University of Piraeus
Department of Digital Systems
Postgraduate Program «Digital Systems Security»
Academic Year 2017-2018
(PX-AD-888) — MSc Dissertation

Combination of the PEAP Protocol with EAP-OpenID Connect

Bolgouras Vaios
MTE1624, vaiompolgoyras@ssl-unipi.gr

Supervisor Professor

Dr. Xenakis Christos

Piraeus, March 2018

Special Thanks to Dr. Xenakis and Dr. Dadoyan for their guidance and to my
fellow student Panagioti Bountaka for his help.

Contents

{67 01 (=T 01 (PP PP 3
LI Lo 1Tl oL =TT =TSSR 4
Y o1 - [ot T PSPPSR PR UPTUPPTOTI 5
INEFOAUCTION .ttt sttt et b e e b e s bt e sae e et e et e e b e e e beesbeesaeeeaseenbeesbeesaeesanenas 6
EAP - OpenID Connect FOUNAAtIONScciiciiiiiiiiiie ettt e et ere e e e tae e e st e e e e saareeeenasaeeesannreeenan 6
(07U 12 O SRS 6
AULROTIZAtION Grantooiiiieiie ettt st e e s et e s et e e s b e e s bee e sabeeesneeesabeesreeesareenane 8
AULhOTIiZation COAE FIOW......couiiiiiiiieiiieeet ettt ettt b et e saee s e 8

Ty aT o] 1ol | APPSRt 9
Resource Owner Password Credentialseeieerierierieeie ettt 10

ClIENT CredentialS ... eie ettt et e st e s bt e s sat e e sabe e e ab e e sabeesbaeesabeeenees 11
OPENID CONNECT ... e e e e e e s e e e e e e e e e s e e e e e e e e e e s e e aeeasaasasasssasassssssassssssassssssanssnnanaenns 11
AULhOTIZation COUE FIOW......couiiiiiiieiieteee ettt st sttt et b e e e e st et e e s 12
TaaY o] ol Lol = Uo LY SRS 14

[V20T I = 1o VYRR 15

ID TOKEIN ce ettt ettt ettt ettt ettt et e s a bt e s bt e e a b e e s bt e e bteesabe e e abeesabeeeanbeesabeeenabeesabeeeaneeesabaeenares 15
Anatomy of @ JSON Web TOKEN (JWT) c.eeiiiiieeee ettt tre e st e e s re e s rae e savaeenes 15

[ST [T TP PRSP POPTOPPRPPPINt 16

1Y (oY T FO SRR 16
Y=g L (U | TSP PPPPPPPN 17
Extensible Authentication ProtoCOl (EAP).........ouuveiiiieiie et eeeree ettt eeetree e eeetre e e e eetreeeeetreeeeetreeeesanes 17
o u Yot =T I oY o (o] 7Y = OSSOt 18
EAP-OIDC... .ttt b e bt bt s at e et e e bt e be e eh e e ehe e eab e e bt e bt e bt e bt e he e eateeateentean 20
N 20

[o or= T YW1 = 1A LY I PSP 21
Remote Dial in USer SErVICE (RADIUS)cccouveiiieieeee ettt eeetreee ettt e eeetteeeeeetveeeeeetreeeeestreeeestseeeeesreeeesnnns 21
RADIUS PaCKEE FOMMAL........cveieieieiieieiteetestes ettt seene e 22

EAP ENCapsulation in RADIUSooo oottt e e e e e e et e e e e e e s sanbere e e e e e e eesannseaaneeeaeennns 22

(O 01=] oV Y Y/ U 23
REIATEA WOTK ..ottt sttt e e bt e s b e e saeesan e s n e e neenns 26
Lo 0o =T o o PSPPSR PP PSP 26
(0T 014 V7T o] o - | P URTRS 27

WPA2 / 802.1XK AULNENTICAION . ettt ettt ettt e e e e e e e et eeeeeeseea e eaeeeeessseaasreaeeeeesssesassereeees 28

1Y [11V o Lo T o P PRSPPI 28
CONEIIBULION ..ttt ettt b e s bt e s at e st et e b e beesbeesaeeeateeateesbeesbeesanenas 29
F N N A I I B VLY I O 1 TSP 29

THE SCENAIIO. ¢ ettt ettt ettt ettt e st e s bt e s abe e s bt e e bt e e s be e e eabeesabeesaseeesabeeesabeesabeesneeesabeeennnas 29

PEAP With EAP-OIDCceiiiiiieieiiiteee ettt e ettt e e sstte e e s sttt e e s sbee e e s sbteeessabteeessstaeesanseeeesssteeessssaeessnseenessses 31
BN OIS/ AGVANTAZES . .eecveeeeteeeciee ettt ettt ettt e et et e et e e et e e e ebeeeebeeesteeestbeeebaeeeaseeeabeeebaeesnteeesaeeataeesbesenees 31
POSSIDIE DIaWBACKS. c...eeiuieeieet ettt st st b e b s ae e st e b e bt e s ae e sar e e b e b enes 32
CONCIUSTON ..ttt ettt bt e b e s bt s at e et e et e e bt e sbeesatesab e e ab e e bt e beesbeesaeeeateebeenbeesneesanenas 33
RETEIENCES ...ttt ettt ettt e sat e st e s bt e e s a bt e s bt e e bt e e s be e e abeesabee e beeesabeesabeeeanseesbeeenanes 33

Table of Figures

FISUre 1: OAUTHZ.0 OVEIVIEW ..o iiiiiiieiieie ettt et e ettt et e e e s s sttt e e e e e e s satbbeeeeeeesssassssaaaeeesssssnssnnaeeesssnnas 7
Figure 2: AUthOrization COOE FIOW.........iii ittt e et e et e e e st e e e eaaaeeeenasseeesannraeanan 8
=W T T [y o o] ol o LY PSP 10
Figure 4: AUthorization €O FIOW.......uuiiiieiiiiiccieee ettt e e st e e e s e e e s e e e sabeee s esareeas 12
=W I [y o o] Lol o o LY USSP 14
=V T o AN S o Vol =] o o 4 - PSP 18
Figure 7: PEAP Packel FOIMAt........oiiiiiiec ettt ettt e et e et e e e et e e e e e abe e e e eabeeesennbaeeeenbeeeeennsenas 19
T8 =TS o Y o PRE 19
FIQUIE 9: RAGIUS PACKELecveeeieiieieie ettt ettt ettt st e se e e sr e esaestesneenteseeeseensesseenes 22
Figure 10:0OpenAM Social Authentication & OPLIONS.........cccceeciereeeeiice e e 24
Figure 11: Configure Client CredentialS.........ccocieieiierieierie ettt e e seeenes 24
Figure 12:OpenAM Authentication Modules & Google Social Authentication Edit Pagec..cccc...... 25
Figure 13: OpenAM Login Page & Go0gle 'S LOGIN PAgEcccvevieeiieiieeeeecteeeee sttt 25
Figure 14:0peNAM Profile PAQgeocveeeeeeceei ettt sttt st en e seeenes 26
Figure 15: EAUroam INrastrUCTUIEeiii ettt e et e e e et e e e e abe e e e e abe e e e enbaee e enreeas 26
Figure 16: TLS Tunnel EStabliShmMENToc.euiiiiie ettt e e e e e et e e e eareeas 30
Figure 17: Overview Of PEAP With OIDCoooiiiiiiiciie ettt e e s ee e s ree s s abee e s s aba e e e e nreeas 31
Figure 18: ENCAPSUIatioN OVEIVIEW.........uiiiiiiiieeciiee e ettt e ettt e et e e e et e e e e et e e e e e ateeeeeabeeeeeareeesenteneeennsenas 33

Abstract

Connecting to a wireless network in most cases requires either a password or a certificate.
Enabling authentication using a social media account within a Wi-Fi network implies that a
captive portal or another enterprise solution should be implemented. In this Thesis we propose an
alternative approach that combines Extensible Authentication Protocol (EAP) and OpenID
Connect (OIDC) protocol in order to create a new EAP method for authentication in Wi-Fi
networks with social media or email accounts. More specifically we propose the encapsulation of
OIDC protocol messages within EAP packets through a secure TLS tunnel, thus the concept is
named PEAP with EAP-OIDC.

Introduction

Nowadays, in the modern world, it is required from us to have accounts everywhere. The
majority of the accounts support a username-password combination. According to the online
survey, in which more than 2,000 English-speaking adults participated, the average person has
27 discrete online logins [14]. 27 username-password combinations are way too much for one
person to remember. Hence, this leads users to use the same password over and over again.
Technologies like OAuth [9] and OIDC [8] were created in order to mitigate this risk by letting
users take advantage of their social media or email accounts instead of creating new accounts in
every service. This resulted in a new role for the social media and email providers, to act as
identity providers (IdPs). Most of the restaurants, coffee shops, hotels, universities, etc. also offer
free Wi-Fi on top of their other services. Some of them use an open Wi-Fi, while others use a
password protected Wi-Fi which means, one single password for every user. On the one hand, if
the Wi-Fi is not password protected then it is easy to connect, but it has several security issues,
which are beyond the scope of this thesis. On the other hand, if the Wi-Fi is protected by a
password, the user should look for signs with the password written on them or ask someone
about it. We all know that this is a time consuming procedure, that nobody looks forward to.
Imagine the convenience of having the ability to, instead of looking for the password, use a
social media account or email credentials and get access on the Wi-Fi network. The application
of such a scheme could also be implemented in corporate environments, to make it easy - only -
for the employees to login their network.

There are already some solutions that offer authentication in Wi-Fi networks with social or email
accounts, like captive portal, but they are not secure enough, since the user obtains - restricted -
access on the network before the authentication takes place. In this thesis we propose a
theoretical method which combines EAP [1] and OIDC in order to achieve authentication in Wi-
Fi networks with social media or email accounts. This method will offer a high level of security,
as the user obtains access on the network after the authentication. Moreover, in order to achieve a
secure communication, we first establish a secure tunnel and then the EAP-OIDC procedure
commences. The secure tunnel is deployed via the Protected EAP method.

EAP - OpenID Connect Foundations

OAuth 2.0

OAuth 2.0 is an authorization framework that enables applications to obtain limited access to
user accounts on an HTTP service, such as social media, email and HTTP service providers in
general. It delegates the user authentication to the service that hosts the user account and
authorizes a 3" party application to access the user account. It defines four roles: Resource
Owner i.e. the user, Client i.e. the application, Resource Server and Authorization Server. An
abstract protocol flow is shown in the above figure.

Abstract Protocol Flow

1. Authorization Reguest R
Usel
2 Authorization Grant (Resource Owner)
aplicatior 3. Authorization Grant
ﬁl')l'-}ll{-"-l“{-}” - ramen orar Authorization

(Client) Server

4, Access Token

5 Arcace Tolar

=, ACCESS 10KEN Resource
L
Servel

6. Protected Resource

Service API

Figure 1: OAUTHZ2.0 overview

=

The application requests authorization to access service resources from the user

If the user authorized the request, the application receives an authorization grant

3. The application requests an access token from the authorization server (API) by
presenting authentication of its own identity, and the authorization grant

4. If the application identity is authenticated and the authorization grant is valid, the
authorization server (API) issues an access token to the application. Authorization is
complete.

5. The application requests the resource from the resource server (API) and presents the
access token for authentication

6. If the access token is valid, the resource server (API) serves the resource to the

application

N

The real flow of this process will differ depending on the authorization grant type in use.

The use of OAuth within an application implies that it should be registered with the service. This
is done through a registration form in the service’s website. In this form the following
information should be provided: application name, application website, redirect URI or callback
URI.

The redirect URI is where the service will redirect the user after they authorize (or deny) the
application, and therefore the part of the application that will handle authorization codes or
access tokens.

Once the application is registered, the service will issue "client credentials” in the form of a
client identifier and a client secret. The Client ID is a publicly exposed string that is used by the
service API to identify the application, and is also used to build authorization URLS that are

presented to users. The Client Secret is used to authenticate the identity of the application to the
service APl when the application requests to access a user's account, and must be kept private
between the application and the API.

Authorization Grant

The grant type flows determine how the Access Token are returned to the Client. The different
grant types are:

e Authorization Code: Usually used with server-side application

e Implicit: Used with mobile apps or applications that runs on the user ‘s device.

e Resource Owner Password Credentials: Used with trusted applications, such as those
owned by the service itself.

e Client Credentials: Used with applications API access.

Authorization Code Flow

The most commonly used grant type is the authorization code grant, because it is optimized for
server-side applications, where source code is not publicly exposed, and Client Secret
confidentiality can be maintained. This is a redirection-based flow, which means that the
application must be capable of interacting with the user-agent (i.e. the user's web browser) and
receiving API authorization codes that are routed through the user-agent. The authorization code
flow is described below:

Authorization Code Flow

User

(Resource Owner)

1. User Authorization Regquest
2. User Authorizes Application
User-agent
(Web Browser) A tl
| P uth
AI-)I-)Ilcatlol-l 3. Authorization Code Grant))
(Client) Server
(Service API)

4, Access Token Request

ccess Token Grant

Z

Figure 2: Authorization Code Flow

1) The user is given an authorization code link which have the following
components:

Implicit

2)

3)

4)

5)

e https://www.example.com/ v1/oauth/authorize: the API authorization
endpoint
e client id=id: the application’s client ID
e redirect_uri=callback_URI: where the service redirects the user-agent after
an authorization code is granted
e response_type=code: specifies that the authorization code grant type is
used
e scope=read: specifies the level of access that the application is requesting
e Full example:
https://www.oauth.example.com/v1/oauth/authorize?response_type=code
&client_id=id&redirect_uri=callback_URL&scope=read
The user clicks the link, firstly they must log in to the service, in order to
authenticate their identity (unless they are already logged in). Then they will be
prompted by the service to authorize or deny the application to access their
account.
If the user chooses the “authorize” option, the service redirects the user-agent to
the application redirect URI, which was specified during the client registration,
along with an authorization code. Example:
https://application.com/callback?code=AUTHORIZATION_CODE
The application requests an access token from the API, by passing the
authorization code along with authentication details, including the client secret, to
the API token endpoint.
For a valid authorization the API will send a response containing the access token
to the application. It may use the token to access the user’s account via the service
API until the token expires or is revoked.

The implicit grant type usually used for mobile apps and web applications, where the client
secret confidentiality is not guaranteed. This grant type is also a redirection-based flow but the
access token is given to the user-agent to forward to the application, hence it may be exposed to
the user and other applications on the user’s device. Also, this flow does not authenticate the
identity of the application, and relies on the redirect URI to serve this purpose. The full process
using implicit grant type is discussed below:

https://cloud.digitalocean.com/v1/oauth/authorize
https://application.com/callback?code=AUTHORIZATION_CODE

Implicit Flow

User

(Resource Owner)

1. User Authorization Request
2. User Authorizes Application
User-agent
(Web Browser)
Sl . Auth
"ﬂkl')I I')Ilcatlorl 3. Redirect URI with Access Token i)
(Client) Server
(Service API)
(<) 4. Follow Redirect URI (Retain Token)
15) 5. Send Token Extract Script
(&) 6. Pass Token to Application

1)

2)

3)

4)
5)

6)

Figure 3: Implicit Flow

With the implicit grant type, the user is presented with an authorization link, that requests
a token from the API. This link looks just like the authorization code link, except it is
requesting a token instead of a code.

This step is the same with the authorization code. The user clicks the link, firstly they
must log in to the service, in order to authenticate their identity (unless they are already
logged in). Then they will be prompted by the service to authorize or deny the
application access to their account.

If the user chooses the “authorize” option, the service redirects the user-agent to the
application redirect URI, and includes a URI fragment containing the access token. It
would look like this: https://application.com/callback#token=ACCESS_TOKEN

The user-agent follows the redirect URI but retains the access token.

The application returns a webpage that contains a script that can extract the access token
from the full redirect URI that the user-agent has retained.

The provided script is executed by the user-agent and passes the extracted access token to
the application. It may use the token to access the user’s account via the service API until
the token expires or is revoked.

Resource Owner Password Credentials

The user provides his service credentials (username and password) directly to the application,
which uses the credentials to obtain an access token from the service. This grant type should only
be enabled on the authorization server if other flows are not viable. Also, it should only be used
if the application is trusted by the user.

After the user shares his credentials with the application, the application will then request an
access token from the authorization server. This request might look like:
https://www.oauth.example.com/token?grant_type=password&username=USERNAME&passwo

rd=PASSWORD&client id=CLIENT_ID

10

https://application.com/callback#token=ACCESS_TOKEN
https://www.oauth.example.com/token?grant_type=password&username=USERNAME&password=PASSWORD&client_id=CLIENT_ID
https://www.oauth.example.com/token?grant_type=password&username=USERNAME&password=PASSWORD&client_id=CLIENT_ID

If the user credentials check out, the authorization server returns an access token to the
application and the application is authorized.

Client Credentials

The client credentials grant type provides a way to the application of accessing its own service
account. This might be useful if the application wants to update its registered description or
redirect URI, or access other data stored in its service account via the API.

The application requests an access token by sending its credentials, its client ID and client secret,
to the authorization server. This request might look like:
https://www.oauth.example.com/token?grant_type=client_credentials&client id=CLIENT ID&
client_secret=CLIENT_SECRET

If the application credentials check out, the authorization server returns an access token to the
application and the application is authorized.

OpenlD Connect

OIDC is an OpenlD Foundation standard. The OpenID Foundation formed in 2007 and is a non-
profit international standardization organization of individuals and companies committed to
enabling, promoting and protecting OpenlD technologies. OIDC is published in 2014 and it is an
identity layer on top of the OAuth 2.0 protocol. It enables clients to verify the identity of the user
based on the authentication performed by an authorization server. In OIDC the roles differ a little
from OAuth. The Resource Owner is called End-User, the Client is called Relying Party (RP),
the Resource and Authorization server are called OpenlID Provider (OP). The authentication in
OIDC protocol can follow one of three paths. These paths are basically three flows which
determine how the ID and Access token are returned to the client:

e Authorization code flow (response_type=code): This is the most commonly used flow,
intended for traditional web apps as well as native/mobile apps. Involves an initial
browser redirection to/from the OP for a user authentication and consent and then a
second back channel request is used to retrieve the 1D token.

e Implicit flow (response_type=id_token token): Usually used by the browser based apps
that do not have a backend and the ID token is received directly.

e Hybrid flow: It is a combination of the two previous flows. This is the most rarely used
which allows the app front-end and back-end to receive tokens separately from one
another.

As it mentions before, the OIDC reuses the OAuth 2.0 protocol and parameters and extends it to
introduce an Identity Layer through the following additions:

¢ Along with the access token, an ID token is returned, which is basically a JSON Web
Token with identity claims (user information). The ID Token format is described in the
next chapter.

11

https://www.oauth.example.com/token?grant_type=client_credentials&client_id=CLIENT_ID&client_secret=CLIENT_SECRET
https://www.oauth.example.com/token?grant_type=client_credentials&client_id=CLIENT_ID&client_secret=CLIENT_SECRET

e A UserInfo endpoint introduced, which returns basic profile attributes against the access
token.

Authorization Code Flow

With the Authorization Code Flow all tokens are returned from the Token Endpoint. The
Authorization Code Flow returns an Authorization Code to the RP, which can then exchange it
for an ID Token and an Access Token directly.

OpenlD Connect Authorization Code Flow

OpenlD Provider
(OpenAM)

Relying Party ‘ End User ’ ‘Authorization Server ’ ‘Token Endpoint ’ ‘ Userlnfo Endpoint
T T T

1 Prepare Authorization Request

' 2 Authorization Request

L
>

:1 3 Authenticdte End User |

| |
1 4 Consent/authorization !
>

|5 Redirect wlth ...

:, 6 ... Authorization Code

| 7 Authorization Code

:l B Access Token and ID Token

| 9 Validate ID Token and get End User subject ID |

1 10 (Optional) Access Token

-
F

| 11 (Opticnal) Userinfo Response

I I | I
Relying Party ‘ End User ’ ‘Authonzatlon Server ’ ‘Token Endpoint ’ ‘ Userinfo Endpoint

Figure 4: Authorization Code Flow

The above figure illustrates the Authorization Code Flow and the whole process is described
below:

1. RP prepares an Authentication Request containing the desired request parameters.

2. RP sends the request to the Authorization Server.
RP may use the HTTP GET or POST methods to send the Authorization Request to the
Authorization Server. If the HTTP GET method is used, the request parameters are
serialized using URI Query String Serialization (adding the parameters and values to the
query component of a URL using the application/x-www-form-urlencoded format), if the
HTTP POST method is used, the request parameters are serialized using Form
Serialization (adding the parameter names and values to the entity body of the HTTP
request using the application/x-www-form-urlencoded format).

3. Authorization Server Authenticates the End-User.
If the request is valid, the Authorization Server attempts to Authenticate the End-User or
determines whether the End-User is Authenticated, depending upon the request parameter
values used. The Authorization Server may use different methods to Authenticate the
End-User, e.g. username and password, session cookies, etc.

4. Authorization Server obtains End-User Consent/Authorization.

12

Once the End-User is authenticated, the Authorization Server MUST obtain an
authorization decision before releasing information to the RP.

5,6. Authorization Server sends the End-User back to the RP with an Authorization Code.

7. RP requests a response using the Authorization Code at the Token Endpoint.

A RP makes a Token Request by presenting its Authorization Grant (in the form of an
Authorization Code) to the Token Endpoint using the grant_type value
authorization_code. The RP sends the parameters to the Token Endpoint using the HTTP
POST method and the Form Serialization.

8. RP receives a response that contains an 1D Token and Access Token in the response body.
After receiving and validating a valid and authorized Token Request from the RP, the
Authorization Server returns a successful response that includes an ID Token and an
Access Token. All Token Responses that contain tokens, secrets, or other sensitive
information MUST include the following HTTP response header fields and values:

Header Header
Name Value
Cache- no-store
Control

Pragma no-cache

The following is a successful example of a Token Response

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{

"access token": "S1AV32hkKG",

"token type": "Bearer",

"refresh token": "8xLOxBtzZp8",

"expires_ in": 3600,

"id token": "eyJhbGciOiJSUzIINiIsImtpzZCI6IjFlOWdkazcifQ.ewogImlzc
yI6ICJodHRWO18vc2VydmVyLmV4AYWlwbGUuY29tIiwKICJzdWIiOiAIM]jQ4Migh
NzYxMDAXIiwKICJhdWQi0OiAiczZCaGRSa3FOMyIsCiAibm9uY2UiOiAibiOwlUzZ
fV3pBMklgIiwKICJ1leHAIOiAxMzExXMjgxOTcwLA0ogImlhdCI6IDEzZMTEYODASNZ
AKfQ.ggW8hZ1EuVLuxNuulJKX V8a OMXzROEHRIR63jgdqrOOF4daGU96Sr P6g
Jp6IcmD3HP990bi1PRs-cwh3LO-pl46waJ8ThehcwL7F09JdijmBgkvPeB2T9CJ
NgeGpe-gccMg4vEiKjkM8FcGvnzZUN4 KSPOaApltO0J1lzZwgjxgGByKHiOtX7Tpd
QyHES51cMiKPXfEIQILVgOpc E2DzL7emopWoaoZTF m0 NOYzFC6g6EJbOEOROS
K5hoDalrcvRYLSrQAZZKf1lyuVCyixEoVIGENQC3 osjzw2PAithfubEEBLuvVvVk4
XUVrWOLrL10nx7RkKU8NXNHg-rvKMzgg"

9. RP validates the ID token and retrieves the End-User's Subject Identifier.
To validate the ID Token the RP MUST:
e Follow the validation rules in RFC 6749 (OAuth 2.0)
e Follow the ID Token validation rules
e Follow the Access Token validation rules
10 (Optional). RP requests a response using the Access Token at the Userinfo Endpoint.
11 (Optional). RP receives a response that contains user information in the response body.

13

The exchange of the above messages is done with HTTPS or HTTP protocol, with GET and
POST methods.

Implicit Flow

With the Implicit Flow, all tokens are returned from the Authorization Endpoint. The token
endpoint is not used. The Implicit Flow is mainly used by RPs implemented in a browser using a
scripting language. The Access Token and ID Token are returned directly to the RP, which may
expose them to the End User and applications that have access to the End User ‘s User Agent.
The below figure shows the Implicit flow procedure.

OpenlD Connect Implicit Flow

OpenlD Provider
(OpenAM)

Relying Party ‘Authorization Server l ‘ Userinfo Endpoint

i1 Prepare Authorization Request

' 2 Authorization Request

L.
F o

:1 3 Authenticgte End User i

-

i i
I 4 Consent/authorization |
=

:J 3 Redirect with ...

:_, 6 ... Access Token and 1D Token

\ 7 Validate |D Token and get End User subject 1D |

| B (Optional) Access Token

:4 9 (Optional) Userlnfo Response |
Relying Party

Figure 5: Implicit Flow

Authorization Server Userinfo Endpoint

1. Client prepares an Authorization Request containing the desired request parameters.

2. RP sends the request to the Authorization Server.

3. Authorization Server Authenticates the End-User.

4. Authorization Server obtains End-User Consent/Authorization.

5,6. Authorization Server sends the End-User back to the RP with an ID Token and, if requested,
an Access Token.

7. RP validates the ID token and retrieves the End-User's Subject Identifier.

8 (Optional). RP requests a response using the Access Token at the Userinfo Endpoint.

9 (Optional). RP receives a response that contains user information in the response body.

The above requests and responses are made in the same manner as with the Authorization Code
Flow. The exchange of the above messages is done with HTTPS or HTTP protocol, with GET
and POST methods.

14

Hybrid Flow

When using the Hybrid flow, some tokens are returned from the Authorization endpoint and
others are returned from the token endpoint. This method is not very common hence we will only
present the whole procedure’s steps.

The Hybrid Flow follows the following steps:

Client prepares an Authentication Request containing the desired request parameters.

Client sends the request to the Authorization Server.

Authorization Server Authenticates the End-User.

Authorization Server obtains End-User Consent/Authorization.

Authorization Server sends the End-User back to the Client with an Authorization Code

and, depending on the Response Type, one or more additional parameters.

Client requests a response using the Authorization Code at the Token Endpoint.

7. Client receives a response that contains an ID Token and Access Token in the response
body.

8. Client validates the ID Token and retrieves the End-User's Subject Identifier.

orwdPE

o

ID Token

Client applications receive the user ‘s identity with an ID Token which is the primary extension
that OIDC makes to OAuth 2.0 to enable End-Users authentication. The ID Token is basically a
JSON Web Token (JWT). JWT is an open, industry standard (RFC 7519) method that defines a
compact and self-contained way for securely transmitting information between two parties as a
JSON Obiject. This information can be verified and trusted because it is digitally signed. JWTs
can be signed using a secret (with the HMAC algorithm) or a public/private key pair using RSA.
JWT are useful for authentication, as when the user is logged in, each subsequent request will
include the JWT, allowing the user to access routes, services, and resources that are permitted
with that token. Single Sign On is a feature that widely uses JWT nowadays, because of its small
overhead and its ability to be easily used across different domains. Also it is useful for
information exchange, since it can be signed and you can be sure the senders are who they say
they are. Additionally, as the signature is calculated using the header and the payload, you can
also verify that the content hasn't been tampered with.

Anatomy of a JSON Web Token (JWT)

A JWT consists of three base 64 encoded strings separated by “.“ and it looks like
aaaaaaa.bbbbbbbbbbbb.cccccecc .

This three parts are:

e Header
e Payload
e Signature

15

Header

The header carries two parts, declaring the type (which is JWT) and the hashing algorithm to use

(for example HMAC SHA256). So the header before encoded to base 64 look like:
{

“typ”: 66JWT79’

“alg”: “HS256”

}
And in base 64 format: eyJhbGciOiJIUzI1NilsInR5cCI61kpXVCJI9

Payload

The payload will carry the JWT claims. This is where the information that we want to transmit
and other information about the token. There are multiple claims that we can provide. This
includes registered claim names, public claim names and private claim names.

Registered claims

Claims that are not mandatory whose names are reserved for us. These include:

iss: The issuer of the token

sub: The subject of the token

aud: The audience of the token

exp: This will probably be the registered claim most often used. This will define the
expiration in NumericDate value. The expiration MUST be after the current date/time.
nbf: Defines the time before which the JWT MUST NOT be accepted for processing

o iat: The time the JWT was issued. Can be used to determine the age of the JWT

e jti: Unique identifier for the JWT. Can be used to prevent the JWT from being replayed.

This is helpful for a one time use token.

Public claims:

These are the claims that we create ourselves like user name and other important information.
Private claims:

A producer and a consumer may agree to use claim names that are private.

The payload before the base 64 encode look like:
{

iss": "scotch.io",
"exp": 1300819380,
"name": "Chris Sevilleja",
"admin": true

16

And in base 64 format:
eyJpc3MiOiJzY290Y2guaWs8iLCJleHAIOjEzZMDA4MTkzODAsIm5hbWUiOiJDaHJpcyB
TZXZpbGxlamEiLCInZG1pbil6dHJ1ZXO0

Signature

The third part of JWT is the signature which is made up of a hash of the header, payload and
secret. The secret is the signature held by the server. This helps the server verify existing tokens
and sign new ones. The signature is constructed as it shown below:

var encodedString = base64UrlEncode(header) + "." + base64UrlEncode(payload);

HMACSHAZ256(encodedString, 'secret’);

And is base 64 format:
03f329983b86f7d9a9f5fef85305880101d5e302afafa20154d094b229f75773

The full IWT is:

eyJhbGciOiJIUzIINilsINR5cCI61kpXVCJ9.eyJpc3MiOiJzY290Y2guaWs8iLCJIleHAIOJEz
MDA4MTkzODAsIm5hbWUiOiJDaHJIpcyBTZXZpbGxlamEiLCIhZG1pbil6dHJ1Z2X0.03
£329983b86f7d9a9f5fef85305880101d5e302afafa20154d094b229f75773

Extensible Authentication Protocol (EAP)

EAP is an authentication framework which supports multiple authentication methods. It runs
directly over data link layers such as Point to Point Protocol (PPP) or IEEE 802, thus, it does not
require an IP address. The advantage of the EAP architecture is its flexibility, as it is used to
select a specific authentication mechanism, typically after the authenticator requests more
information in order to determine the specific authentication method to be used. EAP permits the
use of a backend authentication server, which may implement some or all the authentication
methods, with the authenticator acting as a pass-through for some or all methods and peers. EAP
supports more than forty different authentication methods, some of them are: EAP - Transport
Layer Security (TLS), EAP - MD5, EAP - Tunneled Transport Layer Security (TTLS), EAP —
Subscriber Identity Module (SIM), EAP — Authentication and Key Agreement (AKA), etc.

EAP is not a wire protocol; it only defines message formats. Hence, each protocol that uses EAP
defines a way to encapsulate the EAP messages within the protocol ‘s messages. The most
known protocols that encapsulate EAP are:
e |EEE 802.1x: EAP over IEEE 802 or EAP over LAN (EAPOL) is defined in IEEE
802.1x. When EAP is invoked by an 802.1x enabled Network Access Server (NAS),

17

modern EAP methods can provide a secure mechanism and negotiate a secure private key
between the client and NAS that can then be used for a wireless encryption session.

e Protected Extensible Authentication Protocol (PEAP): PEAP is a protocol that
encapsulates EAP within a TLS tunnel. It aims to correct deficiencies in EAP; EAP
assumed a protected communication channel, such as that provided by physical security,
so the facilities for protection of the EAP conversation were not provided. It was jointly
developed by Microsoft, Cisco Systems and RSA Security.

e Point to Point (PPP): EAP was originally an authentication extension for the PPP and was
created as an alternative to the Challenge Handshake Authentication Protocol (CHAP)
and the Password Authentication Protocol (PAP). Eventually the above two protocols
were incorporated into EAP.

e RADIUS and Diameter: These two are Authentication Authorization and Accounting
(AAA) protocols, which encapsulate EAP messages. They are often used by NAS devices
to facilitate IEEE 802.1x by forwarding EAP packets between IEEE 802.1x endpoints
and AAA servers.

The EAP packets are defined in a binary format and their contents highly depend on the
authentication scheme that is used each time. The EAP packet format is describing in the figure
below. The fields are transmitted from left to right.

(o] 1 2 4
_
NRRRRRRRARRRRRRRRRRRRERERR N -
- - \\\.
Code Data
L T L (=} d

1 Byte enath {F.;':ieuength tho Mothod)
1=R t
2= Hzgggﬁse 2 Bytes
3 = Success
4 = Failure

Identifier (to Match
Request-Responsea)

1 Byte

Figure 6: EAP Packet Format

Protected EAP (PEAP)

PEAP is an authentication method used over 802.1x. It utilizes server-side public key certificates
in order to authenticate clients with server. The important thing and what makes PEAP
authentication valuable and widely used combined with other EAP methods, is that it creates an
encrypted TLS tunnel between the client and the authentication server. After the tunnel
establishment, the credentials will be encrypted and protected against attacks like packet sniffing
and man-in-the-middle when transferred.

18

Code Identifier Length

Type Flags |Ver TLS Message Length...

...TLS Message Length TLS Data.... (EAP packets)

Figure 7: PEAP Packet Format

It requires only a server side PKI certificate to create a secure TLS tunnel to protect user
authentication. PEAP is comprised of a two-part conversation:

In part 1, a TLS session is negotiated, with server authenticating to the client and optionally the
client to the server. The negotiated key is then used to encrypt the rest of the conversation.

In part 2, within the TLS session, a complete EAP conversation is carried out, unless the part 1
provides a client authentication. It is very useful for WLANS as the users usually do not have a
PKI certificate.

The whole PEAP procedure, including both phase 1 and phase 2, is described in the below
figure.
Supplicant Authenticator Authentication

Server
- ste

/Y

Wt

EAP-Request/Identity
EAP-Response/Identity RADIUS Access-Request

EAP-TLS Start (EAP-Type & PEAP, Wersion = 0, 1 or 2)
Handshake:|Client Hello
Handshake:|Server Hello
Handshake: [Server Certificate

Handshake: Sener Key Exchange {Optional)
Phase 1

Handshake: Cliert Certificate Request {Optional)

Handshake: |Server Hello Done
Handshake: [Client Key Exchange
Handshake: Clieft Certificate Verify (Optional)

Change|Cipher Spec

Handshake: Elient Finished Message
Change|Cipher Spec

Handshake: Eerver Finished Message

EAP-Success

with EAP-Type = PEAP

All messages are encapsulated

TLS Tunnel|Established

 EAP-Request/EAP-TLV [EAP-Payldad-TLV[EAP-Request/Identity]]
EAP-TLY [EAP-Payload-TLV[EAP-Response/Identity (ID)]]

EAP-Request/EAP-TLV [EAP-Payload-TLV [EAP-Request/EAP-Type = X]] -
EAP-TLV [EAP-Payload-TLV [EAP-Response/EAP-Type = X]] Phlase 2

EAP-Type | X Exchange >
S —

EAP-Request/EAP-TLV [Result LV {Success) [Crypto Binding-TLV]]
EAP-TLV [Result TLV (Spiccess) [Crypto Binding-TLV]]
CSK
EAP-Success - EAP-Success

<

TLS Tunnel using Ciphersuite

Exchange Data using CSK | e

All messages are encrypted in a

Figure 8: PEAP [20]

19

EAP-OIDC
HTTP

As we have mentioned before, OIDC consists of various Hypertext Transfer Protocol (HTTP)
messages which are divided in two main categories [22]:

Requests from clients

GET /doc/test.html HTTP/1.1 —— = Request Line ™
Host: www.test101.com 3

Accept: image/gif, image/jpeg, */* ‘ Request
Accept—Langur?ige: en—.us Request Headers -~ Message
Accept-Encoding: gzip, deflate Header
User-Agent: Mozilla/4.@
Content-Length: 35 v,

> Ablank line separates header & body
bookId=12345&author=Tan+Ah+Teck } Request Message Body

e The Request Line begins by stating the method, followed by the Request-URI and the
protocol version

e The request-header allows the client to pass more information about the request, and the
client itself, to the server. These fields act as request modifiers, with semantics equivalent
to the parameters on a programming language method invocation.

e The message-body of an HTTP message is used to carry the entity-body associated with
the request or response.

Responses from Servers

HTTP/1.1 200 OK ————> Status Line A
Date: Sun, 08 Feb xxxx @1:11:12 GMT 3
Server: Apache/1.3.29 (Win32) Response
Last-Modified: Sat, ©7 Feb xxxx Message
ETag: "@©-23-4024c3a5" :}RESPQHSE Headers be Header
Accept-Ranges: bytes
Content-Length: 35
Connection: close
Content-Type: text/html / J

> A blank line separates header & body
<h1>My Home page</hl> } Response Message Body

e The Status Line is the first line of a Response message, consisting of the protocol version
followed by a numeric status code and its associated textual phrase.

20

e The response-header fields allow the server to pass additional information about the
response which cannot be placed in the Status- Line. These header fields give information
about the server and about further access to the resource identified by the Request-URI.

Encapsulating HTTP

These Application Layer messages cannot be transferred in this format directly to the
authentication server, especially if they are to go over a wireless connection. To overcome this
problem, we propose the encapsulation of HTTP within EAP packets. The EAP packets
formatting is shown below.

tot—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t -ttt —+—+—+

\ Code \ Identifier \ Length
+—F—t—F—F—tF—F—F—t—F—F—t—F—t—F—F—F—F—F—F—F—F—F—F -t —F—F—F—F—+—+—+
| Data ...

+—F—+—+—+

The OIDC messages will be inserted at the “Data” area from the sender, and the receiver will
have to reverse the process.

Remote Dial in User Service (RADIUS)

RADIUS is defined in RFC 2865 [7] and is an AAA protocol, which stands for: Authentication,
Authorization and Accounting. It offers AAA services for users who connect and use a network
service. At first it was developed as an access server authentication and accounting protocol and
later became an IETF standard. It is also usually used to transport EAP packets between the
Authenticator (Access Point) and the Authentication Server. The AAA functions of RADIUS
protocol are described below:

e Authentication: The client sends an access request to the network, which contains user
credentials or a user certificate. The authenticator convert this in RADIUS format and
forwards it on to a RADIUS server. The RADIUS server checks its user database for a
match and if it finds one the user is authenticated. The following messages are used:
Access Reject, for rejection, Access Challenge, to ask for more information or Access
Accept for acceptance.

e Authorization: The RADIUS server defines the terms of access for the user and more
specific defines what are the user permissions in a network.

e Accounting: RADIUS accounting is enabled by the Authenticator if user access statistics
and information are required. The Authenticator issues an Accounting Start Request to
the RADIUS server. Following, in order to indicate information about the duration of the
user session Interim Accounting Records may be sent. The Accounting is stopped when
an Accounting Stop Record is sent to the server.

The authentication and authorization are defined in RFC 2865 while accounting is described by
RFC 2866 [24].

21

Usually, the RADIUS protocol uses UDP ports 1812 for Authorization and 1813 for Accounting.
RADIUS Packet Format

The packet format of RADIUS is shown is the figure below. The fields are transmitted from left
to right.

o 78 15 16 31

Packet
Code Identifier

Length

Authenticator

Figure 9: Radius Packet [25]

Code: This is 1 byte long and identifies various types of packets i.e. 1 for Access Request, 2 for
Access-Accepts.

Packet Identifier: It is also 1 byte and aids in matching responses with requests.

Length: This is 2 bytes and specifies the length of the packet including code, identifier, length
and authenticator.

Authenticator: This is 16 bytes and is used to authenticate the reply from RADIUS server, as
well as in encrypting passwords.

Attribute Value Pairs (AVPs): The AVPs consist of Type, Length and Value. The Typeis 1
byte and identifies various types of attributes. The Length, is also 1 byte an it describes the
length of the attribute including Type. The Value can be either 0 or more bytes and contains
information specific to attribute.

EAP Encapsulation in RADIUS

The transmission of the EAP packet from the user to the authentication server requires the
encapsulation of EAP packets within RADIUS messages. More specifically, the whole EAP
packet encapsulated into a RADIUS attribute [24].

e EAP-Message: This attribute encapsulates the EAP packets so as to allow the Network
Access Server (NAS) to authenticate users via the EAP without having to understand the

22

EAP method it is passing through. The NAS places the EAP packets received from the
authenticating user into one or more EAP-Message attributes and forwards them to the
RADIUS server within an Access Request message. The EAP-Message attribute consists
of: Type, which is 1 byte and is 79 for EAP-Message. Length, which is also 1 byte and is
equal or bigger from 3 and String which contains an EAP Packet.

e Message-Authenticator: This attribute is used to authenticate and integrity protect Access
Request from spoofing. It consists of: Type, it is 1 byte and is 80 for Message-
Authenticator. Length, which is 18 and the String, which when present in an Access
Request packet, is an HMAC-MD5 hash of the entire Access Request packet. For Access
Challenge, Access Accept and Access Reject packets the Message Authenticator is the
HMAC-MDS5 of the Type, Identifier, Length, Request Authenticator, Attributes.

OpenAM

While doing research for this Thesis, we wanted to see a real-life implementation of OIDC, in
order to observe the way it works and get a better understanding. Hence, we installed and
configured the OpenAM in a Linux Ubuntu. OpenAM is an open source access management
platform sponsored by ForgeRock. Formerly, it originated as OpenSSO and was created by Sun
Microsystems, but now it is owned by Oracle Corporation. The features that are supported by
OpenAM include among others Authentication, Authorization, Adaptive risk authentication,
Federation, SSO.

We chose to use the OpenAM to act as a Relying Party and to use our Google accounts to
authenticate in it. Moreover, we created a project in Google APIs page in order to retrieve the
Client ID and Client Secret. The procedure for retrieving the aforementioned credentials is
beyond the scope of this chapter, as it depends on each 1dP.

OpenAM supports more than 20 authentication methods. It is also offers a user friendly
environment, in which is very easy to configure social authentication. As it shown in the image
below, the user only has to go in Dashboard tab and click in the Configure Social
Authentication button. After that the user is prompted to choose the social account that they

23

want to use. As we mentioned before, we want to use a Google account, so we click the
Configure Google Authentication.

of " § example.com L - @ o

¥/ FoRGEROCK & mums

#) ForoEROCK & measus

Realm Overview o Realm Overview

Figure 10:0OpenAM Social Authentication & Options

In this figure the user is prompted to give the credentials that were retrieved from the IdP ’s
website. In our case, we use the Client ID and Client Secret, which we retrieved from Google.

L o @ ()1 rrample £om % = B T " =
Y FORGEROCK

© s Google | oo | | Cancal |
Realm

® Heaim [Kaeers |
Chant Delails

i
" Cld Repired

= Confirmm Dt Lerai

" Madwect UL

Figure 11: Configure Client Credentials

To edit the Google Social Authentication, we have to go to Authentication => Modules tab as it
shown in the figures below.

24

@ & openam.example.com:8080/openam/XUl/#realms/%2FClien 80% = @ 1 Searc . example com [[- OO

ICLIENTS (/ FORGEROCK & PeaLws

e Authentication Modules

4, Authentication
o OpenAM uses authentication modules to identiy the user. Normally authentication medules are associated with an authentication chain. Each reaim has a
. default authentication chain that will be used to authenticate users. This section is used to 3dd, configure or remove authentication module available for n
Chains authentication into this reaim.

* e GoogleSocialAuthentication
[+ - [

= Data Stores Acthantnatnn Coprd WL . s o
& Privieges MODULE NAME TYPE CHAIN Acoess Tokan Endpant URL R p—— ave o
crizatio e
€ Grimzia DataStore Data Store dapServioe p
~ Unes Pratie Service VAL
@ Subjects
Federation & x & A
4 Agenis Baad e o o
sTS AUt 2.0/ OpeniD Gonnect s .
! - Asccuunt Preveden
Scipts
HOTP HOTP s % . F— e — o T @
LDAP LDAP s x Asasent tnpper °
OATH OATH s x Aramomt Mg Comlog s sim o
SAE SAE s x Frsr— N BB S I (T S S

- N S 900r oA DK JeAT DS
Pz gnage

Figure 12:0penAM Authentication Modules & Google Social Authentication Edit Page

In order to authenticate in OpenAM with Google account the user should click the G+ button.
Then he is redirected in a login page that is offered by Google to fill their account credentials.

0] sxample com [111 ==+ @ Tr Dl hetgcifaccousti gosghe comfiigninfoauthidentifierclient_fsa 35041004 == @& Tr

(4

FORGEROCK

Google
Sign in
SIGN N TO OPENAM
1 Sl U BS
LR ——"
£ g

Figure 13: OpenAM Login Page & Google 's Login Page

If the user credentials are correct they are redirected back in OpenAM’s user profile page as it
presented below.

25

oF 1 example.com 80% e @ Se

User profile

Basic Info Password
Username google-1169 300000000000
First HName OO0
Last Mame OO OO
Email address HIKHKK Egmail.com

Phone number

Figure 14:0penAM Profile Page

Related Work

Eduroam

Eduroam is a solution very similar to the one proposed in this thesis. It offers the academic
community the ability to connect to the Wi-Fi hotspots that belong to Eduroam, using their
academic credentials. The network basically consists of numerous RADIUS proxy servers.

Supplicant
=¥ Authenticator RADIUS server RADIUS server =
(APorswiich) @ InsiiuionA e 9 e P u:

Guest ' /
john@institution_b.nl /

Einployee YLAN

VLAN Top level

RADIUS
Proxy server
> sicuall
data

Figure 15: Eduroam Infrastructure [27]

26

When a user requests authentication, the user’s realm determines where the request is routed to.
The realm - i.e. @unipi.gr - is derived from the organization’s domain name. [26] Every
institution that wants to participate in Eduroam connects its institutional RADIUS server to the
federation level RADIUS (FLR) server of the country where the institution is located. Depending
on the realm each user belongs to, the proxies will rely the message to the corresponding
authentication server to verify the credentials that were provided.

Captive Portal

Captive portal is a web page, which is displayed to newly connected users before they are
granted broader access to network resources. Usually, it is stored either at the gateway or on a
web server hosting that page. Websites or TCP ports can be white-listed so that the user would
not have to interact with the captive portal in order to use them. Typically, it is used in airports,
hotels and other venues that offer free Wi-Fi hot spots for Internet users. Captive portals have
several uses. They are primarily used in open WLAN networks, where a welcome message is
shown, informing the users about the terms and conditions of access. Administrators tend to do
this to avoid any legal responsibility, as the users take responsibility for their actions.
Sometimes, captive portals are used for marketing and commercial purposes. The user is unable
to browse freely — “captive” until they accept the terms and conditions. This allows the provider
of this service to send or display advertisements to users who connect to the Wi-Fi access point.
This type of service is also known as social Wi-Fi, as they may ask for a social network or email
account to login. Over the past few years, many companies offer marketing centered around
Wi-Fi data collection.

Moreover, with captive portal, unauthenticated users attempting to access the network are
redirected to a captive portal web page. Users obtain IP but the access to network resources is
restricted until they are authenticated via a browser-based login. Captive portal authenticates
users at Layer 3 (network layer), the encryption is typically done at the level of the browser using
the HTTPS protocol.

This method has a browser-based login for the users’ authentication and the exchange of social
login credentials is based on OAuth 2.0 (Open standard for Authorization). The Universal
Access Method (UAM) protocol is used, which allows a user to access a Wi-Fi network by using
a browser.

A typical authentication flow using captive portal proceeds as follows:

1) User associates to the Wi-Fi network,

2) The Wi-Fi AP, using UAM, redirects the user browser to the captive portal web page,

3) The user gives the social account credentials. The login window is a secure redirect back
to the social account login page.

4) If the authentication credentials the user presents are valid, the captive portal server will
receive a success message from the social account server.

5) The captive portal server creates temporary RADIUS credentials on the RADIUS server
and sends a message to the AP which includes the temporary credentials.

27

6) The AP sends an authentication request using this credentials to the RADIUS server,
7) The RADIUS server responds with a success message and a set of RADIUS attributes
that control the user session parameters.

WPA2 / 802.1X Authentication

During our research about methods which support Wi-Fi authentication, using social media or
email accounts, besides the captive portal we found some enterprise solutions [17] [18] [19], that
achieve the Wi-Fi authentication with Google credentials, using protocols like WPA2 and
802.1x. These methods achieve better security levels than the captive portal, but come with a
cost as they are not open source solutions. With WPA2/802.1x, authentication happens before an
IP address is granted on a user and allowed on the network. This method works at Layer 2 (data
link layer). In this case, the wireless client is authenticated, the encryption key is derived and the
Layer 2 wireless connection between the client and the access point is encrypted. This protects
against attacks at upper layers by denying access before a rogue user ever gets on the network. In
a wireless network, the 802.1x authentication occurs after the end user has associated to an AP
using 802.11 association method.

This is accomplished by using EAP TTLS protocol to set up a secure tunnel between end user
and RADIUS server, and Password Authentication Protocol (PAP) to pass the credentials of the
social media account from the end user to the RADIUS server and over to Google for
authentication and authorization. The authentication flow proceeds as follows:

e EAP TTLS/PAP first authenticates the connection between the Wi-Fi AP and the
RADIUS server and sets up a trusted secure TLS tunnel between the AP and the
RADIUS server.

e Once the TLS tunnel is established between the AP and the RADIUS server, the AP will
send authentication credentials as PAP protocol messages.

Motivation

Everything we mentioned in Introduction about the average person and that he has 27 discrete
logins combined with the fact that there is no authentication mechanism offering social media or
email account authentication in a Wi-Fi network (without compromising security), lead us to
design a methodology that uses the EAP among with OIDC. There are some enterprise solutions
that offer social media and email login, as providers are already Identity Providers and they
already use Single Sign On (SSO) services and OIDC protocol. The main difference in our
approach is the service, because it is not a web application, but a Wi-Fi network. On the one
hand OIDC protocol is used to provide such an authentication method, but is based on web
applications. On the other hand, EAP framework is used for almost one and a half decade and
supports multiple methods for Wi-Fi network authentication. So, we came up with the idea of
connecting these two protocols in order to provide one strong and easy to implement
authentication protocol. Moreover, eduroam uses the same network components with our
approach, like RADIUS servers and protocols like 802.1x with an EAP method and works very

28

good. However, offering a public Wi-Fi in which everyone will use their own credential to
access it, not only will make it more secure, but also user friendlier, as the user will not have to
look for passwords in order to access a network.

Contribution

As mentioned before, our approach combines two well-known protocols in order to create one
new authentication protocol. This new protocol will provide the opportunity to add security
measures in public Wi-Fi networks without losing the ease of use. The credentials of the users
will not be accessed by the Wi-Fi network provider, the only one that will have access to the
credentials will be the identity provider. In order to achieve that and keep the credentials secret
from eavesdropping the EAP packets should be transferred through an encrypted channel [10]. In
addition, OIDC is based on HTTP protocol, hence our approach will open the road for another
new EAP method which will be based on HTTP. The implementation of our methodology is
going to be neither difficult, nor particularly expensive, as EAP and OIDC protocols are well
defined. Our proposed method offers layer two (data link layer) security as the EAP runs directly
over data link layers without requiring IP address, unlike captive portal, which offers an
application layer security since users first obtain an IP address and then the captive portal limits
users’ network connection. What is more, the combination of EAP and OIDC will lead to a new
authentication protocol which will be ease to adopt by the SPs as it is based on EAP.

Analysis as a Use Case

The Scenario

EAP methods are mostly used in wireless networks, depending on the owner’s requirements and
security policies. The idea of someone connecting to Wi-Fi with the e-mail credentials is best
suited for an environment where both security and access control are valued. Having that in
mind, we choose to present the connection to a corporate wireless network to present our
approach. Not only does this help us to see if our solution could be used as real use case
scenario, but also it helps the reader to deeply understand our method.

More specifically, we consider a company that wants to implement a wireless network which
will allow only its employees to connect easily from any device they own, without having to
remember/enter a new password. It is common practice that each employee at a company gets an
e-mail address (e.g. someone@company.com) accompanied by a password; the same credentials
could be used to login to the wireless network. The Access Point could be anywhere as long as
there is a communication channel with the provider’s authorization server. For example, an
employee based in Athens, could travel to London and when in the company’s premises, there
would be no need for new credentials (or the use of certifications that are difficult for users to
install and update) and the employee could connect to the network instantly.

29

mailto:someone@company.com

In order to accomplish that, we will use PEAP combined with EAP-OIDC method to transfer
OIDC messages. Next, we will see the authentication phases that will follow a user’s push of the
“Connect” button on a device:

Phase 1

First of all, a secure TLS tunnel will be established as shown below:

lmn
Intermidiate

'_\\mwnrl. .k- WLFE

Supplazae (Chert) \,__ ey /)

e
[EAP-Fobquebst-

2 Wity i Ryt Chiarl loniity—

(Moo Tamimm. RADIUS Aroess RADILS ALess

Temp. ID My Feguest (Temp. D) | FReqes (Temp D)
Lol] I
r ™4
EAP Request | PEA® [EAR.Type= PEAP
Start 1 Slar bt sel, no data]
[EAP-Type= FEAP (TLS EAP Roesporms |
Cheri_halo]] PEAP B2 -
[EAP-Typss PLAR (TLS
sisrver_hillo, TLS
sarved Certflcate, TLS
& EAPFM-u-gﬂ-'PiAF Sved_key_Srchangs,
TLS cortfiCafe reQues
ns
[EAP-TYPE= FEAP (TLS s _hasio_doni)]
Chent_luery_exchangs, EAF Bmsporsn |
LS PEAP B4 >
_Cipher_spé,
TLS Snished))
F TP [EAP-Type= PESP (TLS
& m"g" CRanNge_Cipned_ipec,
TLS firished]]
[EAP-TYPE= PEAR (TLS EAP Responss |
Chend_Hella]] PLAR §5 *
Estabilished Seoure TUS Tunnel
e A

Figure 16: TLS Tunnel Establishment
Phase 2

Now that the communication channel is secured, the EAP-OIDC authentication will commence,
following the principles aforementioned in OIDC Authorization Code Flow. After the user fills
in his credentials to the form that will be presented to him, the OIDC messages will be
encapsulated within EAP packets and transferred via the TLS channel, authenticating the end
user to the AP.

30

PEAP with EAP-OIDC

AP - RADIUS Radius

End User (RP) (o)

Authorization request

Authorization request

End User authentication
with username/password

- Authorization Code

Authorization Code

~=| Authorization Code

Access 1D Token

Token
Validation

Figure 17: Overview of PEAP with OIDC
Essentially, the following steps will be completed:

1. Service Provider (AP — RADIUS) sends an authorization request to the appropriate OIDC
Provider — company Server in this case, which is able to validate the credentials as it
already has them

End user gets authenticated and receives an Authorization Code

SP receives the Authorization Code, which in turn gets sent back to the OP

SP is given an Access and an ID Token in exchange for that Authorization Code

If the Access Token gets validated successfully by the SP, then the end user will be given
access to the Wireless Network

Ok owN

This process can be simplified if the user has saved the forms with his credentials — so he will
not have to type them in every time he tries to connect — and the company’s wireless network
name is the same worldwide; if that was the case, the connection process would be completely
automated. The downside of this practice is that if the device is misplaced, third parties
(including competitors and criminals) could easily access company data and resources if there
are no other measures to protect logical access to the device. The consequences could be
catastrophic for the company, but this can be prevented by placing suitable corporate Information
Security Policies and making sure that the employees are adequately trained and follow the
practices described in the policies.

Benefits/Advantages
One of the best things about EAP is that it runs directly over data link layer and by extension it

does not need an IP address to work. This means that the user obtains an IP address after a
successful authentication. The alternative no cost and open source solution which may offer

31

authentication with social media or email accounts is implemented with captive portal which
may be easier to implement, but does not offer such a high level of security. The methodology
proposed in this Thesis, will be salutary for public Wi-Fi networks, as it enhanced security. For
open and unprotected networks, it provides a password without the need to be remembered by
the users, since they use credentials that are already known to them. Networks which are
protected with a pre-shared key are not secure enough as every device connected to the AP use
the same “shared encryption” connection, so eavesdropping the traffic is possible. The use of an
EAP authentication method requires the AP to be connected with a RADIUS server, using
RADIUS protocol, which encrypts uniquely the session between the user and AP. Moreover,
another benefit for public Wi-Fi networks with our solution is that RADIUS server could be used
for access control (mainly in corporate environments) without having to create new accounts.
What is more, we propose the use of PEAP, which adds an extra security level as it is established
a TLS tunnel and the user’s credentials are transferred within this tunnel. In addition, as we
already mention in the SP is implemented a proxy RADIUS server, which should transfer the
credentials from the user to the OP. With the TLS tunnel the SP will not have access in user ‘s
credentials, hence our methodology respects the user’s privacy.

Possible Drawbacks

Our proposed methodology in order to be applied requires the use of RADIUS protocol for the
transmission of the EAP packets between the user and the authentication server which is located
in the OP. More specifically, the EAP data chunks are inserted in RADIUS protocol messages.
The way EAP is transported over RADIUS is described in [23]. Hence, the drawbacks that occur
from our approach is the implementation of RADIUS servers, that is required in order to achieve
the EAP-OIDC authentication. The use of an EAP method for authentication in a WLAN
network adds the limitation that the AP should communicate with a RADIUS server. In our
methodology, as we mentioned before, the RADIUS server in the SP should be implemented as a
proxy for transferring the credentials from the user to the OP. This means that besides the AP,
SPs should also have a RADIUS Server configured as a proxy which would transfer the EAP
packets to another RADIUS server in the OP. From the OP scope, a RADIUS server should be
implemented to receive the messages from the proxy and transfer the OIDC messages in the
Authorization server, as the use of the RADIUS protocol cannot exist without the RADIUS
server. This will add an extra component in the network infrastructure, although nowadays the
implementation of RADIUS servers is neither time consuming, nor expensive. Another
drawback that occurs with our proposed methodology is that the overhead will be significant
greater than with the already implemented authentication methods. At this time, we cannot
measure the difference, as our methodology is not implemented yet. Hence, this is a theoretical
assumption which is based in the multiple encapsulation layers that come of from our method.

32

- 802.1x/

PEAP - TLS TUNNEL Radius Protocol

Figure 18: Encapsulation Overview

As it presents in the figure above, there is a quadruple encapsulation. In order to prepare a
message like this, significantly more resources will be utilized, compared to i.e. a common
connection with WPA2.

Conclusion

In the fast-paced days we live in, everybody wants to do everything as fast and simple as
possible. Connecting to wireless networks using OpenlD Connect, and subsequently taking
advantage of existing credentials and not creating new ones, is a solution mainly addressed to
businesses or universities. It can benefit employees by providing a simple and easy way to
connect in the organization’s network from any location around the world (i.e. different
cities/countries), or offer customers an equally simple and secure method to enjoy free Wi-Fi
from their devices, along with the main services provided to them by the company.

The implementation of this solution mostly rests on successfully encapsulating HT TP messages
in EAP packets, reversing the procedure and providers setting up RADIUS servers to handle the
EAP packets they will receive. This is what needs to get done in order to have a functional
PEAP-OIDC authentication on wireless networks.

References

[1] Extensible Authentication Protocol RFC 374, 2004.

[2] https://backstage.forgerock.com/docs/am/5/oidcl-quide/

[3] Captive Portal - https://en.wikipedia.org/wiki/Captive_portal

[4] Facebook Wi-Fi - https://www.facebook.com/business/facebook-wifi

[5] WPA and WPAZ2 https://www.wi-fi.org/certification/programs

[6] http://www.ieee802.0rg/1/pages/802.1x-2004.html

[7] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote authentication dial in user
service (RADIUS). RFC 2865, 2000

[8] OpenID Connect - http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
[9] D. Hardt, Ed. Microsoft. The OAuth 2.0 Authorization Framework. RFC 6749, 2012
[10] Ashwin Parker, Dan Simon, Microsoft, Glen Zorn, Cisco, S. Josefsson, Extundo. Protected
EAP Protocol

33

https://backstage.forgerock.com/docs/am/5/oidc1-guide/
https://www.facebook.com/business/facebook-wifi
https://www.wi-fi.org/certification/programs

[11] Social WiFi - https://socialwifi.com/

[12] http://cloudessa.com/solutions/using-google-apps-for-wifi-authentication/

[13] https://www.globalreachtech.com/google-apps-wifi-authentication/

[14] https://www.buzzfeed.com/josephbernstein/survey-says-people-have-way-too-many-
passwords-to-remember?utm_term=.akQ5wnv2Y#.mIgAKopng

[15] Eduroam - https://www.eduroam.org/

[16] K. Wierenga, L. Florio, Eduroam, providing mobility for roaming users, 2005

[17] http://cloudessa.com/solutions/using-google-apps-for-wifi-authentication/

[18] https://www.globalreachtech.com/google-apps-wifi-authentication/

[19] https://jumpcloud.com/blog/g-suite-credentials-wifi-authentication/

[20] https://sites.google.com/site/amitsciscozone/home/switching/peap---protected-eap-protocol
[21] https://changchen.me/blog/20170321/http-protocal/

[22] https://www.ietf.org/rfc/rfc2616.txt

[23] B. Aboba Microsoft, P. Calhoun Airespace. RADIUS (Remote Authentication Dial in User
Service) Support For Extensible Authentication Protocol (EAP), RFC 3579, 2003.

[24] C. Rigney Livingston. RADIUS Accounting, RFC 2866, 2000.

[25] https://freeradius.org/

[26] https://www.eduroam.org/about/

[27] Licia Florio, Klaas Wierenga Eduroam, providing mobility for roaming users

34

http://cloudessa.com/solutions/using-google-apps-for-wifi-authentication/
https://www.globalreachtech.com/google-apps-wifi-authentication/
https://www.buzzfeed.com/josephbernstein/survey-says-people-have-way-too-many-passwords-to-remember?utm_term=.akQ5wnv2Y#.mlqAKopnq
https://www.buzzfeed.com/josephbernstein/survey-says-people-have-way-too-many-passwords-to-remember?utm_term=.akQ5wnv2Y#.mlqAKopnq
https://www.eduroam.org/
http://cloudessa.com/solutions/using-google-apps-for-wifi-authentication/
https://www.globalreachtech.com/google-apps-wifi-authentication/
https://jumpcloud.com/blog/g-suite-credentials-wifi-authentication/
https://sites.google.com/site/amitsciscozone/home/switching/peap---protected-eap-protocol
https://changchen.me/blog/20170321/http-protocal/
https://www.ietf.org/rfc/rfc2616.txt
https://freeradius.org/
https://www.eduroam.org/about/

