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Abstract 
 

 

 

Forecasting energy commodity prices is of great importance for policymakers, individuals 

and researchers. Using end-of-month settlement prices of the first three shortest maturity 

NYMEX energy futures (i.e. WTI Crude Oil, Heating Oil, and Natural Gas) over the period 

Jan.1990-Dec.2016, this thesis examines whether the evolution of futures log-returns can 

be predicted across multiple forecast horizons and, if so, by which variables. Based on 

three alternative linear model specifications, in-sample and out-of-sample point forecasts 

are generated and evaluated under different performance measures, including the modified 

Diebold-Mariano Test. The economic model is constructed by means of macroeconomic 

and financial indicators which have been found to predict the time-varying risk-premia of 

traditional asset classes (i.e. equities and bonds). Three joint Principal Components (PCs) 

are also extracted from McCracken and Ng’s (2016) large macroeconomic database and 

used as potential predictors in a latent factor model. The results are then compared to a uni-

variate autoregressive AR(1) model. While the results provide evidence of significant in-

sample predictability under the economic model, the benchmark AR(1) model outperforms 

both the economic and the PCA models out-of-sample. 

 

Keywords: crude oil, commodities, energy, futures, heating oil, latent factors, natural gas, 

predictability, principal components analysis  
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Chapter 1: Introduction 
 

1.1 The Framework 

 

Today, energy commodities as a whole, and particularly petroleum products, constitute the 

most dominant products relative to other commodity groups which, as major non-renewable 

energy sources, are essential to economic growth globally.  

Given that oil prices have proved to be one of the fundamental factors affecting mac-

roeconomic aggregates more broadly (Anzuini et al., 2010; Killian, 2008; Le Pen and Sévi, 

2011), it is of great importance for various institutions and policymakers, including central 

banks, as well as individuals and researchers to investigate the issue of whether the evolution 

of oil prices can be predicted and, if so, by which variables. Given their liquidity, the evolu-

tion of petroleum futures prices is frequently investigated instead; futures prices are thought 

to reflect the market expectations for the future level of commodity spot prices (Gorton and 

Rouwenhorst, 2004; Mishra and Smyth, 2016).  

Furthermore, another key nonrenewable energy source is natural gas which has recent-

ly gained increasing attention in the political community, especially in view of the Kyoto pro-

tocol and its binding commitments to limit and reduce carbon dioxide emissions (Apergis and 

Payne, 2010). The recent literature has also proved the effect of natural gas consumption and 

prices on macroeconomic aggregates and economic growth. Apergis and Payne (2010) have 

also provided statistical support for both short-term and long-term bidirectional causality be-

tween natural gas consumption and economic growth. As a consequence, focusing on natural 

gas futures prices, we examine their predictability, too.  

According to Gorton and Rouwenhorst (2004), although being traded for over a centu-

ry, commodity futures are considered to constitute a relatively “unknown” asset class when 

compared to the most prominent asset classes, i.e. equities and bonds. On the whole, the inter-

est in understanding commodity futures pricing has led to the development of two streams of 

academic studies. One stream (see Subsection 2.1) concerns two traditional theories, the so 

called “Risk Premium Theory” (or the Unbiased Expectations Hypothesis), and the “Theory 

of Storage” (also known as the Cost-of-Carry Hypothesis), which lay the foundation for the 

development of theoretically correct models (Gorton et al., 2012).  

As for the second stream of studies, it could be further separated into two subsections, 

both focusing on the identification of the common underlying factors which drive the prices. 

Concerning the first one (Subsection 2.2), the futures prices are examined in terms of system-
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atic economic factors that are found to price conventional (i.e. equities and bonds) as well as 

alternative (i.e. commodies) investment instruments rather successfully. A wide range of mac-

roeconomic, financial and commodity-specific factors have been examined as potential pre-

dictors in an economic model set up. However, pricing energy futures prices is a much more 

complex process than modeling and pricing of bonds and equities, due to some distinguishing 

characteristics of the broader class of energy commodities (see Subsection 1.3.2). Therefore, 

energy futures are thought to behave in a strikingly different way than traditional assets and 

even from other commodity classes (Gorton and Rouwenhorst, 2004). To this end, alternative 

pricing models might be required to account for the distinct behavior of energy futures con-

tracts. A relatively newer approach focuses on the identification and use of common latent 

factors in a latent factor model set up (Subsection 2.3).  

As far as we are concerned, with few exceptions, there is a paucity of relevant litera-

ture concerning the construction of pricing models capable of reliably describing individual 

energy futures. There has been found only limited and inconclusive evidence concerning the 

predictability of petroleum futures dynamics. According to Haase and Zimmermann (2013), 

the controversy regarding the optimum theoretical approach and, therefore, model specifica-

tion lies in the ‘hybrid role’ of commodities and, especially, energy products; they constitute 

both consumption-production assets and alternative investment instruments.  

 

1.2 Purpose and Research Questions 

 

In view of this relatively little and inconclusive empirical evidence on the predictability of 

energy futures, the aim of this study is to investigate whether the prices of petroleum and nat-

ural gas futures traded across the first three shortest maturities can be forecasted and, if so, by 

which factors.  

This appears to be an important issue because, although supply and demand conditions 

are thought to be the major driving forces of commodity prices, there are other forces that 

may at time account for these price fluctuations. To address our research aim, we need to con-

sider improved forecasting variables. We employ various linear model specifications and 

evaluate their forecasting performance both in-sample and out-of-sample on the selected en-

ergy futures returns. In brief, we construct an economic model by means of potential macroe-

conomic and financial business-cycle indicators that have found to be statistically significant 
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in traditional asset pricing models
1
. Apart from the factors that possess predictive power over 

the time-varying risk-premia of traditional assets, we also incorporate in the same model some 

commodity-specific factors which have also been confirmed in the literature. In order to avoid 

a possible omitted variable or irrelevant variable bias and account for possible energy mar-

ket’s segmentation, we construct two competing predictive models; for each individual fu-

tures, we examine a univariate first-order autoregressive model as well as a latent factor mod-

el, respectively. The latter employs as potential predictors the first three principal components 

(PCs) extracted by a large macroeconomic database of 134 US economic indicators created by 

McCracken and Ng (2016) through the Principal Component Analysis (PCA). We then com-

pare the results of the three alternative model specifications both in-sample and out-of-

sample.  

To this end, we address the following research questions: First, do macroeconomic, fi-

nancial, and commodity-specific variables account for the energy futures prices? Second, how 

does this predictability vary across the energy products? Third, how does this predictability 

vary across maturities? Fourth, how does the futures price predictability varies according to 

the forecast horizon, i.e. monthly (h=1), quarterly (h=3), annual (h=12)? Regarding the sec-

ond and the third question, such differences in predictability could reflect the forms of con-

venience yields as well as storage costs that are affected by macroeconomic conditions; 

Alquist et al. (2013) postulate that longer-maturity futures returns are driven by information 

associated with (unspanned) macroeconomic risks (see also Gargano and Timmermann, 

2014). As for the fourth research question, Gargano and Timmermann (2014) support that 

bottlenecks with respect to the supply and demand of various commodities can adversely af-

fect the evidence of futures price predictability in the short-term (i.e. short-term forecasting 

horizons).  

Our results suggest that there is in-sample evidence of predictability; the economic 

variables models employed appear to fit satisfactorily almost all the energy products exam-

ined (seven out of the nine futures). The risk-factors which are found to be statically signifi-

cant for almost all the futures examined are the lagged median open interest growth rate, the 

lagged changes in default spread, and the lagged world steel production growth rate. The 

highlight that the in-sample predictability rises as the corresponding futures’ maturity length-

ens. This predictability is also found to be strongest for the natural gas futures (1%). There is 

                                                      
1
 If historical futures returns on a specific market are sensitive to the same instrumental variables as are tradi-

tional asset classes such as equities and bonds, a common factor risk premia across markets may be present. 

Consequently, the same set of state variables can be used to forecast futures markets returns (Bessembinder and 

Chan, 1992). 
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also evidence that the second best performing models in-sample are found to be the univariate 

autoregressive AR(1), which account for almost half of the futures (four (4) out of the nine (9) 

futures examined). Nevertheless, the results show that the benchmark AR(1) model 

outperforms both the Economic and the PCA models out-of-sample (OoS). In a statistically 

significant sense, we find that the AR(1) is the optimum model specification in order to model 

the NYMEX energy futures returns. In light of this, we claim that the NYMEX energy market 

is not efficient even in its weak-form, while not violating the semi-strong form efficiency; 

technical analysis, relevant indicators and neural networks could be used to predict future 

returns via the previous realized returns. On the contrary, the informational content of the 

remainder economic risk-factors incorporated in the economic models is not beneficial 

enough to predict the futures expected returns. 

 

1.3 Energy Markets  

 

1.3.1 Energy Products as Physical Commodities 

 

Fundamentally, products that fall into the energy group (energy commodities) are basic prod-

ucts that are characterised by their physical nature; they are created by natural forces and 

come out of the ground. Consequently, making these commodities saleable requires that we 

convert them into a more usable form and move them to where they can be used, at the time 

they are needed.  

Broadly speaking, physical commodities fall into two categories: (i) Primary commod-

ities, which are either extracted or captured directly from natural resources with their quality 

and characteristics to vary widely (e.g. crude oil and natural gas) and (ii) Secondary commod-

ities, which are produced from primary commodities to satisfy specific market needs, e.g. 

crude oil is refined to make various liquid petroleum products such as gasoline, heating oil, 

kerosene, diesel as well as other fuels.  

 

1.3.2 Properties of Energy Markets 

 

Energy markets, however, demonstrate some distinguishing characteristics. Among others, 

pronounced seasonality and mean reversion are some of these characteristics, both describing 

the periodic behavior of commodity price levels and volatility in short-term and long-term 

periods.  
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As highlighted by Bashiri and Lawryshyn (2017), Hamilton (2009), Le Pen and Sévi 

(2011), Schalck and Chenavaz (2015), and Schofield (2007) the main factors generally affect-

ing petroleum markets are distinct supply and demand conditions. More specifically, oil pric-

es also tend to be characterized by strong seasonal patterns, which are greatly attributed to 

cyclical fluctuations of supply and demand. On the demand side, these fluctuations are mostly 

a result of different weather conditions and climate changes. For instance, the demand for 

heating oil storage is high during the fall and winter; on the contrary, demand appears to be 

low during the spring and summer. On the supply side, hurricanes or wars in regions where 

oil is produced (e.g. wars in the Middle East, Iraq war in 2003 or Gulf of Mexico in 1990) 

could admittedly affect supply. Moreover, technological advances could also affect the supply 

side; for instance, horizontal drilling and hydraulic fracturing in USA led to unprecedented 

levels of tight (or shale) oil and gas production after 2008 (Killian, 2017). These positive sup-

ply shocks could have at least in part triggered the subsequent drop in oil prices (2014-2016).  

Eventually, despite the sharp rises or decreases during short periods of such events, oil 

prices tend to revert to a normal level. That is to say, oil prices tend to fluctuate around and 

drift over time to values determined by factors such as the cost of production and the level of 

demand.  

 

1.3.3 Energy Futures Contracts 

 

Following the agreements that OPEC-member states reached during the 1970s and 1980s, a 

new environment in the energy markets began to take shape. The newly shaped energy mar-

kets, which now operate in a free (Mileva and Siegfried, 2012), however exposed to a variety 

of risks (such as geopolitical and economic developments), environment, are characterized by 

extreme volatility and price shifts, rendering the need of protection against market risk even 

more urgent. Were it not for the development of risk management method, combating these 

risks would not have been possible (Medlock III and Jaffe, 2009).  

Like other derivative instruments, energy futures can be used to hedge against the risk 

of adverse price movements of energy assets. More specifically, these contracts are contractu-

al agreements between two counterparties to either to buy or sell a defined energy product 

(physical commodity) satisfying a broad range of needs. The quantity and the quality of the 

energy product, as well as the time and the place of its delivery, are all specified by the regu-

lated futures exchange on which the futures contract is traded.  
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Interestingly, over the last decades petroleum markets have evolved to the biggest 

commodity markets in the world, covering a range of trading activities from primarily physi-

cal to sophisticated ones and attracting an even wider range of market participants. The under-

lying asset can be any energy product, which is currently traded on Commodity Exchange 

Markets, and the contracts are traded across a wide range of maturities. In this study, we focus 

on energy futures listed and traded on the New York Mercantile Exchange (NYMEX) which 

is part of the Chicago Mercantile Exchange Group (CME Group). In particular, we consider 

three closely related energy products as the underlying assets: 1. NYMEX West Texas Inter-

mediate (WTI) Light Sweet Crude Oil, 2. NYMEX NY Harbor ULSD (Heating Oil) and 3. 

NYMEX Henry Hub Natural Gas. Next, we provide some details regarding these specific fu-

tures contracts used in the study. 

 

1.3.3.1 West Texas Intermediate (WTI) Crude Oil Futures Specification 

 

Concerning the NYMEX Light Sweet Crude Oil
2
, also known as West Texas Intermediate 

(WTI) (hereafter WTI Crude Oil), the NYMEX WTI Crude Oil futures have been trading in 

the exchange markets since 1983 under the ticker symbol CL and is considered to be the most 

liquid and heavily traded commodity futures contract in the world. WTI is thought to be the 

benchmark for the majority of crude oil transactions carried out in U.S. economy (Alquist et 

al., 2013; Cavalcante, 2010). 

Every futures contract is written on 1,000 barrels of crude oil (contract size) and its 

prices is quoted in U.S. dollars per barrel (Schofield (2007). The minimum price fluctuation 

has been set to $0.01 per barrel (minimum tick). Though the majority of the contracts tend to 

be closed before expiration, physical settlement is done with the hub of U.S oil trading in 

Cushing, Oklahoma, serving as the delivery point.  Moreover, on any given day, there are 

contracts trading for the next 30 consecutive months as well as contracts for delivery in 36, 

48, 60, 72, and 84 month (Chantziara and Skiadopoulos, 2008). At any point in time there are 

35 contracts traded in total. 

 

 

 

 

                                                      
2
 Crude oil’s quality is determined along two dimensions: 1. Oil’s sulphur content, ranging from sweet to sour 

(referring to low and high sulphur content, respectively), and 2. Oil’s density, ranging from light to heavy.   
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1.3.3.2 NY Harbor ULSD (Heating Oil) Futures Specification 

 

As for the NY Harbor ULSD Futures Contracts, Heating oil (also known as No. 2 fuel oil un-

der the ticker symbol HO) is supposed to be one of the most important refined products which 

trade in NYMEX in contracts of 42,000 US gallons (equal to 1,000 barrels). Its prices are 

quoted in US dollars and cents per gallon and settlement is done with physical delivery 

(Schofield, 2007). There are also contracts available for the next 18 months ahead. 

 

1.3.3.3 Henry Hub Natural Gas Futures Specification 

 

In addition, Henry Hub Natural Gas started trading at the NYMEX in 1990 under the ticker 

symbol NG. The underlying asset of one futures contract is 10,000 million British thermal 

units (MMBtu) 
3
of natural gas and its price is quoted in U.S. Dollars and cents per MMBtu, a 

price that constitutes the benchmark for North American natural gas. The minimum price 

fluctuation has been set to $0.001 per MMBtu (Schofield, 2007). Its physical settlement and 

delivery takes place at Henry Hub in Louisiana, a central location with a large system of pipe-

line interconnects. 

 

1.4 Outline 

 

The remainder of this study is structured as follows:  In the next section (Chapter 2), we pro-

vide a brief review of relevant studies in the related literature. Chapter 3 concerns the econo-

metric specifications of the forecasting models employed within the context of this thesis, 

along with the evaluation methods of their forecasting performance. Next, a brief description 

and an analysis of the data series to be used in the study are presented in Chapter 4. Chapter 5 

presents and summarizes the empirical findings, while the final section (Chapter 6) contains 

the concluding remarks as well as the implications of the study, suggesting some possible av-

enues for future research.  

                                                      
3
 The British thermal unit (Btu) constitutes one of the most common measures of energy content in USA and it is 

defined as the amount of heat required to increase the temperature of one-pound weight of water by one degree 

Fahrenheit. 
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Chapter 2: Literature Review 
 

In this chapter, we provide a brief overview over the two strands of literature on commodity 

futures pricing and predictability. The first stream of studies, which concerns the two tradi-

tional theories, is briefly described in Subsection 2.1. Concerning the second stream of stud-

ies, it focuses on the identification of common underlying risk-factors that drive the prices of 

various asset classes. This stream could be further separated into two subsections. In Subsec-

tion 2.2 we report the economic (macroeconomic and financial) factors that are systematically 

found to price and predict conventional (i.e. equities and bonds) as well as alternative (i.e. 

commodities) investment instruments. Next, in Subsection 2.3 we discuss a relatively newer 

development in predicting the dynamics of futures markets, i.e. predicting models that employ 

common latent factors as potential predictors instead of predetermined economic factors. 

 

2.1 First Stream of Literature: The Two Traditional Theories 

 

Concerning the two traditional theories, the existence and the origin of risk premia in com-

modity markets trace back to the 1930s. Concerning the former theory, Keynes was the first 

to introduce the concept of commodity futures risk premium. In its original form, the Theory 

of Normal Backwardation supports that futures prices increase over time in order to reward 

the storage of commodities and cover its costs (Melolinna, 2011). Due to some drawbacks, 

however, the Keynesian Theory was further extended by many authors.  

Among others, the “Market Pressure Theory” is an alternative theory developed with 

the scope of understanding the behavior and the interactions among the two main types of 

traders participating in the commodities futures markets, i.e. the traditional commercial trad-

ers (or bona fide hedgers) and the non- commercial traders (i.e. speculators and financial in-

termediaries) (Medlock III and Jaffe, 2009). In particular, hedgers represent all those partici-

pants who have with direct commercial interests in the underling commodities. Hence, such 

participants may as well be direct consumers and holders of inventories (i.e. households and 

firms) or producers of commodities. In order to protect themselves against potential financial 

losses from future short-term spot price fluctuations, the former (latter) tend to hedge their 

short (long) cash market positions by going long (short) in commodity futures markets 

(Baker, 2012; Bashiri and Lawryshyn, 2017; Gorton et al., 2012). In other words, what the 

hedgers achieve by their entry into the futures market is a price risk transfer towards a coun-
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terparty who, as usual, does not have any commercial interest in these commodities (e.g. in-

termediaries such as market dealers or speculators). 

Persuading speculators and other market participants to take the opposite position in 

commodity futures and to willingly hold these risky instruments rather than relatively safer 

(risk-free) ones, requires an expected appreciation on part of them in the dollar value of the 

asset (net of costs) in the foreseeable future (Basu and Miffre, 2013). That is to say, the cur-

rent prices of commodity futures should be set such that they include a positive risk premi-

um
4
, which reflects the compensation (expected payoff) of speculators to a futures position 

(Frankel, 1984; Gorton and Rouwenhorst, 2004; Hamilton and Wu, 2013). Heterogeneous 

preferences, however, affect the risk premia level; the more risk-averse futures market partic-

ipants are, the larger the risk premium (Baker, 2012). 

Overall, according to the “Market Pressure Theory”, hedgers are willing to pay for this 

insurance against a potential price risk exposure, with this payment being expressed in the 

form of positive risk premium of their counterparties’ positions. Actually, in the commodity 

futures markets the aforementioned risk premia is expressed and interpreted as expected posi-

tive excess returns earned by speculators from securing these futures positions (Alquist et al., 

2013; Hamilton and Wu, 2013). That is to say, speculators buy futures contracts, say in month 

𝑡, which are later sold, say in month 𝑡 + ℎ, enjoying a positive capital gain at time 𝑡 + ℎ.  

On the other hand, the second predominant theory of futures pricing is that initially in-

troduced by Kaldor, Working and Brennan. The valuation method of this ends up pricing fu-

tures depending only on the current spot price, the cost-of-carry and the convenience yield. 

Specifically, many consumption commodities can be consumed or physically stored (hence 

the description “storable”), thus impacting their allocation of consumption and physical stor-

age over time according to the opportunity cost; the opportunity cost of today’s consumption 

is the commodity’s value the following period. According to Alquist et al. (2013), the concept 

of short term “convenience yield”, however, reflects an implicit marginal benefit (i.e. utility) 

derived from holding inventories for particular purposes (e.g. consumption or speculative sell-

ing of a commodity, such as oil, in periods of extreme shortage and exorbitant prices). How-

ever, a storage cost has to be borne and any interest that could be earned on this money has 

                                                      
4
 Positive risk-premia in commodity futures involves the futures prices initially being set lower than the expected 

future (spot) price of the underlying commodity. It therefore follows that futures markets are forward looking; 

they embed the investors’ expectations regarding the future (spot) price of the underlying asset at expiry. The 

futures prices are set as the conditional expectation of the future (spot) price discounted at the appropriate, how-

ever time-varying, risk premium (Gorton et al., 2012); that rewards long positions (speculators’ positions) be-

cause of their respective futures prices being gradually increased over time as expiration approaches. The 

“backwardation”, therefore, arises as a result of the futures prices initially being set lower that the expected spot 

prices (Haase and Zimmermann, 2013).  
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also to be foregone; hence, the convenience yield declines as inventory levels of the respec-

tive individual commodity are high (Gorton et al., 2012; Melolinna, 2011). . The “backwarda-

tion”, therefore, arises as a result of the convenience yield levels and the following negative 

relationship with the physical inventory levels (Haase and Zimmermann, 2013). 

Even though both approaches employ specific factors that have some clear economic 

interpretation, most of the assumed factors are not observable (Chantziara and Skiadopoulos, 

2008) or, if they are observable, random and unpredictable, thus resulting in modeling prices 

using stochastic approaches (Bashiri and Lawryshyn, 2017). Nevertheless, another stream of 

studies has related the futures risk premia variation to a set of potential underlying determi-

nants (Melolinna, 2011). 

 

2.2 Proposed Economic Predictors 

 

Relying into the second strand of literature, there is a large body of research assuming that a 

set of systematic risk-factors that are found to price traditional asset classes (i.e. equities and 

bonds) successfully should also price the commodity futures contracts. Indicatively, Melolin-

na (2011) and Bessembinder and Chan (1992) address similar research questions to ours; they 

examine whether oil futures prices can be predicted by factors previously shown to possess 

significant predictive power over equity and/or bond returns. 

Regarding this hypothesis, recent literature confirms the co-movement of commodity 

markets and the presence of some common underlying drivers. Particularly, Gross (2017) ar-

gues that macroeconomic and financial business-cycle variables constitute the main drivers of 

the common movement in commodity markets. Gargano and Timmermann (2014) provide a 

brief explanation on the reason why such drivers might contribute to forecasting commodity 

prices. Specifically, they clarify that commodity prices are widely believed to be driven by 

time-varying storage costs and convenience yields, both influenced by the underlying state of 

the economy. 

As a consequence, it could be reasonably assumed that predictors systematically found 

to account for the risk-premium of conventional asset classes should also possess a predictive 

power over movements in commodity futures markets and, subsequently, energy futures. As 

the literature has shown, there is a great range of macroeconomic and financial variables asso-

ciated with the risk-premia in equity and bond markets which could be used as predictors in a 

similar asset pricing model. Next, we report all those common factors proposed and con-
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firmed by the literature on commodity spot and futures predictability (Subsection 2.2.1) as 

well as equity and bond return predictability (Subsection 2.2.2). 

 

2.2.1 Predictors of Commodity (Spot and Futures) Markets 

 

Although a vast literature has examined the impact of commodity prices on macroeconomic 

aggregates or provide empirical evidence in favor of causality effects from oil futures to equi-

ties, far too little attention has been paid to the contrary direction (i.e. the effect of macroeco-

nomic aggregates and financial determinants on commodity prices, such as oil prices).  

From an asset pricing perspective with time-varying risk premia, the recent empirical 

literature has pointed that commodity prices can be determined by monetary conditions and 

macroeconomic risks (Alquist et al., 2013; Anzuini et al., 2010; Frankel, 1984, 2006; Schalck 

and Chenavaz, 2015). In general, the following factors have mostly been considered as poten-

tial predictors: commodity volatility, default return spread (also known as junk bond risk 

premium), equity dividend yields, industrial production, inflation, investment to capital ratio, 

long tern rate of returns, money stock, T-bill yields, term spread (term structure of interest 

rates), and unemployment (see among others Alquist et al., 2013; Bastianin et al., 2012; Bes-

sembinder and Chan, 1992; Chen et al., 2008; Erb and Harvey, 2006; Gargano and Timmer-

mann, 2014; Gorton and Rouwenhorst, 2004; Sadorsky, 2002; Shang, 2010). Gargano and 

Timmermann (2014) conclude that movements in commodity prices are partially predictable 

by means of the aforementioned set of determinants.  

 

2.2.1.1 Short-Term Real Interest Rates 

 

The short-term nominal interest rate reflects the current state of an economy, thus constituting 

a procyclical indicator; high rates indicate economic growth, while lower levels reflect peri-

ods of financial distress and turbulence. Specifically, in a high short-term real interest rate
5
 

environment, the four channels cited below reduce the demand of commodities. The corre-

sponding lower prices of commodities reveal a negative relationship between futures and the 

short-term real interest rate.  

On the demand side, according to Frankel and Hardouvelis (1983) and Frankel (2006), 

high real interest rates tend to increase the opportunity cost of storing commodities and carry-

                                                      
5
 The short-term real interest rate is calculated by subtracting the expected inflation from the nominal interest 

rate, where the 3-month T-bill rate is the nominal interest rate. 
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ing inventories over into future periods. This, in turn puts downward pressure on the demand 

for storable commodities and the respective commodity futures prices. In line with this, 

Frankel (2006), Basu and Miffre (2013), and Mishra and Smyth (2016) also support that in-

vestors may prefer to pay a premium for the acquisition of a commodity at a future time rather 

than bearing the storage costs of acquiring the asset in the present, a case in which a contan-

goed
6
 market is typically formed. This negative effect of the U.S. real interest rate on com-

modity returns has also been confirmed by Akram (2009), Bastourre et al. (2010).  

On the supply side, since producers do not incur any storage costs, high interest rates 

decreases their incentive to leave commodities (e.g. crude oil) under the ground for future ex-

traction. This is because any proceeds from selling the commodity at today’s spot price could 

be invested and compounded at these higher interest rates
7
. As a result, they prefer pumping, 

say oil, to preserving, hence increasing the extraction and the supply of commodities today; 

this, in turn, leads to lower prices (Frankel, 2006, 2014; Pradhananga, 2015). This seems to 

apply to petroleum markets, due to the fact that there are no perfect substitute products for 

petroleum in the short run, and thus any fluctuations on the supply-side affect the petroleum 

price levels (Mileva and Siegfried, 2012).  

As for the third channel, in the short term financial markets high real interest rates and 

the corresponding high borrowing costs discourage speculators from borrowing money and 

entering into the futures markets. On the contrary, the bond markets are rendered more attrac-

tive to enter into (Frankel and Hardouvelis, 1983; Frankel, 2006, 2014). Admittedly, the cor-

responding futures prices could fall through this third channel. 

Additionally, another theoretical argument corresponding to the aforementioned de-

cline of commodity prices has also been proposed by Barsky and Killian (2002, 2004). Based 

on the theory of monetary economics and asset’s price determination in international financial 

markets, Frankel and Hardouvelis (1983) and Frankel (1984, 2014) also share the same view; 

rational expectations and information regarding the future monetary conditions are reflected 

in the current level of market prices. For instance, they suggest that tight monetary policy 

conditions, which increase real interest rates, form expectations of a future low-inflation envi-

ronment. On the demand side, it serves as a self-fulfilling prophecy; expectation of lower than 

today’s future spot prices could be discounted and negatively affect today’s commodity prices 

through a lower demand level. That is because commodities are expected to cost relatively 

                                                      
6
 Contango refers to the situation in which the price of near month futures is lower than the price of those futures 

contracts expiring further in the future, thus generating an upward sloping term structure of futures prices.  
7
 That is investing proceeds at interest rates higher than the expected rate of return that would be earned if they 

left commodities (e.g. oil) under the ground (Frankel, 2014). 
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less than what they cost in the present. As for speculators, lower than today’s expected spot 

prices at the maturity of the commodity futures contract lead to futures prices being settled on 

a relatively higher level than that of the current spot prices (Erb and Harvey, 2006; Gorton 

and Rouwenhorst, 2004).  

Regarding the empirical findings of the short term interest rate, Gargano and Tim-

mermann (2014) provide evidence of modest out-of-sample predictability of the T-bill rate 

(however, nominal rather than real interest rate) over monthly commodity spot price indexes 

over the interval 1991-2010; the expected negative relationship is confirmed. Bessembinder 

and Chan (1992) also find limited predictive power of the T-bill over 12 futures markets.  

 

2.2.1.2 Default Spread 

 

Regarding the default return spread, it is commonly considered to be a measure of fu-

ture business conditions and which incorporates default expectations as well as reflects the 

fear in the one of the conventional financial markets, i.e. the bonds market. As a countercycli-

cal indicator, a negative relationship is expected between the default spread and the commodi-

ty returns; this is in contrast to the positive sign that is expected on equities and bonds mar-

kets (Hong and Yogo, 2012).  

This is achieved by considering and comparing bonds of moderate risk (i.e. Moody’s 

BAA corporate bonds) to the safest and most liquid ones (credited as AAA by the credit rat-

ing agency). Default spread is thus defined as the difference between the BAA bonds yields 

and the AAA bonds yields and also reflects the compensation for one to bear the risk of hold-

ing relatively riskier investment instruments. As a result, associated with the fear in traditional 

financial markets, default spread if found to exhibit a countercyclical pattern, rising during 

recessions and decreasing in economic expansions. That is because BAA bonds yields tend to 

increase (decrease) sharply during recessions (expansions). Consequently, default spread cap-

turing fluctuations and business-cycle phases, may contribute to analyzing time-varying risk 

premia of traditional and alternative financial assets.  

Gargano and Timmermann (2014) provide evidence of modest out-of-sample predict-

ability of default return spread over monthly commodity spot price indexes during 1991-2010, 

however, with a positive sign. Bessembinder and Chan also provide evidence of the limited 

predictive power of the junk bond premium over 12 futures markets. On the other hand, Hong 

and Yogo (2012) find significant evidence of commodity returns predictability by the yield 

spread.  
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2.2.1.3 Term Spread 

 

A number of studies have also documented the predictive power of the term spread over stock 

and commodity returns. That is because, as supported by Fama and French (1989), term 

spread reflects the compensation required to invest in longer-term interest sensitive financial 

assets, as it embeds longer-term inflation expectations and expectation for the short-term in-

terest rates. 

Specifically, the term spread is defined as the difference between yields on long-term 

(i.e. the US 10-year treasury note) and short-term (i.e. the 3-month T-bill) government securi-

ties, reflecting the slope of the term structure of interest rates (or yield curve). Term spread 

has been found capable of forecasting potential changes in economic activity and predicting 

recessions at a range of 6 to 12 month-horizons (Estrella and Hardouvelis, 1991), which, in 

turn, cause increased volatility in futures market prices. Moreover, empirical evidence also 

supports the countercyclical pattern of the term spread; term spread rises (decreases) during 

recession (expansive) periods, because short-term rates are commonly lowered (increased) in 

recessions (booms). As a consequence, term spread as a potential driving factor is considered 

to be capable of capturing fluctuations and business-cycle phases, therefore predicting and 

delivering countercyclical, hence time-varying, risk premia of financial assets (Alquist et al., 

2013).   

 

2.2.1.4 US Exchange Rates 

 

Furthermore, the impact of exchange rates on commodity prices has also been examined and 

appears in the literature.  

Authors argue that currency market is rather efficient and embeds forward looking in-

formation and reflect expectations regarding future macroeconomic fundamentals and price 

movements (see, among others, Chan et al., 2011; Chen et al., 2008). A positive relation has 

been proposed and should be expected between the exchange rates and the futures returns; 

investors demand higher expected returns (premium) as a compensation for their exposure to 

the exchange rate risk. Indicatively, Chen et al. (2008) verify the out-of-sample robust predic-

tive power of bilateral US dollar exchange rates (relative to other exporting countries) over a 

commodity spot price index (see also Erb and Hervey, 2006). In line with this, Gargano and 

Timmermann (2014) and Reboredo and Revera-Castro (2013) also confirm the impact of ex-

change rates on oil prices.  
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Specifically, energy products (e.g. oil) and other primary commodities have mostly 

been invoiced in vehicles currencies when traded internationally in exchanges, the predomi-

nant one being the US dollar
8
. Subsequently, a decrease in the value of the US dollar with re-

spect to foreign currencies (let it be expressed as a rise in the 𝑆𝑈𝑆𝐷/𝑓𝑜𝑟𝑒𝑖𝑔𝑛) is expected to be 

followed by an increase in commodity prices (see Akram, 2009; Bastianin, et al., 2012; Haase 

and Zimmermann, 2013; Sadorsky, 2002; Schalck and Chenavaz, 2015; Schofield, 2007; 

Shang, 2010). Employing the Trade-Weighted Dollar Index in a five-factor models over 

2007-2016, Cummins et al. (2016) also provide empirical evidence of its significance and 

positive effect on the shortest maturity oil futures.  

From the demand side point of view, that is rather reasonable since commodities ex-

pressed in foreign local currencies become relatively less expensive, hence more attractive to 

non-US consumers. This in turn drives demand and the corresponding commodity prices up. 

On the supply-side, producers experience reduced profits. As a result, they reduce their pro-

duction and, hence, the overall supply of the commodity, which in turn drives prices up. Last 

but not least, the depreciated US dollar renders the dollar-denominated conventional financial 

assets less profitable (in terms of lowered return). On the contrary, this makes alternative as-

sets, such as energy commodities, a more attractive financial instrument to invest into.   

 

2.2.1.5 Financialization of Commodities 

 

Moreover, Frankel (2014), Pradhananga (2015) and a significant number of other researchers 

allude to the fact that commodity-specific shocks are not sufficient enough to account for the 

2007-2008 price surge and the 2008-2011 synchronized price movement within unrelated 
9
 

commodity markets (see also Gross, 2017). In light of this, other underlying common drivers, 

thought to simultaneously affect multiple commodity markets, are investigated instead.  

To this end, apart from the identifiable economic factors discussed in the Subsections 

2.2.1.1 - 2.2.1.4, financialization of commodity markets is an issue that has attracted increas-

ing attention, especially after the early 2000s (Bashiri and Lawryshyn, 2017). Financialization   

refers to the voluminous, massive, and rapid financial trading of alternative assets, i.e. com-

modities, especially in periods of financial distress and economic uncertainty. That is because 

                                                      
8
 For the sake of enhanced price comparability and homogeneity, most of the commodities, and especially ener-

gy products such as crude oil, are traded internationally denominated in US dollars. That is because of the US 

economy’s stability along with the US financial markets’ depth (Mileva and Siegfried, 2012).  
9
 Commodities are said to be related when they are substitute or complement commodities in either production 

process or consumption (Cummins et al., 2016; Pradhananga, 2015). 
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commodities are considered as relatively safer investment vehicles than conventional finan-

cial assets. Due to these diversification benefits, enhanced market liquidity and speculative 

demand shocks are supposed to artificially drive commodity prices up (Erb and Harvey, 2006; 

Hamilton and Wu, 2013). To this end, speculation has been proposed as a potential determi-

nant of futures prices (see Medlock III and Jaffe, 2009; Pradhananga, 2015) and, especially, 

of oil prices or oil futures prices (Alquist et al., 2013; Le Pen and Sévi, 2011). However, the 

recent empirical findings are found to be partially contradictory. 

On the one hand, Hong and Yogo (2012) confirm the predictive power of aggregate 

futures market dollar open interest
10

 over commodity futures and bond returns, as well as cur-

rency and stock markets. They claim that dollar open interest is capable of explaining time-

varying risk premia, because it is a procyclical indicator which embeds further information 

regarding the futures economic activity, inflation and economic conditions. Expectations of 

higher economic activity and demand increase the oil producers and consumers’ incentive to 

obtain short and long positions in futures markets, respectively. This in turn drives the open 

interest, the futures prices, and the respective expected returns up.  

Furthermore, Pradhananga (2015) also reports significant evidence of financialization 

of commodity futures market using two proxies, one being the sum of open interest across 

commodity futures markets (i.e. Total Open Interest in US dollars) which reflects the money 

inflow into the futures market. On the contrary, Bastianin et al. (2012) provide evidence that 

Working’s T index (viz. a measure of excess speculation) is not statistically significant in ex-

plaining the commodity risk-premiums. Cummins et al. (2016) studying the predictability of 

oil futures returns over 2007-2016 also find that speculation is not a statistically significant 

factor in their fundamental five-factor model. 

 

2.2.1.6 Emerging Economies and Global Economic Activity  

 

Furthermore, many other commentators indicated that global economic activity and, especial-

ly, a possible demand “shock” stemming from important emerging and newly-industrialized 

economies could have at least in part triggered the previous price hike (see Frankel, 2014; 

Hamilton, 2009; Pradhananga, 2015 etc.). That is because such economies, viz. BRICS and 

Asian economies (particularly China, India, South Africa, Russia and Brazil), experienced a 

                                                      
10

 First, dollar open interest for each futures contract is calculated as the spot price times the correspondind open 

interest (viz. the amount of each futures contracts outstanding) and then the summation of the dollar open inter-

est is taken.   
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relatively rapid recovery from the 2007-2009 global recession and had positive future pro-

spects. At the same time, Killian (2008) interprets the sustained upward pressure on crude oil 

prices since 2003 as a consequence of the sustained strong demand driven by the global eco-

nomic growth, and mostly, in Asia. Similarly, the abrupt economic slowdown underwent by 

the Asian economies and Russia could have at least in part caused the downward trend of oil 

prices experienced during 1997-1999 (He et al., 2010).  

Meanwhile, several studies in the literature have further extended the aforementioned 

set of commodity predictors by including variables that capture macroeconomic aggregates 

outside the U.S. (e.g. global economic activity). That is because commodities constitute an 

integral part of global economy and are traded globally on a large scale. For instance, Le Pen 

and Sévi (2011) consider macroeconomic variables from developed and emerging economies 

rather than limiting their study to the U.S. economy exclusively. The authors conclude that 

this oil price surge was mainly attributed to the global supply and demand conditions (e.g. 

mostly stemming from emerging economies) and expectations about global economic activity 

rather than to the increased level of speculation. 

Moreover, Frankel (2014) claims that demand of storable commodities (for the scope 

of being kept as inventories) lies behind economic activity; many commodities and, especial-

ly, energy commodities are typically used as inputs in the production process. As a result, in-

creased economic activity today or expectations of future activity account for higher demand 

for storable commodities and, hence, their corresponding prices, thus revealing a positive re-

lationship to be expected. Frankel (2014) also mentions that, although the Chicago Fed Na-

tional Activity Index (CFNAI), US GDP growth, and industrial production indices growth are 

variables usually applied as a proxy for the US economic activity and future conditions
11

, 

measures at a global level would be more appropriate in order to account for global shifts in 

demand and inventory holdings, something generally not taken into account by Gargano and 

Timmermann apart from two commodity related US dollar exchange rates (see also Groen, 

2014).  

Since such measures of global real economic activity are not readily available, litera-

ture has shown that the most widely used indicators by empirical researchers are the IMF’s 

World real GDP and the OECD’s index of world industrial production (aggregated industrial 

production for 34 OECD countries). However, GDP data are only available at a quarterly fre-

                                                      
11

 Faccini et al. (2017) has developed a new predictor a US real economic activity, the S&P 500 option Implied 

Relative Risk Aversion (IRRA), which is found to predict US rea both in-sample and out-of-sample. 



25 

 

quency and OECD’s index presents some drawbacks
12

 as well. In light of this, alternative 

measures of global economic activity have been proposed in the literature. For instance, The 

MSCI Emerging Markets Index has also been considered by Gross (2017) as a proxy for the 

economic conditions in various emerging markets. 

Killian (2008) proposed a monthly index, i.e. Killian’s index of global real economic 

activity or the Killian’s rea
13

, which captures the global activity in industrial commodity mar-

kets and the corresponding cumulative demand pressures by a global index of dry cargo sin-

gle-voyage ocean freight rates (see also Apergis and Miller, 2009; He et al., 2010; Killian, 

2008; Ravazzolo and Vespignani, 2016, 2017). He argues that the increasing (decreasing) 

global demand drives these freight rates up (down), and hence the index is capable of captur-

ing fluctuations of global real economic activity and the corresponding expansionary (reces-

sionary) periods.  

Furthermore, Ravazzolo and Vespignani (2016, 2017) also proposed another monthly 

measure of global real economic activity, i.e. the World steel production. Comparing their 

indicator to the Killian’s index in an out-of-sample analysis for the World GDP, they con-

clude that both indicators are found to be sufficiently accurate. Ravazzolo and Vespignani 

(2017) also demonstrate strong evidence of the predictive power of their index over crude oil 

prices. Nevertheless, different disadvantages
14

 also seem to apply to World steel production. 

 

2.2.2 Predictors of Traditional Asset Classes 

  

After having reviewed the key findings of the extant literature on commodity return 

predictability, we proceed with summarizing the main findings of the voluminous literarure 

on the long-standing debate regarding the predictability of conventional asset classes (e.g. 

stock indices, bonds, currencies etc.) by means of traditional asset pricing models. 

Specifically, we primarily focus on the cases of equity (equity risk premium) and bond return 

predictability. 

To start with, a wide range of financial variables have been identified that display 

significant in-sample and out-of-sample predictive ability over equity risk premia (future 

                                                      
12

 Killian states that the OECD’s index does not consider major emerging economies including China, India etc. 

Meanwhile, Ravazzolo and Vespignani (2016) argue that the OECD’s index can be a good measure only on the 

grounds that the 34 OECD countries and the industrial-manufacturing sector represent satisfactorily the World 

Economy and each country’s full economy, respectively. However, they comment that these prerequisites were 

met only until 1990.  
13

 Killian’s index is available on http://www-personal.umich.edu/~lkilian/paperlinks.html. 
14

 Ravazzolo and Vespignani’s critique of their newly-developed index is its being based exclusively on one 

commodity (i.e. steel), an important input. 

http://www-personal.umich.edu/~lkilian/paperlinks.html
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stock returns), an evidence in favor of what is called “time-varying risk premia” (Gargano, 

2013 etc.). Based on Goyal & Welch (2008), Kolev and Karapandza (2017), and Rapach and 

Wohar (2006) among others, we find that the most prominent predictors are variables 

primarily related to stocks (such as valuation ratios) along with other macro and interest-rate 

related variables. Based on an extensive body of empirical literature, we comprehensively 

summarize the macro-financial factors that have been widely found to predict premia: default 

yield spread or 𝑑𝑓𝑠 (Campbell,1987; Fama and French, 1989; Goyal & Welch, 2008; Kolev 

and Karapandza, 2017), inflation rate or 𝑖𝑛𝑓𝑙 (Goyal & Welch, 2008; Kolev and Karapandza, 

2017), long-term yield or 𝑙𝑡𝑟 (Goyal & Welch, 2008; Kolev and Karapandza, 2017), short-

term interest rate or T-bill rate, 𝑡𝑏𝑙 (Campbell,1987; Campbell and Thompson, 2008; Goyal & 

Welch, 2008; Kolev and Karapandza, 2017), and term spread or 𝑡𝑚𝑠 (Campbell,1987; 

Campbell and Thompson, 2008; Fama and French, 1989; Goyal & Welch, 2008; Kolev and 

Karapandza, 2017). 

However, Goyal and Welch (2008) show that some of these variables fail to record a 

robust out-of-sample predictive ability over equity returns. On the contrary, Kolev and 

Karapandza (2017) point that most of these commonly employed variables exhibit a rather 

satisfactory out-of-sample predictability for the excess stock market returns. Moreover, 

Kostakis et al. (2015) using the same set of traditional forecasting variables over the period 

1927-2012 also confirm their significant predictive power with respect to 1-step-ahead re-

turns. Campbell and Thompson (2008) also confirm the satisfactory in-sample and out-of-

sample predictive ability of several standard predictors over simple stock returns (i.e. T-bill, 

and term spread) once weak restrictions are imposed on the signs of coefficients and return 

forecasts. Furthermore, Rapach et al. (2013) also conclude that the short interest index is ar-

guably the strongest predictor of equity premium, exhibiting stronger predictive power than 

the standard predictors of Goyal and Welch both in-sample and out-of-sample.  

Gargano (2013), examining the equity return predictability in recessions, ends up with 

evidence in favor of highly predictable returns during recessions, while largely unpredictable 

during economic expansions. Particularly, cyclical variations in predictors generate cyclical 

(or time-varying) risk premia. Based on the concept of time-varying risk premium and its 

linkage to the states of economy, Gargano reports a countercyclical pattern for term and de-

fault spreads, which tend to be increasing in recessions and decreasing during expansions. He 

explains that this is so due to the fact that T-bills are in general lowered during recessions, 

thus driving up the term spread. Concerning the default spread counter-cyclicality, the default 
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spread measures the so-called flight-to-quality which is mainly associated with fear in finan-

cial markets.  

Regarding the second most prominent asset class, i.e. the bond, the variables that have 

been empirically found to display significant in-sample and out-of-sample predictive ability 

over bond returns have already been discussed in previous subsections. To this end, we 

highlight few alternative approaches. Indicatively, Gargano et al. (2016) make an attempt to 

empirically study the predictability of expected bill returns in an out-of-sample analysis. In 

order to account for time-varying potential factors, they use the Fama-Bliss forward spreads, 

forward rates and a latent macroeconomic factor extracted based on Ludvigson and Ng’s 

(2009) methodology; Ludvigson and Ng had also extracted few latent factors to examine the 

predictability of bond excess returns. They both end up documenting significant stastistical 

evidence in favor of bond return predictability. More details regarding the latent factors are 

provided in the next subsection (2.3). 

   

2.3 Common Latent Factors 

 

Even though the variables described in Subsection 2.2 have some clear economic interpreta-

tion, the selection process of the most suitable economic predictors out of a wide range of po-

tential driving factors is considered to be rather subjective. Moreover, the recent empirical 

evidence verifies that the commodity market is itself a segmented and heterogeneous market 

(see among others Daskalaki et al., 2014; Erb and Harvey, 2006). As a result, factors which 

are found to drive the prices of some traditional asset classes might not be capable of explain-

ing the behaviour of individual commodities equally well. 

To this end, the recent literature on predicting the dynamics of prices and returns in fu-

tures markets adopts a relatively newer approach; it involves predicting futures employing 

extracted common latent factors rather than predetermined common economic factors as the 

explanatory variables. That is because the set of predetermined economic factors may as well 

lead to omitted and/or irrelevant variable bias (Cummins et al., 2016). A statistical method 

commonly used in the literature to extract a few common unobserved (latent) factors out of a 

large dataset is the Principal Components Analysis (PCA hereafter), hence their name princi-

pal components (PCs). We provide a brief overview over the two strands of literature on the 

application of PCA on commodity futures. The first strand is associated with the application 

of the PCA on commodity price changes or returns, while the second performs the PCA on 
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large economic datasets. The derived PCs are then used as predictors in a linear regression 

equation set up.  

Concerning the first strand, Chantziara and Skiadopoulos (2008) employ joint PCA 

over the period 1993-2003 and extract three (3) PCs from the daily changes of futures prices. 

NYMEX WTI Crude Oil, Heating Oil, Gasoline, and International Petroleum Exchange (IPE) 

Brent Crude Oil futures of mutiple maturities comprise their large dataset. They provide 

evidence that the second PC posseses a significant predictive power over the heating oil and 

gasoline futures price changes. This predictive power, however, seems to apply for all 

maturities but the shortest. Finally, the estimated coefficients demonstrate a negative sign. 

Similarly, Cummins et al. (2016) also extract three PCs from WTI crude oil futures log 

returns over the period 2007-2016. In contrast to Chantziara and Skiadopoulos, they find 

significant evidence of oil futures predictability by the first extracted PC for any given 

maturity.  

Regarding the second strand, Ludvigson and Ng (2009) and Gargano et al. (2016), 

among others, collect 131 monthly macroeconomic series from Global Insight database and 

extracted eight (8) common latent factors in order to predict the bond risk premia. Similarly, 

in an attempy to analyze oil prices, Le Pen and Sévi (2011) extract nine (9) common latent 

factors from a large dataset comprising of 187 real and nominal macroeconomic variables 

from both developed and emerging economies. The extracted common factors are then used 

in a typical predictive regression model. 
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Chapter 3: The Dataset 
 

In this chapter, we discuss the energy futures prices as well as the selected macroeconomic, 

financial, and commodity-specific factors used as predictors in this study. Moreover, we pro-

vide a brief description of each data series characteristics. 

 

3.1 Energy Futures Prices 

 

3.1.1 The Dataset  

 

The dataset is constituted by end-of-month settlement prices of energy futures traded on the 

New York Mercantile Exchange (NYMEX) which is part of the Chicago Mercantile Ex-

change Group (CME Group). In particular, we consider three closely related energy products 

as the underlying assets: 1. NYMEX West Texas Intermediate (WTI) Light Sweet Crude Oil, 

2. NYMEX NY Harbor ULSD (Heating Oil) and 3. NYMEX Henry Hub Natural Gas. 

Monthly
15

 data on such futures contracts were obtained from Bloomberg database using the 

corresponding ticker symbols (i.e. CL, HO and NG, respectively).  

However, within the context of this thesis, it is urgent that we use fixed maturity time 

series of futures prices. Bloomberg is not only capable of providing us with raw data on fu-

tures contracts for any maturity, but also gives us the possibility to roll over contracts yet 

keeping the same time to maturity. In this way, it creates generic series that actually represent 

contracts with almost a fixed time to maturity standing at any point in time (Chantziara and 

Skiadopoulos, 2008). Thus, we use generic series obtained from the first three nearest to ma-

turity WTI Crude Oil futures contracts (labeled CL1, CL2, CL3), Heating Oil futures (labeled 

HO1, HO2, HO3) and Natural Gas futures (labeled NG1, NG2, NG3)
16

. Therefore, the chosen 

futures are those with the closest to delivery. 

Furthermore, due to data availability constraints the time horizon of the dataset of all 

assets spans the period from January 1, 1990 to December 31, 2016, which accounts for 324 

monthly observations. Consequently, the sample period captures both bearish and bullish re-

gimes in commodity markets as well as potential break dates, i.e. the 1997 Asian financial 

crisis, the 1998 Russian Crisis, the early-2000s recession (Mar. 2001 - Nov. 2001) along with 

                                                      
15

 We use monthly observations to match with macroeconomic variables frequency, which are used as predictors.  
16

 The CL1, HO1 and NG1 comprise the front month contracts or the shortest maturity (i.e. 1-month) series. 

They are the most liquid contracts traded and their prices are the closest ones to the spot prices. Similarly, CL2, 

HO2 and NG2 as well as CL3, HO3 and NG3 comprise the second and the third shortest maturity series, respec-

tively. 
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the 2001 terrorist attack, the early-2000s US stock market rally, the 2003 Gulf War in Iraq, 

the 2003-2008 commodity boom, the 2007-2009 global financial crisis as well as the subse-

quent three rounds of US Quantitative Easing, i.e. QE1, QE2, and QE3 (see among others Ra-

detzki, 2006; Mishra and Smyth, 2016).  

Considering this 2000s commodities boom, we next proceed to splitting the initial da-

taset into smaller subsamples; the first subsample covers the period from January 1, 1990 to 

December 31, 2003, whereas the second subset covers the period from January 1, 2004 to De-

cember 31, 2016. This seems to be in line with Baker (2012), Chantziara and Skiadopoulos 

(2008), Hamilton and Wu (2013), who split their sample into two subsamples, i.e. the 1990-

2003 pre financialization sample and the 2004-2011 post financialization sample. We note 

here that the first subsample (the so-called in-sample period) is used for parameter estimation. 

By contrast, the second subsample, which is called the out-of-sample period, is then used for 

producing forecasts across different forecasting horizons (up to one year) and the evaluation 

of their accuracy.  

 

3.1.2 Data Characteristics 

 

Having classified the futures contracts with respect to maturity, we show the dynamics of the 

three commodities futures prices, measured in US dollar and observed with a monthly fre-

quency over the period 1990-2016.  

Indicatively, Figure 3.1 plots prices of the three nearest maturity contracts for each 

commodity over time, giving a visual representation of the high correlations between these 

commodity prices. The graphs show simultaneous price movements of the first, second and 

third nearest contracts of the three energy commodities, therefore depicting a very similar pat-

tern. The data appear to be non-stationary, with occasional spikes that indicate extreme vola-

tility patterns. The actual US recessions are also shown as shaded grey areas. During the peri-

od of 2003-2008, and especially from 2006 until mid-2008 when the global financial crisis 

breaks out, prices increase sharply (commodities boom). The financial crisis seems to be fol-

lowed by a rather sharp price reduction until prices recover again in 2009 and rocket in 2011.  

Additionally, it is typical of prices of different crudes and refined products to corre-

late, a fact that could be easily detected by the same figure (Fig. 3.1). A common movement, 

and hence correlation, among the first three shortest maturity series of heating and crude oil is 

rather discernible. In particular, Table 3.1 shows correlation of these concurrent generics for 

the three commodities under examination. As perceived through the graphical representation 
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of Fig.3.1, Table 3.1 spots nearly-perfect correlations among the crude and heating oil concur-

rent generics.  
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Fig. 3.1  Price evolution of the three shortest maturity NYMEX WTI Crude Oil, Heating Oil, 

and Natural Gas futures over the period Jan.1990 to Dec.2016. 
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Table 3.1 

Correlation matrix of the first three shortest and concurrent futures contracts on the NYMEX 

WTI Crude Oil, Heating Oil, and Natural Gas. 

  Panel A: Shortest Maturity 

  CL1 HO1 NG1 

CL1 1.000     

HO1 0.989 1.000   

NG1 0.526 0.482 1.000 

  Panel B: Second Shortest Maturity 

  CL2 HO2 NG2 

CL2 1.000     

HO2 0.991 1.000   

NG2 0.537 0.495 1.000 

  Panel C: Third Shortest Maturity 

  CL3 HO3 NG3 

CL3 1.000     

HO3 0.992 1.000   

NG3 0.551 0.510 1.000 
This table presents correlation among concurrent generics for the NYMEX WTI Crude Oil, Heating Oil, and 

Natural Gas futures sampled at monthly frequency. The results are reported for each maturity, i.e. shortest, sec-

ond shortest, and third shortest maturity series in Panel A, Panel B, and Panel C, respectively. The (full) sample 

period is from January 1, 1990 to December 31, 2016.  

 

 

3.2 Economic Predictors of Energy Futures 

 

3.2.1 Economic Predictors 

 

Concerning our economic model, we consider a set of six variables that have been document-

ed to predict commodity, bond and equity returns (see Chapter 2) and use them as control var-

iables. In short, the economic predictors employed in this study are the open interest median 

growth rate (oi_gr), the short-term real interest rate (rir), the term spread (ts), the default 

spread (dfs), the trade-weighted US dollar index (twdi), and the world steel production (wsp). 

With the exception of the world steel production, data on these potential driving factors are 

obtained from the Federal Reserve Economic Data (FRED) database
17

 of the Federal Reserve 

Bank of St. Louis. 

In particular, we first collect monthly not seasonally adjusted data on the Trade 

Weighted U.S. Dollar Index (with index being Jan 1997=100) in order to account for the US 

dollar exchange rate fluctuations (for further reasoning see Subsection 2.2.1.4 Exchange 

                                                      
17

 Data are available at https://fred.stlouisfed.org . 

https://fred.stlouisfed.org/
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Rates). Trade Weighted U.S. Dollar Index constitutes a weighted average of the foreign ex-

change value of the US dollar against major US trading partners. A positive relation should be 

expected between this factor and the futures prices or returns. To account for monetary condi-

tions, we also calculate the term spread (see Subsection 2.2.1.3 Term Spread) obtaining 

monthly data on the Long-Term Government Bond Yields (10-year) and the 3-Month Treas-

ury Bill (Secondary Market Rate). Monthly default spread (see Subsection 2.2.1.2 Default 

Spread) is also calculated by collecting data on the Moody's Seasoned BAA Corporate Bond 

Yields and the Moody's Seasoned AAA Corporate Bond Yields as well.  

Moreover, following Shang (2010), we go on calculating the short-term real interest 

rate as the difference of the nominal interest rate (i.e. the 3-Month Treasury Bill rate) and the 

expected inflation. Expected inflation, constructed by the Survey Research Center of Univer-

sity of Michigan, constitutes the median expected change of prices during the following 12 

months. A negative relation should be expected between the short-term real interest rate and 

the futures prices or returns (see Subsection 2.2.1.1 Short-Term Real Interest Rate). 

Second, in order to account for financialization in the NYMEX energy futures market, 

we collect data on each futures contract open interest (i.e. the amount of futures contracts out-

standing) for the same sample period from the Commodity Futures Trading Commission. Fol-

lowing Gong and Yogo’s (2012) methodology, we originally aimed at constructing a similar 

predictor, the aggregate dollar open interest as described in Subsection 2.2.1.5. However, due 

to data availability constraints on the Henry Hub Natural Gas Spot Prices (spot prices have 

been available since Jan. 1997), we consider the growth rate of (simple instead of dollar) open 

interest for each energy commodity futures. After that, we proceed to calculating a median 

growth rate out of all the commodities examined at any given point in time. As discussed in 

Subsection 2.2.1.6, a positive relation should be expected. 

Finally, aiming at capturing the global real economic activity, we employ Ravazzolo 

and Vespignani’s (2016) newly-developed proxy, i.e. the World steel production. Seasonally 

adjusted monthly data on the World steel production (measured in thousand metric tonnes, 

TMT) has been directly provided to us by Mr. Vespignani. A positive relation should also be 

expected between the World steel production and the futures prices or returns. 

 

3.2.2 Data Characteristics 

 

Figure 3.2 plots the level prices of the oi_gr, rir, ts, dfs and twdi as well as the logarithmic 

prices of the wsp (i.e. lwsp) over the sample period Jan.1990 to Dec.2016. From this graphical 
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representation, one could deduce that nearly all the data series are non-stationary with the ex-

ception of the oi_gr series. 

Indicatively, real interest rate exhibits a downward trend during the early 1990s and 

the early 2000s as well as a rather abrupt reduction in the wake of the global financial crisis of 

2007, maintaining persistently low levels and even reaching negative values. According to 

FRED
18

, these periods correspond to US recessions; during recession periods the nominal in-

terest rates are decreased. The term spread seems to undergo a rather sharp increase during the 

same periods, obviously as a consequence of the low short-term interest rates. Default spreads 

are also sharply increased after the 2007 financial crisis, apparently reflecting the increased 

fear in the financial markets and reaching almost four basis points in Dec. 2008 (4bps ≈ 

0.0338%). Moreover, the logarithmic series of World steel production maintains an overall 

sustained upward trend throughout the whole period with the exception of a rather small re-

duction during 1997-1998 (presumably as a result of the Asian and Russian crises) and a rela-

tively sharper reduction during 2008.  
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Fig. 3.2  Evolution of the economic predictors series over the period Jan.1990 to Dec.2016. 

 

 

3.3 Descriptive Statistics and Stationarity Tests 
 

It’s urgent that the futures prices series as well as the economic predictors obtained undergo 

all the necessary statistical tests.  

                                                      
18

 See https://fred.stlouisfed.org/series/JHDUSRGDPBR#0 . 

https://fred.stlouisfed.org/series/JHDUSRGDPBR#0
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We thus continue by presenting the descriptive statistics for the end-of-month settle-

ment prices of the NYMEX WTI Crude Oil, Heating Oil, and Natural Gas futures contracts 

and the economic variables as well. Table 3.2a summarizes the distribution of these series by 

reporting the mean, standard deviation, coefficient of skewness, and kurtosis of the series both 

in levels (Panel A and C) and first differences (Panel B and D). 

We first check the data series for stationarity conducting an Augmented Dickey-Fuller 

(ADF) unit root test. In addition, in order to ensure the robustness of our results, we also ap-

ply the Dickey-Fuller test with GLS Detrending (DF-GLS) of Elliott et al., the Phillips-Perron 

(PP) tests, and the Zivot-Andrews Breakpoint Unit Root Test (see Table 3.2b). The aforemen-

tioned three tests check the null hypothesis (𝐻0) of a unit root existence which indicates non-

stationarity. As for the Zivot-Andrews test, it tests the null hypothesis of a unit root existence 

while allowing for a structural break in both the intercept and trend. 

 Indicatively, for any series 𝑦𝑡 we conduct the Augmented Dickey-Fuller test based on 

three different forms. The first form does not contain a constant or a trend term, i.e.  

 

                                𝛥𝑦𝑡 = 𝛿 𝑦𝑡−1 + ∑ 𝛾𝑖 𝛥𝑦𝑡−𝑖 +𝑞
𝑖=1 𝜀𝑡                                         (3.1a) 

 

the second contains a constant term, i.e. 

 

                             𝛥𝑦𝑡 = 𝑎0 + 𝛿 𝑦𝑡−1 + ∑ 𝛾𝑖 𝛥𝑦𝑡−𝑖 +𝑞
𝑖=1 𝜀𝑡                                   (3.1b) 

 

and the third contains both constant and trend, i.e. 

 

                      𝛥𝑦𝑡 = 𝑎0 + 𝛿 𝑦𝑡−1 + 𝑎1𝑡 + ∑ 𝛾𝑖 𝛥𝑦𝑡−𝑖 +𝑞
𝑖=1 𝜀𝑡                               (3.1b) 

 

where 𝑞 denotes  the appropriate - optimal  number of lag differences, defined by the  

Schwarz-Bayesian information criterion (SIC). 

Results from the application of these tests indicate that not enough evidence is availa-

ble to reject the null hypothesis at the significance level of 5%. It follows that most of the cur-

rent futures prices are not stationary series in levels (see Panel A). As for the economic pre-

dictors, the only stationary series is that of the median open interest growth rate (see Panel C), 

while there is evidence that the rest of the predictors are integrated of order one, i.e. I(1). To 

overcome the problem of non-stationarity, we proceed to creating new time series.  
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Regarding the futures contracts, we first transform the initial price series into loga-

rithmic prices. For each commodity 𝑖 (𝑖=CL, HO, NG) expiring at 𝑇 months (𝑇=1,2,3), the 

new series is computed as follows: 

 

                                                   𝑙𝑛𝐹𝑡
𝑖𝑇 = 𝑙𝑜𝑔(𝐹𝑡,𝑇

𝑖 )                                                  (3.2) 

 

where 𝐹𝑡
𝑖𝑇 stands for the 𝑖-th commodity futures price observes at time 𝑡. We then compute 

their first differences, i.e. the first difference of the log prices at 𝑡 + ℎ and 𝑡: 

 

𝑑𝑙𝑛𝐹𝑡+ℎ
𝑖𝑇 = 𝑙𝑛𝐹𝑡+ℎ

𝑖𝑇 − 𝑙𝑛𝐹𝑡
𝑖𝑇 

                                                                    = log(𝐹𝑡+ℎ
𝑖𝑇 ) − log(𝐹𝑡

𝑖𝑇) 

                                                                    = log (
𝐹𝑡+ℎ

𝑖𝑇

𝐹𝑡
𝑖𝑇 ) ⇒ 

                                             𝑑(log(𝐹𝑡+ℎ
𝑖𝑇 )) = log (

𝐹𝑡+ℎ
𝑖𝑇

𝐹𝑡
𝑖𝑇 )                                                     (3.3a) 

 

Note that in economic science small changes in the natural log of a variable, i.e. 𝑑(log(•)), 

approximate continuously compounded returns.  

 

                                                            𝑅𝑡+ℎ
𝑖𝑇 = log (

𝐹𝑡+ℎ
𝑖𝑇

𝐹𝑡
𝑖𝑇 )                                                    (3.3b) 

 

Indicatively, for a futures contract written on the NYMEX WTI Crude Oil (𝑖=CL) maturing at 

one month (𝑇=1) the 𝑡 + ℎ return is computed as 𝑅𝑡+ℎ
𝐶𝐿1 = log (

𝐹𝑡+ℎ
𝐶𝐿1

𝐹𝑡
𝐶𝐿1). Actually, in the com-

modity futures markets the aforementioned returns reflect the (positive or negative) ℎ-month 

(log) excess returns earned at time 𝑡 + ℎ by securing a futures position; a futures market par-

ticipant buys a 𝑇-month futures contract in month 𝑡 and sells it ℎ-months later, i.e. in month 

𝑡 + ℎ (just before it expires), thus experiencing a capital gain/loss of  𝑅𝑡+1:𝑡+ℎ
𝐶𝐿1  (see among 

others, Alquist et al., 2013).  

To this end, Table 3.2a (Panel B) also summarizes the distribution of the futures re-

turns. The results show that all energy futures earned positive mean returns during the whole 

period; NG1 and NG2 exhibit the highest monthly mean returns (0.008 or 0.80%)  and, 

hence, standard deviation (see 16.4% and 14.3% for RNG1 and RNG2, respectively). The results 

also indicate that the return distributions of natural gas futures contracts are negatively 
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skewed (skewed to the left), whereas the distributions of the crude and heating oil futures re-

turns are positively skewed and exhibit positive excess kurtosis (leptokurtic or fat tailed). Par-

ticularly, the Jarque-Bera (hereafter JB) Normality Test (with the null hypothesis being the 

H0: the series is normally distributed) indicated that the all the return series (with the excep-

tion of RNG3) are normally distributed. The application of the ADF test confirms the stationari-

ty of the newly-created return series, which is in line with Zagaglia (2010) and Schalck and 

Chenavaz (2015). Figure 3.3 is a graphical representation of the return series. 

Regarding the economic variables, we compute and examine the first difference of 

each non-stationary series. Results placed in Table 3.2a (Panel D) and Table 3.2b (Panel B) 

confirm the stationarity of the new series. Pairwise correlations among the economic predic-

tors are also reported in Panel E of Table 3.2a. The results indicate that the economic predic-

tors do not exhibit extreme correlation among each other, thus reducing the chances of multi-

collinearity problems. The evolution of the economic predictors sampled at a monthly fre-

quency is shown in Figure 3.4. 

 

Table 3.2a 

Descriptive statistics of the three shortest maturity futures and economic predictors in levels 

and first differences 

 
This table reports the descriptive statistics for the NYMEX WTI Crude Oil, Heating Oil, and Natural Gas futures 

as well as the six economic predictors sampled at monthly frequency over the in-sample period. Panel A and C 

contain the results of the price levels, while Panel B (futures log-returns) and D reports the results on the station-

ary series eventually used in the economic model. Pairwise correlations among the economic predictors are also 

reported in Panel E. The in-sample period is from January 1990 to December 2003. “ADF” refers to the Aug-

CL1 CL2 CL3 HO1 HO2 HO3 NG1 NG2 NG3

 Observations 168 168 168 168 168 168 168 168 168

 Mean 22.106 21.939 21.754 61.302 60.688 60.434 2.682 2.687 2.674

 Std. Dev. 5.425 5.168 4.889 15.780 14.873 14.163 1.368 1.290 1.206

 Skewness 0.640 0.612 0.574 0.902 0.790 0.728 1.982 1.656 1.302

 Kurtosis 2.983 2.863 2.740 4.167 3.482 3.284 8.003 5.890 3.717

 Jarque-Bera (JB) 11.480 10.629 9.692 32.308 19.114 15.417 285.158 135.204 51.069

(0.003)
***

(0.005)
***

(0.008)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

 ADF -3.061 -2.859 -2.725 -3.340 -2.913 -2.766 -4.483 -3.814 -3.194

(0.119) (0.179) (0.228) (0.064)
*

(0.161) (0.212) (0.002)
***

(0.018)
**

(0.089)
*

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3

 Observations 167 167 167 167 167 167 167 167 167

 Mean 0.002 0.002 0.002 0.003 0.003 0.003 0.008 0.008 0.007

 Std. Dev. 0.095 0.088 0.081 0.105 0.095 0.089 0.164 0.143 0.119

 Skewness 0.286 0.238 0.191 0.085 0.203 0.312 -0.309 -0.308 -0.059

 Kurtosis 4.768 5.219 5.549 5.744 4.729 4.764 3.690 3.530 2.818

 Jarque-Bera (JB) 24.019 35.837 46.241 52.586 21.951 24.360 5.976 4.597 0.328

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.050)
**

(0.100)
*

(0.849)

 ADF -11.503 -11.115 -10.951 -12.872 -11.617 -11.044 -11.214 -10.873 -10.694

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

Panel A: Futures Prices (in levels)

Panel B: Futures Returns (prices in logarithmic first differences)
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mented Dickey Fuller Test where the lag length selection is based upon the Schwarz-Bayesian Information Crite-

rion (SIC). The asterisks 
*
, 

**
, and 

***
 denote a rejection of the null hypothesis at 10%, 5% and 1% significance 

level, respectively. The null hypothesis for the Jarque-Bera and the ADF tests is that the series is normally dis-

tributed and that it contains a unit root, respectively. 
 

Table 3.2a (Cont’d.) 

Descriptive statistics of the three shortest maturity futures and economic predictors in levels 

and first differences 

 
This table reports the descriptive statistics for the NYMEX WTI Crude Oil, Heating Oil, and Natural Gas futures 

as well as the six economic predictors sampled at monthly frequency over the in-sample period. Panel A and C 

contain the results of the price levels, while Panel B (futures log-returns) and D reports the results on the station-

ary series eventually used in the economic model. Pairwise correlations among the economic predictors are also 

reported in Panel E. The in-sample period is from January 1990 to December 2003. “ADF” refers to the Aug-

mented Dickey Fuller Test where the lag length selection is based upon the Schwarz-Bayesian Information Crite-

rion (SIC). The asterisks 
*
, 

**
, and 

***
 denote a rejection of the null hypothesis at 10%, 5% and 1% significance 

level, respectively. The null hypothesis for the Jarque-Bera and the ADF tests is that the series is normally dis-

tributed and that it contains a unit root, respectively. 

oi_gr rir ts dfs twdi lwsp

 Observations 168 168 168 168 168 168

 Mean 0.008 0.014 0.019 0.008 101.115 11.066

 Std. Dev. 0.110 0.014 0.011 0.002 19.210 0.095

 Skewness 0.276 -0.580 -0.010 0.910 -0.147 0.813

 Kurtosis 3.151 2.526 1.825 2.888 1.589 2.813

 Jarque-Bera (JB) 2.297 10.994 9.662 23.267 14.537 18.758

(0.317) (0.004)
***

(0.008)
***

(0.000)
***

(0.001)
***

(0.000)
***

ADF -11.913 -1.431 -1.785 -2.547 -0.475 -2.071

(0.000)
***

(0.849) (0.708) (0.305) (0.984) (0.558)

DF-GLS -11.688
***

-1.467 -1.591 -2.347 -1.150 -0.843

PP -13.881 -1.436 -1.836 -2.199 0.446 -1.873

(0.000)
***

(0.847) (0.683) (0.487) (0.999) (0.664)

oi_gr d(rir) d(ts) d(dfs) d(twdi) d(lwsp)

 Observations 168 167 167 167 167 167

 Mean 0.008 0.000 0.000 0.000 0.266 0.002

 Std. Dev. 0.110 0.003 0.002 0.001 1.194 0.012

 Skewness 0.276 -0.642 0.472 1.713 -0.031 0.298

 Kurtosis 3.151 7.291 3.183 13.227 4.241 3.577

 Jarque-Bera (JB) 2.297 139.615 6.425 809.382 10.751 4.781

(0.317) (0.000)
***

(0.040)
**

(0.000)
***

(0.004)
***

(0.092)
*

ADF -11.913 -6.965 -5.662 -10.178 -8.893 -5.863

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

DF-GLS -11.688
***

-6.648
***

-10.039
***

-5.233
***

-8.718
***

-5.749
***

PP -13.881 -13.914 -9.161 -9.949 -8.637 -15.106

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

oi_gr d(rir) d(ts) d(dfs) d(twdi) d(lwsp)

oi_gr 1.000

d(rir) -0.086 1.000

d(ts) 0.049 -0.298 1.000

d(dfs) 0.008 -0.149 0.085 1.000

d(twdi) 0.009 0.188 0.054 -0.020 1.000

d(lwsp) -0.053 -0.160 -0.050 0.048 0.016 1.000

Panel C: Economic Variables (in levels)

Panel D: Economic Variables (in first differences)

Panel E: Pairwise Correlations of Economic Predictors
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Table 3.2b  

Robustness tests for the stationarity of the economic predictors. 

 
This table reports robustness test regarding the stationarity of the economic predictors sampled at monthly fre-

quency over the in-sample period. The in-sample period is from January 1990 to December 2003. Panel A con-

tains the results on levels, while Panel B reports the results on the stationary series eventually used in the eco-

nomic model. “Z-A”, “DF-GLS” and “PP” refer to the Zivot-Andrews Breakpoint Unit Root Test, the Dickey-

Fuller GLS Test, and the Phillips-Perron Test, respectively. The asterisks 
*
, 

**
, and 

***
 denote a rejection of the 

null hypothesis at 10%, 5% and 1% significance level, respectively. The null hypothesis for the DF-GLS and PP 

tests is that the series contains a unit root, while the null hypothesis for the Z-A test examines for a unit root ex-

istence while allowing for a structural break in both the intercept and trend 
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Fig. 3.3  Stationary series of the six economic predictor from Jan.1990 to Dec.2003.  

oi_gr rir ts dfs twdi lwsp

Z-A -12.300
***

-4.005 -3.703 -4.215 -4.012 -3.376

Z-A Breakpoint 1993m09 2001m01 2001m03 1995m01 2001m09 1998m04

DF-GLS -11.688
***

-1.467 -1.591 -2.347 -1.150 -0.843

PP -13.881 -1.436 -1.836 -2.199 0.446 -1.873

(0.000)
***

(0.847) (0.683) (0.487) (0.999) (0.664)

d(rir) d(ts) d(dfs) d(twdi) d(lwsp)

Z-A -6.630
***

-6.630
***

-10.487
***

-9.116
***

-6.226
***

Z-A Breakpoint 2000m12 2001m01 2001m09 2000m07 1998m01

DF-GLS -6.648
***

-10.039
***

-5.233
***

-8.718
***

-5.749
***

PP -13.914 -9.161 -9.949 -8.637 -15.106

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

(0.000)
***

Panel A: Economic Variables (in levels)

Panel B: Economic Variables (in first differences)
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Fig. 3.4  Returns of the three shortest maturity NYMEX WTI Crude Oil, Heating Oil and Nat-

ural Gas futures from Feb.1990 to Dec.2003.  

 

 

3.4 Principal Component Analysis (PCA) Dataset 

 

3.4.1 McCracken and Ng’s Dataset  

 

Despite the fact that our economic model incorporates variables that have some clear econom-

ic interpretation, selecting the most suitable predictors out of a wide range of potential driving 

factors is considered to be a rather subjective process. To this end, the Principal Component 

Analysis (PCA) employed within the context of this study involves the extraction
19

 of few 

latent factors, i.e. the principal components (PCs), which can be used as predictors in a linear 

regression equation. 

                                                      
19

 The methodology regarding the extraction of the common latent factors is described in Subsection 4.1.3.1 De-

scription. 
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However, the PCA requires the dissemination of information from large macroeco-

nomic datasets, viz. “big data”, the collection of which is rather difficult and lengthy. Consist-

ing of 134 monthly macroeconomic US indicators, the McCracken and Ng’s (2016) dataset 

facilitates the data collection process. We thus obtain the McCracken and Ng’s macroeconom-

ic dataset which is publicly and readily accessible from FRED
20

 and, based on the suggested 

data transformation that they provide, we proceed to transforming the variables in order to 

achieve stationarity. We note here that stationarity of the variables included in the large da-

taset is required in order to obtain valid estimates for the PCs. 

 

3.4.2 Principal Components (PCs) Characteristics  

 

Next, we employ the PCA and extract 134 PCs with the decision upon the number of PCs to 

retain being left to the discretion of each individual researcher. A common rule of thumb indi-

cates keeping the number of PCs that produce a cumulative variance of 90%. As Table 3.3 

shows (Panel B), there are three (3) out of the total number (134) of joint PCs which perform 

a 90.41% cumulative percentage of the original variance explained. We thus retain the first 

three standardized PCs in order to employ them in our latent factor model.  

Table 3.3 (Panel A) also presents the descriptive statistics of the first three joint stand-

ardized PCs derived. The results from the application of the Jarque-Bera test indicate that the 

first PC is not normally distributed, while the second and the third retained PCs are found to 

be normally distributed. Moreover, application of the ADF, DF-GLS and PP tests on each of 

the three retained PCs indicates that the extracted principal components are stationary. 
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Fig. 3.5  Graphical representations of the first three extracted PCs from Jan.1990 to 

Dec.2003.  

                                                      
20

 The large macroeconomic database is available at https://research.stlouisfed.org/econ/mccracken/fred-

databases/ (FRED-MD). 

https://research.stlouisfed.org/econ/mccracken/fred-databases/
https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Table 3.3  

Descriptive statistics of the three standardized PCs retained from the Joint PCA and cumula-

tive proportion of variance explained.   

  Panel A: Descriptive Statistics 

  PC1 PC2 PC3 

 Missing Observations 26 26 26 

 Skewness 0.660 0.355 0.079 

 Kurtosis 2.930 2.940 3.465 

 Jarque-Bera (JB) 10.346 2.999 1.428 

  (0.006)
***

 (0.223) (0.489) 

  Panel B: Explained Variance 

  PC1 PC2 PC3 

 Eigenvalue 58.708 12.391 9.382 

 Cumulative Value 58.708 71.100 80.482 

 Cumulative Proportion 65.950 79.870 90.410 
This table reports the descriptive statistics (Panel A) for the first three standardized principal components (PCs) 

extracted from the application of Joint PCA on the McCracken and Ng’s (2016) large macroeconomic dataset. 

The 134 macroeconomic indicators incorporated in the dataset are sampled at monthly frequency over the in-

sample period, i.e. Jan. 1990 - Dec. 2003. Based on the McCracken and Ng’s suggested data transformation, the 

aforementioned series are transformed into stationary series necessary for obtaining valid estimates for the PCs. 

The asterisks 
*
, 

**
, and 

***
 denote a rejection of the null hypothesis at 10%, 5% and 1% significance level, respec-

tively. The null hypothesis for the Jarque-Bera test is that the series is normally distributed. Panel B reports the 

cumulative proportion of the original dataset’s variance explained by the retained PCs. 
 

 

However, it is rather obvious that the PCs extracted from the large dataset do not have 

any economic interpretation, thus making it rather difficult to us to comprehend the infor-

mation conveyed. To this end, we are motivated by Zagaglia’s (2010) work, who regresses 

each of his extracted factors on the data series comprising his large dataset and, eventually, 

identifies which of the series is most correlated with each factor based on the corresponding 

R
2 

values. Similarly, in order to examine the relationship between each individual PC and 

each series (after transformation) included in the McCracken and Ng’s dataset, we proceed to 

creating three correlation matrices (one for each of the components). We next compute the R
2 

values as the square of the pairwise correlation coefficients (this holds for bivariate regres-

sions) in each matrix. Ranking the results in a descending order, Table 3.4 reports the vari-

ance explained by the five (McCracken and Ng’s transformed) series which are most correlat-

ed with the PCs extracted. 

The results indicate nearly-perfect correlation between the first extracted principal 

component (PC1) and the CBOE S&P 100 Volatility Index (VXO), apparently reflecting the 

investors’ sentiment and expectations regarding the short-term (one-month) volatility in the 
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US stock market, conveyed by S&P 100 stock index option prices. Increased uncertainty and 

“fear” in the stock market is typically related to bearish price action. Finally, PC2 and PC3 

seem to be moderately correlated with two individual indicators, the Consumer Sentiment In-

dex and the Help-Wanted Index. An increased consumer sentiment index is associated with 

positive feelings and prospects regarding the short-term future economic and financial condi-

tions. This, in turn, leads to a positive expected relationship between the index of Consumer 

Sentiment and the futures returns. As for the Help-Wanted Index, it captures indicates how 

many positions need to be filled. An increased index is thought to reflect a shortage of em-

ployees, which in turn may lead to higher wages and wage inflation (in order to attract work-

ers) that adversely affect the conventional markets. On the contrary, the increased salaries im-

prove the employees’ position as consumers, which might lead to higher commodity prices. 

 

 

Table 3.4  

Proportion of explained variance of highly-correlated series. 

This table reports the strongest pairwise correlations between the McCracken and Ng’s (2016) data series and the 

first three principal components (PCs) extracted from their whole dataset. The corresponding FRED mnemonic, 

description, and group are also reported for each series. The sample covers the period Jan. 1990 - Dec. 2003.  

 

 

 

 

 

 

FRED mnemonic Description Group

VXOCLSx CBOE S&P 100 Volatility Index (VXO) Stock market

L_PERMITW New Private Housing Permits, West Housing

L_PERMIT New Private Housing Permits Housing

L_PERMITS New Private Housing Permits, South Housing

L_HOUST Housing Starts: Total New Privately Owned

FRED mnemonic Description Group

D_UMCSENTx Consumer Sentiment Index Consumption

D_HWI Help-Wanted Index for US Labour Market

D_HWIURATIO Ratio of Help Wanted / No.Unemployed Labour Market

D_GS1 1-Year Treasury Rate Interest & Exchange Rates

D_GS5 5-Year Treasury Rate Interest & Exchange Rates

FRED mnemonic Description Group

D_HWI Help-Wanted Index for US Labour Market

D_UMCSENTx Consumer Sentiment Index Consumption, Orders & Inventories

D_HWIURATIO Ratio of Help Wanted / No.Unemployed Labour Market

D_LD_MZMSL MZM Money Stock Money & Credit

D_LD_M2SL M2: Money Stock Money & Credit

32.730%

12.163%

9.690%

ρ ρ
2

 ≈ R
2

ρ

ρ

ρ
2

 ≈ R
2

ρ
2

 ≈ R
2

52.266%

34.240%

10.847%

9.198%

43.038%

36.784%

-0.311

99.391%

Panel Α: PC 1

43.785%

43.251%

43.089%

33.685%

Panel B: PC 2

Panel C: PC 3

52.410%

0.329

0.303

-0.656

0.606

-0.572

-0.349

0.658

0.656

0.580

0.724

0.723

0.585

R
2

 between the McCracken & Ng's Data Series and the Extracted PCs

0.997

0.662
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3.4.3 Stability of the PCA results 

 

Furthermore, we check the stability of the PCA results over the examined period, i.e. Jan. 

1990 to Dec. 2003. That is because the US economy underwent an eight-month recession pe-

riod (Mar. 2001 - Nov. 2001), while the McCracken and Ng’s (2016) database consists exclu-

sively of US economic indicators.  

Therefore, we break up the in-sample period in two sub-periods, i.e. Jan. 1990 - Feb. 

2001 and Mar. 2001 - Dec. 2003, the cutoff point reflecting the month of the early-2000s re-

cession break-out, which might have created a structural break in the data. We then apply the 

PCA on the 134 McCracken and Ng’s transformed data series within each sub-period. Table 

3.5 reports the results. As Table 3.3 shows (Panel B), there are three (3) out of the total num-

ber (134) of joint PCs which perform a 93.22% and 96.09% cumulative proportion of the 

original variance explained within the first and the second sub-period, respectively. Overall, 

the results obtained from PCA analysis on the full in-sample period (Jan. 1990 - Dec. 2003) 

do not demonstrate significant differences from those obtained from the two sub-periods. 

 

Table 3.5  

Descriptive statistics of the three standardized PCs retained from the Joint PCA and cumula-

tive proportion of variance explained within the two sub-periods.   

  

1
st 

Sub-Period:  

Jan.1990-Feb.2001 

2
nd 

Sub-Period:  

Mar.1991-Dec.2003   

  Panel A: Descriptive Statistics   

  PC1 PC2 PC3 PC1 PC2 PC3   

 Observations 108 108 108 34 34 34   

 Skewness 0.581 0.442 -0.191 0.567 -0.090 0.440   

 Kurtosis 2.628 2.976 3.618 2.278 2.442 2.317   

 Jarque-Bera (JB) 6.708 3.524 2.377 2.564 0.488 1.760   

  (0.035)
**

 (0.172) (0.305) (0.277) (0.784) (0.415)   

  Panel B: Explained Variance   

  PC1 PC2 PC3 PC1 PC2 PC3   

 Eigenvalue 44.711 13.263 7.304 56.759 15.153 8.039   

 Cumulative Value 44.711 57.974 65.278 56.759 71.912 79.951   

 Cumulative Proportion 63.850 82.790 93.220 68.210 86.430 96.090   
This table reports the descriptive statistics (Panel A) for the first three standardized principal components (PCs) 

extracted from the application of Joint PCA on the McCracken and Ng’s (2016) large macroeconomic dataset 

(transformed series) over two sub-periods. The cutoff point corresponds to the month of the early-2000s reces-

sion break-out, i.e. March 2001, which might have created a structural break in the data. The asterisks 
*
, 

**
, and 

***
 denote a rejection of the null hypothesis at 10%, 5% and 1% significance level, respectively. The null hypoth-

esis for the Jarque-Bera test is that the series is normally distributed. Panel B reports the cumulative proportion 

of the original dataset’s variance explained by the retained PCs for each sub-period. 
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Chapter 4: Methodology 
 

In this section, we first provide a brief description of the alternative return prediction models 

employed within the context of this study in order to individually examine the predictability 

of the NYMEX energy futures prices. We next describe the methodological approaches fol-

lowed to estimate the models and produce short-term in-sample predictions (point forecasts) 

as well as out-of-sample forecasts. Last but not least, the evaluation criteria used to assess the 

predictive accuracy of the produced forecasts are also reported in this chapter.  

 

4.1 In-Sample Return Prediction Models 

 

Overall, for each futures contract under examination we employ three alternative model speci-

fications; we construct a seven-factor economic model, a univariate autoregressive model 

AR(1), and a Principal Component Analysis (PCA hereafter) latent factor model. 

 

4.1.1 Economic Variables Model 

 

Concerning our economic model, select a rather small set of variables out of a wide range of 

factors that have been previously found to possess a predictive power over commodity, bond 

and/or equity prices and risk premia.  

In short, the economic factors employed in this study are the open interest median 

growth rate (oi_gr), the short-term real interest rate (rir), the term spread (ts), the default 

spread (dfs), the trade-weighted US dollar index (twdi) and the world steel production (wsp) 

(see Chapter 2). Since the six aforementioned variables are though to convey information ei-

ther on the current or the future economic and financial conditions of an economy, we consid-

er them as control variables in our economic model. The cyclical variations of these factors, 

either they are procyclical or countercyclical, produce cyclical (or time-varying) variations in 

the assets returns, too. 

Given that the futures dataset consists of three alternative energy commodities, each of 

multiple maturities, we proceed to constructing nine (9) respective forecasting models. In par-

ticular, for each commodity 𝑖 (𝑖=CL, HO, NG) expiring at 𝑇 periods (𝑇=1, 2, 3 months) we 

consider the following return prediction model that is commonly employed in the financial 

literature of risk premium predictability (see among others Baetje and Menkhoff, 2016; Gar-

gano and Timmermann, 2014; Kolev and Karapandza, 2017): 
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                                      𝑅𝑡+1:𝑡+ℎ
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑘 𝑥𝑘,𝑡 + 𝜀𝑡+1:𝑡+ℎ

𝑖𝑇  𝐾
𝑘=1                          (4.1a) 

 

where 𝑎0 is a constant, 𝑥𝑘,𝑡 (1≪k≪𝐾) denotes the 𝑘-th predictor
21

 with its corresponding pa-

rameter 𝑎𝑘 to be estimated, and 𝜀𝑡+1:𝑡+ℎ
𝑖𝑇  denotes the respective random disturbance term usu-

ally assumed to be serially uncorrelated and distributed with mean zero and constant variance 

 

                                                                  𝜀𝑡+1:𝑡+ℎ
𝑖𝑇 ~𝑁(0, 𝜎𝜀

2)                                            (4.1b) 

 

Moreover, 𝑅𝑡+1:𝑡+ℎ
𝑖𝑇  denotes the cumulative

22
 return of holding the asset over the interval end-

of-month 𝑡 to end-of-month 𝑡 + ℎ. This is supposed to be the ℎ-step-ahead forecast, where the 

forecast horizon ℎ is left to the discretion of each author (1≪h<∞ and ℎ 𝜖 ℤ+
). Alternatively, 

the end-of-month 𝑡 could be expressed as the beginning-of-month 𝑡 + 1. The asset corre-

sponds to the 𝑖-th futures contract of a given maturity 𝑇 (𝑇=1,2,3). In addition, 𝑡=1,2, …, 

N=167 (in-sample size). In particular, for the in-sample period (Feb.1990-Dec.2003) consid-

ered within the context of this study, the original sample size equals N=167 monthly observa-

tions (returns). To this end, 𝑁 − ℎ observations are available to be used in order to estimate 

the in-sample predictive model. Alternatively, Equation (4.1a) could be written as: 

 

                                    𝑅𝑡+1−ℎ:𝑡
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑘 𝑥𝑘,𝑡−ℎ + 𝜀𝑡+1−ℎ:𝑡

𝑖𝑇  𝐾
𝑘=1                        (4.1c) 

 

Since the set of predictors can incorporate both exogenous economic factors and past values 

of the dependent variable, we also put the dependent variable lagged ℎ-months: 

 

                      𝑅𝑡+1−ℎ:𝑡
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑘 𝑥𝑘,𝑡−ℎ + 𝑎𝐾+1 𝑅𝑡−ℎ−1:𝑡−ℎ

𝑖𝑇 + 𝜀𝑡+1−ℎ:𝑡
𝑖𝑇  𝐾

𝑘=1      (4.1d) 

 

For a forecast horizon of ℎ=1 month ahead Equation (4.1d) can be written as follows: 

 

                                  𝑅𝑡+1−1:𝑡
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑘 𝑥𝑘,𝑡−1 + 𝑎𝐾+1 𝑅𝑡−1−1:𝑡−1

𝑖𝑇 + 𝜀𝑡+1−1:𝑡
𝑖𝑇  𝐾

𝑘=1   ⇔ 

                                                      
21

 The set of potential predictors can incorporate exogenous explanatory factors along with lagged values of the 

dependent variable. 
22

 For the cumulative return earned from 𝑡 to 𝑡 + ℎ it holds that: 𝑅𝑡+1:𝑡+ℎ
𝑖𝑇 = ∑ 𝑅𝑡+𝑖

𝑖𝑇ℎ
𝑖=1 . For instance, ℎ = 3 pro-

duces a cumulative return of 𝑅𝑡+1:𝑡+3
𝑖𝑇 = ∑ 𝑅𝑡+𝑖

𝑖𝑇ℎ=3
𝑖=1 = 𝑅𝑡+1

𝑖𝑇 + 𝑅𝑡+2
𝑖𝑇 + 𝑅𝑡+3

𝑖𝑇  . 
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                                  𝑅𝑡:𝑡
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑘 𝑥𝑘,𝑡−1 + 𝑎𝐾+1 𝑅𝑡−2:𝑡−1

𝑖𝑇 + 𝜀𝑡:𝑡
𝑖𝑇  𝐾

𝑘=1  

or 

                                  𝑅𝑡
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑘 𝑥𝑘,𝑡−1 + 𝑎𝐾+1 𝑅𝑡−1

𝑖𝑇 + 𝜀𝑡
𝑖𝑇 𝐾

𝑘=1                                (4.1e) 

 

To this end, we generate one-step ahead (ℎ = 1) in-sample forecasts regressing each 

𝑅𝑡
𝑖𝑇 series on the six (K=6) one-month lagged economic predictors and its own past values 

(𝑅𝑡−1
𝑖𝑇 ). Note here that 𝑅𝑡

𝑖𝑇 reflects the cumulative return earned from buying a futures at the 

end of month 𝑡 − 1 and selling it at the end of month 𝑡. The nine (9) models are estimated us-

ing the Ordinary Least Squares (OLS) method with the t-statistics being adjusted for both het-

eroscedasticity and serial correlation using the Newey-West method (HAC Consistent Covar-

iance for the calculation of the standard errors). The estimation is done using the 166 availa-

ble observations (N-ℎ, where ℎ=1). 

 

𝑅𝑡
𝑖𝑇  = 𝛼0 + 𝑎1 𝑜𝑖_𝑔𝑟𝑡−1 + 𝑎2 𝑑(𝑟𝑖𝑟)𝑡−1 + 𝑎3 𝑑(𝑡𝑠)𝑡−1 + 𝑎4 𝑑(𝑑𝑓𝑠)𝑡−1 + 𝑎5 𝑑(𝑡𝑤𝑑𝑖)𝑡−1 +

            +𝑎6 𝑑(𝑙𝑤𝑠𝑝)𝑡−1 + 𝑎7 𝑅𝑡−1
𝑖𝑇 + 𝜀𝑡                                                                              (4.1e) 

 

According to Bessembinder and Chan (1992), such a model specification is assumed to test 

the semi-strong form efficiency of a market, due to the fact that it considers nearly all the in-

formation available up to time 𝑡.  

 

4.1.2 Univariate Autoregressive Models AR(1) 

 

Apart from our basic economic model, univariate autoregressive models are also employed in 

order to investigate the predictability of the NYMEX energy futures from its own past values. 

This model specification set up is thought to test the weak form efficiency of a market; the 

weak form market efficiency assumes that assets’ market prices incorporate all available in-

formation at any point in time. 

To this end, we consider the following return prediction model for each commodity 𝑖 

(𝑖=CL, HO, NG) maturing at 𝑇 months (𝑇=1,2,3): 

 

                                     𝑅𝑡+1:𝑡+ℎ
𝑖𝑇 = 𝑎0 + 𝜃 𝑅𝑡−1:𝑡

𝑖𝑇 + 𝜀𝑡+1:𝑡+ℎ
𝑖𝑇                                  (4.2a) 

or 

                                    𝑅𝑡+1−ℎ:𝑡
𝑖𝑇 = 𝑎0 + 𝜃 𝑅𝑡−ℎ−1:𝑡−ℎ

𝑖𝑇 + 𝜀𝑡+1−ℎ:𝑡
𝑖𝑇                            (4.2b) 
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For a forecast horizon of ℎ=1 month Equation (4.2b) can be written as follows. Therefore, the 

autoregressive models to be estimated are: 

 

                                    𝑅𝑡+1−1:𝑡
𝑖𝑇 = 𝑎0 + 𝜃 𝑅𝑡−1−1:𝑡−1

𝑖𝑇 + 𝜀𝑡+1−1:𝑡
𝑖𝑇                              

                                    𝑅𝑡:𝑡
𝑖𝑇 = 𝑎0 + 𝜃 𝑅𝑡−2:𝑡−1

𝑖𝑇 + 𝜀𝑡:𝑡
𝑖𝑇                     

or 

                                    𝑅𝑡
𝑖𝑇 = 𝑎0 + 𝜃 𝑅𝑡−1

𝑖𝑇 + 𝜀𝑡
𝑖𝑇                                                     (4.2c) 

 

 4.1.3 Principal Components Analysis (PCA) Models  

 

In this subsection we provide a brief description of the Principal Components Analysis (PCA 

hereafter), which constitutes an alternative method of investigating the dynamics of variables 

under consideration without assuming a predetermined set of control variables. Overall, the 

PCA involves the extraction of few unobserved (latent) factors out of a large dataset, the so 

called principal components (PCs hereafter). The extracted factors can then be employed as 

potential predictors in a linear regression equation set up (Chantziara and Skiadopoulos, 

2008).  

 

4.1.3.1 Description   

 

In brief, PCA is a linear statistical technique that contributes to reducing the dimensionality of 

a large number of potentially correlated stationary variables, transforming them into a set of 

uncorrelated variables, the common latent factors or PCs, while retaining as much of the orig-

inal variation as possible (Daskalaki et al., 2014). The PCs are arranged in such a way that the 

first few retain most of the variation present in the original dataset. 

In particular, we start by denoting time by 𝑡 = 1, 2, … , 𝑇 and assuming a set of 𝑛 vari-

ables under consideration 𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏, so that each and every original variable 𝑗 corresponds 

to a (𝑇x1) vector 𝒓𝒋 and 𝑹 is a (𝑇x𝑛) matrix of the 𝑛 original variables: 

 

                              𝑹 = [𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏] = (

𝑟11 𝑟21 … 𝑟𝑛1

𝑟12 𝑟22 … 𝑟𝑛2

⋮ ⋮ ⋱ ⋮
𝑟1𝑇 𝑟2𝑇 … 𝑟𝑛𝑇

)                           (4.3a) 
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We also assume a variance-covariance matrix, 𝑺𝒓.  

According to Chantziara and Skiadopoulos (2008) (see also Cavalcante, 2010), em-

ploying the PCA, we obtain a new set of 𝑛 artificial variables (i.e. the PCs) as linear combina-

tions of the vectors 𝒓, which are orthogonal to each other and capable of replicating the vari-

ance-covariance structure (𝑺𝒓) of the 𝑛 original variables. Therefore, in matrix notation the 

PCs are calculated as follows:  

                                                               𝑷 = 𝑹𝑳                                                     (4.3b) 

where 𝑷 is a (𝑇x𝑛) matrix of PCs due to the fact that there are 𝑇 observations on each explan-

atory variable, 𝑟𝑗. Specifically,  

                     𝑷 = [𝑷𝑪𝟏, 𝑷𝑪𝟐, … , 𝑷𝑪𝒏] = (

𝑃𝐶11 𝑃𝐶21 … 𝑃𝐶𝑛1

𝑃𝐶11 𝑃𝐶22 … 𝑃𝐶𝑛2

⋮ ⋮ ⋱ ⋮
𝑃𝐶1𝑇 𝑃𝐶2𝑇 … 𝑃𝐶𝑛𝑇

)                 (4.3c) 

 

with the columns 𝑷𝑪𝒋 of matrix 𝑷 being linear combinations of the columns of 𝑹. For in-

stance, the 𝑗th 
principal component is given as  

 

                                                       𝑷𝑪𝒋 = 𝑎1𝑗𝒓𝟏 + 𝑎2𝑗𝒓𝟐 + ⋯ + 𝑎𝑛𝑗𝒓𝒏                            (4.3d) 

 

where 𝑎𝑖𝑗 are the coefficients to be estimated (also known as factor loadings), corresponding 

to the coefficient on the 𝑖-th 
variable in the 𝑗-th

  
principal component. Overall, 𝑳 is a (𝑛x𝑛) 

matrix of the coefficients used to obtain the PCs (i.e. loadings): 

 

                                               𝑳 = (

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

)                                   (4.3d) 

 

Moreover, the extracted PCs are capable of explaining 100% of the original dataset’s 

variance and are arranged in order of diminishing variance. In this way, the first PC (denoted 

by 𝑃𝐶1) constitutes a linear combination of variables and accounts for the greatest percentage 

of variance of the original 𝑛 variables. The second PC, i.e. the 𝑃𝐶2, explains as much of the 

remaining variance (the variance left unexplained by 𝑃𝐶1) as possible. The third PC, 𝑃𝐶3, ex-
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plains the amount of variance not explained by the 𝑃𝐶1 and 𝑃𝐶2, and so on. Subsequently, the 

sum of the variances of the 𝑛 PCs equals the total variance of the original 𝑛 variables.  

Furthermore, in cases where a small number of PCs is found to explain a sufficiently 

large percentage of the total variance of the original variables, we could, for the sake of par-

simony, discard (omit) the rest of the PCs that account for only a small amount of the total 

variation, thus reducing significantly the dimension of the problem. Indicatively, retaining 

only the first 0 < 𝑚 < 𝑛 PCs and discarding the remaining 𝑛 − 𝑚 PCs, we get  

 

                                                  𝑹 = 𝑃(𝑚)𝐿(𝑚)
′ + 𝜀(𝑚)                                            (4.3e) 

 

where 𝑷 is a (𝑇x𝑚) matrix of PCs, 𝑹 is a (𝑇x𝑚) matrix of the original variables, 𝑳 is a 

(𝑚x𝑚) matrix of the loadings, and 𝜀(𝑚) is a (𝑇x𝑛) matrix of residuals (Chantziara and Skia-

dopoulos, 2008). Nevertheless, the decision upon the number of PCs to retain is left to the 

discretion of each individual researcher, since there is not a clearcut criterion. A common rule 

of thumb, however, indicates keeping the number of PCs that account for the 90% of the total 

variance (i.e. cumulative explained variance).  

 

4.1.3.2 PCs as Predictors – Joint PCA Models  

 

Having applied the PCA on the McCracken and Ng’s (2016) large macroeconomic dataset, 

the three retained PCs (i.e. 𝑚 = 3 out of the 𝑛 = 134 PCs) can then be used as predictors in a 

linear regression equation (see Chantziara and Skiadopoulos, 2008).  

To this end, we consider the following return prediction model for each commodity 𝑖 

(𝑖=CL, HO, NG) maturing at 𝑇 months (𝑇=1,2,3): 

                                 

                              𝑅𝑡+1:𝑡+ℎ
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑗

𝑚=3
𝑗=1 𝑃𝐶𝑗,𝑡 + 𝜀𝑡+1:𝑡+ℎ

𝑖𝑇                                 (4.4a) 

or 

                              𝑅𝑡+1−ℎ:𝑡
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑗

𝑚=3
𝑗=1 𝑃𝐶𝑗,𝑡−ℎ + 𝜀𝑡+1−ℎ:𝑡

𝑖𝑇                             (4.4b) 

 

For a forecast horizon of ℎ=1, Equation (4.4b) can be written as: 

 

                                           𝑅𝑡
𝑖𝑇 = 𝑎0 + ∑ 𝑎𝑗

𝑚=3
𝑗=1 𝑃𝐶𝑗,𝑡−1 + 𝜀𝑡

𝑖𝑇                                           (4.4c) 
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Consequently, the nine (9) PCA models to be estimated using the Ordinary Least Squares 

(OLS) method are: 

 

                                         𝑅𝑡
𝑖𝑇  = 𝑎0 + 𝑎1 𝑃𝐶1,𝑡−1 + 𝑎2 𝑃𝐶2,𝑡−1 + 𝑎3 𝑃𝐶3,𝑡−1 + 𝜀𝑡           (4.4d) 

  

Not that the t-statistics are again adjusted for both heteroscedasticity and serial correlation 

using the Newey-West method (HAC Consistent Covariance for the calculation of the stand-

ard errors). Equation (4.4d) is estimated using the 166 available observations (N-ℎ, where 

ℎ=1). 

 

4.1.4 In-Sample Evaluation Criteria 

 

After having estimated the aforementioned model specifications, we proceed to evaluating 

their in-sample fit employing some commonly used performance measures. 

Concerning the in-sample predictive ability of each factor, we examine the t-statistic 

and the 𝑝-value of the corresponding estimated coefficient. We test the null hypothesis of a 

statistically insignificant parameter; in other words, this indicates non predictability of the fu-

tures returns by this factor. In particular, under the model specification of Eq. (4.1a), we as-

sess the predictive ability of each 𝑘-th predictor (𝑥𝑘) by testing the statistical significance of 

the corresponding 𝑎𝑘 parameter as follows: 

 

                                                                    𝐻0: 𝑎𝑘 = 0 

                                                                    𝐻1: 𝑎𝑘 ≠ 0                                                       (4.5a) 

 

The null hypothesis (H0) of the test states that there is no predictability. On the contrary, a re-

jection of the H0 in favor of the alternative hypothesis (H1) indicates that information of the 𝑘-

th predictor available at the end-of-month 𝑡 is useful for predicting the cumulative return 

earned in the end of period 𝑡 + ℎ. 

Additionally, the R-squared coefficient (R
2
) and the adjusted R-squared (adj. R

2
) are 

typically used as criteria to assess the overall goodness of each model’s fit. Regarding the R-

coefficients (also known as coefficients of determination), they lie between zero (0) and unity 

(1), i.e. in the interval [0.0, 1.0] or [0.0, 100.0%], and are computed as follows:  
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                                                 𝑅2 =
∑ (𝑦𝑡̂−𝑦𝑡̅̅ ̅)2𝑁−ℎ

𝑡=1

∑ (𝑦𝑡−𝑦𝑡̅̅ ̅)2𝑁−ℎ
𝑡=1

                                                   (4.5b) 

                                                                                                                               

                                                         𝑅𝑎𝑑𝑗
2 = 𝑅2 −

𝑐−1

𝑁−𝑐−1
 (1 − 𝑅2)                                   (4.5c) 

 

where 𝑁 denotes the in-sample size and 𝑐 denotes the number of parameters in the model. 

Note that 𝑐 does not include the constant (𝑎0). The R-coefficients reflect the proportion of the 

total sample variance that is explained (determined) by the explanatory variables included in 

the selected model specification. Values that are close to unity (or 100%) indicate a rather 

good specification, while values close to zero do not indicate any explanatory power.  

Finally, the F-Statistic p-value (F-stat prob.) is also used; the overall goodness of fit is 

evaluated in a statistically significance sense.  

 

                                                        𝐻0: 𝑎1 = 𝑎2 = …𝑎𝑘 … = 𝑎𝐾 = 0 

                                                        𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑎𝑘 ≠ 0                                             (4.5d) 

 

H0 of the test states that the current model does not perform well in-sample, while evidence in 

favor of the alternative hypothesis (H1) indicate good fit and explanatory power of the regres-

sors (explanatory variables) on the regressand variable. 

 

                                                𝐹 =
𝑅2

1−𝑅2
 
𝑁−𝐾−1

𝐾
                                                     (4.5e) 

 

where 𝐾, 𝑁 denote the number of the regressors and the number of the in-sample observa-

tions, respectively. 

 

4.2 Out-of-Sample (OoS) Forecasting Models  

 

4.2.1 Forecasting Models 

 

We next examine the Out-of-Sample (OoS hereafter) performance of the three predictive 

models described in Subsections 4.1.1, 4.1.2, and 4.1.3.2. The OoS analysis is commonly 

used because of an empirical finding; in-sample inference of predictability does not always 

entail out-of-sample predictability. Predictors found to possess a consistent predictive power 
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over the in-sample sub-period might not constitute ex-ante factors of expected futures returns 

(Gargano and Timmermann, 2014). 

Therefore point forecasts of returns are generated for any given energy product 𝑖 

(𝑖=CL, HO, NG) and maturity 𝑇 (𝑇=1,2,3 months) over the interval Jan.2004-Dec.2016. Spe-

cifically, we first split the original full sample (i.e. Feb.1990-Dec.2016) into two sub-periods. 

The initial in-sample period covers the interval from Feb.1990 to Dec.2003, spanning the first 

𝑁=167 observations, while the out-of-sample period spans Jan.2004 to Dec.2016 (i.e. P=156 

observations). The OoS sub-period constitute the forecast evaluation period.  

For each of the predictive models, i.e. the Eq. (4.1e), (4.2c), and (4.4d), we generate 

point forecasts in a recursive rolling scheme. In other words, the starting date is fixed (an-

chored at start) and the window size grows as we move forward in time; each observation be-

coming available (known) is added to the in-sample sub-period and taken into consideration 

during the re-estimation of the model. This expanding window for estimating the coefficients 

is supposed to replicate the situation when the futures returns become known in real time and 

are used to generate ex-ante forecasts of the next period’s futures returns (expected returns). 

To this end, we first estimate each model using the 𝑁=167 observations of the in-sample peri-

od (Feb.1990-Dec.2003) and obtain the OLS estimates of the coefficients. The fitted models 

are then used to produce ℎ-step-ahead (ℎ=1,3, or 12 months) OoS forecasts. For ℎ=1 the first 

point forecast refers to Jan.2004. 

 

[1, … , 𝑡, … , 𝑡 + ℎ] 

 

Regarding our economic models, the initial 1-step-ahead OoS forecast is given as: 

 

                                                       𝑅𝑡:𝑡+1
𝑖𝑇 = 𝑎0,𝑡̂ + ∑ 𝑎𝑘,𝑡̂ 𝑥𝑘,𝑡 +𝐾=6

𝑘=1 𝑎7,𝑡̂ 𝑅𝑡−1:𝑡
𝑖𝑇                    (4.6) 

 

where 𝑎0,𝑡̂, 𝑎𝑘,𝑡̂, and 𝑎7,𝑡̂ are the OLS estimates generated by regressing the dependent varia-

ble {𝑅𝑡:𝑡+1
𝑖𝑇 }

𝑡=2

𝑁
 on a constant term 𝑎0,𝑡 , {𝑅𝑡

𝑖𝑇}
𝑡=1

𝑁−1
 and {∑ 𝑎𝑘,𝑡̂ 𝑥𝑘,𝑡

𝐾=6
𝑘=1 }

𝑡=1

𝑁−1
. Similarly, for the 

univariate autoregressive models AR(1), the respective forecast is computes as: 

 

                                                       𝑅𝑡:𝑡+1
𝑖𝑇 = 𝑎0,𝑡̂ + 𝜃𝑡̂  𝑅𝑡−1:𝑡

𝑖𝑇                                                 (4.7) 
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where 𝜃𝑡̂ is the OLS estimate from regressing {𝑅𝑡:𝑡+1
𝑖𝑇 }

𝑡=2

𝑁
 on a constant term 𝑎0,𝑡 and 

{𝑅𝑡
𝑖𝑇}

𝑡=1

𝑁−1
. As for the latent factor models: 

 

                                                       𝑅𝑡:𝑡+1
𝑖𝑇 = 𝑎0,𝑡̂ + ∑ 𝑎𝑗,𝑡̂ 𝑃𝐶𝑗,𝑡

𝑚=3
𝑗=1                                       (4.8) 

 

where 𝑎0,𝑡̂ and 𝑎𝑗,𝑡̂ are the OLS estimates generated by regressing {𝑅𝑡:𝑡+1
𝑖𝑇 }

𝑡=2

𝑁
 on a constant 

term 𝑎0,𝑡 , and {∑ 𝑎𝑗,𝑡̂ 𝑃𝐶𝑗,𝑡
𝑚=3
𝑗=1 }

𝑡=1

𝑁−1
. 

Next, the sample expands by one month, thus spanning the first 168 observations 

(𝑡+1=𝑁+1=167+1). The models are re-estimated based on the 168 observations and new coef-

ficient values are obtained in order to generate the second 1-step-ahead OoS forecasts which 

correspond to Feb.2004 (i.e. the 169
th

 value). 

  

                                                             [1, … , 𝑡 + 1, … , 𝑡 + 1 + ℎ] 

 

Concerning our economic models, the second 1-step-ahead OoS forecast is given as: 

 

                                                       𝑅𝑡+1:𝑡+2
𝑖𝑇 = 𝑎0,𝑡+1̂ + ∑ 𝑎𝑘,𝑡+1̂ 𝑥𝑘,𝑡+1 +𝐾=6

𝑘=1 𝑎7,𝑡̂ 𝑅𝑡:𝑡+1
𝑖𝑇     (4.9) 

 

where 𝑎0,𝑡+1̂, 𝑎𝑘,𝑡+1̂, and 𝑎7,𝑡+1̂ are the OLS estimates generated by regressing {𝑅𝑡+1:𝑡+2
𝑖𝑇 }

𝑡=2

𝑁+1
 

on a constant term term 𝑎0,𝑡+1, {𝑅𝑡:𝑡+1
𝑖𝑇 }

𝑡=1

𝑁−1+1
 and {∑ 𝑎𝑘,𝑡̂ 𝑥𝑘,𝑡

𝐾=6
𝑘=1 }

𝑡=1

𝑁−1+1
. Similarly, we gener-

ate the second 1-step-ahead OoS point forecasts using the two alternative predictive models. 

Next, we re-estimate the model expanding our sample by one-month and so forth.  

 

                                                             [1, … , 𝑡 + 2, … , 𝑡 + 2 + ℎ] 

                                                             [1, … , 𝑡 + 3, … , 𝑡 + 3 + ℎ] 

⋮  

                                                             [1, … , 𝑡 + 𝑃, … , 𝑡 + 𝑃 + ℎ] 

 

Repeating this process through the end of the OoS sub-period, we eventually create a series 

including P=156 OoS point forecasts of futures returns. Let {𝑅̂𝑡:𝑡+1|𝑡
𝑖𝑇,𝑗

}
𝑡=1

𝑃

denote the sequence 



55 

 

of the one-month ahead (ℎ=1) return forecasts generated by the 𝑗th (𝑗=Econ., PCA, AR(1)) 

model for a given commodity 𝑖 (𝑖=CL, HO, NG) maturing at 𝑇 (𝑇=1,2,3 months) . 

 

4.2.2 Out-of-Sample Evaluation Criteria 

 

4.2.2.1 Standard Performance Measures 

 

In order to evaluate the OoS performance of each predictive model employed relative to a 

benchmark model, we first consider three forecast evaluation criteria (also known as 

performance measures or metrics) that have been predominantly used in the literature. Hence, 

for each model we employ the Root Mean Squared Prediction Error (RMSE), the Mean 

Absolute Prediction Error (MAE), and the Theil’s inequality coefficient U. 

Suppose using the 𝑗th (𝑗=Econ., PCA, AR(1)) model for a given commodity 𝑖 (𝑖=CL, 

HO, NG) maturing at 𝑇 (𝑇=1,2,3 months). Based on the 𝑗th model, at any point in time an one-

month ahead (ℎ=1) point forecast using the information set up to period 𝑡 (i.e., 𝑅̂𝑡+1|𝑡
𝑖𝑇  or 

𝑅̂𝑡:𝑡+1
𝑖𝑇 ) produces the following prediction error, 𝜀𝑡+1|𝑡

𝑗
: 

 

                                                      𝜀𝑡+1|𝑡
𝑖𝑇,𝑗

= 𝑅̂𝑡:𝑡+1
𝑖𝑇,𝑗

− 𝑅𝑡:𝑡+1
𝑖𝑇                                                 (4.10) 

                    

where Rt:t+1
iT  denotes the actual futures return realized in period t+1. Let {R̂t:t+1

iT,j
}

t=1

P
and 

{𝑅𝑡:𝑡+1
𝑖𝑇 }

𝑡=1

𝑃
 denote the sequence of the one-step ahead point forecasts and the sequence of the 

corresponding actual returns over the whole OoS sub-period, respectively. Consequently, the 

corresponding vector of errors is {𝜀𝑡+1|𝑡
𝑖𝑇,𝑗

}
𝑡=1

𝑃

, where 𝑡=1(Jan.2004),2(Feb.2004),…, 

P(Dec.2016). 

Based on this prediction error that occurs at any point in time 𝑡 (𝑡=1,2,…,P) by the 

𝑗th model, the corresponding metrics are calculated as follows. In particular, RMSE is the 

most commonly used metric when evaluating the OoS fit of a model. It is calculated as the 

square root of the average squared deviations of the model based returns forecasts from the 

actual futures returns (Chantziara and Skiadopoulos, 2008). MAE constitutes the average of 

the absolute differences between the model based returns forecasts and the actual futures 

returns. Finally, the Theil’s U is computed as follows. 
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𝑅𝑀𝑆𝐸𝑖𝑇,𝑗 = √
1

𝑃
 ∑(𝜀𝑡+ℎ|𝑡

𝑖𝑇,𝑗
)2

𝑃

𝑡=1

 

                                                                                                                       (4.11a) 

𝑀𝐴𝐸𝑖𝑇,𝑗 =
1

𝑃
∑|𝜀𝑡+ℎ|𝑡

𝑖𝑇,𝑗
|

𝑃

𝑡=1

 

                                                                                                                       (4.11b) 

𝑇ℎ𝑒𝑖𝑙′𝑠 𝑈 𝑖𝑇,𝑗 =
𝑅𝑀𝑆𝐸𝑖𝑇,𝑗

√1
𝑃

∑ 𝑅̂𝑡
𝑖𝑇,𝑗

 2𝑃
𝑡=1 + √1

𝑃
∑ 𝑅𝑡

𝑖𝑇 2𝑃
𝑡=1

 

                                                                                                                       (4.11c) 

 

Note that the Theil’s U obtains values in the interval [0.0, 1.0]; values close to zero (0) indi-

cate a rather good model specification, because the forecasts produced are very close to the 

actual data. On the contrary, values that are close to unity (1) reflect a bad model. As for the 

RMSE and MAE metrics, the smaller their values, the better predictive accuracy. 

We next proceed to selecting the optimum specification model according to its 

forecasting accuracy. For any two specification models (𝑗=Econ., PCA, AR(1)), we compute 

two ratios, the RMSE and the MAE ratios and conduct pairwise comparisons between the 

models. In particular, we compare the two ratios as follows: AR(1) versus Econ., AR(1) versus 

PCA, and Econ. versus PCA. A ratio that is lower than one (<1) indicates a superior 

forecasting performance in favor of the model mentioned first. On the contrary, ratios that 

exceed unity (>1) indicate superior forecasting performance for the model mentioned second. 

 

4.2.2.2 Test of Equal Predictive Accuracy  

 

Apart from ratios based on the standard performance measures, we proceed to selecting the 

optimum specification model according to statistical tests of their predictive accuracy. This is 

achieved by determining whether the OoS fit of a benchmark model is (on average) better or 

worse than that of an alternative/competing specification in a statistically significant sense. In 

our case, the univariate autoregressive model (𝑗=AR(1)) serves as the benchmark model and is 

compared to its competing models, i.e. the economic variables (𝑗=Econ.) and the PCA 
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(𝑗=PCA) model. Univariate autoregressive models have commonly been used as baseline 

models in the related literature.  

Such an evaluation is made in terms of loss functions, which are associated with the 

prediction errors. Specifically, under the RMSE and MAE metrics let the respective loss 

functions for the benchmark AR(1) model and the 𝑗th model (𝑗=Econ., PCA) be 

 

                                           𝑔( 𝑅̂𝑡:𝑡+1
𝑖𝑇,   𝐴𝑅(1)

, 𝑅𝑡:𝑡+1
𝑖𝑇 ) = 𝑔( 𝜀𝑡+1|𝑡

𝑖𝑇,𝐴𝑅(1)
)                        (4.12a) 

and 

                                           𝑔( 𝑅̂𝑡:𝑡+1
𝑖𝑇,𝑗

, 𝑅𝑡:𝑡+1
𝑖𝑇 ) = 𝑔( 𝜀𝑡+1|𝑡

𝑖𝑇,𝑗
)                                   (4.12b) 

 

where {𝜀𝑡+1|𝑡
𝑖𝑇,𝐴𝑅(1)

}
𝑡=1

𝑃

 and {𝜀𝑡+1|𝑡
𝑖𝑇,𝑗

}
𝑡=1

𝑃

. A loss differential is also defined based on the (4.12a) 

and (4.12b) loss functions:  

                                                       𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

= 𝑔( 𝜀𝑡+1|𝑡
𝑖𝑇,𝑗

) − 𝑔( 𝜀𝑡+1|𝑡
𝑖𝑇,𝐴𝑅(1)

)                            (4.12c) 

 

The corresponding vector is {𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

}
𝑡=1

𝑃

. Then the statistical significance of the difference 

between the benchmark and the competing 𝑗th model’s loss function is assessed based on the 

modified Diebold-Mariano (MDM hereafter) test proposed by Harvey et al. (1997) 
23

.  

The MDM test based on the average loss differential (Sq. or Abs. Errors) examines the 

null hypothesis (H0) of equal predictive accuracy (on average) against two alternative 

hypotheses (one-sided tests), both indicating that the two models examined do not perform 

equally well. For 𝐻1: 𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) > 0 , the benchmark AR(1) model outperforms the 𝑗th model, 

while for 𝐻2: 𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) < 0 , the respective 𝑗th model outperforms the benchmark AR(1). 

That is because positive values (on average) reflect greater prediction errors. In particular,  

 

                               𝐻0: 𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) = 0    or     𝐻0: 𝐸 [𝑔( 𝜀𝑡+1|𝑡
𝑖𝑇,𝑗

)] = 𝐸 [𝑔 ( 𝜀𝑡+1|𝑡
𝑖𝑇,𝐴𝑅(1)

)] 

                               𝐻1: 𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) > 0    or     𝐻1: 𝐸 [𝑔( 𝜀𝑡+1|𝑡
𝑖𝑇,𝑗

)] > 𝐸 [𝑔 ( 𝜀𝑡+1|𝑡
𝑖𝑇,𝐴𝑅(1)

)] 

                               𝐻2: 𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) < 0    or     𝐻2: 𝐸 [𝑔( 𝜀𝑡+1|𝑡
𝑖𝑇,𝑗

)] < 𝐸 [𝑔 ( 𝜀𝑡+1|𝑡
𝑖𝑇,𝐴𝑅(1)

)]      (4.13) 

 

                                                      
23

 An alternative method to evaluate the statistical significance of the OoS results of the aforementioned metrics 

would be the Clark and West’s (2007) 𝑡-statistic (see Gargano and Timmermann, 20014). 
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For one-step ahead (ℎ=1month) point forecasts  the MDM 𝑡-statistic is calculated as  

 

                                                    𝑀𝐷𝑀𝑖𝑇,𝑗 =
𝑑𝑡+1|𝑡

𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑠𝑒̂(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅

)
                                            (4.14a) 

 

and follows a Student’s 𝑡-distribution with 𝑃-1 degrees of freedom (d.f.) rather than the 

standard normal distribution. Therefore, the 𝑀𝐷𝑀𝑖𝑇,𝑗 𝑡-statistic is compared to the critical 

values. Note that  𝑑𝑡+1|𝑡
𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅̅

 and  𝑠𝑒̂(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅̅ ) are the mean of the loss differential (i.e. 𝑑𝑡+1|𝑡

𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅̅ =

1

𝑃
∑ 𝑑𝑡+1|𝑡

𝑖𝑇,𝑗𝑃
𝑡=1 ) and a Newey-West estimator of the standard deviation of 𝑑𝑡+1|𝑡

𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅̅
, respectively 

Harvey et al. (1997.  

 

 

  



59 

 

Chapter 5: Empirical Results and Discussion  
 

This section presents and discusses the empirical findings. Moreover, the results are also 

compared with those of the existing literature. First, we present the empirical results of the in-

sample analysis conducted. We then show and evaluate those of the out-of-sample analysis. 

  

5.1 In-Sample Evidence  

 

Table 5.1 presents in-sample least squares estimates for all the alternative predictive one-step-

ahead regression models employed within the context of this study. The estimation sample 

used to produce point forecasts covers the period Feb.1990-Dec.2003; one observation was 

lost due to calculating the futures returns. In particular, Panel A, Panel B, and Panel C show 

the performance of the economic variables, PCA, and AR(1) models, respectively. Estimates 

of each parameter are reported for each individual regression. The estimated OLS coefficients 

are followed by the corresponding Newey-West t-statistics in parentheses, the adjusted R
2
, 

and the F-statistics’s p-values. 

Regarding our economic model (Equation 4.1e), the WTI crude oil futures seem to 

have the lowest values of adjusted R
2 

(see Panel A). On the contrary, the adjusted R
2
 associat-

ed with the natural gas futures, and especially this of the second shortest maturity contract, 

seem to be the greatest (i.e.11.79%). With the exception of RNG3, we note that the adjusted R
2
 

rises as the corresponding futures’ maturity lengthens. These findings are also confirmed by 

the F-statistics. These findings are in line with Killian and Vega (2011); in short, macroeco-

nomic news of the US economy affect mostly the longer maturity contracts. We can also see 

that the statistically significant factors for RNG2 are the lagged open interest growth rate and 

the lagged changes in default spread (at 1%), as well as the lagged world steel production 

growth rate (at 5%).  

There is also evidence that the latter possesses predictive power to all of the energy fu-

tures under examination (at 5% significance level for crude oil and natural gas, while at 1% 

for heating oil). This is in line with Ravazzolo and Vespignani’s (2017) findings that the 

World Steel Production possesses a significant predictive power over crude oil prices. Ravaz-

zolo and Vespignani also provide evidence of natural gas predictability by two alternative 

measures of global real economic activity, the OECD IP and the Killian’s rea. However, Gar-

gano and Timmermann (2014) find limited predictive ability of Killian’s rea on various com-

modity returns, Alquist et al. (2013) reveal a negative impact on oil futures returns.  



60 

 

On the other hand, the results indicate that the first two factors account only for the 

natural gas futures. Regarding the median open interest growth, our findings is in line with 

those of Cummins et al. (2016); employing a five-factor model to study the predictability of 

oil futures returns over the interval 2007-2016 they find that speculation is not statistically 

significant. This is also in line with Bastianin et al. (2012), while in contrast to Hong and 

Yogo’s (2012) findings. As for the default spread, our findings are in line with Bessembinder 

and Chan (1992), who find limited predictive power of the junk bond premium in 12 futures 

markets. Gargano and Timmermann (2014) also report its modest predictability over the spot 

prices of various commodity indices (i.e. textiles, metals, livestock, foods, etc.), however, 

with a positive sign.  

This also seems to be the case for the term spread; our conclusion of positive, howev-

er, insignificant term spread conforms to the findings of Alquist et al. (2013) regarding the 

NYMEX crude oil futures of 3, 6, and 12 maturity over 1989-2012. On the other hand, we 

find negative, however, insignificant results in the case of the natural gas futures. According 

to Alquist et al. (2013), accumulation of oil as inventories tends to be high during recessions. 

As a result, an upward sloping term structure of interest rates and a positive change of its 

slope create expectations of economic expansion in the future, during which time energy 

commodities are expected to be relatively more expensive. However, the findings reveal a 

negative relationship between the term spread and the natural gas returns. Concerning this 

finding, we guess that this is a consequence of the natural gas storage costs. As far as we are 

concerned, the cost of keeping natural gas reserves is significantly higher than the cost of 

crude and heating oil storage, which probably discourages traders from holding inventories 

during periods of economic contraction. We form this hypothesis with respect to consumers 

as well as producers, who generally have direct interests in the natural gas. 

   Furthermore, our findings regarding the Trade-Weighted Dollar Index are in contrast 

to Cummins et al. (2016); they provide evidence of strong predictability and positive effect on 

the shortest maturity oil futures contracts. Reboredo and Revara-Castro (2013) and Gargano 

and Timmermann (2014) have also confirmed the significant impact of the US exchange rates 

on oil prices and commodity returns, respectively. 

Table 5.1 (Panel B) also shows the results from the PCA model (Equation 4.4.d). Even 

though the lagged values of the second principal component (PC2) are found to be statistically 

significant for the WTI crude oil and heating oil futures, the results indicate an overall poor 

fitness of the PCA model; the F-statistics indicate that the PCs are not capable of predicting 

the expected energy futures returns. The highest adjusted R
2
 value (1.87%) appears for RCL1. 
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This is also in line with Killian and Vega (2011). Regarding the PC1, which was found to rep-

resent the CBOE S&P 100 Volatility Index in Subsection 3.4.2, the expected negative - how-

ever insignificant - impact is evident. As for PC2, which was found to be moderately correlat-

ed with the Consumer Sentiment Index, the expected positive relationship is also confirmed. 

We highlight again that the three extracted common factors are exclusively associated with 

the US economic conditions, rather than capturing both US and global macroeconomic aggre-

gates.    

Moreover, Panel C of Table 5.1 reports the results from the AR(1) models (Equation 

4.2c). The adjusted R
2
 for nearly all the energy futures examined seems to take rather low 

values. The greatest value for the adjusted R
2
 it obtained for RNG3 (2.47%). Based on the F-

statistics, the findings are mixed. It seems that the AR(1) models hold for the longer maturity 

energy futures (RCL2, RCL3, RHO3, RNG3). In these cases we reject the weak-form efficiency of 

the futures market. This is in line with Chantziara and Skiadopoulos (2008) who, studying the 

NYMEX crude oil and heating oil futures over the period Jan.1993-Dec.2003, find statistical 

insignificant coefficients and zero R
2
 values. 

Overall, concerning the in-sample one-step ahead (ℎ=1 month) futures return predict-

ability (individually), we can infer that the most appropriate models to use are the economic 

variables models. The economic variables models employed appear to fit satisfactorily almost 

all the energy products examined (seven out of the nine futures). Predictability is found to be 

strongest for the natural gas futures (1%). Alternatively, the second best performing models 

would be the univariate autoregressive AR(1), which accounts for almost half of the futures 

(four (4) out of the nine (9) futures examined). As for the employed predictors, those factors 

commonly found to predict equities and bonds premia (real short-term interest rate, term 

spread, and default spread) are the least effective in the case of commodities. This is also in 

line with Gargano and Timmermann (2014) who find modest predictability over commodity 

prices.
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Table 5.1  

In-sample one-step ahead (ℎ=1) individual predictive regressions. 

  Dependent Variable   

  Panel A: Economic Model   

  RCL1, t RCL2, t RCL3, t RHO1, t RHO2, t RHO3, t RNG1, t RNG2, t RNG3, t   

                      

 c1 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000   

  (-0.034) (0.034) (0.048) (-0.015) (0.093) (0.092) (0.070) (-0.334) (-0.334)   

 oi_gr t-1 0.055 0.048 0.465 0.100 0.121 0.102 0.494
***

 0.356
***

 0.109   

  (0.711) (0.704) (0.756) (1.031) (1.514) (1.509) (4.270) (3.385) (1.379)   

d(rir) t-1 1.957 1.923 1.847 2.350 2.737 2.650 -1.517 -1.977 -2.352   

  (0.631) (0.653) (0.663) (0.845) (0.970) (0.980) (-0.417) (-0.566) (-0.738)   

d(ts) t-1 2.060 1.904 1.702 0.598 1.219 1.619 -5.835 -4.331 -3.627   

  (0.687) (0.696) (0.691) (0.191) (0.425) (0.641) (-1.138) (-0.898) (-0.868)   

d(dfs) t-1 -16.547 -15.425 -14.834 -15.096 -13.247 -15.279
*
 -36.306

***
 -44.778

***
 -39.558

***
   

  (-1.596) (-1.556) (-1.532) (-1.584) (-1.473) (-1.614) (-2.625) (-3.225) (-3.534)   

d(twdi) t-1 0.001 0.000 0.000 -0.002 -0.003 -0.002 0.006 0.009 0.011
*
   

  (0.137) (-0.024) (-0.032) (-0.308) (-0.410) (-0.272) (0.566) (1.026) (1.696)   

d(lwsp) t-1 1.371
**

 1.257
**

 1.174
**

 2.106
***

 1.619
***

 1.447
***

 1.756
**

 1.790
**

 1.474
**

   

  (2.270) (2.346) (2.407) (3.977) (2.899) (2.638) (1.983) (2.407) (2.360)   

 Ri, t-1 0.075 0.108 0.120 -0.016 0.058 0.105 -0.015 0.045 0.131
*
   

  (0.850) (1.329) (1.165) (-0.195) (0.736) (1.334) (-0.223) (0.618) (1.737)   

 F-stat 1.422 1.610 1.778
*
 1.878

*
 1.878

*
 2.146

**
 4.058

***
 4.149

***
 3.346

***
   

Adj. R
2
 (%) 1.760 2.522 3.196 3.593 3.592 4.637 11.485 11.785 9.052   

The current table’s entries report results from individually regressing the NYMEX WTI crude oil, heating oil, and natural gas first three shortest maturity futures returns on a 

set of lagged economic and financial variables over the in-sample period Feb.1990-Dec.2003. In particular, the following specification is estimated by Ordinary Least Squares 

(OLS): 𝑅𝑖,𝑡  = 𝛼0 + 𝑎1 𝑜𝑖_𝑔𝑟𝑡−1 + 𝑎2 𝑑(𝑟𝑖𝑟)𝑡−1 + 𝑎3 𝑑(𝑡𝑠)𝑡−1 + 𝑎4 𝑑(𝑑𝑓𝑠)𝑡−1 + 𝑎5 𝑑(𝑡𝑤𝑑𝑖)𝑡−1 + 𝑎6 𝑑(𝑙𝑤𝑠𝑝)𝑡−1 + 𝑎7 𝑅𝑖,𝑡−1 + 𝜀𝑡 , where 𝑅𝑖: the 𝑖-th commodity futures 

monthly prices, log-differenced,  𝑜𝑖_𝑔𝑟: the median open interest growth rate of all the underlying assets examined, 𝑟𝑖𝑟: the changes of the short- term real interest rate, calcu-
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lated as the difference between the nominal interest rate (i.e. the 3-month Treasury Bill rate) and the expected inflation (i.e. median expected change of prices during the fol-

lowing 12 months), 𝑡𝑠: the changes of the yield spread calculated as the difference between the yield of the 10-year Government Bond and the 3-month Treasury Bill rate, 

𝑑𝑓𝑠: the changes of the default spread calculated as the difference between the yield of the Moody's Seasoned BAA Corporate Bond and the Moody's Seasoned AAA Corpo-

rate Bond, 𝑡𝑤𝑑𝑖: the changes of the Trade Weighted U.S. Dollar Index (with index being Jan 1997=100), 𝑤𝑠𝑝: the Ravazzolo and Vespignani’s (2016) world steel production 

in log-differences. The above-mentioned specification’s OLS estimates of the parameters along with their corresponding t-statistics within parentheses, the adjusted R
2
, and 

the F-statistics are also reported in the table. The t-statistics have been adjusted for both heteroscedasticity and serial correlation of unknown form using the Newey-West 

method (HAC Consistent Covariance). The asterisks 
*
, 

**
, and 

***
 denote a rejection of the null hypothesis (i.e. a zero coefficient for the individual t-statistics or all coefficients 

are zero for the F-statistic) at 10%, 5% and 1% significance level, respectively. 

 

 

Table 5.1 (Cont’d.)  

In-sample one-step ahead (ℎ=1) individual predictive regressions. 

  Panel B: PCA Model   

  RCL1, t RCL2, t RCL3, t RHO1, t RHO2, t RHO3, t RNG1, t RNG2, t RNG3, t   

                      

 c1 0.004 0.004 0.004 0.004 0.004 0.004 0.010 0.010 0.009   

  (0.645) (0.666) (0.676) (0.683) (0.653) (0.644) (0.904) (1.002) (1.063)   

 PC1, t-1 -0.001 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000   

  (-0.557) (-0.509) (-0.462) (-0.735) (-0.532) (-0.458) (0.242) (0.127) (-0.011)   

 PC2, t-1 0.004
**

 0.004
**

 0.004
**

 0.003 0.004
**

 0.004
**

 0.002 0.004 0.002   

  (1.992) (1.927) (1.982) (1.160) (2.108) (2.120) (0.402) (0.784) (0.812)   

 PC3, t-1 0.001 0.001 0.001 0.001 0.000 0.000 -0.004 -0.004 -0.002   

  (0.536) (0.581) (0.604) (0.403) (0.126) (0.116) (-0.636) (-0.886) (-0.562)   

 F-stat 1.889 1.771 1.798 0.714 1.598 1.631 0.282 0.680 0.294   

Adj. R
2
 1.870 1.625 1.681 -0.616 1.266 1.335 -1.563 -0.691 -1.537   

The current table’s entries report results from individually regressing the NYMEX WTI crude oil, heating oil, and natural gas first three shortest maturity futures returns on a 

set of lagged latent factors extracted from the application of Joint PCA on McCracken and Ng’s (2016) large dataset. In order to obtain validate estimates for the PCs, the 134 

monthly macroeconomic US indicators included in the dataset are first transformed into stationary series based on McCracken and Ng’s suggested data transformation. The 

latent factors retained and used as control variables in the following specification are the first three principal components, i.e. 𝑃𝐶1, 𝑃𝐶2, and 𝑃𝐶3. In particular, the specifica-

tion is estimated by Ordinary Least Squares (OLS) is: 𝑅𝑖,𝑡  = 𝛼0 + 𝑎1 𝑃𝐶1,𝑡−1 + 𝑎2 𝑃𝐶2,𝑡−1 + 𝑎3 𝑃𝐶3,𝑡−1 + 𝜀𝑡, , where 𝑅𝑖: the 𝑖-th commodity futures monthly prices, log-

differenced. The above-mentioned specification’s OLS estimates of the parameters along with their corresponding t-statistics within parentheses, the adjusted R
2
, and the F-

statistics are also reported in the table. The t-statistics have been adjusted for both heteroscedasticity and serial correlation of unknown form using the Newey-West method 
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(HAC Consistent Covariance). The asterisks 
*
, 

**
, and 

***
 denote a rejection of the null hypothesis (i.e. a zero coefficient for the individual t-statistics or all coefficients are 

zero for the F-statistic) at 10%, 5% and 1% significance level, respectively. The in-sample estimation period corresponds to Feb.1990-Dec.2003. 
 

 

Table 5.1 (Cont’d.)  

In-sample one-step ahead (ℎ=1) individual predictive regressions. 

  Panel C: Univariate Autoregressive Model AR(1)   

  RCL1, t RCL2, t RCL3, t RHO1, t RHO2, t RHO3, t RNG1, t RNG2, t RNG3, t   

                      

 c1 0.002 0.002 0.002 0.003 0.003 0.003 0.008 0.007 0.006   

  (0.345) (0.353) (0.364) (0.382) (0.391) (0.395) (0.787) (0.780) (0.729)   

 Ri, t-1 0.105 0.138 0.153
*
 -0.008 0.094 0.144

*
 0.028 0.109 0.175

**
   

  (1.091) (1.521) (1.869) (-0.103) (1.105) (1.657) (0.411) (1.417) (2.303)   

 F-stat 1.841 3.197
*
 3.921

**
 0.012 1.453 3.468

*
 0.129 1.949 5.179

**
   

Adj. R
2
 0.507 1.314 1.739 -0.603 0.274 1.474 -0.530 0.572 2.470   

The current table’s entries report results from individually regressing the NYMEX WTI crude oil, heating oil, and natural gas first three shortest maturity futures returns on 

their one-period lagged values. In particular, a univariate autoregressive AR(1) model is estimated by Ordinary Least Squares (OLS), i.e. 𝑅𝑖,𝑡  = 𝛼0 + 𝜌1 𝑅𝑖,𝑡−1 + 𝜀𝑡, where 𝑅𝑖: 

the 𝑖-th commodity futures monthly prices, log-differenced. The above-mentioned specification’s OLS estimates of the parameters along with their corresponding t-statistics 

within parentheses, and the adjusted R
2
, and the F-statistics are also reported in the table. The t-statistics have been adjusted for both heteroscedasticity and serial correlation 

of unknown form using the Newey-West method (HAC Consistent Covariance).  The asterisks 
*
, 

**
, and 

***
 denote a rejection of the null hypothesis (i.e. of a zero coefficient) 

at 10%, 5% and 1% significance level, respectively. The in-sample estimation period corresponds to Feb.1990-Dec.2003. 
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5.2 Out-of-Sample Forecasting Performance 

 

We next estimate the three alternative predictive models described in Subsection 4.2.1. For 

monthly, quarterly, and annual horizons (i.e. for ℎ=1,3, and 12 months ahead, respectively), 

point forecasts of the futures returns are generated in a recursive scheme over the OoS sub-

period, Jan.2004-Dec.2016. To this end, in this subsection we evaluate the OoS performance 

of the three model specifications employed to model each 𝑖-th (𝑖=CL, HO, NG) energy futures 

maturing at 𝑇 (𝑇=1,2,3 months). We first calculate the standard OoS evaluation criteria de-

scribed in Subsection 4.2.2.1 and then perform pairwise comparisons computing their ratios 

(RMSE and MAE ratios) as well as the corresponding Modified Diebold-Mariano (MDM) 

tests described in Subsection 4.2.2.2.  

In particular, Table 5.2 reports the results for the RMSE and MAE ratios obtained 

from each model specification. The two ratios are reported in the case of the three shortest 

maturity energy futures for each forecast horizon. We first consider the RMSE ratios. Admit-

tedly, for each forecast horizon ℎ and individual energy futures the benchmark AR(1) models 

appear rather superior to the PCA models. In addition, the AR(1) models seem to outperform 

the corresponding Economic models in all but one case; for each forecast horizon ℎ, the Eco-

nomic models perform better for CL1 and CL2, as well as for CL3 for quarterly horizon 

(ℎ=3). This is somehow in line with the findings of the MAE ratios; for each forecast horizon 

ℎ and energy futures the benchmark AR(1) models outperform the respective Economic and 

PCA models. However, PCA models perform better for CL2 and CL3 for annual horizons 

(ℎ=12). Overall, the two ratios indicate that the benchmark AR(1) models perform better OoS. 

Finally, we examine whether the proposed models by the standard evaluation criteria 

are also optimum under the terms of certain statistical tests of their predictive accuracy. Based 

on the modified Diebold-Mariano test (MDM), we examine the statistical significance of the 

average differencial loss function between the benchmark AR(1) model and the 𝑗𝑡ℎ competing 

model (𝑗=Econ.,PCA). Table 5.3a, 5.3b, and 5.3c report the MDM 𝑡-statistics values of the 

relative predictive accuracy for monthly, quarterly, and annual horizons (ℎ=1,3,12), 

respectively. One, two, and three asterisks (crosses) denote a rejection of the null in favor of 

the first (second) alternative hypothesis at 10%, 5%, and 1% significance level, respectively.  

Specifically, for each forecast horizon ℎ Panel A and B provide evidence for the 

rejection of the null hypothesis (of equal predictive accuracy) in favor of the first alternative 

hypothesis (𝐻1). As a result, the benchmark AR(1) model outperforms both the Economic and 

the PCA models for each individual commodity (at 1% and 5% significance level) and 
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forecast horizon. In other words, the MDM findings confirm those obtained from the two 

standard OoS performance measures (i.e. RMSE and MAE metrics). In a statistically 

significant sense, the AR(1) model is the optimum model specification in order to model the 

NYMEX energy futures returns. Nevertheless, these findings stand in sharp contrast to the 

results of the Theil’s U regarding the OoS performance of each predictive model. Theil’s U 

(see Panel C of Table 5.3a, 5.3b, and 5.3c) obtains the lowest values in the case of the 

economic models. However, comparing the RMSE and MAE ratios along with the Theil’s U 

of the AR(1) models for the forecast horizon of one month, we conclude that the out-of-

sample predictability becomes stronger as maturity of the respective futures contract 

lengthens. We also note that this predictive ability does not become stronger as the forecast 

horizon extends. 

These results are also in contrast to the finding of the in-sample analysis; the in-

sample analysis proposed the economic variables models as the optimum specifications, while 

the AR(1) as the second best performing models. This is in line with Gargano and Timmer-

mann (2014); in-sample inference of predictability of the employed economic predictors does 

not entail out-of-sample predictability. 
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Table 5.2  

Out-of-sample performance of the various models. 

h=1 RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   

  RMSE ratios 

AR(1)/Econ. 1.009 1.001 0.998 0.996 0.996 0.992 0.959 0.951 0.974   

AR(1)/PCA 0.958 0.961 0.962 0.981 0.969 0.963 0.993 0.986 0.974   

Econ./PCA 0.949 0.960 0.964 0.985 0.973 0.971 1.036 1.037 1.000   

  MAE ratios 

AR(1)/Econ. 0.990 0.978 0.973 0.955 0.972 0.966 0.944 0.948 0.975   

AR(1)/PCA 0.992 0.999 1.000 0.976 0.971 0.968 0.994 0.985 0.969   

Econ./PCA 1.002 1.022 1.028 1.022 0.999 1.002 1.053 1.039 0.993   

h=3 RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   

  RMSE ratios 

AR(1)/Econ. 1.010 1.004 1.002 0.996 0.997 0.994 0.959 0.948 0.971   

AR(1)/PCA 0.951 0.955 0.956 0.981 0.966 0.958 0.990 0.981 0.970   

Econ./PCA 0.941 0.951 0.954 0.985 0.969 0.964 1.032 1.035 0.998   

  MAE ratios 

AR(1)/Econ. 0.993 0.984 0.981 0.955 0.972 0.969 0.942 0.943 0.974   

AR(1)/PCA 0.986 0.993 0.993 0.976 0.968 0.964 0.988 0.981 0.965   

Econ./PCA 0.993 1.009 1.012 1.023 0.996 0.995 1.050 1.039 0.992   
For the forecast horizon of one, three, and twelve months (ℎ=1,3,12) the table reports two ratios based on the Out-of-Sample (OoS) performance measures of the three predic-

tive models employed within the context of this study, i.e. the Economic model, the joint PCA model, and the Univariate Autoregressive model AR(1). The performance 

measures used to compute the ratios are the Root Mean Squared Prediction Error (RMSE) and the Mean Absolute Prediction Error (MAE) for each of the three shortest ma-

turity energy futures. Specifically, for any two specification models we compute the ratio of their RMSE values as well as the ratio of their MAE values. Consequently, the 

entries report the results as follows: AR(1) versus Econ., AR(1) versus PCA, and Econ. versus PCA. A ratio that is lower than one (<1) indicates a superior forecasting perfor-

mance in favor of the model mentioned first. On the contrary, ratios that exceed unity (>1) indicate superior forecasting performance for the model mentioned second. For 

each of the recursively estimated predictive models, the metrics have been calculated over the OoS sub-period (i.e. Jan.2004-Dec.2016). 
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Table 5.2 (Cont’d.) 

Out-of-sample performance of the various models. 

h=12 RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   

  RMSE ratios 

AR(1)/Econ. 1.010 1.001 0.998 0.988 0.992 0.989 0.937 0.919 0.956   

AR(1)/PCA 0.964 0.965 0.965 0.982 0.972 0.965 0.991 0.985 0.975   

Econ./PCA 0.954 0.964 0.966 0.993 0.980 0.976 1.057 1.072 1.020   

  MAE ratios 

AR(1)/Econ. 0.998 0.987 0.985 0.944 0.967 0.966 0.918 0.914 0.954   

AR(1)/PCA 0.999 1.004 1.003 0.977 0.973 0.972 0.993 0.982 0.975   

Econ./PCA 1.001 1.017 1.018 1.036 1.006 1.006 1.082 1.074 1.022   
For the forecast horizon of one, three, and twelve months (ℎ=1,3,12) the table reports two ratios based on the Out-of-Sample (OoS) performance measures of the three predic-

tive models employed within the context of this study, i.e. the Economic model, the joint PCA model, and the Univariate Autoregressive model AR(1). The performance 

measures used to compute the ratios are the Root Mean Squared Prediction Error (RMSE) and the Mean Absolute Prediction Error (MAE) for each of the three shortest ma-

turity energy futures. Specifically, for any two specification models we compute the ratio of their RMSE values as well as the ratio of their MAE values. Consequently, the 

entries report the results as follows: AR(1) versus Econ., AR(1) versus PCA, and Econ. versus PCA. A ratio that is lower than one (<1) indicates a superior forecasting perfor-

mance in favor of the model mentioned first. On the contrary, ratios that exceed unity (>1) indicate superior forecasting performance for the model mentioned second. For 

each of the recursively estimated predictive models, the metrics have been calculated over the OoS sub-period (i.e. Jan.2004-Dec.2016). 
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Table 5.3a  

One-step ahead (ℎ=1 month) out-of-sample forecast accuracy: Modified Diebold-Mariano Test and Theil’s U. 

j
th

 Model vs. 

AR(1) 

Panel A: MDM Test Sq. Error (RMSE)  

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   

                      

Econ. -2.753
***

 -2.548
**

 -2.476
**

 -2.848
***

 -3.005
***

 -2.814
***

 -3.769
***

 -7.014
***

 -7.587
***

   

PCA -9.184
***

 -9.761
***

 -9.826
***

 -6.221
***

 -9.708
***

 -9.781
***

 -6.435
***

 -8.452
***

 -6.665
***

   

 j
th

 Model vs. 

AR(1) 

Panel B: MDM Test Abs. Error (MAE)  

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   
                        

Econ. -8.713
***

 -8.576
***

 -8.543
***

 -9.826
***

 -10.073
***

 -9.560
***

 -13.389
***

 -15.486
***

 -14.910
***

   

PCA -15.601
***

 -16.121
***

 -16.197
***

 -13.244
***

 -16.448
***

 -16.943
***

 -15.808
***

 -14.823
***

 -14.232
***

   

  
Panel C: Theil's U 

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   
                        

AR(1)   0.848 0.833 0.825 0.942 0.875 0.840 0.960 0.897 0.852   

Econ.   0.652 0.664 0.669 0.692 0.677 0.671 0.708 0.698 0.713   
PCA   0.813 0.820 0.824 0.875 0.886 0.885 0.893 0.866 0.875   
The entries of this table report the results regarding the Modified Diebold-Mariano Test (MDM) of Harvey et al. (1997). Panel A and Panel B contain the MDM 𝑡-statistic 

values of the relative predictive accuracy of the benchmark AR(1) model against the 𝑗𝑡ℎ competing model (𝑗=Econ., PCA). The MDM test based on the average loss differen-

tial (i.e. Squared Errors and Absolute Errors in Panel A and B, respectively) and a Newey-West estimator of the standard deviation of 𝑑𝑡+1|𝑡
𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅

 examines the null hypothesis (H0) 

against two alternative hypotheses, H1 and H2. In particular, H0 indicates equal predictive accuracy between the benchmark AR(1) model and the 𝑗𝑡ℎ competing model, 

H0:𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) = 0. On the contrary, H1:𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) > 0 indicates that the benchmark outperforms the 𝑗th model, while for 𝐻2: 𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) < 0, the competing 𝑗th model outper-

forms the benchmark AR(1). One (
*
), two (

**
) and three (

***
) asterisks denote a rejection of the null hypothesis (H0)  in favor of the first alternative (H1) at 10%, 5%, and 1% 

significance level, respectively. Similarly, one (
+
), two (

++
) and three (

+++
) crosses denote a rejection of H0 in favor of the second alternative hypothesis (H2) at 10%, 5%, and 

1% significance level, respectively. Panel C also reports the results regarding the third standard performance measure employed, the Theil’s U. Results are reported for the 
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three shortest maturity energy futures. For each of the recursively estimated predictive models, the metrics have been calculated over the OoS sub-period (i.e. Jan.2004-

Dec.2016) for a forecast horizon of one month (ℎ=1). 

 

 

Table 5.3b  

Three-step ahead (ℎ=3 months) out-of-sample forecast accuracy: Modified Diebold-Mariano Test and Theil’s U. 

j
th

 Model vs. 

AR(1) 

Panel A: MDM Test Sq. Error (RMSE)  

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   

                      

Econ. -4.070
***

 -3.909
***

 -3.863
***

 -4.240
***

 -4.614
***

 -4.300
***

 -3.967
***

 -3.368
***

 -3.418
**

   

PCA -8.745
***

 -9.536
***

 -9.673
***

 -7.187
***

 -9.665
***

 -9.657
***

 -5.596
***

 -6.786
***

 -6.914
***

   

 j
th

 Model vs. 

AR(1) 

Panel B: MDM Test Abs. Error (MAE)  

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   
                        

Econ. -9.572
***

 -9.520
***

 -9.535
***

 -10.789
***

 -11.200
***

 -10.626
***

 -12.891
***

 -11.119
***

 -9.935
***

   

PCA -15.239
***

 -15.862
***

 -16.130
***

 -14.408
***

 -16.378
***

 -16.778
***

 -11.935
***

 -13.355
***

 -13.611
***

   

  
Panel C: Theil's U 

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   
                        

AR(1)   0.861 0.846 0.837 0.945 0.884 0.849 0.961 0.901 0.856   

Econ.   0.675 0.686 0.691 0.709 0.695 0.689 0.694 0.686 0.706   
PCA   0.832 0.837 0.841 0.885 0.900 0.901 0.900 0.874 0.883   
The entries of this table report the results regarding the Modified Diebold-Mariano Test (MDM) of Harvey et al. (1997). Panel A and Panel B contain the MDM 𝑡-statistic 

values of the relative predictive accuracy of the benchmark AR(1) model against the 𝑗𝑡ℎ competing model (𝑗=Econ., PCA). The MDM test based on the average loss differen-

tial (i.e. Squared Errors and Absolute Errors in Panel A and B, respectively) and a Newey-West estimator of the standard deviation of 𝑑𝑡+1|𝑡
𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅

 examines the null hypothesis (H0) 

against two alternative hypotheses, H1 and H2. In particular, H0 indicates equal predictive accuracy between the benchmark AR(1) model and the 𝑗𝑡ℎ competing model, 

H0:𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) = 0. On the contrary, H1:𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) > 0 indicates that the benchmark outperforms the 𝑗th model, while for 𝐻2: 𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) < 0, the competing 𝑗th model outper-
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forms the benchmark AR(1). One (
*
), two (

**
) and three (

***
) asterisks denote a rejection of the null hypothesis (H0)  in favor of the first alternative (H1) at 10%, 5%, and 1% 

significance level, respectively. Similarly, one (
+
), two (

++
) and three (

+++
) crosses denote a rejection of H0 in favor of the second alternative hypothesis (H2) at 10%, 5%, and 

1% significance level, respectively. Panel C also reports the results regarding the third standard performance measure employed, the Theil’s U. Results are reported for the 

three shortest maturity energy futures. For each of the recursively estimated predictive models, the metrics have been calculated over the OoS sub-period (i.e. Jan.2004-

Dec.2016) for a forecast horizon of three months (ℎ=3). 

 

 

Table 5.3c 

Twelve-step ahead (ℎ=12 months) out-of-sample forecast accuracy: Modified Diebold-Mariano Test and Theil’s U. 

j
th

 Model vs. 

AR(1) 

Panel A: MDM Test Sq. Error (RMSE)  

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   

                      

Econ. -4.117
***

 -3.992
***

 -3.951
***

 -4.324
***

 -4.554
***

 -4.235
***

 -4.187
***

 -3.617
***

 -3.690
**

   

PCA -9.647
***

 -9.828
***

 -9.810
***

 -6.001
***

 -9.556
***

 -9.779
***

 -6.360
***

 -7.097
***

 -7.389
***

   

 j
th

 Model vs. 

AR(1) 

Panel B: MDM Test Abs. Error (MAE)  

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   
                        

Econ. -9.978
***

 -9.809
***

 -9.775
***

 -10.830
***

 -11.406
***

 -10.741
***

 -12.385
***

 -10.630
***

 -9.656
***

   

PCA -15.809
***

 -16.199
***

 -16.388
***

 -14.635
***

 -16.374
***

 -16.819
***

 -13.514
***

 -13.187
***

 -13.687
***

   

  
Panel C: Theil's U 

RCL1 RCL2 RCL3 RHO1 RHO2 RHO3 RNG1 RNG2 RNG3   
                        

AR(1)   0.865 0.847 0.838 0.944 0.885 0.850 0.957 0.898 0.853   

Econ.   0.679 0.687 0.690 0.702 0.693 0.686 0.682 0.671 0.688   
PCA   0.824 0.831 0.836 0.884 0.903 0.904 0.906 0.875 0.882   
The entries of this table report the results regarding the Modified Diebold-Mariano Test (MDM) of Harvey et al. (1997). Panel A and Panel B contain the MDM 𝑡-statistic 

values of the relative predictive accuracy of the benchmark AR(1) model against the 𝑗𝑡ℎ competing model (𝑗=Econ., PCA). The MDM test based on the average loss differen-
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tial (i.e. Squared Errors and Absolute Errors in Panel A and B, respectively) and a Newey-West estimator of the standard deviation of 𝑑𝑡+1|𝑡
𝑖𝑇,𝑗̅̅ ̅̅ ̅̅ ̅

 examines the null hypothesis (H0) 

against two alternative hypotheses, H1 and H2. In particular, H0 indicates equal predictive accuracy between the benchmark AR(1) model and the 𝑗𝑡ℎ competing model, 

H0:𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) = 0. On the contrary, H1:𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) > 0 indicates that the benchmark outperforms the 𝑗th model, while for 𝐻2: 𝐸(𝑑𝑡+1|𝑡
𝑖𝑇,𝑗

) < 0, the competing 𝑗th model outper-

forms the benchmark AR(1). One (
*
), two (

**
) and three (

***
) asterisks denote a rejection of the null hypothesis (H0)  in favor of the first alternative (H1) at 10%, 5%, and 1% 

significance level, respectively. Similarly, one (
+
), two (

++
) and three (

+++
) crosses denote a rejection of H0 in favor of the second alternative hypothesis (H2) at 10%, 5%, and 

1% significance level, respectively. Panel C also reports the results regarding the third standard performance measure employed, the Theil’s U. Results are reported for the 

three shortest maturity energy futures. For each of the recursively estimated predictive models, the metrics have been calculated over the OoS sub-period (i.e. Jan.2004-

Dec.2016) for a forecast horizon of twelve months (ℎ=12). 
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Chapter 6: Conclusions and Implications  
 

Admittedly, petroleum products, such as crude and heating oil, along with natural gas 

constitute the primary non-renewable energy sources around the world; they have a 

fundamental role in determining macroeconomic aggregates and economic more broadly. 

Consequently, it is of great importance for any individual or organization/institute, who in one 

way or another participate in the energy markets, to know whether the future evolution of 

energy prices can be predicted and, if so, by which factors. 

With few exceptions, however, there is a paucity of literature concerning the 

construction of well-established models capable of reliably describing and predicting 

individual energy futures contracts. There has been found only limited and inconclusive 

evidence concerning the predictability of energy futures dynamics. The controversy regarding 

the proper theoretical approach and the corresponding optimum predictive model lies in the 

‘hybrid role’ of these products. Indicatively, they constitute both consumption and production 

assets, and alternative investment instruments; it is, therefore, reasonable for the energy 

futures market to attract both traditional commercial traders (i.e. hedgers such as direct 

consumers and producers) and the non-commercial traders (i.e. speculators and financial 

intermediaries), respectively.  

Commodity prices are widely believed to be driven by time-varying storage costs and 

convenience yields, both influenced by the underlying state of the economy. To this end, 

focusing on the second strand of the relevant literature, we employ three competing linear 

model specifications and evaluate their forecasting performance both in-sample and out-of-

sample on the energy futures returns. We examine the predictability of the three shortest 

maturity NYMEX crude oil, heating oil, and natural gas futures returns over the period 

Jan.1990-Dec.2016.  Hence, the predictability of the expected futures returns is conducted in 

terms of common underlying risk-factors. 

In particular, we first examine whether returns exhibit a predictable pattern by means 

of prominent risk-factors that are found to price equities and bonds as well as alternative 

investment instruments (i.e. commodities) rather successfully. Six macroeconomic, financial 

and commodity-specific factors have been examined as potential predictors in an economic 

model set up. In short, the economic predictors employed in this study are the open interest 

median growth rate, the short-term real interest rate, the term spread, the default spread, the 
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trade-weighted US dollar index, the world steel production. We also consider incorporate the 

previous realized returns in the economic model.  

In order to avoid a possible omitted variable or irrelevant variable bias and account for 

possible energy market’s segmentation, we construct two competing predictive models; for 

each individual futures, we examine a univariate first-order autoregressive model as well as a 

latent factor model, respectively. The latter employs as potential predictors the first three 

principal components (PCs) extracted by a large macroeconomic database of 134 US 

economic indicators created by McCracken and Ng (2016) through the Principal Component 

Analysis (PCA). Subsequently, the principal components are used as state variables in a linear 

predictive model. We find that the first PC is almost perfectly correlated to the CBOE S&P 

100 Volatility Index (VXO), apparently reflecting the investors’ sentiment and expectations 

regarding the following month’s volatility in the US stock market. Moreover PC2 and PC3 

seem to be moderately correlated with two individual indicators, the Consumer Sentiment 

Index and the Help-Wanted Index.  

Our findings reveal significant in-sample predictability of futures returns. For seven 

out of the nine futures under examination, the economic models are found to satisfactorily fit 

the corresponding returns. Overall, the risk-factors that, apparently, possess a statistically 

significant predictive power over the expected futures returns are the lagged median open 

interest growth rate, the lagged changes in default spread as well as the lagged world steel 

production growth rate. This predictability is found to be strongest for the natural gas futures 

(i.e. at 1% significance level). With the exception of RNG3, we also note that the adjusted R
2
 

rises as the corresponding futures’ maturity lengthens. 

 There is also evidence that the second best performing models in-sample are the 

univariate autoregressive AR(1); they account for almost half of the futures (four (4) out of the 

nine (9) futures examined). However, in the out-of-sample (OoS) analysis this doe not seem 

to be the case; for each individual futures the OoS results indicate that the benchmark AR(1) 

models outperform both the Economic and the PCA models. Finally, in a statistically 

significant sense, we provide evidence that the AR(1) is the optimum model specification in 

order to model the NYMEX energy futures returns.  

In light of these findings, we conclude that the NYMEX energy market is not efficient 

even in its weak-form; the current prices of the examined energy futures do not incorporate all 

available information at any point in time, thus creating a possible predictive pattern through 

the past realized returns. Therefore, technical analysis, relevant indicators as well as neural 

networks could be used to predict future returns. However, based on our findings, there is 
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evidence that the NYMEX energy market does not violate the semi-strong form efficiency. 

That is because the informational content of the remainder economic risk-factors incorporated 

in the economic variables models is not beneficial enough to predict the futures expected 

returns. As a consequence, the AR(1) arises as the optimal model specification OoS. 

Comparing the RMSE and MAE ratios along with the Theil’s U yielded form the AR(1) 

models for the forecast horizon of ℎ=1 month, we conclude that the out-of-sample 

predictability becomes stronger as maturity of the respective futures contract lengthens. This, 

however, does not seem to hold for longer forecast horizons. 

Eventually, the only thing that we could state with full conviction is that the 

predictability or not of the expected futures returns depends largely on the chosen predictive 

models. We thus provide a few suggestions regarding possible future research extensions of 

the current analysis. First and foremost, in line with Le Pen and Sévi (2011), Ludvigson and 

Ng (2009), and Gargano et al. (2016), it would be more appropriate to extract common latent 

factors form a database comprising of both US and global macroeconomic aggregates. The 

reasons lying behind this suggestion have already been extensively discussed. The McCrack-

en and Ng’s big data account only for US economic conditions, while the energy futures un-

der consideration are traded globally. Furthermore, predictability should also be analyzed for 

longer maturity futures contracts, i.e. maturing at 1-12 months (e.g. CL1-CL12). Moreover, 

regarding our economic models, commodity specific and technical indicators would be most 

suitable in case of energy market segmentation; segmentation has been confirmed by Daska-

laki et al. (2014).  As for the econometric approaches, more sophisticated variants of the cur-

rent models should be employed (e.g. GARCH-type model specifications, both symmetric and 

asymmetric). Last but not least, as mentioned by Chantziara and Skiadopoulos (2008), such 

studies postulate that market participants hold a portfolio exclusively composed of the 𝑖-th 

(𝑖=CL, HO, NG) energy product expiring at 𝑇 months (𝑇=1,2,3) rather than a well-diversified 

portfolio of energy futures; various speculative strategies could be constructed and analyzed, 

instead. 
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