

Πανεπιστήμιο Πειραιώς – Τμήμα Πληροφορικής

Πρόγραμμα Μεταπτυχιακών Σπουδών

«Προηγμένα Συστήματα Πληροφορικής»

Μεταπτυχιακή Διατριβή

 Τίτλος Διατριβής Aυτοματοποιημένη θωράκιση των κακόβουλων

προγραμμάτων μέσω της εφαρμογής επιλεγμένων anti-

debugging και αντι-vm τεχνικών.

Automated armoring of PE malwares through the

implementation of selected anti-debugging and anti-vm

techniques

Ονοματεπώνυμο Φοιτητή Θεόδωρος Αποστολόπουλος

Πατρώνυμο Μηνάς Αποστολόπουλος

Αριθμός Μητρώου ΜΠΣΠ15006

Επιβλέπων Κωνσταντίνος Πατσάκης, Επίκουρος Καθηγητής

Ημερομηνία Παράδοσης Ιούνιος 2018

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 2

Τριμελής Εξεταστική Επιτροπή

(υπογραφή)

(υπογραφή) (υπογραφή)

Κωνσταντίνος Πατσάκης

Επίκουρος Καθηγητής

Χρήστος Δουληγέρης

Καθηγητής

Ευθύμιος Αλέπης

Επίκουρος Καθηγητής

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 3

Table of Contents

Abstract .. 5

1. Introduction .. 6

2. PE Overview and Basic Concepts.. 7

 2.1 Relative Virtual Addressing .. 7

 2.2 DOS Header ... 8

 2.3 PE Header .. 8

 2.4 File Header .. 8

 2.5 Optional Header .. 9

 2.6 Section Headers .. 10

 2.7 PEB Structure .. 10

 2.8 Structure of the tool .. 10

3 Anti-debugging techniques ... 14

 3.1 Flags within the PEB structure & Manual Checks 14

 3.1.1 Check PEB.BeingDebugged flag /kernel32.IsDebuggerPresent(). 14

 3.1.2 Check PEB.NtGlobalFlag .. 15

 3.1.3 Check Heap Flags .. 16

 3.1.4 Anti-Step-Over .. 16

 3.1.5 Thread Local Storage Callbacks .. 17

 3.1.6 SS Register ... 18

 3.1.7 Interrupt 0x2d ... 18

 3.1.8 RDTSTC – as anti-step .. 19

 3.1.9 Selectors .. 19

 3.2 API Calls .. 20

 3.2.1 CheckRemoteDebuggerPresent(). ... 20

 3.2.2 NtQueryInformationProcess() .. 20

 3.2.3 NtSetInformationThread() .. 21

 3.2.4 RtlQueryProcessDebugInformation() ... 22

 3.2.5 RtlQueryProcessHeapInformation() ... 22

 3.2.6 Self-debugging with CreateProcess() .. 23

 3.2.7 SwitchDesktop() ... 23

 3.2.8 OutputDebugString() .. 24

 3.2.9 NtQueryObject .. 24

 3.2.10 BlockInput .. 26

4 Anti-VM Techniques .. 26

 4.1 Red Pill ... 27

 4.2 CPUID – Hypervisor presence ... 27

 4.3 CPUID – Hypervisor Vendor ... 28

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 4

 4.4 Number of Processors ... 28

 4.5 Virtual Devices .. 28

5 Conclusion ... 29

References .. 30

List of techniques ... 32

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 5

Abstract

Debuggers are tools traditionally used by programmers to find errors (called “bugs”) in code. However,

in the field of malware analysis, debuggers are an essential tool used to reverse-engineer malware

binaries, helping analysts to understand the purpose and functionality of malware when static analysis

isn’t enough. Because of their significance, many malware authors try to prevent analysts from using

them. By employing various techniques in the code (known as “anti-debugging”), malware can

successfully delay analysts and prolong its “life”. Moreover, malware analysis relies heavily on the use of

virtualization and emulation technology to run samples in an isolated environment, for functionality and

safety. However, virtual machines and emulators always create traces, so called artifacts, which

malware can use to detect the execution environment.

The goal of this paper to present selected anti-debugging and anti-vm techniques and include them

in a tool that can automatically append them to the basic functionality of a malware Windows binary in

order to armor it.

Περίληψη

Τα προγράμματα απασφαλματοποίησης είναι εργαλεία τα οποία χρησιμοποιούνται συνήθως από

προγραμματιστές έτσι ώστε να εντοπίσουν σφάλματα (τα λεγόμενα “bugs”) στον κώδικα. Ωστόσο, στον

τομέα της ανάλυσης κακόβουλου λογισμικού, αποτελούν βασικό εργαλείο στην διαδικασία

αντίστροφης μηχανικής ενός κακόβουλου εκτελέσιμου, βοηθώντας τους αναλυτές να κατανοήσουν τον

σκοπό και την λειτουργικότητά του, όταν η στατική ανάλυση δεν είναι αρκετή. Εξαιτίας της

σημαντικότητάς τους οι δημιουργοί κακόβουλων προγραμμάτων προσπαθούν να εμποδίσουν τη χρήση

τους από τους αναλυτές. Χρησιμοποιώντας ποίκιλες τεχνικές (γνωστές ως “anti-debugging”), ένα

κακόβουλο πρόγραμμα μπορεί να καθυστερήσει τους αναλυτές και να παρατείνει το χρόνο «ζωής»

του. Επιπρόσθετα, η ανάλυση κακόβουλου λογισμικού βασίζεται σε μεγάλο βαθμό στη χρήση

τεχνολογιών εικονικοποίησης και εξομοίωσης έτσι ώστε να εξετάσει δείγματα του κακόβουλου

προγράμματος, σε απομονωμένο περιβάλλον, για λόγους λειτουργικότητας και ασφάλειας. Ωστόσο οι

τεχνολογίες αυτές, αναπόφευκτα, δημιουργούν ίχνη, τα οποία ένα κακόβουλο πρόγραμμα μπορεί να

ανιχνεύσει

 Στόχος της παρούσας εργασίας είναι να παρουσιάσει επιλεγμένες anti-debugging και anti-vm

τεχνικές οι οποίες μέσω ενός εργαλείου θα ενσωματώνονται αυτόματα σε ένα κακόβουλο εκτελέσιμο

Windows με σκοπό την θωράκισή του.

http://en.wikipedia.org/wiki/Debugging#Anti-debugging

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 6

1 Introduction

Debuggers are vital tools for malware analysis since they enable detailed analysis of malware’s

behaviors. This involves the step by step execution of a malware to examine its current state as well as

the ability to make changes to memory space, registers, variable values, configurations and more.

Furthermore, it enables the disassembling of the binary code, tracing of system calls, capturing of

exceptions etc. [40]. In general, they allow the inspection of code in greater detail than static analysis

and give full control over the malware’s low-level runtime behaviors. Therefore; debugging eases the

burden of understanding of malware’s behavior, mechanisms and capabilities. But debugging, as most

of the techniques in the field of malware analysis are a doubled-edged sword. Malware authors know

that malware analysts use debuggers to figure out how malware operates, and the authors use anti-

debugging techniques, in an attempt to slow down the analyst as much as possible and thwart the

incident response. Anti-debugging is the implementation of one or more techniques within computer

code that hinders attempts at reverse engineering or debugging a target binary [10]. By the time

malware realizes that it is executed inside a debugger, it may divert from its normal code execution path

or modify the code to cause a crash, thus preventing the process of analysis from being carried out and

adding time and cost to analyst’s efforts. Generally, the main objective of anti-debugging is to prevent

the process of reverse engineering by detecting the existence of a debugger and behave differently

when a debugger is attached to the current process or by interrupting/crashing the debugger. In fact,

there is no flawless solution to deter the experienced malware analyst. However, making the analysis

procedure as exhausting and painful as possible increases the time and skills needed for a complete

analysis of the hidden procedures inside the malware.

 Malware analysis also applies technologies of virtualization [21], [22], [23] and emulation [24], [25],

[26] to quarantine malware in an area where it can be studied and dissected in order to analyze its

behavior at runtime. On the contrary, malware authors write malwares that can recognize when they

are running inside a virtual machine/sandbox. If they can accomplish that objective, the malware will

avoid taking any malicious actions until it reaches a specific target machine, and as a result escape the

analysis mechanism and hide its true malicious nature. Virtual machines detection based mostly on

execution artifacts with predicted behavior [41]. These artifacts may include additional operating system

files and processes necessary for the virtualization to work, supplementary CPU features, hardware

parameters, timing attacks (code inside virtual machine is expected to execute slower than on host) etc.

 A variety of anti-debugging, anti-virtualization, and anti-emulation techniques [17], [12], [28], [31],

[32], [33] exists that in many times can give malware the ability to detect the presence of a VM or

emulator and alter its behavior to hide itself and escape analysis. According to [2] malware authors are

using more and more anti-debugging and anti-VM techniques to thwart the analysis, and also state that

the use of anti-debugging and anti-VM techniques in malware might increase over years while the use of

these evasive techniques help malware to evade many antivirus products. In [11] it is showed that

39.9% and 2.7% of 6,222 malware samples use anti-debugging and anti-virtualization techniques

respectively. Also, in [12] researchers found that 43.21% of 4 million samples are armed with anti-

debugging techniques and 81.4% armed anti-VM behaviors. Furthermore in [13] it is demonstrated the

detection of 5,835 malware samples (out of 110,005) that exhibit evasive behaviors and finally in [15]

there is a detection of evasion behavior in 25.6% of 1,686 malicious binaries. All these studies show that

anti-virtualization and anti-debugging techniques have become the most popular methods of evading

malware analysis.

The rest of the paper is organized as follows: Section 2 presents briefly the structure and basic

concepts of the PE file format, basic concepts of Windows insides related to the mechanisms of the tool

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 7

as well as the structure of the tool. Section 3 analyses the anti-debugging techniques used by the

program, Section 4 analyses the anti-VM techniques used and finally Section 5 concludes.

2 PE Overview and Basic Concepts

In order to understand the content of this paper better, one must be familiar with the Portable

Executable file format. Portable executable file format is the Windows standard executable format type

used in x86 and x64 architectures. The term "portable" refers to format's scalability within numerous

environments of operating system software architecture. The Windows loader needs to handle the

wrapped executable code so the structures contained in the PE file format actually maintain all the

necessary information to achieve this. Predecessor to the PE file format was the COFF format used in

Windows NT. This standard is created by Microsoft and while some structures are partially documented

it is available at [5]. PE files have extensions like .exe, .dll, .sys (driver files) and others

 The way PE files are laid out in memory is actually very similar to the executable file on disk. The

loader uses the memory-mapped file mechanism to map the appropriate pieces of the file into the

virtual address space. To use a construction analogy, a PE file is like a prefabricated home [4].

2.1 Relative Virtual Addressing

Windows makes heavy use of RVAs in order to represent addresses in PE headers and achieve position

independence as Windows may load an executable into any location in memory. Absolute memory

addresses cannot be used because an executable normally will be loaded into an unknown address in

memory. The concept of RVA gives the ability to determine virtual addresses of data in memory as an

offset relative to a specific section in the file. The compiler generates an RVA and then the Windows

loader converts that RVA into an actual virtual address at runtime because the loader knows where the

executable will be loaded into [8].

When parsing the raw binary, we need to convert RVAs into file offsets because the executable is not

loaded in memory but instead what it is parsed is the static content inside the file as it is on disk. In

order to calculate the raw offset in disk from a given RVA we need to find the PE section that belongs to.

We determine that a given RVA belongs to a specific section by looping through the section headers,

and check if that RVA is inside that section. The base RVA of a section is where the section start is loaded

in memory so by subtracting from RVA we get the actual offset. Now if we add the file offset of the

section’s beginning on disk we can get the actual file offset of the given RVA. The following equations

summarize the above:

file_offset = section_raw_offset + (RVA - section_base_RVA).

By looping through the array of section headers we can find which section contains the RVA by

examining:

if section_base_rva <= rva < (section_base_rva + section_virtual_size)

The following definitions are related to addresses in the PE format. Addresses are either physical or

virtual (in-memory), and either relative or absolute.

 Physical address: A physical address is the offset of a certain byte in a file as it is written on disk.

Physical addresses are necessary to access parts of the PE file that must be read from disk.

 Base address: The base address is the address of the first byte when the file is loaded in memory. PE

files specify a preferred base address in a field called ImageBase (see Optional Header below). If the

image file cannot be loaded at the preferred address into process space, another base address is

applied, which is known as rebasing.

 RVA: Relative virtual addresses (RVA) are used while an image file is loaded in memory. They are

relative to the base address of the image file or to another RVA. RVAs are a way to specify addresses in

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 8

memory independently from the base address. This makes it possible to rebase the file without having

to re-calculate all in-memory addresses in the file.

VA: Virtual address (VA) is an absolute in-memory addresses. Although the PE/COFF specification

defines a VA this way, it uses the term also for addresses that are actually relative to the image base.

Entry point: The entry point is a RVA to the starting address for EXE files, or to the initialization function

for device drivers for DLL files (see AddressOfEntryPoint)

2.2 DOS Header

It is important to understand that the PE header is not the first item loaded into memory when a

program is executed. A Microsoft DOS portion of the executable runs first to determine if a compatible

version of Microsoft Windows is being used. At the start of every PE file we find DOS header, an MS-DOS

executable ("stub") which is responsible to flag a PE file as a valid MS-DOS executable. Its structure can

be found as IMAGE_DOS_HEADER in WINNT.H. The MS-DOS header is the same MS-DOS header since

version 2 of the MS-DOS operating system. The main reason for keeping the same structure intact at the

beginning of the PE file format is so that, when you attempt to load a file created under Windows

version 3.1 or earlier, or MS DOS version 2.0 or later, the operating system can read the file and

understand that it is not compatible. In other words, when you attempt to run a Windows NT

executable on MS-DOS version 6.0, you get this message: "This program cannot be run in DOS mode." If

the MS-DOS header was not included as the first part of the PE file format, the operating system would

simply fail the attempt to load the file and offer something completely useless, such as: "The name

specified is not recognized as an internal or external command, operable program or batch file."[42].

The MS-DOS header fills the first 64 bytes of the PE file. The only two fields that matter are the first

field e_magic and the last field e_lfanew. The first field, e_magic, (contains magic bytes) is used to check

for MS-DOS-compatibility. These magic bytes contain the value 0x54AD, which represents the ASCII

characters MZ. Anti-virus products usually use this classical signature to locate PE executable in

memory. The final field, e_lfanew, is a 4-byte offset into the file where the actual PE file header and is

located at offset 0x3C (60-64) from the beginning of the file. By indexing the e_lfanew field of the MS-

DOS header we take an offset in the file, so we can add the file's memory-mapped base address to

determine the actual memory-mapped address [42]. All other field of the DOS structure are actually

useless, compilers and linkers may ignore them. Malware actually can malform its standard format due

to the fact that many fields in the PE headers are ignored [6][7].

2.3 PE Header

The PE File Header is placed after the MS-DOS Stub. While the PE header usually follows the DOS header

it might not be the case as that isn’t defined by the specification as a strict rule in respect to the file

layout so by moving the location of the PE header can lead to several specific malformation cases which

have the potential of affecting security and reverse engineering tools [7]. The information in the PE file

is basically high-level guidelines used by Windows loader or the executable to determine how to load

the file. All substructures of the PE File Header, normally, are consecutively arranged, thus located at a

fixed offset from the beginning of the PE signature. The PE File Header consists of the PE signature, a 32-

bit-signature with the magic number 0x00004550 (this signature is "PE\0\0"), the (COFF) File Header,

the Optional Header, and the Section Table.

2.4 File Header

The PE File header is called IMAGE_FILE_HEADER (WINNT.H) and contains limited high-level information

about the executable such as the type of machine the binary it can be executed (Machine), the number

of sections in it (NumberOfSections), the time it was linked, whether it is an executable or a DLL etc.

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 9

2.5 Optional Header

Immediatly following the file header is the IMAGE_OPTIONAL_HEADER (WINNT.H), that contains

information the loader needs. Most important fields are:

AddressOfEntryPoint: This is a 32-bit-value an offset to where the execution starts a.k.a the codes's

entry point. This is for example the address of a DLL's LibMain() or the program's startup code which will

in turn call main() or a driver's DriverEntry().

ImageBase: This is a 32-bit-value which indicates the preferred (linear) load address of the entire binary,

including all headers. The linker will relocate the file to this is the address. The preferred load address

cannot be used if another image has already been loaded to that address or the memory in question has

been used for other purposes (stack, malloc(), uninitialized data, whatever). In these cases, the image

must be relocated and loaded to some other address.

SectionAlignment: The field is a 32-bit-value that holds information about the alignment of the PE-file's

sections in RAM (when the image has been loaded). SectionAlignment is 4096 in most cases.

FileAlignment: The field is a 32-bit-value that holds information about the alignment of the PE-file's

sections as it is on disk. Usually FileAlignment is 512.

SizeOfImage: This is a 32-bit-value giving the amount of memory the image will need, in bytes

('SizeOfImage'). It is the sum of all headers' and sections' lengths if aligned to 'SectionAlignment'. It is a

hint to the loader how many pages it will need in order to load the image.

DllCharacteristics: The DLL characteristics field of the executable image are also really important for a

malware analyst

IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE (0x0040) - The DLL can be relocated at load time this

means we have ASLR enabled.

IMAGE_DLLCHARACTERISTICS_NX_COMPAT (0x0100) - The image has data execution prevention (DEP)

enabled.

IMAGE_DLLCHARACTERISTICS_NO_SEH (0x0400) - The image does not use structured exception

handling (SEH). This is important because no handlers can be called in this image and exception handling

has been used extensively as an attack vector.

Data directories: The data directory acts phonebook that gives us the locations of maybe the most

important components of the executable in the file. It is an array

of IMAGE_DATA_DIRECTORY structures that are located at the end of the optional header structure.

Currently the specification defines 16 indexes of data directories. However, the number of data

directories is completely up to the compiler/linker/malicious actor so the NumberOfRvaAndSizes field of

the IMAGE_OPTIONAL_HEADER is important to know how many to parse.

At each index is a IMAGE_DATA_DIRECTORY structurethat has the following form:

• VirtualAddress - The offset of the table

• Size - The size of the table, in bytes.

The VirtualAddress field is an offset into a specified section in memory. Each data directory entry

specifies the size and relative virtual address of the directory. To locate a particular directory, we have

to determine the relative address from the data directory array in the optional header. Then use the

virtual address to determine which section the directory is in. Once we determine which section

contains the directory, the section header for that section is then used to find the exact file offset.

2.6 Section Headers

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 10

Last in PE Header and before the raw data for the image's sections lies the section table. This structure is

called IMAGE_SECTION_HEADER and contains necessary information about each section in the image.

The sections in the image are sorted by their starting address (RVAs) and their number is determined by

NumberOfSections field in the file header (IMAGE_FILE_HEADER) structure. We will discuss some of the

important entries below.

Name: This is 8-byte, null-padded UTF-8 string. There is no terminating null character if the string is

exactly eight characters long. For longer names, this member contains a forward slash (/) followed by an

ASCII representation of a decimal number that is an offset into the string table. Executable images do

not use a string table and do not support section names longer than eight characters.

VirtualSize: The total size of the section when loaded into memory, in bytes. If this value is greater than

the SizeOfRawData member, the section is filled with zeroes. This field is valid only for executable

images and should be set to 0 for object files.

VirtualAddress: The address of the first byte of the section when loaded into memory, relative to the

image base. For object files, this is the address of the first byte before relocation is applied.

SizeOfRawData: The size of the initialized data on disk, in bytes. This value must be a multiple of the

FileAlignment member of the IMAGE_OPTIONAL_HEADER structure. If this value is less than the

VirtualSize member, the remainder of the section is filled with zeroes. If the section contains only

uninitialized data, the member is zero.

PointerToRawData: A file pointer to the first page within the PE file. This value must be a multiple of the

FileAlignment member of the IMAGE_OPTIONAL_HEADER structure. If a section contains only

uninitialized data, set this member is zero.

Characteristics: The characteristics of the image. For example, the value IMAGE_SCN_MEM_EXECUTE

(0x20000000) shows the section can be executed as code.

2.7 The PEB Structure

The PEB is a complex data structure which maintains in its fields important data about the current

process, while many of these fields may point to other structures lower in the PEB. Every process has its

own PEB and the Windows Kernel will also have access to the PEB of every user-mode process, so it can

keep track of certain data stored within it. The PEB structure comes from the Windows Kernel (although

is accessible in user-mode as well). PEB has been abused for malicious purposes in the past, but

Microsoft has made many changes over the recent years to help prevent this [9]. The PEB is the user-

mode portion of Windows process control structures. We will see in the following that parsing this

structure can give us access to the Windows API functions and also that many anti-debugging tricks are

based upon specific values of the fields inside PEB.

2.8 Structure of the tool

Basically, to add the anti-debugging code the program adds an executable section to the malware on

disk, with a name (for that section) provided by the user. The technique used to add a section is similar

to one of the many techniques viruses used in traditional PE infection-backdooring. The tool first accepts

two arguments, the target executable and the name of the new section to add. The first function

AddSection() first reads the file and check its DOS signature for a PE validity, and x86 compatibility

(doesn’t support x64 executables). It then checks if the name of section we want to add already exists to

continue. The next step is to copy the name of the section in the Name field of the newly created

section header and add all the required information. Specifically:

1.The total size of the section when loaded into memory.

Misc.VirtualSize = size of new section, aligned by Optional Header’s SectionAlignment

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 11

2. The address of the first byte of the section relative to the image base when the section is loaded

into memory will be equal to previous section’s end.

VirtualAddress = previous section’s Misc.VirtualSize, aligned by OptionalHeader SectionAlignment

3.The size of new section on disk

SizeOfRawData = size of new section, aligned by Optional Header’s FileAlignment

4. The file pointer to the first page of the section must be equal to the end of the previous section on

disk

PointerToRawData = previous section’s SizeOfRawData, aligned by Optional Header’s FileAlignment

5. The Characteristics of the new Section to make it executable writable readable

Characteristics = 0xE00000E0; // 0xE00000E0 = IMAGE_SCN_MEM_WRITE | IMAGE_SCN_CNT_CODE |

IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_EXECUTE |

IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ

6. The SizeOfImage field in the Optional Header , which indicates the size as the image is loaded in

memory has changed

SizeOfImage = VirtualAddress + Misc.VirtualSize

7.The number of sections in the FileHeader also has changed

NumberOfSections +=1

8. Finally the changes are written to the file

fig.26 Section Header structure

Next, is the function that adds the inline assembly code that also contains the anti-techniques. We

create 2 labels in assembly. One represents the start of the opcode section and one is the end. The

__asm code snippets between is where the actual code that is to be written resides. So, by subtracting

the end from the start address we get the offset to the code we want to write without copying the other

opcodes, thus corrupting the integrity of the infected anti-reverse code in the binary. We jump over the

middle code, so we don’t execute it in the target binary itself by using the jmp instruction (jmp to label

over).

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 12

fig.27 asm labels

We also manually create an entry in the Optional Header’s TLS Directory (index 9) by specifying it’s size

(sizeof(IMAGE_TLS_DIRECTORY)) in the Size field and update its Virtual Address (TLS Directory RVA) field

to point 4 bytes after the start of our newly created section.

fig.28 Create TLS Directory Entry

Finally, manually, again we create the tls directory itself that is located in our new section. The

IMAGE_TLS_DIRECTORY has the following prototype:

The only important fields are (1) AddressOfIndex which is the location to receive the TLS index, which

the loader assigns at runtime. This location is in an ordinary data section, so it can be given a symbolic

name that is accessible to the program. (2) AddressOfCallbacks which is a pointer to an array of TLS

callback functions. The array is null-terminated, so if no callback function is supported, this field points

to 4 or 8 bytes set to zero. The steps that the tool follows to create the tls structure are:

1. Write 4 null bytes at the start of the section

2. After the 4 null bytes we place the IMAGE_TLS_DIRECTORY structure (size 24 bytes)

3. AddressOfIndex = (ImageBase + section address) + 24 (sizeof(IMAGE_TLS_DIRECTORY)) + 4 {null

bytes)

4. AddressOfCallbacks = (ImageBase + section address) + 24 (sizeof(IMAGE_TLS_DIRECTORY)) + 4

(null bytes) + 4 (AddressOfIndex)

5. Finally, we update the address to where AddressOfCallbacks points to be 40 bytes after the

start of the section, this is where the inline assembly code begins. This is the first TlsCallback,

we also leave space (4 null bytes) for one more that will be added dynamically.

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 13

fig.29 Create TLS Structure manually

Finally, many anti-debugging techniques rely on functions exported by kernel32.dll, ntdll.dll and

user32.dll so the tool must resolve their addresses memory. It first reads the base address of

kernel32.dll or ntdll.dll, (that are always loaded) from PEB, and walk their export table to search for

needed functions by comparing their names. There are many techniques to do that here we use the

following:

1. Get a pointer to the PEB

mov eax, fs: [30h]

2. PEB_LDR_DATA structure is a structure that contains information about all of the loaded

modules in the current process. Is located from a pointer at offset 0x0c in the Win32 Process

Environment Block (PEB).

mov eax, [eax + 0x0c]

3. Get PEB->Ldr.InMemoryOrderModuleList.Flink(1st entry). The InMemoryOrderLinks contains

Flink/Blink to the next/previous loaded module.

 mov eax, [eax + 0x14]

second entry is ntdll.dll

 mov eax, [eax]

third entry is kernel32.dll

 mov eax, [eax]

4. Get the 3rd entry’s base address(kernel32.dll)

 mov eax, [eax + 0x10]

 mov ebx, eax; base address of kernel32 in ebx

5. Get its PE Header

 mov eax, [ebx + 0x3c]; PE header VMA

6. Go to its export table

 mov edi, [ebx + eax + 0x78]; Export table relative offset, PE + 0x78 (i.e., offset 120 bytes) is the

relative address (relative to DLL base address) of the export table

 add edi, ebx; Export table VMA

7. Get Number of names to use it as a counter to walk its functions

 mov ecx, [edi + 0x18]; NumberOfNames

8. Get Address of names

 mov edx, [edi + 0x20]; Names table relative offset

 add edx, ebx; Names table VMA

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 14

fig.31 Export Directory

fig.30 Walking the PEB

3 Anti-debugging techniques

3.1 Flags within the PEB structure & Manual Checks

3.1.1 Check PEB.BeingDebugged flag /kernel32.IsDebuggerPresent().

The most popular native Windows function in kernel32.dll that can be used to check if a process is being

debugged is the IsDebuggerPresent() function which returns TRUE if a debugger is detected. The

problem with such method is that the function is easily traceable and by changing the return value to 0,

such protection will be bypassed. Also, this is first anti-debugging method that most new reverse

engineers discover is the Windows API, so it is probably one of the first things a malware analyst will

observe. Since a call to this function is easy to detect, a similar method is to replace it by the method

used inside this function in order to bypass the API call and directly access the details of the running

PEB. A Windows PEB structure is maintained by the OS for each running process. As stated before (see

PEB section above), it contains all user-mode parameters associated with a process. These parameters

include the process’s environment data, which itself includes environment variables, the loaded

modules list, addresses in memory, and debugger status [1]. What the IsDebuggerPresent() function

really does inside is to check the BeingDebugged byte of the PEB structure. The BeingDebugged flag in

PEB at offset 0x2 is set when the current process is under debugging. Thus, this flag can indicate the

existence of debugger. When operating in Windows 32-bit systems, PEB location can be referenced from

http://msdn.microsoft.com/fr-fr/library/windows/desktop/ms680345%28v=vs.85%29.aspx

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 15

fs segment register at offset 0x30, where fs:[0x00] is the address of TIB (Win32 Thread Information

Block). So, the check can be made using this code:

mov eax, fs:[30h] ; PEB

cmp byte ptr [eax+2],0 ; BeingDebugged flag

jne being_debugged

 Because of its simplicity there is a plethora of anti-anti-debug plugins that can disable this technique

so, it is mostly used obfuscated by inserting junk code/garbage bytes, or other techniques as an extra

anti-disassembly trick. fig.1 shows an example of PEB.BeingDebugged technique using speculative

execution and fig.2 an example using code transposition.

fig.1 BeingDebugged /w spec execution fig.2 BeingDebugged /w code transposition

3.1.2 Check PEB.NtGlobalFlag

Processes, when started under a debugger, in general run slightly differently than those started

without a debugger attached. In particular, debugged processes create memory heaps differently than

those not being debugged. The information that is stored within the PEB NtGlobalFlag at offset 0x68 for

Windows 32-bit informs the kernel how to create heap structures. The default value is always 0 and

doesn't change when a debugger is attached to the process. There are several methods in which the

NtGlobalFlag can be changed to detect the presence of a debugger. The NtGlobalFlag contains many

flags which affect the running of a process. The most common flags which are set with NtGlobalFlag

when a debugger creates a process, is the heap checking flags:

FLG_HEAP_ENABLE_TAIL_CHECK (0x10),

FLG_HEAP_ENABLE_FREE_CHECK (0x20), and

FLG_HEAP_VALIDATE_PARAMETERS (0x40).

Thus, a way to detect the presence of a debugger is to check if the bits corresponding to 0x70 (the sum

of the above flags) are set in NtGlobalFlag.

fig.3 NtGlobalFlag

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 16

These three flags are usually set for the process that is created by the debugger, but for the process to

which the debugger attaches (attach), these flags are not set. There are three exceptions:

1 - additional flags can be set for all processes, through the system registry.

[HKEY_LOCAL_MACHINE \ System \ CurrentControlSet \ Control \ Session Manager]

"GlobalFlag" = "0x00000000"

2 - The second is through the registry for a specific program

[HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ Windows NT \ CurrentVersion \ Image File Execution

Options \ <file name>]

"GlobalFlag" = "0x00000000"

3 - All flags can be controlled by loading the configuration structure (Load Configuration Structure).

3.1.3 Check Heap Flags

The PEB structure contains the pointer to the process heap – the _HEAP structure-, known simply as

ProcessHeap, that is set to the location of a process’s first heap allocated by the loader. ProcessHeap is

located at 0x18 in the PEB structure, for Win32 Systems, but also can be retrieved by the

GetProcessHeap(). This first heap contains a header with fields used to tell the kernel whether the heap

was created within a debugger. These are known as the ForceFlags and Flags fields [13]. Due to the flags

set in NtGlobalFlag, heaps that are created will have several flags turned on, and that this behavior can

be observed inside ntdll!RtlCreateHeap(). Typically, the initial heap created for the process

(PEB.ProcessHeap) will have its Flags and ForceFlags fields set to 0x02 (HEAP_GROWABLE) and 0x0

respectively. However, when a process is being debugged, these flags are usually set to 0x40000062

(depending on the NtGlobalFlag) and 0x40000060. By default, the following additional heap flags are set

when a heap is created on a debugged process [14]:

• HEAP_TAIL_CHECKING_ENABLED (0x20)

• HEAP_FREE_CHECKING_ENABLED (0x40)

The values in those fields are affected by the presence of a debugger, but also depend on the version of

Windows. The location of those fields also depends on the version of Windows since

the _HEAP structure is undocumented.

fig.4 Heap Flags

3.1.4 Anti-Step-Over

Most debuggers support stepping over certain instructions, such as "call" and "rep" sequences. In such

cases, a software breakpoint is often placed in the instruction stream, and then the process is allowed to

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 17

resume execution. The debugger normally receives control again when the software breakpoint is

reached. However, in the case of the "rep" sequence, the debugger must check that the instruction

following the rep prefix is indeed an instruction to which the rep applies legally. Some debuggers

assume that any rep prefix precedes a string instruction. This introduces a vulnerability when the

instruction following the rep prefix is another instruction entirely. Specifically, the problem occurs if that

instruction removes the software breakpoint that would be placed in the stream if the instruction were

stepped over. In that case, when the instruction is stepped over, and the software breakpoint is

removed by the instruction, execution resumes under complete control of the process and never

returns to the debugger [13]. The code below will detect a breakpoint that is placed at anti_step_loc1. It

works by copying the value at anti_step_loc1 over the "90h" at anti_step_loc11+1. The value is then

compared at anti_step_loc2.

fig.5 Anti-Step-Over

3.1.5 Thread Local Storage Callbacks

Threads are like individual execution mechanisms that run inside of a process. They mainly used for

parallel execution in order to accomplish multiple actions concurrently. Usually threads inside the

process context share the same memory, but they can also maintain their own private local storage. This

storage is similar to a stack but is only accessible to a specific thread. There is a certain chunk of memory

that will be reserved for this thread, and variables can be stored in it. This way, only this one thread has

access. Windows also allows for threads to define their own initialization and deconstruction routines.

All of this is captured inside the TLS data directory entry. The TLS data directory entry is an RVA that

points to a IMAGE_TLS_DIRECTORY32 or IMAGE_TLS_DIRECTORY 64 depending on the CPU architecture

(defined in WINNT.H) [43]. TLS callback is a very powerful anti-debugging technique and good place to

perform debugger presence check since the Callback function will be called before the executable reach

the main module entry point. To use the TLS directory, we must create an entry in the PE file format's

Optional Header (see above at Structure of the tool). The TLS structure, IMAGE_TLS_DIRECTORY,

pointed to by the TLS directory entry has a small number of fields. The one of special interest is the one

pointing to a list of callbacks, AddressOfCallBacks. Windows Loader reads Data Directories -> TLS

Directory, if VirtualAddress isn’t zero, the loader reads Address of Callbacks Array and executes the first

callback in the list and continues by reading the next element of Address of Callbacks Array. This means

that we can add/remove new TLS callbacks from another TLS callback dynamically. It is possible to

register/unregister new TLS callbacks on the fly even after the file has been loaded, since the Windows

Loader re-reads PE-header and the section where the callbacks are stored every time it need the data. It

is possible to change tls table while in tls callback itself; those added will execute normally (table is not

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 18

cached by loader). In Fig. 32 a new callback is added in the AddressOfCallbacks immediately after the

first callback that points to the code exactly after.

fig.32 Dynamically added TLS Callback

3.1.6 SS Register

There is a simple trick to detect single-stepping that has worked since the earliest of Intel CPUs. As

per Wikipedia a trap flag permits operation of a processor in single-step mode. If such a flag is available,

debuggers can use it to step through the execution of a computer program. If it’s set, executing an

instruction will raise SINGLE_STEP exception. When POP SS (SS is stack segment register) is executed,

the CPU will prevent triggering of interrupts, as to avoid corruption of the stack, so when the Single-step

flag is set , it triggers and interrupt in the CPU , but when a POP SS is executed it won’t trigger interrupts

before it has executed the next instruction after it , and thus the debugger will never get a single-step

exception for the PUSHFD and won’t know it has been executed. Debugger will not break push ss / pop

ss and inevitably will stop on the following instruction. In other words, unsetting of the trap flag won’t

be possible after that, and if check is done here, debugger will be detected. Thus, debugger will not

clean out the trap-flag and leave debugger vulnerable to detection.

fig.6 push/pop ss

3.1.7 Interrupt 0x2d

The interrupt 0x2D when it is executed, Windows uses the current EIP register value as the exception

address, and then it increments by one the EIP register value. However, Windows also examines the

value in the EAX register to determine how to adjust the exception address. If the EAX register has the

value of 1, 3, or 4 on all versions of Windows, or the value 5 on Windows Vista and later, then Windows

will increase by one the exception address. Finally, it issues an EXCEPTION_BREAKPOINT (0x80000003)

exception if a debugger is present. The interrupt 0x2D behavior can cause trouble for debuggers. The

problem is that some debuggers might use the EIP register value as the address from which to resume,

while other debuggers might use the exception address as the address from which to resume. This can

result in a single-byte instruction being skipped, or the execution of a completely different instruction

because the first byte is missing. These behaviors can be used to infer the presence of the debugger

[13].

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 19

fig.6 interrupt 0x2d

3.1.8 RDTSTC – as anti-step

RDTSC is an IA-32 instruction that stands for Read Time-Stamp Counter. Processors since the Pentium

have had a counter attached to the processor that is incremented every clock cycle and reset to 0 when

the processor is reset. RDTSC returns the count of the number of ticks since the last system reboot as a

64-bit value placed into EDX:EAX. When a debugger is present, and used to single-step through the

code, there is a significant delay between the executions of the individual instructions, when compared

to native execution [44]. The idea is to measure the time taken to execute a piece of code and

comparing it against a maximum tolerated threshold of time. This delay can be measured using a set of

time-related Win API functions or Intel instructions. This set includes the RDPMC instruction (however,

this instruction requires that the PCE flag is set in the CR4 register, but this is not the default setting,

getting exception PRIV_INSTRUCTION), the RDTSC instruction (however, this instruction requires that

the TSD flag is clear in the CR4 register, but this is the default setting), and some Win32 API functions,

the kernel32 GetLocalTime() function, the kernel32 GetSystemTime() function, the kernel32

QueryPerformanceCounter() function, the kernel32 GetTickCount() function, the ntoskrnl

KiGetTickCount() function (exposed via the interrupt 0x2A interface on the 32-bit versions of Windows),

and the winmm timeGetTime() function. The RDMSR instruction can also be used as a time source, but it

cannot be used in user mode.

fig.7 RDTSTC

3.1.9 Selectors

A selector register indicates a specific block of memory from which one can read or write. The real

memory address is looked up in an internal CPU table. For certain values FS and GS selectors will be

affected by a single-step event. In the case of the GS selector it will be not restored to its default value

on the 32-bit versions of Windows if it was set to a value from zero to three [13].

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 20

fig.8 Selectors

3.2 API Calls

3.2.1 CheckRemoteDebuggerPresent()

This function is one of the most common and simple API-based anti-debugging tricks since as stated in

the documentation it determines whether the specified (in our case the current) process is being

debugged by a user-mode debugger. The function sets to 0xffffffff the value to which the

pbDebuggerPresent argument points if a debugger is present (that is, attached to the current process).

In other words it also checks the BeingDebugged field in the PEB structure to make the decision, so it is

similar to IsDebuggerPresent() function except it can be used for a remote process. Internally

CheckRemoteDebuggerPresent() calls the NTDLL export NtQueryInformationProcess() with

the SYSTEM_INFORMATION_CLASS parameter set to 7 (ProcessDebugPort) [13].

fig.9 CheckRemoteDebuggerPresent()

3.2.2 NtQueryInformationProcess()

A large number of Windows API functions and structures are considered internal to the operating

system and thus not documented well. Many of these functions have undergone extensive research and

reverse engineering through the years to be able to understand how they operate and what can be

achieved using them. One such half-documented API function is the NtQueryInformationProcess

function which is used to retrieve information about a target process and resides in ntdll [45].

i. ProcessDebugPort

The ntdll.NtQueryInformationProcess() function accepts a parameter which is the class of

information to query. Most of the classes are not documented. However, one of the

documented classes is the ProcessDebugPort (7). It is possible to query for the existence

(not the value) of the port. The return value is 0xffffffff if the process is being debugged.

Internally, the function queries for the non-zero state of the DebugPort field in the

EPROCESS structure.

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 21

 fig.10 /w ProcessDebugPort

ii. Debug Objects – ProcessDebugObjectHandle Class

When a debugging session begins, a debug object is created, and a handle is associated

with it. It is possible to query for the value of this handle, using the undocumented

ProcessDebugObjectHandle (0x1e) class. Since this information comes from the kernel,

there is no easy way for user-mode code to prevent this call from revealing the presence of

the debugger [13].

fig.11 /w ProcessDebugObjectHandle

iii. Debug Objects – ProcessDebugFlags Class

The undocumented ProcessDebugFlags (0x1f) class returns the inverse value of the

NoDebugInherit bit in the EPROCESS structure. That is, the return value is zero if a

debugger is present.

fig.11 /w ProcessDebugFlags

3.2.3 NtSetInformationThread()

According to MSDN, ntdll NtSetInformationThread() sets the priority of a thread. However, its

ThreadInformationClass parameter has an undocumented value, ThreadHideFromDebugger (0x11),

which prevents debugging events to be sent to the debugger [5]. This is a very powerful anti-debugging

technique that can be used to difficult the debugging. When the function is called, the thread will

continue to run but a debugger will no longer receive any events related to that thread. It is important

to mention that the process will be terminated if it is called on the main thread. The reason why the

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 22

function exists is to avoid an unexpected interruption when an external process uses the ntdll

RtlQueryProcessDebugInformation() function to query information about the debuggee. The ntdll

RtlQueryProcessDebugInformation() function injects a thread into the debuggee in order to gather

information about the process. If the injected thread is not hidden from the debugger then the

debugger will gain control when the thread starts, and the debuggee will stop executing [13].

fig.12 NtSetInformationThread

3.2.4 RtlQueryProcessDebugInformation()

The ntdll RtlQueryProcessDebugInformation() function can be used to read certain fields from the

process memory of the requested process, including the heap flags. The function does this for the heap

flags by calling the ntdll RtlQueryProcessHeapInformation() function internally.

fig.13 RtlQueryProcessDebugInformation

3.2.5 RtlQueryProcessHeapInformation()

The ntdll RtlQueryProcessHeapInformation() function can be used to read the heap flags from the

process memory of the current process [19]. This function loads all heap blocks of the process into

DebugBuffer according to the informations that we want and that could be specified

throughout DebugInfoClassMask.

fig.14 RtlQueryProcessHeapInformation

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 23

3.2.6 Self-debugging with CreateProcess()

Self-Debugging It does not mean a single process debugging itself, because that is not possible. Instead

is a technique where the main process spawns a child process that debugs the process that created the

child process a.k.a the parent process. It can prevent other debuggers from attaching to the target

process since only one debugger can be attached to a process at a time, the second process becomes

"undebuggable" by ordinary means. The first process does not even need to do anything debugger-

related. There many variations of this technique as well as many advanced approaches [20].

fig.15 Self-Debug /w CreateProcess

3.2.7 SwitchDesktop()

It is possible to select a different active desktop through functions of WinAPI, which has the effect of

hiding the windows of the previously active desktop, and with no obvious way to switch back to the old

desktop (except by ctrl+alt+delete and killing the process from task manager). Further, the mouse and

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 24

keyboard events from the debuggee's desktop will not be delivered anymore to the debugger, because

their source is no longer shared. This obviously makes debugging impossible [13]. Using CreateDesktopA

and SwitchDesktop functions exported by user32.dll we can use this trick to crush the debugging session

or the execution of a malware.

fig.16 SwitchDesktop

3.2.8 OutputDebugString()

The OutputDebugString technique works by determining if OutputDebugString causes an error. It sends

a string to the debugger for display. If OutputDebugString is called and there is a debugger attached, the

call to OutputDebugString should succeed, and the value in GetLastError should not be changed. An

error will only occur if there is no active debugger for the process to receive the string; therefore, we

can conclude that if there is no error by calling GetLastError, after calling OutputDebugString, then there

is a debugger present.

fig.17 OutputDebugStringA

3.2.9 NtQueryObject

The NtQueryObject function, when called with the ObjectAllTypesInformation class, will return

information about the host system and the current process. There is a wealth of information to be

mined from this function, but we're most concerned with the information given about the DebugObjects

in the environment. When a debugging session begins, a debug object is created, and a handle is

associated with it. Using the ntdll NtQueryObject() function, it is possible to query for the list of existing

objects, and check the number of handles associated with any debug object that exists.

A DebugObject entry is maintained in this list of objects, and most importantly, the number of objects of

each type of object. The object and its related information can be expressed as

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 25

a OBJECT_INFORMATION_TYPE struct. However, calling the NtQueryObject function with

the ObjectAllTypesInformation class actually returns a buffer that begins with

a OBJECT_TYPE_INFORMATION struct [21]. Since this information comes from the kernel, there is no

easy way for user-mode code to prevent this call from revealing the presence of the debugger [13].

fig.18 NtQueryObject

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 26

3.2.10 BlockInput

BlockInput as stated in msdn documentation [39] blocks keyboard and mouse input events from

reaching applications (apart from the ctrl-alt-delete key sequence). This technique is effective due to the

fact that only the thread that the thread that blocked input can successfully unblock input. This isn't

really an anti-reverse-engineering technique, but more of a way to mess with with the debugging

session. The effect remains until either the process exits, or the function is called again with the

opposite parameter. It is a very effective way to disable debuggers. The call requires that the calling

thread has the DESKTOP_JOURNALPLAYBACK (0x0020) privilege (which is set by default). On Windows

Vista and later, it also requires that the process is running at a high integrity level (that is, a process

requires elevation if it was running in a standard or lowrights user account), if elevation is enabled and

either the "HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System\EnableUIPI" registry

value either does not exist (a default value of present and set is used in that case) or has a non-zero

value (and which would require administrative privileges to change). The function will not allow the

input to be blocked twice in a row, nor will it allow the input to be unblocked twice in a row. Thus, if the

same request is made twice to the function, then the return value should be different. This fact can be

used to detect the presence of a number of tools that intercept the call, because most of them simply

return success, regardless of the input [13].

fig.19 BlockInput

4 Anti-VM Techniques

To extract malware intelligence, the most common use is to execute malwares inside a virtualized

execution environment and try to comprehend how it behaves by observing for example all the system

function calls. Once the analysis is complete, the environment can be destroyed, essentially without risk

to the real environment that hosts it [15]. This tactic can implement a fast and secure way to examine

malicious samples. For that reason, the most usual functionality a malware can add on its weaponry is to

try to detect a virtual machine/sandbox. In case of detection of virtualization malicious samples usually

adjust their behavior, usually by refusing to execute. This behavior makes analysis more complex, and

possibly highly evasive. It is worth mentioning that anti-vm techniques are a rising trend in malware

development

For the ease to manage and communicate to VMM, most of VM systems leave some artifacts in

guest OS. Those artifacts make detection of VM possible. The artifacts include processes, registry keys

and values, loaded and exported dll’s, network artifacts like for example specific MAC addresses or

adapter name, file system artifacts (system32\vboxtray.exe), special directories that are created

(%PROGRAMFILES%\VMWare), virtual devices (\\.\HGFS), hardware label etc. The following are

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 27

techniques that have been implemented in the tool and in no case they form a complete list of the

numerous anti-vm techniques that exist. (See List of Techniques at the end).

4.1 Red Pill

Maybe on of the oldest techniques introduced by Joanna Rutkowska, in 2004, is a technique known as

Red Pill. This technique uses a single machine language instruction, SIDT (“Store Interrupt Descriptor

Table”) that can be run in user mode, and its purpose is to retrieve the location of the Interrupt

Descriptor Table Register (IDTR) and store it in memory. Rutkowska observed that on VM guest

machines, the IDT is typically located at 0xffXXXXXX, while on VirtualPC guests, it is located at

0xe8XXXXXX. For host operating systems, the IDT is located far lower in memory [46]. To handle both

conditions, one checks to see if the IDTR is greater than 0xd0000000. Variations of this technique use

other instructions notably the sgdt for Global Descriptor Table (GDT) and the sldt for Local Descriptor

Table (LDT). These tables hold critical variables associated with the operating system and particular

running processes, respectively. One can also use the str instruction that stores the segment selector

from the Task Register (TR) [16]. However, these techniques don’t work anymore on VMware 12

Workstation after experiments (they have not been tested in other virtualization software).

fig.20 /w sldt instruction fig.21 /w str instruction

4.2 CPUID – Hypervisor presence

The CPUID opcode is a processor supplementary instruction (its name derived from CPU IDentification)

for the x86 architecture allowing software to discover details of the processor [38]. CPUID instruction is

executed with EAX=1 as input, the return value describes the processors features. The 31st bit of ECX on

a physical machine will be equal to 0. On a guest VM it will equal to 1.

fig.22 cpuid 1

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 28

4.3 CPUID – Hypervisor Vendor

By calling CPUID with EAX=40000000 as input,1 the malware will get, as the return value, the

virtualization vendor string in EAX, ECX, EDX.

For example:

• Microsoft: “Microsoft HV”

• VMware: “VMwareVMware”

fig.23 cpuid 2

4.4 Number of Processors

Malware authors use various techniques to identify a sandbox, but most methods involve analyzing the

host’s hardware configuration. One of these techniques is the number of processors assigned to a vm.

Malware can compare that value to detect virtualization. We can retrieve the number of processors

using the kernel32!GetSystemInfo function

fig.24 checking number of processors

4.5 Virtual Devices

One way to detect if virtualization is active in the system is to try accessing their device drivers. The

technique is simple and just involves calling kernel32!CreateFile() against well-known device names used

by virtualization software. For example, trying to access \\.\HGFS or \\.\vmci when in host will return

INVALID_HANDLE_VALUE (0xffffffff) in eax, which is different than the value returned inside VMWare.

file://///./HGFS

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 29

fig.25 Virtual Device HGFS

5 Conclusion

In malware analysis field as well as in software protection the number of anti-reverse engineering

techniques, others simple others advanced (e.g. TLB splitting), is probably a couple of hundreds. The

main purpose is to manipulate the results of tools in order to fool and as result prevent or delay the

analyst from dissecting and neutralizing the malware. The tool presented automates the

implementation of known selected anti-debug and anti-vm techniques in order to armor a simple

malware on the fly. In no way it acts as a targeted sophisticated solution. Because many of the

techniques incorporated into the tool can be neutralized automatically either with anti-anti plugins or

manually with hooking of Windows API functions, as a future work, the tool will implement an anti-hook

engine.

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 30

References

[1] Practical Malware Analysis The Hands-On Guide to Dissecting Malicious Software by Michael Sikorski

and Andrew Honig February 2012

 [2] Chen P., Huygens C., Desmet L., Joosen W. (2016) Advanced or Not? A Comparative Study of the Use

of Anti-debugging and Anti-VM Techniques in Generic and Targeted Malware. In: Hoepman JH.,

Katzenbeisser S. (eds) ICT Systems Security and Privacy Protection. SEC 2016. IFIP Advances in

Information and Communication Technology, vol 471. Springer, Cham

[3] Towards Transparent Debugging Fengwei Zhang , Kevin Leach, Angelos Stavrou, and Haining Wang

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018

[4] Peering Inside the PE: A Tour of the Win32 Portable Executable File Format

[5] http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

[6] https://web.archive.org/web/20120121050913/http://www.phreedom.org:80/solar/code/tinype/

[7] https://media.blackhat.com/bh-us-11/Vuksan/BH_US_11_VuksanPericin_PECOFF_WP.pdf

[8] https://ntquery.wordpress.com/2014/03/29/anti-debug-ntsetinformationthread/

[9] http://blog.rewolf.pl/blog/?p=573

[10] Anti-Debugging – A Developers View

[11] X. Chen, J. Andersen, Z. Mao, et al. Towards an Understanding of Anti-virtualization and Anti-

debugging Behavior in Modern Malware. In DSN, 2008.

[12] R. R. Branco, G. N. Barbosa, and P. D. Neto. (2012). “Scientific but not academical overview of

malware anti-debugging, anti-disassembly and Anti-VM technologies,”

 [13] Peter Ferrie – The “Ultimate” Anti-Debugging Reference

[14] The Art of Unpacking Mark Vincent Yason Malcode Analyst, X-Force Research & Development

[15] Attacks on Virtual Machine Emulators Peter Ferrie, Senior Principal Researcher, Symantec Advanced

Threat Research

[16] https://sites.google.com/site/bletchleypark2/malware-analysis/malware-technique/anti-vm

[17] N. Falliere. (2010). Windows anti-debug reference [

[18] Intel - Intel® 64 and IA-32 Architectures Software Developer’s Manual - Volume 2B: Instruction Set

Reference

[18] Peter Ferrie – Anti-Unpacker Tricks

[19] https://evilcodecave.wordpress.com/2009/04/

[20] Tightly-Coupled Self-Debugging Software Protection

[21] https://www.codeproject.com/Articles/30815/An-Anti-Reverse-Engineering-Guide

[22] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis via hardware virtualization

extensions,” in Proc. 15th ACM Conf. Comput. Commun. Security, 2008, pp. 51–62.

[23] Z. Deng, X. Zhang, and D. Xu, “SPIDER: Stealthy binary program instrumentation and debugging via

hardware virtualization,” in Proc. Annu. Comput. Security Appl. Conf., 2013, pp. 289–298.

[24] A. Fattori, R. Paleari, L. Martignoni, and M. Monga, “Dynamic and transparent analysis of

commodity production systems,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2010, pp. 417–426.

[25] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin. (2012). V2E:Combining hardware virtualization and

software emulation for transparent and extensible malware analysis. in Proc. 8th ACM SIGPLAN/SIGOPS

Conf. Virtual Execution Environ.

[26] (2009). Anubis. Analyzing Unknown Binaries

[27] N. A. Quynh and K. Suzaki. (2010). “Virt-ICE: Next-generation debugger for malware analysis,” in

Black Hat USA.

[28] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards an understanding of Anti-

Virtualization and AntiDebugging behavior in modern malware,” in Proc. 38th Annu. IEEE Int. Conf.

Dependable Syst. Netw., 2008, pp. 177–186.

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
https://media.blackhat.com/bh-us-11/Vuksan/BH_US_11_VuksanPericin_PECOFF_WP.pdf
https://evilcodecave.wordpress.com/2009/04/

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 31

 [31] D. Quist and V. Val Smith. (2006). Detecting the presence of virtual machines using the local data

table

[32] E. Bachaalany. (2005). Detect if your program is running inside a virtual machine

[33] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,” in Information Security.

Berlin, Germany: Springer, 2007.

[34] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility is not transparency: VMM

detection myths and realities,” in Proc.11th USENIX Workshop Hot Topics Operating Syst., 2007. pp. 1–6.

[35] D. Kirat, G. Vigna, and C. Kruegel, “BareBox: Efficient malware analysis on Bare-metal,” in Proc. 27th

Annu. Comput. Security Appl.Conf., 2011, pp. 403–412.

[36] C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and A. Vasudevan, “Down to the bare Metal:

Using processor features for binary analysis,” in Proc. Annu. Comput. Security Appl. Conf., 2012, pp.

189–198.

[37] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti, “Detecting Environment-Sensitive Malware,” in

Proceedings of the 14th International Conference on Recent Advances in Intrusion Detection (RAID),

2011.

[38] https://en.wikipedia.org/wiki/CPUID

[39] https://msdn.microsoft.com/en-us/library/windows/desktop/ms646290(v=vs.85).aspx

[40] Hiding Debuggers from Malware with Apate

[41] VMDE Virtual Machines Detection Enhanced N. Rin EP_X0FF

[42] https://blog.kowalczyk.info/articles/pefileformat.html

[43] https://github.com/deptofdefense/SalSA/wiki/PE-File-Format

[44] Anti-unpacker tricks – part two 2009-01-01 Peter Ferrie

[45] https://www.veracode.com/blog/2009/01/anti-debugging-series-part-iii

[46] On the Cutting Edge: Thwarting Virtual Machine Detection Tom Liston / Ed Skoudis, SANS

https://en.wikipedia.org/wiki/CPUID
https://msdn.microsoft.com/en-us/library/windows/desktop/ms646290(v=vs.85).aspx
https://blog.kowalczyk.info/articles/pefileformat.html
https://github.com/deptofdefense/SalSA/wiki/PE-File-Format
https://www.veracode.com/blog/2009/01/anti-debugging-series-part-iii

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 32

List of techniques

What follows is a list of techniques to thwart malware analysis of PE executable found in the wild.

10 Anti-debugging

• IsDebuggerPresent

• CheckRemoteDebuggerPresent

• Process Environement Block (BeingDebugged)

• Process Environement Block (NtGlobalFlag)

• ProcessHeap (Flags)

• ProcessHeap (ForceFlags)

• NtQueryInformationProcess (ProcessDebugPort)

• NtQueryInformationProcess (ProcessDebugFlags)

• NtQueryInformationProcess (ProcessDebugObject)

• NtSetInformationThread (HideThreadFromDebugger)

• NtQueryObject (ObjectTypeInformation)

• NtQueryObject (ObjectAllTypesInformation)

• CloseHanlde (NtClose) Invalide Handle

• SetHandleInformation (Protected Handle)

• UnhandledExceptionFilter

• OutputDebugString (GetLastError())

• Hardware Breakpoints (SEH / GetThreadContext)

• Software Breakpoints (INT3 / 0xCC)

• Memory Breakpoints (PAGE_GUARD)

• Interrupt 0x2d

• Interrupt 1

• Parent Process (Explorer.exe)

• SeDebugPrivilege (Csrss.exe)

• NtYieldExecution / SwitchToThread

• TLS callbacks

• Process jobs

• Memory write watching

11 Anti-Dumping

• Erase PE header from memory

• SizeOfImage

12 Timing Attacks [Anti-Sandbox]

• RDTSC (with CPUID to force a VM Exit)

• RDTSC (Locky version with GetProcessHeap & CloseHandle)

• Sleep -> SleepEx -> NtDelayExecution

• Sleep (in a loop a small delay)

• Sleep and check if time was accelerated (GetTickCount)

• SetTimer (Standard Windows Timers)

• timeSetEvent (Multimedia Timers)

• WaitForSingleObject -> WaitForSingleObjectEx -> NtWaitForSingleObject

• WaitForMultipleObjects -> WaitForMultipleObjectsEx -> NtWaitForMultipleObjects (todo)

• IcmpSendEcho (CCleaner Malware)

• CreateWaitableTimer (todo)

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 33

• CreateTimerQueueTimer (todo)

• Big crypto loops (todo)

13 Human Interaction / Generic [Anti-Sandbox]

• Mouse movement

• Total Physical memory (GlobalMemoryStatusEx)

• Disk size using DeviceIoControl (IOCTL_DISK_GET_LENGTH_INFO)

• Disk size using GetDiskFreeSpaceEx (TotalNumberOfBytes)

• Mouse (Single click / Double click) (todo)

• DialogBox (todo)

• Scrolling (todo)

• Execution after reboot (todo)

• Count of processors (Win32/Tinba — Win32/Dyre)

• Sandbox known product IDs (todo)

• Color of background pixel (todo)

• Keyboard layout (Win32/Banload) (todo)

14 Anti-Virtualization / Full-System Emulation

• Registry key value artifacts

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0

(Identifier) (VBOX)

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0

(Identifier) (QEMU)

• HARDWARE\Description\System (SystemBiosVersion) (VBOX)

• HARDWARE\Description\System (SystemBiosVersion) (QEMU)

• HARDWARE\Description\System (VideoBiosVersion) (VIRTUALBOX)

• HARDWARE\Description\System (SystemBiosDate) (06/23/99)

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0

(Identifier) (VMWARE)

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 1\Scsi Bus 0\Target Id 0\Logical Unit Id 0

(Identifier) (VMWARE)

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 2\Scsi Bus 0\Target Id 0\Logical Unit Id 0

(Identifier) (VMWARE)

• SYSTEM\ControlSet001\Control\SystemInformation (SystemManufacturer) (VMWARE)

• SYSTEM\ControlSet001\Control\SystemInformation (SystemProductName) (VMWARE)

• Registry Keys artifacts

• HARDWARE\ACPI\DSDT\VBOX__ (VBOX)

• HARDWARE\ACPI\FADT\VBOX__ (VBOX)

• HARDWARE\ACPI\RSDT\VBOX__ (VBOX)

• SOFTWARE\Oracle\VirtualBox Guest Additions (VBOX)

• SYSTEM\ControlSet001\Services\VBoxGuest (VBOX)

• SYSTEM\ControlSet001\Services\VBoxMouse (VBOX)

• SYSTEM\ControlSet001\Services\VBoxService (VBOX)

• SYSTEM\ControlSet001\Services\VBoxSF (VBOX)

• SYSTEM\ControlSet001\Services\VBoxVideo (VBOX)

• SOFTWARE\VMware, Inc.\VMware Tools (VMWARE)

• SOFTWARE\Wine (WINE)

• SOFTWARE\Microsoft\Virtual Machine\Guest\Parameters (HYPER-V)

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 34

• File system artifacts

• «system32\drivers\VBoxMouse.sys»

• «system32\drivers\VBoxGuest.sys»

• «system32\drivers\VBoxSF.sys»

• «system32\drivers\VBoxVideo.sys»

• «system32\vboxdisp.dll»

• «system32\vboxhook.dll»

• «system32\vboxmrxnp.dll»

• «system32\vboxogl.dll»

• «system32\vboxoglarrayspu.dll»

• «system32\vboxoglcrutil.dll»

• «system32\vboxoglerrorspu.dll»

• «system32\vboxoglfeedbackspu.dll»

• «system32\vboxoglpackspu.dll»

• «system32\vboxoglpassthroughspu.dll»

• «system32\vboxservice.exe»

• «system32\vboxtray.exe»

• «system32\VBoxControl.exe»

• «system32\drivers\vmmouse.sys»

• «system32\drivers\vmhgfs.sys»

• «system32\drivers\vm3dmp.sys»

• «system32\drivers\vmci.sys»

• «system32\drivers\vmhgfs.sys»

• «system32\drivers\vmmemctl.sys»

• «system32\drivers\vmmouse.sys»

• «system32\drivers\vmrawdsk.sys»

• «system32\drivers\vmusbmouse.sys»

• Directories artifacts

• «%PROGRAMFILES%\oracle\virtualbox guest additions\»

• «%PROGRAMFILES%\VMWare\»

• Memory artifacts

• Interupt Descriptor Table (IDT) location

• Local Descriptor Table (LDT) location

• Global Descriptor Table (GDT) location

• Task state segment trick with STR

• MAC Address

• «\x08\x00\x27» (VBOX)

• «\x00\x05\x69» (VMWARE)

• «\x00\x0C\x29» (VMWARE)

• «\x00\x1C\x14» (VMWARE)

• «\x00\x50\x56» (VMWARE)

• «\x00\x1C\x42» (Parallels)

• «\x00\x16\x3E» (Xen)

• Virtual devices

• «\\.\VBoxMiniRdrDN»

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 35

• «\\.\VBoxGuest»

• «\\.\pipe\VBoxMiniRdDN»

• «\\.\VBoxTrayIPC»

• «\\.\pipe\VBoxTrayIPC»)

• «\\.\HGFS»

• «\\.\vmci»

• Hardware Device information

• SetupAPI SetupDiEnumDeviceInfo (GUID_DEVCLASS_DISKDRIVE)

• QEMU

• VMWare

• VBOX

• VIRTUAL HD

• System Firmware Tables

• SMBIOS string checks (VirtualBox)

• SMBIOS string checks (VMWare)

• SMBIOS string checks (Qemu)

• ACPI string checks (VirtualBox)

• ACPI string checks (VMWare)

• ACPI string checks (Qemu)

• Driver Services

• VirtualBox

• VMWare

• Adapter name

• VMWare

• Windows Class

• VBoxTrayToolWndClass

• VBoxTrayToolWnd

• Network shares

• VirtualBox Shared Folders

• Processes

• vboxservice.exe (VBOX)

• vboxtray.exe (VBOX)

• vmtoolsd.exe(VMWARE)

• vmwaretray.exe(VMWARE)

• vmwareuser(VMWARE)

• VGAuthService.exe (VMWARE)

• vmacthlp.exe (VMWARE)

• vmsrvc.exe(VirtualPC)

• vmusrvc.exe(VirtualPC)

• prl_cc.exe(Parallels)

• prl_tools.exe(Parallels)

• xenservice.exe(Citrix Xen)

• qemu-ga.exe (QEMU)

• WMI

• SELECT * FROM Win32_Bios (SerialNumber) (GENERIC)

Μεταπτυχιακή Διατριβή Αποστολόπουλος Θεόδωρος

Automated armoring of PE malwares through the implementation of selected anti-debugging and anti-vm techniques 36

• SELECT * FROM Win32_PnPEntity (DeviceId) (VBOX)

• SELECT * FROM Win32_NetworkAdapterConfiguration (MACAddress) (VBOX)

• SELECT * FROM Win32_NTEventlogFile (VBOX)

• SELECT * FROM Win32_Processor (NumberOfCores) (GENERIC)

• SELECT * FROM Win32_LogicalDisk (Size) (GENERIC)

• SELECT * FROM Win32_Computer (Model and Manufacturer) (GENERIC)

• SELECT * FROM MSAcpi_ThermalZoneTemperature CurrentTemperature) (GENERIC)

• DLL Exports and Loaded DLLs

• avghookx.dll (AVG)

• avghooka.dll (AVG)

• snxhk.dll (Avast)

• kernel32.dll!wine_get_unix_file_nameWine (Wine)

• sbiedll.dll (Sandboxie)

• dbghelp.dll (MS debugging support routines)

• api_log.dll (iDefense Labs)

• dir_watch.dll (iDefense Labs)

• pstorec.dll (SunBelt Sandbox)

• vmcheck.dll (Virtual PC)

• wpespy.dll (WPE Pro)

• CPU

• Hypervisor presence using (EAX=0x1)

• Hypervisor vendor using (EAX=0x40000000)

• «KVMKVMKVM\0\0\0» (KVM)

• «Microsoft Hv»(Microsoft Hyper-V or Windows Virtual PC)

• «VMwareVMware»(VMware)

• «XenVMMXenVMM»(Xen)

• «prl hyperv «(Parallels) -«VBoxVBoxVBox»(VirtualBox)

15

16 Anti-Analysis

• Processes

• OllyDBG / ImmunityDebugger / WinDbg / IDA Pro

• SysInternals Suite Tools (Process Explorer / Process Monitor / Regmon / Filemon,

TCPView, Autoruns)

• Wireshark / Dumpcap

• ProcessHacker / SysAnalyzer / HookExplorer / SysInspector

• ImportREC / PETools / LordPE

• JoeBox Sandbox

