result 86.20%
Training Result 87.42% Training Result 84.76%
Overall Result 87% Overall Result 84.90%
Mean Memory Antibodies | 405.7 Mean Memory Antibodies | 115.6

Table 4.18: AIRS classification results-Synthetic Test 5

Synthetic Test5- C1Tvs C2vs C3vs C4  Synthetic Test5- C1vs C2vs C3 vs C4

vs C5 vs C5

IAIRS best overall result | Value iAIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.02 Affinity threshold scalar 0.1
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.1 Distance threshold 0.3
Distance threshold scalar | 0.25 Distance threshold scalar | 0.25
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 85% Test Result 88.40%
Training Result 88.38% Training Result 85.31%
Overall Result 88.04% Overall Result 85.62%
Mean Memory Antibodies | 293.5 Mean Memory Antibodies | 120.6

Table 4.19: iAIRS classification results-Synthetic Test 5
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4.3.2 Music Test Data Set Results

To further compare the two versions of the algorithm, their performance as music genre classifiers
was tested using the music data set discussed in Section4.2.2. Once more, the same experiments
that were performed on the original AIRS were performed on the alternative formulation iAIRS and
the best classification results against both testing subsets and the entirety of data set for each
version of the algorithm are presented. The data set has been presented in section 4.2.2, while
class IDs are presented in table 4.2.

Automated music genre classification constitutes a non-trivial multi-class classification prob-
lem since boundaries between genres are extremely overlapping and fuzzy (Sotiropoulos and
Tsihrintzis, 2017b). Therefore, it may serve as an ideal framework in order to assess the validity
of our proposed reformulation of AIRS algorithm.

Music Test 1 - C1 vs C2 Music Test 1 - C1 vs C2
AIRS best overall result | Value AIRS best test result | Value
Input Values Input Values

_Training data percentage | 0.9 _Training data percentage | 0.9
Affinity threshold scalar 0.56 Affinity threshold scalar 0.55
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.98 Stimulation threshold 0.98
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

“Test Result 93.50% “Test Result 94.50%
Training Result 95.17% Training Result 94.78%
Overall Result 95% Overall Result 94.75%
Mean Memory Antibodies | 152.5 Mean Memory Antibodies | 155.7

Table 4.20: AIRS classification results-Music Test 1

Music Test 1 - C1 vs C2 Music Test 1 - C1 vs C2

IAIRS best overall result | Value iAIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.34 Affinity threshold scalar 0.41
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.5 Distance threshold 04
Distance threshold scalar | 1.5 Distance threshold scalar | 0.5
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 93% Test Result 95%
Training Result 96.78% Training Result 95.28%
Overall Result 96.40% Overall Result 95.25%
Mean Memory Antibodies | 136.9 Mean Memory Antibodies | 70.1

Table 4.21: iAIRS classification results-Music Test 1
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Music Test 2 - C1 vs C2 vs C3

Music Test 2 - C1 vs C2 vs C3

AIRS best overall result | Value AIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.35 Affinity threshold scalar 0.39
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9257 Stimulation threshold 0.9257
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 72% Test Result 74.33%
Training Result 83.33% Training Result 82.11%
Overall Result 82.17% Overall Result 81.33%
Mean Memory Antibodies | 266.2 Mean Memory Antibodies | 262.7

Table 4.22: AIRS classification results-Music Test 2

Music Test 2 - C1 vs C2 vs C3

Music Test 2 - C1 vs C2 vs C3

IAIRS best overall result | Value iAIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.13 Affinity threshold scalar 0.24
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 04 Distance threshold 0.6
Distance threshold scalar | 1.5 Distance threshold scalar | 1.5
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 73% Test Result 75.67%
Training Result 87.19% Training Result 85.96%
Overall Result 85.77% Overall Result 84.93%
Mean Memory Antibodies | 269.4 Mean Memory Antibodies | 246.6

Table 4.23: iAIRS classification results-Music Test 2

An Alternative Formulation of the Atrtificial

Immune Recognition System Learning Algorithm

38



MetarmTuyiakr AlaTpiBA

AnunTtpng MNatgirgdyAou

Music Test 3-C1 vs C2vs C3 vs C4

Music Test 3-C1 vs C2 vs C3 vs C4

AIRS best overall result | Value AIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.32 Affinity threshold scalar 0.49
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9287 Stimulation threshold 0.9881
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 66.25% Test Result 68.50%
Training Result 80.36% Training Result 77.33%
Overall Result 78.95% Overall Result 76.45%
Mean Memory Antibodies | 354.8 Mean Memory Antibodies | 336.1

Table 4.24: AIRS classification results-Music Test 3

Music Test 3-C1 vs C2vs C3vs C4

Music Test 3-C1 vs C2 vs C3 vs C4

IAIRS best overall result | Value iAIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.01 Affinity threshold scalar 0.4
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.6 Distance threshold 0.2
Distance threshold scalar | 1 Distance threshold scalar | 1

Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 64.75% Test Result 69.50%
Training Result 82.86% Training Result 80%
Overall Result 81.05% Overall Result 78.95%
Mean Memory Antibodies | 353 Mean Memory Antibodies | 335.9

Table 4.25: iAIRS classification results-Music Test 3
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usic Test 4 - VS VS VS usic Test 4 - VS 5 VS
vs C5 vs C5
AIRS best overall result \ Value AIRS best test result \ Value
Input Values Input Values
Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.34 Affinity threshold scalar 0.41
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9544 Stimulation threshold 0.9312
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results
Test Result 60.40% Test Result 61%
Training Result 74.98% Training Result 74.53%
Overall Result 73.52% Overall Result 73.18%
Mean Memory Antibodies | 444.1 Mean Memory Antibodies | 426.2
Table 4.26: AIRS classification results-Music Test 4
usic Test 4 - VS VS VS usic Test 4 - VS 5 VS
vs C5 vs C5
iIAIRS best overall result \ Value IAIRS best test result \ Value
Input Values Input Values
Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.29 Affinity threshold scalar 0.29
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.6 Distance threshold 0.2
Distance threshold scalar | 0.5 Distance threshold scalar | 0.5
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results
Test Result 60.80% Test Result 62.40%
Training Result 79% Training Result 77.02%
Overall Result 77.18% Overall Result 75.56%
Mean Memory Antibodies | 429.1 Mean Memory Antibodies | 440.6
Table 4.27: iAIRS classification results-Music Test 4
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4.3.3 WDBC Test Data Set Results

The two versions of the algorithm were also tested as classifiers that discriminate benign from ma-
lignant breast lumps. For that purpose, the WBCD (Wisconsin Breast Cancer Diagnosis) dataset
is employed.

This data set is widely utilized for this kind of application because it has a large number of
instances and is virtually noise-free. However, the two classes are slightly unbalanced with the
’bening’ class having slightly more data instances than the 'malign’ class. The WDBC data set has
been previously discussed in section 4.2.2.

WDBC Test - Bening vs Malign WDBC Test - Bening vs Malign
AIRS best overall result | Value AIRS best test result | Value
Input Values Input Values

Training data percentage | 0.9 Training data percentage | 0.9
Affinity threshold scalar 0.15 Affinity threshold scalar 0.28
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Stimulation threshold 0.9680 Stimulation threshold 0.9570
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results

Test Result 97.01% Test Result 97.18%
Training Result 97.95% Training Result 97.27%
Overall Result 97.86% Overall Result 97.26%
Mean Memory Antibodies | 469.3 Mean Memory Antibodies | 274.1

Table 4.28: AIRS classification results-WDBC Test

WDBC Test - Bening vs Malign WDBC Test - Bening vs Malign
IAIRS best overall result | Value iAIRS best test result | Value
Input Values Input Values

_Training data percentage | 0.9 _Training data percentage | 0.9
Affinity threshold scalar 0.14 Affinity threshold scalar 0.33
Clonal rate 4 Clonal rate 4
Hyper mutation rate 4 Hyper mutation rate 4
Distance threshold 0.8 Distance threshold 04
Distance threshold scalar | 1 Distance threshold scalar | 0.5
Total resources 20 Total resources 20
Nearest Neighbors 5 Nearest Neighbors 5
Classification Results Classification Results
Test Result 96.89% Test Result 97.53%
Training Result 98.32% Training Result 96.52%
Overall Result 98.18% Overall Result 96.63%
Mean Memory Antibodies | 285.4 Mean Memory Antibodies | 92.5

Table 4.29: iAIRS classification results-WDBC Test
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4.4 Discussion and Comparative Analysis

In this section, the results presented in the previous section 4.3 are thoroughly discussed and
evaluated. The focus of this discussion will be on three important features of the AIRS algorithms:
classification accuracy, data reduction and algorithmic efficiency.

4.4.1 Classification accuracy

One of the most important features of AIRS algorithms is its competitive classification accuracy.
Therefore, in this section, the best configuration classification results for both the testing sets and
the entirety of the data set presented in section 4.3 are compared in order to assess any significant
difference between the two version of the AIRS algorithm regarding classification accuracy. Table
4.30 presents the best overall accuracies, achieved by both versions of AIRS on all the benchmark
data sets, while table 4.31 presents the best testing accuracies.

Overall Data-Classification Results Comparison
Test ID AIRS IAIRS +/-

Synthetic Test 1 | 92.20% | 92.70% | +0.50%
Synthetic Test 2 | 93.15% | 95.65% | +2.50%
Synthetic Test 3 | 89.67% | 90.30% | +0.63%
Synthetic Test4 | 88.03% | 88.92% | +0.89%
Synthetic Test 5 87% 88.04% | +1.04%
Music Test 1 95% 96.40% | +1.40%
Music Test 2 82.17% | 85.77% | +3.60%
Music Test 3 78.95% | 81.05% | +2.10%
Music Test 4 73.52% | 77.18% | +3.66%
WDBC 97.86% | 98.18% | +0.32%

Table 4.30: Overall Data-Classification Results Comparison

Testing Set-Classification Results Comparison
Test ID AIRS iAIRS +/-
Synthetic Test 1 92% 92.50% | +0.50%
Synthetic Test 2 94% 96.50% | +2.50%
Synthetic Test 3 | 88.33% 90% +1.67%
Synthetic Test 4 | 86.50% | 88.50% +2%
Synthetic Test 5 | 86.20% | 88.40% | +2.20%
Music Test 1 94.50% 95% +0.50%
Music Test 2 74.33% | 75.67% | +1.33%
Music Test 3 68.50% | 69.50% +1%
Music Test 4 61% 62.40% | +1.40%
WDBC 97.18% | 97.53% | +0.35%

Table 4.31: Testing Set-Classification Results Comparison

It can be noted that the alternative version iAIRS had better classification results than the orig-
inal AIRS in all testing scenarios, with both versions optimally configurated. The gains appear to
be greater in multi-class scenarios and the more difficult classification problems with fuzzy and
overlapping boundaries. In some cases, these differences appear to be greater than 2%, there-
fore noting that the changes introduced and discussed in section 3.3 have indeed improved the
classification accuracy of the algorithm.

However, the results presented so far were achieved by finding the configuration that led to the
best accuracy result for each data set through grid searching. Therefore, in order to assess the
consistency of iAIRS classification ability in comparison to AIRS, the average and the standard
deviation of the fifty best testing set results as emerged from the grid searching testing process
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are presented in table 4.32. To allow for comparison, all hyper-parameters except Stimulation
Threshold and Affinity Threshold Scalar were set to the same fixed values.

Best Fifty Testing Set Results

Test ID AIRS iAIRS +-
Synthetic Test 1 | 90.61% (0.48%) | 90.87% (0.46%) | +0.26% (-0.02%)
Synthetic Test 2 | 94% (210~ %%) | 96% (810~ %%) | +2% (+6*10~ %)
Synthetic Test 3 | 86.85% (0.7%) | 87.25% (0.62%) | +0.40% (-0.08 %)
Synthetic Test4 | 84.75% (0.64%) | 85.56% (1.03%) | +0.81% (+0.37 %)
Synthetic Test5 | 83.40% (1.02%) | 84.16% (1.54%) | +0.76% (+0.52%)
Music Test 1 | 93.26% (0.35%) | 93.34% (0.24%) | +0.08% (-0.11%)
Music Test2 | 73.19% (0.81%) | 73.32% (0.75%) | +0.13% (-0.06 %)
Music Test 3 | 67.57% (0.38%) | 67.69% (0.61%) | +0.12% (+0.13%)
Music Test4 | 60.59% (0.2%) | 61.28% (0.59%) | +0.69% (+0.39%)
WDBC 96.95% (0.14%) | 96.88% (0.19%) | -0.07% (+0.05%)

Table 4.32: Best Fifty Testing Set Results

Here it can be observed that, the iAIRS version holds a slight advantage in all the testing
scenarios except the WDBC data set regarding the average classification accuracy, while standard
deviation appears marginally higher in iAIRS.

To delve deeper, investigations were undertaken to determine what affect altering both the
Stimulation Threshold and the Affinity Threshold Scalar have on the classification accuracy of the
two algorithms. Table 4.33 and table 4.34 show average testing classification results on a synthetic
data set (Table 4.5) and WDBC data set respectively, achieved through tuning Affinity Threshold
Scalar in the range [0.01,0.6] with the step equal to 0.01, while all other-hyper-parameters values
are fixed. To maintain comparability, Stimulation Threshold is calculated as the average of the
stimulation thresholds of each training antigen in iAIRS as illustrated in 3.7.

Synthetic Test 1-Accuracy Sensitivity Comparison

Stimulation Threshold
/ Distance Threshold

AIRS

IAIRS(DTS=1)

IAIRS(DTS=1.5)

ST=0.9958/DT=0.05

88.84% (1.53%)

89.27% (1.47%)

89.09% (1.66%)

ST=0.9917/DT=0.1

88.42% (1.84%)

89.14% (1.19%)

89.18% (1.55%)

ST=0.9833/DT=0.2

87.53% (2.31%)

88.62% (1.51%)

88.63% (1.44%)

ST=0.9750/DT=0.3

87.55% (1.64%)

88.71% (1.19%)

88.28% (1.34%)

ST=0.9666/DT=0.4

88.80% (1.51%)

88.19% (1.57%)

ST=0.9583/DT=0.5

88.02% (1.84%)

88.71% (1.46%)

88.28% (1.68%)

ST=0.9499/DT=0.6

(

(

(
87.88% (1.55%)

(

(

87.91% (1.71%)

88.32% (1.94%)

88.62% (1.58%)

Table 4.33: Synthetic Test 1-Accuracy Sensitivity Comparison

WDBC Test-Accuracy Sensitivity Comparison

Stimulation Thr‘:ﬁggd AIRS IAIRS(DTS=0.5) | AIRS(DTS=1) | IAIRS(DTS=1.5)
ST=0.9880/DT=0.05 | 95.969% (0.93%) | 95.89% (0.01%) | 95.972% (0.85%) | 95.90% (0.72%)
ST=0.9780/DT=0.1 | 95.87% (0.75%) | 95.81% (0.90%) | 95.86% (0.74%) | 95.98% (0.80%)
ST=0.9680/DT=0.2 | 95.96% (0.76%) | 95.84% (0.87%) | 95.85% (0.76%) | 96.09% (0.65%)
ST=0.9570/DT=0.3 | 96.06% (0.83%) | 95.93% (0.8%) | 95.94% (0.69%) | 96.11% (0.65%)
ST=0.9466/DT=04 | 95.85% (0.81%) | 95.80% (1.11%) | 95.98% (0.86%) | 96.15% (0.48%)
ST=0.9360/DT=05 | 95.75% (0.79%) | 95.59% (1.13%) | 95.85% (0.83%) | 96.14% (0.54%)
ST=0.9250/DT=0.6 | 95.61% (0.68%) | 95.31% (1.49%) | 95.64% (0.83%) | 95.89% (0.74%)

Table 4.34: WDBC Test-Accuracy Sensitivity Comparison
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According to the results shown in tables 4.33 and 4.34, it appears that as the stopping criterion
becomes more relaxed, the differences in classification accuracy between the two algorithms grow
wider in favor of iAIRS. This trend is further explored in regard to the data reduction capabilities of
AIRS in the following section.

4.4.2 Data Reduction

In the previous section, the main focus was on the classification accuracy of the two algorithms
under various circumstances. It can be seen that the changes introduced to AIRS offer a small,
but in some cases substantial, improvement to classification accuracy. However, authors (Watkins
and Boggess, 2002) argue that aside from high classification accuracy another significant feature
of the AIRS algorithm is its ability to reduce the number of data instances needed to characterize
a given class of data from the original training data to the evolved set of memory cells. Therefore,
it is essential to focus our comparison to the data reduction capabilities of the two algorithms and
how they affect the classification accuracy tests presented in the previous section.

To begin with, table 4.35 and 4.36 show the size of the evolved set of memory cells used for
classification on the best configuration results presented in tables 4.30 and 4.31, respectively.

Overall Data-Data Reduction Comparison
Test ID AIRS | iAIRS +/-

Synthetic Test 1 | 155.6 | 128.1 | -27.5(-17.67%)
Synthetic Test2 | 180 | 176.9 -3.1(-1.70%)
Synthetic Test 3 | 241.9 | 207.3 | -34.6(-14.30%)
Synthetic Test 4 | 303.4 | 293.5 -9.9(-3.20%)
Synthetic Test5 | 405.7 | 369.5 | -36.2(-8.92%)
Music Test 1 152.5 | 136.9 | -15.6(-10.22%)
Music Test 2 266.2 | 269.4 | +3.2(+1.20%)

Music Test 3 354.8 | 353 -1.8(-0.51%)
Music Test 4 4441 | 4291 -15(-3.34%)
WDBC 469.3 | 285.4 | -183.9(-39.18%)

Table 4.35: Overall Data-Data Reduction Comparison

Testing Set-Data Reduction Comparison
Test ID AIRS | iAIRS +/-

Synthetic Test 1 | 44.9 | 38.6 | -27.5(-14.03%)
Synthetic Test2 | 180 | 179.8 -0.2(-0.11%)
Synthetic Test 3 | 65.5 80.3 | +14.8(+22.59%)
Synthetic Test4 | 101.5 | 87.8 | -13.7(-13.49%)
Synthetic Test5 | 115.6 | 120.6 +5(+4.32%)
Music Test 1 155.7 | 701 -84.9(-54.53%)
Music Test 2 262.7 | 246.6 | -16.1(-6.12%)
Music Test 3 336.1 | 335.9 -0.2(-0.06%)
Music Test 4 426.2 | 440.6 | +14.4(+3.26%)
WDBC 2741 | 92.5 | -181.6(-66.25%)

Table 4.36: Testing Set-Data Reduction Comparison

As it can been seen, in the best configuration, the iAIRS version exhibits greater data reduction
as well as slightly better classification results for most of the data sets tested against. Hence, iAIRS
seems to achieve better results than the original AIRS in terms of efficiency.

In the previous section, table 4.32 presented the best fifty testing set results in terms of clas-
sification accuracy for each algorithm, where the iAIRS version tended to have slightly higher
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classification results than original AIRS. Table 4.37 shows the average number of memory cells
and standard deviation for the results presented previously in table 4.32.

Best 50 Testing Set Results-Data Reduction

Test ID AIRS iAIRS +-
Synthetic Test 1 | 61.28 (42.83) | 56.11 (49.44) | -5.17 (-8.44%)
Synthetic Test 2 180(0) 179.99(0.0424) | -0.01(-0.005%)
Synthetic Test 3 | 87.25(62.66) 97.67(54.36) +9.60 (+11%)
Synthetic Test4 | 122.06 (70.22) | 118.61 (72.44) | -3.45 (-2.82%)
Synthetic Test5 | 161.53 (97.15) | 135.56 (86.27) | -25.97 (-16.08%)
Music Test 1 176.62 (7.04) | 174.08 (10.59) | -2.54 (-1.43%)
Music Test 2 268.60(4.02) | 255.75((16.79) | -12.85 (-4.48%)
Music Test3 | 352.28 (9.26) | 346.42 (19.73) | -5.86 (-1.66%)
Music Test 4 44705 (3.1) | 435.03(19.25) | -12.02 (-2.67%)
WDBC 393.65 (123.52) | 298.40 (134.35) | -95.25 (-24.19%)

Table 4.37: Best 50 Testing Set Results-Data Reduction

These results show that iAIRS tends to exhibit consistently greater data reduction than AIRS,
while also slightly improving accuracy. This indicates that the revisions made to AIRS allow for
greater efficiency in general.

Additionally, in the previous section, experimental results regarding the affect of altering the
stopping criterion and the Affinity Threshold Scalar, which is the hyper-parameter that provides a
cut-off value for memory cell replacement and therefore significantly affects the size of the evolved
set of memory cell, on classification accuracy were presented. In this section, experimental results,
in correspondence to those presented in table 4.34, regarding the affect of altering the stopping
criterion and the Affinity Threshold Scalar are presented but focusing on the number of memory
cells instead of classification accuracy. The experimental tests were conducted on the WDBC data
set.

WDBC Test-Data Reduction Sensitivity Comparison

Stimulation Thr‘:;gl‘gd AIRS IAIRS(DTS=0.5) | IAIRS(DTS=1) | iAIRS(DTS=1.5)
ST=0.9880/DT=0.05 | 318.58 (164.50) | 303.80 (169.45) | 310.32 (167.62) | 318.31 (165.48)
ST=0.9780/DT=0.1 | 300.07 (162.98) | 2845 (171.96) | 297.47 (169.35) | 314.43 (162.52)
ST=0.9680/DT=02 | 2935 (159.03) | 245.72 (169.79) | 273.01 (169.47) | 307.64 (164.09)
ST=0.9570/DT=03 | 268.72 (147.87) | 208.6 (157.53) | 250.89 (165.65) | 302.71 (161.43)
ST=0.9466/DT=0.4 | 238.34 (129.17) | 175.97 (138.53) | 230.70 (158.74) | 298.86 (158.13)
ST=0.9360/DT=05 | 205.57 (106.69) | 146.59 (113.635) | 211.82 (150.92) | 295.04 (153.51)
ST=0.9250/DT=06 | 172.95 (83.96) | 121.72 (86.36) | 196.22 (141.75) | 290 (149.32)

Table 4.38: WDBC Test-Data Reduction Sensitivity Comparison

Some interesting deductions can be drawn from table 4.38 regarding the data reduction and
classification capabilities of the proposed iAIRS algorithm and the underlying connection between
the two. At first, it is clear that as the stopping criterion becomes more relaxed the number of
evolved memory cells decreases for both algorithm. Furthermore, it can be seen that as the
Distance Threshold Scalar increases so does the size of the set of evolved memory cells as well.
On the other hand, as it was mentioned in the previous section, it also appears that as the stopping
criterion becomes more relaxed, while AIRS classification accuracy is diminishing, iAIRS can still
achieve competitive classification results.

These conclusions seem perplexing at first glance but they merely point to the different nature
of the two formulations of the AIRS algorithm. If we take a closer look to the results of table
4.38, it can be seen that, in many cases, iAIRS exhibits greater data reduction while achieving
similar classification results to AIRS. In the following figures, the effect of altering the Affinity Scalar
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Threshold is illustrated. There, it can be seen that while AIRS might achieve better results when a
larger number of memory cells is involved, iAIRS performs better while employing fewer number
of cells. This is also demonstrated in figure 4.7 where the best fifty test results of each version on
the WBDC data set are shown.
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Figure 4.3: Effect of altering the Affinity Scalar Threshold-WDBC Data Set-Example 1
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4.4.3 Distance Threshold and Distance Threshold Scalar

At this point, a more thorough experimental evaluation of the two hyper-parameters, Distance
Threshold and Distance Threshold Scalar, introduced to AIRS as described in section 3.3.1, is
essential to the better understanding of the alternative machine learning paradigm presented in
this thesis, iAIRS. In this section, the focus will be on the affect of the modifications made on
the stopping criterion of the original algorithm and how the new concept of the stopping criterion,
incorporated in iAIRS, really works.

Previously, in presenting test results about the classification accuracy and the data reduction
capabilities of iIAIRS, some patterns regarding the affect of the Distance Threshold (DT) and the
Distance Threshold Scalar on the classification accuracy and the data reduction capability of iAIRS
emerged. In order to properly address this matter, more experimental tests were conducted on the
WDBC data set. Table 4.39 shows testing set results of both versions of AIRS on the WDBC data
set for various levels of the Distance Threshold (iIAIRS) and the average Stimulation Threshold
(AIRS). DTS was set to zero, so as to study the affect of Distance Threshold more clearly, while
ATS was set to 0.01. All other hyper-parameter values were set as shown in table 4.1.

WDBC-Distance Threshold Sensitivity Results

Distance Threshold / AIRS Accuracy iAIRS Accuracy

Average Stimulation Threshold | (Number of Cells) | (Number of Cells)
DT=0.1/ST=0.9900 96.65% (512.1) 96.65% (512.1)
DT=0.2/ST=0.9790 96.13% (512.1) 96.30% (508.7)
DT=0.3/ST=0.9680 96.48% (510.1) 96.13% (464.7)
DT=0.4/ST=0.9570 97.18% (486.9) 96.65% (361.1)
DT=0.5/ST=0.9460 96.30% (426.9) 96.48% (245.9)
DT=0.6/ST=0.9460 95.24% (373) 96.48% (165.5)
DT=0.7/ST=0.9250 95.96% (295.9) 95.96% (108)
DT=0.8/ST=0.9150 95.23% (243.4) 94.36% (71.8)

Table 4.39: Distance Threshold Sensitivity Results

It can be observed that the modified stopping criterion of iAIRS leads to greater data reduction
than the original version, especially as the stopping criterion becomes more relaxed, but despite
this, classification accuracy, for the most part, is not significantly sacrificed for the greater data
reduction. This was expected as result of the nature of the modified stopping criterion, where
training for antigens that are not very close to antigens of different class stops at an early stage
allowing for greater generalization while training for antigens positioned close to antigenic patterns
of different class is extensive, providing greater specification in those cases. As a result, the former
group of antigens produce less evolved candidate memory cells than those produced by the latter
group, which leads to a larger number of those less evolved candidate memory cells not getting
introduced to the final set of memory cells, as the possibility that a more stimulated memory cell
already exists is increased for those less evolved candidate cells (see this).

Following, the same test was conducted again but this time the focus was on the affect of
altering the value of the Distance Threshold Scalar. Table 4.40 shows the affect of altering DTS
when the Distance Threshold is equal to 0.5, while Table 4.41 presents the best configuration test
results for each level of the stopping criterion and the optimal DTS value.
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WDBC-Distance Threshold Scalar Sensitivity Results

Distance

Threshold | Testing Accuracy | Training Accuracy | Number of Cells

Scalar

0 96.48% 97.54% 245.9
0.1 96.47% 97.81% 268.4
0.2 96.47% 97.97% 294.6
0.3 96.65% 98.01% 316.6
0.4 95.95% 97.93% 340.1
0.5 96.48% 98.07% 370.4
0.6 96.65% 97.95% 392
0.7 96.66% 97.79% 418.8
0.8 96.83% 98.05% 440.5
0.9 97.18% 97.91% 459.2
1 96.13% 97.93% 472.9

1.1 96.12% 98.11% 482.1
1.2 96.30% 97.85% 490.9
1.3 96.83% 97.79% 495.6
1.4 96.12% 97.87% 499.2
1.5 96.65% 97.93% 503.2
1.6 96.83% 97.83% 502.4
1.7 96.65% 98.01% 501.4
1.8 96.65% 97.91% 496.4
1.9 96.65% 98.01% 488.2

Table 4.40: Distance Threshold Scalar Sensitivity Results-DT=0.5

WDBC-Optimal Distance Threshold Scalar-Test Results

Distance Threshold / Optimal AIRS Accuracy iAIRS Accuracy

Average Stimulation Threshold | DTS Value | (Number of Cells) | (Number of Cells)
DT=0.1/ST=0.9900 1.9 96.65% (512.1) 97.00% (512.1)
DT=0.2/ST=0.9790 1.9 96.13% (512.1) 97.00% (512.1)
DT=0.3/ST=0.9680 0.1 96.48% (510.1) 97.01% (509.4)
DT=0.4/ST=0.9570 0.3 97.18% (486.9) 96.83% (414.2)
DT=0.5/ST=0.9460 0.9 96.30% (426.9) 97.18% (459.2)
DT=0.6/ST=0.9460 0.4 95.24% (373) 96.83% (263.2)
DT=0.7/ST=0.9250 0.2 95.96% (295.9) 96.83% (143.8)
DT=0.8/ST=0.9150 0.4 95.23% (243.4) 96.83% (142.6)

Table 4.41: Optimal Distance Threshold Scalar-Test Results

A few observations about the Distance Threshold Scalar can be drawn from these results. To
begin with, it can be seen that higher DTS values associate with a larger number of memory
cells up till a point when for very high DTS values (over 1.5) this trend reverses and the number of
memory cells decreases again. The reason behind this pattern is that for higher values of DTS the
space that candidate cells should be in order to satisfy the stopping criterion is smaller (see figure
3.7), meaning the stopping criterion becomes stricter and the evolution of antibodies becomes
more focused and individualized for each antigenic pattern and thus the possibility of a memory
cell, more stimulated to the currently presented antigen than the candidate cell, already existing
is smaller.

Yet, for very high DTS values the possibility of a candidate memory cell getting introduced to
the set becomes slightly smaller again, as in this case, the stimulation of the candidate cell to the
currently presented antigenic pattern may be quite low, such that the case of a more stimulated
memory cell already existing becomes quite possible again.
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However, as table 4.41 shows, with the optimal combination of Distance Threshold and Dis-
tance Threshold Scalar, iAIRS can maximize classification accuracy while achieving greater data
reduction at the same time when compared to AIRS. As it seems, the contrasting natures of Dis-
tance Threshold and Distance Threshold Scalar could be accordingly combined, optimally adjust-
ing the modified stopping criterion in iIAIRS and achieve competitive results of high classification
accuracy and great data reduction.
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4.4.4 Algorithmic Efficiency

While the focus of this attempt to reformulate the AIRS algorithm has not been on the time com-
plexity of AIRS, observations concerning the efficiency of the mutation process have been made,
motivating the changes described in section 3.3.2. The objective of adopting these modifications
was to decrease the time complexity of the AIRS classification system, especially when dealing
with high-dimensional data sets for which the execution time of the system often increases beyond
a manageable level.

In this section the impact of the modification made on the mutation process, as detailed in
section 3.3.2, is assessed. Table 4.42 shows the execution time of the two version of AIRS for
various data sets. The experiments were conducted under the same conditions and configurations
for both versions.

Execution Time Results

Test ID Dimensions | Number of Instances AIRS iAIRS +
Synthetic Test 1 2 200 2219sec | 2.338sec | +5.36 %
Music Test 1 30 200 19.970 sec | 3.307 sec | -83.44 %
WDBC Test 30 569 32.939sec | 7.476 sec | -77.30 %
Synthetic Test 2 50 200 40.328 sec | 4.078 sec | -89.88 %

Table 4.42: Execution Time Results Comparison

It is evident that the modifications made to the mutation mechanisms of AIRS, now allowing
for a much more focused and efficient maturation of the memory cells, resulted in a significant
improvement in the time complexity of the algorithm, particularly for high-dimensional data sets.
Additionally, the difference on execution time between the two versions increases as dimensionality
increases.

Further tests using very high-dimensional synthetic data sets were conducted for both algo-
rithms. However, the testing of original AIRS with very high-dimensional data sets was practi-
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cally infeasible in terms of time complexity for a high stimulation threshold (over 0.8). Table 4.43
presents the execution time of iIAIRS on several very-high dimensional data sets for an average
stimulation threshold equal to 0.99.

Execution Time Results-Very High-Dimensional Data

Dimensions | Number of Instances | iAIRS Execution Time
1000 200 11.692 sec
2000 200 18.850 sec
3000 200 24.892 sec
4000 200 32.119 sec
5000 200 38.646 sec

Table 4.43: Execution Time Results-Very High-Dimensional Data

Seemingly, the continuous increasing of data dimensions leads to only marginal increasing
of the execution time of iAIRS. Most importantly, the classification capabilities of the algorithm
remain unaffected. This is a significant advantage of iAIRS, especially considering that overall
the classification accuracy of the system was not sacrificed due to the changed nature of the
mutation process, as in most cases performed better than AIRS. With very high-dimensional clas-
sification problems being ubiquitous in numerous applications, such a significant reduction in the
time complexity of the algorithm when dealing with data of this sort is certainly beneficial, as the
classification is usually time-consuming when the training data set is large and high-dimensional.

For example, automatic text categorization is a problem that pose the challenge of efficiently
processing high-dimensional data while not affecting the quality of performance and classifying
texts fast and accurately is essential (Burges, 2010). To tackle this issue, dimension reduction
methods are often applied but these methods usually work only to some extent (Kim et al., 2005).
Therefore, the fact that our proposed interpretation AIRS can deal faster with high-dimensional
data while preserving the quality of classification accuracy is highly significant.

5 A Proposed Weighted Decision Process

Although this attempt to reformulate the AIRS algorithm is focusing mainly on the learning process
of the algorithm, before the conclusion of this work, we would like to briefly discuss the decision
process of the algorithm.

Following training, to classify data AIRS takes an unweighted majority vote amongst the k
most stimulated memory cells and as such one could describe AIRS as an unweighted k-nearest
neighbour classifier. This creates coarse decision boundaries and ignores a lot of the available
information.

This is especially the case for multi-class classification where the occurrence of ties, where
there is no clear winner in the majority voting, increases. In these cases, the lack of additional
information in the decision process is particularly apparent and crucial. Previous investigations
in literature (Marwah and Boggess, 2002) suggest that some form of weighting and handling of
these ties would likely be beneficial.

To explore this idea, we modified the decision process to now take a weighted majority vote
instead of unweighted one. The proposed modification is that instead of a simple vote, the memory
cell stimulation level to test data will be used for the majority voting. This not only would handle
ties but also take into account additional information in classifying the data.

Table 5.1 demonstrates the classification accuracy difference between the unweighted and the
weighted majority vote for the best test results on the music data set shown in table 4.31. 5-NN
is utilized for classification in both versions. Figure 5.1 depicts the affect of altering k-value to the
classification accuracy.
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Desicion Process-Music Data Set

Test ID Classes | Unweighted | Weighted
Music Test 1 2 95 % 95 %
Music Test 2 3 75.67 % 76 %
Music Test 3 4 69.50 % 69.75 %
Music Test 4 5 62.40 % 63 %

Table 5.1: Desicion Process-Accuracy Comparison

Unweighted
0.75 F — Weighted

©
~
w

0.72

0.71

Clarification Accuracy

o
\I

0.69

0. 68 Il Il Il Il Il I
0 10 20 30 40 50 60

K-value

Figure 5.1: Effect of Altering K-Value-Music Test 3

It is apparent that the weighted decision process has beneficial effects on creating finer deci-
sion boundaries and handling ties, resulting in better classification accuracy regarding multi-class
classification.

6 Conclusion

6.1 Summary

This thesis has presented an alternative implementation of the AIRS algorithm based on observa-
tions of the AIRS learning algorithm and other algorithms in the field of artificial immune systems.
As this work focuses heavily on reformulating the AIRS algorithm, naturally follows closely from
the work of Watkins et al. (2004) who originally proposed the AIRS algorithm.

Additionally, inspiration to this work was drawn from the Negative Selection algorithm proposed
by Forrest et al. (1994), as one key motivation for this work was the incorporation of a censoring
concept to the evolution of memory cells in AIRS.

The modifications proposed in this work include the introduction of a variant stimulation thresh-
old and a more individualized stopping criterion adaptable to the special circumstances surround-
ing each presented antigenic pattern. In addition, a more directed and focused exploration of the
search space was applied regarding the mutation process.
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This thesis has provided a detailed discussion and presented the fundamental mechanisms of
a new formulation of the AIRS algorithm, named iAIRS. Experimental results of both versions of
the AIRS algorithm on synthetic and real-world data sets were presented in order to highlight the
differences in classification accuracy, data reduction capabilities and algorithmic efficiency as well
as evaluate the impact of the introduced modifications on the performance of the AIRS classifier.

Furthermore, we briefly discussed the decision process of AIRS and provide empirical bench-
marks that suggest that a weighted majority voting would be significantly beneficial especially for
multi-class classification.

Our proposed alternative formulation, iAIRS, demonstrated, in most cases, improved perfor-
mance to the original AIRS algorithm in terms of classification accuracy and data reduction capa-
bility on the data sets tested for this work, thus showing a more efficient classification performance.
Moreover, iAIRS managed to reduce the execution time for very high-dimensional data sets to
manageable levels where the training of the original AIRS algorithm was practically infeasible.

6.2 Future Work

The exploration of an valid alternative reformulation of the AIRS algorithm is by no means con-
cluded by the work presented here. Merely, this work pointed to the beneficial effect of some
modifications being undertaken, addressing some issues of the AIRS algorithm.

However, there is still room for more modification. Some possible areas of modification could
be the memory cell replacement process. Previous investigations (McEwan and Hart, 2009) have
shown that the density of the set of evolved memory cells does not reflect the density of data,
hindering the compression capabilities of AIRS. It have been suggested that the problem is the
inflicting of a fixed threshold (Affinity Threshold) when deciding whether a candidate cell should
replace the pre-existing one. It may then be possible that the replacement of Affinity Threshold for
a variant threshold to better control the granularity of density representation would be of benefit.

Another area of future investigation could be on the effect of using different stimulation and
affinity functions. As it stands, AIRS relies heavily on Euclidean distance as a metric for stimulation
and affinity which may not be suitable for some type of data sets such as binary valued or discrete
data sets. Other ambiguous processes to be investigated include the possible negative effect of
the min-max attribute normalisation process at initialisation.

In addition to investigation on further modifications to the AIRS algorithm, theoretical insight
into why AIRS performs as it does should clear the way for more focused and sophisticated im-
munological contributions to the algorithm, addressing the concerns about its functionality and
further establish the validity of the algorithm.
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