
 0

UNIVERSITY OF PIRAEUS

DEPARTMENT OF DIGITAL SYSTEMS

POSTGRADUATE PROGRAMME

“DIGITAL COMMUNICATIONS & NETWORKS”

DIPLOMA THESIS:

DESIGN AND IMPLEMENTATION OF AN
ANALYTICS

APPLICATION IN SOFTWARE DEFINED

NETWORKS

SUBMITTED BY:

LAZARIS PANAGIOTIS

SUPERVISOR:

PROF. TSAGKARIS KONSTANTINOS

 1

Table of Contents

1. Abstract……………………………………………………………………………………………. 3

2. Introduction……………………………………………………………………………………… 4

3. Software Defined Networks...…………………………………………………………… 6

3.1. SDN Architecture…..……………………………………………………………… 7

4. OpenFlow..……………....……………………………………………………………………… 9

5. Analytics..……………....……………………………………………………………………… 16

5.1. SDN Analytics..……………………………………………………………………. 17

6. Software Defined Network Analytics Application.………………………….. 17

6.1. Application Development Environment.…………………………….. 18

6.2. Environment setup…………………………………………………………….. 19

6.2.1. Mininet………………………………………………………………………… 19

6.2.2. OpenDaylight Controller.……………………………………………… 21

6.3. SDN Analytics Application………………………………………………….. 25

6.3.1. Application Environment Setup.…………………………………… 25

6.3.2. Application Development…………………………………………….. 29

6.3.3. Application scenario….…………………………………………………. 30

6.3.3.1. Linear Network Topology………………………………….. 31

6.3.3.2. Ring Network Topology…………………………………….. 33

6.3.3.3. Tree Network Topology…………………………………….. 37

 2

6.3.4. Results Analysis…………………………………………………………….. 34

6.3.4.1. Linear Topology Analysis…..………………………………. 40

6.3.4.2. Ring Topology Analysis……………………………………... 45

6.3.4.3. Tree Topology Analysis……………………………………… 51

6.3.4.4. Topology Analysis Without Performance

Parameters……………………………………………………….. 56

6.3.4.5. Topology Analysis With the first set of

Performance Parameters………………………………….. 60

6.3.4.6. Topology Analysis With the second set of

Performance Parameters………………………………….. 65

7. Conclusion………………………………………………………………………………………71

8. References……………………………………………………………………………………..72

 3

1. Abstract

At the beginning of the 21st century, enterprise needs and networking

requirements had already increased dramatically and network engineers

should adapt immediately and find an efficient solution to cover the

requirements. In addition, traditional network architectures could not cover

the storage needs of data centres, the extended use of mobile devices,

virtualization and cloud services, as the end users need to connect and have

access to the network data and applications from everywhere made the

majority of network architectures that enterprises where using ineffective.

Software Defined Networking (SDN) enabled engineers to create

dynamic and programmable networks. Networks became flexible and more

adaptable to storage needs, virtualization and Cloud services. Furthermore,

Software Defined Networking provides centralized and fully programmable

network control using Software Defined Network Controllers, software that

allows network engineers control and manage network behaviour easily.

This study makes an extensive reference to Software Defined Network

architecture, including OpenDaylight Controller and OpenFlow protocol that is

used from the controller to interact with network elements. Finally, a Software

Defined Network analytics application will be deployed and presented

extensively. We are going to create a network topology with mininet, then

OpenDaylight controller will be used to manage the network traffic and the

deployed application will interact with OpenDaylight controller and present

graphically the network traffic statistics.

 4

2. Introduction

The first kind of a computer network was invented by George Stibitz in

1940. It was including a teletype used to send calculation messages to the

Complex Number Computer over telegraph lines. When the calculations were

complete George Stibitz was receiving the results by the same means. It was

the first remote computer network.

In the late 1950s, a military radar system network named SAGE (Semi-

Automatic Ground Environment) was created. In 1962, J.C.R Licklider

developed a computer network (ARPANET) which allowed to the connected

computers have access to each other stored programs and data. In 1964,

American Airlines implemented the first online flight reservation system called

SABRE (Semi-Automatic Business Research Environment) which was using

telephone lines and could deliver data in less than three seconds. The first wide

area network (WAN) was implemented in 1965 by Thomas Marill and

Lawrence G.Roberts. In 1980s, TCP/IP internet protocol was introduced as

networking protocol to ARPANET due to the expanded use. At the end of the

same decade, appeared the first internet service providers (ISPs). In 2000,

asymmetric digital subscriber lines were launched in UK and six years later

there where around thirteen million homes using ADSL broadband

connections. In 2005 and 2006, Cloud storage services were developed by Box

and Amazon Web Services to cover the enterprises remote file sharing and

data storage needs. The last ten years, the increased needs in remote access,

data storage, virtualization, bandwidth and faster speed led the engineers to

many important innovations such as 100 Gigabit Ethernet standard in 2010,

fiber-optic broadband standard that offers broadband speed up to 100Mbps

and the new 802.11ac Wi-Fi standard that offers speed up to 2Gbps.

In the next years, the demands will grow if we consider that apart from

enterprise computer networks and telecommunication networks, internet of

things (IoT) is almost here that includes new devises, features and demanding

 5

applications as “Smart home”. As a result, speed bandwidth and connectivity

demands are going to increase further in order to offer the needed quality of

service for all of these applications and services. In order to control and

manage all these new features, Internet of Thinks, Cloud services,

virtualization and all the networking demands, network engineers could not

depend on the classic network architectures and the introduction of a new

technology was necessary. Software Defined Networking (SDN) introduced to

make computer networks more programmable. It allows the control and

management of complex networks that contain plenty of devices like routers

and switches, middleboxes such as network address translators (NAT),

firewalls. In addition, Software Defined Networking overcomes the complexity

caused by different network protocols and configuration interfaces that

different vendors use for their devices. SDN Control layer includes a single

software control program that allows administrators to control and configure

multiple network elements using an Application Programming Interface(API).

OpenFlow is the most usual communication protocol and over the past few

years many switches, from different vendors support it. Furthermore,

developers have used SDN controller platforms to implement applications for

network management such as network virtualization, traffic management,

load balancing and network monitoring. In this study, OpenDaylight controller

will be used combined with mininet, which is a virtual network emulator, to

develop a Software Defined Networks analytics web application and every

related technology and tool will be presented extensively.

 6

3. Software Defined Networks (SDN)

Software defined networking was introduced when network engineers

and administrators realized that the architecture of traditional networks was

not able to support the needs of more demanding environments anymore. The

storage needs increased and continue to increase really fast, cloud services,

network virtualization and the need to reduce operational costs demanded

more dynamic and flexible networking. Software defined networking offers

dynamic architecture, cost-effectiveness, programmability, supports high

bandwidths and provides central management which is one of it’ s biggest

advantages. In contrast with traditional network architectures, Software

defined networking separates the network controlling system that makes

network decisions from the network elements that execute the controlling

system’s decisions and forwarding functions. This control separation allows

networks become programmable, network administrators are able to easily

adjust network traffic rules to avoid collisions and achieve the needed quality

of service. Also developers use API provided by controllers to implement

network services and applications. In addition, network elements can be easily

managed and configured because their behaviour is defined by the controller

and is independent from multiple protocols and rules that different vendors

use. Finally, another advantage of Software Defined Networking is cost-

effectiveness as the extended use of virtual machines, virtualization

technologies and open standards managed to reduce the operational costs.

 7

3.1. Software Defined Network Architecture

 Software Defined Networking architecture is based on the separation

of the control plane from the data layer of the network. SDN architecture

generally includes three layers of functionality:

• Infrastructure or data layer: It includes all the networking devises and

is responsible for the traffic forwarding in the data path based on the

rules determined from the controller. In addition, data layer is

responsible for managing the network devises, the number of

available ports and their status, their memory and generally whatever

relates to the state of network resources.

• Control layer: The main element of this layer is the controller. It

defines the traffic control rules and relays them to the network

equipment of the data layer such as SDN switches, routers and other

network devices for execution. All of the management control and

configuration functions are determined in this layer and SDN switches

of the data layer simply manage flow tables. As a result, SDN

Controllers enable centralized and functional network management,

configuration and control. In addition, SDN Controller provides

network information such as topology details and network statistics to

the applications of the above layer through REST APIs. Controller is

also responsible for the communication between the implemented

application and services of the application layer and the elements of

data layer. Finally, Control layer uses two different interfaces to

communicate with data layer and application layer:

o Northbound Interface: is used by Controllers to communicate

with application layer. It is achieved through REST APIs

generated by the Controller.

 8

o Southbound Interface: is used by Controllers to communicate

with the infrastructure layer network elements. It is achieved

through southbound protocols such as Openflow and Netconf.

It supports both physical and virtualized architectures.

Traditional network architectures are not suitable larger and more

complex networks, SDN architectures avoid this limitation with the use of

more than one controller that is responsible for network elements with the

same characteristics and a centralized Controller is responsible for their

management. When more than one controllers included to the control

layers, they use westbound and eastbound interfaces to communicate.

• Application layer: It includes all the implemented applications that use

northbound interface to communicate with the SDN controller. They

get the required for decision-making purposes network information

and resources from the controller through APIs. On the other hand,

SDN applications define network behaviour to the controller. Different

types of SDN applications have been implemented, including network

management, security, troubleshooting, network analytics and

monitoring applications.

 9

Figure 1: Software Defined Network Architecture

4. OpenFlow

OpenFlow protocol, was implemented at Stanford University in 2008

and one year later, in 2009, Version 1.0 was released. The Open Networking

Foundation (ONF) manages OpenFlow and defines it as the first standardized

interface used for communication between Control and Data layer of a

Software Defined Network. The next version of OpenFlow protocol released in

February of 2011 by Open Networking Foundation (ONF). In 2012 OpenFlow

version 1.2 was released. Current version of OpenFlow protocol is 1.5.1.

 OpenFlow version 1.0 included only one flow table and 12 matching

elements, as result, it had limitation and flexibility issues. In OpenFlow 1.1

version, these issues were prevented with the use of multiple flow tables, that

allows the execution of more than one actions at the same time. OpenFlow

1.1 version, also introduced the use of a group table that includes four types

of entries:

 10

• All: enables functions that forward packets to multiple ports, such as

multitasking.

• Select: enables functions that select one action bucket at a time, such

as load balancing.

• Indirect: is used to divide flows into groups with same actions, it

increases the function’s efficiency.

• Fast failover: detects actions with active ports for execution.

Openflow version 1.2 released in order to get over the fixed length

structure of OpenFlow 1.1 and the networking increasing needs. OpenFlow 1.2

new feature is the Type-Length-Value (TLV) structure that includes OpenFlow

Extensive Match (OXM) which is a new, modular way to match fields using

dynamic criteria. Furthermore, OpenFlow 1.2 supports IPv6 protocol and

introduced the Controller role-change mechanism that allows the use of more

than one controllers in order to implement more flexible networks, avoid

limitations and network failures. There are three available Controller role in

this mechanisms: master, slave and equal.

OpenFlow 1.3 released to provide the required quality of service to the

network users. It introduces the Meter Table, that is a list of meter bands that

define the OpenFlow switches behaviour. In addition, in OpenFlow 1.3, table-

miss entry was added to the flow table and defines the behaviour of non-

matched packets.

OpenFlow 1.4 introduces the Synchronized Table that is used to

synchronize flow tables in two ways: bidirectionally and unidirectionally. In

order to group multiple modifications in one group, OpenFlow 1.4 introduces

Bundle, it is a feature that is created by the Controller and groups a set of

modifications and applies them to multiple switches.

OpenFlow 1.5 extends Bundle by adding a new property, execution

time that increases the synchronization between the switches. In addition,

 11

OpenFlow 1.5 introduces the Egress Table that allows matching packet based

on its port.

Figure 2: OpenFlow Evolution

The separation of Control level from network elements created the

need of a communication protocol compatible with all network elements of all

different vendors so that all of them could be managed by the SDN Controller.

OpenFlow protocol is one of the first standardized SDN communication

protocols that meet this requirement and at the same time it offers the needed

security. The majority of network equipment vendors recognized the need to

create network elements compatible with OpenFlow, these elements are

known as OpenFlow switches. Each OpenFlow switch includes multiple tables

that are used to manage the packet forwarding through the switch.

 12

Flow Table matches the incoming packets to the flow and defines the

functions that will be performed. An OpenFlow switch may contain more than

one Flow Table with the following structure:

• Match Fields: Contain information about the port that the

packet arrived (Ingress port), ethernet Source, destination

address, TCP and UDP source and destination ports and IPv4

and IPv6 protocol numbers, source and destination addresses.

• Priority

• Counters: For example, incoming packets counter or

transmitted bytes.

• Instructions: The set of actions to be performed if the packet

matches the entry.

• Timeouts: Define the idle duration of the flow.

• Cookie

The latest OpenFlow versions also include the table-miss flow.

A flow could be defined as a set of forwarding packets that meet the

same rules, stored in the Flow Tables of the OpenFlow switch. These rules are

 13

known as actions or action sets and describe packet forwarding and group

table processing operations. There are six different types of actions:

• Output: Packet forwarding.

• Set-queue: Sets queue ID for the forwarded packets to a

specified port.

• Group: Groups packet process.

• Push/Pop-tag: Push or Pop a tag field.

• Set-Field: They set the Header Fields in the packet.

• Change TTL (Time To Live)

There are also four types of action sets:

• Direct Packet Through Pipeline: Directs the packets to the

meter Table.

• Perform action on packet: Preforms actions to the matched

packets.

• Update action set: Modifies or clears the actions of the action

set for a specified flow.

• Update metadata: Metadata carry information to the other

tables.

 14

 Figure 3: OpenFlow Switch Architecture

 SDN Controllers use OpenFlow protocol to communicate and exchange

messages with the switches. Openflow protocol is running over Transport

Layer Security (TLS) or Secure Sockets Layer (SSL) in order to achieve the

required network security and support three different kinds of messages:

• Controller to Switch: Messages sent from the controller in

order to configure the flow and group Tables of the switch or

forward a packet to the output port.

 15

• Asynchronous: Messages sent from a switch to the

Controller. For example, a packet that did not match to the

flow table.

• Symmetric: Messages sent by Controller and switches when

connection is established in order to verify the bandwidth,

latency and the connection establishment.

 Through these types of messages, the Controller manages the elements of

complex networks and gets information about network performance in order

control traffic forwarding and secure the Quality of Service requirements.

 16

5. Analytics

 Analytics is the examination of a data set using mathematics, statistics

and other predictive and calculation techniques in order to draw conclusions

about the recorded data. Businesses use analytics to make predictions,

organize their business plans, achieve their goals and improve the efficiency.

In addition, it is an important tool for every business that uses a large amount

of data as they can determine risks, predict possible dangers and develop new,

efficient solutions in order to avoid them. There are three different types of

analytics:

• Descriptive statistics: They are models that provides information about

what happened and the reason it happened. For example, the number

of produced units of a product and how many are sold.

• Predictive analytics: Models that use past data in order to predict

behaviours. They became more efficient with the increase of

computing powers and development of new predictive techniques.

• Prescriptive analytics: Model that finds the solution to a prediction by

providing information and efficient decisions. It demands lots of

computing power and also the use of big data.

As shown above, analytics include more than collecting data. It is a complete

process that collects data, uses data models to make accurate predictions and

provide efficient solutions in order to make correct decisions.

 17

5.1. Software Defined Network Analytics

 Software Defined Networking main characteristic is the separation

between Control and Data layer. As a result, Software Defined Networks are

more adaptable, flexible and programmable. SDN Analytics offer the required

intelligence and visibility to the network.

Software Defined Networks may be complex because they often

include different types of services such as Cloud services and voice over IP and

also multiple applications with different network requirements running on

them. It is easy to understand that optimization and management of dynamic

networks would be almost impossible without automated control. In order to

achieve the needed control automation, SDN architecture needs the provided

intelligence from SDN analytics to recognize every service and application

needs, avoid possible collisions and optimize network performance in real

time. SDN analytics is an important network tool that applies numerical and

visualization techniques on the available operational data to offer instant

visibility of the network to administrators, help them manage potential issues

and make the right decisions.

 We conclude that network architectures could be based on SDN

control automation and intelligence offered by analytics combined with

multiple services and applications such as Cloud services and big data to

implement flexible, dynamic, programmable and self-managing networks that

would be able to control, configure and optimize their own elements

automatically. Implementation of such networks could reduce operational

costs increase productivity and at the same time offer increased quality of

service compared to classic networking architectures.

 18

Software Defined

Network Analytics

Application

 19

6. Application Environment setup and Development

6.1. Application Development Environment

 SDN Analytics application was implemented in a Linux based virtual

machine using IntelliJ IDEA. It is a Java integrated development environment,

that includes many development features which make it a complete, fully-

featured development environment. In addition, Apache Tomcat 8 web server

is used and configured in IntelliJ. Client side of the application is developed in

HTML, CSS and JavaScript and server side is developed in Java.

6.2. Environment setup

6.2.1. Mininet

 In order to set up an environment to develop and test the application,

a virtual network is created using Mininet.

 Mininet is a virtual network emulator that creates hosts, switches and

links on a single Linux Kernel. Switches created in Mininet support OpenFlow

and hosts run Linux software and behave like real machines. In addition,

Mininet:

• Needs only few seconds to start up a network.

• Provides a simple network testbed for OpenFlow applications

development as custom topologies can be easily created.

• Allows multiple developers to work on the same topology and

run real applications, compatible to Linux.

• Supports repeatable system-level regression tests.

• Provides a topology and OpenFlow aware CLI for running and

debugging tests.

 20

• Provides an extensible Python API for network creation but on

the other hand, it can be used without programming.

• Is an open source project.

Any application developed and tested on Mininet can be deployed

on a real system without important changes as Mininet networks run

real code and standard Linux applications. OpenFlow switches and

hosts communicate over the network using virtual ethernet, hosts can

also send packets with a given speed and delay and their behaviour is

similar to hardware network equipment.

On the other hand, Mininet has some limitations:

• It is unable to extend the available CPU or bandwidth on a

single server.

• It is incompatible to OpenFlow switches and applications

that do not run Linux.

 21

6.2.2. OpenDaylight Controller

 OpenDaylight Controller is a multi-protocol scalable controller

developed for SDN deployments. It is an open project with the ability to deploy

multiple network environments. Its main advantage is the support of

OpenFlow protocol and all open Software Defined Networking standards.

 In April 2013, Opendaylight announced by Linux Foundation

cooperation with some high profile companies such as Cisco, Juniper,

Microsoft, VMWare and HP. Hydrogen was OpenDaylight first release and

launched in February 2014 and consists of an open code controller with some

protocol plug-ins and virtualization capabilities. Eight months later, in

November 2014 the second release, named Helium, was launched. It provided

a Karaf based work environment and model driven network management. In

June 2015, Lithium release was launched. It introduced new plug-ins to

support new network protocols and a model driven management based

OpenFlow plug-in that supports OpenFlow versions 1.0 to 1.3. OpenDaylight

Beryllium released in February 2016 and included performance improvements,

also improved YANG tools, NETCONF and RESTCONF protocol features. The

 22

most recent release of OpenDaylight is Boron, it launched in November 2016

and includes new development and operational tools.

 Figure 3: OpenDaylight Controller Evolution

OpenDaylight Controller includes a service abstraction layer (SAL) and

provides model driven service abstraction. SAL separates northbound services

and application plugins from southbound protocol plugins and its main

purpose is to adapt southbound functions to application and service functions

that are generated by OpenDaylight Controller northbound API. Model driven

SAL (MD-SAL) provides Northbound and Southbound interfaces a common

REST API for application and feature development and stores data model

definded by plug-ins. Supported Model Driven protocols are NETCONF and

REST-CONF. OpenDaylight Controler also supports YANG modelling language.

More extensively:

• NETCONF: It is a network management protocol supports

Remote Procedure Calls(RPC) and configures data stores using

 23

Create, Update and Delete (CRUD) operations. NETCONF uses

XML for configuration and protocol messages.

• REST-CONF: Provides an interface over HTTP for accessing data

and data stores defined respectively in YANG model and

NETCONF protocol. The exposed resources are encoded in JSON

or XML and are retrieved and modified with HTTP GET, PUT

DELETE and POST methods.

• YANG: It is a modelling, data-oriented language that models

complex data sets as tree structures and generate APIs for

application development. YANG also models RPCs to suit in

model drivel systems as Interface Description Language (IDL).

 Figure 4: NETCONF & YANG model

 In addition, OpenDaylight Controller is implemented in software and is

contained in its own JVM (Java Virtual Machine). As a result, it can be deployed

 24

on any operating system that supports Java. It also depends on the following

technologies:

• MAVEN: It is a management tool that helps developers to

manage the required plug-ins and provides automated

dependencies.

• JAVA: It is the Object Oriented programming language that

developers use to develop applications and features in the

OpenDaylight Controller.

• OSGi (Open Service Gateway interface): It is the Controller’s

back end. OSGi binds modules for exchanging information and

allows dynamic load of bundles.

• KARAF: It is an application container that makes applications

installation simple.

In this study, we will use OpenDaylight DLUX which is a user interface.

Application designed for OpenDaylight Controller. It includes multiple features

that provide detailed information about network architecture and

performance. OpenDaylight DLUX uses SAL services to get network related

information.

 25

6.3. SDN Analytics application

6.3.1. Application Environment Setup

 First of all, we deployed a virtual network with Mininet emulator. The

network includes seven OpenFlow switches connected each other with

ethernet in a tree topology and eight connected hosts.

Figure 5: Mininet deployment through terminal

The network deployment command is shown in the first line of the terminal

in Figure 5 and it consists of the following properties:

• sudo mn: Mininet console initialization.

• --topo=tree: Commands Mininet to deploy a tree topology.

• --mac: Allocates MAC addresses to the hosts according to their IP

addresses.

• --switch=ovsk: Commands Mininet to use ovsk switches.

• --link tc, bw=10, delay=10ms: Adds 10 Mb per second Bandwidth

and 10msec delay to the virtual network.

 26

Once the network is deployed, a “pingall” command is executed in order to

ensure that there is reachability between network hosts.

 Secondly, OpenDaylight Controller was activated in order to manage

and control the deployed network.

Figure 6: OpenDaylight Controller deployment through terminal

Then we enter the OpenDaylight Dlux web user interface through the following

Url: http://localhost:8181/index.html. Username and password are both “admin” by

default.

http://localhost:8181/index.html

 27

Figure 7: OpenDaylight Dlux login page

Figure 8: OpenDaylight Dlux main page

 28

OpenDaylight Dlux provides visibility of the network topology and information

about network statistics as well. But one of the most important features of

OpenDaylight Dlux is the Yang UI, the third choice of the menu at the left of

the main screen (Figure 8).

 Yang UI provides all necessary APIs and subAPIs for development to the

application layer. On the top part of Yang UI page are displayed all APIs and

subAPIs in tree formation and all the available functions that could be used

when an API is selected (GET, PUT, POST, DELETE, etc). The required path for

every operation is also displayed under the API tree formation, before the

function buttons. On the bottom part of Yang UI page is displayed the list of

elements of the selected subAPI.

Figure 9: Yang UI page

 29

Finally, we used the generated API from Yang UI to develop a Network

Analytics application that presents graphically the network performance and

using network statistics, provided by Yang UI.

6.3.2. Application Development

The Network Analytics application is implemented using Jersey

Framework which is an open source framework for developing RESTful Web

Services in Java. The generated statistics are in Json format and we used

Google Charts for the graphical presentation. When each page of the

application is loaded, for each chart, a REST call is sent to the back-end part of

the JAVA application. Then, A REST call from the application to the controller

modifies the statistics as they come in Json format and makes them available

for presentation from Google charts. Opendaylight Controller provides the

application with a list of the nodes and their statistics for each chart. In order

to create a list with the Node IDs and the needed values, we use a Map in Java

which is filled with all the needed values with the use of a for loop. Map is a

collection in Java that pairs a value for a key as HashMap<value, key> and we

used a HashMap for every chart. The application is deployed using Apache

Tomcat 8 server. It consists of three tabs.

The first tab presents two column charts and three pie charts. The first

column chart shows the transmitted bytes, drops and errors of the whole

network depending on time. The second column chart shows the received

bytes, drops and errors of the whole network depending on time. The first pie

chart shows the duration percentage of an operation of each flow connector,

the second pie chart presents the percentage of transmit drops of each flow

connector and finally, the third pie chart presents the crc-Errors respectively.

If the transmit drops and crc-Errors pie charts does not have any values, then

a message is printed instead of the charts. CRC (Cyclic Redundancy Check)

Errors could be caused by a damaged transmitted packet and the receiver

demands packet retransmission.

 30

The second tab, includes more specific charts. There are five column

charts and a pie chart that presents the statistics of every flow connector. The

first two charts present the transmitted and received bytes of every flow

connector and the third chart shows the duration of a traffic operation on

every flow connector. On the second row, the first two charts present the

transmitted and received packets for every flow connector and the last pie

chart shows the transmitted errors for every flow-connector of the virtual

network.

Finally, the third tab is created to present a summary of the two other

tabs and show the most productive and efficient nodes. On the other hand, in

this page are presented also the most defective flows of the network and them

with the lowest performance. In this page, there are two column charts, two

bar charts and two pie charts. More specific, the first chart of this page is a

column chart that presents the five flow connectors with the biggest amount

of transmitted bytes. Secondly, there is a pie chart that presents the five flow

connectors with the most network collisions. The last chart of the first row is a

bar chart that presents the five flow connectors with the biggest amount of

transmitted packets. In the second row, the first column chart presents the five

flow connectors with the most received bytes. The next chart is a pie chart that

presents the five flow connectors with the most transmit drops and the last

one is a bar chart that shows the five flow connectors with the biggest amount

of received packets.

6.3.3. Application Scenario

Once the application environment has been set up and the application is

deployed successfully, three different types of network topologies will be

created and compared. First of all, a linear topology with five switches and two

hosts per switch will be deployed. The second one is a ring topology with five

switches and two hosts per switch. The third one is a tree topology with seven

switches and eight hosts.

 31

The next step is to examine how these network topologies react with

different performance parameters such as different bandwidth, increased

delay and loss. Firstly, the network topologies will be compared without any

performance parameters. Then, two different sets of performance parameters

will be used for each network topology.

The first performance parameter set includes 10 Mbit bandwidth, a

maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss. The

second performance parameter set includes 7 Mbit bandwidth, a maximum

queue size of 5000 packets, 15 milliseconds delay and 30% loss.

6.3.3.1 Linear network Topology

Linear topology is a kind of network topology where all the switches are

connected one after the other like a chain using two ways links. The main

disadvantage of this kind of network topology is that if a link of the network is

severed, then the whole network transmission is halted. On the other side,

linear network topologies are ideal for small networks as they are easy to set

up and they request smaller amount of cables. Although, in larger networks

where more devises are connected the speed could be reduced.

In this study, we are going to deploy a custom linear network topology,

using the following python script in mininet,

 32

 That includes five switches and two hosts per switch, ten hosts in total as

shown in the next pictures:

 33

Figure 10, 11: Linear network topology with five switches and ten hosts.

6.3.3.2 Ring network Topology

In Ring network topologies, switch connections create a circular path. Each

network element is connected with to others. There are two different kinds of

ring network topologies. The unidirectional ring network topology which

allows the packets to move in one direction, and the bidirectional ring network

topology, where packets move in either directions.

 34

Ring network topologies were used for smaller networks, however, today

they are used in larger local or wide area networks as they offer increased

performance, they are simple and easy to support. Ring network topologies

offer decreased chance of network collisions as all packets move in one

direction and packets can be transferred in high speed as well. Finally, hosts

can be easily added or removed without affecting the network performance.

On the other hand, star network topology has the same disadvantage as linear

topologies, if a link of the network faces any issue, then the whole network will

be affected. In addition, all data passes through each switch, this fact may

affect the network performance.

The Ring network topology that is going to be used in our study includes

five switches and ten hosts (two hosts per switch).

 35

Figure 12, 13: Ring network topology with five switches and ten hosts.

The topology is created by the following python script:

 36

 37

6.3.3.3 Tree network Topology

Tree topology is a structure where network elements are connected

like branches of a tree. It is also known as star bus network topology as it is a

combination of a star and a bus topology’s characteristics. More specifically, A

number of star subnetworks are connected using a Bus, which is a common

connection cable. The advantages of Tree topology are:

• Scalability that standalone star and bus topologies are unable

to offer.

• Network can be easily expanded.

• Network can be divided to more star networks. It offers easier

control and network maintenance.

• Easy error detection and correction.

• Tree “branches” are independent. For example, if a segment is

damaged, the others are not affected.

On the other hand, there are several disadvantages on the use of Tree

topology:

• The whole network depends on the Bus cable.

• Maintenance becomes more complicated when more star

topologies are added.

The tree network topology that will be used for this research includes

seven OpenFlow switches and eight hosts. (Figure 10)

 38

Figure 14, 15: Tree topology with five switches and ten hosts.

The topology is created using the following python script:

 39

 40

6.3.4. Results Analysis

 The SDN Analytics Application will be presented in two sections. Firstly,

we are going to compare each network topology for different performance

parameters. Two performance parameter sets were used for each topology

and it will be presented without the use of performance parameters as well.

 Secondly, all the topologies will be compared according to the

performance parameters that are used.

6.3.4.1. Linear Topology Analysis

In the following pictures, the first page of the SDN Analytics

application is presented for the linear network topology. The first picture

presents the total network’s performance statistics without any performance

parameters, In the second picture, there were added several performance

parameters as we described before. They are 10 Mbit bandwidth, a maximum

queue size of 1000 packets, 5 milliseconds delay and 10% loss. In the third

picture, the parameters are 7 Mbit bandwidth, a maximum queue size of

5000 packets, 15 milliseconds delay and 30% loss.

Figure 16: SDN Analytics application first page for linear network topology without

performance parameters.

 41

Figure 17: SDN Analytics application first page for linear network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

Figure 18: SDN Analytics application first page for linear network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss

The main difference between these network topologies with different

performance parameters is that when traffic is generated, we are able to see

the instant increase of transmitted and received bytes for the first picture. In

the other two cases, the delay that was added is obvious and the amount of

 42

transmitted and received bytes is decreased as well for the same transmission

duration as it is shown in the duration pie chart.

The SDN Analytics application second pages for the linear topologies

with different performance parameters are presented below:

Figure 19: SDN Analytics application second page for linear network topology without

performance parameters.

Figure 20: SDN Analytics application second page for linear network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

 43

Figure 21: SDN Analytics application second page for linear network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss

 As we expected, the main difference between these pages is that the

amount of transmitted and received bytes and packets is decreased for the

performance parameters with bigger values. It is obvious in every chart in

these pages if we consider that the duration is almost the same for all of these

cases.

The SDN Analytics application third pages for the linear topologies with

different performance parameters are presented below:

 44

Figure 22: SDN Analytics application third page for linear network topology without

performance parameters.

Figure 23: SDN Analytics application third page for linear network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

 45

Figure 24: SDN Analytics application third page for linear network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss.

 The third page of the SDN Analytics application is the summary page of

the application. The amount of bytes and packets of the five most productive

flow connectors of the topology without performance parameters is almost

50% bigger that the amount of bites and packets of the five most productive

flow connectors of the topology with the second set of performance

parameters. The amount of bytes and packets of the topology with the first set

of performance parameters is almost 25% reduced comparing it to the

topology without performance parameters. On the other hand, there are no

collisions or drops for any linear topology used in our study.

6.3.4.2 Ring Topology Analysis

In the following pictures, the first page of the SDN Analytics application

is presented for the Ring network topology. The first picture presents the total

network’s performance statistics without any performance parameters, In the

second picture, there were added several performance parameters as we

described before. They are 10 Mbit bandwidth, a maximum queue size of 1000

packets, 5 milliseconds delay and 10% loss. In the third picture, the parameters

 46

are 7 Mbit bandwidth, a maximum queue size of 5000 packets, 15 milliseconds

delay and 30% loss.

Figure 25: SDN Analytics application first page for Ring network topology without performance

parameters.

Figure 26: SDN Analytics application first page for Ring network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

 47

Figure 27: SDN Analytics application first page for Ring network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss.

The main difference between these network topologies with different

performance parameters is that when traffic is generated, we are able to see

the instant increase of transmitted and received bytes for the first picture. In

the other two cases, the delay that was added is obvious and the amount of

transmitted and received bytes is decreased as well for the same transmission

duration as it is shown in the duration pie chart.

The SDN Analytics application second pages for the Ring topologies

with different performance parameters are presented below:

 48

Figure 28: SDN Analytics application second page for Ring network topology without

performance parameters.

Figure 29: SDN Analytics application second page for Ring network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

 49

Figure 30: SDN Analytics application second page for Ring network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss.

The main difference between these pages is that the amount of

transmitted and received bytes and packets is decreased for the performance

parameters with bigger values. In addition, if we compare the duration charts,

they are increased for each case but on the other hand, the amount of data is

decreased.

The SDN Analytics application third pages for the linear topologies with

different performance parameters are presented below:

Figure 31: SDN Analytics application third page for Ring network topology without

performance parameters.

 50

Figure 32: SDN Analytics application third page for Ring network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

Figure 33: SDN Analytics application third page for Ring network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss.

In the summary page of the application. The amount of transmitted

bytes and packets of the five most productive flow connectors of the topology

without performance parameters is almost the same as the amount of

transmitted bites and packets of the five most productive flow connectors of

the topology with the second set of performance parameters. On the other

 51

hand, there is a difference more that 50% for the received bytes and packets

for the same topologies. Finally, there are no collisions or drops for any Ring

topology used in our study.

6.3.4.3 Tree Topology Analysis

In the following pictures, the first page of the SDN Analytics application

is presented for the Tree network topology. The first picture presents the total

network’s performance statistics without any performance parameters, In the

second picture, there were added several performance parameters as we

described before. They are 10 Mbit bandwidth, a maximum queue size of 1000

packets, 5 milliseconds delay and 10% loss. In the third picture, the parameters

are 7 Mbit bandwidth, a maximum queue size of 5000 packets, 15 milliseconds

delay and 30% loss.

Figure 34: SDN Analytics application first page for Tree network topology without performance

parameters.

 52

Figure 35: SDN Analytics application first page for Tree network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

Figure 36: SDN Analytics application first page for Tree network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss.

The main difference between these network topologies with different

performance parameters is that when traffic is generated, we are able to see

the instant increase of transmitted and received bytes for the first picture. In

the other two cases, the delay that was added is obvious and the amount of

 53

transmitted and received bytes is decreased as well for the same transmission

duration as it is shown in the duration pie chart.

The SDN Analytics application second pages for the Tree topologies

with different performance parameters are presented below:

Figure 37: SDN Analytics application second page for Tree network topology without

performance parameters.

Figure 38: SDN Analytics application second page for Tree network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

 54

Figure 39: SDN Analytics application first page for Tree network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss.

The main difference between the second page of each Tree network

topology is that the amount of transmitted and received bytes and packets is

decreased as the performance parameters values are increased. In addition, if

we compare the duration charts, they are increased for each case, although

there are no transmission errors.

The SDN Analytics application third pages for the Tree topologies with

different performance parameters are presented below:

Figure 40: SDN Analytics application third page for Tree network topology without

performance parameters.

 55

Figure 41: SDN Analytics application third page for Tree network topology with 10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10% loss.

Figure 42: SDN Analytics application first page for Tree network topology with 7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30% loss.

In the summary page of the application, there are differences to the

allocation of data processing but the most active flow connectors are almost

the same. On the third topology, considering the performance parameters, it

is obvious that the most active node connectors are different than the other

two Tree topologies. Finally, as for the other network topologies in this study

there are no collisions or drops.

 56

6.3.4.4 Topology Analysis Without Performance Parameters

In this section, Linear, Ring and Tree topology without performance

parameters are going to be compared using the SDN Analytics application.

Figure 43: SDN Analytics application first page for Linear network topology without

performance parameters.

Figure 44: SDN Analytics application first page for Ring network topology without performance

parameters.

 57

Figure 45: SDN Analytics application first page for Tree network topology without performance

parameters.

As the first page of the SDN Analytics application is presented for each

network topology without using any performance parameters, the total

amount of transmitted and received bytes needed almost the same time to

reach their destination, but for the Ring topology the transmitted and received

bytes are decreased almost 50% comparing to the other two topologies. In

addition, the duration of each flow connector for the linear topology is almost

1% bigger that the other two topologies.

The SDN Analytics application second pages for each network topology

without any performance parameters are presented below:

 58

Figure 46: SDN Analytics application second page for Linear network topology without

performance parameters.

Figure 47: SDN Analytics application second page for Ring network topology without

performance parameters.

Figure 48: SDN Analytics application second page for Tree network topology without

performance parameters.

 For Linear and Ring network topologies, it is obvious that the second

pages of the application are similar as for both topologies, all the switches are

connected one after the other like a chain and the network traffic passes

through each network switch. As result, the flow connectors between the

 59

switches are more active. On the other hand, Tree network topology is more

balanced, the total amount of transmitted and received bytes per flow is lower,

this fact could offer improved network performance.

 The third pages of the SDN Network application for each network

topology are presented below:

Figure 49: SDN Analytics application third page for Linear network topology without

performance parameters.

Figure 50: SDN Analytics application third page for Ring network topology without

performance parameters.

 60

Figure 51: SDN Analytics application third page for Tree network topology without

performance parameters.

 The conclusion of the comparison of the SDN Analytics application third

page is that Linear and Ring topologies have similar traffic flow and

performance characteristics, every switch is necessary for the network but if

the amount of bytes is increased it is easier to reach their maximum capacity,

in contrast with Tree topology which is able to offer improved performance in

larger networks as well.

 6.3.4.5. Topology Analysis With Performance Parameters set 1 (10 Mbit

bandwidth, a maximum queue size of 1000 packets, 5 milliseconds delay and 10%

loss)

 The first pages of the SDN Analytics application are presented below:

 61

Figure 52: SDN Analytics application first page for Linear network topology with performance

parameters set 1.

Figure 53: SDN Analytics application first page for Ring network topology with performance

parameters set 1.

 62

Figure 54: SDN Analytics application first page for Tree network topology with performance

parameters set 1.

It is obvious here that the increased delay and loss and also the reduced

bandwidth affects the network topologies. The increase of the bytes amount

is slower and not constant which is due to the increased loss of some

connectors. The transmission duration is almost the same for each topology

and there are no drops or crc-erros.

The second page for each network topology with performance

parameters set 1 is presented below:

Figure 55: SDN Analytics application second page for Linear network topology with

performance parameters set 1.

 63

Figure 56: SDN Analytics application second page for Ring network topology with performance

parameters set 1.

Figure 57: SDN Analytics application second page for Tree network topology with performance

parameters set 1

 For the Linear and Ring network topologies there are bigger differences

with the performance parameters and the traffic flow is concentrated to some

specific connectors which could affect the network performance. On the other

hand, on Tree topology, the network traffic is divided between the connectors

and despite the increased delay of the performance parameters, the duration

is decreased.

 64

 The third pages of each network topologies using the first set of

parameters are shown below:

Figure 58: SDN Analytics application third page for Linear network topology with performance

parameters set 1

Figure 59: SDN Analytics application third page for Ring network topology with performance

parameters set 1

 65

Figure 60: SDN Analytics application third page for Tree network topology with performance

parameters set 1

 In spite of the increased performance parameters, there are no

collisions or drops for any of the topologies. In addition, it is obvious for linear

and ring topologies that they are more centralized as we can see from the

difference between the connector. On the other hand, in Tree topology traffic

is more uniformly distributed despite the added delay and loss.

 6.3.4.6. Topology Analysis With Performance Parameters set 2 (7 Mbit

bandwidth, a maximum queue size of 5000 packets, 15 milliseconds delay and 30%

loss)

The first pages of the SDN Analytics application are presented below:

 66

Figure 61: SDN Analytics application first page for Linear network topology with performance

parameters set 2

Figure 62: SDN Analytics application first page for Ring network topology with performance

parameters set 2

 67

Figure 63: SDN Analytics application first page for Tree network topology with performance

parameters set 2

 As expected, for the second set of performance parameters with the

increased delay and loss, the total amount of transmitted and received bytes

are reduced for each network topology but there are no drops or crc-errors.

The second page for each network topology with performance

parameters set 2 is presented below:

Figure 64: SDN Analytics application second page for Linear network topology with

performance parameters set 2

 68

Figure 65: SDN Analytics application second page for Ring network topology with performance

parameters set 2

Figure 66: SDN Analytics application second page for Tree network topology with performance

parameters set 2

Linear and Ring network topologies are similar for the received bytes

and packets but there are also differences for the transmitted due to the

increased performance parameters. On the other hand, on Tree topology, the

network traffic is divided between the connectors and despite the increased

delay of the performance parameters, the duration is decreased.

The third pages of each network topologies using the first set of

parameters are shown below:

 69

Figure 67: SDN Analytics application third page for Linear network topology with performance

parameters set 2

Figure 68: SDN Analytics application third page for Ring network topology with performance

parameters set 2

 70

Figure 69: SDN Analytics application third page for Tree network topology with performance

parameters set 2

Despite the increased performance parameters, there are no collisions

or drops for any of the topologies. In addition, it is obvious for linear and ring

topologies that they are more centralized as we can see from the difference

between the connectors. Tree network topology is also affected by the

performance parameters as we can see different characteristics from the

previous tree topology cases.

 71

1. Conclusion

Software Defined Network (SDN) architecture provides engineers with

plenty management and control capabilities by separating control and

infrastructure layers. The provided centralized network control and Openflow

protocol which is compatible with the majority of SDN elements, make

networks programmable and instantly configured and managed.

Software Defined Network analytics is a very useful tool used by engineers

to add visibility to networks and provide them useful information about

network behavior in order to prevent any possible danger for the network’s

stability. In other words, a Software Defined networks Analytics application

provides the necessary intelligence to the network in order to help network

engineers to optimize network performance and prevent any possible failures

in real time.

In this study, three different kinds of network topologies were examined,

Linear Topology, Ring topology and Tree topology. Linear topology is a basic

topology that offers easy control and maintenance and engineers can easily

detect and correct any possible errors, Ring topology is similar to linear

topology but it’s structure is more secure from any possible collision as the

transmission is always in one direction. Finally, tree topology is a simple and

balanced topology, allows simple management and configuration but it can

easily become more complex by adding multiple star topologies. With the use

of the Analytics application we have the necessary visibility to manage and

control topologies regardless their complexity and we are able to prevent

possible error collisions and other dangers in real time.

Software Defined Network Analytics application could be used as base for

more SDN applications development such as a traffic forwarding application

that would automatically predict possible errors and instantly avoid them.

 72

2. References

1. Software-defined networking – Wikipedia

https://en.wikipedia.org/wiki/Software-defined_networking

2. Software -Defined Networks and OpenFlow – The Internet Protocol

Journal, Volume 16, No. 1

https://www.cisco.com/c/en/us/about/press/internet-protocol-

journal/back-issues/table-contents-59/161-sdn.html

3. What’s Software-Defined Networking (SDN)?

https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-

software-defined-networking-sdn/

4. OpenDaylight

https://www.opendaylight.org/

5. OpenDaylight Project – Wikipedia

https://en.wikipedia.org/wiki/OpenDaylight_Project

6. What is an OpenDaylight Controller? – SdxCentral

https://www.sdxcentral.com/sdn/definitions/sdn-

controllers/opendaylight-controller/

7. Using the OpenDaylight SDN Controller with the Mininet Network

Emulator

http://www.brianlinkletter.com/using-the-opendaylight-sdn-

controller-with-the-mininet-network-emulator/

8. OpenFlow-protocol-OpenFlow.org

http://archive.openflow.org/wp/learnmore/

9. Introduction to Mininet – mininet/mininet Wiki – GitHub

https://www.google.gr/search?q=mininet&oq=mininet&gs_l=psy-

ab.3..35i39k1l2j0i67k1j0.8998.10287.0.10499.7.7.0.0.0.0.124.758.2j5.

7.0....0...1.1.64.psy-ab..0.7.754...0i131k1.0.1CPAlMflaIM

https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-59/161-sdn.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-59/161-sdn.html
https://www.opendaylight.org/
https://en.wikipedia.org/wiki/OpenDaylight_Project
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/opendaylight-controller/
http://www.brianlinkletter.com/using-the-opendaylight-sdn-controller-with-the-mininet-network-emulator/
http://www.brianlinkletter.com/using-the-opendaylight-sdn-controller-with-the-mininet-network-emulator/
http://archive.openflow.org/wp/learnmore/
https://www.google.gr/search?q=mininet&oq=mininet&gs_l=psy-ab.3..35i39k1l2j0i67k1j0.8998.10287.0.10499.7.7.0.0.0.0.124.758.2j5.7.0....0...1.1.64.psy-ab..0.7.754...0i131k1.0.1CPAlMflaIM
https://www.google.gr/search?q=mininet&oq=mininet&gs_l=psy-ab.3..35i39k1l2j0i67k1j0.8998.10287.0.10499.7.7.0.0.0.0.124.758.2j5.7.0....0...1.1.64.psy-ab..0.7.754...0i131k1.0.1CPAlMflaIM
https://www.google.gr/search?q=mininet&oq=mininet&gs_l=psy-ab.3..35i39k1l2j0i67k1j0.8998.10287.0.10499.7.7.0.0.0.0.124.758.2j5.7.0....0...1.1.64.psy-ab..0.7.754...0i131k1.0.1CPAlMflaIM

 73

10. OpenDaylight DLUX:DLUX Karaf Feature – OpenDaylight Project

https://wiki.opendaylight.org/view/OpenDaylight_DLUX:DLUX_Karaf_

Feature

11. Chapter 2. Using the OpenDaylight User Interface(DLUX)

https://nexus.opendaylight.org/content/sites/site/org.opendaylight.d

ocs/master/userguide/manuals/userguide/bk-user-

guide/content/_using_the_opendaylight_user_interface_dlux.html

https://wiki.opendaylight.org/view/OpenDaylight_DLUX:DLUX_Karaf_Feature
https://wiki.opendaylight.org/view/OpenDaylight_DLUX:DLUX_Karaf_Feature
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userguide/bk-user-guide/content/_using_the_opendaylight_user_interface_dlux.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userguide/bk-user-guide/content/_using_the_opendaylight_user_interface_dlux.html
https://nexus.opendaylight.org/content/sites/site/org.opendaylight.docs/master/userguide/manuals/userguide/bk-user-guide/content/_using_the_opendaylight_user_interface_dlux.html

