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Abstract 

Debuggers are tools traditionally used by programmers to find errors (called “bugs”) in code. However, 

in the field of malware analysis, debuggers are an essential tool used to reverse-engineer malware 

binaries, helping analysts to understand the purpose and functionality of malware when static analysis 

isn’t enough. Because of their significance, many malware authors try to prevent analysts from using 

them. By employing various techniques in the code (known as “anti-debugging”), malware can 

successfully delay analysts and prolong its “life”. Moreover, malware analysis relies heavily on the use of 

virtualization and emulation technology to run samples in an isolated environment, for functionality and 

safety. However, virtual machines and emulators always create traces, so called artifacts, which 

malware can use to detect the execution environment. 

The goal of this paper to present selected anti-debugging and anti-vm techniques and include them 

in a tool that can automatically append them to the basic functionality of a malware Windows binary in 

order to armor it. 

 

Περίληψη 

Τα προγράμματα απασφαλματοποίησης είναι εργαλεία τα οποία χρησιμοποιούνται συνήθως από 

προγραμματιστές έτσι ώστε να εντοπίσουν σφάλματα (τα λεγόμενα “bugs”) στον κώδικα. Ωστόσο, στον 

τομέα της ανάλυσης κακόβουλου λογισμικού, αποτελούν βασικό εργαλείο στην διαδικασία 

αντίστροφης μηχανικής ενός κακόβουλου εκτελέσιμου, βοηθώντας τους αναλυτές να κατανοήσουν τον 

σκοπό και την λειτουργικότητά του, όταν η στατική ανάλυση δεν είναι αρκετή. Εξαιτίας  της 

σημαντικότητάς τους οι δημιουργοί κακόβουλων προγραμμάτων προσπαθούν να εμποδίσουν τη χρήση 

τους από τους αναλυτές. Χρησιμοποιώντας ποίκιλες τεχνικές (γνωστές ως “anti-debugging”), ένα 

κακόβουλο πρόγραμμα μπορεί να καθυστερήσει τους αναλυτές και να παρατείνει το χρόνο «ζωής» 

του. Επιπρόσθετα, η ανάλυση κακόβουλου λογισμικού βασίζεται σε μεγάλο βαθμό στη χρήση 

τεχνολογιών εικονικοποίησης και εξομοίωσης έτσι ώστε να εξετάσει δείγματα του κακόβουλου 

προγράμματος, σε απομονωμένο περιβάλλον, για λόγους λειτουργικότητας και ασφάλειας. Ωστόσο οι 

τεχνολογίες αυτές, αναπόφευκτα, δημιουργούν ίχνη, τα οποία ένα κακόβουλο πρόγραμμα μπορεί να 

ανιχνεύσει 

     Στόχος της παρούσας εργασίας είναι να παρουσιάσει επιλεγμένες anti-debugging και anti-vm 

τεχνικές οι οποίες μέσω ενός εργαλείου θα ενσωματώνονται αυτόματα σε ένα κακόβουλο εκτελέσιμο 

Windows με σκοπό την θωράκισή του. 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Debugging#Anti-debugging
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1 Introduction 

Debuggers are vital tools for malware analysis since they enable detailed analysis of malware’s 

behaviors. This involves the step by step execution of a malware to examine its current state as well as 

the ability to make changes to memory space, registers, variable values, configurations and more. 

Furthermore, it enables the disassembling of the binary code, tracing of system calls, capturing of 

exceptions etc. [40]. In general, they allow the inspection of code in greater detail than static analysis 

and give full control over the malware’s low-level runtime behaviors. Therefore; debugging eases the 

burden of understanding of malware’s behavior, mechanisms and capabilities. But debugging, as most 

of the techniques in the field of malware analysis are a doubled-edged sword. Malware authors know 

that malware analysts use debuggers to figure out how malware operates, and the authors use anti-

debugging techniques, in an attempt to slow down the analyst as much as possible and thwart the 

incident response. Anti-debugging is the implementation of one or more techniques within computer 

code that hinders attempts at reverse engineering or debugging a target binary [10]. By the time 

malware realizes that it is executed inside a debugger, it may divert from its normal code execution path 

or modify the code to cause a crash, thus preventing the process of analysis from being carried out and 

adding time and cost to analyst’s efforts. Generally, the main objective of anti-debugging is to prevent 

the process of reverse engineering by detecting the existence of a debugger and behave differently 

when a debugger is attached to the current process or by interrupting/crashing the debugger. In fact, 

there is no flawless solution to deter the experienced malware analyst. However, making the analysis 

procedure as exhausting and painful as possible increases the time and skills needed for a complete 

analysis of the hidden procedures inside the malware.   

       Malware analysis also applies technologies of virtualization [21], [22], [23] and emulation [24], [25], 

[26] to quarantine malware in an area where it can be studied and dissected in order to analyze its 

behavior at runtime. On the contrary, malware authors write malwares that can recognize when they 

are running inside a virtual machine/sandbox. If they can accomplish that objective, the malware will 

avoid taking any malicious actions until it reaches a specific target machine, and as a result escape the 

analysis mechanism and hide its true malicious nature. Virtual machines detection based mostly on 

execution artifacts with predicted behavior [41]. These artifacts may include additional operating system 

files and processes necessary for the virtualization to work, supplementary CPU features, hardware 

parameters, timing attacks (code inside virtual machine is expected to execute slower than on host) etc. 

     A variety of anti-debugging, anti-virtualization, and anti-emulation techniques [17], [12], [28], [31], 

[32], [33] exists that in many times can give malware the ability to detect the presence of a VM or 

emulator and alter its behavior to hide itself and escape analysis. According to [2] malware authors are 

using more and more anti-debugging and anti-VM techniques to thwart the analysis, and also state that 

the use of anti-debugging and anti-VM techniques in malware might increase over years while the use of 

these evasive techniques help malware to evade many antivirus products. In [11] it is showed that 

39.9% and 2.7% of 6,222 malware samples use anti-debugging and anti-virtualization techniques 

respectively. Also, in [12] researchers found that 43.21% of 4 million samples are armed with anti-

debugging techniques and 81.4% armed anti-VM behaviors. Furthermore in [13] it is demonstrated the 

detection of 5,835 malware samples (out of 110,005) that exhibit evasive behaviors and finally in [15] 

there is a detection of evasion behavior in 25.6% of 1,686 malicious binaries. All these studies show that 

anti-virtualization and anti-debugging techniques have become the most popular methods of evading 

malware analysis.  

The rest of the paper is organized as follows: Section 2 presents briefly the structure and basic 

concepts of the PE file format, basic concepts of Windows insides related to the mechanisms of the tool 
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as well as the structure of the tool. Section 3 analyses the anti-debugging techniques used by the 

program, Section 4 analyses the anti-VM techniques used and finally Section 5 concludes.   

2 PE Overview and Basic Concepts 

In order to understand the content of this paper better, one must be familiar with the Portable 

Executable file format. Portable executable file format is the Windows standard executable format type 

used in x86 and x64 architectures. The term "portable" refers to format's scalability within numerous 

environments of operating system software architecture. The Windows loader needs to handle the 

wrapped executable code so the structures contained in the PE file format actually maintain all the 

necessary information to achieve this. Predecessor to the PE file format was the COFF format used in 

Windows NT. This standard is created by Microsoft and while some structures are partially documented 

it is available at [5]. PE files have extensions like .exe, .dll, .sys (driver files) and others 

     The way PE files are laid out in memory is actually very similar to the executable file on disk. The 

loader uses the memory-mapped file mechanism to map the appropriate pieces of the file into the 

virtual address space. To use a construction analogy, a PE file is like a prefabricated home [4].  

2.1 Relative Virtual Addressing 

Windows makes heavy use of RVAs in order to represent addresses in PE headers and achieve position 

independence as Windows may load an executable into any location in memory. Absolute memory 

addresses cannot be used because an executable normally will be loaded into an unknown address in 

memory. The concept of RVA gives the ability to determine virtual addresses of data in memory as an 

offset relative to a specific section in the file. The compiler generates an RVA and then the Windows 

loader converts that RVA into an actual virtual address at runtime because the loader knows where the 

executable will be loaded into [8].  

When parsing the raw binary, we need to convert RVAs into file offsets because the executable is not 

loaded in memory but instead what it is parsed is the static content inside the file as it is on disk. In 

order to calculate the raw offset in disk from a given RVA we need to find the PE section that belongs to. 

We determine that a given RVA belongs to a specific section by looping through the section headers, 

and check if that RVA is inside that section. The base RVA of a section is where the section start is loaded 

in memory so by subtracting from RVA we get the actual offset. Now if we add the file offset of the 

section’s beginning on disk we can get the actual file offset of the given RVA. The following equations 

summarize the above:  

file_offset = section_raw_offset + (RVA - section_base_RVA).  

By looping through the array of section headers we can find which section contains the RVA by 

examining: 

if section_base_rva <= rva < (section_base_rva + section_virtual_size)  

The following definitions are related to addresses in the PE format. Addresses are either physical or 

virtual (in-memory), and either relative or absolute. 

 Physical address: A physical address is the offset of a certain byte in a file as it is written on disk. 

Physical addresses are necessary to access parts of the PE file that must be read from disk.  

 Base address: The base address is the address of the first byte when the file is loaded in memory. PE 

files specify a preferred base address in a field called ImageBase (see Optional Header below). If the 

image file cannot be loaded at the preferred address into process space, another base address is 

applied, which is known as rebasing.  

 RVA: Relative virtual addresses (RVA) are used while an image file is loaded in memory. They are 

relative to the base address of the image file or to another RVA. RVAs are a way to specify addresses in 
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memory independently from the base address. This makes it possible to rebase the file without having 

to re-calculate all in-memory addresses in the file.  

VA: Virtual address (VA) is an absolute in-memory addresses. Although the PE/COFF specification 

defines a VA this way, it uses the term also for addresses that are actually relative to the image base.  

Entry point: The entry point is a RVA to the starting address for EXE files, or to the initialization function 

for device drivers for DLL files (see AddressOfEntryPoint) 

2.2 DOS Header 

It is important to understand that the PE header is not the first item loaded into memory when a 

program is executed. A Microsoft DOS portion of the executable runs first to determine if a compatible 

version of Microsoft Windows is being used. At the start of every PE file we find DOS header, an MS-DOS 

executable ("stub") which is responsible to flag a PE file as a valid MS-DOS executable. Its structure can 

be found as IMAGE_DOS_HEADER in WINNT.H. The MS-DOS header is the same MS-DOS header since 

version 2 of the MS-DOS operating system. The main reason for keeping the same structure intact at the 

beginning of the PE file format is so that, when you attempt to load a file created under Windows 

version 3.1 or earlier, or MS DOS version 2.0 or later, the operating system can read the file and 

understand that it is not compatible. In other words, when you attempt to run a Windows NT 

executable on MS-DOS version 6.0, you get this message: "This program cannot be run in DOS mode." If 

the MS-DOS header was not included as the first part of the PE file format, the operating system would 

simply fail the attempt to load the file and offer something completely useless, such as: "The name 

specified is not recognized as an internal or external command, operable program or batch file."[42].  

The MS-DOS header fills the first 64 bytes of the PE file. The only two fields that matter are the first 

field e_magic and the last field e_lfanew. The first field, e_magic, (contains magic bytes) is used to check 

for MS-DOS-compatibility. These magic bytes contain the value 0x54AD, which represents the ASCII 

characters MZ. Anti-virus products usually use this classical signature to locate PE executable in 

memory. The final field, e_lfanew, is a 4-byte offset into the file where the actual PE file header and is 

located at offset 0x3C (60-64) from the beginning of the file. By indexing the e_lfanew field of the MS-

DOS header we take an offset in the file, so we can add the file's memory-mapped base address to 

determine the actual memory-mapped address [42]. All other field of the DOS structure are actually 

useless, compilers and linkers may ignore them.  Malware actually can malform its standard format due 

to the fact that many fields in the PE headers are ignored [6][7]. 

2.3 PE Header 

The PE File Header is placed after the MS-DOS Stub. While the PE header usually follows the DOS header 

it might not be the case as that isn’t defined by the specification as a strict rule in respect to the file 

layout so by moving the location of the PE header can lead to several specific malformation cases which 

have the potential of affecting security and reverse engineering tools [7]. The information in the PE file 

is basically high-level guidelines used by Windows loader or the executable to determine how to load 

the file. All substructures of the PE File Header, normally, are consecutively arranged, thus located at a 

fixed offset from the beginning of the PE signature. The PE File Header consists of the PE signature, a 32-

bit-signature with the magic number 0x00004550 (this signature is "PE\0\0"), the (COFF) File Header, 

the Optional Header, and the Section Table. 

2.4 File Header 

The PE File header is called IMAGE_FILE_HEADER (WINNT.H) and contains limited high-level information 

about the executable such as the type of machine the binary it can be executed (Machine), the number 

of sections in it (NumberOfSections), the time it was linked, whether it is an executable or a DLL etc. 
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2.5 Optional Header 

Immediatly following the file header is the IMAGE_OPTIONAL_HEADER (WINNT.H), that contains 

information the loader needs. Most important fields are: 

AddressOfEntryPoint: This is a 32-bit-value an offset to where the execution starts a.k.a the codes's 

entry point. This is for example the address of a DLL's LibMain() or the program's startup code which will 

in turn call main() or a driver's DriverEntry(). 

ImageBase: This is a 32-bit-value which indicates the preferred (linear) load address of the entire binary, 

including all headers. The linker will relocate the file to this is the address. The preferred load address 

cannot be used if another image has already been loaded to that address or the memory in question has 

been used for other purposes (stack, malloc(), uninitialized data, whatever). In these cases, the image 

must be relocated and loaded to some other address. 

SectionAlignment:  The field is a 32-bit-value that holds information about the alignment of the PE-file's 

sections in RAM (when the image has been loaded). SectionAlignment is 4096 in most cases. 

FileAlignment: The field is a 32-bit-value that holds information about the alignment of the PE-file's 

sections as it is on disk. Usually FileAlignment is 512. 

SizeOfImage: This is a 32-bit-value giving the amount of memory the image will need, in bytes 

('SizeOfImage'). It is the sum of all headers' and sections' lengths if aligned to 'SectionAlignment'. It is a 

hint to the loader how many pages it will need in order to load the image. 

DllCharacteristics: The DLL characteristics field of the executable image are also really important for a 

malware analyst 

IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE (0x0040) - The DLL can be relocated at load time this 

means we have ASLR enabled. 

IMAGE_DLLCHARACTERISTICS_NX_COMPAT (0x0100) - The image has data execution prevention (DEP) 

enabled. 

IMAGE_DLLCHARACTERISTICS_NO_SEH (0x0400) - The image does not use structured exception 

handling (SEH). This is important because no handlers can be called in this image and exception handling 

has been used extensively as an attack vector. 

Data directories: The data directory acts phonebook that gives us the locations of maybe the most 

important components of the executable in the file. It is an array 

of IMAGE_DATA_DIRECTORY structures that are located at the end of the optional header structure. 

Currently the specification defines 16 indexes of data directories. However, the number of data 

directories is completely up to the compiler/linker/malicious actor so the NumberOfRvaAndSizes field of 

the IMAGE_OPTIONAL_HEADER is important to know how many to parse. 

At each index is a IMAGE_DATA_DIRECTORY structurethat has the following form: 

• VirtualAddress - The offset of the table  

• Size - The size of the table, in bytes. 

The VirtualAddress field is an offset into a specified section in memory. Each data directory entry 

specifies the size and relative virtual address of the directory. To locate a particular directory, we have 

to determine the relative address from the data directory array in the optional header. Then use the 

virtual address to determine which section the directory is in. Once we determine which section 

contains the directory, the section header for that section is then used to find the exact file offset. 

2.6 Section Headers 
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Last in PE Header and before the raw data for the image's sections lies the section table. This structure is 

called IMAGE_SECTION_HEADER and contains necessary information about each section in the image. 

The sections in the image are sorted by their starting address (RVAs) and their number is determined by 

NumberOfSections field in the file header (IMAGE_FILE_HEADER) structure. We will discuss some of the 

important entries below. 

Name: This is 8-byte, null-padded UTF-8 string. There is no terminating null character if the string is 

exactly eight characters long. For longer names, this member contains a forward slash (/) followed by an 

ASCII representation of a decimal number that is an offset into the string table. Executable images do 

not use a string table and do not support section names longer than eight characters.  

VirtualSize: The total size of the section when loaded into memory, in bytes. If this value is greater than 

the SizeOfRawData member, the section is filled with zeroes. This field is valid only for executable 

images and should be set to 0 for object files.  

VirtualAddress: The address of the first byte of the section when loaded into memory, relative to the 

image base. For object files, this is the address of the first byte before relocation is applied. 

SizeOfRawData: The size of the initialized data on disk, in bytes. This value must be a multiple of the 

FileAlignment member of the IMAGE_OPTIONAL_HEADER structure. If this value is less than the 

VirtualSize member, the remainder of the section is filled with zeroes. If the section contains only 

uninitialized data, the member is zero.  

PointerToRawData: A file pointer to the first page within the PE file. This value must be a multiple of the 

FileAlignment member of the IMAGE_OPTIONAL_HEADER structure. If a section contains only 

uninitialized data, set this member is zero.  

Characteristics: The characteristics of the image. For example, the value IMAGE_SCN_MEM_EXECUTE 

(0x20000000) shows the section can be executed as code. 

2.7 The PEB Structure 

The PEB is a complex data structure which maintains in its fields important data about the current 

process, while many of these fields may point to other structures lower in the PEB. Every process has its 

own PEB and the Windows Kernel will also have access to the PEB of every user-mode process, so it can 

keep track of certain data stored within it. The PEB structure comes from the Windows Kernel (although 

is accessible in user-mode as well). PEB has been abused for malicious purposes in the past, but 

Microsoft has made many changes over the recent years to help prevent this [9]. The PEB is the user-

mode portion of Windows process control structures. We will see in the following that parsing this 

structure can give us access to the Windows API functions and also that many anti-debugging tricks are 

based upon specific values of the fields inside PEB. 

2.8 Structure of the tool 

Basically, to add the anti-debugging code the program adds an executable section to the malware on 

disk, with a name (for that section) provided by the user. The technique used to add a section is similar 

to one of the many techniques viruses used in traditional PE infection-backdooring. The tool first accepts 

two arguments, the target executable and the name of the new section to add. The first function 

AddSection() first reads the file and check its DOS signature for a PE validity, and x86 compatibility 

(doesn’t support x64 executables). It then checks if the name of section we want to add already exists to 

continue. The next step is to copy the name of the section in the Name field of the newly created 

section header and add all the required information. Specifically: 

1.The total size of the section when loaded into memory. 

Misc.VirtualSize = size of new section, aligned by Optional Header’s SectionAlignment 
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2. The address of the first byte of the section relative to the image base when the section is loaded 

into memory will be equal to previous section’s end. 

VirtualAddress = previous section’s Misc.VirtualSize, aligned by OptionalHeader SectionAlignment 

3.The size of new section on disk  

SizeOfRawData = size of new section, aligned by Optional Header’s FileAlignment 

4. The file pointer to the first page of the section must be equal to the end of the previous section on 

disk 

PointerToRawData = previous section’s SizeOfRawData, aligned by Optional Header’s FileAlignment 

5. The Characteristics of the new Section to make it executable writable readable 

Characteristics = 0xE00000E0; // 0xE00000E0 = IMAGE_SCN_MEM_WRITE | IMAGE_SCN_CNT_CODE | 

IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_EXECUTE | 

IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ  

6. The SizeOfImage field in the Optional Header , which indicates the size as the image is loaded in 

memory has changed 

SizeOfImage = VirtualAddress  + Misc.VirtualSize 

7.The number of sections in the FileHeader also has changed  

NumberOfSections +=1 

8. Finally the changes are written to the file 

 

 
fig.26 Section Header structure  

 

Next, is the function that adds the inline assembly code that also contains the anti-techniques. We 

create 2 labels in assembly. One represents the start of the opcode section and one is the end. The 

__asm code snippets between is where the actual code that is to be written resides. So, by subtracting 

the end from the start address we get the offset to the code we want to write without copying the other 

opcodes, thus corrupting the integrity of the infected anti-reverse code in the binary. We jump over the 

middle code, so we don’t execute it in the target binary itself by using the jmp instruction (jmp to label 

over). 
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fig.27 asm labels      
 

We also manually create an entry in the Optional Header’s TLS Directory (index 9) by specifying it’s size 

(sizeof(IMAGE_TLS_DIRECTORY)) in the Size field and update its Virtual Address (TLS Directory RVA) field 

to point 4 bytes after the start of our newly created section. 

 
fig.28 Create TLS Directory Entry  

 

Finally, manually, again we create the tls directory itself that is located in our new section. The 

IMAGE_TLS_DIRECTORY has the following prototype:  

 

 

The only important fields are (1) AddressOfIndex which is the location to receive the TLS index,  which 

the loader assigns at runtime.  This location is in an ordinary data section,  so it can be given a symbolic 

name that is accessible to the program. (2) AddressOfCallbacks which is a pointer to an array of TLS 

callback functions. The array is null-terminated,  so if no callback function is supported,  this field points 

to 4 or 8 bytes set to zero. The steps that the tool follows to create the tls structure are: 

1. Write 4 null bytes at the start of the section 

2. After the 4 null bytes we place the IMAGE_TLS_DIRECTORY structure (size 24 bytes) 

3. AddressOfIndex = (ImageBase + section address) + 24 (sizeof(IMAGE_TLS_DIRECTORY)) + 4 {null 

bytes) 

4. AddressOfCallbacks = (ImageBase + section address) + 24 (sizeof(IMAGE_TLS_DIRECTORY)) + 4 

(null bytes) + 4 (AddressOfIndex) 

5. Finally, we update the address to where AddressOfCallbacks points to be 40 bytes after the 

start of the section, this is where the inline assembly code begins. This is the first TlsCallback, 

we also leave space (4 null bytes) for one more that will be added dynamically. 
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fig.29 Create TLS Structure manually  

 

Finally, many anti-debugging techniques rely on functions exported by kernel32.dll, ntdll.dll and 

user32.dll so the tool must resolve their addresses memory. It first reads the base address of 

kernel32.dll or ntdll.dll, (that are always loaded) from PEB, and walk their export table to search for 

needed functions by comparing their names. There are many techniques to do that here we use the 

following: 

1. Get a pointer to the PEB 

mov eax, fs: [30h]                         

2. PEB_LDR_DATA structure is a structure that contains information about all of the loaded  

modules in the current process. Is located from a pointer at offset 0x0c in the Win32 Process  

Environment Block (PEB).  

mov eax, [eax + 0x0c]  

3. Get PEB->Ldr.InMemoryOrderModuleList.Flink(1st entry). The InMemoryOrderLinks contains 

Flink/Blink to the next/previous loaded module.  

     mov eax, [eax + 0x14] 

second entry is ntdll.dll  

    mov eax, [eax]      

third entry is kernel32.dll  

    mov eax, [eax]      

4. Get the 3rd entry’s base address(kernel32.dll)          

    mov eax, [eax + 0x10] 

    mov   ebx, eax; base address of kernel32 in ebx 

5. Get its PE Header              

    mov   eax, [ebx + 0x3c]; PE header VMA                         

6. Go to its export table  

    mov   edi, [ebx + eax + 0x78]; Export table relative offset, PE + 0x78 (i.e., offset 120 bytes) is the   

relative   address (relative to DLL base address) of the export table                          

    add   edi, ebx; Export table VMA 

7. Get Number of names to use it as a counter to walk its functions 

    mov   ecx, [edi + 0x18]; NumberOfNames 

8. Get Address of names  

    mov   edx, [edi + 0x20]; Names table relative offset 

    add   edx, ebx; Names table VMA  
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fig.31 Export Directory  

 

         

 
fig.30 Walking the PEB  

 

3 Anti-debugging techniques 

3.1 Flags within the PEB structure & Manual Checks 

3.1.1 Check PEB.BeingDebugged flag /kernel32.IsDebuggerPresent().  

The most popular native Windows function in kernel32.dll that can be used to check if a process is being 

debugged is the IsDebuggerPresent() function which returns TRUE if a debugger is detected. The 

problem with such method is that the function is easily traceable and by changing the return value to 0, 

such protection will be bypassed. Also, this is first anti-debugging method that most new reverse 

engineers discover is the Windows API, so it is probably one of the first things a malware analyst will 

observe. Since a call to this function is easy to detect, a similar method is to replace it by the method 

used inside this function in order to bypass the API call and directly access the details of the running 

PEB. A Windows PEB structure is maintained by the OS for each running process. As stated before (see 

PEB section above), it contains all user-mode parameters associated with a process. These parameters 

include the process’s environment data, which itself includes environment variables, the loaded 

modules list, addresses in memory, and debugger status [1]. What the IsDebuggerPresent() function 

really does inside is to check the BeingDebugged byte of the PEB structure.  The BeingDebugged flag in 

PEB at offset 0x2 is set when the current process is under debugging. Thus, this flag can indicate the 

existence of debugger. When operating in Windows 32-bit systems, PEB location can be referenced from 

http://msdn.microsoft.com/fr-fr/library/windows/desktop/ms680345%28v=vs.85%29.aspx
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fs segment register at offset 0x30, where fs:[0x00] is the address of TIB (Win32 Thread Information 

Block). So, the check can be made using this code: 

mov eax, fs:[30h] ; PEB 

cmp byte ptr [eax+2],0 ; BeingDebugged flag 

jne being_debugged 

 

    Because of its simplicity there is a plethora of anti-anti-debug plugins that can disable this technique 

so, it is mostly used obfuscated by inserting junk code/garbage bytes, or other techniques as an extra 

anti-disassembly trick. fig.1 shows an example of PEB.BeingDebugged technique using speculative 

execution and fig.2 an example using code transposition. 

 
fig.1 BeingDebugged /w spec execution  fig.2 BeingDebugged /w code transposition  

 

3.1.2 Check PEB.NtGlobalFlag 

Processes, when started under a debugger, in general run slightly differently than those started 

without a debugger attached. In particular, debugged processes create memory heaps differently than 

those not being debugged. The information that is stored within the PEB NtGlobalFlag at offset 0x68 for 

Windows 32-bit informs the kernel how to create heap structures. The default value is always 0 and 

doesn't change when a debugger is attached to the process. There are several methods in which the 

NtGlobalFlag can be changed to detect the presence of a debugger. The NtGlobalFlag contains many 

flags which affect the running of a process. The most common flags which are set with NtGlobalFlag 

when a debugger creates a process, is the heap checking flags:  

FLG_HEAP_ENABLE_TAIL_CHECK (0x10),  

FLG_HEAP_ENABLE_FREE_CHECK (0x20), and  

FLG_HEAP_VALIDATE_PARAMETERS (0x40).  

Thus, a way to detect the presence of a debugger is to check if the bits corresponding to 0x70 (the sum 

of the above flags) are set in NtGlobalFlag. 

 
fig.3 NtGlobalFlag  
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These three flags are usually set for the process that is created by the debugger, but for the process to 

which the debugger attaches (attach), these flags are not set. There are three exceptions: 

1 - additional flags can be set for all processes, through the system registry. 

[HKEY_LOCAL_MACHINE \ System \ CurrentControlSet \ Control \ Session Manager]  

"GlobalFlag" = "0x00000000"  

2 - The second is through the registry for a specific program 

[HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ Windows NT \ CurrentVersion \ Image File Execution 

Options \ <file name>]  

"GlobalFlag" = "0x00000000"  

3 - All flags can be controlled by loading the configuration structure (Load Configuration Structure). 

3.1.3 Check Heap Flags 

The PEB structure contains the pointer to the process heap – the _HEAP structure-, known simply as 

ProcessHeap, that is set to the location of a process’s first heap allocated by the loader. ProcessHeap is 

located at 0x18 in the PEB structure, for Win32 Systems, but also can be retrieved by the 

GetProcessHeap(). This first heap contains a header with fields used to tell the kernel whether the heap 

was created within a debugger. These are known as the ForceFlags and Flags fields [13]. Due to the flags 

set in NtGlobalFlag, heaps that are created will have several flags turned on, and that this behavior can 

be observed inside ntdll!RtlCreateHeap(). Typically, the initial heap created for the process 

(PEB.ProcessHeap) will have its Flags and ForceFlags fields set to 0x02 (HEAP_GROWABLE) and 0x0 

respectively. However, when a process is being debugged, these flags are usually set to 0x40000062 

(depending on the NtGlobalFlag) and 0x40000060. By default, the following additional heap flags are set 

when a heap is created on a debugged process [14]:  

• HEAP_TAIL_CHECKING_ENABLED (0x20)  

• HEAP_FREE_CHECKING_ENABLED (0x40)  

The values in those fields are affected by the presence of a debugger, but also depend on the version of 

Windows. The location of those fields also depends on the version of Windows since 

the _HEAP structure is undocumented. 

 
fig.4 Heap Flags  

3.1.4 Anti-Step-Over 

Most debuggers support stepping over certain instructions, such as "call" and "rep" sequences. In such 

cases, a software breakpoint is often placed in the instruction stream, and then the process is allowed to 
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resume execution. The debugger normally receives control again when the software breakpoint is 

reached. However, in the case of the "rep" sequence, the debugger must check that the instruction 

following the rep prefix is indeed an instruction to which the rep applies legally. Some debuggers 

assume that any rep prefix precedes a string instruction. This introduces a vulnerability when the 

instruction following the rep prefix is another instruction entirely. Specifically, the problem occurs if that 

instruction removes the software breakpoint that would be placed in the stream if the instruction were 

stepped over. In that case, when the instruction is stepped over, and the software breakpoint is 

removed by the instruction, execution resumes under complete control of the process and never 

returns to the debugger [13]. The code below will detect a breakpoint that is placed at anti_step_loc1. It 

works by copying the value at anti_step_loc1 over the "90h" at anti_step_loc11+1. The value is then 

compared at anti_step_loc2. 

 
fig.5 Anti-Step-Over  

  

3.1.5 Thread Local Storage Callbacks 

Threads are like individual execution mechanisms that run inside of a process. They mainly used for 

parallel execution in order to accomplish multiple actions concurrently. Usually threads inside the 

process context share the same memory, but they can also maintain their own private local storage. This 

storage is similar to a stack but is only accessible to a specific thread. There is a certain chunk of memory 

that will be reserved for this thread, and variables can be stored in it. This way, only this one thread has 

access. Windows also allows for threads to define their own initialization and deconstruction routines. 

All of this is captured inside the TLS data directory entry. The TLS data directory entry is an RVA that 

points to a IMAGE_TLS_DIRECTORY32 or IMAGE_TLS_DIRECTORY 64 depending on the CPU architecture 

(defined in WINNT.H) [43]. TLS callback is a very powerful anti-debugging technique and good place to 

perform debugger presence check since the Callback function will be called before the executable reach 

the main module entry point. To use the TLS directory, we must create an entry in the PE file format's 

Optional Header (see above at Structure of the tool). The TLS structure, IMAGE_TLS_DIRECTORY, 

pointed to by the TLS directory entry has a small number of fields. The one of special interest is the one 

pointing to a list of callbacks, AddressOfCallBacks. Windows Loader reads Data Directories -> TLS 

Directory, if VirtualAddress isn’t zero, the loader reads Address of Callbacks Array and executes the first 

callback in the list and continues by reading the next element of Address of Callbacks Array. This means 

that we can add/remove new TLS callbacks from another TLS callback dynamically. It is possible to 

register/unregister new TLS callbacks on the fly even after the file has been loaded, since the Windows 

Loader re-reads PE-header and the section where the callbacks are stored every time it need the data. It 

is possible to change tls table while in tls callback itself; those added will execute normally (table is not 
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cached by loader). In Fig. 32 a new callback is added in the AddressOfCallbacks immediately after the 

first callback that points to the code exactly after.   

 
fig.32 Dynamically added TLS Callback  

 

3.1.6 SS Register 

There is a simple trick to detect single-stepping that has worked since the earliest of Intel CPUs. As 

per Wikipedia a trap flag permits operation of a processor in single-step mode. If such a flag is available, 

debuggers can use it to step through the execution of a computer program. If it’s set, executing an 

instruction will raise SINGLE_STEP exception. When POP SS (SS is stack segment register) is executed, 

the CPU will prevent triggering of interrupts, as to avoid corruption of the stack, so when the Single-step 

flag is set , it triggers and interrupt in the CPU , but when a POP SS is executed it won’t trigger interrupts 

before it has executed the next instruction after it , and thus the debugger will never get a single-step 

exception for the PUSHFD and won’t know it has been executed. Debugger will not break push ss / pop 

ss and inevitably will stop on the following instruction. In other words, unsetting of the trap flag won’t 

be possible after that, and if check is done here, debugger will be detected. Thus, debugger will not 

clean out the trap-flag and leave debugger vulnerable to detection. 

 
fig.6 push/pop ss  

 

3.1.7 Interrupt 0x2d 

The interrupt 0x2D when it is executed, Windows uses the current EIP register value as the exception 

address, and then it increments by one the EIP register value. However, Windows also examines the 

value in the EAX register to determine how to adjust the exception address. If the EAX register has the 

value of 1, 3, or 4 on all versions of Windows, or the value 5 on Windows Vista and later, then Windows 

will increase by one the exception address. Finally, it issues an EXCEPTION_BREAKPOINT (0x80000003) 

exception if a debugger is present. The interrupt 0x2D behavior can cause trouble for debuggers. The 

problem is that some debuggers might use the EIP register value as the address from which to resume, 

while other debuggers might use the exception address as the address from which to resume. This can 

result in a single-byte instruction being skipped, or the execution of a completely different instruction 

because the first byte is missing. These behaviors can be used to infer the presence of the debugger 

[13].  
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fig.6 interrupt 0x2d  

 

3.1.8 RDTSTC – as anti-step 

RDTSC is an IA-32 instruction that stands for Read Time-Stamp Counter. Processors since the Pentium 

have had a counter attached to the processor that is incremented every clock cycle and reset to 0 when 

the processor is reset. RDTSC returns the count of the number of ticks since the last system reboot as a 

64-bit value placed into EDX:EAX. When a debugger is present, and used to single-step through the 

code, there is a significant delay between the executions of the individual instructions, when compared 

to native execution [44]. The idea is to measure the time taken to execute a piece of code and 

comparing it against a maximum tolerated threshold of time. This delay can be measured using a set of 

time-related Win API functions or Intel instructions. This set includes the RDPMC instruction (however, 

this instruction requires that the PCE flag is set in the CR4 register, but this is not the default setting, 

getting exception PRIV_INSTRUCTION), the RDTSC instruction (however, this instruction requires that 

the TSD flag is clear in the CR4 register, but this is the default setting), and some Win32 API functions, 

the kernel32 GetLocalTime() function, the kernel32 GetSystemTime() function, the kernel32 

QueryPerformanceCounter() function, the kernel32 GetTickCount() function, the ntoskrnl 

KiGetTickCount() function (exposed via the interrupt 0x2A interface on the 32-bit versions of Windows), 

and the winmm timeGetTime() function. The RDMSR instruction can also be used as a time source, but it 

cannot be used in user mode.  

 
fig.7 RDTSTC  

 

3.1.9 Selectors 

A selector register indicates a specific block of memory from which one can read or write. The real 

memory address is looked up in an internal CPU table. For certain values FS and GS selectors will be 

affected by a single-step event. In the case of the GS selector it will be not restored to its default value 

on the 32-bit versions of Windows if it was set to a value from zero to three [13]. 
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fig.8 Selectors  

 

3.2 API Calls 

3.2.1 CheckRemoteDebuggerPresent() 

This function is one of the most common and simple API-based anti-debugging tricks since as stated in 

the documentation it determines whether the specified (in our case the current) process is being 

debugged by a user-mode debugger. The function sets to 0xffffffff the value to which the 

pbDebuggerPresent argument points if a debugger is present (that is, attached to the current process). 

In other words it also checks the BeingDebugged field in the PEB structure to make the decision, so it is 

similar to IsDebuggerPresent() function except it can be used for a remote process. Internally 

CheckRemoteDebuggerPresent() calls the NTDLL export NtQueryInformationProcess() with 

the SYSTEM_INFORMATION_CLASS parameter set to 7 (ProcessDebugPort) [13].  

 
fig.9 CheckRemoteDebuggerPresent() 

 

3.2.2 NtQueryInformationProcess() 

A large number of Windows API functions and structures are considered internal to the operating 

system and thus not documented well. Many of these functions have undergone extensive research and 

reverse engineering through the years to be able to understand how they operate and what can be 

achieved using them. One such half-documented API function is the NtQueryInformationProcess 

function which is used to retrieve information about a target process and resides in ntdll [45]. 

i. ProcessDebugPort 

The ntdll.NtQueryInformationProcess() function accepts a parameter which is the class of 

information to query. Most of the classes are not documented. However, one of the 

documented classes is the ProcessDebugPort (7). It is possible to query for the existence 

(not the value) of the port. The return value is 0xffffffff if the process is being debugged. 

Internally, the function queries for the non-zero state of the DebugPort field in the 

EPROCESS structure. 
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                        fig.10 /w ProcessDebugPort  

 

ii. Debug Objects – ProcessDebugObjectHandle Class 

When a debugging session begins, a debug object is created, and a handle is associated 

with it. It is possible to query for the value of this handle, using the undocumented 

ProcessDebugObjectHandle (0x1e) class. Since this information comes from the kernel, 

there is no easy way for user-mode code to prevent this call from revealing the presence of 

the debugger [13]. 

 
fig.11 /w ProcessDebugObjectHandle   

 

iii. Debug Objects – ProcessDebugFlags Class 

The undocumented ProcessDebugFlags (0x1f) class returns the inverse value of the 

NoDebugInherit bit in the EPROCESS structure. That is, the return value is zero if a 

debugger is present. 

 
fig.11 /w ProcessDebugFlags  

 

3.2.3 NtSetInformationThread() 

According to MSDN, ntdll NtSetInformationThread() sets the priority of a thread. However, its 

ThreadInformationClass parameter has an undocumented value, ThreadHideFromDebugger (0x11), 

which prevents debugging events to be sent to the debugger [5]. This is a very powerful anti-debugging 

technique that can be used to difficult the debugging. When the function is called, the thread will 

continue to run but a debugger will no longer receive any events related to that thread. It is important 

to mention that the process will be terminated if it is called on the main thread. The reason why the 
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function exists is to avoid an unexpected interruption when an external process uses the ntdll 

RtlQueryProcessDebugInformation() function to query information about the debuggee. The ntdll 

RtlQueryProcessDebugInformation() function injects a thread into the debuggee in order to gather 

information about the process. If the injected thread is not hidden from the debugger then the 

debugger will gain control when the thread starts, and the debuggee will stop executing [13]. 

 
fig.12 NtSetInformationThread 

   

3.2.4 RtlQueryProcessDebugInformation() 

The ntdll RtlQueryProcessDebugInformation() function can be used to read certain fields from the 

process memory of the requested process, including the heap flags. The function does this for the heap 

flags by calling the ntdll RtlQueryProcessHeapInformation() function internally. 

 
fig.13 RtlQueryProcessDebugInformation  

 

3.2.5 RtlQueryProcessHeapInformation() 

The ntdll RtlQueryProcessHeapInformation() function can be used to read the heap flags from the 

process memory of the current process [19]. This function loads all heap blocks of the process into 

DebugBuffer according to the informations that we want and that could be specified 

throughout DebugInfoClassMask.  

 
fig.14 RtlQueryProcessHeapInformation   
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3.2.6 Self-debugging with CreateProcess() 

Self-Debugging It does not mean a single process debugging itself, because that is not possible. Instead 

is a technique where the main process spawns a child process that debugs the process that created the 

child process a.k.a the parent process. It can prevent other debuggers from attaching to the target 

process since only one debugger can be attached to a process at a time, the second process becomes 

"undebuggable" by ordinary means. The first process does not even need to do anything debugger-

related. There many variations of this technique as well as many advanced approaches [20]. 

 
fig.15 Self-Debug /w CreateProcess  

 

3.2.7 SwitchDesktop() 

It is possible to select a different active desktop through functions of WinAPI, which has the effect of 

hiding the windows of the previously active desktop, and with no obvious way to switch back to the old 

desktop (except by ctrl+alt+delete and killing the process from task manager). Further, the mouse and 
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keyboard events from the debuggee's desktop will not be delivered anymore to the debugger, because 

their source is no longer shared. This obviously makes debugging impossible [13]. Using CreateDesktopA 

and SwitchDesktop functions exported by user32.dll we can use this trick to crush the debugging session 

or the execution of a malware. 

 
fig.16 SwitchDesktop  

 

3.2.8 OutputDebugString() 

The OutputDebugString technique works by determining if OutputDebugString causes an error. It sends 

a string to the debugger for display. If OutputDebugString is called and there is a debugger attached, the 

call to OutputDebugString should succeed, and the value in GetLastError should not be changed. An 

error will only occur if there is no active debugger for the process to receive the string; therefore, we 

can conclude that if there is no error by calling GetLastError, after calling OutputDebugString, then there 

is a debugger present.    

 
fig.17 OutputDebugStringA   

 

3.2.9 NtQueryObject 

The NtQueryObject function, when called with the ObjectAllTypesInformation class, will return 

information about the host system and the current process. There is a wealth of information to be 

mined from this function, but we're most concerned with the information given about the DebugObjects 

in the environment. When a debugging session begins, a debug object is created, and a handle is 

associated with it. Using the ntdll NtQueryObject() function, it is possible to query for the list of existing 

objects, and check the number of handles associated with any debug object that exists. 

A DebugObject entry is maintained in this list of objects, and most importantly, the number of objects of 

each type of object. The object and its related information can be expressed as 
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a OBJECT_INFORMATION_TYPE struct. However, calling the NtQueryObject function with 

the ObjectAllTypesInformation class actually returns a buffer that begins with 

a OBJECT_TYPE_INFORMATION struct [21]. Since this information comes from the kernel, there is no 

easy way for user-mode code to prevent this call from revealing the presence of the debugger [13].  

 
fig.18 NtQueryObject    
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3.2.10 BlockInput 

BlockInput as stated in msdn documentation [39] blocks keyboard and mouse input events from 

reaching applications (apart from the ctrl-alt-delete key sequence). This technique is effective due to the 

fact that only the thread that the thread that blocked input can successfully unblock input. This isn't 

really an anti-reverse-engineering technique, but more of a way to mess with with the debugging 

session. The effect remains until either the process exits, or the function is called again with the 

opposite parameter. It is a very effective way to disable debuggers. The call requires that the calling 

thread has the DESKTOP_JOURNALPLAYBACK (0x0020) privilege (which is set by default). On Windows 

Vista and later, it also requires that the process is running at a high integrity level (that is, a process 

requires elevation if it was running in a standard or lowrights user account), if elevation is enabled and 

either the "HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System\EnableUIPI" registry 

value either does not exist (a default value of present and set is used in that case) or has a non-zero 

value (and which would require administrative privileges to change). The function will not allow the 

input to be blocked twice in a row, nor will it allow the input to be unblocked twice in a row. Thus, if the 

same request is made twice to the function, then the return value should be different. This fact can be 

used to detect the presence of a number of tools that intercept the call, because most of them simply 

return success, regardless of the input [13].  

 

 
fig.19 BlockInput   

 

4 Anti-VM Techniques 

To extract malware intelligence, the most common use is to execute malwares inside a virtualized 

execution environment and try to comprehend how it behaves by observing for example all the system 

function calls. Once the analysis is complete, the environment can be destroyed, essentially without risk 

to the real environment that hosts it [15]. This tactic can implement a fast and secure way to examine 

malicious samples. For that reason, the most usual functionality a malware can add on its weaponry is to 

try to detect a virtual machine/sandbox. In case of detection of virtualization malicious samples usually 

adjust their behavior, usually by refusing to execute. This behavior makes analysis more complex, and 

possibly highly evasive. It is worth mentioning that anti-vm techniques are a rising trend in malware 

development  

For the ease to manage and communicate to VMM, most of VM systems leave some artifacts in 

guest OS. Those artifacts make detection of VM possible. The artifacts include processes, registry keys 

and values, loaded and exported dll’s, network artifacts like for example specific MAC addresses or 

adapter name, file system artifacts (system32\vboxtray.exe), special directories that are created 

(%PROGRAMFILES%\VMWare), virtual devices (\\.\HGFS),   hardware label etc. The following are 
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techniques that have been implemented in the tool and in no case they form a complete list of the 

numerous anti-vm techniques that exist. (See List of Techniques at the end). 

4.1 Red Pill 

Maybe on of the oldest techniques introduced by Joanna Rutkowska, in 2004, is a technique known as 

Red Pill. This technique uses a single machine language instruction, SIDT (“Store Interrupt Descriptor 

Table”) that can be run in user mode, and its purpose is to retrieve the location of the Interrupt 

Descriptor Table Register (IDTR) and store it in memory. Rutkowska observed that on VM guest 

machines, the IDT is typically located at 0xffXXXXXX, while on VirtualPC guests, it is located at 

0xe8XXXXXX. For host operating systems, the IDT is located far lower in memory [46]. To handle both 

conditions, one checks to see if the IDTR is greater than 0xd0000000. Variations of this technique use 

other instructions notably the sgdt for Global Descriptor Table (GDT) and the sldt for Local Descriptor 

Table (LDT). These tables hold critical variables associated with the operating system and particular 

running processes, respectively. One can also use the str instruction that stores the segment selector 

from the Task Register (TR) [16].  However, these techniques don’t work anymore on VMware 12 

Workstation after experiments (they have not been tested in other virtualization software). 

              
fig.20 /w sldt instruction           fig.21 /w str instruction    
 

4.2 CPUID – Hypervisor presence 

The CPUID opcode is a processor supplementary instruction (its name derived from CPU IDentification) 

for the x86 architecture allowing software to discover details of the processor [38]. CPUID instruction is 

executed with EAX=1 as input, the return value describes the processors features. The 31st bit of ECX on 

a physical machine will be equal to 0. On a guest VM it will equal to 1. 

 
fig.22 cpuid 1  
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4.3 CPUID – Hypervisor Vendor 

By calling CPUID with EAX=40000000 as input,1 the malware will get, as the return value, the 

virtualization vendor string in EAX, ECX, EDX. 

For example: 

• Microsoft: “Microsoft HV” 

• VMware: “VMwareVMware” 

 
fig.23 cpuid 2  

 

4.4 Number of Processors 

Malware authors use various techniques to identify a sandbox, but most methods involve analyzing the 

host’s hardware configuration. One of these techniques is the number of processors assigned to a vm. 

Malware can compare that value to detect virtualization. We can retrieve the number of processors 

using the kernel32!GetSystemInfo function 

 
fig.24 checking number of processors   

 

4.5 Virtual Devices 

One way to detect if virtualization is active in the system is to try accessing their device drivers. The 

technique is simple and just involves calling kernel32!CreateFile() against well-known device names used 

by virtualization software. For example, trying to access \\.\HGFS or \\.\vmci when in host will return 

INVALID_HANDLE_VALUE (0xffffffff) in eax, which is different than the value returned inside VMWare. 

file://///./HGFS
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fig.25 Virtual Device HGFS  

 

5 Conclusion 

In malware analysis field as well as in software protection the number of anti-reverse engineering 

techniques, others simple others advanced (e.g. TLB splitting), is probably a couple of hundreds. The 

main purpose is to manipulate the results of tools in order to fool and as result prevent or delay the 

analyst from dissecting and neutralizing the malware.  The tool presented automates the 

implementation of known selected anti-debug and anti-vm techniques in order to armor a simple 

malware on the fly. In no way it acts as a targeted sophisticated solution. Because many of the 

techniques incorporated into the tool can be neutralized automatically either with anti-anti plugins or 

manually with hooking of Windows API functions, as a future work, the tool will implement an anti-hook 

engine.  
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List of techniques 

What follows is a list of techniques to thwart malware analysis of PE executable found in the wild. 

10 Anti-debugging  

• IsDebuggerPresent 

• CheckRemoteDebuggerPresent 

• Process Environement Block (BeingDebugged) 

• Process Environement Block (NtGlobalFlag) 

• ProcessHeap (Flags) 

• ProcessHeap (ForceFlags) 

• NtQueryInformationProcess (ProcessDebugPort) 

• NtQueryInformationProcess (ProcessDebugFlags) 

• NtQueryInformationProcess (ProcessDebugObject) 

• NtSetInformationThread (HideThreadFromDebugger) 

• NtQueryObject (ObjectTypeInformation) 

• NtQueryObject (ObjectAllTypesInformation) 

• CloseHanlde (NtClose) Invalide Handle 

• SetHandleInformation (Protected Handle) 

• UnhandledExceptionFilter 

• OutputDebugString (GetLastError()) 

• Hardware Breakpoints (SEH / GetThreadContext) 

• Software Breakpoints (INT3 / 0xCC) 

• Memory Breakpoints (PAGE_GUARD) 

• Interrupt 0x2d 

• Interrupt 1 

• Parent Process (Explorer.exe) 

• SeDebugPrivilege (Csrss.exe) 

• NtYieldExecution / SwitchToThread 

• TLS callbacks 

• Process jobs 

• Memory write watching 

11 Anti-Dumping 

• Erase PE header from memory 

• SizeOfImage 

12 Timing Attacks [Anti-Sandbox] 

• RDTSC (with CPUID to force a VM Exit) 

• RDTSC (Locky version with GetProcessHeap & CloseHandle) 

• Sleep -> SleepEx -> NtDelayExecution 

• Sleep (in a loop a small delay) 

• Sleep and check if time was accelerated (GetTickCount) 

• SetTimer (Standard Windows Timers) 

• timeSetEvent (Multimedia Timers) 

• WaitForSingleObject -> WaitForSingleObjectEx -> NtWaitForSingleObject 

• WaitForMultipleObjects -> WaitForMultipleObjectsEx -> NtWaitForMultipleObjects (todo) 

• IcmpSendEcho (CCleaner Malware) 

• CreateWaitableTimer (todo) 
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• CreateTimerQueueTimer (todo) 

• Big crypto loops (todo) 

13 Human Interaction / Generic [Anti-Sandbox] 

• Mouse movement 

• Total Physical memory (GlobalMemoryStatusEx) 

• Disk size using DeviceIoControl (IOCTL_DISK_GET_LENGTH_INFO) 

• Disk size using GetDiskFreeSpaceEx (TotalNumberOfBytes) 

• Mouse (Single click / Double click) (todo) 

• DialogBox (todo) 

• Scrolling (todo) 

• Execution after reboot (todo) 

• Count of processors (Win32/Tinba — Win32/Dyre) 

• Sandbox known product IDs (todo) 

• Color of background pixel (todo) 

• Keyboard layout (Win32/Banload) (todo) 

14 Anti-Virtualization / Full-System Emulation 

• Registry key value artifacts 

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0 

(Identifier) (VBOX) 

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0 

(Identifier) (QEMU) 

• HARDWARE\Description\System (SystemBiosVersion) (VBOX) 

• HARDWARE\Description\System (SystemBiosVersion) (QEMU) 

• HARDWARE\Description\System (VideoBiosVersion) (VIRTUALBOX) 

• HARDWARE\Description\System (SystemBiosDate) (06/23/99) 

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0 

(Identifier) (VMWARE) 

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 1\Scsi Bus 0\Target Id 0\Logical Unit Id 0 

(Identifier) (VMWARE) 

• HARDWARE\DEVICEMAP\Scsi\Scsi Port 2\Scsi Bus 0\Target Id 0\Logical Unit Id 0 

(Identifier) (VMWARE) 

• SYSTEM\ControlSet001\Control\SystemInformation (SystemManufacturer) (VMWARE) 

• SYSTEM\ControlSet001\Control\SystemInformation (SystemProductName) (VMWARE) 

• Registry Keys artifacts 

• HARDWARE\ACPI\DSDT\VBOX__ (VBOX) 

• HARDWARE\ACPI\FADT\VBOX__ (VBOX) 

• HARDWARE\ACPI\RSDT\VBOX__ (VBOX) 

• SOFTWARE\Oracle\VirtualBox Guest Additions (VBOX) 

• SYSTEM\ControlSet001\Services\VBoxGuest (VBOX) 

• SYSTEM\ControlSet001\Services\VBoxMouse (VBOX) 

• SYSTEM\ControlSet001\Services\VBoxService (VBOX) 

• SYSTEM\ControlSet001\Services\VBoxSF (VBOX) 

• SYSTEM\ControlSet001\Services\VBoxVideo (VBOX) 

• SOFTWARE\VMware, Inc.\VMware Tools (VMWARE) 

• SOFTWARE\Wine (WINE) 

• SOFTWARE\Microsoft\Virtual Machine\Guest\Parameters (HYPER-V) 
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• File system artifacts 

• «system32\drivers\VBoxMouse.sys» 

• «system32\drivers\VBoxGuest.sys» 

• «system32\drivers\VBoxSF.sys» 

• «system32\drivers\VBoxVideo.sys» 

• «system32\vboxdisp.dll» 

• «system32\vboxhook.dll» 

• «system32\vboxmrxnp.dll» 

• «system32\vboxogl.dll» 

• «system32\vboxoglarrayspu.dll» 

• «system32\vboxoglcrutil.dll» 

• «system32\vboxoglerrorspu.dll» 

• «system32\vboxoglfeedbackspu.dll» 

• «system32\vboxoglpackspu.dll» 

• «system32\vboxoglpassthroughspu.dll» 

• «system32\vboxservice.exe» 

• «system32\vboxtray.exe» 

• «system32\VBoxControl.exe» 

• «system32\drivers\vmmouse.sys» 

• «system32\drivers\vmhgfs.sys» 

• «system32\drivers\vm3dmp.sys» 

• «system32\drivers\vmci.sys» 

• «system32\drivers\vmhgfs.sys» 

• «system32\drivers\vmmemctl.sys» 

• «system32\drivers\vmmouse.sys» 

• «system32\drivers\vmrawdsk.sys» 

• «system32\drivers\vmusbmouse.sys» 

• Directories artifacts 

• «%PROGRAMFILES%\oracle\virtualbox guest additions\» 

• «%PROGRAMFILES%\VMWare\» 

• Memory artifacts 

• Interupt Descriptor Table (IDT) location 

• Local Descriptor Table (LDT) location 

• Global Descriptor Table (GDT) location 

• Task state segment trick with STR 

• MAC Address 

• «\x08\x00\x27» (VBOX) 

• «\x00\x05\x69» (VMWARE) 

• «\x00\x0C\x29» (VMWARE) 

• «\x00\x1C\x14» (VMWARE) 

• «\x00\x50\x56» (VMWARE) 

• «\x00\x1C\x42» (Parallels) 

• «\x00\x16\x3E» (Xen) 

• Virtual devices 

• «\\.\VBoxMiniRdrDN» 
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• «\\.\VBoxGuest» 

• «\\.\pipe\VBoxMiniRdDN» 

• «\\.\VBoxTrayIPC» 

• «\\.\pipe\VBoxTrayIPC») 

• «\\.\HGFS» 

• «\\.\vmci» 

• Hardware Device information 

• SetupAPI SetupDiEnumDeviceInfo (GUID_DEVCLASS_DISKDRIVE) 

• QEMU 

• VMWare 

• VBOX 

• VIRTUAL HD 

• System Firmware Tables 

• SMBIOS string checks (VirtualBox) 

• SMBIOS string checks (VMWare) 

• SMBIOS string checks (Qemu) 

• ACPI string checks (VirtualBox) 

• ACPI string checks (VMWare) 

• ACPI string checks (Qemu) 

• Driver Services 

• VirtualBox 

• VMWare 

• Adapter name 

• VMWare 

• Windows Class 

• VBoxTrayToolWndClass 

• VBoxTrayToolWnd 

• Network shares 

• VirtualBox Shared Folders 

• Processes 

• vboxservice.exe (VBOX) 

• vboxtray.exe (VBOX) 

• vmtoolsd.exe(VMWARE) 

• vmwaretray.exe(VMWARE) 

• vmwareuser(VMWARE) 

• VGAuthService.exe (VMWARE) 

• vmacthlp.exe (VMWARE) 

• vmsrvc.exe(VirtualPC) 

• vmusrvc.exe(VirtualPC) 

• prl_cc.exe(Parallels) 

• prl_tools.exe(Parallels) 

• xenservice.exe(Citrix Xen) 

• qemu-ga.exe (QEMU) 

• WMI 

• SELECT * FROM Win32_Bios (SerialNumber) (GENERIC) 
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• SELECT * FROM Win32_PnPEntity (DeviceId) (VBOX) 

• SELECT * FROM Win32_NetworkAdapterConfiguration (MACAddress) (VBOX) 

• SELECT * FROM Win32_NTEventlogFile (VBOX) 

• SELECT * FROM Win32_Processor (NumberOfCores) (GENERIC) 

• SELECT * FROM Win32_LogicalDisk (Size) (GENERIC) 

• SELECT * FROM Win32_Computer (Model and Manufacturer) (GENERIC) 

• SELECT * FROM MSAcpi_ThermalZoneTemperature CurrentTemperature) (GENERIC) 

• DLL Exports and Loaded DLLs 

• avghookx.dll (AVG) 

• avghooka.dll (AVG) 

• snxhk.dll (Avast) 

• kernel32.dll!wine_get_unix_file_nameWine (Wine) 

• sbiedll.dll (Sandboxie) 

• dbghelp.dll (MS debugging support routines) 

• api_log.dll (iDefense Labs) 

• dir_watch.dll (iDefense Labs) 

• pstorec.dll (SunBelt Sandbox) 

• vmcheck.dll (Virtual PC) 

• wpespy.dll (WPE Pro) 

• CPU 

• Hypervisor presence using (EAX=0x1) 

• Hypervisor vendor using (EAX=0x40000000) 

• «KVMKVMKVM\0\0\0» (KVM) 

• «Microsoft Hv»(Microsoft Hyper-V or Windows Virtual PC) 

• «VMwareVMware»(VMware) 

• «XenVMMXenVMM»(Xen) 

• «prl hyperv «( Parallels) -«VBoxVBoxVBox»( VirtualBox) 

15  

16 Anti-Analysis 

• Processes 

• OllyDBG / ImmunityDebugger / WinDbg / IDA Pro 

• SysInternals Suite Tools (Process Explorer / Process Monitor / Regmon / Filemon, 

TCPView, Autoruns) 

• Wireshark / Dumpcap 

• ProcessHacker / SysAnalyzer / HookExplorer / SysInspector 

• ImportREC / PETools / LordPE 

• JoeBox Sandbox 

 

 

 

 

 

 


