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Abstract 

 

In this dissertation, we investigate whether the variance risk premium (VRP) in the 

three U.S indices, particularly S&P 500, Dow Jones and Nasdaq, can be predicted. To 

this end, we conduct both in-sample analysis and out-of-sample analysis. To quantify 

the VRP we use the realized variance and the squared index implied volatility as an 

approach for the variance swap rate. We find that in all three markets the average VRP 

is negative. A number of factors which are considered indicators of the trading activity 

and the stock market conditions can predict the VRP. This is confirmed by the in-

sample analysis and the out-of-sample analysis.   

 

Keywords: Variance swap, Variance risk premium, Realized variance, Index implied volatility, 

In-Sample analysis, Out-of-Sample analysis 
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 “Remember that all models are wrong; the practical question is how wrong do they have to be 

to not be useful” 

G. Box 

 

Introduction 

 

Trading on volatility has increased tremendously in the past decade and it continues to become 

more and more popular. In 1993 the Chicago Board Options Exchange (CBOE) first introduces 

the VIX, an index of implied volatility of the S&P 100. In 2003 the CBOE changes the 

methodology of VIX calculation and therefore its definition, now the VIX is the index implied 

volatility of the S&P 500. CBOE also provide two other volatility indices, the VXD and the VXN, 

for the Dow Jones and the Nasdaq indices. This resulted in an increase of the volatility market 

because of the new products on the volatility, e.g. futures contracts on volatility and options on 

volatility. Volatility swaps and variance swaps, also, are two financial derivatives which are part 

of the expanding market volatility. 

Volatility swaps and variance swaps are over-the-counter financial instruments which allow the 

investors to bet directly on volatility and on squared volatility, respectively. Variance swaps are 

slightly more preferred from the investors because their payoff function is convex in volatility. 

And in the theoretical background, again, they are more preferred because it is easier to replicate 

the fair value of the variance swaps (see e.g. Demeterfi et al. 1999). Variance swaps is a forward 

contract on realized variance. The buyer, at the expiry date of the contract, has to pay a fixed 

variance and she gets paid the realized variance. These are multiplied with the variance notional 

in order to be expressed in real money. The expectation of this payoff is the variance risk premium 

(VRP). 

The question is, what drives the VRP and can we predict it? There are a few papers which 

investigate the contemporaneous relationship of different economic and market indicators with the 

VRP (see Carr and Wu, 2009, Bollerslev et al., 2011). However, the question we address in this 

dissertation is very similar with Konstantinidi and Skiadopoulos (2016). We try to answer whether 
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the VRP of the three major US indices, S&P 500, Dow Jones and Nasdaq, can be predicted. And 

to do this, we first have to quantify the VRP. 

Carr and Wu (2009) define the VRP as the difference between the expected realized variance under 

the physical measure and the expected realized variance under the risk-neutral measure. However, 

there are many methods proposed to quantify the VRP. In this dissertation, in line with a large 

number of papers (see e.g. Carr and Wu, 2006, Carr and Wu, 2009, Trolle and Schwartz, 2010, 

Konstantinidi and Skiadopoulos, 2016), we use the ex-post realized variance to quantify the 

expected realized variance under physical measure. And to approximate the expected realized 

variance under the risk-neutral measure we use the standard approximation in the literature (see 

e.g. Carr and Wu, 2006, Londono, 2011, Bollerslev et al. 2014), the implied index volatility of 

each stock index, respectively. In this way the VRP quantified, is an ex-post VRP. 

We use this ex-post VRP to construct a parsimonious linear model with independent variables 

which are indicators of the trading activity and the stock market conditions. From the conditional 

expectation of this model, we extract the ex-ante VRP. First, we conduct in-sample analysis to 

establish a relationship between the predictor variables and the VRP. And secondly, we conduct 

an out-of-sample analysis to investigate whether the (ex-post) VRP can be predicted. For these 

analyses, we use daily data which span from 2001 to 2017 to construct the payoff of a variance 

swap contract with one month maturity. 

This dissertation investigates whether is possible a parsimonious model can predict the ex-post 

VRP better than simple “guessing”, by using a naïve model, such as the random walk. And if it 

does how much better. To evaluate this, several out-of-sample statistical criteria are employed e.g. 

the out-of-sample R squared (Campbell and Thompson, 2008).   

The possibility to predict the VRP is very important for both speculators and investors who just 

want to hedge their portfolios. Speculators, could just take a bet in volatility for a very short period 

of time with the only goal the profit. On the other hand, there are some types of portfolios which 

are sensitive to the volatility of the market, such as a portfolio of options. Investors who have in 

their possession these portfolios wish to hedge against future volatility using variance swap 

contracts. Thus, predicting the VRP is very important to them. 
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Konstantinidi and Skiadopoulos (2016) find that a number of predictor variable can explain the 

S&P 500 VRP, and they confirmed this by conducting both  in-sample and out-of-sample analysis. 

The methodology and the steps we follow in this dissertation are very similar to their paper. Hence, 

we expect to have similar results in the three market VRPs, both when conducting the in-sample 

evaluation and the out-of-sample evaluation. And, as have been found generally in variance risk 

premium’ literature, we expect that historically the variance swap payoff (ex-post VRP) to be 

negative for all the three markets (SPX, DJX and NDX). 

Our results, indeed, confirm most of the above expectations. We find that the average VRP is 

negative for all the three market VRPs and statistically significant. To conduct the in-sample 

analysis we rely on simple ordinary least squares (OLS) regression. To compute the t-statistics we 

use three approaches, Newey-West, Hansen-Hodrick and White approaches. The majority of the 

predictor variables we use to construct the predictor model are statistically significant. This means 

that they have a predictor power in the VRP. The out-of-sample analysis results are that the 

multiple predictor models we constructed to predict the VRP outperform the naïve model in all the 

three market VRPs. 

Literature Review: As mentioned above, this dissertation shares a lot of similarities with 

Konstantinidi and Skiadopoulos (2016). In that paper the authors investigate whether the S&P 500 

variance risk premium can be predicted. The main differences are that they use actual swap rates 

instead of synthetic as we do here. Also, they analyze the ex-post VRP for different maturities and 

different investment horizons. The authors construct four different models to extract the VRP. 

These models are constructed with predictor variables related to the trading activity, stock market 

condition, economic conditions and the variation in the volatility of the SPX, respectively. 

Another paper which this dissertation is similar, is from Carr and Wu (2009). However, they 

investigate the contemporaneous relationship of the VRP with the candidate variables expected to 

load it.  They quantify the VRP using the ex-post realized variance from forward contract prices 

on the underlying asset and to approach the swap rate they use a portfolio of options similar to the 

VIX. Their analysis run with data from 1996 to 2003 and on a large range of stocks and indices. 

Among others, they find that neither the market excess returns (which is approached by SPX 

returns) or the Fama and French factors cannot explain the VRP. 
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There are plenty of papers that analyze the VRP in the literature, not whether it is predictable or 

not but from different interesting aspects.               

For example, Ait-Sahalia et al. use a parametric stochastic volatility model and actual swap rates 

to investigate the term structure of the ex-ante VRP on the S&P 500. They find that the term 

structure of the VRP has a downward sloping. Using different variables in regression analysis they 

find that this downward slope is mainly a result of the investors’ fear for downward jumps in the 

market.   

Of course, the literature on VRP expands more than just the VRP on indices and stocks. They are 

a number of papers which analyze the VRP on bonds, energy commodities etc.  

Trolle and Schwartz (2010) investigate the VRP on the crude oil and natural gas. The authors 

quantify the VRP calculating the ex-post realized variance on the commodities by using forward 

on the underlying assets. And to approximate the variance swap rate they use a modified formula 

which is very similar to the VIX. Their study is based on data which span from 1996 to 2006. Their 

main findings are that average VRP on both crude oil and natural gas are negative and statistically 

significant.  

Choi et al. (2017) study the variance risk premium in the Treasury market. They approximate the 

variance swap rate using a portfolio of put and call options similar to the VIX. They calculate the 

realized variance, in line with Bondarenko (2014), using a mix formula of simple and log returns 

from treasury future contracts. The authors conclude to some interesting findings. They find that 

the excess returns on variance swaps are higher than the returns investing in straddle strategies, 

which is considered a typical investment on volatility. Using standard risk factors variables, they 

try to explain these returns. The results of their analysis were that they cannot. They also find that 

the bond variance risk premiums are negative, this last finding corresponds with the other similar 

findings in equity and commodities market. 

The remainder of the dissertation is organized as follows. Section 1 is entirely dedicated to the 

variance risk premium. In this section we analyze the VRP, provide a brief analysis of the 

historical VRP and describe the methodology we use to quantify it. In Section 2 we provide the 

theoretical background of the predictor variables which is expected to drive the VRP. We explain 

why and how they could drive the VRP. Section 3 describes these variables, how are constructed, 
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provides summary statistics, time series plots etc. In section 4 and 5, respectively, the in-sample 

and the out-of-sample analysis are conducted. In these sections, also, the results of the analysis 

are provided, followed by some short comments. In the Section 6 results of further robustness 

tests are discussed. And the last section concludes.  

 

1. Variance swap and Variance Risk Premium 

 

1.1. Variance Swap 
 

A swap contract is an agreement between two parties to exchange future cash flows. Swap 

contracts were first introduced in the early 1980 and since then the market has grown tremendously 

comparing other derivatives. This is because, in a swap, principal payments are not exchanged so 

the risk has the investors to deal with is lower. 

A variance swap is an instrument which allows investors to trade future realized volatility against 

current implied volatility (Bossu et al., 2005). The buyer of the swap agrees to pay the strike price 

of the swap, the variance swap rate and the seller agrees to pay the realized variance over the life 

of the contract.  At maturity the payoff for the long party is: 

 

 {𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+𝑇𝑇 − 𝑉𝑉𝑆𝑆𝑡𝑡→𝑡𝑡+𝑇𝑇} 𝑁𝑁, (1.1) 

where RVt→t+T is the realized annualized variance from time t to maturity T, VSt→t+T is the variance 

swap rate and N is the notional amount of dollars which converts the difference between two 

variances to dollar payoff. If this difference is negative at maturity, the buyer has to pay the seller 

the difference multiplied by N amount of dollars, if it is positive the seller has to pay the buyer the 

difference multiplied by N amount of dollars. 

The final realized variance (RVt→t+T) at time T is defined by the above equation: 
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𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+𝑇𝑇 =

252
𝑇𝑇

∗�𝑙𝑙𝑙𝑙 �
𝑆𝑆𝑡𝑡+𝑖𝑖
𝑆𝑆𝑡𝑡+𝑖𝑖−1

�
2𝑇𝑇

𝑖𝑖=1

, 
(1.2) 

where St  is the closing price of the underlying at time t. Note that  the average return which usually 

appears in statistics textbooks is missing from the formula. The reason is because the average daily 

return is close to zero, thus its impact is insignificant. Furthermore, its exclusion has the benefit of 

making the final realized variance additive.  

Volatility swaps are very similar products to the variance swaps. They both trade volatility and in 

both cases, at the inception of the trade, the strike price is usually chosen such the fair value of the 

swap is equal to zero. However, there is a basic difference between them, volatility swaps use the 

square root of the realized variance.  Thus, the payoff of a variance swap is convex to volatility 

and the volatility swaps linear to volatility as illustrated Figure 1. This means that an investor in a 

long position in a variance swap has more profit for an increase in volatility that an investor in 

volatility swap. Therefore, the strike price for the variance swap is slightly higher than the volatility 

swap. 

 

 

Figure 1: The payoff function plots of a volatility swap and a variance swap for the same 
strike price (K=25). 
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The market definitions for the payoffs of the volatility and variance swaps are: 

 

 𝑉𝑉𝑉𝑉𝑉𝑉
𝑃𝑃
𝐿𝐿

= (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, (1.3) 

 

 𝑉𝑉𝑉𝑉𝑉𝑉
𝑃𝑃
𝐿𝐿

= (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦2 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒2) × 𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. (1.4) 

 

The variance notional is usually expressed in volatility terms and is defined as: 

 

 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
2 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

. 
(1.5) 

 

The definition in equation (1.4) is similar to the one in equation (1.1). In the case of equation (1.4) 

realized variance and swap rate are multiplied with 10000 in order to give as a result a whole 

number. For example, an investor enters in a long position with 100$ in volatility swap with a 

strike price K=25 and in a long position in a variance swap with a variance notional of 2$. If final 

realized volatility is 26, the payoff from the volatility swap is 100$ and from variance swap is 

(262−252) ×2= 102$. If the final realized volatility is 24, the investor has to pay 100$ for the 

volatility swap and 98$ for the variance swap.  

As the interest rate swaps, variance swaps initially worth close to zero. Thus, in absence of 

arbitrage opportunities the variance swap rate is equal to the risk-neutral expectation of the realized 

variance at time T, 

 

 𝑉𝑉𝑉𝑉𝑡𝑡→𝑡𝑡+𝑇𝑇 = 𝐸𝐸𝑡𝑡
𝑄𝑄(𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+𝑇𝑇). (1.6) 
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1.2.  Variance Risk Premium 
 

The variance risk premium is usually defined as: 

 

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+𝑇𝑇 = 𝐸𝐸𝑡𝑡𝑃𝑃(𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+22) − 𝐸𝐸𝑡𝑡
𝑄𝑄(𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+𝑇𝑇), (1.7) 

 

where EtP(RVt→t+22) and Et
Q(RVt→t+T) are the physical and risk-neutral expectations of the 

realized variance, respectively. However, quantifying the VRP is not so obvious. Several 

methodologies are proposed in the literature. Since the variance swaps are out-of-the-country 

financial instruments and there are not historical data available these methodologies concern both 

the expected realized variance and the swap rate. 

The monthly true realized variance is something which practically is impossible to observe, let 

alone the forecasting. Nevertheless, there are many econometric approaches in the literature on   

realized variance forecasting. Generally, the simplest way to forecast volatility is by using GARCH 

models or historical volatility. Of course, more complicated models are proposed in the literature. 

Bollerslev, Marrone, Xu and Zhou (2014) use bivariate VAR (1)-GARCH (1,1)-DCC model, 

Bekaert and Hoerova (2014) use a model which include several independent variables. In this way, 

the quantified VRP is an ex-ante VRP. 

There are other methodologies proposed in the literature to quantify the VRP. A number of papers, 

Carr and Wu (2006), Trolle and Schwartz (2010), Konstantinidi and Skiadopoulos (2016) etc. 

calculate the realized variance as described above as the total sum of daily log returns from time t 

to t+22. In this way the realized variance computed is the ex-post realized variance and the VRP 

is an ex-post VRP. In this dissertation the ex-post VRP is used as a method to quantify the VRP. 

The equation employed to calculate the ex-post realized variance is the equation (1.2) as described 

in the previous section with T=22. 
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The second component which is needed to quantify the VRP is the variance swap rate. 

Konstantinidi and Skiadopoulos (2016) use actual variance swap quotes written on the S&P 500 

But since, as mentioned above, variance swaps are over-the-counter financial products, quotes on 

variance swap rates are not publicly available. Thus, several methodologies have been proposed 

in the bibliography to approximate them. Carr and Wu (2009) use the value of a particular portfolio 

of options to approximate the variance swap rate. A considerable number of papers use the index 

implied volatility as an approach of the variance swap rate, more specifically they use VIX which 

is the index volatility of the S&P 500, e.g. Carr and Wu (2006), Trolle and Schwartz (2010), 

Bekaert and Hoerova (2014), Mueller, Sabtchevsky, Vedolin and Whelan (2016) etc. This is 

because the VIX squared approximates the conditional risk-neutral expectation of the realized 

thirty calendar day S&P 500 index variance. Londono (2011) use different index volatilities to 

quantify different index VRPs, e.g. VDAX index volatility for the DAX index, VXJ for the Nikkei 

225 index, VFTSE for the FTSE etc. In this dissertation, a similar method is used. For the three 

stock indices S&P 500 (SPX), Dow Jones Industrial Average (DJX) and Nasdaq (NDX) the three 

respective volatility indices VIX, VXD, and VXN are used. The next section is entirely dedicated 

to VIX, which is the oldest and the most important index volatility of the three. We explain why it 

is considered a good approximation of the variance swap rate and we mention the main errors of 

this approximation. 

 

1.3. The VIX 
 

In 1993, the Chicago Board Options Exchange introduced the CBOE Volatility Index (VIX) which 

measured the 30-day implied volatility from at-the-money options of the S&P 100. In 2003 CBOE 

and Goldman Sachs updated the VIX. Now the new VIX is based on the S&P 500 index and 

estimates the expected volatility by averaging the weighted prices of S&P 500 puts and calls over 

a large range of strike prices and at two nearby maturities. CBOE used this methodology and back-

calculated the VIX since 1990 using historical options price. 

The CBOE Dow Jones Industrial Average volatility index (VXD) and CBOE Nasdaq-100 

volatility index (VXN) were introduced at 1997 and 2001 respectively. The method to calculate 

the VXD and VXN is identical as the method used to calculate VIX with the only exception that 
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CBOE includes only “standard” option series in the calculation. As the new VIX, these two indices 

are back-calculated with the new methodology. The formula used to calculate the VIX, which as 

mentioned above is the same for VXD and VXN too, as provided from CBOE is as follows: 

 

 
𝜎𝜎2 =

2
𝑇𝑇
�

𝛥𝛥𝛫𝛫𝑖𝑖
𝐾𝐾𝑖𝑖2

 𝑒𝑒𝑅𝑅𝑅𝑅 𝑄𝑄(𝐾𝐾𝑖𝑖) − 1/𝑇𝑇 �
𝐹𝐹
𝐾𝐾0

− 1�
2𝑇𝑇

𝑖𝑖=1

, 
(1.8) 

  

where σ×100 is the VIX, T is time to expiration, F is the forward index level desired from index 

option price, K0 is the first strike below the forward index level, Ki
 is the strike price of the i-th 

out-of-the-money option; a call if Ki > K0; and a put if Ki < K0; both put and call if Ki =K0,  

ΔKi  denotes the interval between strike prices-half the difference between the strike on either side 

of  Ki : 

 

 𝛥𝛥𝐾𝐾𝑖𝑖 =
𝐾𝐾𝑖𝑖+1 − 𝐾𝐾𝑖𝑖−1

2
, (1.9) 

 

R denote the risk-free interest rate expiration and Q(Ki) is the midpoint of the bid-ask spread for 

each option with strike Ki. 

At this point, it is crucial to clarify the difference between the historical volatility and the implied 

volatility. The historical volatility can be approached from the historical observations, e.g. the 

realized volatility (annualized) from day t-22 to t of S&P 500 can be approached by the sum of 

squared daily log returns: 

 

 
𝑅𝑅𝑉𝑉𝑡𝑡−22→𝑡𝑡 =

252
22

�𝑙𝑙𝑙𝑙 �
𝑆𝑆𝑡𝑡−𝑖𝑖
𝑆𝑆𝑡𝑡−𝑖𝑖−1

� .
222

𝑖𝑖=1

 
(1.10) 
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On the other hand, the implied volatility is something we can’t measure directly but can estimate 

it from the options’ price. The three volatility indices we use, VIX, VXD and VXN estimate the 

implied volatility of the SPX, DJX and NDX respectively.  

The variance swap rate is the fair value of future realized variance, a concept first introduced from 

Demeterfi et al. (1999). They argue that the variance swap rate is equal to the expected realized 

variance from day 0 to the end of the contract in a risk-neutral world as follows: 

 

 
𝑉𝑉𝑉𝑉 =

1
𝑇𝑇
𝐸𝐸ℚ �� 𝜎𝜎2(𝑡𝑡, … )𝑑𝑑𝑑𝑑]

𝑇𝑇

0
�. 

(1.11) 

  

The authors demonstrate that the VS can be computed from the equation below: 

 

 
𝑉𝑉𝑉𝑉 =

2
𝑇𝑇

 � 𝑟𝑟𝑟𝑟 − �
𝑆𝑆0
𝑆𝑆∗
𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟𝑟𝑟) − 1� − 𝑙𝑙𝑙𝑙 �

𝑆𝑆∗
𝑆𝑆0
�

+ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟𝑟𝑟)�
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(1.12) 

 

 

Jiang and Tian (2007) demonstrate that the concept of the fair value as defined above and the 

model-free implied variance formulated by Britten-Jones and Neuberger are identical concepts. 

Britten-Jones and Neuberger found that implied volatility can be calculated not from option pricing 

model (e.g. BSM model) but using a set of options with the same maturity from the equation 

modified by Jiang and Tian (2007) as follows: 
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(1.13) 

 

 

where RVBN is the realized variance from time 0 to T and F0 is the forward price with maturity 

equal with that of the options. The fact that these two different methods of measuring the future 

realized volatility are similar is very important. Firstly, because it shown that the fair value of 

variance and the implied squared volatility are equivalent concepts and the implied volatility is a 

concept very familiar in the literature. Secondly, it explains why the VIX, except that it can be 

seen as the variance swap rate (squared VIX), it known as the ‘investors’ fear gauge”. The proof 

on why the equation (1.13) is equivalent with the equation (1.12) is provided in the Appendix B. 

As explained above the CBOE calculate the squared VIX using the equation (1.8) which is the 

discretization of the equation (1.12). In line with Jiang and Tian (2007), we discuss the 

approximations and the problems which occur from the CBOE formula. The equation (1.12) from 

Demeterfi et al. (1999) it assumes that there are strike prices (K) from 0 to infinity, something 

which of course it doesn’t stand in the real world. Thus, the CBOE approximate the K=0 with the 

lower strike price (KL) and the infinity with the higher strike price KH. So, the sum of the two 

integrals from zero to infinity becomes: 
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(1.14) 

 

 

This results in a truncation error which is defined as follows: 
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(1.15) 
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The CBOE uses the following expression to approximate the two integrals from equation (1.14): 
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(1.16) 

 

This has as a result a discretization error which is defined as: 
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The CBOE approximates the term which precedes the two integrals in equation (1.12), using a 

Taylor expansion, as follows: 
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(1.18) 

 

The error from the approximation with this expansion is defined as follows: 
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(1.19) 

 

The last approximation which CBOE use in its formula is about the maturity of the options. The 

VIX index approximates the model-free implied variance for 30 days maturity, this requires at any 

point in time the existence of options which expire exactly in 30 days. Thus, CBOE calculates the 
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variance from options which expire in less than 30 days but is the closest maturity to the 30 days 

and also, calculate the variance from options with more than 30 days maturity but have the closest 

maturity to the 30 days. The VIX provided at the end from the CBOE is a result of the follow 

interpolation formula: 

 

 𝑉𝑉𝑉𝑉𝑋𝑋302 = 1
30

  [𝜔𝜔𝑇𝑇1𝑉𝑉𝑉𝑉𝑋𝑋2(𝑇𝑇1) + (1 − 𝜔𝜔)𝛵𝛵2𝑉𝑉𝑉𝑉𝑋𝑋2(𝑇𝑇2)], (1.20) 

 

where  

 

 𝜔𝜔 =
𝛵𝛵2 − 30
𝛵𝛵2 − 𝛵𝛵1

 , (1.21) 

 

Τ2 is the closest maturity more than 30 days and T1 is the closest maturity less than 30 days. The 

error which results from this interpolation process is defined as: 

 

 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉� 30
2 − 𝑉𝑉𝑉𝑉𝑋𝑋302 , (1.22) 

 

where 𝑉𝑉𝑉𝑉𝑉𝑉� 30
2  is the estimated variance from the interpolation and 𝑉𝑉𝑉𝑉𝑋𝑋302  is the “true” variance if 

could be calculated with no interpolation. This error occurs due to the fact that the model-free 

implied variance is not a linear function of maturity. 

Another issue in the VIX formula is that assume no jumps in the underlying asset. The VIX’s 

formula is based in equation (1.12) from Demeterfi et al. which assumes that the underlying asset 

follow an Ito’s process. In presence of jumps the approximation of the risk-neutral expected 

volatility from the VIX results in another error, the error of jumps. Thus, taking into account that 

the best formula of VIX is the continuous one, the risk-neutral expectation of the realized variance 

if we allow jumps to the underlying assets becomes: 
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(1.23) 

 

 𝐸𝐸ℚ(𝑅𝑅𝑅𝑅) = 𝑉𝑉𝑉𝑉𝑋𝑋2 + 𝜀𝜀, (1.24) 

 

where ε is the error of jumps and it zero if the process of the underlying is purely continuous. This 

error ε is defined (Carr and Wu, 2006) as: 
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(1.25) 

 

for more details on equation 1.25 see Carr and Wu (2006 and 2009). 

Martin (2013) presents a new index to measure the risk-neutral expectation of the future realized 

variance, the SVIX. He argues that if in a swap contract the realized variance is defined be simple 

returns and not by the log returns then the strike price of the variance swap can be perfectly 

replicated by the SVIX. This new index corrects the problem of jumps and is provided in the 

equation below: 
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(1.26) 

 

where realized variance (RV) is the sum of simple returns and not the log returns. However, in 

short time horizon Martin argue that VIX2 is an accurate approximation of the SVIX2 hence the 

VIX2 could be considered an accurate approximation of the variance swap rate. 
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Bondarenko (2014), use another method to deal with the jump error. He also changes the method 

of measuring the realized variance using the the following equation: 

 

 
𝑅𝑅𝑅𝑅� = 2��
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(1.27) 

  

Choi, Mueller and Vedolin (2017) use this approach to construct the payoff of variance swaps on 

Treasury Bonds. They find that this new measure of realized variance can be perfectly replicated 

for every price path and every partition. Thus, the strike price of the variance swap rate (VS) is 

defined as: 
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(1.28) 

 

 

In the empirical ground, Carr and Wu (2009) use a very similar formula with the VIX formula to 

approximate the variance swap rates for different stock indices and stocks (e.g. SPX, NDX, 

Microsoft, Intel etc.) for 30 days maturity. Konstantinidi and Skiadopoulos (2016) compare this 

method with the actual VS with different maturities. They find that there is a statistically significant 

difference between the mean of the variance swaps’ payoff calculated with Carr and Wu and the 

mean from the actual VS, this is for two months and above investment horizon. For one-month 

time horizon, they found that this difference is not statistically significant. Ait-Sahalia, Karaman 

and Mancini (2015) use actual VS with maturity 2, 3 and 6 months to compare them with the 

respective approximation from the VIX method. They find that the squared VIX and the actual VS 

have similar term structure characteristics qualitatively, but they sample statistics (mean, standard 

deviation etc.) are different. However, these differences are larger for the longer maturity (6 

months) and become smaller for the shorter maturity (2 months).  
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Encouraged from the above results and the fact that the VIX formula is the most used in the 

industry to approximate the risk-neutral expectation of the volatility and, also, it is very easy to 

obtain data on it and the other two indices, we rely on the squared VIX as the approximation of 

the risk-free variance. And because the way the other two indices (VXD, VXN) are calculated are 

almost identical to the VIX, we employ these two indices as approximators of their respective VS. 

Thus, the equation 1.7 becomes: 

 

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+𝑇𝑇 = 𝐸𝐸𝑡𝑡𝑃𝑃(𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+22) − 𝐼𝐼𝐼𝐼𝑡𝑡 (1.29) 

 

 

1.4.  Historical Behavior of the three markets’ VRP 
 

At this point it is important to analyze the historical behavior of the VRPs. For this analyze all data 

available for the three VRPs from 2001 to 2017 is used. Summary statistics for all the three VRPs 

are provide in Table 1.1. They share a lot of similarities with previous literature.  Historical average 

is negative statistically significant for the three VRPs. This indicates that investors who enter in a 

long position on variance swap contract are willing to accept a significantly negative average 

payoff. Accordingly, shorting variance swap contracts on these indices generate average positive 

payoffs. Of course, these positive payoffs do not come at zero risk, this is because generally there 

is a high volatility on VRPs. This explain and the fact that among the three VRPs we are 

investigating the highest payoff (for the shorting part) is from index VRP with the higher volatility 

(standard deviation) and the lower payoff come from the index VRP with the lower volatility. The 

distributions of VRPs exhibit heavy tails for all the three indices with kurtosis of S&P 500 VRP 

being the largest (62.45). There is a lack of symmetry in all the VRPs, they display positive 

skewness with S&P 500 having the highest. Using the Std. Deviation as an estimation of volatility 

it seems that the Nasdaq VRP has the higher volatility among the three VRPs. Also, there is a high 

pairwise correlation among the three VRPs with the correlation between SPX VRP and DJX VRP 

being close to 1.   
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Table 1.1:  Summary statistics for the variance risk premiums 

 SPX VRP DJX VRP NDX VRP 

Mean −0.0104 −0.0085 −0.0258 

Max 0.653 0.561 0.590 

Min −0.324 −0.304 −0.374 

Std. Dev 0.0494 0.0426 0.0618 

Skew 5.64 5.26 1.38 

Kurt 61.71 58.10 23.96 

t-stat (NW) −3.32 −3.12 −6.42 

t-stat (HH) −2.61 −2.45 −4.92 

t-stat (W) −13.54 −12.85 −26.89 

95
%

 C
I 

 

Lower −0.0165 −0.0138 −0.0337 

Upper −0.0043 −0.0032 −0.0179 

Mean, Max, Min, Std. Dev, Skew, Kurt, t-stat and 95% CI report sample average, sample maximum 
and minimum values, sample standard deviation, sample skewness, sample kurtosis, t-statistics 
of the mean VRPs and 95% CI the 95% confidence interval of the mean of VRPs. NW, HH t-stat are 
the t-statistics calculated with Newey-West and Hansen-Hodrick approach, respectively. W t-stat 
stands for the White robustness t-statistics calculated from the OLS.  Standard errors to construct 
95% CI are computed with Newey-West(NW) approach using a lag-length equal to 22 trading day. 
Data to calculate these statistics span from 2001 to 2017. 
 

Table 1.2: VRPs Correlation Matrix 

 SPX VRP DJX VRP NDX VRP 
SPX VRP 1 0.981 0.772 

DJX VRP  1 0.745 

NDX VRP   1 

Table 1.2 displays the pairwise correlation between the three markets VRP for the period 2001-
2017. 
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Figure 2: This figure plots the ex-post SPX VRP, which is defined as the difference between 
the ex-post realized SPX returns for 22 trading days variance and the squared VIX, from 
2001 to 2017. First and second shaded areas represent the Early 2000s Recession and the 
Great Recession, respectively. The four vertical dotted line represent, Stock Market 
Downturn of 2002 (4 March 2002), Flash Crash (6 May,2010), Black Monday (8 August 
2011) and the stock market crash of the 24 August 2015. 

 

 

Figure 3: This figure plots the ex-post DJX VRP, which is defined as the difference between 
the ex-post realized variance of DJX returns for 22 trading days and the squared VXD, from 
2001 to 2017.  
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Figure 4: This figure plots the ex-post NDX VRP, which is defined as the difference between 
the ex-post realized variance of NDX returns for 22 trading days and the squared VXN, from 
2001 to 2017. 

 

                     

Figures 2,3 and 4 display the variance risk premiums for the S&P 500, Dow Jones and Nasdaq 

from February 2001 to July 2017 employing the following equation. 

 

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22
𝑗𝑗 = 𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+22

𝑗𝑗 − 𝐼𝐼𝑉𝑉𝑡𝑡
2(𝑗𝑗), (1.30) 

 

where IVt
2(j) stands for index volatility closing price at day t and j=SPX, DJX and NDX. 

The three plots provided in the figures above confirm that variance risk premiums are stationary 

time series. From SPX VRP and DJX VRP plot one can easily confirm the high correlation, close 

to 1, between them. From 2001 to 2017 the two plots follow almost identical paths and all the three 

time series are very sensitive to financial and economic shocks.  
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At this point it is interesting to discuss about the three time series of the three variance risk 

premiums dividing them in subperiods.  First one, is the first shaded area, the Early 2000s 

Recession, according to National Bureau of Economic Research the US economy was in recession 

from March 2001 to November 2001. The second one, is from January 2003 to November 2007, 

this was a quiet period for the stock market without any important financial or economic shock. 

The third subperiod is the Great Recession which it started about November 2007 and it ended 

about June 2009. Fourth one is from 6 May 2010 to December 2011, in this period two important 

financial events happened, Flash Crash (6/5/2010) and Black Monday (8/8/2011). The 2010 Flash 

Crash is referred to stock market crash in the US which lasted for a very short time and after that 

the stock market rebounds immediately. The 2011 Black Monday is referred to US stock market 

crash which followed the credit rating downgrade of the US sovereign debt from AAA (risk-free) 

to AA+. This day DJX made the 6th largest drop in his history and that was only one trading day 

after (4/8/2011) the 10th largest drop of the DJX. The last subperiod is from January 2012 to July 

2017. Statistics for these periods are provided in the table below:  

 

 

 

  3/2001-

11/2001 

1/2003-

11/2007 

11/2007-

6/2009 

5/2010-

12/2011 

1/2012-

8/2017 

SPX Mean −0.0294 −0.0110 0.0095 −0.0188 −0.0093 

Std. Dev    0.0360    0.0132 0.1367    0.0450    0.0139 

DJX Mean −0.0184 −0.0097 0.0083 −0.0145 −0.0079 

Std. Dev    0.0436    0.0130 0.1161    0.0349   0.0121 

NDX Mean  −0.1566 −0.0231 0.0023 −0.0143 −0.0092 

Std. Dev    0.0890    0.0255 0.1216   0.0490   0.0159 

Table 1.3 displays the sample mean and the sample standard deviation of the three market VRPs 
for the five different time periods: 3/2001-11/2001, 1/2003-11/2007, 11/2007-6/2009, 5/2010-
12/2011 and 5/2010-12/2011 

 

Table 1.3: Summary statistics for the VRPs in each subperiod  
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There are a few things worth to point out from the above analysis. Average VRPs become more 

negative during the Early 2000s Recession as expected but during the Great Regression of 2007-

2009 the average VRPs are inexplicably positive. The reason(s) why is (are) very interesting to 

investigate but it is not the aim of this dissertation. Also, the average VRPs become more negative 

during the period 5/2011-12/2011 when the two financial shocks, Flash Crash and Black Monday 

happened. This again confirm the theory that the investors which enter in a long position on swap 

variance contract are willing to pay a negative payoff in order to hedge against high volatility 

during periods of regressions and financial shocks.  

On the other hand, the high volatility in the two recession periods and during the period of two 

financial shocks mentioned above remind that positive payoffs for the short party in a variance 

swap contract do not come without any risk. During the Early 2000s Recession volatility on the 

three VRPs was much higher than the volatility during the period 1/2003-11/2007. The latter, of 

course, was a quiet period from financial and economic shocks. Thus, at this period the positive 

payoffs for the short party were much lower comparing to the period during the Early 2000s 

Recession. Similar results appear and for the period 5/2010-12/2011 compare to the period 1/2012-

8/2017. More negative VRPs, which means positive payoffs for the short party, during the 

5/2/2010-12/2011 than the period 1/2012-8/2017 and respectively higher volatility for the former 

compare to the latter. During the Great Recession the volatilities were very high for all the three 

indices which can be interpreted as high risk for the short party. This risk, converted in real losses 

after the positive average for the three VRPs. Which it is in contrast with negative averages of all 

subperiods discussed above and the negative historical average for all period from 2001 to 2017. 

This means that during this short period, parties which were short in variance swaps contracts had 

negative payoffs.  
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2. Theoretical Background  

 

We want to investigate if the SPX VRP, DJX VRP and NDX VRP  can be predicted. To do this, 

in line with Konstantinidi and Skiadopoulos (2016), we calculate the VRP as the conditional 

expectation of the profit and loss from a long position in a variance swap after 22 trading days: 

   

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22 = 𝐸𝐸𝑡𝑡𝑃𝑃[𝑃𝑃&𝐿𝐿𝑡𝑡→𝑡𝑡+22] (2.1) 

 

Next, we consider a number of variables which have been found that can drive the VRP in 

order to construct the following model: 

 

 

 
𝐸𝐸𝑡𝑡𝑃𝑃[𝑃𝑃&𝐿𝐿𝑡𝑡→𝑡𝑡+22] = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

, 
(2.2) 

 

where xit stands for the i variable, βi is the coefficient of the i variable and β0 is the constant of 

the model. Note that we use the variables at time t to predict the ex-post VRP which is the 

𝑃𝑃&𝐿𝐿𝑡𝑡→𝑡𝑡+22 . 

The variables we investigate to have a predictive power in the VRP are (i) the TED spread, (ii) the 

index return, (iii) the credit spread, (iv) the term spread, (v) the put-call ratio and (iv) the squared 

index volatility. Following a similar approach with Konstantinidi and Skiadopoulos (2016). We 

separate these variables into two groups. In the first one, are the variables related to the trading 

activity and in the second one, are the variables related to the stock market conditions. 
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2.1.  Trading Activity 
 

We consider the TED spread, the credit spread and the term spread as indicators of trading activity 

of the broker-dealers. 

Broker-dealers when shorting a variance swap have some cost which could occur in two ways. 

Firstly, when they short a variance swap they should cover this position as they do when they sell 

a put/call option. To do so, they have to buy a portfolio of options which (not perfectly) replicate 

the payoff of a variance swap. And secondly, even if they not wish to cover this position the Net 

Capital Rule obligate them to have enough liquidity to cover their obligations. Hence, they have 

to borrow these funds in order to have the liquidity required by the US Securities and Exchange 

Commission. 

The TED spread is considered as an indicator of investors’ funding liquidity. That is, as the TED 

spread increases the lower funding liquidity, hence more difficult for the investor to keep funding 

her trading activity. We expect a negative relationship between the TED spread and the VRP, as 

the TED increases the VRP become more negative. This is because, as Gârleanu, Pedersen and 

Poteshman (2009) argue, broker-dealers are short in index options. Bakshi and Kapadia (2003) 

note that long positions in options are hedges against significant market declines. The authors also 

indicate that increased realized volatility coincides with a downside in market asset prices. Thus, 

the long side in variance swap are willing to pay a higher VRP in order to hedge against downward 

moves in the market. The broker-dealers who are short in options receive the VRP as a 

compensation to continue to keep this position (Konstantinidi and Skiadopoulos, 2016). But when 

broker-dealers have difficulties raising funds, it becomes harder for them to enter in a short position 

in variance swap contract. Thus, the investors which want to hedge by entering in a long position 

in a variance swap have to pay a greater VRP in order to make the broker-dealers enter in a short 

position.  

We expect a similar negative relationship between the credit spread and the VRP. This is because 

the credit spread as an economic indicator not just follows the general state of the economy but 

can gauge also the sentiment of the market participants for the future of the economy, hence can 

forecast the future economic activity (see e.g. Gomes and Schmid, 2010). As the credit spread 

increases borrowing funds will be more expensive for the broker-dealers hence, lower the funding 
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liquidity. Thus, similar in the case of the TED spread the broker-dealers which are short in variance 

swaps will ask a higher VRP and the buyer must offer a higher VRP to convince them to stay in a 

short position. 

The idea of using the term spread (TS) as a predictor variable is similar with the TED spread and 

the credit spread. We expect a positive relationship between the term spread and the VRP, as the 

TS decreases the VRP become more negative. There are plenty of literature which empirically 

confirm that the slope of the yield curve can predict the future state of the economy (see Estrella 

and Hardouvelis, 1991). Franz (2013) states “Examples for global risk factors are the TED spread 

or the term spread which can both be interpreted as indicators for the health of the economy and 

indicators for the expected performance of financial markets”. As the term spread decreases (slope 

of the yield curve become flatter or negative) again, borrowing funds for the broker dealers become 

more expensive and funding liquidity decreases. And as mentioned above, it will be more difficult 

for the broker-dealers to enter in a short position in variance swap hence, they will demand a higher 

VRP and the buyers will offer a higher VRP. 

 

2.2.  Stock Market Conditions 
 

We consider the squared index volatility as a predictor variable of the VRP and we expect a 

negative relationship between them. Whaley (2008) argue that the VIX express mainly the fear of 

the investors for a downside in stock price. Also, Whaley (2000) found both a negative correlation 

and an asymmetric relationship between the VIX and the SPX returns. He found that an increase 

in the VIX will be followed by negative returns in the SPX, which will be higher in absolute value 

than the positive return followed by a decrease in VIX. In the case of the negative returns, the 

future realized volatility will be high. Thus, as the index volatility increases the investors are 

willing to pay a higher VRP to get advantage of this future high volatility. We consider in this 

analysis that a similar connection exists, also, between the other two stock indices and their 

respective index volatilities.  

Note that the squared index volatility already appears in the calculation of the (ex-post) VRP as an 

approach to the variance swap rate. Thus, the general predictor model for each index VRP is: 
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𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22 = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑉𝑉𝑡𝑡2 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑡𝑡→𝑡𝑡+22

6

𝑖𝑖=2

, 
(2.3) 

 

where 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22 is the ex-post variance risk premium for each index as described in the previous 

section and it is defined as: 

 

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22 = 𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+22 − 𝐼𝐼𝑉𝑉𝑡𝑡2, (2.4) 

 

𝑅𝑅V𝑡𝑡→𝑡𝑡+22 is the realized variance, 𝐼𝐼𝑉𝑉𝑡𝑡2 is the squared index volatility, 𝑥𝑥𝑖𝑖𝑖𝑖 stands for all the other 

variables, εt→t+22 is the error of the model and 𝛽𝛽0, 𝛽𝛽𝑖𝑖 are the coefficients of the model. 

The structural relation is really between  𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+22 and the other predictor variables, including of 

course the IV2. Thus, the equation (2.3) is just a (valid) re-arrangement of the following equation: 

 

 
𝑅𝑅𝑉𝑉𝑡𝑡→𝑡𝑡+22 = 𝛽𝛽0 + (1 − 𝛽𝛽1)𝐼𝐼𝑉𝑉𝑡𝑡2 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑡𝑡→𝑡𝑡+22

6

𝑖𝑖=2

, 
(2.5) 

 

We also consider the index return as a predictor of the VRP. Stock returns have a negative 

relationship with both the realized volatility and the implied volatility due to the “leverage effect”. 

Thus, given also the negative relationship of the index implied volatility with the VRP, we expect 

a positive relationship between the stock return and the VRP. This is because as the index return 

decreases the index volatility will increase and the VRP will decrease. 

Finally, we consider the put-call ratio as a predictor variable of the VRP and we anticipate that 

there is a negative relationship between them. Han (2008) found that a variety of proxies for the 

market sentiment are significantly related to the risk-neutral skewness of the S&P 500 index. In 

particular, he found that the risk-neutral skewness of the SPX returns become more negative when 
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the market sentiment turns more bearish. Put-call ratio is considered as a measure of the market 

sentiment. When the put-call ratio is close to one or greater it indicates a bearish sentiment of the 

market, hence a more negative risk-neutral skewness. A negative risk-neutral skewness reflects 

investor’s fears for downward jumps in the index price (Bakshi and Kapadia, 2003, Bates, 2000). 

In periods of downward jumps the realized variance is expected to be greater than the variance 

swap rate, meaning that the buyer of the swap will have profit. Thus, when risk-neutral skewness 

becomes more negative, put-call ratio increasing, the buyers of the variance swap are willing to 

pay a greater VRP and sellers are asking for a greater VRP. That is, as the PC increases the VRP 

become more negative because the long part on the variance swap is willing to pay a larger 

premium in order to get advantage of this expected high realized volatility. 

 

3. Data Description 

 

In the previous section we considered six variables which we expect to have a predictor power in 

the VRP. In this section we briefly describe these six variables, the TED spread, the index returns 

the credit spread (CS), the term spread, the put-call ratio and the squared index volatility. Time 

series plots of these variables are provided, summary statistics followed by some short comments, 

methodology used to calculate etc.  

 

3.1. TED spread 
 

TED spread, from now on just TED, is defined as: 

 

 TED = 3-month LIBOR rate – 3-month T-Bill rate. (3.1) 
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LIBOR stands for London Interbank Offered Rate. It is the average interest rate at which banks 

lend to each other in London market. LIBOR is based in five currencies, US dollar (USD), Euro 

(EUR), pound sterling (GBP), Japanese yen (JPY), Swiss franc (CHF) and seven maturities, 

overnight, one week, 1 month, 2 months, 3 months, 6 and 12 months. In our case the 3 months 

based in USD is employed. Generally, not just as a part of TED, LIBOR is a key benchmark rate. 

This is because not just reflect the cost at which a bank can borrows funds from another bank but 

also is used as the reference rate for a huge range of financial products. From interest rate swaps 

to a simple mortgage loan or a saving account. In times of financial crisis, the LIBOR increases 

because banks do not trust each other so they lend at a higher LIBOR. The idea is simple, the 

higher the risk the higher the rate. 

T-Bill stands for Treasury Bill. A Treasury Bill is a debt security issued by the US government 

with maturity less than one year. It does not pay a coupon rate but is sold at a discount and its yield 

is the difference in which is purchased and its face value. As the LIBOR this is a very important 

rate which is closely watched by financial markets because it is considered the closest interest rate 

to the risk-free interest rate. The T-Bill interest rate affect a range of other interest e.g. the corporate 

bond interest rate.   

The way TED is constructed it provide a measure of liquidity for the investors. Assuming that 3-

month T-Bill interest rate is the risk-free interest rate an increase in TED spread it come more from 

an increase in 3-month LIBOR interest rate. This means that when TED spread becomes wider it 

becomes more expensive for investors to raise funds.  

In Table C.1 in the Appendix C are provided some key statistics for the 3-month LIBOR, 3-month 

T-Bill and TED. Figure C.1 and C.2 provide timeseries plots of 3-month LIBOR, 3-month T-Bill 

and TED. Data to construct the summary statistics of the TED spread and its components and to 

provide the timeseries plots span from 2001 to 2017. 

There are some interesting things to point out from these plots and statistics. TED spread as the 

VRPs is asymmetric with a skewness value of 3.79 and has fat tails this is presumed on the high 

value kurtosis. TED spread is the difference of two interest rate so is a stationary time series, this 

is confirmed from the plots too.  TED reach its peak at 10/10/2008 less than a month after the 

bankruptcy of Lehman Brothers. On this day 3-month LIBOR was at 0.0482 and the T-Bill at 

0.0024 making the TED to reach at 0.0458. Its lower value (0.0009) was at 15/3/2010. This was 
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mainly an impact from FED politic on interest rate. The FED lowered its interest rate to all time 

lower on December 2008 and did not hike it again until December 2015. 

Daily data from trading days on 3-month LIBOR and 3-month T-Bill to construct the TED spread 

are obtained from Thomson Reuters Datastream. 

 

3.2.  Index Return 
 

Next, we consider SPX return (RSPX), DJX return (RDJX) and NDX return (RNDX) as predictor 

variables for the SPX VRP, DJX VRP and DJX VRP respectively. There is a well-established 

negative relationship, which have been discussed in literature in both empirical and theoretical 

framework, between stock returns and both realized and implied volatility (Figlewski and Xiaozu, 

2000). Usually a decrease in stock price results in an increase of the stock volatility and an increase 

of the stock price results in a decrease of the stock volatility. This phenomenon is called the 

“leverage effect”. 

 An earlier discussion about this phenomenon is provided by Black (1976). An intuitive 

explanation for this could be that when the leverage of a firm increases it means that its debt 

increases making the firm riskier, hence the volatility of firm’s equities increases. 

A financial explanation which describe the relationship between stock returns’ volatility and the 

leverage of the firm is as follow. The firm value is: 

 

 𝑉𝑉 = 𝐸𝐸 + 𝐿𝐿 (3.2) 

 

where V is the total value of the firm, E defines the value of equities and L stand for the total value 

of liabilities of the firm. If we assume that equities are only the number (N) of outstanding shares 

(S) and liabilities are only risk-free debt (S) the above equation become: 
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𝑉𝑉 = 𝑁𝑁𝑁𝑁 + 𝐷𝐷. (3.3) 

Now, if there is a random change ΔV in the market value of the firm it will affect the value of the 

N shares and for each share by the follow equation: 

𝛥𝛥𝛥𝛥
𝑆𝑆

=
𝛥𝛥𝑉𝑉
𝐸𝐸

. (3.4) 

With simple algebra it can be easily shown that equation (3.4) can be written as: 

𝛥𝛥𝛥𝛥
𝑆𝑆

=
𝛥𝛥𝑉𝑉
𝑉𝑉
�1 +

𝐷𝐷
𝐸𝐸
�. (3.5) 

This means that a percental returns on stocks are equal the percental returns on firm value 

multiplied by 1 and the leverage of the firm. Thus, the equation (3.5) can be written as: 

𝑅𝑅𝑆𝑆 = 𝑅𝑅𝑉𝑉 𝐿𝐿. (3.6) 

From the equation (3.6) we can easily obtain the standard deviation of stock return: 

𝜎𝜎𝑆𝑆 = 𝜎𝜎𝑉𝑉 𝐿𝐿. (3.7) 

Thus, ceteris paribus, a decrease in stock price of the firm will increase the leverage and the 

volatility of the stock returns. 

A more mathematical approach (Geske, 1979) to show the negative relationship between the 

volatility of the stock’s returns and its price is by following the Merton model for the valuation of 
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a firm. Merton in 1974 under some assumptions showed that owing one firm’s share (S) is equally 

of owing a call option with the underlying asset the value of the assets of the firm and strike price 

the face value of the debt. One of the results of Merton paper is that volatility of equities can be 

expressed as follows: 

 

 
𝜎𝜎𝛦𝛦 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑉𝑉
𝐸𝐸

 𝜎𝜎𝑉𝑉, 
(3.8) 

 

where V is the value of assets, E the value of equities, and σV is the volatility of assets. Note that 

in this case the partial derivative  
∂E
∂V

  is the delta of the equity (stock) and it can be proven that it 

is equal N (d1). 

Now if the partial derivative of equity standard deviation with respect to the value equity is taken 

we have the following result: 

 

 𝜕𝜕𝜎𝜎𝑆𝑆
𝜕𝜕𝜕𝜕

=  −
𝑉𝑉
𝑆𝑆2

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜎𝜎𝑉𝑉, 

(3.9) 

 

which it becomes: 

 

 𝜕𝜕𝜎𝜎𝑆𝑆
𝜕𝜕𝜕𝜕

=  −
𝑉𝑉
𝑆𝑆2

 𝑁𝑁(𝑑𝑑1) 𝜎𝜎𝑉𝑉 < 0. 
(3.10) 

 

 

The way the index returns are used as a predictor variable in this dissertation is similar with 

Konstantinidi and Skiadopoulos (2016). We use the annualized sum of the daily log returns of the 

index from day t back to day t-21, this is a total sum of 22 daily returns. Daily closing price for 
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each index to construct this sum are obtained from Yahoo Finance. Equation (3.11) provided below 

describe the method used to calculate this sum: 

 

𝑅𝑅𝑗𝑗 =
252
22

�𝑙𝑙𝑙𝑙
𝑆𝑆𝑡𝑡−𝑖𝑖
𝑆𝑆𝑡𝑡−𝑖𝑖−1

22

𝑖𝑖=0

,  
(3.11) 

 

where j = SPX, DJX, NDX 

In the Appendix C, Table C.1 is provided a panel with the summary statistics of the three index 

returns. Also, in this appendix the time series plots of three index returns are provided. Again, to 

provide these statistics and the plots all data available from 2001 to 2017 are employed. 

There are some things worth to point out from the table D.1 about the index returns. The minimum 

returns, as we defined it, “coincide” to be at the same date for the three indices (10/27/2008) during 

the period of Great Recession as someone could easily anticipate. The maximum values are at 

4/6/2009 for the SPX and DJX and at 5/7/2001 for the NDX. It can be easily observed that high 

average returns come with high risk (high volatility) for all the three indices. 

 

3.3.  Credit Spread 
 

We define the credit spread (CS) as: 

 

 𝐶𝐶𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑦𝑦′𝑠𝑠 𝐵𝐵𝐵𝐵𝐵𝐵 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑦𝑦′𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴 , (3.12) 

 

where Moody’s Baa stands for the Moody’s Seasoned Baa Corporate Bond Yield and Moody’s 

Seasoned Aaa Corporate Bond Yield. 

Moody’s gradations for the corporate bonds are indicated by nine symbols, Aaa, Aa, A, Baa, Ba, 

B, Caa, Ca, and C. Each symbol represents a category of bonds with similar characteristics and of 
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course, they have an equal probability of default. Aaa is the highest rating which implies that the 

company has a high credit rating and a very small probability of default, generally Aaa corporate 

bond yield is considered as substitution of the 10-years US T-Bond yield. The lowest gradation is 

C which, according to Moody’s, are typically under default process with low probability to 

recover. From Aa to C numbers are also used from Moody’s as sub graduations e.g. Aaa, Aa1 Aa2, 

Aa3, A1 and so go on. Baa is considered a relatively high credit risk rate with moderate default 

risk and a worthy investment. 

 A widening credit spread usually indicates a slowing economy and it means that the 

creditworthiness in most of the corporates is low. This is because when economy is not doing well 

bond rates of corporations which have a low credit rate are considered more likely to default, hence 

the investors demand a higher yield. A narrowing credit spread usually indicate that economy is 

doing well. In this case investors are not concerned from a high probability of default in general 

and they demand returns from the Baa bonds which are closer to the Aaa bonds. 

Credit spread as economic measure not just follows the general state of economy as mentioned 

above but can gauge also the sentiment of the market participants for the future of the economy, 

hence can forecast the future economic activity (see e.g. Gomes and Schmid, 2010). Thus, a high 

credit spread can be considered as a strong signal of upcoming recession which almost always 

come with high volatility. Corradi, Distaso and Mele (2013) develop a model in which 75% of this 

countercyclical stock volatility can be explained by macroeconomics factors.  

This is not the first time macro-finance indicator are used to predict the VRP. Bollerslev, Gibson 

and Zhou (2011) use credit spread as a predictor variable and find that it is important to understand 

the time-variation of the variance risk premium. Konstantinidi and Skiadopoulos (2016) also use 

credit spread as a predictor variable for the VRP of the SPX and find that is statistically significant. 

On the other hand, Carr and Wu (2009) chose the credit spread as a predictor variable in their 

analysis of the variance risk premium of a number of stocks and indices include SPX VRP, DJX 

VRP and NDX VRP. They conclude that the credit risk does not have a significant power in 

predicting the VRP. Thus, it will be interesting in this dissertation to test these results.  

Summary statistics and time series plots for the CS are provided in the Appendix C, table C.1. It 

is important before continuing to the next section to discuss the main statistics of the VRP and the 

information provided by the plots. Baa and Aaa corporate bond yields’ distribution look very 



37 
 

similar to the normal distribution with a skewness close to zero and kurtosis close to 3 (excess 

kurtosis close to 0), but they do not follow the normal distribution. This can be confirmed, among 

others, from their difference, the credit spread. CS has a very high kurtosis (13.0) comparing to 

the normal distribution’s kurtosis (3) and it appear to be right-skewed. CS reached its maximum 

value (3.5%) at 3/12/2008 roughly in the middle of the financial crisis. This can be explained by 

the fact that around this period Baa corporate bond yield hits its maximum of 9.5% at 31/10/2008 

and Aaa was moving between 5.3% and 6.3%. Though Aaa corporate bond yield reached its 

minimum at 7/8/2016. This coincided at the same day with the minimum of Baa yield. CS at 

13/6/2014 reached its minimum value indicating a recovering US economy. However, FED starts 

raising its rate first time after financial crisis only on December 2015. Daily data on Baa seasoned 

corporate bond yield and Aaa seasoned corporate bond yield are obtained from on line database of 

Federal Bank of Saint Louis (FRED). 

 

3.4. Term Spread 
 

Term spread (TS) represents the difference of interest rates between a short-term debt instrument 

and a long-term debt instrument. Usually is defined as the difference between the 10-year T-Bond 

yield and the 3-month T-Bill yield. In this dissertation instead of the three-month T-Bill yield, the 

one-month LIBOR is used. The one-month LIBOR has a correlation close to one (0.976) with the 

3-month T-Bill yield, using data from 2001 to 2017. The fact that LIBOR is the benchmark interest 

rate in a vast part of the financial market guide us to use the one-month LIBOR instead of the 3-

month T-Bill. The equation to measure this term spread is as follows: 

 

 TS = 10-year T-Bond − one-month LIBOR (3.13) 

 

 

LIBOR has been described in previous section where the 3-month LIBOR was employed to 

construct the TED spread. In this case, to construct the term spread, we use the same LIBOR 

(expressed in USD) but for one-month loan. 
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The US 10-year T-Bond is one of the most popular bond in the world. When an investor purchases 

a 10-year T-Bond is actually lending to the US government and since the probability of default for 

the US government is close to zero the probability of loan not been repaid is close to zero. 

Therefore, the 10-year T-Bond is considered as a risk-free investment and its yield is considered 

as the risk-free interest rate. As in all economic and financial markets the law of supply and demand 

make its appear to the bonds market too. When the investors feel optimistic for the future state of 

the US economy, ceteris paribus, they prefer to invest in assets with higher returns, hence the 

demand for the 10-year T-Bonds decreases and the yield increases. And when the investors are 

feeling pessimistic for the future state of the US economy, ceteris paribus, the demand for safe 

assets, such as in our case the 10-year T-Bond increases and the yield decreases. 

One can think about term spread as a very similar concept to the yield curve. The yield curve can 

have three forms, normal yield curve, inverted yield curve and flat yield curve. The normal yield 

curve has a positive slope which it means that longer maturity yields are higher than shorter in our 

case it means a positive term spread. This is the reason why yield curve with positive slope is 

called normal yield curve, because investors usually demand higher yields for longer maturity. The 

inverted yield curve is the inverse of the normal one. Investors demand higher yields for short 

maturity bonds, in our case a negative term spread. An inverted yield curve usually is a strong 

signal for a forthcoming recession. A flat yield curve indicates that short-term and long-term yields 

are almost equal in our case this means a term spread close to zero. A flat yield curve is often 

interpreted that investors are worried about future trend of the economy and probably they 

anticipate a recession.   

There are plenty of literature which empirically confirm that the slope of the yield curve can predict 

future state of the economy (see Estrella and Hardouvelis, 1991). Franz (2013) states “Examples 

for global risk factors are the TED spread or the term spread which can both be interpreted as 

indicators for the health of the economy and indicators for the expected performance of financial 

markets”. 
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Figure 5: This figure presents the three main forms which the yield curve can takes.  

 

 

Therefore, the reason why term spread is used as a predictor variable is similar with the credit 

spread. Both term spread, and credit spread are considered that can predict upcoming recession. 

Carr and Wu (2006) and Konstantinidi and Skiadopoulos (2016) also use the term spread as a 

variable which could have a predictive power on the VRP. The former conclude that the term 

spread does not have a predictive power on the large range of VRPs they analyze, including the 

SPX VRP, DJX VRP and NDX VRP. The latter, which analyze the SPX VRP for different 

maturities and different investing time horizons, have mixed results for the different maturities and 

investing time horizons. Sometimes the term spread is statistically significant and sometimes it is 

not, but in almost all cases they confirm the positive relationship mentioned above. Thus, our in-

sample analysis is an opportunity to confirm these results in all the three VRPs. 

In Appendix C, Table C.2, Panel D we provide the summary statistics and the timeseries plots of 

the term spread and its component as we have done for the other variables. All data from 2001 to 

2017 are used for this. Daily data on one-month LIBOR and 10-year T-Bond to construct the term 

spread are obtained from Datastream. 
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3.5. The Put-Call Ratio 
 

At any given point in time, the price of an option contends information about the risk-neutral 

distribution of its underlying asset. From this information, one can extract with different methods 

the moments of the distribution, for a more detailed analysis see Bakshi, Kapadia and Madan 

(2003). The time horizon of the risk-neutral probability density function which occurs is the same 

as the time expiration of the option. 

The most often used and referred moment is, of course, the implied volatility. The implied 

volatility is a different concept from the historical volatility. For measuring the historical volatility 

of a stock, for example, the standard deviation of its past returns is used. The implied volatility 

expresses the sentiment of investors about future volatility, their expectation about the future 

volatility.  

Another moment of the risk-neutral distribution is the 3rd moment, the skewness of the distribution. 

Skewness is a measure of the symmetry of a distribution, for example, the normal distribution has 

zero skewness. A distribution with skewness higher than zero (positive skewness) is defined as a 

right-skewed distribution and a distribution with skewness lower than zero (negative skewness) is 

defined as a left-skewed distribution. 

 

Figure 6: The figure shows three typical probability density function (pdf). From the left to the 
right, a pdf with negative skewness, with zero skewness and with a positive skewness. 
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A zero-skewed distribution of the stock returns means that the stock returns are symmetrically 

distributed around the mean of the distribution. For example, if the mean of returns is zero negative 

returns and positive are symmetrically distributed around zero, e.g. a -3% and a 3% return have 

the same probability. A right-skewed distribution, on the other hand, it means that negative returns 

could be lower (in absolute value) than the positive returns. Generally, this is preferred by investors 

because it means that extremes positive returns are higher than the negative returns expressed in 

absolute terms. The left-skewed distribution indicates that extreme negative returns are higher than 

positive returns. The left-skewed distribution is undesirable for the investors  

The implied skewness extracted from the price of an option measure the risk-neutral expectation 

of the investors for the future skewness. As mentioned above they are several ways to extract the 

implied skewness (see Bakshi et al. ,2003 and Jackwerth, 2004). On Chicago Board of Options 

Exchange (CBOE) website, one can find data about SKEW index which measure the risk-neutral 

skewness of the SPX for the next 30 calendar days and is calculated using similar methodology 

with VIX calculation.  

We obtain daily data of all traded put and call options on each index from Bloomberg to construct 

the respective put-call ratio as described in the following equation: 

 

𝑃𝑃𝐶𝐶𝑖𝑖 =
𝑃𝑃𝑖𝑖

𝐶𝐶𝑖𝑖
, 

(3.14) 

 

where P in the numerator stands for all daily traded index put options, C in the denominator stands 

for all daily traded index call options and i= SPX, DJX, NDX. 

In the Appendix C are provided the summary statistics of the PC and the three time series plots for 

each index. The data to construct these span from 2001 to 2017.  

All the three put-call ratios have positive skewness and very high kurtosis with the NDX PC having 

both them higher from the other two index PCs. This indicates that the distributions of the three 

PCs are far away from the normal distribution (Skewness=0 and Kurtosis=3). It appears from the 

that the SPX PC is more stable than the other two counterparts and the DJX the more volatile, with 
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a standard deviation of 1.93. Minimum values for the SPX PC, DJX PC and NDX PC correspond 

to 30/7/2002, 16/9/2016 and 27/6/2001, respectively. And they reached their peak at 2/12/2002, 

1/3/2012 and 16/1/2004, respectively. 

 

3.6. Index Implied Volatility 
 

The VIX, VXD and VXN are indices just as the SPX, DJX and NDX are. Their difference with 

stock indices is that their daily closing price display volatility instead of actual prices (for a more 

detailed analysis on VIX see Whaley, 2008). The VIX was the first index volatility published from 

the CBOE on-line, in 1993, followed by the VXD and the VXN. When the VIX was first launched 

was intended to serve for two purposes, first one as a benchmark index for the risk-neutral expected 

volatility in short-term (30 calendar days) and second one to give the opportunity to the investors 

to invest directly in volatility via futures and options on the VIX. Whale (2008) compare the 

implied index volatility to the yield to maturity of a bond. Like the yield to maturity, the implied 

volatility is not directly observed but can be computed from the current price of options on the 

stock index.  

The methodology which VIX, VXD and VXN are calculated similar and described in previous 

section, hence we will not provide further analysis in this section about this. We obtain daily data 

on the three indices from the CBOE. 

As with the other variables summary statistics and time series plots for the three squared index 

volatilities are provided in the Appendix C. There are not too much to comment about the summary 

statistics of the three IVs. All three of them are positively skewed with “fat tails”. In the three 

above graphs both index price and index volatility are displayed in order to have a “picture” of 

that negative correlation described before. In all the three indices in the same period when squared 

IV reached its peak the index prices drop at historical lowest (second lowest for the NDX) from 

2001 to 2017. This confirm the negative correlation of the IV with its index price. And because all 

the three IV show similar correlation with their index price strengthens our idea to use all the three 

indices as a “fear gauge” for their respective index. 
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4.  In-Sample Analysis 

 

For the in-sample analysis our data span from 2/2/2001 to 31/8/2007 for the SPX VRP and the 

DJX VRP and from 20/3/2001 to 31/8/2007 for the NDX VRP because of non-available data issue. 

As a start we run three OLS including all the six predictor variables considered in previous section. 

However, the credit spread (CS) it strongly appears to be statistically insignificant for the SPX 

VRP and DJX VRP model indicating no predictive power at all. And the term spread (TS) is not 

statistically significant for the NDX VRP, with a very low t-statistic, indicting again no predictive 

power. Thus, we run five variables OLS, in which the CS is omitted from the SPX VRP and DJX 

VRP models and the TS is omitted from the NDX VRP model. In the model with the five variables 

the t-statistics are impressively improved. On the other hand, some criteria for the fitness of the 

model are slightly better for the six-variable model of the SPX VRP and the DJX VRP and are the 

same for the NDX VRP model. Nevertheless, these differences are so small that we could ignore 

them, e.g. for the SPX VRP model the akaiki information criterion is −5.05 for the five-variables 

model and −5.10 for the six-variables model. The results of the six-variables OLS are provided in 

the appendix, also a table with the fitness model criteria of the two models. Thus, to keep our 

models simple we choose to process with the parsimonious five-variables models. The three final 

models we use for this analysis are described from the three equations below: 

 

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝐷𝐷𝑡𝑡 + 𝛽𝛽2𝑅𝑅𝑡𝑡−22,𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽3𝑇𝑇𝑆𝑆𝑡𝑡 + 𝛽𝛽4𝑃𝑃𝐶𝐶𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽5𝑉𝑉𝑉𝑉𝑋𝑋𝑡𝑡2 + 𝜀𝜀𝑡𝑡→𝑡𝑡+22 (4.1) 

 

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22
𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝐷𝐷𝑡𝑡 + 𝛽𝛽2𝑅𝑅𝑡𝑡−22,𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽3𝑇𝑇𝑆𝑆𝑡𝑡 + 𝛽𝛽4𝑃𝑃𝐶𝐶𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽5𝑉𝑉𝑉𝑉𝐷𝐷𝑡𝑡2 + 𝜀𝜀𝑡𝑡→𝑡𝑡+22 (4.2) 

 

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22𝑁𝑁𝑁𝑁𝑁𝑁 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝐷𝐷𝑡𝑡 + 𝛽𝛽2𝑅𝑅𝑡𝑡−22,𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽3𝐶𝐶𝑆𝑆𝑡𝑡 + 𝛽𝛽4𝑃𝑃𝐶𝐶𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽5𝑉𝑉𝑉𝑉𝑁𝑁𝑡𝑡2 + 𝜀𝜀𝑡𝑡→𝑡𝑡+22 (4.3) 

 

Note that the conditional expectation of the above VRP (ex-post) is the ex-ante VRP. 
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We use OLS method to estimate the coefficients of the equations. The criteria we use to evaluate 

the in-sample results are the t-statistic and the adjusted R2. Because the data we use are overlapping 

to calculate the t-statistics we use the Newey-West (1987) approach standard errors. However, 

because is very usual in the literature we also provide the t-statistics calculated with the Hansen 

and Hodrick (1980) approach and White approach. Hansen-Hodrick approach differs from the 

Newey-West approach because it assumes that the autocorrelation does not fade gradually over 

time, but it is constant until the of the period which it is assumed that exist. On the other hand, the 

white approach does not take into account the problem of the autocorrelation, only the 

heteroscedasticity.  Before the presentation and the discussion of the in-sample results we briefly 

describe the method of the OLS and the criteria we use in order to provide an explanation why we 

use those. From the pairwise correlation matrices provided below, it can be concluded that there 

is no need to worry about the multicollinearity problem. Particularly, the highest (in absolute 

value) pairwise correlation between the predictor variables is the pairwise correlation between the 

TED and the term spread (TS), −0.7. Indicating that a decrease in TS is strongly expected to be 

followed by an increase in TED but cannot be considered as a multicollinearity problem. The 

second highest pairwise correlation is between the credit spread (CS) and the index volatility for 

each the three markets. The highest of these three correlations is the one between VXD and CS, 

0.53, and again it cannot be considered a problem. However, this is an indicator that when at the 

period investigated an increase in CS it was followed by an increase in index volatility.  

In Appendix C a table with pairwise correlation of all predictor variables from 2001 to 2017 is 

provided. The highest pairwise correlation are between the CS and the VIX2 (0.75) and the CS and 

the VXD2 (0.73). However, the CS is omitted from the OLS model for the SPX VRP and the DJX 

VRP. Third higher pairwise correlation is between TED and VIX2 (0.55). Thus, the pairwise 

correlations for the predictor variables using all data in the sample confirm the assumption of no 

multicollinearity problem of the variables.  
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Table 4.1: Correlation Matrix 

Panel A: SPX VRP Predictor Variables’ Correlation Matrix 
 TED RSPX CS TS PCSPX VIX2 

TED 1 −0.02 −0.32 −0.7 0.09 −0.22 
RSPX  1 −0.11 −0.02 0.01 −0.45 

CS   1 0.36 −0.18 0.49 

TS    1 −0.08 0.32 

PCSPX     1 −0.20 

VIX2      1 

Panel B: DJX VRP Predictor Variables’ Correlation Matrix 
 TED RDJX CS TS PCDJX VXD2 

TED 1 −0.01 −0.32 −0.7 −0.02 −0.25 

RDJX  1 −0.06 −0.03 −0.05 −0.38 

CS   1 0.36 0.13 0.53 

TS    1 0.10 0.34 

PCDJX     1 0.26 

VXD2      1 

Panel C: NDX VRP Predictor Variables’ Correlation Matrix 
 TED RNDX CS TS PCNDX VXN2 
TED 1 −0.03 −0.32 −0.7 −0.13 −0.22 

RNDX  1 −0.06 −0.01 0.04 −0.26 

CS   1 0.36 0.03 0.41 

TS    1 0.17 0.34 

PCNDX     1 −0.09 

VXN2      1 

Table 4.1 displays the pairwise correlation of the predictor variables considered for each model. 
To calculate the pairwise correlation all data available from 2001 to 2007 are used. 

 

 In the following table (4.2) the OLS results for each final VRP model are provided. 
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Table 4.2: 5 Predictor Variable Model OLS Results 

Panel A: SPX VRP 5 Predictor Model OLS Results 
 C TED RSPX TS PCSPX VIX2 Adj. R2 

Coeff. 0.0166 −2.0704 −0.0149 −0.2624 −0.0012 −0.3921 0.28 

NW (3.34) (−2.80) (−2.72) (−2.03) (−1.32) (−5.13) − 

HH (2.76) (−2.55) (−2.37) (−1.75) (−1.19) (−4.38) − 

W (8.48) (−7.18) (−9.24) (−6.71) (−2.06) (−15.88) − 

Panel B: DJX VRP 5 Predictor Model OLS Results 
 C TED RDJX TS PCDJX VXD2 Adj. R2 

Coeff. 0.0162 −2.7243 −0.0144 −0.3747 0.0018 −0.3811 0.26 

NW (2.72) (−2.46) (−2.81) (−2.34) (2.37) (−5.44) − 

HH (2.37) (−2.19) (−2.59) (−2.04) (2.24) (−5.20) − 

W (8.42) (−7.34) (−8.87) (−8.06) (4.15) (−16.63) − 

Panel C: VXD VRP 5 Predictor Model OLS Results 
 C TED RNDX CS PCNDX VXN2 Adj. R2 

Coeff. −0.0161 1.2167 −0.0180 2.3815 −0.0007 −0.5717) 0.79 

NW (−1.30) (0.86) (−3.81) (1.58) (−1.05) (−12.42) − 

HH (−1.23) (0.88) (−3.49) (1.51) (−1.00) (−12.67) − 

W (−4.02) (2.49) (−11.11) (4.93) (−1.20) (−35.87) − 

In the table 4.2 the in-sample (2001-2007) OLS results are provided. For the SPX VRP and the DJX 
VRP the credit spread (CS) is omitted and the term spread (TS) is omitted for the NDX VRP. Coeff. 
stands for the coefficients of the predictor variables. NW and HH are the t-statistics computed 
with Newey-West and Hansen-Hodrick approach respectively and W stands for the White 
robustness t-statistics. Adj. R2 is the adjusted R2. 

 

The TED spread’s coefficient for the SPX VRP and the DJX VRP has a negative sign as we 

expected (see section 2), and it is statistically significant. These results confirm the results of 

Konstandinidi and Skiadopoulos (2016), they also find a statistically significant negative 

relationship between the SPX VRP and the TED spread. We cannot say the same for the 

relationship between TED spread and the NDX VRP. In this case the TED is not statistically 

significant and interestingly it appears to have a positive relationship in the NDX VRP. Conducting 

the one tail hypothesis test that TED coefficient is equal to zero versus the alternative that is greater 

than zero the Newey-West t-statistics (0.86) is smaller than the critic value (1.282) for 90% 
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confidence value, hence we cannot reject the null hypothesis. However, this do not necessary 

means that it is zero. For example, if we run the test for 80% confidence level the critical value is 

0.84, hence we reject the null hypothesis of the zero coefficient in favor that the TED coefficient 

is positive. If the hypothesis of the positive relationship between the TED spread and the NDX 

VRP stands true one explanation it could be the different nature of the NDX with the other two 

indices. NDX is based on high technology companies and sometimes the shocks that effect it, 

could be different from the other two. This is confirmed also from the pairwise correlation of the 

three indices for the period 2001-2007, SPX and DJX correlation is 0.97, SPX-NDX is 0.89 and 

DJX-NDX is 0.8, interesting is also the fact that the NDX average return in this period is slightly 

negative in contrast with the slightly positive one of the other two. This could be a reason why the 

NDX VRP and the other two VRPs differ in behavior (see tables 1.1 and 1.2). NDX VRP is more 

negative in this period, and the coefficient of variation ratio (CV) is the lowest (SPX VRP 

CV=6.99, DJX VRP CV=8.8, NDX VRP CV=5.2) as calculated with standard deviation from 

Newey-West approach. This indicates that for the shorter party selling variance swap is a very 

good investment. Thus, as the TED spread increases and the liquidity decreases the number of the 

investors who want to buy variance swaps increases but it seems that, because of the above, the 

number of short investors increases more, driving the VRP to increase.  

The results for the three index volatilities are as expected. The sign of the coefficients confirms a 

number of papers (e.g. Egloff et al., 2010, Konstantinidi and Skiadopoulos, 2016) which argue that 

there is a negative relationship between the VRP and the implied volatility. The t-statistics in all 

the three models confirm also that they are statistically significant.  

The index returns are statistically significant but their relationship with the VRP is not as we 

expected. We expected a positive relationship between the index returns and the VRP, because as 

the index returns decrease the implied volatility increases and given the expected negative 

relationship of the implied volatility with the VRP, the VRP would decreases too. The negative 

relationship of the VRP with the index volatility is confirmed from the results above, we also found 

a negative sample correlation between all index volatilities and their respective index returns, 

though the relationship between the index returns and the VRP is negative. The way we insert the 

index returns as a predictor variable in the model is by taking the past 22 trading days sum. A 

negative/positive sum has a direct effect in the index implied volatility, increasing/decreasing it. 
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Another indirect effect it could be from the predictive power of the variable. The variable as it is 

constructed it is as a random walk. If this random walk, in average can for short investment horizon 

predict better than the implied volatility the index returns. That is, that in average, lower returns 

will be followed by lower returns which implied volatility cannot predict correctly. This means 

that in average the future realized variance will be higher than index volatility, hence the negative 

relationship between the index returns and the VRP. Konstantinidi and Skiadopoulos (2016) found 

the same in their multiple predictor model, though not statistically significant, for variance swaps 

of one month investment horizon. 

The results for the-put call ratio are mixed. For the SPX VRP and the NDX VRP the signs of the 

coefficients are as expected, though statistically insignificant. On the other hand, the relationship 

between the DJX VRP and its put-call ratio is positive and statistically significant. The put-call 

ratio is a measure which measure the psychology among the market participants, their sentiment 

about the future prices of the underlying asset. As described in section (2.2) the idea is that as the 

PC increases indicate the fear of the market participants for a decrease in underlying asset price 

which is accompanied with high realized variance, hence they are willing to pay a higher VRP to 

hedge against this. Most of the time this sentiment indicators tend to predict wrong or exaggerates, 

hence the more negative VRP. This is not the case for the DJX. A bearish sentiment in the market 

will have a positive effect in the variance swap rate, but as it can be observed from the results the 

realized variance is higher and the reason for this it could be that indeed asset price decreases, 

probably more than expected.  

The sign of the credit spread (CS) coefficient also is not as expected for the NDX. Note that we 

expected for both TED and CS a negative relationship with the NDX VRP and they both appear 

to have a positive relationship with it. One can consider the CS a similar economic indicator with 

the TED, hence the explanation for this positive relationship could be the same as for the TED 

above. 

The relationship of the term spread (TS) with the SPX VRP and DJX VRP is negative in contrast 

with our expectation. As the TS decreases it predicts a forthcoming recession, hence the investors 

in order to hedge again future high realized volatility are willing to pay a more negative VRP. That 

is a higher variance swap rate than usual. However, it seems that the realized volatility, in this 

period, go beyond their expectation, hence the negative relationship of the TS and the two VRPs.  
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It appears that some of the variables have not the relationship we expected because of previous 

literature. This is not unusual for this type of financial variables. For example, the correlation 

between stock returns and bond returns has changed sign several times (see e.g. Andersson et al., 

2008). 

We don’t have much to say about the adjusted R2. As it can be seen it is high enough for such 

model, especially for the NDX VRP model. However, this doesn’t necessary mean that the model 

has good prediction power out-of-sample, this is something will be analyzed in the next section.  

In the appendix D there two tables in which are provided the OLS results for the six variable model.  

 

5. Out-of-Sample Analysis 

 

For the out-of-sample analysis, we use an expanding window methodology. That is, we first run 

an OLS with the in-sample data to construct the predictor models. Then we go in the first out-of-

sample observation use the models to make a prediction about VRPs. We save the residual and re-

run the OLS with this new observation hence, the in-sample size increases by one observation. 

This is repeated for every out-of-sample observation. To evaluate the out-of-sample results we use 

the out of sample R2 (Campbell and Thompson, 2008), the mean correct prediction (MCP), Theil’s 

UI and UII, the root mean squared error (RMSE) and the mean absolute error (MAE). Before 

presenting the out-of-sample results these criteria are briefly described. The out-of-sample analysis 

is conducted for the same period for all the three VRPs, from 9/2007 to 07/2017. 

 

 

5.1. The Out-of-Sample Criteria  
 

The out-of-sample R2 is defined as: 
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𝑅𝑅𝑂𝑂𝑂𝑂2 = 1 −

∑ �𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22 − 𝑉𝑉𝑉𝑉𝑉𝑉�𝑡𝑡→𝑡𝑡+22�
2𝑇𝑇

𝑡𝑡=1

∑ �𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22 − 𝑉𝑉𝑉𝑉𝑉𝑉�𝑡𝑡→𝑡𝑡+22
𝑏𝑏 �𝑇𝑇

𝑡𝑡=1
2, 

(5.1) 

 

where VRPt→t+22 is the actual ex-post VRP observed, VRP� t→t+22 the ex-post VRP estimated from 

the model and VRP� t→t+22
b  the ex-post VRP estimated from the benchmark model. We chose as 

benchmark model a random walk (RW) which is defined as: 

 

 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡→𝑡𝑡+22 = 𝑉𝑉𝑉𝑉𝑃𝑃𝑡𝑡−22→𝑡𝑡 + 𝜀𝜀𝑡𝑡+22. (5.2) 

 

Note that, this is a very naïve model. It says that the expected future value of the VRP is the present 

value of the VRP. 

When the ROS
2 > 0, it means that the model predictions outperform the naïve model predictions. 

We test the null hypothesis 𝐻𝐻0: 𝑅𝑅𝑂𝑂𝑂𝑂2 > 0 versus the alternative 𝐻𝐻𝐴𝐴: 𝑅𝑅𝑂𝑂𝑂𝑂2 ≤ 0 we use the modified 

by Harvey et al. Diebold-Mariano test (DM), which is defined as: 

 

 
𝑀𝑀𝑀𝑀𝑀𝑀 = �

𝑇𝑇 + 1 − 2ℎ + 𝑇𝑇−1ℎ(ℎ − 1)
𝑇𝑇

�
1/2

𝐷𝐷𝐷𝐷, 
(5.3) 

 

where DM for one step ahead forecast (h=1) is defined as: 

 

 
𝐷𝐷𝐷𝐷 =

𝑑̅𝑑

�𝑉𝑉𝑉𝑉𝑉𝑉� (𝑑𝑑)�
1/2. 

(5.4) 
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To better understand the DM test let first assume two forecasting models, as in our case 𝑌𝑌𝑡𝑡𝑀𝑀 for 

the multivariable model and 𝑌𝑌𝑡𝑡𝑏𝑏 for the random walk model. Let 𝑌𝑌𝑡𝑡 be the actual observed value. 

Thus, the forecast error is defined as: 

 

 𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑌𝑌𝐴𝐴𝐴𝐴−𝑌𝑌𝑗𝑗𝑗𝑗 (5.5) 

 

where j=M, b (predictor or benchmark model, respectively) and YAt is the actual value observed.  

Now we have to define a loss function 𝑔𝑔�ejt� which is usually, depending on which statistic we 

want to test, defined as: 

 

  𝑔𝑔�𝑒𝑒𝑗𝑗𝑗𝑗� = 𝑒𝑒𝑗𝑗𝑗𝑗 
2  𝑜𝑜𝑜𝑜  𝑔𝑔�𝑒𝑒𝑗𝑗𝑗𝑗� = �𝑒𝑒𝑗𝑗𝑗𝑗�  (5.6) 

 

Thus the d� can now be defined as: 

 

 
𝑑̅𝑑 =

1
𝑇𝑇
�𝑑𝑑𝑡𝑡

𝑇𝑇

𝑡𝑡=1

 
(5.7) 

 

where 𝑑𝑑𝑡𝑡 = g(eMt) − g(eBt). 

The idea of the DM test is to conduct the hypothesis test: 𝐻𝐻0: 𝐸𝐸(𝑑𝑑𝑡𝑡) ≥ 0 versus 𝐻𝐻𝐴𝐴: 𝐸𝐸(𝑑𝑑𝑡𝑡) < 0. 

Which is equivalent with the hypothesis test: 𝐻𝐻0: 𝑅𝑅𝑂𝑂𝑂𝑂 ≤ 0 versus 𝐻𝐻𝐴𝐴: 𝑅𝑅𝑂𝑂𝑂𝑂 > 0, recall equation 

(5.1) for the definition of the 𝑅𝑅𝑂𝑂𝑂𝑂. If the absolute value of the MDM test is higher than the critical 

value of the t-student distribution with (T-1) degrees of freedom for a specific confidence level we 

reject the null hypothesis. 

The errors of the prediction are correlated (remembered how we define the multiple variables 

predictor models from equation 4.1-4.3 and how the random walk model is defined from equation 

5.2), hence we use the Newey-West approach with 22 lags to calculate the standard errors. 
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The mean correct prediction (MCP) measures the percentage of the correct prediction of actual 

sign (−/+) of the VRP. That is, the number of predictions from the multiple variable model which 

appear to have the same sign as the actual VRPs observed divided with the total number of the 

predictions. We also perform a ratio test which is defined as: 

 

 
𝑅𝑅𝑅𝑅 =

𝑅𝑅� − 𝑅𝑅0

�𝑅𝑅0(1 − 𝑅𝑅0)
𝑇𝑇 �

1/2, 
(5.8) 

 

for the null hypothesis 𝐻𝐻0: 𝑅𝑅 ≤ 𝑅𝑅0 against the alternative 𝐻𝐻𝐴𝐴: 𝑅𝑅 > 𝑅𝑅0. We reject the null 

hypothesis if the value of the test is higher than the critical value obtained from the standard normal 

distribution of a specific confidence interval. We perform the test for R0 = 0.5. 

The next criteria we use to evaluate the out-of-sample results are the Theil’s UI and UII which are 

defined as: 

 

 

𝑈𝑈𝑈𝑈 =
�1𝑇𝑇∑ (𝐴𝐴𝑡𝑡 − 𝑃𝑃𝑡𝑡)2𝑇𝑇

𝑡𝑡=1 �
1/2

�1
𝑇𝑇∑ 𝐴𝐴𝑡𝑡2𝑇𝑇

𝑡𝑡=1 �
1/2

+ �1
𝑇𝑇∑ 𝑃𝑃𝑡𝑡2𝑇𝑇

𝑡𝑡=1 �
1/2 , 

(5.9) 

 

    

 

𝑈𝑈𝑈𝑈𝑈𝑈 =
�∑ �𝑃𝑃𝑡𝑡+1 − 𝐴𝐴𝑡𝑡+1

𝐴𝐴𝑡𝑡
�
2

𝑇𝑇−1
𝑡𝑡=1 �

1/2

�∑ �𝐴𝐴𝑡𝑡+1 − 𝐴𝐴𝑡𝑡
𝐴𝐴𝑡𝑡

�
2

𝑇𝑇−1
𝑡𝑡=1 �

1/2  , 

(5.10) 

 

where P stands for the predicted value of the variable and A stands for the actual value observed 

of the variable. 
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Theil proposed the UI in Economic Forecasts and Policy (1958). UI can take values from 0 to 1, 

when the value of UI is zero means a perfect prediction, hence the lower the UI, the more accurate 

the prediction. UII has been proposed by Theil in Applied Economic Forecasting (1966). UII in 

contrast with UI it is not bounded and can take values higher than 1. When UII takes values lower 

than one it means that the predictor model is better than a naïve model or simple guessing. If UII 

takes the value one it means that the predictor model and the naïve model has the same accuracy. 

And if the UII takes value higher than one it means that the predictor model should not be used 

because just “guessing” with the naïve model is better.  

Generally, only the UII is used because the UI has a number of drawbacks (see Bliemel, 1973). 

However, UI continues to be used because it gives a first intuitive picture of the quality of the 

prediction model, this is the reason why is also provided in this dissertation.  

The last two criteria we use to evaluate the out-of-sample results are the root mean squared error 

(RMSE) and the mean absolute error (MAE). These two statistics measures are defined as: 

 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �

1
𝑇𝑇
�(𝐴𝐴𝑡𝑡 − 𝑃𝑃𝑡𝑡)2
𝑇𝑇

𝑡𝑡=1

�

1/2

, 
(5.11) 

 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝑇𝑇
�|𝐴𝐴𝑡𝑡 − 𝑃𝑃𝑡𝑡|,
𝑇𝑇

𝑡𝑡=1

 
(5.12) 

 

where, again A stands for the actual value of the VRP observed and P stands for the value of the 

VRP predicted by the model (multiple variable model and random walk model). 

Both RMSE and MAE are not bounded and theoretically could take values from 0 to ∞. The most 

important difference between RMSE and MAE is that the MAE calculate the sum of absolute 

errors that implies using the same weight for the errors (large or small). On the other hand, RMSE 

gives a higher weight to the large errors this is due to the fact that it calculates the sum of squared 

error. They cannot be compared together (RMSE with MAE) because, as it can be seen from the 
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above equations, it stands that RMSE ≥ MAE. Thus, we construct the RMSE and MAE for the 

naïve model and the multiple predictor model. RMSE and MAE are negatively-oriented scores, 

hence lower values are better.  

We test the null hypothesis 𝐻𝐻0: 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑀𝑀 ≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑏𝑏 against the alternative 𝐻𝐻0: 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑀𝑀 < 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑏𝑏 

performing a MDM test as described above with loss function the squared errors. The 

RMSEM and RMSEb are the RMSE of the multiple predictor model and the random walk, 

respectively. To test the null hypothesis 𝐻𝐻0:𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀 ≥ 𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏 against 𝐻𝐻0:𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀 < 𝑀𝑀𝑀𝑀𝐸𝐸𝑏𝑏 

performing a MDM test with loss function the absolute value of the error. MAEM and MAEb stand 

for the MAE of the multiple variable model and the random walk model, respectively. In particular 

the test we run are for the RMSE: 

 

 𝐻𝐻0: 𝐸𝐸(𝑒𝑒𝑀𝑀𝑀𝑀2 − 𝑒𝑒𝑏𝑏𝑏𝑏2 ) ≥ 0 

 

 

 𝐻𝐻𝐴𝐴: 𝐸𝐸(𝑒𝑒𝑀𝑀𝑀𝑀2 − 𝑒𝑒𝑏𝑏𝑏𝑏2 ) < 0   

 

And for the MAE: 

 

 𝐻𝐻0: 𝐸𝐸(|𝑒𝑒𝑀𝑀𝑀𝑀| − |𝑒𝑒𝑏𝑏𝑏𝑏|) ≥ 0 

 
 𝐻𝐻𝐴𝐴: 𝐸𝐸(|𝑒𝑒𝑀𝑀𝑀𝑀| − |𝑒𝑒𝑏𝑏𝑏𝑏|) < 0 

 

The eMt and ebt are the predictor errors from the multiple variable model and the random walk 

respectively. 
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5.2. The Out-of-Sample Results 
 

 In this section, the out-of-sample results as they have been provided from the table 5.1 are 

discussed.  

 

Table 5.1: The Out-of-Sample Evaluation Criteria 

Panel A: SPX VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
SPX Model 0.439** 0.78*** 0.62 0.88 0.0538** 0.0220*** 

SPX RW − − − − 0.0718 0.0304 

Panel B: NDX VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
DJX Model 0.423** 0.76*** 0.62 0.88 0.0454** 0.0191*** 

DJX RW − − − − 0.0600 0.0262 

Panel C: VXD VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
NDX Model 0.331** 0.76*** 0.64 0.92 0.0519** 0.0237** 

NDX RW − − − − 0.0634 0.0278 

Entries report the out-of-sample R2, the Mean Correct Prediction (MCP), the Theil’s UI and Theil’s 
UII. One, two and three asterisks in the parenthesis under the R2 denote the rejection of the null 
hypothesis H0, the predictor model doesn’t outperform the benchmark model against the 
alternative hypothesis that the predictor model outperforms the benchmark model at 10%, 5% 
and 1% respectively. One, two and three asterisks in the parenthesis under the MCP denote the 
rejection of the null hypothesis that the proportion ratio is equal or lower to 50% against the 
alternative that is higher than 50%. The root mean squared error (RMSE) and the mean absolute 
error (MAE) of the predictor model and the naïve model (random walk) are also provided. One, 
two and three asterisks denote the rejection of the null hypothesis H0 the predictor model doesn’t 
outperform the benchmark model against the alternative hypothesis that the predictor model 
outperforms the benchmark model at 10%, 5% and 1% respectively. The out-of-sample data span 
from 9/2007 to 7/2017. 
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The out-of-sample R2 is positive for all the three VRPs, indicating that all the three multiple 

predictor models outperform the benchmark model. As it can be seen from the table these positive 

R2 are significantly positive for a confidence level of 95%. 

We have calculated the mean correct prediction (MCP) for the three multiple predictor models. 

The results provided above show that the MCP is significantly larger than 50% for the three VRPs.  

The MCP of the three predictor models have values larger than 75%, this implies that the three 

models can predict the correct sign of the actual VRP for more than 75%. 

We have also calculated the Theil’s UI and UII for the three multiple variable models. Theil’s UIs 

are lower than one for the three models but not close to zero which the case of perfect prediction. 

Theil’s UIIs are slightly lower than one and this implies that the models predict accuracy is slightly 

better than a naïve model. The RMSEs for the three VRPs we want to predict are lower in the case 

we use the multiple predictor model against the random walk (RW). Thus, this indicates that 

predicting future VRPs with the model is better than just using the naïve rule of forecasting with 

a random walk. We also conduct a modified Diebold-Mariano test, which confirm that at 95% 

confidence level the RMSE of the models is lower than the RMSE of the benchmark model for all 

the three models. 

We had similar results when calculated the MAE of the models and the MAE of the random walk. 

Again, in the three VRPs the MAE of the models are significantly lower than the MAE calculated 

from the random walk prediction.  

Generally, the conclusion from these results is that the multiple variable models we use to predict 

the VRPs outperform the benchmark model of the random walk.  

 

6. Robustness Tests 

 

In this section, we perform further tests to verify the robustness of the results from sections 4 and 

5. We conduct two similar analysis as in these sections but with different sub-samples.  
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In the first test, the data for the in-sample analysis span from 2/2001 to 7/2009 for the SPX VRP 

and the DJX VRP and from 3/2001 to 7/2009 for NDX VRP. The rest of data from 8/2009 to 

7/2017 are used for the out-of-sample analysis. Thus, we add to the original in-sample data (2001-

2007) observations from the period of the US financial crisis. In this period as we analyzed in 

section 1.4, the VRP in all the three markets showed a very high volatility. In this period, they 

reached extremes values than usual, both negative and positive. From the financial market point 

of view, this period was very important and has led into a lot of changes. These changes include 

for example, the way banks are supervised (Basel III) or more temporary changes as the low 

interest policy of FED. A very important change results in the relationship among the credit 

entities. With the collapse of Lehman Brothers, collapsed also the theory of “too big to fail”. 

Hence, the fear of default spiked and only a few government entities were considered risk-free. 

In the second robustness test the data for the in-sample analysis span from 2/2001 to 12/2011 for 

the VRPs of SPX and DJX market and from 3/2001 to 12/2011 for the NDX VRP. The data for 

the out-of-sample analysis for all the three VRPs span from 1/2012 to 7/2017. Black Monday of 

2011 is the reason why we chose to add the period from 2009 to 2011 to the previous in-sample 

dataset because.  

On 5 August 2011, Standard and Poor downgraded the credit rating of the USA, for the first time 

in history, from AAA to AA+. Black Monday of 2011 refers to the Monday 8 August 2011 when 

the US stock markets crashed. The three US major indices SPX, DJX and NDX dropped 6.6%, 

5.5% and 6.9%, respectively. For the Dow Jones (DJX) this was the 6th largest drop in its history. 

The VIX at this day jumped to 44%, the highest level since 2009 and VXD and VXN reached the 

high values of 40.5% and 44.7% respectively. Generally, especially the second half of 2011, was 

a period of turmoil for the stocks and the financial markets in the USA and in the major global 

markets. The effect of this period on the three market indices VRP can easily be observed from 

their respective time series plots and the summary statistic table in section 1.4. This year (2011) 

all the three VRP had a very high volatility. From earlier 2012 to the end of the period we analyze 

the three VRPs it has been a relatively quiet period for the VRPs. 

From the pairwise correlation matrix in section 4 (2001-2007) and the one in appendix C (2001-

2017), we conclude that there is no reason to concern about multicollinearity issues in the model 
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regressions we run. In appendix D, in Tables D.1-4, are presented the in-sample OLS results and 

the out-of-sample criteria results. 

All the evidence from the out-of-sample analysis suggest that the predictor model constructed from 

the five variables outperform the random walk model. For the first out-of-sample analysis, 2009-

2017, the OS R2 is statistically significant positive for the SPX VRP and the DJX VRP. Also, both 

the root mean squared error (RMSE) and the mean absolute error (MAE) of the predictor model 

are statistically significant lower than random walk ones, in SPX and DJX VRP models. Theil’s 

UII values slightly lower than one for these two VRPs predictor model suggest that they are slightly 

better predictors than a naïve model. The mean correct prediction (MCP) is statistically significant 

greater than 50% for all the three predictor models. In the second out-of-sample analysis, 2012-

2017, all the three OS R2 are significantly positive. Also, the three RMSE of the three predictor 

models are statistically significant lower than the ones of the random walk. On the other, hand all 

the three predictor models’ MAE are lower than MAE of the random walk, but only the SPX and 

DJX are significantly lower. Both Theil’s UI and UII indicate that the predictor models are better 

predictors from a naïve model. Last, the MCP are statistically significant higher than 50% for the 

three predictor models.  

 However, the most interest results to discuss occur from the in-sample analysis. The adjusted R2 

remains at the same levels for SPX VRP and DJX VRP models and it is lower for the NDX VRP 

model. Both the index volatility and the index return continue to have a statistically significant 

negative relationship with the VRP, confirming the results of the original in-sample analysis 

(2001-2007). It appears from the results in the two in-sample analyses that the TED spread and the 

term spread (TS) change their relationship with the VRP after the financial crisis (2007-2009). For 

the TED the NW t-statistics for the two VRP models in the two analyses vary from 2.09 to 1.90 

and respectively for the TS from 1.92 to 1.52. These t-statistics values are not negligible hence, 

this change on the signs deserves some short comments.  

As it has been explained in section 2 the relationship between the predictor variables and the VRP 

is not a direct relationship, e.g. GDP and consumption, their connection is indirect. Values of the 

VRP in time, as has been described, depend mainly on the sentiment of the buyer of the variance 

swaps, on how do they feel about the future. The variables we chose to construct the predictor 

models try to explain the VRP by capturing the sentiments of the market participants. Hence, the 
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way they explain/effect the VRP is based on the sentiments of the end-users of the variance swaps. 

The fact that the VRP is mainly based in the sentiments of the end-users has as a result the VRP 

to be very sensitive from different market shocks. Thus, the relationship between the VRP and the 

predictor variables, TED and TS, is not very stable. Average investors tend to exaggerate when 

they feel very enthusiast, or their fear level is very high, one can think about the “held behavior” 

theory. So, taking into account the radical changes among the credit entities during the 2007-2009, 

this change of the sign in TED and TS it does make sense. And also, as mentioned in previous 

section, this is not so unusual in financial variables, correlation between SPX returns and US bond 

returns have change sign multiple times in their history. 

 

Conclusion 

 

This dissertation investigates whether the variance risk premiums (VRP) on the three major US 

indices, S&P 500 (SPX), Dow Jones (DJX) and Nasdaq (NDX), can be predicted.  

To do this, we employ a parsimonious model for each market VRP and from which the conditional 

expectation is the ex-ante VRP. These models include predictor variables which are considered to 

be indicators of the trading activity and the stock market conditions.  To construct this model, first 

we quantify the (ex-post) VRP relying on the realized variance, which is measured as the sum of 

the 22 trading days log returns of the index, and on the index volatility.   

Most of our predictor variables appear to be statistically significant despite the fact that some of 

them have a different effect on the VRP from what we first expected. However, the VRP is very 

sensitive because it defined via the sentiments of the end-users of the variance swaps. Thus, we 

find that some variables could have different effect in different time period on the VRP making 

that relationship with the VRP not stable in time.   

For example, term spread has a statistically significant negative effect on the VRP of the SPX and 

the DJX instead of a negative first expected. But this relationship become positive after the 

financial crisis (2007-2009). 
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The sum of log returns from the past 22 trading days has also a statistically significant negative 

effect instead of a positive one as anticipated on all the three market VRPs.  

On the other hand, the TED spread relationship with the SPX VRP and DJX VRP is negative as 

expected and statistically significant. But similar with the term spread it changes sign after the 

financial crisis. 

Conducting the out-of-sample analysis we find that prediction of the three models we use to 

calculate the ex-ante VRP outperform the benchmark model’ prediction. All the out-of-sample 

criteria we employ to our evaluation confirm these findings. These results are also confirmed by 

the further robustness tests conducted.  

This dissertation attempts to investigate mainly whether the VRP on the three markets discussed 

can be better predicted by the model proposed than the naïve model of the random walk. Coming 

to the end of this research some other similar questions arrive. Can these models “beat” the random 

walk in longer horizons than a day?  What if instead of the random walk the historical average is 

used as a benchmark model? It would be very interesting if we also expand this analysis in other 

markets, e.g. CAC 40, DAX and FTSE 100. All these issues could be the subjects for future 

dissertation researches.  
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Appendix A: Extracting the fair value of the future realized variance 

 

We provide the proof of the equation 1.12, in line with Demeterfi et al. (1999). 

First, we assume that the St follows the below Itô process:  

 

 𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

= 𝜇𝜇(𝑆𝑆, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑆𝑆, 𝑡𝑡)𝑑𝑑𝑍𝑍𝑡𝑡 
(A.1) 

 

where S0 is the current price of the underlying asset, C(T, K) and P(T, K) denote the current fair 

value of a call and a put respectively, K is the strike price of the options, r is the risk-free interest 

rate and S∗ is an arbitrary price for the asset which usually is set equal (or close) to the forward 

price. 

By applying Itô lemma to the ln(St) we have: 

 

 𝑑𝑑(𝑙𝑙𝑙𝑙𝑆𝑆𝑡𝑡) = �𝑆𝑆𝑡𝑡𝜇𝜇𝑡𝑡
1
𝑆𝑆𝑡𝑡
−

1
2
𝑆𝑆𝑡𝑡2𝜎𝜎𝑡𝑡2

1
𝑆𝑆2
� 𝑑𝑑𝑑𝑑 + 𝑆𝑆𝑡𝑡𝜎𝜎𝑡𝑡

1
𝑆𝑆𝑡𝑡
𝑑𝑑𝑍𝑍𝑡𝑡 ⟹ (A.2) 

 

 𝑑𝑑(𝑙𝑙𝑙𝑙𝑆𝑆𝑡𝑡) = �𝜇𝜇𝑡𝑡 −
1
2
𝜎𝜎𝑡𝑡2� 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑡𝑡𝑑𝑑𝑍𝑍𝑡𝑡, 

(A.3) 

 

where µt and σt2 are the instantaneous mean and variance at time t. 

Subtracting A.3 from A.1 we obtain: 

 

 𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

− 𝑑𝑑(𝑙𝑙𝑙𝑙𝑆𝑆𝑡𝑡) =
1
2
𝜎𝜎𝑡𝑡2 

(A.4) 
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The average variance from t=0 to t=T is: 

 

 
𝑉𝑉𝑡𝑡 =  

1
𝑇𝑇
� 𝜎𝜎𝑡𝑡2𝑑𝑑𝑑𝑑 =

2
𝑇𝑇

𝑇𝑇

0
�

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

𝑇𝑇

0
− � 𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆𝑡𝑡

𝑇𝑇

0
 ⟹ 

(A.5) 

 

 
𝑉𝑉𝑡𝑡 =

2
𝑇𝑇
�

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

𝑇𝑇

0
− 𝑙𝑙𝑙𝑙

𝑆𝑆𝑇𝑇
𝑆𝑆0

 
(A.6) 

 

The strike price (KVAR) of the variance swap is defined as the expectation of this variance under 

the risk-neutral measure: 

 

 
𝐾𝐾𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐸𝐸 �

2
𝑇𝑇
�

𝑑𝑑𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

𝑇𝑇

0
− 𝑙𝑙𝑙𝑙

𝑆𝑆𝑇𝑇
𝑆𝑆0
�  ⟹ 

(A.7) 

 

 𝐾𝐾𝑉𝑉𝑉𝑉𝑉𝑉 =
2
𝑇𝑇
�𝑟𝑟𝑟𝑟 − 𝐸𝐸 �𝑙𝑙𝑙𝑙 �

𝑆𝑆𝑇𝑇
𝑆𝑆0
���, (A.8) 

 

𝐸𝐸 �𝑙𝑙𝑙𝑙 �𝑆𝑆𝑇𝑇
𝑆𝑆0
�� is the expected payoff from a log contract and can be replicated by using a forward 

contract and a set of put and call options at the same expiration (see Carr and Madam, 1998). At 

this point Demeterfi et al. introduce a new arbitrary parameter S* to define the boundary between 

the calls and the puts. Thus, the log payoff can be written as:   

 

 𝑙𝑙𝑙𝑙 �
𝑆𝑆𝑇𝑇
𝑆𝑆0
� = 𝑙𝑙𝑙𝑙 �

𝑆𝑆𝑇𝑇
𝑆𝑆∗
� − 𝑙𝑙𝑙𝑙 �

𝑆𝑆∗
𝑆𝑆0
�. (A.9) 

The second term of equation A.9 is a independent constant of the ST hence we have to replicate 

only the first term as follows: 
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−𝑙𝑙𝑙𝑙

𝑆𝑆𝑇𝑇
𝑆𝑆∗
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1
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[𝐸𝐸(𝐾𝐾 − 𝑆𝑆𝑇𝑇)+]𝑑𝑑𝑑𝑑     + �

1
𝐾𝐾2

∞

𝑆𝑆∗
[𝐸𝐸(𝑆𝑆𝑇𝑇 − 𝐾𝐾)+]𝑑𝑑𝑑𝑑� 

(A.13) 

 

 

Thus, the equation A.8 can be written as: 
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(A.14) 

 

This is the equation 26 from Demeterfi et al. and is the equation 1.12 of this dissertation. 
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Appendix B: Proof of the equivalence of the model-free implied variance and 
the fair value of the future variance 

 

Following Jiang and Tian (2007) we provide a proof for the equivalence of the model-free implied 

variance and the fair value of the future variance. The model-free equation of the implied variance 

of Britten-Jones and Neuberger (2000) can be written as Jiang and Tian (2005) has shown: 

 

 
𝑉𝑉𝐵𝐵𝐵𝐵 =

2
𝑇𝑇
�

𝑒𝑒𝑟𝑟𝑟𝑟𝐶𝐶(𝑇𝑇, 𝐾𝐾) − (𝑆𝑆0𝑒𝑒𝑟𝑟𝑟𝑟 − 𝐾𝐾)+

𝐾𝐾2 𝑑𝑑𝑑𝑑
∞

0
. 

(B.1) 

  

Partitioning the integral into two parts at 𝐹𝐹0 = 𝑆𝑆0𝑒𝑒𝑟𝑟𝑟𝑟 the equation B.1 become: 

 

 
𝑉𝑉𝐵𝐵𝐵𝐵 =

2𝑒𝑒𝑟𝑟𝑟𝑟

𝑇𝑇
��
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𝐾𝐾2 𝑑𝑑𝑑𝑑
𝑆𝑆0𝑒𝑒𝑟𝑟𝑟𝑟

0

+ �
𝐶𝐶(𝑇𝑇, 𝐾𝐾) − (𝑆𝑆0 − 𝐾𝐾𝑒𝑒−𝑟𝑟𝑟𝑟)+

𝐾𝐾2 𝑑𝑑𝑑𝑑
∞

𝑆𝑆0𝑒𝑒𝑟𝑟𝑟𝑟
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(B.2) 
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𝑇𝑇
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𝐾𝐾2 𝑑𝑑𝑑𝑑 + �
𝐶𝐶(𝑇𝑇, 𝐾𝐾)
𝐾𝐾2 𝑑𝑑𝑑𝑑

∞

𝐹𝐹0

𝐹𝐹0

0
�. 

(B.3) 

 

Using the put-call parity (𝐶𝐶 + 𝐾𝐾𝑒𝑒−𝑟𝑟𝑟𝑟 = 𝑃𝑃 + 𝑆𝑆0) the equation B.3 can be written as: 

 

 
𝑉𝑉𝐵𝐵𝐵𝐵 =

2𝑒𝑒𝑟𝑟𝑟𝑟

𝑇𝑇
��
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𝐾𝐾2 𝑑𝑑𝑑𝑑 + �

𝐶𝐶(𝑇𝑇, 𝐾𝐾)
𝐾𝐾2 𝑑𝑑𝑑𝑑

∞

𝐹𝐹0

𝐹𝐹0

0
�, 

(B.4) 

 

which is equation 1.13. 
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The equation B.4 can be written using basic calculus as: 
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(B.5) 

 

where 𝐹𝐹0 > 𝑆𝑆∗.  

Using the put-call parity again B.5 can be written as: 
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(B.6) 

 

After integrating the third term inside the bracket, the equation B.7 is written as: 
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(B.7) 

 

this is equation is the same with equation 26 of Demeterfi et al. and with equation 1.12 of this 

dissertation.  
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Appendix C: Predictor Variables Summary Statistics and Time Series Plots 

 

 

Table C.1: Summary statistics of the predictor variables and their components 

Panel A: TED Spread 
 Mean Max Min Std. Dev Skew Kurt ADF 
3-month 
LIBOR 

0.0175 0.0573 0.0022 0.0173 1.03 2.66 − 

3-month 
T-Bill 

0.0133 0.0505 −0.0002 0.0160 1.12 2.90 − 

TED 
 

0.0043 0.0458 0.0009 0.0043 3.79 22.63 − 

Panel B: Index Returns 
 Mean Max Min Std. Dev Skew Kurt ADF 
SPX 0.0368 2.32 −4.05 0.56 −1.12 7.09 − 

DJX 0.0426 2.18 −3.42 0.53 −1.31 8.26 − 

NDX 0.0522 3.23 −4.27 0.73 −1.09 6.65 − 

Panel C: Credit Spread 
 Mean Max Min Std. Dev Skew Kurt ADF 
Baa 0.061 0.095 0.042 0.011 0.351 2.4 − 

Aaa 0.050 0.074 0.032 0.010 0.163 2.3 − 

CS 0.011 0.035 0.005 0.005 2.857 13.0 − 

The entries report summary statistics for the TED Spread, the Index Returns and the Credit Spread 
for the period from 2001 to 2017. Mean, Max, Min, Std. Dev, Skew, Kurt, report sample average, 
sample maximum, minimum values, sample standard deviation, sample skewness and sample 
kurtosis for the three variables, respectively. ADF is the value of Augmented Dickey Fuller test 
including in the equation both trend and intercept. 
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Table C.2: Summary statistics of the predictor variables and their components 

Panel D: Term Spread 
 Mean Max Min Std. Dev Skew Kurt ADF 
10-year 
T-Bond 

0.034 0.055 0.014 0.011 −0.041 1.68 − 

1-month 
LIBOR 

0.016 0.058 0.001 0.018 1.051 2.69 − 

TS 
 

0.018 0.038 −0.015 0.012 2.637 2.64 − 

Panel E: Put-Call Ratio 
 Mean Max Min Std. Dev Skew Kurt ADF 
SPX 1.73 12.3 0.099 0.56 2.9 38 −8.54 

DJX 1.68 48.0 0.046 1.93 8.7 145 −17.39 

NDX 1.58 35.9 0.001 1.25 8.8 171 −9.55 

Panel F: Squared Index Volatility 
 Mean Max Min Std. Dev Skew Kurt ADF 
VIX2 0.047 0.654 0.009 0.055 4.5 32.3 −4.71 

VXD2 0.041 0.557 0.006 0.046 4.3 30.6 −4.69 

VXN2 0.079 0.650 0.011 0.088 2.4 9.8 −4.72 

The entries report summary statistics for the TED Spread, the Index Returns and the Credit Spread 
for the period from 2001 to 2017. Mean, Max, Min, Std. Dev, Skew, Kurt, report sample average, 
sample maximum, minimum values, sample standard deviation, sample skewness and sample 
kurtosis for the three variables, respectively. ADF is the value of Augmented Dickey Fuller test 
including in the equation both trend and intercept. 
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Table C.3: Correlation Matrix for all Period 

Panel A: SPX VRP Predictor Variables’ Correlation Matrix 
 TED RSPX CS TS PCSPX VIX2 

TED 1 −0.31 0.50 −0.48 0.02 0.55 

RSPX  1 −0.18 0.11 −0.04 −0.50 

CS   1 0.1 −0.12 0.75 

TS    1 −0.08 0.07 

PCSPX     1 −0.08 

VIX2      1 

Panel B: DJX VRP Predictor Variables’ Correlation Matrix 
 TED RDJX CS TS PCDJX VXD2 

TED 1 −0.28 0.50 −0.48 −0.02 0.53 

RDJX  1 −0.17 0.08 0.01 −0.45 

CS   1 0.1 0.00 0.73 

TS    1 0.04 0.07 

PCDJX     1 0.05 

VXD2      1 

Panel C: NDX VRP Predictor Variables’ Correlation Matrix 
 TED RNDX CS TS PCNDX VXN2 
TED 1 −0.27 0.50 −0.48 −0.08 0.30 

RNDX  1 −0.13 0.11 0.02 −0.38 

CS   1 0.10 −0.04 0.46 

TS    1 0.11 0.10 

PCNDX     1 −0.08 

VXN2      1 

This table displays the pairwise correlation of the predictor variables considered for each model. 
To calculate the pairwise correlation all data available from 2001 to 2017 are used. 
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TED Spread and its components time series plots 
 

 

Figure C.1: The figure plots the 3-month LIBOR and the 3-month T-Bill from 2001 to 2017. 
First and second shaded areas represent the Early 2000s Recession and the Great 
Recession, respectively. The four vertical dotted line represent, Stock Market Downturn of 
2002 (4 March 2002), Flash Crash (6 May,2010), Black Monday (8 August 2011) and the 
stock market crash of the 24 August 2015. The plots are based on daily observations. 

 

Figure C.2: The figure plots the TED spread, which is defined as the difference between the 
3-month LIBOR and the 3-month T-Bill, from 2001 to 2017. 
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Time series plots of the three index returns 

 

 

Figure C.3: This figure plots for each day t the sum of the SPX daily returns from the day t 
to t−21, from 2001 to 2017. First and second shaded areas represent the Early 2000s 
Recession and the Great Recession, respectively. The four vertical dotted line represent, 
Stock Market Downturn of 2002 (4 March 2002), Flash Crash (6 May,2010), Black Monday 
(8 August 2011) and the stock market crash of the 24 August 2015. 

 

Figure C.4: This figure plots for each day t the sum of the DJX daily returns from the day t to 
t−21, from 2001 to 2017. 
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Figure C.5: This figure plots for each day t the sum of the NDX daily returns from the day t 
to t−21, from 2001 to 2017. 

 

 

Credit Spread and its components time series plots 

 

 

Figure C.6: The figure shows the time series plots of Moody’s Seasoned Baa Corporate 
Bond Yield and Moody’s Seasoned Aaa Corporate Bond Yield, from 2001-2017. The time 
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series plotted are constructed from daily data. First and second shaded areas represent 
the Early 2000s Recession and the Great Recession, respectively. The four vertical dotted 
line represent, Stock Market Downturn of 2002 (4 March 2002), Flash Crash (6 May,2010), 
Black Monday (8 August 2011) and the stock market crash of the 24 August 2015. 

 

 

 

 

 

Figure C.7: This figure shows the time series plot of the credit spread, which is defined as 
the difference between Moody’s Seasoned Baa Corporate Bond Yield and Moody’s 
Seasoned Aaa Corporate Bond Yield, from 2001 to 2017 based on daily data. 
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Term Spread and its components time series plots 

 

Figure C.8: This figure plots the 10-year T-Bond and the 1-month LIBOR based on daily 
observations from 2001 to 2017. First and second shaded areas represent the Early 2000s 
Recession and the Great Recession, respectively. The four vertical dotted line represent, 
Stock Market Downturn of 2002 (4 March 2002), Flash Crash (6 May,2010), Black Monday 
(8 August 2011) and the stock market crash of the 24 August 2015. 

 

 

Figure C.9: The figure plots the difference between the  10-year T-Bond and the 1-month 
LIBOR, which defines the term spread, from 2001 to 2017 based on daily observations.  
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Time series plots of the put-call ratio for the three indices 

 

 

Figure C.10: This figure plots the SPX put-call ratio from 2001 to 2017 based on daily 
data. First and second shaded areas represent the Early 2000s Recession and the Great 
Recession, respectively. The four vertical dotted line represent, Stock Market Downturn 
of 2002 (4 March 2002), Flash Crash (6 May,2010), Black Monday (8 August 2011) and 
the stock market crash of the 24 August 2015. 

 

Figure C.11: The figure shows the plot of the DJX put-call ratio from 2001 to 2017 based 
on daily data. First and second shaded areas represent the Early 2000s Recession and the 
Great Recession, respectively.  
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Figure C.12: The figure displays the time series plot of the NDX put-call ratio from 2001 to 
2017 based on daily data.  

 

Time series plots for the three market index volatilities and the closing price of the three 
indices 

 

 

 

Figure C.13: The figure plots daily closing price on the SPX and daily squared closing price 
on the VIX from 2001 to 2017. First and second shaded areas represent the Early 2000s 
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Recession and the Great Recession, respectively. The four vertical dotted line represent, 
Stock Market Downturn of 2002 (4 March 2002), Flash Crash (6 May,2010), Black Monday 
(8 August 2011) and the stock market crash of the 24 August 2015. 

 

 

Figure C.14: This figure plots daily closing price on the DJX and daily squared closing 
price on the VXD from 2001 to 2017. 

 

Figure C.15: The figure plots daily closing price on the NDX and daily squared closing price 
on the VXN from 2001 to 2017. 
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Appendix D: Alternative Predictor Model OLS Results 

 

 

Table D.1: Six Predictor Variable Model OLS Results 

 Panel A: SPX VRP 6 Predictor Model Results 
 C TED RSPX CS TS PCSPX VIX2 Adj. R2 

Coeff. −0.0081 −1.7277 −0.0159 2.7610 −0.3102 −0.0007 −0.4677 0.33 

NW (−0.64) (−2.39) (−2.96) (1.95) (−2.50) (−0.81) (−5.51) − 

HH (−0.55) (−2.21) (−2.56) (1.62) (−2.18) (−0.73) (−4.71) − 

W (−2.17) (−6.37) (−10.21) (7.11) (−8.40) (−1.24) (−17.30) − 

Panel B: DJX VRP 6 Predictor Model Results 
 C TED RDJX CS TS PCDJX VXD2 Adj. R2 

Coeff. 0.0006 −2.5417 −0.0153 1.8426 −0.4056 0.0019 −0.4409 0.27 

NW (0.04) (−2.12) (−2.94) (1.21) (−2.61) (2.40) (−5.06) − 

HH (0.04) (−1.98) (−2.62) (1.05) (−2.26) (2.25) (−4.59) − 

W (0.14) (−6.80) (−9.59) (4.37) (−9.14) (4.33) (−16.07) − 

Panel C: VXD VRP 6 Predictor Model Results 
 C TED RNDX CS TS PCNDX VXN2 Adj. R2 

Coeff. −0.0154 1.0753 −0.0179 2.3995 −0.0316 −0.0007 −0.5709 0.79 

NW (−1.03) (0.68) (−3.82) (1.66) (−0.15) (−0.99) (−11.71) − 

HH (−0.97) (0.65) (−3.50) (1.59) (−0.14) (−0.95) (−11.95) − 

W (−3.26) (2.00) (−11.15) (5.18) (−0.48) (−1.15) (−34.00) − 

In this table are provided the in-sample (2001-2007) OLS results from the models using all the six 
variables considered. Under the coefficients of the predictors, in the parenthesis, are provided 
the t-statistics NW, HH and W which are calculated using the Newey-West, Hansen-Hodrick and 
White approach respectively. The Adj. R2 stands for the adjusted R2 of the OLS regression.  
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Table D.2: OLS Model Fitting Criteria 

Panel A: SPX VRP Model Fitting Criteria 
 SE SSR F AIC 
SPX 5V Model 0.0194 0.6139 130.6 −5.05 

SPX 6V Model 0.0188 0.5796 131.3 −5.10 

Panel B: DJX VRP Model Fitting Criteria 
 SE SSR F AIC 
DJX 5V Model 0.0210 0.7187 112.8 −4.89 

DJX 6V Model 0.0208 0.7042 101.5 −4.91 

Panel C: NDX VRP Model Fitting Criteria 
 SE SSR F AIC 
NDX 5V Model 0.0276 1.2214 1279 −4.34 

NDX 6V Model 0.0276 1.2213 1065 −4.34 

Table D.2 display the main statistics criteria used to evaluate the five variables and the six 
variables OLS models. SE stands for the standard error of the regression model, SSR is the sum of 
squared residuals, F is the value of the F-statistics and AIC stands for the Akaike Information 
Criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

Appendix E: Robustness Test Tables of In-Sample and Out-of-Sample Results 

 

First robustness test: In-Sample from 2001 to 2009 and Out-of-Sample from 2009 to 2017 

 

Table E.1: 5 Predictor Variable Model OLS Results 

Panel A: SPX VRP 5 Predictor Model Results 
 C TED RSPX TS PCSPX VIX2 Adj. R2 

Coeff. −0.0282 7.4731 −0.0268 0.9496 −0.0026 −0.5605 0.26 

NW (−1.93) (2.01) (−3.30) (1.72) (−1.19) (−2.96) − 

HH (−1.65) (1.63) (−2.78) (1.39) (−1.06) (−2.56) − 

W (−5.83) (7.78) (−10.80) (6.54) (−1.59) (−10.18) − 

Panel B: DJX VRP 5 Predictor Model Results 
 C TED RDJX TS PCDJX VXD2 Adj. R2 

Coeff. −0.0254 5.9522 −0.0234 0.6645 0.0008 −0.5178 0.25 

NW (−1.72) (1.90) (−3.57) (1.52) (0.76) (−3.08) − 

HH (−1.43) (1.54) (−3.07) (1.24) (0.69) (−2.69) − 

W (−6.33) (7.43) (−11.36) (5.71) (1.42) (−10.43) − 

Panel C: VXD VRP 5 Predictor Model Results 
 C TED RNDX CS PCNDX VXN2 Adj. R2 

Coeff. −0.0291 5.4029 −0.0215 1.7212 0.0001 −0.5527 0.54 

NW (−3.12) (2.41) (−4.88) (1.75) (0.18) (−14.70) − 

HH (−3.69) (2.06) (−4.41) (1.81) (0.21) (−16.12) − 

W (−8.59) (8.55) (−13.82) (5.29) (0.24) (−37.49) − 

In this table, the in-sample (2001-2009) OLS results are provided. For the SPX VRP and the DJX 
VRP the credit spread (CS) is omitted and the term spread (TS) is omitted for the NDX VRP. Coeff. 
stands for the coefficients of the predictor variables. NW and HH are the t-statistics computed 
with Newey-West and Hansen-Hodrick approach respectively and W stands for the White 
robustness t-statistics. Adj. R2 is the adjusted R2. 
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Table E.2: The Out-of-Sample Evaluation Criteria 

Panel A: SPX VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
SPX Model 0.512** 0.79*** 0.53 0.89 0.0253** 0.0146*** 

SPX RW − − − − 0.0362 0.0193 

Panel B: NDX VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
DJX Model 0.500** 0.79*** 0.54 0.90 0.0205** 0.0123*** 

DJX RW − − − − 0.0290 0.0161 

Panel C: VXD VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
NDX 
Model 

0.138 0.76*** 0.57 0.99 0.0300 0.0170 

NDX RW − − − − 0.0324 0.0176 

Entries report the out-of-sample R2, the Mean Correct Prediction(MCP), the Theil’s UI and Theil’s 
UII. One, two and three asterisks in the parenthesis under the R2 denote the rejection of the null 
hypothesis H0, the predictor model doesn’t outperform the benchmark model against the 
alternative hypothesis that the predictor model outperforms the benchmark model at 10%, 5% 
and 1% respectively. One, two and three asterisks in the parenthesis under the MPC denote the 
rejection of the null hypothesis that the proportion ratio is equal or lower to 50% against the 
alternative that is higher than 50%. The root mean squared error (RMSE) and the mean absolute 
error (MAE) of the predictor model and the naïve model (random walk) are also provided. One, 
two and three asterisks denote the rejection of the null hypothesis H0 the predictor model doesn’t 
outperform the benchmark model against the alternative hypothesis that the predictor model 
outperforms the benchmark model at 10%, 5% and 1% respectively. The out-of-sample data span 
from 8/2009 to 7/2017. 
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Second robustness test: In-Sample from 2001 to 2011 and Out-of-Sample from 2012 to 2017 

 

Table E.3: 5 Predictor Variable Model OLS Results 

Panel A: SPX VRP 5 Predictor Model Results 
 C TED RSPX TS PCSPX VIX2 Adj. R2 

Coeff. −0.0312 7.4655 −0.0212 0.9841 −0.0009 −0.5455 0.24 

NW (−2.08) (2.09) (−2.99) (1.92) (−0.49) (−3.27) − 

HH (−1.75) (1.68) (−2.50) (1.55) (−0.44) (−2.84) − 

W (−6.61) (8.14) (−9.93) (7.32) (−0.67) (−11.31) − 

Panel B: DJX VRP 5 Predictor Model Results 
 C TED RDJX TS PCDJX VXD2 Adj. R2 

Coeff. −0.0252 6.01 −0.0190 0.7082 0.0004 −0.5137 0.24 

NW (−1.74) (1.97) (−3.26) (1.72) (0.52) (−3.38) − 

HH (−1.43) (1.59) (−2.77) (1.41) (0.47) (−2.97) − 

W (−6.49) (7.74) (−10.58) (6.57) (0.93) (−11.54) − 

Panel C: VXD VRP 5 Predictor Model Results 
 C TED RNDX CS PCNDX VXN2 Adj. R2 

Coeff. −0.0217 5.1057 −0.0184 1.6791 0.0001 −0.5637 0.49 

NW (−2.25) (2.27) (−4.61) (1.72) (0.12) (−14.29) − 

HH (−2.37) (1.89) (−4.11) (1.74) (0.14) (−14.42) − 

W (−6.72) (8.36) (−13.18) (5.37) (0.16) (−39.74) − 

In this table, the in-sample (2001-2011) OLS results are provided. For the SPX VRP and the DJX 
VRP the credit spread (CS) is omitted and the term spread (TS) is omitted for the NDX VRP. Coeff. 
stands for the coefficients of the predictor variables. NW and HH are the t-statistics computed 
with Newey-West and Hansen-Hodrick approach respectively and W stands for the White 
robustness t-statistics. Adj. R2 is the adjusted R2. 
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Table E.4: The Out-of-Sample Evaluation Criteria 

Panel A: SPX VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
SPX Model 0.45* 0.76*** 0.52 0.90 0.0151* 0.0109* 

SPX RW − − − − 0.0203 0.0127 

Panel B: NDX VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
DJX Model 0.45* 0.77*** 0.54 0.92 0.0134* 0.0097 

DJX RW − − − − 0.0179 0.0111 

Panel C: VXD VRP Out-of-Sample Results 
 OS R2 MCP UI UII RMSE MAE 
NDX 
Model 

0.199* 0.72*** 0.54 0.92 0.0169* 0.0126 

NDX RW − − − − 0.0189 0.0129 

Entries report the out-of-sample R2, the Mean Correct Prediction(MCP), the Theil’s UI and Theil’s 
UII. One, two and three asterisks in the parenthesis under the R2 denote the rejection of the null 
hypothesis H0, the predictor model doesn’t outperform the benchmark model against the 
alternative hypothesis that the predictor model outperforms the benchmark model at 10%, 5% 
and 1% respectively. One, two and three asterisks in the parenthesis under the MPC denote the 
rejection of the null hypothesis that the proportion ratio is equal or lower to 50% against the 
alternative that is higher than 50%. The root mean squared error (RMSE) and the mean absolute 
error (MAE) of the predictor model and the naïve model (random walk) are also provided. One, 
two and three asterisks denote the rejection of the null hypothesis H0 the predictor model doesn’t 
outperform the benchmark model against the alternative hypothesis that the predictor model 
outperforms the benchmark model at 10%, 5% and 1% respectively. The out-of-sample data span 
from 1/2012 to 7/2017. 
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