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ABSTRACT 

 

In the field of Machine Learning all learning methods require a substantial amount of labeled 

data in order for the model to be properly fitted. In today’s world of IoT (Internet of Things) and 

Big Data, where everything is controlled and monitored by software applications, unlabeled data 

are very easily acquired as they are continuously generated. However, the process of finding and 

annotating the true class to those dataset’s instances, often requires more effort and time than the 

actual training of the model. Active learning aims to tackle this problem by enabling machine 

learning algorithms to perform equally well without reliance on the existence of huge training 

datasets. To accomplish this, an active learning algorithm is allowed to query an oracle (usually a 

human expert) for the true label of an unlabeled training example. There are a number of different 

strategies as well as learning scenarios that can be followed for this interaction which will be 

presented in later sections of this report. Active learning algorithms are basically wrapping around 

traditional supervised learning methods such as Support Vector Machines (SVMs), Logistic 

Regression etc. Apart from the topic of Active Learning, this report offers a walkthrough of the 

theory behind Support Vector Machines and tries to present the various researched methods that 

combine these two topics.  

ΠΕΡΙΛΗΨΗ 

 

Στον τομέα της Μηχανικής Μάθησης όλες οι μέθοδοι εκμάθησης απαιτούν την ύπαρξη μίας 

σημαντικής ποσότητας κατηγοριοποιημένων δεδομένων προκειμένου οποιοδήποτε μοντέλο να 

εκπαιδευτεί σωστά. Στον σημερινό κόσμο του Διαδικτύου (Internet of Things) και των Μεγάλων 

Δεδομένων, όπου όλα ελέγχονται και παρακολουθούνται από εφαρμογές λογισμικού, τα μη 

κατηγοριοποιημένα δεδομένα αποκτώνται πολύ εύκολα καθώς παράγονται συνεχώς. Ωστόσο, η 

διαδικασία εύρεσης και σχολιασμού της αληθούς κλάσης στις περιπτώσεις αυτών των δεδομένων, 

απαιτεί συχνά περισσότερη προσπάθεια και χρόνο από την πραγματική εκπαίδευση του μοντέλου. 

Η ενεργή μάθηση στοχεύει στην αντιμετώπιση αυτού του προβλήματος επιτρέποντας στους 

αλγόριθμους μηχανικής μάθησης να αποδίδουν εξίσου καλά χωρίς να βασίζονται στην ύπαρξη 

τεράστιων συνόλων κατηγοριοποιημένων δεδομένων. Για να επιτευχθεί αυτό, ένας αλγόριθμος 

ενεργής μάθησης επιτρέπεται να ερωτά έναν ‘προφήτη’ (συνήθως έναν άνθρωπο εμπειρογνώμονα) 

για την αληθινή κατηγορία ενός μη επισημασμένου παραδείγματος εκπαίδευσης. Υπάρχουν 

ποικίλες διαφορετικές στρατηγικές καθώς και σενάρια εκμάθησης που μπορούν να ακολουθηθούν 

για αυτή την αλληλεπίδραση, τα οποία θα παρουσιαστούν σε επόμενα τμήματα αυτής της 
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διπλωματικής εργασίας. Οι αλγόριθμοι ενεργής μάθησης είναι ουσιαστικά μετα-αλγόριθμοί που 

περιβάλλουν τις παραδοσιακές μεθόδους μάθησης όπως οι Μηχανές Διανυσμάτων Υποστήριξης 

(SVM), η λογιστική παλινδρόμηση κλπ.. Εκτός από το θέμα της ενεργής μάθησης, αυτή η εργασία 

προσφέρει μια περίληψη της θεωρίας πίσω από τις Μηχανές Διανυσμάτων Υποστήριξης και 

προσπαθεί να παρουσιάσει τις διάφορες ενεργητικές μεθόδους μάθησης που συνδυάζουν αυτούς 

τους δύο τομείς της Μηχανικής Μάθησης. 

  



4 

 

1 INTRODUCTION 

 

One of the goals of this paper is to introduce even the most inexperienced readers to the various 

methods of Machine Learning (ML). This is crucial to understand the benefits and flaws of the 

more complex and sophisticated learning schemes employed by the Active Learning scenarios that 

will be presented later on. Learning methods typically fall into three different categories: 

Supervised learning, Unsupervised learning and Semi-Supervised or Active learning. Those 

methods are derived from the form and qualities of the dataset that the model seeks to learn from. 

Following this small introduction, we will make a presentation of the respective concepts and 

methodologies of the biggest ML families in hope of making clear vague terms that the reader may 

have stumbled upon when reading the Abstract of this paper. 

1.1 SUPERVISED LEARNING 
 

Supervised learning is used in the majority of machine learning algorithms. Its main concept 

is that the training instances, represented as vectors 𝑥⃗𝑖 , are labeled with a variable 𝑦𝑖 that describes 

their true class. The model that we wish to fit to the data is essentially a mapping function 𝑓( 𝑥⃗𝑖) 

such that 𝑓( 𝑥⃗𝑖) =  𝑦𝑖. Using the labeled training data, the model iteratively makes predictions and 

is corrected when those predictions are contrary to the true class of each training example. This 

procedure is terminated when the error becomes small enough or after some predefined number of 

iterations. Supervised learning can be further broken down into two categories: Classification and 

Regression. In the case of Classification, the model is designed to predict between two or more 

discrete values representing the different classes. For example, if a case of cancer is Benign or 

Malignant. Well known algorithms for classification are Decision Trees [1], Logistic Regression 

[2] and SVC (Support Vector Classifier) [3]. In Regression problems the model aims to predict a 

continuous output variable such as stock prices, a person’s weight, salary etc. Common Regression 

algorithms are Linear Regression and SVR (Support Vector Regression) [4].  

1.2 UNSUPERVISED LEARNING 
 

In contrast to supervised learning, unsupervised learning algorithms make use of training 

datasets without the need for the training instances to be annotated with their respective class. The 

models learn from identifying structures, distributions or patterns in the input data. The data are 

grouped according to some metric or similarity measure, for example the Euclidean distance 

between the various training instances. The groups of data that are generated through this procedure 

are called clusters. Clustering techniques are divided into three main categories, the Hierarchical, 
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the Bayesian and the Partitional. In Hierarchical algorithms, previously established clusters help 

in finding successive clusters. The result of the process is the formulation of a hierarchy of clusters 

usually represented by a tree. This family of algorithms can be broken down even more into two 

approaches, the agglomerative (‘bottom-up’) [5] and the divisive (‘top-down’) [6]. In the 

agglomerative approach each training instance is considered as a separate cluster and is afterwards 

merged into larger ones. The Divisive approach considers the entire dataset as a cluster and 

iteratively divides it into successively smaller ones. The Bayesian algorithms calculate the posterior 

probabilities of a datum instance to belong to each cluster and assign that instance to the cluster 

that achieves the greatest probability [7]. Finally, the Partitional algorithms, whose most well-

known member is the K-means algorithm, directly assign each training instance to a cluster without 

regard to any probability model that describes the data. Instead they use some similarity or 

dissimilarity measure such as the distance from each cluster center (centroid) [8]. 

1.3 ACTIVE (SEMI-SUPERVISED) LEARNING 
 

Supervised learning assumes that there is an abundance of labeled datasets that can be used 

for training purposes. However, there is a chance that for some problems there are either not enough 

labeled data or even if there are some, they do not effectively describe the different classes that 

compose it. Generally, the real class of the data instances is annotated by some human actor. In 

certain scenarios this can be done in large volumes by some user contribution e.g. music streaming 

services’ subscribers adding a genre to a song and submitting it to the provider. Yet, in some fields 

such as the study of proteins this user contribution is not feasible. Therefore, you can imagine the 

cost both in time and other resources of having human business experts labeling novel datasets 

consisted of hundreds or thousands of instances. In addition to that, traditional supervised learning 

algorithms learn by iterating through all training samples no matter how important they are in 

finding the optimal solution. This can be considered as a waste in time, in computational resources 

and in the case of outliers or noise it might even reduce the quality of the results. Active learning 

can be considered as a special case of supervised learning that tackles the aforementioned issues. 

The main concept of active learning is that if the learning algorithm could choose the training 

instances that will mostly benefit the training process, it would reduce the amount of data needed 

while achieving great accuracy. Also, since it chooses the most effective training examples it 

reduces the time needed to reach a certain performance threshold and additionally will ignore 

outliers and noise.  

At this point the reader should have become accustomed to the main pillars of ML. In the 

following chapter we will present the origins and theory of the learning model that will be used 
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later on, during the practical presentation of some of the most common Active Learning strategies, 

Support Vector Machines. 
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2 SUPPORT VECTOR MACHINES 

 

Support Vector Machines (SVM) is a supervised learning model that can be used for both 

classification and regression problems. It accomplishes its purpose by constructing a hyperplane in 

multidimensional space that separates the different classes. This is achieved by identifying the 

optimal hyperplane, called the decision boundary, which separates the training data with a 

maximum margin. The original version of SVM was invented by Vladimir N.Vapnik and Alexey 

Ya. Chervonenkis in 1963. Later work [9] by Bernhard E. Boser, Isabelle M. Guyon and Vladimir 

N. Vapnik, introduced an efficient way of mapping the training input into higher or infinite 

dimension space. This in known as the Kernel Trick. The result of this is that it enables SVM to 

efficiently capture much more complex relationships between the data points without having to 

perform extensive transformations.  The current incarnation of soft margin was proposed by 

Corinna Cortes and Vapnik [10]. SVMs are used in a plethora of applications. Some common 

examples are for Face Detection, Text and Hypertext categorization, Classification of Images, 

Bioinformatics, Handwriting recognition and Geospatial data analysis. The following analysis is 

heavily inspired by the notes of Andrew Ng1 and we refer the reader to them for further reading. 

2.1 PROBLEM FORMULATION 
 

Considering the linearly separable case, we need to identify a straight line that separates the 

training data. However, there is an infinite number of lines that can be fitted to the training dataset. 

Some of those can be considered as ‘good’ options but some others not that good. Figure 1 depicts 

some candidate lines that separate the two classes. At first glance all of them suffer from some 

issues that wouldn’t make them the best choice. For example, lines A and C would both misclassify 

the points marked with x even though it’s obvious to which class they belong. Line D is just a 

separator based on the vertical height of the points. But how do Support Vector Machines 

confidently calculate the optimum decision boundary that achieves this purpose? They do that by 

placing the line in such a way so the separation between the training examples of different class is 

as wide as possible. 

                                                     
1 CS229 Lecture notes, Part V Support Vector Machines 
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Figure 1 Various Decision Boundaries 
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Figure 2 

 

2.2 THE OPTIMAL MARGIN CLASSIFIER 
 

Consider a normal vector 𝑤⃗⃗⃗ that is perpendicular to the median (dotted) line (Figure 2). Also 

consider an unknown vector 𝑧. The goal is to identify if the unknown 𝑧  lies on the side of the 

positive samples or the side of the negative samples. This can be expressed as follows: 

      𝑤 ⃗⃗⃗⃗⃗ ∙  𝑧  ≥ 𝑐, c is a constant   (1) 

Intuitively, this means that if the projection of 𝑧 to 𝑤⃗⃗⃗ is big enough it will eventually cross the 

median line and 𝑧 will be classified as a positive sample. Without loss of generality, by setting 

 𝑐 =  −𝑏 in ( 2 ) we can assume that if : 

     𝑤 ⃗⃗⃗⃗⃗ ∙  𝑧 + 𝑏 ≥ 0, b is a constant  (2) 

then 𝑧 is a positive sample. Relation (2) is called the decision rule.  

In order to use the decision rule, the values of w ⃗⃗⃗⃗⃗ and b must be calculated. For a positive sample 

𝑥+ we require that: 

    𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥+⃗⃗⃗⃗⃗⃗ + 𝑏 ≥ 1    (3) 

Similarly, for a negative sample 𝑥− we require that: 

    𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥−⃗⃗⃗⃗⃗⃗ + 𝑏 ≤ −1    (4) 

To make the formulation of the problem more convenient we will now introduce a new variable 𝑦𝑖 

such that: 
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    𝑦𝑖 = {
+1, 𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
−1, 𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 

By multiplying ( 3 ) and ( 4 ) with their respective value of 𝑦𝑖, we receive the following inequality 

for both cases: 

𝑦𝑖(𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥𝑖⃗⃗⃗ ⃗ + 𝑏) − 1 ≥ 0   (5) 

Constrained by 𝑦𝑖(𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥𝑖⃗⃗⃗ ⃗ + 𝑏) − 1 = 0,      (6) 

for those 𝑥𝑖⃗⃗⃗⃗  that lie on the lines that define the margin. Essentially, Support Vector Machines 

maximize the margin between the different class training points that lie closest to the decision 

boundary.  

 

 

Figure 3 

As Figure 2 suggests, the margin is the width of the segment that connects point X to point Y, 

where X is a positive sample and Y is a negative sample. So the margin can be expressed as: 

𝑚𝑎𝑟𝑔𝑖𝑛 = (𝑋⃗ − 𝑌⃗⃗) ∙  𝑢⃗⃗,   𝑢⃗⃗ is a normal unit vector 

Earlier, we defined the vector 𝑤⃗⃗⃗  to be normal, so we can apply it to the margin equation by 

transforming it to a unit vector. The margin can now be expressed in relation to the vector 𝑤⃗⃗⃗: 

𝑚𝑎𝑟𝑔𝑖𝑛 = (𝑋⃗ − 𝑌⃗⃗) ∙  
𝑤⃗⃗⃗

‖𝑤⃗⃗⃗‖
        (7) 

Using the constraint (6) we acquire that: 
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𝑤⃗⃗⃗ ∙ 𝑋⃗ = 1 − 𝑏 

𝑤⃗⃗⃗ ∙ 𝑌⃗⃗ = −𝑏 − 1 

and substituting in (7): 

margin =  
2

‖w⃗⃗⃗⃗‖
 

So, in order to maximize the width of the margin we have to maximize 
1

‖w⃗⃗⃗⃗‖
, which is equivalent to 

minimizing 
1

2
‖𝑤⃗⃗⃗‖2. 

Finally, the optimization problem that we have to face in order to find the optimum decision 

boundary is the following: 

𝑚𝑖𝑛
1

2
‖𝑤⃗⃗⃗‖2   (8)    

𝑠. 𝑡.  𝑦𝑖(𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥𝑖⃗⃗⃗ ⃗ + 𝑏) ≥ 1 , 𝑖 = 1, … , 𝑚 

The above Optimization Problem contains a convex, quadratic function and can be solved using 

Quadratic Programming. Later on, we will reformulate this problem to its dual form and this will 

enable us to use Kernels. Kernels will allow us to solve the cases where the training data are not 

linearly separable and to apply algorithms that solve the optimization problem much more 

efficiently than Quadratic Programming. 

2.3 GENERALIZATION PARAMETERS 
 

So far, the formulation of the Optimization Problem was based on the case of the training 

data being linearly separable. However, real world datasets are rarely that well defined. They 

contain problematic features such as noise, overlapping classes and outliers that hinder the training 

of an accurate model. With the current formulation the model will most likely consider the noise 

inside the dataset as useful information and will learn from it leading to undesirable results.  To 

tackle this problem, it is better to allow some training samples to violate the margin constraints in 

(9). This is achieved by applying positive variables 𝜉𝑖 to the constraints, called slack variables.  

     𝑚𝑖𝑛
1

2
‖𝑤⃗⃗⃗‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖      (9) 

𝑠. 𝑡  𝑦𝑖(𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥𝑖⃗⃗⃗⃗ + 𝑏) ≥ 1 −  𝜉𝑖 , 𝑖 = 1, … , 𝑚 

𝜉𝜄 ≥ 0, 𝑖 = 1, … , 𝑚 

The training examples are now allowed to have a margin less than one. This also results in the 

margin area being non-empty, meaning that some of the constraints have failed and we have 

allowed some data points to reside there. The constant C is a regularization parameter that controls 

the tradeoff between achieving a low cost and minimizing the norm of 𝑤⃗⃗⃗. By using a large value 
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for C, the optimization algorithm will produce a model with a very small margin that will try to 

classify correctly all training examples. This leads to loss in the model’s ability to generalize and 

eventually overfitting. On the other hand, if the value of C is too small then the resulting model 

will allow a large margin that will lead to large training error. At the time, there is no method to 

predetermine the best value of C, so in most cases experimentation on the dataset at hand is needed 

for choosing the best value. 

 

 

Figure 4 Optimal Margin Classifier 
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Figure 5 The Impact on the margin’s width  after adding a borderline point. 

 

Figure 6 Allow for bigger margin by using the Regularization Parameters 
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2.4 LAGRANGE DUALITY 
 

Before delving into the dual presentation of (8) we must present the method that we are going 

to use to solve it. Lagrange Multipliers are a mathematical method for solving optimization 

problems of differentiable functions. In contrast to other methods of finding the extremums of 

functions like the second derivative test, Lagrange multipliers take into consideration various 

constraints that may be applied to the function. Given a nonlinear programming problem known as 

the primal problem, there exists another nonlinear programming problem closely related to it, called 

the dual problem. Consider 𝐹𝑃  being the primal objective function and let 𝐹𝐷  be the objective 

function of the dual problem. If 𝑥 is a feasible solution for the minimization of 𝐹𝑃 and 𝑦⃗ is a 

feasible solution for the maximization of  𝐹𝐷 the Weak Duality Theorem states that 𝐹𝐷( 𝑦⃗) ≤

𝐹𝑃( 𝑥⃗). This means that under certain convexity assumptions the primal and dual problems can 

have equal optimal objective values. Thus, we can solve the dual problem instead of the primal. 

The main concept of the method is that for optimizing a function 𝑓(𝑥1, … , 𝑥𝑛) → 𝑅𝑛 subject to a 

constraint 𝑔(𝑥1, … , 𝑥𝑛) ≤ 0 the gradients of 𝑓 and 𝑔 point to the same direction and differ at most 

by a scalar factor 𝜆.  

𝛻𝑓(𝑥) = 𝜆𝛻𝑔(𝑥)    (10) 

𝑔(𝑥) ≤ 0              (11) 

Combining (10) and (11) into the so called Lagrangian equation: 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆𝑔(𝑥)               (12) 

We are searching for the points that satisfy: 

𝛻𝐿(𝑥, 𝜆) = 0                  (13) 

In case of multiple inequalities 𝑔𝑖(𝑥) and equalities ℎ𝑖(𝑥), (12) generalizes to: 

L(x, λ, 𝜇) = f(x) − ∑ 𝜆𝑖𝑔𝑖(𝑥)

𝑖

−  ∑ 𝜇𝑗ℎ𝑗(𝑥)

𝑗

 

The scalars 𝜆𝑖, 𝜇𝑗  are called the Lagrange Multipliers. In order to calculate the gradient of 

L(x, λ, 𝜇) we must take the first partial derivatives of L(x, λ, 𝜇) with respect to 𝑥, 𝜆, 𝜇, set them to 

zero and solve for 𝑥, 𝜆, 𝜇.  

Additionally, for the Primal LP and dual 𝐿𝐷 to share an optimal feasible solution there must exist a 

vector x⃗⃗ that is a solution to the primal problem and 𝜆𝑖,𝜇𝜄 that are the solution to the dual problem 

and satisfy the Karush-Kuhn-Tucker (KKT) conditions: 

∂L

∂x⃗⃗
𝐿(𝑥⃗, 𝜆, 𝜇) = 0, ∀𝑖 = 0, … , 𝑛 
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∂L

∂𝜇𝑖
𝐿(𝑥, 𝜆, 𝜇) = 0, ∀𝑖 = 0, … , 𝑙 

𝜆𝑖𝑔𝑖(𝑥⃗) = 0, ∀𝑖 = 0, … , 𝑘 

𝑔𝑖(𝑥⃗) ≤ 0, ∀𝑖 = 0, … , 𝑘 

𝜆𝑖 ≥ 0, ∀𝑖 = 0, … , 𝑘 

By plugging our original optimization problem (8) into the Lagrangian (12) we get the primal 

presentation of our problem: 

𝐿𝑃 =  
1

2
‖𝑤⃗⃗⃗‖2 −  ∑ 𝜆𝑖[ 𝑦𝑖(𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥𝑖⃗⃗⃗ ⃗ + 𝑏) − 1]   (14) 

= 
1

2
√𝑤⃗⃗⃗ ∙ 𝑤⃗⃗⃗

2
−  ∑ 𝜆𝑖[ 𝑦𝑖(𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥𝑖⃗⃗⃗ ⃗ + 𝑏) − 1] 

= 
1

2
w⃗⃗⃗⃗ ∙ w⃗⃗⃗⃗ −  ∑ λi[ 𝑦𝑖(𝑤 ⃗⃗⃗⃗⃗ ∙  𝑥𝑖⃗⃗⃗⃗ + 𝑏) − 1] 

Calculating the partial derivatives: 

𝜕𝐿

𝜕𝑤⃗⃗⃗
 = 𝑤⃗⃗⃗ - ∑ 𝜆𝑖𝑦𝑖𝑥𝑖⃗⃗⃗ ⃗ = 0 → 𝑤⃗⃗⃗ = ∑ 𝜆𝑖𝑦𝑖𝑥𝑖⃗⃗⃗ ⃗    (15) 

𝜕𝐿

𝜕𝑏
= - ∑ 𝜆𝑖𝑦𝑖 = 0 → ∑ 𝜆𝑖𝑦𝑖 = 0     (16) 

The important thing to note in (15) is that the vector 𝑤⃗⃗⃗ is eventually the linear sum of the training 

examples. All or some of them, because for some training examples the multipliers 𝜆𝑖 will be zero. 

This is made sure by the KKT dual complementary conditions 𝝀𝒊𝒈𝒊(𝒙⃗⃗⃗) = 𝟎 and 𝝀𝒊 ≥ 𝟎. For 

those training examples that their respective multiplier 𝝀𝒊 has a value larger or equal to zero, the 

corresponding constraint 𝒈𝒊(𝒙⃗⃗⃗) will have zero value. Those training examples will lie on the lines 

that define the margin and will be called the Support Vectors. 

Using (15), (16) on the Lagrangian primal objective function (14) we get the Lagrangian dual 

objective function: 

𝐿𝐷 =
1

2
∑ 𝜆𝑖𝑦𝑖x𝑖⃗⃗⃗ ⃗

𝑖

∙ ∑ 𝜆𝑗𝑦𝑗xj⃗⃗⃗ ⃗

𝑗

−  ∑ 𝜆𝑖𝑦𝑖x𝑖⃗⃗⃗ ⃗

𝑖

∙ ∑ 𝜆𝑗𝑦𝑗xj⃗⃗⃗ ⃗

𝑗

− ∑ 𝜆𝑖𝑦𝑖𝑏

𝑖

+ ∑ 𝜆𝑖

𝑖

→ 

𝐿𝐷 = ∑ 𝜆𝑖𝑖 −
1

2
∑ ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑗 𝑦𝑗𝑖 𝑥𝑖⃗⃗⃗ ⃗ ∙ 𝑥𝑗⃗⃗⃗ ⃗   (17) 

 

Thus, the optimization problem that we need to solve is: 

𝑚𝑎𝑥 ∑ 𝜆𝑖𝑖 −
1

2
∑ ∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑗 𝑦𝑗𝑖 𝑥𝑖⃗⃗⃗ ⃗ ∙ 𝑥𝑗⃗⃗⃗ ⃗    (18) 

𝑠. 𝑡. ∑ λiyi = 0 

𝜆𝑖 ≥ 0 
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Finally plugging (15) to the decision rule we get that for an unknown 𝑧 to be considered 

as a positive sample the following inequality must be met: 

∑ 𝜆𝑖𝑦𝑖𝑖 𝑥𝑖 ∙ 𝑧 + 𝑏 ≥ 0 (19) 

Both relations (17) and (18) show that the optimization problem as well as the decision rule depend 

only on the dot product of the training examples and the unknowns. This is important because it 

is what enables as to use the Kernel Trick. 

2.5 KERNELS 
 

The examples presented so far assumed datasets that can be separated using a straight line. 

In real life problems this is hardly ever the case, as data are randomly distributed. Error! R

eference source not found. displays the case of a dataset consisted of two clusters. It is obvious 

that the generated linear classifier cannot separate the classes accurately as one class is enclosed by 

the other. However, there is a way of tricking a linear classifier into solving a linear problem even 

though the dataset is not linearly separable. This can happen because an inseparable dataset can 

become separable if we project it to higher dimensions. For an input vector 𝑥 there is a feature 

mapping function 𝜑(𝑥⃗) that acts as a map from n-dimensional to m-dimensional space, where m is 

larger than n. So, since 𝜑(𝑥⃗) transforms the input to higher dimensions we could replace the dot 

product of  xi⃗⃗⃗ ⃗ ∙ xj⃗⃗⃗ ⃗  with the dot product of their feature mapping functions  𝜑(xi⃗⃗ ⃗⃗ ) ∙ 𝜑(xj⃗⃗⃗⃗ ) . 

However, this would not be efficient since the computations required for producing 𝜑(xi⃗⃗ ⃗⃗ ) and 

𝜑(xj⃗⃗⃗⃗ ) are very expensive. Also, after all the trouble of going up to the m-dimensional space the 

actual result of the dot product is just a scalar. By choosing the right Kernel function we remove 

the need for such complex computations. As a Kernel function 𝐾(𝑥⃗, 𝑦⃗) of two n-dimensional input 

vectors we define the result of the dot product between their respective feature mappings, without 

having to explicitly calculate them. 

𝐾(𝑥⃗, 𝑦⃗) = 𝜑(𝑥⃗) ∙ 𝜑(𝑦⃗) 

To make this understandable, an example is presented: 

Consider the input vectors 𝑥⃗, 𝑦⃗  such that  𝑥 = (1, 2, 3),  𝑦⃗⃗⃗ ⃗ = (4, 5, 6) . Also consider a feature 

mapping function  𝜑(𝑥⃗) = (𝑥1𝑥1, 𝑥1𝑥2, 𝑥1𝑥3 ,  𝑥2𝑥1, 𝑥2𝑥2, 𝑥2𝑥3 , 𝑥3𝑥1 , 𝑥3𝑥2 , 𝑥3𝑥3 ) . For the 

input vectors 𝑥⃗, 𝑦⃗ we calculate their mappings and dot product: 

𝜑(𝑥⃗) =  (1, 2, 3, 2, 4, 6, 3, 6, 9) 

𝜑(𝑦⃗) = (16, 20, 24, 20, 25, 30, 24, 30, 36) 
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𝜑(𝑥⃗) ∙ 𝜑(𝑦⃗) = 16 + 40 + 72 + 40 + 100+ 180 + 72 + 180 + 324 = 1024 

It is obvious that even for small dimensional vectors the amount of calculations needed is very 

large  (𝑂(𝑛2), 𝑛 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) . Now using the equivalent Kernel 

function 𝐾(𝑥⃗, 𝑦⃗) = (𝑥⃗  ∙  𝑦⃗)2: 

𝐾(𝑥⃗, 𝑦⃗) = (4 +  10 +  18)2= 1024 

Both ways produce the same result but in the case of the Kernel function the operations needed 

are reduced dramatically (𝑂(𝑛)). 

As described above, by using the Polynomial Kernel  𝐾(𝑥⃗, 𝑦⃗) = (𝑎𝑥 ∙ 𝑦⃗ + 𝑐)𝑑 with d=2, we were 

able to accurately separate the same dataset that the linear separator in Figure 7 failed. The 

resulting decision boundary and margins are depicted in Figure 8. 

 

 

Figure 7 Attempt to separate a non linearly separable dataset using the linear SVM 
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Figure 8 SVM using the polynomial Kernel 

 

 Common Kernels 

 

Using the right Kernel function is not a trivial task, as it depends on the problem at hand. For 

example, a linear Kernel only allows to pick out lines or hyperplanes, a polynomial Kernel models 

feature conjunctions up to a specified polynomial order and the radial basis function allows to pick 

out circles or hyperspheres. After choosing the correct Kernel function, the user must also cope 

with the tedious task of fine tuning the various hyper parameters to achieve maximum performance. 

1. Linear Kernel 

𝐾(𝑥, 𝑦) = 𝑥𝑇 ∙ 𝑦 + 𝑐 

2. Polynomial Kernel 

𝐾(𝑥, 𝑦) = (𝑎𝑥𝑇 ∙ 𝑦 + 𝑐)𝑑 

Where 𝑎 is the the slope and 𝑑 is the order of the polynomial. 

3. Gaussian Kernel (Radial Basis) 

𝐾(𝑥, 𝑦) = exp (− 
‖𝑥 − 𝑦‖2

2𝜎2 ) 

A simpler representation of the RBF Kernel can be obtained by defining 𝛾 =  
1

2𝜎2 

𝐾(𝑥, 𝑦) = exp (− 𝛾‖𝑥 − 𝑦‖2) 
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The 𝜎 parameter plays a major role in the performance of the RBF Kernel function. Larger values 

of 𝜎  lead to a general classifier but overestimating its value can lead to the model losing its 

nonlinear power. On the other hand, small values of 𝜎 tend to make a classifier that is sensitive to 

small local clusters but underestimating its value leads to lack of generalization and unwanted 

sensitivity to noise. 

4. Sigmoid Kernel 

𝐾(𝑥, 𝑦) =  tanh(𝛾𝑥𝑇𝑦 + 𝑐) 
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3 ACTIVE LEARNING 

 

As it was mentioned in the introductory chapter, Active Learning algorithms 

construct/expand their initial training datasets by identifying informative unlabeled training 

instances. After some basic training with a small dataset, an active learner will query an oracle 

(usually a human expert) whenever it decides that an unlabeled training instance will have 

substantial positive impact to the process. This impact can be defined in various ways, depending 

on which active learning strategy is being used, e.g. uncertainty sampling, variance reduction etc. 

In addition to the strategies that can be used to configure the learner, active learners follow one of 

three main scenarios. Intuitively, as scenarios we define the variants in the origin that the active 

learner can query training instances from. Figure 9 illustrates an abstraction of the procedure that 

every active learner follows, called the Active Learning Cycle. 

 

 

3.1 ACTIVE LEARNING SCENARIOS 
 

Unlabeled data can be freely generated and provided by several different sources. For 

example, sensors may collect data and propagate them to a central repository or stream them 

directly to the consumers. It is only natural for active learners to be able to adjust to these variants 

and process unlabeled instances no matter their origin. In the following sections we will present the 

Figure 9 The Active Learning Cycle 
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three main scenarios that are employed to enable active learning frameworks to make use of diverse 

data sources. For a condensed presentation of these strategies we refer the reader to Figure 10. 

 

 Membership Query Synthesis 

 

In Membership Query Synthesis the learning algorithm doesn’t rely on a pool of unlabeled 

data to draw the sample it wishes labeled by the oracle. Instead, the learner constructs the instances 

from some underlying natural distribution. For example, in the case of character recognition an 

active learner will create an image that is similar to a character and will send it to the oracle in order 

to label it. Since the synthesized training instances are only restricted by the input space, there are 

cases where samples drawn using the Membership Query Synthesis reduce the predictive error rate 

faster than the pool based approach [11]. However, this approach has certain limitations due to the 

nature of artificially generating training instances. In some settings, for example when generating 

letters, some samples may amount to no known character. In such situations, querying a human 

oracle for something that applies to no real world logic is considered a bad use of this learning 

scenario. In an application described by King et al [12] the role of the oracle is assigned to an 

automated robot. The robot, devises experiments and judging from their results, assigns a label to 

each of them. Since the conducted experiments were designed, implemented and labeled by the 

‘robot scientist’ the need for a human oracle was eliminated. This resulted in 100-fold decrease in 

cost2 compared to running random experiments, while the accuracy was on par with having a 

human scientist labeling the results. Another way to tackle the problem of synthesized queries being 

unknown to the human oracle is proposed in an article by L. Wang et al. [13]. The proposed hybrid 

algorithm combines the Membership Query Synthesis scenario to the pool-based sampling. Using 

labeled data, it synthesizes an instance close to the decision boundary and then it calculates the 

closest real unlabeled instance from the unlabeled pool of samples. Then, the real and human 

recognizable instance is sent to the oracle to label it. 

 

 Stream-based Sampling 

 

In Stream-based or selective sampling we make the assumption that acquiring an unlabeled 

instance is free or inexpensive. A stream of samples reaches the active learner who then determines 

whether to query the current instance’s label. It is important to note that in real world applications, 

streams are often too large for the learner to store the data in a background pool and then decide 

which to label. So, this procedure has to run in parallel to the stream. The learner decides on having 

                                                     
2 In their experiments, the researchers defined cost as a function of time and price. 
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the current instance labeled or not, based on some informativeness criterion. This criterion can be 

based on a selection strategy such as uncertainty sampling, where the learner computes some kind 

of metric for each sample e.g. its distance from the decision boundary. If the distance reaches a 

certain threshold the oracle is asked to label it. Another way for the learner to choose the most 

informative samples is by tracking the areas of the input space for which it knows the least. If the 

current stream sample belongs to those areas it will be sent to the oracle for labeling. Wei Chu et 

al. in [14] illustrate an algorithm for online active learning, trained on real user generated data 

(UGC) from a Yahoo! News portal. The purpose of the research is to use stream-based sampling 

combined with importance sampling [15] to make detection of abusive UGC smarter. Their results 

show great promise in reducing labelling efforts in the setting of such dynamic problems where 

there is concept drift. Stream-based sampling is also successfully utilized in the field of robotic 

vision where the robot needs to be adaptive to rapid changes of its environment. As it is illustrated 

in [16] by Alexander Narr, Rudolph Trieber and Daniel Cremers, self-driven vehicles actively learn 

from a stream of 3D point data and can modify their model by learning new semantics with the 

knowledge they gain during their operation. 

 

 Pool-based Sampling 

 

Pool based sampling has been the most practiced scenario in applied active learning. It has 

been used in a wide variety of application contexts from text classification [17], [18] to image 

classification [19], [20] and cancer diagnosis [21] . Its wide acceptance is due to the fact that in 

most real-world applications there is an abundance of training samples but only a small portion of 

those is labeled. In most cases the pool of the unknown samples is static, which means that no 

additional instances are being added along the training phase. During the learning process the active 

learning algorithm will use a selection strategy in order to compute an informativeness measure for 

all elements of the pool. Ιn some settings where the pool is too large for all its instances to be 

considered, the algorithm may choose a random subset of it. Then, the instance that scored the 

greatest informativeness value will be sent to the oracle for its true label and the learning cycle will 

continue. Since the model changes after every query selection, the algorithm must continuously re-

compute the selection criterion in every training cycle. Due to this need, pool-based sampling has 

great computational requirements. Thus, in cases where memory or processing power are limited, 

pool-based sampling is not considered as the most appropriate choice and other alternative 

methods, like stream-based sampling must be considered. 
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3.2 ACTIVE LEARNING STRATEGIES 
 

In the previous section we presented the different sources that an active learner may receive 

its input from. During this presentation we often mentioned that the learning algorithm uses an 

informativeness criterion or selection strategy to decide which unlabeled instance to send to the 

oracle. Query selection strategies are the core of active learning and there has been a plethora of 

ways of defining the informativeness of training samples. The following part will present an 

overview of the most common selection strategies. 
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 Uncertainty Sampling 

 

Uncertainty Sampling can be considered as the most intuitive and easy to grasp query 

selection strategy. In this setting, the active learner chooses to label the instance for which is less 

certain. Certainty can be defined in a number of different ways. For example, a way of defining 

certainty is by translating it to the probability of an instance belonging to a certain class. For a 

binary classification problem, a logistic regression active learner would choose to label an instance 

with posterior probability of belonging to a certain class that is close to 0.5. From now on, 

throughout the presentation of the sampling strategies we will define as 𝑥∗ , the sample that is 

chosen as the most appropriate (least certain) for sending to the oracle. Furthermore, we define as 

𝑋 the set of the unknown elements and 𝑌 the set of different classes (labels). Following from the 

example of the logistic regression we can define the decision rule for identifying the most uncertain 

training instance 𝑥∗ in a more formal way: 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋 1 − 𝑃𝑤(𝑦̂|𝑥) 

𝑦̂ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑌𝑃𝑤(𝑦|𝑥) 

The above equations describe the Least Confidence (LC) strategy. As 𝑦̂ we define the class that, 

under a model w, a training sample x has the greatest posterior probability of belonging to. Since 

least confidence strategy takes into consideration only the most probable class, it is not suited for 

cases where information about the remaining classes’ distribution is important. A great presentation 

of such a case can be found in the work of Scheffer, Christian Decomain and Stefan Wrobel [22] 

regarding information extraction from textual documents using Active learning Hidden Markov 

models.  The researchers used Margin Sampling to incorporate the probability of the two most 

probable classes in their decision rule. Using margin sampling, the most informative unlabeled 

training instance can be defined as follows: 

 

𝑥∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝑋 𝑃𝑤(𝑦̂1|𝑥) −  𝑃𝑤(𝑦̂2|𝑥) 

𝑦̂1: 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 𝑐𝑙𝑎𝑠𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 

𝑦̂2: 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑜𝑠𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 𝑐𝑙𝑎𝑠𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑥 

 

What margin sampling implies, is that given an unlabeled training example, if the 

difference in the probability of the two most probable classes is big, then those two classes are 

separated by a large margin. This means that there is big confidence that the instance belongs to 

the most probable class and it is not worth the cost of sending it to the oracle for labeling. On the 
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other hand, if the margin is small then there is little confidence about the true label of the instance 

and the model will have significant gain from learning its true label. Finally, the most widely used 

uncertainty sampling variant is Shannon Entropy [23]. The entropy of a training instance x is given 

by: 

𝐻(𝑥) =  − ∑ 𝑃𝑤(𝑦𝑖|𝑥)
𝑖

log 𝑃𝑤(𝑦𝑖|𝑥) 

In physics, entropy represents the log of the number of states or configurations that a system 

can achieve. If the particles inside a system can move around multiple positions then the system 

has high entropy. If the stay fixed in a certain position the system has low entropy. In information 

theory, entropy can be defined as the opposite of knowledge. Imagine tricking a friend of yours 

into playing with an uneven coin that will only land on heads. You make a bet of getting 2 heads 

in a row. Of course, since it is your coin the probability of winning is high and so is your knowledge 

of the outcome. On the contrary, the entropy of the system represented by the series of throws is 

low. Overall, the probability of winning is 1 while the entropy is:  

−(1 ∗ log2 1 −  1 ∗ log2 1) = 0 

In the case of an even coin your knowledge of the outcome is much lower and so is the probability 

of winning: 

𝑃(𝑤𝑖𝑛) =
1

2
∗

1

2
= 1/4 

While the entropy of the system is bigger: 

− (
1

2
∗ log2

1

2
 +  

1

2
∗ log2

1

2
 ) = 2 

 

 

 In the case of active learning, choosing to label the training instance that holds the biggest entropy 

will give the greatest informational gain to the model. The most informative training sample is 

given by: 

𝑥𝐻
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋 − (∑ 𝑃𝑤(𝑦𝑖|𝑥) log 𝑃𝑤(𝑦𝑖|𝑥)

𝑖

) 

The most obvious advantage of Entropy sampling over the least confidence and margin sampling 

is that it takes into consideration the full set of different labels that exist in the dataset. In the case 

of binary classification all three methods are mathematically equivalent. All the aforementioned 

strategies, use probability in order to calculate the most informative instance. This fact may trick 
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someone into thinking that it is inappropriate to use Uncertainty sampling for non-probabilistic 

models. As it was mentioned in the beginning of this section, certainty or uncertainty can be 

translated in a number of different ways, two of them being the probability and entropy. In the case 

of SVMs, we can define certainty as the distance between the decision boundary and some 

unlabeled instance. Thus the most informative unlabeled instance will be the one closest to the 

decision boundary [17].   

 

 Query by committee 

 

Another widely used selection strategy is the query by committee (QBC). In this setting, a 

set of classifiers trained on different configurations collaborate in order to choose the most 

informative sample. QBC’s goal is to minimize the version space by using as few labeled training 

examples as possible. In the case of SVMs, given a set of labeled training data and a Kernel, there 

is a set of different hyperplanes that separate the data in the feature space [17]. This set of 

hypotheses is called the version space [24]. The QBC algorithm maintains a committee of different 

classifiers 𝑓𝑖. Each of the classifiers is asked to predict the label of a specific unlabeled instance. 

After the labelling process has finished, the instance on which the most members of the committee 

have disagreed upon is chosen as the next query to the oracle. In order for the strategy to be accurate, 

there is a number of issues to be considered. It has been proven [25] that for a set or ensemble of 

classifiers to be more accurate than any of its individual members, certain conditions must be met. 

 The first condition is that every classifier in the set has to be accurate. As an accurate 

classifier we define one that has better error rate than just random guessing the label of an 

instance 𝑥. The second condition is that the members of the committee have to be diverse. This 

means that the classification errors made by the members of the committee have to be uncorrelated. 

If not, the classifiers will rarely disagree and the voting process will not be productive. There are 

multiple approaches of constructing such a committee of classifiers. Using Bayesian Voting an 

ensemble can be defined as the set of all the hypotheses of the version space, each weighted by the 

posterior probability 𝑃(𝑓 | 𝑆) where 𝑆 is a training example. Ensembles can also be created by 

manipulating the training examples. In this method the training set is broken down into separate 

subsets each of which is used to produce a different hypothesis. The way in which the subsets are 

created is specific to the different variants of this family of algorithms such as Bagging [26] and 

ADABOOST [27] [28]. Another technique for creating an ensemble of classifiers is to manipulate 

the input features instead of the training samples. Each hypothesis in the committee is trained on 

a subset of features usually ones that are related or have been observed using the same technique 

[29]. Finally, ensembles can be created by injecting randomness in the models’ training. The most 
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typical use of this method is in the domain of neural networks. Using the same training dataset but 

different initial weights can lead to an ensemble of neural networks that differ substantially from 

one to another [30]. An interested reader should read more about the different ensemble methods 

in machine learning in the paper by Dietterich [31] regarding Ensemble methods in machine 

learning.  In order to conclude the QBC overview we need to present the different variants of 

measuring the committee’s disagreement. Similar to entropy based uncertainty sampling, the most 

informative unlabeled training instance 𝑥∗ can be considered the one that gathers the biggest vote 

entropy [32] across the different committee members. Formally, vote entropy can be defined as 

such: 

𝑥∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑋 −  ∑
𝑉(𝑦𝑖)

𝐶
𝑖

log
𝑉(𝑦𝑖)

𝐶
 

As 𝑦𝑖 we define the various classes that exist among the training samples X, 𝑉(𝑦𝑖) is the number 

of votes that a specific label has accumulated and 𝐶 is the size of the committee. Lastly, another 

disagreement measure is the average Kullback-Leibler (KL) divergence. Generally, KL 𝐷(𝑝 || 𝑞) 

describes the divergence between the probability distributions 𝑝 and 𝑞 . A common and easily 

digested way of describing KL divergence is as the distance between the two distributions. 

However, this is inaccurate and fails because, in comparison to real distance measures, the KL 

divergence from 𝑝 to 𝑞 isn’t always equal to the KL divergence from 𝑞 to 𝑝. What KL divergence 

actually measures is how much information each sample drawn from 𝑝(𝑥), will on average bring 

when trying to distinguish 𝑝(𝑥) from 𝑞(𝑥). In the active learning setting, the KL divergence is 

calculated between every committee member and the whole ensemble. The most informative 

sample is the one that its average classification from any one of the committee participants differs 

the most from the committee as a whole. KL divergence is defined as follows: 

𝑥∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑋

1

𝐶
∑ 𝐷(𝑃𝜃𝑐

|| 𝑃𝐶  )
𝐶

𝑐=1
 

Where 

𝐷(𝑃𝜃𝑐
||𝑃𝐶  ) =  ∑ 𝑃𝜃𝑐

(𝑦𝑖|𝑥) log
𝑃𝜃𝑐

(𝑦𝑖|𝑥)

𝑃𝐶(𝑦𝑖|𝑥)
𝑖

 

 

 Expected model change 

 

The techniques discussed in the previous sections were mainly focused in discovering the 

most informative unlabeled training instances by using the current model to calculate some kind of 

informativeness measure e.g. entropy. Thus, they did not consider how the model would actually 
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react to the chosen sample being added to the training set. They were in some way sample centric. 

Furthermore, it has been suggested that both uncertainty sampling and QBC can sometimes fail by 

querying samples that are only partially informative, meaning that they contain little information 

about the overall distribution of the dataset e.g. outliers [33] [34] [35]. To address this, the expected 

model change (EMC) query method chooses to query the unlabeled instance that would have the 

greatest impact on the model’s state if we knew its label. For models trained using gradient descend, 

the informativeness can be naturally measured by the norm of the gradient imparted by an unlabeled 

instance. This approach is called the Expected Gradient Length (EGL) and it has been successfully 

used by Burr Settles and Mark Kraven in [36] for the task of Sequence labeling as well as for speech 

recognition [37]. For a labeled training set 𝑋 and the model’s parameters w, we define the gradient 

of the log-likelihood 𝑙  as  ∇𝑙(𝑋; 𝑤) . For a new training example < 𝑥, 𝑦 >  being added to the 

training set 𝑋  the new gradient for 𝑙  takes the form of   ∇𝑙(𝑋+<𝑥,𝑦>; 𝑤) . Note that the query 

algorithm doesn’t know a priory the true label of the added training example. To accommodate for 

this, we calculate the expected gradient length 𝐸𝐺𝐿(𝑥) over the N most probable labels: 

𝐸𝐺𝐿(𝑥) =  ∑ 𝑃(𝑦|𝑥 ; 𝑤) ‖∇𝑙(𝑋+<𝑥,𝑦>; 𝑤)‖

𝑦∈𝑁

 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐺𝐿(𝑥) 

Where ‖∇𝑙(𝑋+<𝑥,𝑦>; 𝑤)‖ is the Euclidean norm of each resulting gradient. As it is stated in [36], 

since the gradient ∇𝑙(𝑋; 𝑤) will be almost zero from the previous training step, we can define, for 

computational efficiency purposes, that: 

𝛻𝑙(𝑋+<𝑥,𝑦>; 𝑤) ≈  𝛻𝑙(< 𝑥, 𝑦 > ; 𝑤). 

 

 Expected Error Reduction 

 

Inevitably, no matter what query selection strategy we choose, the criterion for an accurate 

model is its performance error. However, none of the previous methods have taken this measure 

under consideration and the reason is that closed form calculation of the expected error is hard to 

control. Expected error reduction (EER) sampling method, aims to select a query  𝑥∗ such that 

when its true label 𝑦 is incorporated in the training set 𝑋, the model that is re-trained using the 

expanded dataset (𝑋+< 𝑥∗, 𝑦 >) will have a lower error than if any other sample 𝑥′  had been 

chosen. Since the true label of  𝑥∗  is unknown before making the query, we have to make an 

expectation calculation of the estimated error for each possible label y, weighted by the current 

model’s posterior probability 𝑃𝜃(𝑦|𝑥). The resulting algorithm starts by training a classifier from 

the initial training labeled examples. Then, for each unlabeled example 𝑥, a pair of < 𝑥, 𝑦𝑖 > for 
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every possible label 𝑦𝑖 is created and added to the training set. The model is retrained using the 

new training set and the resulting expected loss is calculated. The average expected loss, weighted 

by the model’s posterior probability 𝑃𝑤(𝑦|𝑥) is assigned to the current training example 𝑥. Finally, 

the unlabeled example 𝑥  that scored the lowest expected error will be sent to the oracle for 

labelling. There are multiple issues with the above algorithm that have to be remedied in order to 

make it efficient. The cost of incrementally training the model has to be smaller than the cost of 

retraining the model using the new enlarged dataset (this applies to every active learning algorithm). 

Additionally, the model needs to reclassify only those training instances that the predictions about 

them are likely to change due to the additional training examples. Since the unlabeled pool is 

usually large, calculating the error for every instance in the pool after a candidate query is added is 

very costly. To make this efficient, the calculations need to be made only for those instances in the 

neighborhood of the candidate query. That way the algorithm also saves the calculations that 

otherwise would have been made for uninformative training samples such as outliers. Generally, 

there are two approaches of calculating the expected error. The first approach is to minimize the 

expected 0/1 loss: 

𝑥0/1
∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝑋 ∑ 𝑃𝑤

𝑖

(𝑦𝑖|𝑥)(∑ 1 − 𝑃
𝑤+(𝑥,𝑦𝑖)(𝑦|𝑥(𝑢))

𝑈

𝑢=1

) 

where 𝑤+(𝑥,𝑦𝑖) is the model after it has been retrained with the added training tuple (𝑥, 𝑦𝑖) and 𝑈 

is the pool of unlabeled samples. The second approach is to minimize the expected log-loss: 

𝑥𝑙𝑜𝑔
∗ =  𝑎𝑟𝑔𝑚𝑖𝑛𝑋 ∑ 𝑃𝑤

𝑖

(𝑦𝑖|𝑥)(− ∑ ∑ 𝑃
𝑤+(𝑥,𝑦𝑖)(𝑦𝑗|𝑥(𝑢)) log 𝑃

𝑤+(𝑥,𝑦𝑖)(𝑦𝑗|𝑥(𝑢))

𝑗

𝑈

𝑢=1

) 

which aims to maximize the informational gain of the query or equivalently to minimize the 

expected entropy over the unlabeled pool 𝑈. Expected error reduction strategy has been extensively 

employed in research papers. Roy and McCallum in [38] have proposed this strategy for text 

classification using naïve Bayes. Later on, to tackle the problem of having to cycle through all the 

unlabeled samples, the researchers used Monte Carlo sampling to reduce the size of the unlabeled 

pool. Guo and Greiner [39] employed logistic regression to create an active learning framework, 

based on error reduction strategy that could change its selection rule in order to cope with 

unexpected labels. Moskovitch et al in [40] made use of SVMs in order to quickly identify 

malicious code (Worms). In their setting, the error reduction strategy was utilized to reduce the 

noise in the training set and the business need of having human experts to label new and unknown 

worms. 
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 Variance Reduction 

 

Due to the lack of a closed form expression, the Expected error reduction strategy can be 

computationally expensive since both of the described equations need to be calculated for each of 

the different unlabeled instances and possible classes. In addition to that, in order to test the effect 

that every newly added training instance has over the model’s error, a new version of the model 

has to be incrementally trained. Gemen et al. [41] showed that the overall generalization error can 

be expressed as the sum of the true label noise, the model’s bias and the model’s variance. Of those 

three terms, only the variance is highly dependent on the training examples. Thus, we could create 

an active learning strategy that chooses to query the training instances that mostly reduce the 

variance and in doing so the model’s generalization error. Cohn et al. [42] [35] provided the first 

statistical analyses on active learning using the model’s variance and proved that it can be 

calculated in closed form for a variety of different models such as neural networks, Mixture models 

and linear regression. Specifically, the variance can be expressed in terms of the gradient with 

respect to the model parameters and the Fischer Information Matrix [43]. Known works using 

Fischer information matrices in the context of active learning are those by Schein and Ungar [44] 

and Zhang and Oles [45]. Specifically, Schein and Ungar run experiments on the most popular 

heuristic active learning strategies such as query by committee and uncertainty sampling as well as 

experimental methods like variance reduction (also known as A-optimality). They report that the 

heuristic methods produced mixed results, performing even worse than random sampling in some 

stages of the evaluation, with margin sampling being the most promising and cost effective of all 

variants. Additionally, they note that variance reduction strategy proved to be too computationally 

expensive, both in memory and complexity, prohibiting the evaluation on two of the larger 

document classification tasks.  

  

 Density Weighted methods 

 

Another family of sampling methods that, along with variance reduction and expected 

model change, overcome the issue of querying outliers are the density weighted methods. Density 

weighted methods prefer the unlabeled instances that are representative to the overall unlabeled 

dataset’s distribution and essentially guide the learner to concentrate on the most important 

uncertain data instead of the most uncertain data. Based on this strategy McCallum and Nigam [46] 

propose a QBC learner for text classification that chooses to query an instance that not only 

achieves high classification variance among the committee members, but is also similar to many 

other instances of the unlabeled pool. In their work, the density around an unlabeled instance is 

approximated by calculating the average distance (exponentiated KL divergence) from that sample 
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to all others. Another way to formalize similarity between training samples is by taking advantage 

of the natural clusters that exist in the unlabeled dataset distribution. Clustering can be pre-

computed without any human interaction and stored for later use. The information obtained through 

clustering can be utilized in a number of ways. As far as labelling is concerned the centroids of 

each cluster can be considered as the most important instances. Moreover, since unlabeled instances 

that belong to the same cluster are likely to share the same label, the algorithm is relieved of the 

cost of having to label a great number of them. Fujii et al. in [47], tackle the problem of word sense 

disambiguation using an active learner, based on an interpretation certainty measure similar to the 

one proposed by Lewis and Gale in [18]. In addition to that, the researchers incorporated the 

measure of similarity, in the form of the number of nearest neighbours when choosing the optimal 

query. For an unlabeled instance 𝑥 to be considered optimal it has to be in the same neighborhood 

as the most unlabeled instances. In other words, x is optimal when the total interpretation certainty 

of the unlabeled instances increase the most after the model has been trained with it. Since x is 

similar to all other instances in the neighborhood, the algorithm doesn’t have to loop through them 

too, thus becoming more efficient. Similarly, their active learner chooses to avoid instances 𝑥′ that 

may have great number of unlabeled neighbors but are similar to instances that have already been 

labeled. Xu et al. [48] developed a formula that incorporates three kinds of measures for choosing 

the best query in the field of document relevance feedback. Apart from using KL divergence for 

calculating the relevance of an unlabeled instance 𝑥, the researchers used J-divergence [49], to 

calculate two additional measures, the density and the diversity of the sample 𝑥. The density of the 

area around a specific document is measured by calculating the average distance from that 

document to all others. The J-divergence for two documents is defined as: 

𝐽𝐷(𝑑𝑖||𝑑𝑗) = 𝐾𝐿(𝑑𝑖||𝑑𝑗) +  𝐾𝐿(𝑑𝑗||𝑑𝑖) 

and the density of the area around a document 𝑑𝑖:  

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑑𝑖) =  − 
1

‖𝐷‖
∑ 𝐽𝐷(𝑑𝑖||𝑑𝑗)

𝑗∈𝐷

 

The diversity of document 𝑑𝑖 and a document set is measured as the minimum distance (J-

divergence) between 𝑑𝑖 and any member of that set. Nguyen and Smeulders in [50] have used k-

medoid clustering to find K representatives so as to minimize the sum of the distance from the data 

samples to the nearest representatives. Afterwards, logistic regression is deployed to calculate the 

probability of a cluster instance to be of a specific label in order to propagate this information to 

the rest of the cluster members. Finally, the criterion for choosing the data to be labeled gives 

priority to samples near the decision boundary and to centroids of dense clusters. In the work of 

Zhao Xu et al. [51] the use of plain uncertainty sampling is characterized as ‘myopic’ since it 

greedily selects the unlabeled instance closest to the decision boundary, without taking into 
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consideration the underlying data distribution. Moreover, they note that the structure of the natural 

clusters could be very beneficial to the training process. In the algorithm for text classification that 

they propose, a SVM classifier is trained on the labeled dataset. Then, a k-means clustering is 

performed to the unlabeled data points that lie in the margin of the SVM classifier. The unlabeled 

instances that lie closest to the centroids of the clusters are considered the most informative and are 

sent to the oracle for labeling. 

 

3.3 CONSIDERATIONS REGARDING ACTIVE LEARNING 
 

As it was mentioned, Active Learning aims to make the training of machine learning 

algorithms more economical, both in time and other resources. However, as such practices become 

more popular and integrated into real-world working systems, many of the assumptions made in 

the various studies are violated. A common issue that arises, is that the training sets being generated 

by means of an active learning framework are closely tied (biased) to the model and the selection 

strategy that was used to query the training examples that compose them. Therefore, the generated 

dataset’s distribution does not fully represent the real one. Thus, in the case of swapping the current 

model for another one, the actively annotated training set might not be as effective as before. Such 

a case can be found in the work of Baldridge and Osborne [52], where a training set created by a 

parser model leads to worse training results when used to train different parser models. By 

sacrificing computing power (which is not always an option), we can reduce the bias of the 

generated training sets using an ensemble of classifiers. Intuitively, an ensemble of heterogeneous 

classifiers is bound to produce a training set that is more general compared to one that was gathered 

by a single model. However, there are some studies reporting opposite results and indicate that 

datasets collected by an active learner have positive effects when used to train a different model 

[53] [54] [18]. For example, Lewis and Catlett [55] trained a decision tree using a dataset assembled 

by a naive Bayes model using uncertainty sampling. They report that a decision tree model trained 

with the aforementioned training set produced higher accuracy than another decision tree that was 

trained with a ten times larger, randomly selected dataset. 

  Another parameter that should be taken into consideration is the quality of the oracle. The 

foundation of active learning is based on the assumption that the oracle produces labels of high 

quality. However, no matter which form the oracle takes, e.g. human or machine, some unlabeled 

training examples can be difficult to determine. Moreover, in the case of human oracles the quality 

of labels is correlated to the physical condition of the annotator e.g. confusion, fatigue. Recently, 

the use of mechanisms such as Crowdsourcing [56] by the means of tools like Amazon Mechanical 

Turk (AMT) [57], suggest the use of multiple annotators. Remember that one of the motives of 
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active learning is the economical procurement of labeled data. There are cases where it is more 

economical to acquire labelings from multiple non- expert annotators than by a single expert oracle. 

These approaches introduce even more issues regarding the quality of the labeling process. Some 

annotators may be more reliable than others or some may be intentionally misinforming the model 

(case of internet chatbots using ambiguous user input for training purposes). Therefore, a need 

arises for machine learning models to be annotator aware. In simpler terms, when multiple 

annotators are available, the model should be able to choose the most suitable annotator that will 

mostly improve the training process. Some works tackle this by suggesting the ability of the active 

learner to query multiple times the true label of an unlabeled training example [58] [59] [60]. They 

don’t however take into consideration the properties that characterize the individual oracles. Such 

an approach can be found in the work by Yan et al in [61] where after selecting the most informative 

unlabeled training example, the active learner attempts to determine the annotator that will provide 

the most confident label. The model they propose, utilizes the training data 𝑋 , the set 𝑌  that 

contains all the observed labelings of all annotators and produces an estimation of the ground truth 

𝑍, a classifier for labeling any new instance 𝑥 and one more model for estimating the annotator’s 

quality (expertise) given the input 𝑥. 

So far, every query strategy that we have described selects queries one at a time. It is 

obvious that in practice this can be highly inefficient as the learning process is being stalled by the 

amount of time the oracle takes to label a single element. Additionally, consider the case of multiple 

available annotating environments with the ability to perform labelings in parallel. In order to make 

use of the above capabilities, it would be preferable to send a larger number of queries (batch) for 

labeling. The most simple and naïve approach is the Q-best where the active learner sends the Q 

best instances to the oracle. Like uncertainty sampling where subsequent queries can unwittingly 

refer to similar points of the distribution, the Q-best approach suffers from information overlap 

among the instances of the batch. Similar to 3.2.6, other batch selection techniques remove this 

problem by incorporating diversity among the instances of the batch and choose the ones that are 

both informative and diverse. Researches regarding Batch selection strategies when using a SVM 

active learner can be found in the works by Brinker [62] and Xu et al. [48] which construct their 

batches incorporating diversity and density measures respectively. Unlike the heuristic scores of 

diversity and density utilized by the aforementioned batch selection strategies, Guo and 

Schuurmans [63] face the construction of the batch as a continuous optimization problem. Their 

problem formulation aims to maximize the discriminative classification performance of the target 

classifier while taking the unlabeled data into account. A similar approach using discriminative 

models can be found in the work by Wang, Zengmao, et al in [64] regarding Hyperspectral Image 

Classification.  
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There are settings where the input of the training process is not composed of training 

examples that are individually labeled. Instead, the learner receives labeled bags of features. This 

area of machine learning is called Multiple Instance (MI) learning and presents a way of reducing 

the need of exhaustingly labeling datasets by widening the level of annotation granularity. For a 

bag to be labeled as negative, all of the contained examples have to be labeled as negative. On the 

other hand, for a bag to be labeled positive at least one of the training examples has to be positive. 

This kind of approach has been used in the field of Content-based image retrieval and text 

classification tasks. In text classification, a document represents a bag of instances which in turn 

are represented by short passages inside the document. A text document is considered to be positive 

if any of the passage(s) inside it are of the target class. It is obvious, that the biggest problem in MI 

is that for an accurate model to be produced the learner must be able to determine which instances 

in positive bags are actually positive. Since labels can be needed in various levels of detail, there is 

a chance that the cost of annotating some or all passages inside the various training examples can 

be prohibitively high. To reduce the labeling cost of annotating datasets for MI we must consider 

the formulation of active learning scenarios that could fit in such cases. As it was mentioned, MI 

oriented datasets are labeled in a lesser level of detail than typical training datasets. 

 There are active learning MI approaches that allow the learner to query the oracle for labels 

at varying levels of granularity. Settles, Craven and Ray [65] argue that while MI learning reduces 

the effort of labeling by providing labels at a rougher level of detail, it appears that selecting some 

instances of finer granularity can improve the learning process. Their research is targeted on the 

scenario where the learner is only allowed to query for instances inside positively labeled bags. 

After experimenting with several known active learning strategies (Uncertainty sampling, Expected 

gradient length) as well as a variant of their own called MI Uncertainty they note that all active 

learning methods perform significantly better than passive learning using random sampling. 

Moreover, their proposed approach (MI Uncertainty) takes into consideration not only the 

uncertainty regarding an instance’s class but also its contribution to allowing the learner to ‘explain’ 

the bag that it belongs. That way it tackles oxymoronic cases of querying the most uncertain training 

instance even though it belongs to the most positive bag. Liu, Dong, et al. [66] reference Settles, 

Craven and Ray’s report [65] and add that MI learning can also benefit by using a mixed approach 

of labeling instances and bags simultaneously. In their paper they compared three different 

selection strategies: selecting instances only, selecting bags only and selecting a combination of 

bags and instances. To accomplish that, they created a unified MI active learning framework based 

on SVMs that could estimate the similarity between instances only, bags only, as well as instances 

and bags. Additionally, for the reasons discussed in 3.2.6, their selection measure combined 

uncertainty, diversity and novelty. Using various numbers of labeled training examples, the mixed 
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selection approach outperformed the others by scoring the greatest AUROC (Area under ROC) 

score. Also, as expected, all active learning strategies outperformed random sampling.  

The varying levels of image annotations motivated Vijayanarasimhan and Grauman’s work 

in [67] to address the need for the learner to be able to adopt to the multiple levels of annotation 

granularity and also decide which unlabeled item and at which annotation detail is best to be 

queried while being cost-effective. Their results show that this multi-level query approach achieves 

significant improvements at a lower cost over all the compared methods (Single level active 

learning, Single level random sampling and multiple level random sampling) and also improving 

accuracy with as many as ten labeled instances. Apart from querying instances, Raghavan et al. 

[68] introduced the concept of querying features in addition to instances in the setting of text 

categorization. The reason for this approach, is that human annotators perform much faster when 

annotating features rather than instances or documents. Moreover, in general concepts such as 

‘sports’ you don’t need an expert oracle to distinguish the discriminative value of a word (cost 

reduction) e.g. ‘is the word basketball able to sufficiently describe documents about sports?’. The 

feature oracle has knowledge of all document labels and using information gain (entropy) as a 

measure of importance, it produces a ranked list of features in decreasing order of importance for 

each document. Their algorithm combines labeling of features and documents and their results 

indicate: i) improved performance over uncertainty sampling with as few as 7 labeled examples, ii) 

naïve users can provide effective feedback on the most relevant features, iii) the average time 

needed to label features takes one fifth of the time needed to label documents on average.  

Last but not least, throughout this report it becomes apparent that the majority of the proposed 

algorithms and selection measures require for sophisticated implementations in order to work 

efficiently. So, the reader should also consider the software engineering overhead required for 

building such algorithms.      

  



36 

 

4 EXPERIMENTAL EVALUATION 

 

This paper would not be complete without presenting applied examples of some of the 

mentioned query selection methods. Since a whole chapter was dedicated to the formalization of 

SVMs it is only fitting to use SVMs as the model in our experiments. Moreover, their geometrical 

foundation makes them suitable for illustrating some of the most popular selection strategies like 

Margin Sampling, as well as some variants of Density Weighted sampling methods such as the one 

proposed by Zhao Xu et al. [51]. All models, performance measure techniques and dataset 

manipulation methods used for the experiments come from the Python scikit-learn machine 

learning library [69]. The classifier in use is a Support Vector Classifier whose implementation is 

based on libsvm [70]. The major part of the active learning selection strategies implementation 

comes from Google’s active learning project available on GitHub3. 

4.1 BASELINE PRESENTATION 
 

The following section uses toy datasets and provides the reader with illustrative examples that 

depict the model, training sets, unlabeled datasets and selected queries. Thus, it serves as a baseline 

before presenting the results when testing the same methods against benchmark datasets like the 

MNIST database.  

 Margin Sampling 

 

Even amongst active learning sceptics’ works, margin sampling’s simplicity both in 

inception and implementation, has been shown to outperform other more sophisticated and 

elaborate query selection strategies [44]. In short, margin sampling considers as the most 

informative unlabeled instance, the one that lies closest to the decision boundary. This is often 

mentioned as its biggest flaw, since it is characterized as a rather myopic approach that doesn’t take 

into consideration the underlying class distribution. Afterwards, the selected query or queries (in 

the case of batch selections) are sent to the oracle for labeling, the queried instances are added to 

the training data and the training procedure continues. There are two approaches regarding the 

handling of the training after the new instances have been added. The model can either be retrained 

entirely or incrementally. Ideally, in order to save time and computational resources the learning 

phase should not start fresh after the newly labeled item is added to the training set. Of course, this 

applies to every active learning algorithm no matter the selection strategy in use. In the case of 

                                                     
3 Google/active-learning 

https://github.com/google/active-learning 
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SVMs incremental training can be achieved by readjusting the model’s parameters after 

recalculating the gradients using a single training instance. An example of such an implementation 

can be found in the work by Shalev-Shwartz, Shai, et al [71] and their proposed algorithm called 

Pegasos. The Pegasos algorithm is a variant of Stochastic gradient descend where in each training 

step the model’s parameters are readjusted considering only a single randomly picked training 

instance. In our case, due to limitations set by the used libraries the notion of incrementally training 

the model was not put into consideration when implementing the various learning strategies. Figure 

11 depicts a sample dataset that will be used to illustrate the way margin sampling chooses the best 

query. 

 

Figure 11 Sample Dataset for Margin Sampling and Decision Boundary 

 

 

The dataset consists of two classes, class ‘red’ and class ‘blue’. The points 

represented by the dots are used for the initialization the SVM classifier. The resulting 

decision boundary is used to calculate the distance from each unlabeled point, represented 

by the crosses. The chosen unlabeled instance that lies closest to decision boundary is 

depicted in Figure 12. In the case of multiclass classification problems, we choose the 

unlabeled instance with the smallest margin for the two most probable classes. 
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Figure 12 Most Informative query using Margin Sampling 

 

 Representative Cluster mean sampling 

 

Due to the way that margin sampling chooses the queries, there is the possibility for the 

resulting, actively labeled dataset to be biased in favour of some of the underlying classes. To 

negate this effect, the selection criterion has to be aware of how the different classes are distributed 

inside the area of interest, in our case the area inside the margin. Representative cluster mean 

sampling, tries to gain knowledge of the underlying data distribution inside the margin by clustering 

the labeled points that lie in it. After the initial training, a k-means clustering is performed in order 

to acquire the cluster centroids who are considered to be the points that concentrate the most 

information. Figure 13 illustrates the state of the query strategy after the completion of the 

clustering procedure of a dataset consisting of two different classes. 
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Figure 13 Centroids of points inside the margin 

 

After acquiring the cluster centres and since they are not actually members of the dataset, the 

selection algorithm chooses the unlabeled instances (batch) that lie closest to them. The chosen 

instances are considered as the most informative as well as representative in regards to the 

underlying distribution (Figure 14) and are sent to the oracle for labeling. In cases when the points 

inside the margin are less than the requested batch size the selection strategy reduces to plain margin 

sampling. 
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Figure 14 Most Informative query using Representative Cluster Mean Sampling 

 

 Informative and diverse sampling 

 

Similarly to Representative Cluster Mean Sampling, this method aims to minimize bias in 

the actively queried dataset. The sampler in question collects points with small margin and creates 

batches of queries whose distribution respects the one of the entire dataset. Of course with the batch 

size is set to one, the selection strategy is identical to Margin Sampling. Before the sampling 

procedures initiates, the algorithm applies a k-means clustering to the unlabeled pool and calculates 

the probability of each cluster. In essence, this is fraction of each clusters’ members to the overall 

number of instances. Following the initial training of the Support Vector Classifier, the unlabeled 

instances are sorted by their distance from the margin and are iteratively used to calculate the impact 

that they would have to the batch’s distribution if they were to be added to it. In the case that their 

addition doesn’t alter the various cluster distribution, meaning that the probability of each cluster 

stays true to the original dataset, the selected instances are considered as good candidates and are 

officially members of the batch. This procedure is repeated until the batch’s size reaches a 

predefined size or until the pool is exhausted. Figure 15 illustrates a sample dataset composed of 3 

classes that will be used to illustrate this strategy. In order to make the underlying distribution more 

obvious we remove the labeled instances that will be used for the initial training (Figure 16). 
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Figure 15 Sample Dataset for Informative and Diverse Sampling 

 

Figure 16 Unlabeled points only Sample Dataset 
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After applying the aforementioned algorithm for a batch size of 10, we depict the chosen queries 

in Figure 17. 

 

Figure 17 Most Informative queries using Informative Diverse Sampling 

 

Since Informative-Diverse Sampling shares the same core as Margin Sampling, it would be 

interesting to compare their respective queries when performed on the same dataset. Figure 18 

demonstrates the queries made by Margin sampling for a batch of size 10. The reader should notice 

the concentration of queries that lie in the area between the classes represented by the brown and 

dark blue color. Using the knowledge obtained by training on those new points the resulting 

classifier should be able to distinguish these two classes more efficiently than before. From the 

remaining 4 queries, all of them are related to the separation of the classes in the shades of blue 

However, none of the selected instances will aid in the distinction of the brown class from the light 

blue class. This is the result of Margin Sampling blindly choosing the points lying closest to the 

decision boundary and will cause the expanded dataset to be biased towards the remaining classes. 

On the other hand, Figure 17 shows that the queries in the batch selected by the Informative-Diverse 

Sampling are more spread out across all areas that lie close to the decision boundaries. Thus, the 

resulting dataset will show more respect to the dataset’s original distribution. 
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Figure 18 Margin Sampling selected queries 

 

4.2 EVALUATION ON MNIST DATABASE 
 

For the task of evaluating the Active Learning strategies illustrated in 4.1 we used the MNIST 

(Modified National Institute of Standards and Technology) database. MNIST is consisted of 70000 

28x28 images of handwritten digits and is commonly used for the training and testing of models in 

the field of Machine Learning. There has been a great number of research works with the goal of 

achieving the lowest error rate when using this dataset, with the best so far achieving an error rate 

of 0.23 percent using a committee of 25 Convolutional Neural Networks [72]. In our case rather 

than striving to achieve the best accuracy possible, our interest is focused on the effect that Actively 

queried samples have on the training of a classifier when compared to Passively (Randomly) 

sampled ones.  Our tests will vary from one to another in terms of the number of batches and the 

size of batches and will illustrate the fluctuation of accuracy after each new batch is added to the 

model’s training set. To make things fair, the training sets are equivalent among all classifiers and 
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consist of just 50 training samples. Lastly, all classifiers no matter the selection strategies have been 

tuned using the same hyper-parameters(Table 1). 

 

Kernel γ C 

RBF 0.001 2.8 

 

Table 1 Model’s Training Hyper-parameters 

 

Right from the beginning it was stated that the goal of Active Learning is the economical 

procurement of labeled data. The most obvious way to accomplish this is by achieving great 

accuracy with the need of labeling as little as possible unlabeled instances. Figure 19 illustrates the 

performance of Active learning strategies when compared to Passive sampling after 10 rounds of 

additional training with batches consisted of 5 sampled instances. 

 

Figure 19 

The most important thing to note is how immediate is the increase in the accuracy achieved by all 

active learning strategies. Passive learning needs 4 times the number of instances to reach the same 

level of performance that Margin and Diverse sampling achieve after the first batch. Figure 20 

shows how Margin and Diverse sampling continue achieving superior performance even after 

doubling the number of batches. In contrast to these two strategies, Representative Sampling, is 
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outperformed in most training stages apart from the initial ones. All experiments indicated that as 

batch size increases, Passive Sampling seems to close the gap in performance (Figure 21). 

Eventually in Figure 22 the amount of the information gained by big batches helps the Passive 

learning model to achieve equivalent levels of performance to the actively trained ones. 

 

Figure 20 
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Figure 21 

 

 

Figure 22 
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4.3 EVALUATION ON CIFAR-10 
 

To enhance previous findings, we ran additional experiments on a larger and generally more 

challenging dataset. The cifar-10 dataset consists of 60000 32x32 colour images separated in ten 

different classes that depict various objects like cars, trucks etc as well as animals like cats, dogs 

and horses. The dataset is broken down in 50000 training instances and 10000 test instances. Cifar-

10 has been extensively used for evaluating various supervised machine learning algorithms with 

Convolutional Neural Networks [73] achieving the best performance so far. Like the previous tests, 

our supervised training model is a Support Vector Classifier (SVC) configured with the hyper 

parameters depicted in Table 2 and Table 3. The original training of all models (Passive and Active) 

was performed on a training set composed of 1000 randomly sampled training examples. Unlike 

the experiments performed on MNIST where the results showed a consistency of performance 

between the various tested techniques, the results using cifar-10 are somewhat mixed and related 

to the configuration of the model. Using the configuration depicted in Table 2, the performance of 

Active strategies is often worse than passive sampling between different runs (Figure 23, Figure 

24). An interpretation of this could be that the initial seed of data is important to how the model is 

shaped during the rest of the training especially in cases like ours where the additional batches are 

of limited size and cannot rectify the overall performance. However, it seems that active learning 

strategies help the model into keeping a more balanced performance between different runs, even 

though they might get outperformed. What is also intriguing is the bad performance of Margin 

Sampling. This can be attributed to the fact that cifar-10 contains objects similar to one another. 

For example, we can imagine that the decision boundary between the classes of cars and trucks will 

have a great number of instances close to it. Since Margin Sampling cannot balance the batch’s 

class distribution, some batches will be heavily biased towards collecting information for these 

specific classes.  

 

Kernel γ C 

RBF 0.001 1 

Table 2. Configuration 1 of Model’s training Hyper-parameters. 

 

Kernel γ C 

RBF 0.001 10 

Table 3. Configuration 2 of Model’s training Hyper-parameters. 
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Figure 23  
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Figure 24 

Changing the configuration of our model to the one depicted in Table 3 we observe a 

similar behaviour to the one depicted in the results produced by the MNIST dataset. Active 

Learning strategies are generally more accurate than passive sampling. Interestingly, Margin 

Sampling keeps showing the same unwanted behaviour as before, with sudden drops of accuracy 

between batches (Figure 25, Figure 26). This negative effect is corrected when increasing the size 

of the batches, therefore allowing them to be more balanced in terms of the number of instances of 

each class (Figure 27, Figure 28). Another thing to note is how much better the performance of 

Representative Sampling is when compared to the one when shown by the experiments on the 

MNIST dataset. This indicates that the choice of learning strategy is related to the nature and traits 

of the dataset in question. As it was previously explained, CIFAR-10 has areas that plain Margin 

Sampling cannot explain adequately. Thus, strategies that incorporate more measures, like diversity 

and similarity, when choosing the best queries are bound to be more effective when facing datasets 

with traits similar to CIFAR-10.  
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Figure 25 

 

 

Figure 26 
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Figure 27 

 

Figure 28 



52 

 

5 CONCLUSION 

 

The concept of Active Learning drew breath from the undeniable truth that hand-labeling large 

and complex datasets is a tedious task that requires effort and a substantial amount of resources. 

Luckily, there have been a great number of works suggesting ways of utilizing the human factor in 

an efficient and beneficial way for the faster and generally more productive labeling of training 

datasets. Moreover, the newly generated datasets are specifically oriented in increasing the quality 

of the model that was used to construct the queries. This leads to the following important effects 

when compared to randomly sampling instances: i) higher accuracy using a limited number of 

training data ii) faster achievement of high accuracy even when utilized in a passive learning 

environment. This means that Active Learning can also be used as a means of accelerating the 

learning process as it eliminates unnecessary training steps. Of course, when the various research 

methods where put to the test in realistic scenarios many implications rose that created the need for 

a further investigation into how to tackle them and open the way for the wider use of Active 

Learning methods.  

Throughout this report we tried to present the major Active Learning Frameworks, providing 

their theoretical foundations and the needs that motivated their research. As it is natural, we have 

demonstrated only a small number of Active Learning strategies that we consider to be the most 

representative of their kind. Since the ways that we can define informational gain and leverage it 

to gain knowledge can only be limited by our creativity, we our bound to come across many more 

incarnations of Active Learning scenarios in the future. For example, one can consider how the 

various properties of Support Vector Machines were utilized in different ways when choosing 

queries. Some strategies use the decision boundary, others the margin while some others the version 

space.  

Using benchmark datasets we proved that the most important selection strategies like Margin 

Sampling lead to the more efficient training of our supervised model of choice (SVC). Moreover, 

we witnessed that there is some kind of relation between datasets and strategies that should be 

evaluated before deciding on which Active Learning method should be used. We often mentioned 

that the Active Learning Cycle can be implemented in two ways, traditionally by repeating the 

training process or incrementally by considering only the queried instances. Future plans involve 

evaluating how this decision can affect the performance of the model in a variety of ways e.g. 

training time, accuracy etc. For any reader interested in advancing the work shown here we 

encourage them to replicate the experiments using a model that follows the notion of incremental 

training and comparing the results to the ones presented in the final chapter. Finally, it would be 

beneficial to know if given a specific dataset there could be a way of determining which of all 
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learning strategies would provide the most benefit without having to exhaust them by evaluating 

them one by one. 
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