
Piraeus 2017-2018

Postgraduate Programme
«Security of Digital Systems»

Master’s Thesis

Forensics on Android
applications

Kitsaki Theodoula-Ioanna

Under the supervision of Dr. Christoforos Dadoyan

University of Piraeus

Department of Digital Systems

i

Table of Contents

Table of Figures ... iii

Table of Tables .. iv

Acknowledgements .. v

Abstract ... vi

1. Introduction ... 1

2. Related Work ... 3

3. Background - Android Operating System .. 5

3.1 What is Android? .. 5

3.2 Android features ... 6

3.3 Environment Setup ... 7

3.4 Android boot process ... 8

3.5 Android SDK and ADB ... 10

3.6 Architecture .. 11

3.6.1 The need for a common architecture ... 11

3.6.2 Architecture components.. 11

4. Android Forensics .. 22

4.1 Android storage possibilities .. 22

4.2 Filesystem .. 25

5. Methodology ... 27

6. Android application Scenarios ... 30

6.1 My COSMOTE Android application .. 30

ii

6.2 What’s Up Android application .. 40

6.3 My CU Android application .. 49

6.4 OASA Telematics Mobile Android application ... 58

7. Future Work ... 62

8. Conclusions .. 63

References .. 65

iii

Table of Figures

Figure 1: Android OS Booting Flow Chart ... 8

Figure 2: Android operation system architecture components ... 12

Figure 3: The final Android architecture ... 21

Figure 4: Flow chart of methodology .. 29

Figure 5: Structure of \databases folder .. 31

Figure 6: Structure of application.db database via DB Browser for SQLite 32

Figure 7: "Browse Data" tab selection/preview ... 32

Figure 8: Table selection on "Browse Data" tab ... 32

Figure 9: Open default.realm via Realm Studio .. 33

Figure 10: Preview of 5A68895B039D-0001-3B82-8ACFCEF5F130SessionApp.json file 34

Figure 11: Preview of log files ... 35

Figure 12: Preview of com.crashlytics.settings.json file ... 35

Figure 13: Preview of session_analytics.tap ... 36

Figure 14: Preview of cookies table .. 36

Figure 15: Preview of USERATTRIBUTES table .. 38

Figure 16: Preview of 5A9A604D01C1-0001-40C2-19BB625A33E9user.meta file 43

Figure 17: Tables of WhatsUpDatabase.db database ... 44

Figure 18: My CU user's data/credentials ... 50

Figure 19: Preview of cookies table .. 51

Figure 20: Preview of autofill table ... 52

Figure 21: OASA Telematics app's home screen... 58

Figure 22: Cache preview .. 60

iv

Table of Tables

Table 1: Versions of Android ... 5

v

Acknowledgements

This thesis is dedicated to my family, Mike, Glykeria, Vaggelis, Padelis and my beloved

grandparents Leonidas and Artemis for their endless support and patience.

I would like to thank my thesis advisor Dr. Christoforos Dadoyan for the guidance and

advice of my study and research.

vi

Abstract

The purpose of this study is forensic analysis of specific Android applications. These were

investigated in order to be examined whether they store information on device storage or not.

The selected Android applications were My COSMOTE, What’s Up, My CU and OASA Telematics

Android applications. The directory in which usually Android application store their data is

\data\data\application_name, thus the analysis focuses primarily there. After months of

investigation the results were really interesting since these Android applications used from

many Android users. Findings indicate that My COSMOTE mobile Android application did not

store data on user’s device and needs internet connection in order to run. What’s Up mobile

Android application saves encrypted data on device so it can run without internet connection

using these non-updated data. My CU mobile Android application saves user’s credentials in

cleartext on their device. For this reason, without internet connection, user stay logged in but

they are not able to be informed about their account details. For this activity, internet

connection is required. Finally, OASA Telematics mobile Android application locates all the

necessary on user’s device. However, for some operations, such as real-time bus location,

internet connection is a necessary precondition.

1

1. Introduction

The increased use of Android devices, mainly smartphones, and the variety of their capabilities

both facilitate and cause problems to users. They are able to download applications on their

devices either for their entertainment or not. In most cases, mobile applications require

permissions such as access device storage, access contacts list, permissions to read and write

on mobile devices if need be, and muchmore in order to operate. For this reason, it is important

for users to know how applications treat their devices and their data. They should be informed

about which of their data applications use and the location in which these store them either

into devices or in servers. If they save data on devices it is important for users to know if these

are encrypted or not and how easy could be compromised from a malicious attacker.

For these reasons, this thesis adduces everything a user should know about Android and

forensic science, as well as presents experiments in four popular Android applications. At the

beginning, related investigations on other popular Android applications are referred. These are

Facebook, Skype, WhatsApp, Viber, ChatSecure and WeChat Android applications.

Chapter one mentions all the necessary details for Android operating system. The Android

term, its features and the environment setup of Android applications are defined.

Subsequently, details about Android SDK and ADB tools are mentioned and at the last section is

referred to Android architecture, the reason which is necessary a common architecture and

then the components consists of it .

Chapter two combines Android operating system with forensics science. It explains what

forensics is and mainly mobile forensics. Consequently, the partitions in which Android

application can store their data and the Android filesystem are referred. This information is

useful for the investigator in order to know the partitions that should be analyzed.

2

In chapter three, are explicitly described the methodology steps which are followed in the

investigation of each one from the selected applications. All the necessary tools which have

been used are mentioned, as well as errors which showed up and their possible solution.

In chapter four, the Android applications which are chosen for forensic analysis are presented.

These are My COSMOTE, What’s Up, My CU and OASA Telematics Android applications, which

widely used by Android users. Every step of this inspection has been extensively presented,

followed with related screenshots/figures, in order for a reader new to this area to fully

understand the process.

Last chapters mention proposals for future inspection. Both re-examine the selected Android

applications presented in this thesis at their new versions’ and analysis on other popular

Android applications. Ultimately, conclusions of this investigation are presented.

3

2. Related Work

In this thesis Android applications were selected, which have not been previously

examined. However, making a quick search found that in many widespread Android

applications became a criminal inspection.

Already in 2011 the Valkyrie-X Security Research Group (VXRL) analyzed the Facebook

application [1]. Using ready-made tools and platforms were investigated signatures and traces

of Facebook from RAM or cache file browser for several activities, such as comments and

discussions. Same results were found in the virtual machine image files. Also found traces of

data and files related to an Android application account which stored in various mobile user

devices.

In 2014, McQuaid dealt with the analysis of Skype on Windows, iOS and Android [2]. In a

database there is information about a user's account, calls, messages and group conversations,

contacts, files’ transfers and more. In the same folder as this database there are files containing

user's conversations and information about them, as well as the IP addresses associated with

any Skype activity.

Similar findings were found in research done on WhatsApp and Viber applications. In 2013,

Mahajan, Dahiya and Sanghvi were the first that dealt with these two applications [3]. In the

first application were found databases of messages, conversations and contact lists. In the

second application was stored history of calls made on Viber or not, contacts and messages and

more relevant information. A more detailed analysis was made in 2015 by Lone, Badroo,

Chudhary and Khalique [4], where apart from the databases research extended to the

\shared_pref folder, the external memory and the network level information. In both cases the

investigations were performed both on rooted and non-rooted mobile devices.

More recently, ChatSecure (2016) and WeChat (2017) mobile applications were analyzed [5,

6]. Exploring databases and folders, as previously, in the first application found some encrypted

data which decrypted and combined. As a result, user accounts contact lists, messaging and

4

metadata were analyzed. In the second case were found encrypted messages and other media

data in raw form. It is worth to point out that in all these cases used commercial tools and

platforms mainly for the analysis of recovered data. The most prevalent platforms were

Cellebrite UFED, XRY and Oxygen.

5

3. Background - Android Operating System

3.1 What is Android?

With the Android term meant an open source operating system based on Linux, which is used

in mobile devices like smartphones and tablets. The development of this operating system was

a collaboration project among different companies, with Google to be the leader.

It offers a unified approach to application development for Android devices. This means that

developers should develop applications only for Android, but they should be able to run on

different Android devices.

The first beta version of Android Software Development Kit (SDK) was released in 2007 by

Google and September 2008 as a commercial version with the name Android 1.0. Then several

updates to the original version were released:

Table 1: Versions of Android

Version Code name API level

1.0 No code name 1

1.1 No code name 2

1.5 Cupcake 3

1.6 Donut 4

2.0, 2.0.1, 2.1 Eclair 5, 6, 7

2.2.x Froyo 8

2.3 - 2.3.2, 2.3.3 - 2.3.7 Gingerbread

9, 10

6

3.0, 3.1, 3.2.x Honeycomb 11, 12, 13

4.0.1 - 4.0.2, 4.0.3 - 4.0.4 Ice Cream Sandwich 14, 15

4.1.x, 4.2.x, 4.3.x Jelly Bean 16, 17, 18

4.4 - 4.4.4 KitKat 19

5.0, 5.1 Lollipop 21, 22

6.0 Marshmallow 23

7.0, 7.1 Nougat 24, 25

8.0.0, 8.1.0 Oreo 26, 27

https://source.android.com/setup/start/build-numbers#platform-code-names-versions-api-levels-and-

ndk-releases

The source code for Android is available under free and open source software licenses. Google

publishes most of the code under the Apache License version 2.0 and the rest, Linux kernel

changes, under the GNU General Public License version 2.

3.2 Android features

Android is a powerful operating system with a variety of features. Some of these are the

following [7]:

 Attractive user interface (UI)

 Connectivity: Supports GSM / EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE,

NFC and WiMAX

 Storage: For data storage it uses the SQLite relational database

 Media support: Supports H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC, HE-AAC, AAC

5.1, MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF, and BMP

https://source.android.com/setup/start/build-numbers#platform-code-names-versions-api-levels-and-ndk-releases
https://source.android.com/setup/start/build-numbers#platform-code-names-versions-api-levels-and-ndk-releases

7

 Messaging: SMS and MMS

 Web browser: Based on the open-source WebKit layout engine, coupled with Chrome's

V8 JavaScript engine supporting HTML5 and CSS3

 Multi-touch: Android has native support for multi-touch which was initially made

available in handsets

 Multi-tasking: User can jump from one task to another and same time various Android

applications can run simultaneously

 Resizable widgets: Widgets are resizable, so users can expand them to show more

content or shrink them to save space

 Multi-Language: Supports single direction and bi-directional text.

 GCM: Google Cloud Messaging (GCM) is a service that lets developers send short

message data to their users on Android devices, without needing a proprietary sync

solution.

 Wi-Fi Direct: A technology that lets apps discover and pair directly, over a high-

bandwidth peer-to-peer connection.

 Android Beam: A popular NFC-based technology that lets users instantly share, just by

touching two NFC-enabled phones together.

3.3 Environment Setup

An important advantage is that an Android application can be developed on the following

operating systems:

 Microsoft Windows XP or later version

8

 Mac OS X 10.5.8 or later version with Intel chip

 Linux including GNU C Library 2.7 or later

Another positive aspect is that every tool needed to build Android applications is free and can

be obtained easily from the internet. Some useful software is Java Development Kit (JDK),

Android Studio and Eclipse IDE.

3.4 Android boot process

As mobile platforms have some differences compared with Desktop systems with regard to

their starting up and booting is useful referring to the initial starting stage of a Android mobile

[8, 9]:

Figure 1: Android OS Booting Flow Chart

1. Boot: When CPU is powered on, essentially there has been no initialization. The

internal clocks are not being set up and the only available memory is the internal

memory RAM. When power supplies are constant voltage then the execution will

start with the Boot ROM code.

2. Boot loader: This is a special program separate from the Linux kernel that is used

to make initializations and load the kernel to RAM. On desktop systems the boot

loader are defined as programs, while on embedded Linux as the chosen U-

Boot. Device manufacturers usually use their own boot loaders. For Linux running

Boot
Loader

Kernel

Init

Dalvik

Boot System server

9

on ARM systems, the requirements of a boot loader can be found in the Booting

document under /Documentation/arm in the kernel source tree.

3. Linux kernel: The kernel of Linux starts up in a manner similar to Android as in

other systems. It will configure everything needed for the system to

run. Initializes interrupt controllers, sets up memory protections, caches and

scheduling.

4. Init process: The initialization process is the grandma of all system

processes. Every other process on the system will start with this process or one of

its descendants.

5. Dalvik: Dalvik starts from the initialization process. Essentially, it starts by simply

running and initializing the Dalvik VM.

6. System server: This is the first java part that runs in the system. It will launch all

Android services such as telephony manager and Bluetooth. Start up of each

service is currently written into the execution method of system server. The

source code of system server can be found in the

frameworks\base\services\java\com\android\server\SystemServer.java file in the

open source project.

7. Boot completed: Once the system server runs and the system boot is completed,

there is a standard broadcast action called ACTION_BOOT_COMPLETED. A

registration needs to be made of a successful boot, in order for a user to run an

Android application after startup.

10

3.5 Android SDK and ADB

The investigation of an Android device has been made a lot easier now by using some freeware

online tools available. Android Software Development Kit (SDK) is a set of software

development tools. It contains all the necessary resources for Android applications’ creation. It

is also a powerful forensic tool. SDK conveniently assists a developer in order to create and

debug an Android application or an analyst in order to investigate the characteristics of an

Android device.

An important tool is Android Debugging Bridge (ADB). This tool allows communication with an

emulator or connection with an Android device. Basically, it is a server-client program, which is

consisted of a client, a server and a daemon. Client runs on the analyst’s machine. The

researcher can create a client via a shell using the adb command. For this purpose, the analyst

can use alternative tools such as DDMS which is used in the present thesis. The server runs as a

background process on analyst’s machine and it is responsible for managing the communication

between client and the adb daemon. This daemon runs as a background process either on an

emulator or on a (mobile) device.

However, in order for someone to connect to any Android device from a computer and transfer

data, an option from "Developer Options" tab must be activated beforehand on the device. This

option is called "Usb Debbuging". In our experiment using an Android device version 6.0.1,

every time a user activates this option a warning has been prompted.

11

3.6 Architecture

3.6.1 The need for a common architecture

A fairly important point which deserves to be clarified is the reason that architecture is needed.

Android framework enables developers to write all of their code in the Activity class. An activity

is a unique and targeted action that a user can perform. Almost all activities interact with the

user, so the Activity class creates a window in order programmer to write interface’s (UI) code.

However, this ability creates some problems, which had been resolved by creating various

architectural standards such as MVP (Model-view-presenter) and MVVM (Model-view-

viewmodel). These standards enable code writing to be robust and easy code correction and

testing process. Once Android team realized the need for a common direction, officially

announced Android components and gave relevant guidelines.

3.6.2 Architecture components

Android operating system is a stack of software components which is roughly divided into five

sections and four main layers [10, 11].

12

 https://www.quora.com/What-is-the-Android-application-Architecture

Figure 2: Android operation system architecture components

These sections are the “Android applications”, “Android application framework”, “libraries”,

“Android runtime” and “Linux kernel” sections. These sections are grouped into four layers. In

the bottom layer is the Linux kernel layer, in the above layer are contained libraries and

Android runtime sections, then the Android framework layer and in the higher layer is Android

applications section. A more detailed description of these sections is presented as follows:

 Linux kernel

At the bottom layer, Linux kernel is located which is based on version 2.6 of Linux. It provides

an abstraction layer between device’s hardware and higher levels of the Android software

stack. Actually it provides a preemptive multitasking. Here are performed basic low-level

system services such as management of memory, processes and energy. It also contains all the

necessary drivers for the correct functioning of the device, such as camera and

https://www.quora.com/What-is-the-Android-application-Architecture

13

keyboard. Finally, this layer manages all operations in which Linux is well known for, such as

networking and a wide variety of devices’ drivers which are responsible for interconnection

with hardware.

The first Linux kernel was developed in 1991 by Linus Torvalds and is combined with a set of

tools, utilities and compilers developed by Richard Stallman at Free Software Foundation in

order to create a complete operating system called GNU / Linux. Various Linux distributions

build upon these foundations, like Ubuntu and Red Hat Enterprise Linux.

It is worth noting that Linux was originally designed for desktop computers and servers

environments and not for mobile use. Android is the only operating system which uses Linux. In

fact, Linux is most widely developed in critical corporate server environments. That proves the

power, effectiveness and efficiency of current Android smartphones.

 Android Runtime – Dalvik Virtual Machine

This is the third section of Android architecture and the second layer from the bottom

part. Here is provided a key component called Dalvik Virtual Machine (VM), a kind of Java

virtual machine specially designed and optimized for Android.

As previously mentioned, Linux kernel provides a multi-execution environment that allows

multiple processes to run concurrently. It can be assumed that every Android application runs

just as a process directly in the Linux kernel. In fact, each Android application executes its own

process using its own Dalvik VM instance of the device.

Android applications running on virtual machines offer a number of advantages. Initially,

Android applications are mostly sandboxed, because neither they adversely affect (intentionally

or otherwise) the operating system or other Android applications nor can have direct access to

the device’s hardware. Secondly, this forced abstraction layer makes Android applications

neutral regarding platform, because they have never been associated with any particular

hardware.

14

This VM was developed by Google and based on Linux kernel for low-level functionality. It is

more efficient than standard Java VM regarding memory usage and it has been designed to

allow multiple instances run efficiently with the resource constraint that a mobile device comes

with.

In order Android application code to be executed within a Dalvik VM should be transformed

from standard file type (Java classes) into executable Dalvik (.dex) format, which has a 50%

smaller memory footprint than standard Java bytecode. Files of standard Java class can usually

(if not always) be transformed into Dex format by using dx tool included in Android SDK.

As mentioned in details as follows, another feature provided in this section is a set of core

libraries that allow developers to create Android applications using the Java programming

language.

 Android Runtime - Dalvik Libraries,

Main libraries of Android, known as Dalvik libraries, are divided into three categories, which

are:

 Java Interoperability Libraries

For development of Android applications, Java programming language is used.

Standard Java development environment includes a wide variety of classes

contained in core Java runtime libraries. These libraries provide support for tasks

such as string management, networking and file handling.

Moreover, these libraries are used widely by Java developers, regardless of the

platform of use.

These libraries are an open source implementation of a subset of standard Java core

libraries which have been adapted and transformed for use by Android applications

running on a Dalvik VM.

15

 Android Libraries

This category includes libraries based on Java and specifically used for Android

development.

Examples of such libraries are libraries of Android application framework and those

that facilitate the creation of user interface, the graphics’ design and the access of

the database.

Some basic libraries for Android development are:

 android.app: Provides access to the Android application model and

comprises the basic library on all Android applications.

 android.content: Facilitates access to content, publication and exchange

of messages between Android applications and their data.

 android.database: It is used to access data published by content

providers and includes classes for managing SQLite database.

 android.graphics: A two-dimensional (2D) API (Android application

programming interface) for the low-level graphic design, including colors, signs,

filters, rectangular and canvases.

 android.hardware: Presents an API that provides access to the hardware

such as acceleration measure and light sensor.

 android.media: Provides classes which help the reproduction of audio

and video.

 android.net: A set of APIs that provide access to the network stack. It

includes android.net.wifi, which provides access to the wireless device stack.

 android.opengl: A Java interface to the OpenGL ES 3D graphics rendering

API.

16

 android.os: Provides access to Android applications on standard

operating system services, including messaging, system services and

communication between processes.

 android.provider: A set of classes that provide access to main Android

databases of content provider such as those maintained by calendar and

contacts Android applications.

 android.text: It is used to perform and manage text on a device’s screen.

 android.util: This is a set of useful classes which are responsible for tasks’

execution such as converting strings and numbers, management of XML

language and date and time configuration.

 android.view: The basic units for building interfaces for the users of

Android applications.

 android.widget: A rich collection of pre-built user interface’s

components, such as buttons, labels, list views, layout managers, radio buttons

etc.

 android.webkit: A set of classes designed to allow Android applications to

integrate browsing capabilities on the web.

 C/C++ Libraries

The basic libraries which mentioned above are based on Java and provide basic APIs

for programmers in order to develop Android applications. However, it is important

to be noted that these libraries do not perform much of the actual work and are

substantially Java "wrappers" which build upon libraries based on C/C ++. For

example, when a call to the android.opengl library is made in order to perform a

design task (i.e. design three-dimensional (3D) graphics on the display), under the

wood the library perform another internal call to OpenGL ES C ++ library which

cooperates with the Linux kernel in order to complete the initial request.

17

C / C ++ libraries are included to perform a wide and diverse range of functions, such

as design of 2D and 3D graphics, SSL communication (Secure Sockets Layer),

management of databases SQLite data, audio and video play, management of

graphics and an implementation of the standard C system library (libc).

In practice, typically an Android application developer will have access to C/C++

libraries exclusively through Java APIs “wrappers” libraries. In case that immediate

access to these libraries is required, this can be achieved using Android Native

Development Kit (NDK), whose purpose is calling the intrinsic methods of

programming languages except Java (such as C and C ++ languages) through the Java

code using Java Native Interface (JNI).

 Application Framework

This layer provides a high-level service on Android applications with the format of

Java classes. This framework implements the idea that Android applications are

made of reusable, interchangeable and replaceable components. This idea is one

step closer to the notion that Android applications are also able to publish their

capabilities, along with any corresponding data, so they can be found and reused by

other Android applications. Therefore, these services can be used by programmers

to develop Android applications.

Main services included in the Android application Framework are:

 Activity Manager: It controls every aspect of Android application’s lifecycle and

stack operations.

 Content Providers: Enables Android applications to publish and share data with

other Android applications.

 Resource Manager: Provides access to non-code embedded resources such as

color settings and provisions of user interface.

18

 Notifications Manager: Allows Android applications to display warnings and

alerts on the user.

 View System: It is a scalable set of facets used to create user interfaces of

Android applications.

 Package Manager: This is the system whereby Android applications have the

opportunity to learn about other Android applications installed on the device.

 Telephony Manager: Provides information for telephony services available on

the device, such as status and information of subscribers, on the Android application

 Location Manager: Provides access to location services allows an Android

application to receive updates when the location changes.

 Applications

At the highest level are located all the Android applications. It includes both the pre-installed

Android applications with the specific implementation of Android (for example internet

browsers and email Android applications) and all those that were installed by the user after

device’s acquisition.

The file format of Android applications is the APK format. Basically it is a zip file containing all

the necessary files that consists an Android application. Normally contained files such as

classes.dex, res/, resources.arsc, AndroidManifest.xml, libs/, assets/, META-INF/ [12].

Specifically, classes.dex file contains the compiled code of Android application in Dex bytecode

format. Starting from the Android 5.0, introduced the ART runtime replacing Dalvik, these files

are transformed into OAT files using the ahead-of-time (AOT) compiler at the Android

application installation stage and placed in the data partition device.

In res/ folder is contained the majority of xml resources and drawables in folders with many

qualifiers, like –en and -de for multilingual support or –large and -medium for different screen

sizes. It is worth noting that each XML file located in this folder has been transformed into a

19

more compatible, binary representation during compile process. For this reason, these files

cannot be opened with a text editor through APK file.

In resources.arsc file, resources and identifiers are compiled and flattened. Normally these

stored uncompressed into an APK file in order to be easily accessible during

execution. Compressing this file with a manual way could be considered a positive practice, but

actually this is not a good idea. This occurs mainly for two reasons. First, Play Store compresses

any data for transferring, and second, having the compressed file in an APK will be wasting

system resources (RAM) and performance (especially the starting time of the Android

application).

Another file contained into the APK is the manifest file. Basically it is an xml file that contains

basic information about the application on the Android build tools, on the Android operating

system and on Google Play. Like any xml file, it is transformed in binary format during writing

step. Play Store uses information from this file to determine whether an APK file can be

installed on a device, checking the permissible densities or screen sizes and the available

hardware and features such as a touch screen. After writing phase, for checking these entries in

the manifest file can be used aapt tool from Android SDK using the command:

Each native library (* .so file) will be placed in subfolders named after ABI-Android application

Binary Interface (CPU architecture, e.g. x86, x86_64, armeabi-v7a) aimed below libs/

folder. Normally, they are copied from the APK file in \data partition during the

installation. However, once an APK located on a device and does not change by its own, this

essentially doubles the space required for each native library.

$ aapt dump badging your_app.apk

20

Assets/ folder is used for storing assets that will not be used as Android-type resources. Usually

in this folder are contained font-style files or game data such as levels and plots, as well as any

other Android application file that the user wishes to open directly as a file stream.

META-INF file is located into signed APK files and it contains a list of all files in the APK with

their signatures. Αt this moment, signature method on Android verifies one by one signatures

against the uncompressed file contents of the archive.

This fact has some interesting consequences. Since each entry in a compressed (.zip) file is

stored separately, it is concluded that the compression level of individual files can be changed

without having to sign it again. Nevertheless, if any file from the archive removed after its

signature, then the signature’s verification will fail.

Something else worth mentioning about the way a signed APK file is generated is that zipalign

tool used in the final stage of the build. If contents of the archive are manually changed, they

should be signed again and then should be used zipalign tool before the APK will be uploaded

on Play Store.

Architecture components are a new collection of libraries which assists design robust, testable,

and maintainable Android applications. In other words, these help overcoming common

problems related to configuration changes, memory leaks and developing Android applications

that can easily be tested, while at the same time the architecture is maintained.

After several proposals the final version of Android architecture was agreed. This includes the

lifecycle, ViewModel, LiveData, Lifecycle - ViewModel - LiveData and Room components (Figure

3). These can be used either together or separately [13, 14].

21

Figure 3: The final Android architecture

Concisely, ViewModel component is designed to store and manage UI-related data so that the

data survive configuration changes such as screen rotations. LiveData is a component which

holds the value (data holder) and allows observing for changes on this value. It is designed to

hold the data of ViewHolder but it can also be used for data sharing in the Android application.

Lifecycle — ViewModel — LiveData component is referred in the fact that UI components, such

as TextView or RecycleView, observe LiveData, which, in turn, observes the lifecycle of an

Activity or Fragment using a LifecycleObserver. Finally, Room provides an abstraction layer over

SQLite to allow fluent database access while harnessing the full power of SQLite.

22

4. Android Forensics

A known branch is forensics or otherwise forensic science. This is the science applied to criminal

and civil law during criminal investigation, emphasizing criminal side. This research is based on

legal norms of acceptable evidence and criminal procedure.

Digital forensics is sector of forensics. This branch includes recovery and inspection of data

found in digital devices, often in relation to cybercrime. The increased utilization of mobile

devices and the multitude of offered possibilities have led to the creation and continuous

development of a new sub-sector of digital forensics. It is called Mobile Device Forensics

concerning the recovery of digital data or data from a mobile device under forensic

conditions. Usually the term mobile device refers to mobile phones. However, it can be

associated with any digital device that has both internal memory and the ability to

communicate, including PDA devices, GPS devices and tablets.

This thesis focuses on forensics on Android applications; therefore a more extensive reference

to this sector is necessary. This is a relatively new sector which dates from the early 2000s and

late 1990s. The rapid growth of mobile devices, especially smartphones, in combination with

their capabilities, consist a subject of research. The inability of testing these devices with

existing techniques referring to computers led to the creation of a new branch.

4.1 Android storage possibilities

The goal of forensic analysis is to extract data from a device. Such investigation in order to be

effective, a well-known background of device’s filesystem (i.e. where data is stored, partitions)

as long as knowledge on different file extensions, is necessary. Having this knowledge, the

analyst has the ability to make a substantiated decision where to search for the necessary data

and what techniques can be used for their extraction.

23

For this reason, a basic knowledge of the file hierarchy of the investigated device’s operating

system is judged useful. It concerns the way that the operating system, Android in our case,

organizes data in files and folders. Researcher must have root access on the device in order to

access all system’s files. A list of directories which exist in Android described briefly as follows.

[15, 16]:

 Acct: This is the starting point for the control group (cgroup) which is responsible for

managing user accounting.

 Cache: In other words, temporary memory. It is the directory (/cache) where Android

stores data and Android application’s components that are often accessible. Deleting

data from current directory is not affecting user's personal data. Also, in this directory,

the /lost+found folder is located, which contains recovered files (if any) in case of

corruption of the filesystem, such as incorrect removal of the SD card. Therefore, cache

may contain important information for criminal investigation, such as pictures, browsing

history and other Android application’s data.

 d: A symbolism of \sys\kernel\debug folder. It is used to boot debugfs filesystem and to

detect errors in the kernel.

 data: This is the starting point of /dev/block/mtdblock1 partition. Some important files

contained in this folder are:

 dalvik-cache: This folder contains log files which may be useful during

examination, according to the existed requirements.

 data: The \data\data partition contains private data of all Android

applications. The majority of users’ data are stores in this folder, thus the

significance of it in forensic terms during an inspection.

 dev: This directory contains dedicated device’s files for all devices. This is the

starting point of tempfs filesystem. This filesystem defines available devices to

Android applications.

24

 init: During Android kernel booting, init program is running. This program

appears under the specified folder.

 mnt: The specified directory serves as the starting point of all filesystems,

internal and external SD cards and so on.

 proc: This is the starting point of procfs filesystem, which provides access to

kernel’s data structures. Several programs use this directory as the source of the

information they need. It contains files with useful information for procedures.

 root: This is the home directory for root access. This folder can only be accessed

if the device is rooted.

 sbin: Contains binary files for several important daemons. From a forensic point

of view and during an inspection, this folder is not considered a key folder.

 misc: As the name indicates, this folder contains information about various

settings. From this folder can be accessed information related to hardware

settings, USB settings, and so on.

 sdcard: This partition contains data from either removable or not SD card that

exists on the device. Every Android application which is installed on the device

and has permission to write to the external storage

(WRITE_EXTERNAL_STORAGE) can create files and folders in this

location. However, some default folders, such as android_secure, Android, DCIM

are found in almost all mobile devices.

 Digital Camera Images (DCIM): The default folder of Android operating system in

which user’s images, video and thumbnails (cache) are stored. User’s photos are

saved under \DCIM \Camera folder.

 system: This folder contains libraries and archives associated with the system.

These could be either on binary or other format. Preinstalled Android

applications which come with the device are installed in this directory.

25

Furthermore, in this folder there is also the app/ subfolder which contains

system Android applications and preloaded Android applications.

4.2 Filesystem

As already mentioned, Android operating system uses Linux kernel. At the top of the filesystem

there is an abstraction layer called Virtual File System (VFS). This layer defines an interface

between kernel and a specific filesystem. Supported filesystem types vary on Android

devices. Thus, in order for our research to be successful and effective, it is important for analyst

to possess adequate background knowledge on the involved device. Such knowledge comprises

elements of device’s filesystem, unix commands and so on, in order to used later on during this

investigation with the most appropriate way. Common filesystems are the following:

 EXT (Extended File System): This is the standard type used by most Linux systems. From

December 2010 it began to be used in Android devices.

 YAFFS2 (Yet Another Flash File System version 2): This is the default AOSP (Android

Open Source Project) flash filesystem for the kernel’s version 2.6.32. YAFFS2 is not

supported in new kernel’s versions, as, in our case, the kernel’s version was 3.10.49. For

this reason, it does not appear in the source tree. However, specific suppliers of mobile

devices might still support YAFFS2.

 exFAT (extended File Allocation Table): Microsoft’s proprietary filesystem, which

requires license purchase in order to be used. For this reason this is not part of standard

Linux kernel. However, some manufacturers provide support to Android operation

system for this filesystem.

 F2FS (Flash-Friendly File System): This filesystem was introduced by Samsung in 2012 as

an open source Linux filesystem.

26

 JFFS2 (Journalling Flash File System version 2): The successor of JFFS filesystem. This is

the default flash filesystem for AOSP kernels beginning from Ice Cream Sandwich

version.

27

5. Methodology

For the implementation of the technical part of this thesis specific actions carried out. For

better understanding of the process followed, a more detailed explanation is

described. Initially, a decision has to be made on the investigation’s approach. The first

approach involved use of special platforms for mobile forensics, as UFED, XRY and Oxygen

Forensics Detective. However, the difficulty in obtaining these tools led to the second method

which is described in detail as follows.

First and foremost a crucial step of preparation concerns device’s rooting. By the term "root" is

mentioned the process by which a superuser’s account is added in a mobile device,

proportional "Administrator" account in Windows. Essentially user has privileged access’ rights

to the system.

Rooting is often performed in order to overcome some limitations which exist in devices. In this

way, rooting enables modification or replacement of installed Android applications and system

settings. Moreover, it allows the execution of specific Android applications that require

administrative privileges or other functions which would otherwise be inaccessible to a regular

user. In addition, rooting devices might allow complete removal and replacement of operating

system of the device, usually with a recent version of the operating system [17].

In this thesis, a Samsung Galaxy J5 mobile device was used for applications’ inspection. A

prerequisite for rooting is to enable "Developer options" and then activate “OEM unlock” and

“USD Debugging” options. Firstly, recovery.tar.md5 [18] and SuperSU-v2.82.zip [19] files have

to be downloaded and stored in device’s memory. Consequently, in order to activate the

download mode on the device, on/off, menu and sound reduction buttons were pressed at the

same time while the device was powered off. Moreover, the mobile device was connected to a

laptop in order for us to use Odin3 v3.12.10 tool [20]. At AP field of this tool, we filled we filled

the path to the recovery.tar.md5 file and pressed the Start button. Once this process has been

completed and after the necessary device restart, “Swipe to Allow Modifications” and “Install”

28

options are selected (in screen’s menu). Furthermore, SuperSU-v2.82.zip file and “Reboot

System” option should be selected. Finally, in order to verify the successful rooting, "Root

Checker" Android application was downloaded from Google Play Store.

It is worth noting an error came up after device’s rooting, during the third time in which the

device was powered on. Specifically, an error screen was prompted labeled “Custom binary

blocked by FRP” during a power on attempt. Consequently, an online research was conducted

in order to identify the cause. It turned out, that it was a common issue of rooted mobile

devices. However, the solution was not so simple. The original firmware of the device was

needed to be installed again, and repeat the rooting procedure.

After a successful rooting, “Root Browser” Android application was used which is available on

the Play Store. This Android application allows us access to rooted device files. An important

folder is data/data folder which is inaccessible from ordinary users.

A copy to a computer has to be made in order for the abovementioned files (rooted or not) to

be analyzed. Tools such as Explorer Droid or Android Device Monitor DDMS using Android

Studio are capable of previewing and copying these files via computer [21]. However, after

using several times these tools creates problems in recognizing mobile device and showing up

the files. When the mobile device was connected to a computer, were not appeared neither its

normal name nor the included files. To solve this problem some configurations on the mobile

device have to be made. The user had to select "Options for Developers" tab through

"Settings" option, then to choose “Revoke USB debugging authorization” option and press "OK"

in pop-up windows. The result of these actions was the recognition of the mobile device of each

tool by displaying its name and its files. Then, user has the ability to select folders or files and

extracting them on the computer was given.

It is worth noting that there is another simple way to export data, which does not require the

use of a tool. Essentially, the necessary files can be copied to mobile device’s memory card and

then to a computer for analysis. Although the simplicity of such approach is greater than the

first one, lacks on effectiveness. It was observed that when a folder was selected, the included

29

system files cannot be copied directly. Each one of those should be separately selected for

transferring to the memory card. Ultimately, this method has the same result as the first one.

In some cases, we had to export data several times, as in My COSMOTE Android application, in

order to check again some files. This step was implemented in cases, where the results were

not as expected. The Android application was used for long period of times and the data of it

were exported regularly. Such an approach had to be made in order for the research results to

be reliable.

It is really important to point out that during our research; the test device did not turn off. As a

result, the data from RAM (Random Access Memory) will not be deleted and the inspection

could be carried on.

Briefly, a summary of methodology’s steps are presented as follows (Figure 4):

1. Mobile device rooting

2. Use of each Android application for long period of time

3. Android application data extraction

4. Android application data analysis

5. (If needed) Repetition of steps 2 to 4 as many times as required

6. Conclusions export

Figure 4: Flow chart of methodology

30

6. Android application Scenarios

6.1 My COSMOTE Android application

The first experiment concerns My COSMOTE Android application of COSMOTE MOBILE

TELECOMMUNICATIONS S.A., aimed at users either landline or mobile telephony of this

company and it is available free on Play Store. The application offers the users the opportunity

to manage their accounts via their mobile device. They can be informed for issues relating to

their accounts and for available services that the company offers. Moreover, users are able to

activate any service upon their will and change their billing program.

In regard with mobile telephony, users can manage their mobile connection getting information

about available airtime, messages and mobile data, without any password

necessary. Moreover, users can pay their bill and be informed about its amount and its

payment date and briefly about other important information about their calls. They can share

airtime, messages and mobile data with other Cosmote numbers, to activate and deactivate

services and to request information about billing programs or select a new one.

In landline telephony, users can be informed about their monthly bill and pay it. Also they can

be informed for the enabled services.

Each user has the ability to contact Customer Service Center either through an online form or

making a phone call by clicking on the relevant shortcut and search for the nearest physical

store.

Signing in to My Cosmote Android application can be achieved either by typing a

username/email address and a password after prior registration via email or using the SIM

card. In our case, the second way was chosen. The mobile phone number which will be

connected to the Android application was filled in. Consequently, a SMS with verification code

was sent to the above phone number. When it was received, the code automatically placed on

the appropriate field inside the Android application. Upon completion of the aforementioned

31

actions, the Android application was fully synchronized with information related to the declared

phone number. However, these actions are only required on the first signing in to the Android

application. For each subsequent connection this synchronization is done automatically.

Data of this application are saved in \data\data\gr.cosmote.myaccount.widget folder, in which

contained the subfolders appeared in Figure 5.

Figure 5: Structure of \databases folder

Into \databases folder are located the application.db, google_app_measurement.db and

google_app_measurement_local.db databases. In order to be gained access to every data

stored on those databases, DB Browser for SQLite tool [22] was used. Selecting tab “Database

Structure” shows the tables and columns of the selected database (Figures 6). The following

figures illustrate the application.db database.

32

Figure 6: Structure of application.db database via DB Browser for SQLite

In the Browse Data the user can preview the columns and any data related with the selected

database table (Figures 7 and 8).

Figure 7: "Browse Data" tab selection/preview

Figure 8: Table selection on "Browse Data" tab

33

In our first attempt to connect to application’s database and after one day of user, it was

discovered that none relevant information was stored. Our first assumption was that probably

the Android application needs more time in order to store any data. Keeping this in mind, we

continue the use of the application for several days while checking if any data has been logging.

Our findings, indicate, that nothing was stored in these databases after a month of continues

use.

On the other hand, plethora of findings was found on files into \files folder, concerning network

level information. The default.realm file was opened with Realm Studio program [23]. In this file

was found that the mobile phone number which is assigned to the Android application, was

stored unencrypted. Application‘s classes with relevant information have been found in this

file. However, no additional user’s data were stored (Figure 9).

Figure 9: Open default.realm via Realm Studio

34

In the same folder is located DATA_ServerControlledParametersManager

.data.gr.cosmote.myaccount.widget file, which stores information about servers and sites with

respective satellites used for location search such as www.gstatic.com. Also, user’s country and

language were stored. In this case was stored “el” for language and “GR” for country.

Furthermore, in this particular folder some hidden system files were stored. Specifically, there

is \.Fabric folder, wherein are contained \com.crashlytics.sdk.android.crashlytics-core,

\com.crashlytics.sdk.android_answers and \io.fabric.sdk.android_fabric subfolders. From the

first folder is already known the Session ID which contained in the name of each file. In this

case, Session ID is 5A68895B039D-0001-3B82-8ACFCEF5F130. Therefore, files’ names were

consisted of the session ID, “Session” and one more word depending on the file’s content. In

5A68895B039D-0001-3B82-8ACFCEF5F130BeginSession.json file was contained unencrypted

the identifier. In 5A68895B039D-0001-3B82-8ACFCEF5F130SessionApp.json file was contained

information about the Android application, such as its version (7.0.2), the UUID of the

installation and the api key which was unencrypted. In 5ADE0D950231-0001-7DEA-

8ACFCEF5F130SessionDevice.json is contained information about mobile device, such as

manufacturer, product number, device model and information about memory and processors

(Figure 10).

Figure 10: Preview of 5A68895B039D-0001-3B82-8ACFCEF5F130SessionApp.json file

In 5ADE0D950231-0001-7DEA-8ACFCEF5F130SessionOS.json file there was information about

operating system, its version and whether the mobile device was rooted or not.

In the same folder \log_files folder was included. There were temporarily (.temp) files which

record user’s actions. Great interest indicates the fact, when the user registers and

subsequently connects on the Android application for the first time; a record in the

corresponding log file has been made which stores the mobile phone’s number (Figure 11).

35

Figure 11: Preview of log files

The third folder is com.crashlytics.settings.json folder which holds information about user’s

configuration on the Android application. For example, if user agrees on data collection and

report sending in case of an error. These settings are presented in more details in Figure

12. Collected data which are about to be sent are stored encrypted in a .tap file into the second

folder. Both data concerning the mobile device and the particular session are stored (Figure

13).

Figure 12: Preview of com.crashlytics.settings.json file

36

Figure 13: Preview of session_analytics.tap

The following analyzed folder was \app_webview folder. In Cookies file was observed storing

information about Android application’s cookies (Figure 14). Among several important

elements is the value of cookies, the date and time of their creation and expiration in utc

format, and the field that informs whether the cookie has expired or not.

Figure 14: Preview of cookies table

The metrics_guid file stores the GUID (global unique identifier) in the 8-4-4-4-12

format. Basically it is a number of 128 bits which is used to identify information on computer

systems.

37

In \code_cache directory was included the com.android.opengl.shaders_cache file. This file

contains information about the used OpenGL ES API. Specifically, EGL library was used, as

mentioned at section number 1.6.2.

As previously mentioned, another forensically important folder is \shared_prefs folder. In this

particular folder, xml files for user’s actions were found. These files were consisted of two

elements, which are name and value elements. Parameter “name” contains user’s action, while

the parameter “value” takes different values as a response to each action. More specifically,

some user’s actions that are stored are presented as follows:

 dsq.cosmoteprepaid.userHaveSeenTutorialGuide.xml: If user has previewed

Android application’s guide with the basic steps that appears when they first

connected to the Android application (value = true if they have previewed it,

otherwise false)

 dsq.userAppLogIns.xml: The number of times that users have been logged in to the

Android application (either automatically or not)

 dsq.userAppRatingPostponeDate.xml: The last timestamp that the user postponed

the evaluation of the Android application

 dsq.userAppRatingPostponeDateLimit.xml: The maximum number of times/dates

user can postpone rating the Android application

 externalProfilingConsent.xml: If user has given consent for profiling by third parties

(external) or an external user

 hasSeenTerms.xml: If user has read and accept the terms of the Android

application’s use

 internalProfilingConsent.xml: If user has given consent for profiling by the Android

application itself (internal) or an internal user

 dsq.cosmoteoneapp.userD4UEnableInform: If user is able to preview “Cosmote

Deals For You” offers

 lastDealsForYouUpdate.xml: The date of last offers’ update. These offers

addressed to the user depending on the category to which they belong

38

 payBillFixedTerms.xml: If user has read the conditions for payment of landline

telephony bills

 payBillMobileTerms.xml: If user has read the conditions for payment of mobile

phone bills

 UserHaveSeenTutorial.xml: If the user has previewed detailed (step by step) guide

of the Android application

Device’s information was found in a folder with no particular interest from a forensic

perspective. This is \shaders folder, which is responsible for the colors that designed objects will

have. It was found that each file’s content begins with information for mobile device (j5lte),

informing about its model (j5) and the standard wireless connection it can achieve (lte).

However, two months later making an update to 7.2.2 version and checking the Android

application again was found that there were some changes. In \databases folder was added a

new file named “MOEInteractions”. Seven tables were included in this file, one of which had

data stored. This was USERATTRIBUTE table, in which was stored the UUID of the Android

application (Figure 15).

Figure 15: Preview of USERATTRIBUTES table

Moreover, another change was observed in \files folder. Although, the default.realm file is

again located at the same place as before the version update, this time the file was encrypted

and had different suffix (.enc).

Last folder in which new files were added was \shared_prefs folder. Firstly, there was

consentStatus.xml file which had the format of name and value as other xml files. This file

indicates whether or not user gave consent in order to process their personal data. Based on

39

this action, “value” parameter takes true or false values, respectively. Also,

lastContactRenew.xml file was added which stores the last timestamp that users updated their

contact lists. Another file which indicates enough interest was pref_moe.xml file. In this file was

saved useful information such as the Google Advertising ID (GAID), which was created by

Google to identify unique users, the UUID of the Android application that has been referred

previously and the last timestamp that Android application’s data have been

synchronized. Finally, userHasSeenForceUpdate.xml file had been added, which indicates

whether user had updated the Android application or not.

Furthermore, in both applications’ versions tested, no data were stored in application.db

database. Finally, an internet connection is mandatory is order for the application to operate. In

any different case, a display with the company logo and a corresponding message will appear

on screen in order to inform the user about.

40

6.2 What’s Up Android application

The second experiment concerns the What's Up Android application of COSMOTE MOBILE

TELECOMMUNICATIONS S.A., which aims at mobile phone users of the company who are

registered at “What's Up” program. The Android application is available free on Play

Store. Users can preview their balances, renew their airtime, activate packages, be informed

about offers and earn gifts.

When a user is connected for a first time on the Android application, an optional short guide

wizard tour can be selected. Consequently, users have been asked to read and agree on the

terms of use. Then, users will be prompted to fill the mobile number which they wish to

connect the application. A message with confirmation code will be sent to the device and filled

on the appropriate field automatically. At the end of this procedure, the account will has been

synchronized with the Android application.

Now users are able to select their preferred services, check their balances, preview the

available airtime, SMS and mobile data, top up and buy packages and bundles. Moreover, users

can be informed on which other member of their contact lists owns a What’s Up subscription in

order to share directly deals with them and get gifts.

Android application’s data are located in \data\data\gr.cosmote.whatsup folder, whose

structure is shown in Figure 5. As observed, the structure of this Android application shares

similarity with My COSMOTE Android application. However, they have a significant

difference. As mentioned earlier My COSMOTE Android application requires the internet by

displaying the data saved from the last online activity. Instead, What's Up Android application

can run without using Internet connection displaying saved account’s data. These data were

referred to the last time user was signed in using Internet connection. Therefore from our

investigation, we can conclude that My COSMOTE application can operate solely on server-side,

in stark contrast with What’s Up which can be utilized in both cases. The above difference and

41

similarities between these two Android applications are being proven by the analysis of the

second one.

Firstly, the \app_webview folder was analyzed. Aforementioned, Cookies file stores information

about Android application’s cookies. Among several other, important elements are the value of

cookies, the date and time of creation and expiration in utc format and a field which informs

whether this cookie has expired or not. The structure of this file was the same as in previous

Android application that was analyzed (Figure 13).

Another noticeable similarity was, is the existence of metrics_guid file in the previous folder.

This file stores GUID (global unique identifier) with the same format, as at the previous Android

application described. Moreover, \code_cache folder stores information about OpenGL ES API.

Users’ activities are stored in the \files directory. The file name format of each included file is

rList-gr.cosmote.whatsup.Activities.ActivityName. Keeping the same notion and by replacing

the file’s suffix (“ActivityName”), different files could be created. Specifically, there are files

having the following values instead of “ActivityName”:

 .AskMobileNumberActivity: It has been asked from user to fill in the mobile phone

number which is associated with the Android application

 .AskVerificationCodeActivity: It has been asked from user to fill in the

authentication code which had been sent in a text message to previously declared

phone number

 .BundleInfoActivity: Purchased bundles’ information has been updated and

displayed on the screen

 .ConsentTermsActivity: Describes user consent on terms of Android application’s

usage

 .DealsForYouActivity: User has previewed concerning offers

 .MainUserScreenActivity: User has viewed the Android application’s home screen

42

 .MenuTermsAndConditionsActivity: User has read the terms and conditions of the

Android application

 .MyCommunityActivity: The Android application has access to user's contacts in

order to inform them which contacts are linked to What's Up subscribers

 .NewPackagesFragmentActivity: New packages have been added

 .StoreActivity: User has visited “Store” of Android application’s display

 .StorePackageInfoActivity: Information about packages which exist in the “Store”

 .WebViewActivity: User is able to display web pages as a part of their activity

layout. It does not include any features of a fully developed web browser, such as

navigation controls or an address bar. Using WebView class a web page is derived

as a part of a client application.

 .WhatsNewFragmentActivity: It contains the new features added to the Android

application

As in the previous Android application, in the above folder is also located \.Fabric system folder.

Within this temporary logs users’ activity history are stored. There were also some .json (and

the respective .cls) files, the title of which contains also the Session ID. In the given case, this ID

is 5A9A604D01C1-0001-40C2-19BB625A33E9. Therefore the existing files are 5A9A604D01C1-

0001-40C2-19BB625A33E9BeginSession.json, 5A9A604D01C1-0001-40C2-19BB

625A33E9SessionApp.json, 5A9A604D01C1-0001-40C2-19BB625A33E9SessionDevice.json,

5A9A604D01C1-0001-40C2-19BB625A33E9SessionOS.json and 5A9A604D01C1-0001-40C2-

19BB6 25A33E9user.meta. The first four files are respectively contained information for the

current session, the Android application itself, device’s operating system and device’s

characteristics. These files have been previously analyzed at the My COSMOTE Android

application. However, in stark contrast with the previous app, another file was added to the

specific folder which was 5A9A604D01C1-0001-40C2-19BB625A33E9user.meta file. It contains

the username in encoded format (Figure 16).

43

Figure 16: Preview of 5A9A604D01C1-0001-40C2-19BB625A33E9user.meta file

In this folder are also located com.crashlytics.settings.json file, which contains configurations

that have been presented in detail at the previous Android application.

Finally, there is WhatsUpDatabase.db database which is located in \databases folder.

Throughout our research was found out that the database is encrypted using SQLCipher; an

open source extension to SQLite that provides transparent 256-bit AES encryption of database

files [24]. Attempting to open it with DB Browser it was asked to insert the used passphrase.

This passphrase is a user’s input. Different approaches been made in order to crack it. First

attempt was to type the verification code which was sent to user’s mobile number. As it turned

out, this effort was unsuccessful. Another approach, was to discover the location in which

passphrase was stored. Possible key’s storage positions were investigated [25], but none of

them had a positive impact. Using a binary viewer program was confirmed that this database

was not empty.

Next thought was the analysis of android application’s code in order to find the requested key.

Viewing the code was observed that some java classes were obfuscated [26] using ProGuard

tool [27], having names that do not help in easy comprehension of the code, such as

C2843a.java. The corresponding code snippet is presented as follows:

To place the reader in context, obfuscation is the purposive act of creating source or machine

code that is difficult for humans to understand. Programmers usually choose this method in

order to prevent tampering, deter reverse engineering, or even as a puzzle or recreational

challenge for someone reading the source code. For this reason it was difficult to understand

throw new RuntimeException("Could not read ZoneInfoMap. You are probably using

Proguard wrong.", e);

44

the whole code and discover the key or its storage position. The different ways with which the

code was accessed and extracted are referred as follows in more details.

However, there is another way in order to be concluded which information was stored on

user’s device. The investigator should run the application without using internet connection

and associate previewed information with the tables’ fields in the database. These fields could

be found viewing the application’s source code, which is located in the

\data\app\gr.cosmote.whatsup-2 on apk format. Although extracting this file is an easy

process, it should be taken into consideration that this file format is not accessible through

Windows OS. For this reason, it was used an online apk decompiler [28] to java file (.jadx) in

order to view and analyze (be viewed and analyzed) the android application’s code on

investigator’s machine. Accessing .jadx file requires corresponding software, such as Android

Studio or Eclipse Java Oxygen [29].

Implementing code analysis, details were found for the structure of application’s database. This

information is contained in the \com\raizlabs\android\dbflow\config\AppDatabase

\WhatsUpDatabase_Database.java file. At the beginning of this file, reference is made to the

sixteen tables which constitute this database (Figure 17). Analyzing further this java file, were

found the columns which consist each one of these tables.

Figure 17: Tables of WhatsUpDatabase.db database

45

Next step was the use of android application without using internet connection. The

investigator could match the information which was able to see on the android application with

the columns of the above table. In this way, users would extract conclusions for saved

information at a great percentage. To illustrate, the most important fields and the data which

application saves, are referred.

In the StoreFavoritePackages table are located details about user’s favorite packages. Package

identifier (“favoriteIdentifier” column), the number of times (“timesPurchased” column) that

user purchase the specific package and the last purchase (“lastPurchase” column) can be found

in this table.

BigDataDatabaseModel table stores information about SIM cards and internet connection. It

saves SIM card’s provider name (“carrierName1” and “carrierName2” columns), mobile

numbers which have been matched with these SIM cards (“simNumber1” and “simNumber2”

columns), internet connection type and user’s IP address. If connection type is wireless, then it

is stored the service set identifier (“ssid” column) too.

Consequently, into NewPackagesDataBaseModel table is stowed information about new

packages which have been added. Some of these are whether this package is presented to the

user or not (“presented” column), if offer title exist (“offerTitle” column) and if it is an

advantageous offer (“hotOffer” column), if this package is available only for specific users’

categories (“availableOnlyForUserLists” and “notAvailableOnlyForUserLists” columns), the

message which inform user for the existence of this offer (“offerMessage” column), it’s price

(“price” column), a short (“shortDescription” column) and a long description (“longDescription”

column). Furthermore, here exists information about offer’s recipient and whether use is

already registered to this offer or they have chosen to unregister.

In the FeedBackDataBaseModel table are stored application’s version (“appVersion” column),

the label of the message when application asks from user to rate the application (“message”

column), user’s rating (“rating” column), the rating timestamp (“timestamp” column) and the

universally unique identifier (“uuid” column).

https://en.wikipedia.org/wiki/Universally_unique_identifier

46

BannerPackageDatabaseModel table saves information about the package which is presented

on the application’s banner. This table’s columns are like NewPackagesDataBaseModel table’s

information columns.

A table which contains important information is PhoneContact table. This table is filled with

data when user has given application their permission to access their contact list. It contains

details for user’s contact list. In particular, for each contact the above table holds its name

(“displayName” column) and its phone number (“honeNumber” column), its URI for the

thumbnail photo (“photoThumbnailUriString” column), its first name and its last name

(“FirstName” and “LastName” columns), whether is a favorite contact or not (“favoriteContact”

column) and how many time they have sent mobile data as a gift to their friends in order to

receive them mobile data too (“pareMoiraseTimes” column).

In UserInfoDataBaseModel table is stored information about user’s account and their device.

Here can be found user’s balance (Balance column), account’s and balance’s expiration date

(BalanceExpiration and AccountExpiration columns), last time they update their data and their

contact list (lastDataRenew and lastContactsRenew columns) or make a recharge (LastRecharge

column). Other important details are the initial letters of user’s first name and surname (initials

column), their photo (photo column), device’s identifier (deviceId column), MSISDN and IMSI

numbers (msisdn and imsi columns).

ContextualPackagesDataBaseModel table contains details about contextual packages. Some of

them are offer’s identifier (offerId column) and type (contextualOfferType column), its date of

expiration (expirationTime column), short (shortDescription column) and long description

(longDescription column) and its price (price column).

Next table which is contained in the above database is StoreDataBaseModel table. It holds

information about packages, bundles, offers and their activation method, user’s search history

and details about services in which they have already registered or willing to unregister from.

47

In HiddenPackagesDatabaseModel table are contained details about packages which were not

showed up at the user at the specific moment in which investigation took place. Its structure is

the same as NewPackagesDataBaseModel table.

OfferPackagesDataBaseModel table includes details about offer packages. Its structure is

similar to the above table.

Another table is RenewBalancePackagesDataBaseModel table. Its content refers to the renewal

of packages’ balance. It includes packages’ title, price, short and long description, activation

method and so on. Most of its columns are the same with NewPackagesDataBaseModel table.

BundlesDataBaseModel table includes information about bundles. Important details are

bundle’s description (descriptionFirst column) and information about it (informationTitle

column), the number of days which this bundle stays visible to user (daysToStayVisible column)

and the date of its last update (lastUpdate column).

Finally, in PackagesDataBaseModel table can be found information about packages. Specially,

inside this table columns such as type and category are defined. Moreover, user’s available

data for relevant packages (availableData column) as long as expiration data indicated by

dataExpiration column. In addition, NotificationModel table is responsible for storing users’

information which they will be accessible during application’s operation. UrlDataBaseModel

table stores the URL (url column) which the application utilize in order to retrieve individual

users’ information (using key column).

In \shared_prefs directory, files are located regarding to user’s activities having the name-value

format as in previous application. More specifically, the user’s actions which are stored, are

presented as follows:

 dsq.userAppLogIns.xml: The number of times that users have been logged in to

the Android application (either automatically or not)

 dsq.userAppRatingPostponeDate.xml: The last timestamp that the user postponed

the evaluation of the Android application

48

 dsq.userAppRatingPostponeDateLimit.xml: The last timestamp that the user

postponed the evaluation of the Android application

 gr.cosmote.whatsup.firstInstallationTime.xml: The first time the application

installed on user’s device

 gr.cosmote.whatsup.firstTimeAnimateBundles.xml: Whether or not the user

activates bundles for first time

 gr.cosmote.whatsup.firstTimeWhatsNew.xml: Whether or not the user views the

added features on the application

 gr.cosmote.whatsup.userConsentTermsChoice.xml: Whether the user gave

consent for full access on the required data

 gr.cosmote.whatsup.userHasSeenConsentTerms.xml: Describes user consent on

terms of Android application’s usage

 gr.cosmote.whatsup.userHasSeenContextualPackage.xml: The timestamp which

user previewed contextual package

 gr.cosmote.whatsup.userHasSeenTutorial.xml: If the user has previewed detailed

(step by step) guide of the Android application

 gr.cosmote.whatsup.userHaveSeenTermsAndConditions.xml: The user has read

the terms and conditions of application’s usage

49

6.3 My CU Android application

This is an Android application created and owned by the "Vodafone-Panafon Hellenic

Telecommunications Company S.A". It is available free on Play Store for Android version 5 and

above. The application aims to facilitate company’s prepaid subscribers (CU users) in their daily

needs of using the service (top up balance, monitor expenses and so on) and at the same time

offer several exclusively offers.

A registration is required in order to use the service. Such action can be accomplished with two

ways; either automatically by activating the mobile data on the mobile device or by filling out a

registration form. In our case the second method was chosen. This procedure might appear

typical, but it is important to be described for later on utilization in our research.

At the registration form, users asked to fill up all the necessary information in order to activate

the service. Name, surname, Vodafone CU mobile number assigned, username chosen, email

address comprise all the mandatory fields. Subsequently and by accepting the terms and

conditions of this Android application, the verification stage takes place. The application

connects to the company’s main server in order to evaluate the user’s details. If the verification

is successful, a final activation code sent to the stated mobile number via text message.

To put theory into practice, “Ioanna” was filled as value at the name and surname fields of the

registration form. Moreover, mobile number “694******7”, “Joanna” as username and the

f*****f@gmail.com email address was typed. However, username was modified several times

until entered a valid value due to username was already existed. Attempts such as “Joanna7”,

“Joanna71” and “71Joanna” were filled in as username’s values. Finally, the last one was valid

for username (Figure 18).

mailto:f*****f@gmail.com

50

Figure 18: My CU user's data/credentials

The verification code was sent to the mobile was 7V297ZR. Consequently, user had to change

this code by typing someone of their choice. It was entered a code with 13 digits, which had the

form #@ ********** +. Instead of asterisks there are other characters that are hidden for

security reasons.

After using the application for a couple of days, data was retrieved from

\data\data\gr.mobile.vodafone folder. Although, the application is from a different company

from the previous ones, the structure of the file shares similarities as presented at the figure as

follows (Figure 5).

The \app_webview folder includes files which store important information for forensic

investigation. Relevant information was stored at the Cookies table. Name and value of the

cookie, creation-last access-expiration timestamp in utc format and the path in which cookie

will be applied are some cookie attributes which was persisted. It is worth to point out that,

51

“encrypted_value” was null which indicated that all the information above was stored

unencrypted (Figure 19).

Figure 19: Preview of cookies table

Similarly, with the previous examined applications, metrics_guid file saves the GUID (global

unique identifier) in 8-4-4-4-12 format for information’s identification.

Web Data file is probably the most important file that was found during investigation of the

specific Android application. It is a file acting as database, which holds many tables. From all the

contents inside, autofill table is subject of significant interest as plenty of findings were

discovered inside. The table comprises from data that user inputs to the application. Name,

surname, mobile Vodafone CU number, username and password, which indicates all the

information of registration form, was found unencrypted. Also, there are columns which were

storing dates both for their creation and the last time they were used (Figure 20).

Interesting is the fact that all the entered username’s values have been stored in this table. As

mentioned previously entered usernames were “Joanna”, “Joanna7”, “Joanna71”, with

“71Joanna” to be the valid one. However, it was observed that among the stored values was

also the username “Tzo”. This was the first username typed by the user, which was immediately

replaced by “Joanna” value before sending as a registration element. Hence, it can be deduced

that these possible values have been stored unencrypted, even if they were not sent as

registration data.

52

Figure 20: Preview of autofill table

In \cache\org.chromium.android_webview\0370d314acea3e0d_0 file was stored information

regarding to used certificates. These SSL certificates are digicert certificates.

As with the previous Android applications, the \code_cache folder stored information about the

OpenGL ES API.

The ensuing investigated folder is \databases folder. It contains three databases, which are

google_analytics_v4.db, google_app_measurement.db and google_app_measurement_local.db

databases. The database of interest is the first database, because it is mentioned at

Measurement Protocol [30]. This database stores unencrypted the Client ID (cid) and the

tracking ID/web property ID (tid). The Client ID is required when the User ID (uid) is not

determined on the user's request, where in this case app_guid acquires the value

0.Anonymously identifies a particular user, a device or a browsing. With regard to the internet,

this identifier is stored as a cookie with a lifetime of two years. However, in case of mobile

Android applications this identifier is randomly generated for each specific Android

application’s installation. The Tracking ID (tid) has the UA-XXXXXXXX-Y format. All collected data

are associated with this identifier. Also, there is a column named params which contains the

“an= My% 20CU & aiid = com.android.vending & aid = gr.mobile.vodafone & av = 2.2.2”

53

value. Specifically, an parameter is the abbreviation of Android application’s name and aiid, aid

and av are optional and respectively indicate the identifier for the installation of the Android

application, the Android application’s identifier and its version.

Subsequently, \files folder was analyzed. In gaClientId file was contained unencrypted the

Client ID, which had been found previously in google_analytics_v4.db database. Also, there is

\.Fabric system folder, whose structure has been analyzed in the first Android

application. However, in this case, information was stored only in the

\com.crashlytics.sdk.android.crashlytics-core folder and specifically in files related with

session. Their structure remains the same as the corresponding files of the first Android

application with the diversification of some parameter’s values, such as session’s value, to be

the only difference.

Into \no_backup folder we came across with several databases with great interest. In particular,

there was \com.urbanairship.databases subdirectory which four databases were found. As it is

obvious, the urban airship platform was used. In FcOQaQDGTl6gNhz6G586_A_ua_analytics.db

database were locally stored events and derived periodically at the background. In events table,

the event’s identifier, size of the event, execution time and whether or not it runs on

background of the Android application were saved. Also here were stored additional data such

as the type of Internet connection (if any), the time zone, the type of user’s notification (sound

and vibration), the identifier of the session and the version of the operating system. In

FcOQaQDGTl6gNhz6G586_A_ua_preferences.db database was stored information about urban

airship platform. Registration token presents a great interest, which is reported in-depth as

follows. Additional significant files are the named user id key, the last registration’s payload in

which was contained among others the time zone (Europe \ / Athens), the token and the

identifier of the user, the channel’s identifier through which the communication was taken

place, the size of the first database, and useful dates and times, such as the time of last

registration.

54

As in previous cases, in the \shaders folder each file’s content starts with information about

mobile device (j5lte), informing about its model (j5) and standard of wireless connection it can

achieve (lte).

Next folder which was analyzed is \shared_prefs folder. As the name implies, the

com.google.android.gms.appid.xml file informs users about the use of Google Cloud Messaging

(GCM) client application. This file contains the registration token, which was found in a previous

file. Essentially, an Android application needs to connect to servers through GCM connection

before starts receiving messages. During registration, Android application receives a token and

sends it to Android application’s server. Relevant information is contained in

com.google.android.gms.measurement.prefs.xml file, such as the app_instance_id, which is

used for creation and renewal of registration tokens and the version of device’s operating

system. A great interest indicates the gr.mobile.vodafone_preferences.xml file. In this file is

stored the following information:

 <string name="preferences_msisdn_id">694******7</string>: The number of

mobile phone with which the Android application has been matched

 <string name="preferences_ivr_permission">true</string>: Activation of

interactive voice response

 <string name="preferences_email_permission">true</string>: User has given

permission to the Android application to use their email address or send an email

to them

 <string name="preferences_temporary_password_url_id">https://www.

vodafone.gr/portal/client/idm/cuLoginForm.action</string>: The page to which

the Android application is connected when the user signs in

 <string name="preferences_named_user_id"> MSHSH_14_CXD_00000785861_

68A70534BC7AC1FAE</string>: User’s identifier

 <string name="preferences_sms_permission">true</string>: User has given

permission to the Android application in order to access device’s messages or

sending messages to the device

55

 <string name="com.facebook.appevents.SessionInfo.sessionId">70301408-33b6-

4faa-9ffe-e27c75bd763d</string>: Facebook session identifier

 <string name="refreshToken">ENmnwgTTXtOJKgi6SsX6c0……mqAPWKWUA9PTel

ck</string>: The new token after renewal

 <string name="authenticationLevel">user</string>: Either an application user, like

in this case, or an application administrator is authenticated

 <string name="clientSecret">F********9</string>: The clientSecret is a secret

which should be known only to the application and the authorization server. This

secret value used from OAuth 2.0, which is the industry-standard protocol for

users’ authorization to the server [31]

 <boolean name="preferences_user_logged_in_id" value="true"/>: User is logged

in the Android application

 <string name="preferences_online_top_up_bank_url_id"> https://www.vodafone

cu.gr/apppages/pay/</string>: The page with which the Android application is

connected to when the user wishes to implement an electronic payment through

bank

 <boolean name="preferences_terms_launch_id" value="true" />: User has read

the terms of use when starts using the Android application

 <string name="preferences_online_top_up_pay_pal_url_id"> https://www.voda

fonecu.gr/apppages/pay/</string>: The online page to which the Android

application is connected to when the user wishes to implement an electronic

payment from Android application through PayPal

 <string name="preferences_basic_permission">true</string>: User has given the

basic permission to the Android application in order to access their device

 <string name="accessToken">ijhSXH91YB-KvN27T....FrmlajhbH28xs</string>: The

Android application’s identifier for accessing user's account

 <string name="preferences_registration_url_id"> https://www.vodafone.gr

/portal/client/idm/cuShowRegisterPrePay.action?request_locale=el</string>: The

56

online page to which the Android application is connected to when a user is

registered for the first time

 <string name="Bundle_Checker_Active_Bundle_Label"> Ενεργό</string>: Active

packages’ examination

 <string name="preferences_forgot_password_url_id"> https://www.vodafone.gr/

portal/client/idm/cuViewForgotPasswordRetail.action?request_locale=el

</string>: The online page to which the Android application is connected to when

a user selects to reset their forgotten password

 <long name="com.facebook.appevents.SessionInfo.sessionEndTime"

value="1522438558939" />: Facebook session’s end time

 <string name="clientId">3654</string>: Client’s identifier

 <string name="preferences_advanced_permission">true</string>: User has given

additional permission to the Android application in order to access their device

 <string name="preferences_password_id">#@**********!</string>: User’s

entered login password

 <string name="preferences_username_id">71Joanna</string>: User’s entered

username

 <string name="preferences_forgot_username_url_id"> https://www.vodafone.gr/

portal/client/idm/cuForgotUsername.action?request_locale=el</string>: The page

to which the Android application is connected to when user selects to reset their

forgotten username

 <string name="preferences_moip_permission">true</string>: User has given

permission for moip technology use which is a solution for transactions and

payments through mobile.

 <long name="expiration" value="1591558454440" />: The expiry date of the

above permission

https://www.vodafone.gr/%20portal/client/idm/cuViewForgotPasswordRetail.action?request_locale=el%20%3c/string
https://www.vodafone.gr/%20portal/client/idm/cuViewForgotPasswordRetail.action?request_locale=el%20%3c/string
https://www.vodafone.gr/%20portal/client/idm/cuViewForgotPasswordRetail.action?request_locale=el%20%3c/string
https://www.vodafone.gr/%20portal/client/idm/cuViewForgotPasswordRetail.action?request_locale=el%20%3c/string
https://www.vodafone.gr/%20portal/client/idm/cuForgotUsername.action?request_locale=el%3c/string
https://www.vodafone.gr/%20portal/client/idm/cuForgotUsername.action?request_locale=el%3c/string
https://www.vodafone.gr/%20portal/client/idm/cuForgotUsername.action?request_locale=el%3c/string

57

Finally, it was observed that there were labels associated with General Data Protection

Regulation (GDPR), such as "GDPR_Read_More_Label" label. Therefore, it is concluded that the

specific Android application is compliant with the above regulation.

58

6.4 OASA Telematics Mobile Android application

This is an Android application of Athens Urban Transport Organization (OASA). Users have the

opportunity to be informed about scheduled bus routes, routes and locations of buses in real

time, as well as buses’ stops. Still, they can plan a route. Specifically, they can search for nearest

bus stop from the place they are or choose any stop, preview real-time information for arrivals

and buses’ locations, choose their destination, departure or arrival time and a proposal for the

best route via Public Transport (Figure 21).

Figure 21: OASA Telematics app's home screen

Android application’s data were stored in \data\data\com.att.android.tfa folder, which

includes the \cache, \code_cache, \databases, \files, \no_backup, \shaders and \shared_prefs

folders.

In \databases folder, tfa.db and google_analytics_v4.db crash_reports databases were located.

In first database, information about bus routes and timetables was contained. Specifically, Lines

table saves the existed bus lines, namely the line identifier and the code that user views, the

59

departure and arrival area and the route identifier each day . Main routes (from departure area

to arrival area) were stored in Masterlines table -without the opposite route-, masterline’s

identifier and their code. In MasterlinesDetails table was matched main route’s identifier with

line’s identifier. In SchedCats table was stored information about routes’ separately based on

season (winter and summer) and assigns different identifier (sdc_id) for each one of them. In

SchedEntries table was saved relative information about scheduled routes, such as sdc_id, the

departure time and estimated arrival time. In SchedLineCats table were matched the main line

with the route category (winter or summer) as long as the month of which is valid. In Routes

table were saved the route identifier and the bus line, the beginning and the end area, the

distance and type of route (1 if the route starts from the start area and 2 if the route starts

from the end area). In RouteStops table information about buses’ stops, which are the route’s

identifier, the stop’s identifier and the serial number of them were stored. In SearchHistory

table was contained user’s search history for buses. In Stops table was stored information

about each stop, such as the name of the stop, the street where it is located, as long as the

destinations to which the passenger can travel from every stop. In UVersions table, the version

of each table and the last time the application was updated were saved. Finally, in Favorites

table were contained the lines that user has saved as favorites. In ITEM_ID column are

respectively stored the line identification (Line_ID) or the stop identification (Stop_ID). The fact

that most of the above mentioned databases’ fields could be modified and then saved with the

new data is important.

As in My CU Android application, in google_analytics_v4.db database the cid and tid identifiers

were stored, as well as an, aiid, aid and av parameters (an = OASA% 20Telematics & aiid =

com.android.vending & aid = com.att.android.tfa & av = 2.0.35) which were previously

analyzed.

The last database pertain to bug reports and stores the size of bits which are recorded and

transmitted each time as well as the moment when this transmission of errors began.

In \cache folder was contained \volley subfolder, which was created because the Volley library

was used. Volley is an HTTP library that makes networking for Android applications easier and

60

most importantly, faster. This folder was contained files that store data regarding user's

requests to the server. For example, each time user was selected to know in real time the

position of a bus, a corresponding request to the server with all the necessary information was

created. It was contained the IP address to which the Android application communicates and

parameters related to the information the user was looking for. For example, Figure 22

illustrates a user request made for the location of bus (act = getBusLocation) with 2005 Route

ID (p1).

Figure 22: Cache preview

Furthermore, information for other user’s activities was stored. For each activity a

corresponding file is created, which structure shares similarities with the previous file. User has

chosen to view bus’ lines (act = getLines) and the bus’ arrivals (act = getStopArrivals) at a

specific stop (p1 = 400052 and p1 = 400058, where p1 parameter was the stop’s code) and

display the position (act = getBusLocation) of a specific bus (p1 = 1803 and p1 = 2005, where

the p1 parameter was the path identifier). Moreover, user was searched position information

for all buses of that path (act = getRouteDetailPerRoute & p1 = 1803).

As previously mentioned, \code_cache folder was contained information about the OpenGL ES

API.

In \files folder was contained \.Fabric system’s folder and other files. In gaClientId file, the

Client ID was contained unencrypted, which was found previously in google_analytics_v4.db

database. Also, there were some files in relation to user's actions and have the rList-

61

threepi.transport.app.ui.activity.ActivityName format where ActivityName was been replaced

with the name of the corresponding activity. The .ActivityHome file was created when user was

logged in the Android application and viewed its initial screen. The .ActivityRouteDetail,

.ActivityStop and .ActStopsMap files are respectively related to user’s actions about viewing

details of a route or a stop or viewing the map with route’s stops. The .FavoritesActivity file

refers to user's favorite routes. All the necessary information is stored here in order for a user

to add and preview the selected routes which previously has made. Finally .SettingsActivity file

revealed that user has seen and has adjusted the Android application’s settings.

As stated in an aforementioned Android application, in the same folder also exists

DATA_ServerControlledParametersManager.data.com.att.android.tfa file, which stores

information about servers and sites with the used satellites for finding a locating, such as

www.gstatic.com. It was also been stored the website with the maps that the Android

application uses. This website was www.google.gr/maps. In addition, the country (GR) and

language (en) of the user have been saved. Finally, there are firebase_inter_process_mutex-lock

_send_report_to_server.lock and firebase_inter_process_mutex-lock_write_report_to_

sqlite.lock files, which indicate that Google's platform, Firebase, has been used.

As reported in detail in previous Android applications, \.Fabric folder saves reports about

Android application’s errors that will be sent for analysis, also unencrypted the session

identifier (Session ID) and information about the Android application, mobile device and

operating system. Moreover, it was been contained information about configurations that user

has made in the Android application.

In \shaders folder there were files to which store mobile device’s model (j5) and the wireless

connection it can be achieved (lte).

Finally, in \shared_prefs folder, xml files existed, which contained plenty of information. In

com.att.android.tfa_preferences.xml file were contained user's choice to activate the automatic

update of the Android application, the date and time of the last Android application’s update,

its language and its version and database’s version.

62

7. Future Work

Upon completion of our inspection, findings with a great interest have been discovered. As

observed, a version’s update could cause changes on the structure of

\data\data\application_name folder and its files. For this reason, in the future it would be

useful to be investigated and whether or not there will be any additions in a way that will affect

users’ data. Users tend to become aware of their privacy, thus they begin to care more for their

data and how it process. It would be interesting to know if new Android applications’ versions

store additional to our findings personal information on their device and whether or not the

data could be leaked easily.

On the other hand, even if an Android application’s operation requires storing user’s data on

their device, It is important for additional analysis on new versions’ of certain files (based on

our findings) in order to ascertain whether or not previous inadequate implementations have

been corrected. It should be checked if their data are stored in an encrypted format or into an

encrypted database. If such thing happens, then should be defined the degree of difficulty for a

third-party to decrypt them.

Finally, it would be helpful to re-examine the above mentioned Android applications and to

proceed with the inspection to others. The analysis of popular Android applications would be

useful to users in order to decide whether or not they will download an Android application.

They will be able to know where their data are located and whether or not the existing security

measures are capable to prevent a data breach.

63

8. Conclusions

Each Android application stores its data on \data\data\ application_name directory. In order to

access this directory; the Android device should be rooted. Forensic investigation of Android

applications could be accomplished either using commercial platforms for data extraction and

analysis or using open-source tools. These platforms are Cellebrite UFED, Oxygen and XRY.

However, in this thesis has been used Android Device Monitor (DDMS) through Android Studio

In order to preview and copy files back and forth from the tested device. In some cases the

access on rooted files has been succeeded using “Root Browser” Android application. These

files can be copied from the internal to the external memory and then to a computer in order to

be analyzed using DB Browser for SQLite, Realm Studio and other tools.

In each Android application, the \data\data\ application_name directory has a standard

structure of ten folders. Making an analysis of these found that all of them save information

about the Android application, user’s device, cookies, sessions and user’s activities. My

COSMOTE Android application at its initial connection stores, among others, user’s mobile

number. However, internet connection is prerequisite in order to run. The second Android

application examined was What’s Up Android application. This application could operate

without any internet connection to be necessary. In this case, it uses stored data informing

users that these data are not updated. Those important data are located into an encrypted

database using SQLCipher encryption algorithm. Furthermore, into another file is stored the

username in encoded format. The third Android application which was investigated was My CU

Android application. User’s personal data, credentials, history of their changes and the secret

value for user’s authorization to the server are stored unencrypted into a database’s table.

Without internet connection user could be logged in but the Android Application could not

display any information about their account balance. The last analysis that we performed was

about OASA Telematics Android application. It has been found that this Android application

saves all the necessary information in user’s device. Moreover, it is stores user’s location,

64

search history and their favorite routes. The only case in which internet connection is necessary

is for real-time bus’ location search.

65

References

1. “Facebook Forensics” Valkyrie-X Security Research Group, 2011

2. Jamie McQuaid, “"Skype Forensics: Analyzing Call and Chat Data From Computers and

Mobile”, Magnet Forensics Inc 2014

3. Mahajan, Dahiya, Sanghvi, “Forensic Analysis of Instant Messenger applications on

Android Devices”, April 2013

4. Lone, Khalique, “Implementation of Forensic Analysis Procedures for WhatsApp and

Viber Android applications”, October 2015

5. Anglano, Canonico, Guazzone, “Forensic analysis of the ChatSecure instant messaging

application on android smartphones”, 2016

6. Wu, Zhang, Wang, Xiong, Du, “Forensic analysis of WeChat on Android smartphones”,

2017

7. “Android Overview”. Available at:

https://www.tutorialspoint.com/android/android_overview.htm

8. Chen, Yang, Liu, “Design and Implementation of Live SD Acquisition Tool in Android

Smart Phone”, 2011

9. Z.W. Chang, “The Study and Implementation of Operating System Porting for Android,”

July 2009

10. CircleCI, “What is the Android application Architecture?” Available at:

https://www.quora.com/What-is-the-Android-application-Architecture

11. “An Overview of the Android Architecture”. Available at:

https://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture

https://www.tutorialspoint.com/android/android_overview.htm
https://www.quora.com/What-is-the-Android-application-Architecture
https://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture

66

12. Wojtek Kalicioski (2016), “#SmallerAPK, Part1: Anatomy of an APK” Available at:

https://medium.com/google-developers/smallerapk-part-1-anatomy-of-an-apk-

da83c25e7003

13. Akshay Chordiya (2017): “Introduction to Android Architecture Components”. Available

at: https://android.jlelse.eu/introduction-to-android-architecture-components-

22b8c84f0b9d

14. Google Developers (2018): “Guide to App Architecture”. Available at:

https://developer.android.com/jetpack/docs/guide

15. Hashim Shaikh (2017): “Practical Android Phone Forensics”. Available at:

https://resources.infosecinstitute.com/practical-android-phone-forensics/#gref

16. Google Developers (2018): “Data and file storage overview”. Available at:

https://developer.android.com/guide/topics/data/data-storage

17. Wikipedia (2018): “Rooting (Android)”. Available at:

https://en.wikipedia.org/wiki/Rooting_(Android)

18. recovery.tar.md5 file. Available at http://androidhost.org/d0pWJ

19. SuperSU-v2.82.zip file. Available at http://www.supersu.com/download

20. Odin3 v3.12.10 tool. Available at http://www.droidviews.com/download-odin-tool-for-

samsung-galaxy-devices-all-versions/

21. Android Studio. Available at https://developer.android.com/studio/

22. DB Browser for SQLite tool. Available at https://sqlitebrowser.org/

23. Realm studio program. Available at https://realm.io/products/realm-studio/

24. Zetetic Company (2018), SQLCipher. Available at https://www.zetetic.net/

https://medium.com/@wkalicinski?source=post_header_lockup
https://medium.com/google-developers/smallerapk-part-1-anatomy-of-an-apk-da83c25e7003
https://medium.com/google-developers/smallerapk-part-1-anatomy-of-an-apk-da83c25e7003
https://android.jlelse.eu/@aky?source=post_header_lockup
https://android.jlelse.eu/introduction-to-android-architecture-components-22b8c84f0b9d
https://android.jlelse.eu/introduction-to-android-architecture-components-22b8c84f0b9d
https://developer.android.com/jetpack/docs/guide
https://resources.infosecinstitute.com/practical-android-phone-forensics/#gref
https://developer.android.com/guide/topics/data/data-storage
https://en.wikipedia.org/wiki/Rooting_(Android)
http://androidhost.org/d0pWJ
http://www.supersu.com/download
http://www.droidviews.com/download-odin-tool-for-samsung-galaxy-devices-all-versions/
http://www.droidviews.com/download-odin-tool-for-samsung-galaxy-devices-all-versions/
https://developer.android.com/studio/
https://realm.io/products/realm-studio/
https://www.zetetic.net/

67

25. Godfrey Nolan (2015): Hiding the key |Practical Advice for Building Secure Android

Databases in SQLite. Available at:

http://www.informit.com/articles/article.aspx?p=2268753&seqNum=4

26. CERT-UK (2014), “Code Obfuscation”

27. ProGuard obfuscator tool. Available at

https://www.guardsquare.com/en/products/proguard

28. Apk decompiler. Available at http://www.javadecompilers.com/apk

29. Eclipse Java Oxygen. Available at https://www.eclipse.org/

30. Google Developers (2017): “Measurement Protocol Parameter Reference”. Available at

https://developers.google.com/analytics/devguides/collection/protocol/v1/parameters

31. Okta, “The Client ID and Secret”. Available at https://www.oauth.com/oauth2-

servers/client-registration/client-id-secret/

http://www.informit.com/articles/article.aspx?p=2268753&seqNum=4
https://www.guardsquare.com/en/products/proguard
http://www.javadecompilers.com/apk
https://www.eclipse.org/
https://developers.google.com/analytics/devguides/collection/protocol/v1/parameters
https://www.oauth.com/oauth2-servers/client-registration/client-id-secret/
https://www.oauth.com/oauth2-servers/client-registration/client-id-secret/

