Y NANENIZTHMIO
- NEIPAIQS

MSC Advanced Information Systems
Advanced Software Development
Technologies

“‘Epapuoyn Alapoipacpuou Evépyelag MTratapiag Kivntwy péow
Crowdsourcing”
By
Spyridon Desyllas

Advised by lecturer Efthimios Alepis

University of Piraeus

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

MavemmioTtnuio MNeipaiwg — TuAua NMNANPoPopPIKAG
Mpdypaupa MeTATTTUXIOKWY ZTTOUdWYV
«lponyuéva cuotruarta NMANPOYopPIKAG»

MeTaTmrTuyiakn AlaTpifi

Tithog AlaTpIBAG E@apuoyn Ailapoipacpou Evépyeiag Mrarapiag Kivntwv péow
Crowdsourcing

Mobile Phones Battery Energy Share through Crowdsourcing

Ovoparerwvupo PoitnTn Z1mupidwyv AecUAAag

MNaTpwvuuo 2TUAIOVOC

Ap1Bu6c MnTpwou MNZN/ 14021

EmBAéTTWV AAérng EuBluiog, Emrikoupog Kabnynrtig

Huepopnvia MNapddoong ~ PeBpoudpiog 2018

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

TpiyeAng E€etaaTikr) EmiTpotn)

(uTroypaen) (uTroypaen) (uTroypaen)
AAéTTNG EuBUpIog ETTikoupog BipBou Mapia Marodkng Kwv.
Kabnynthg Kabnyntng ETrikoupog KaBnyntAg

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn

1 Introduction
1 Wireless Charging
1.1 What is wireless charging
1.2 What technology is available today
1.3 Qi Wireless Standard
1.4 The future of wireless charging: Limitations no more

2 Crowdsourcing
2.1 Crowdsourcing methods
2.2 Crowdsourcing based on criteria points
2.2.1 Criteria based on user behaviour
2.2.2 Criteria based on geolocation
2.2.2 Criteria based on battery level
2.3 Summary of points that construct the algorithm

3 Technical Implementation
3.1 A Cross Platform Mobile Framework
3.2 Architecture Design
3.2.1 REST API
3.2.2 NoSQL Database Engine
3.2.3 Architecture and Deployment
3.3 C# with .Net Framework and Xamarin.
3.4 MongoDB JSON Documents
3.4.1 Javascript Object Notation (JSON)
3.4.2 Object Serialization
3.5 MongoDB geospatial Queries
3.5.1 Nearest Friends
3.5.2 Range Friends
3.5.3 Implementation in MongoDB
3.5.3.1 Nearest Friends Implementation
3.5.3.2 Range Friends Implementation.

3.6 Cloud technology for remote accessible data storage.

3.7 Source Code Repositories

4. Testing And Evaluation

4.1 Unit Testing framework and Test Driven Development.

5. Application Demonstration
5.1 Android Activities
5.2 Main Activity
5.3 Register Device Activity
5.4 Nearest Devices Activity

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing

2TTUPiIdwv AeaUAAag

N O oo AW

oo

15
17
21
22

23
25
29
29
32
35
36
38
38
41
44
44
45
46
46
50
53
57

58
59

64
64
64
66
67

2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Eicaywyn

‘Exete ToT€ Bpebei 0TN BEoN va pnv €XeTe YTratapia oto smartphone oag;

To va BpeBei pia mpila | évag GopTIOTAG, | akOpa Kal éva powerbank gival cuviiBwg SUCKOAO.
ZKEQPTNKATE TTOTE OTI UTTOPEITE VO GUVAVTACETE £V TTEPACTIKO i KATTOIO0 ATOUO TTOU KABETAI KOVTA
00G TO OTTOI0 UTTOPEI VO va 0dg dWOEl £Va TTOO00TO TNG EVEPYEIOG TOU smartphone Tou o€
avtaAAaypa va KAveTe To id10 Kal yia KATTolov GANO TTou PTTopEl va BpiokeTal oTn B€on cag oTo
MEAAOV;

AuTh n epyaacia diaTpIfng e€apTtdaTal atrd To crowdsourcing Kai TNV eUpean evog £TTApKoUs apiBuou
XPNOTWV yia va cUPBAAAEl o€ £va OikTuo TToU BaaileTal aTnv avtaAAayr eQeOPIKNG EVEPYEIAS TWV
KIVNTWV TNAE@WVWV. MpdkeITal Kupiwg yia £va £pyo KIVNTAG EQAPUOYNG, WOTOOO N EQAPUOYN
eCaptaTal kal ato Tnv diIaBéoiun TexvoAoyia UAIKOU (UETa®OPd evoUpuaTnG | aoUPPOTNG EVEPYEIAS
a1 PTTaTapieg, KIVNTEG CUOKEUEG TTOU UTTOOTNPICOUV pIa TETOIA ETTIAOYR).

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

1 Introduction

Have you ever been in the position of having no battery in your latest technology smartphone?

Both finding a power outlet and a charger, or even a powerbank is usually difficult. Have you ever
considered the option that a passer-by or a person sitting near you might not mind giving you a
percentage of his/her smartphone’s energy in exchange of you doing the same for someone else
who might be in your position in the future?

This thesis work depends on crowdsourcing and finding a sufficient number of peers to contribute to
a network based on exchanging spare energy of mobile phones. This is mostly a mobile app
project, however, the implementation depends also on the available hardware technology (wired or
wireless battery energy transfer, mobile devices supporting such an option).

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

1 Wireless Charging

The concept of wireless charging has been under development for so many years as it can solve
many problems in today’s smart phone devices. The smart phone devices are becoming more
powerful with horsepower equivalent of a desktop computer. This processing power demands
tremendous levels of energy consumption and in the field of mobile technology the energy storage
capacity is very limited. Over the years the processing and graphical power of these devices has
been evolved but the battery technology to support this power is not par with the technological
advancements of computer power. It is clear enough that using our mobile devices wherever and
whenever we want to has been shackled by the limitations of energy. Every mobile device user
should carry a cable charger with the hope of finding a power bank or a charging docking station in
every public place. This is very difficult to do and is something that limits the benefits that we can
get from the smart devices as these devices are meant to improve our lives instead of adding
technical barriers. This is the reason why many scientists are focused on delivering wireless
charging technology across mobile devices, not only this will eliminate the need of extra relation to
power banks and accessories but also it will make the life of the daily users much easier knowing
that their mobile device can be used on demand in under any situation.

Microwave

—

output
AC
Currents

Input AC
Currents

Fig 1.a, Representation of wireless energy transfer
The concept in theory is simple. We need a transmitter and a receiver of energy, the energy in our

case is electricity, electrical currents exported by an AC transmitter and received by an AC receiver.
In our case the transmitter and the receiver are both batteries residing in mobile smart devices.

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

1.1 What is wireless charging

Inductive charging (also known as wireless charging) uses an electromagnetic field to transfer
energy between two objects through electromagnetic induction. This is usually done with a charging
station. Energy is sent through an inductive coupling to an electrical device, which can then use that
energy to charge batteries or run the device.

Induction chargers use an induction coil to create an alternating electromagnetic field from within a
charging base, and a second induction coil in the portable device takes power from the
electromagnetic field and converts it back into electric current to charge the battery. The two
induction coils in proximity combine to form an electrical transformer.[1][2] Greater distances
between sender and receiver coils can be achieved when the inductive charging system uses
resonant inductive coupling. Recent improvements to this resonant system include using a movable
transmission coil (i.e. mounted on an elevating platform or arm) and the use of other materials for
the receiver coil made of silver plated copper or sometimes aluminium to minimize weight and
decrease resistance.

1.2 What technology is available today

Wireless power for mobile phones has been a long time coming. Especially outside the US, where it
got a head start thanks to telecoms operators backing it in the early days. Things have certainly
picked up in the past year, with Samsung getting off the fence and including it as a standard, rather
than an option.

Additionally, wireless products that will become available in the near future will be more powerful,
and versatile, offering an even better user experience. We’ll see even more charging stations at
coffee shops, restaurants and bars. Keeping a smartphone charged will just be easier all round.
There are various methods and different standards for wireless charging which we can see in the
following table.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn

2TTUPiIdwv AeaUAAag

WPC or Qi (Wireless PMA (Power Matters A4WP (Alliance for
Power Consortium) Alliance) Wireless Power)
; 2008, Qi was first wireless 2012, Procter & Gamble and 2012 by Samsung
Established :
charging standard Powermat and Qualcomm
R t charging,
Inductive charging, Inductive charging, m:ZFasoS ZEIHQ
Technology 100—-205kHz; 277-357TkHz; . X .p ™
. o : serious emission
coil distance 5mm; similar to Qi ; :
issues remain.
21 has widest global use; Tight competition with Qi A4WF and PWA
Markets Over 500 products, more gaining ground, 100,000 merged, no product
than 60 mobile phones Powermats at Starbucks, available
Qualcomm,
Samsung, LG, HTC, TI, Powermat, Samsung, LG, TediaTek. Intel LG
Panasonic, Sony, Nokia, TDK, TI, AT&T, Duracell, ' Y
Members & - . N HTC, Samsung,
e Notorola, Philips, Verizon, WiTricity, Starbucks b Tl
- BMW, Audi, Daimler, VW Teavana, Huawei, FCC, _ '
5 MNo commercial
Porsche, Toyota, Jeep Energy Star, Flextronics
products

Table 1.2.a Recognized standards for wireless charging.

1.3 Qi Wireless Standard

Modern wireless charging follows a complex handshake to identify the device to be charged. When
placing a device onto a charge mat, the change in capacitance or resonance senses its presence.
The mat then transmits a burst signal; the qualified device awakens and responds by providing
identification and signal strength status. The signal quality is often also used to improve the
positioning of the receiver or enhance magnetic coupling between mat and receiver.

The charge mat only transmits power when a valid object is recognized, which occurs when the
receiver fulfills the protocol as defined by one of the interoperability standards. During charging, the
receiver sends control error signals to adjust the power level. Upon full charge or when removing
the load, the mat switches to standby.

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing

2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Transmit and receive coils are shielded to obtain good coupling and to reduce stray radiation. Some
charge mats use a free moving transmit coil that seeks the object placed for best coupling, others
systems feature multiple transmit coils and engage those in close proximity with the object.

WPC calls the transmitter the TX Controller, or Base Station, and the receiver on the mobile device
the RX Controller, or Power Receiver. There is a resemblance to a transformer with a primary and
secondary coil.

Power
i .3 s
Control
7| L 2
|
' load load
control vector Coil current Modulation voltage [current
f.D
Y
TX Controller RX Controller

Figure 2: Overview of Qi wireless charging system.
Several systems are competing that may not be compatible. The three most common are Qi, PMA, A4WF.

' Qi lege, Chinese word
meaning "natural energy”

Fig 1.3.a an overview of a Qi wireless charging system.

1.4 The future of wireless charging: Limitations no more

In the following years we will see the updated Qi standard in new products and as a standard in a
plethora of mobile devices. The new 1.2 version of Qi mean the low power found in first generation
chargers will soon triple to 15w. Meaning the charging time for a smartphone will drop from three
hours to just 80 minutes.

The original Qi products will still be compatible, but will only operate at the original speed. The
original products also required fairly precise placement of the phone for the charge to work, but
multi-coil technology now allows some freedom of position.

Backwards compatibility is also a very important feature, as there are already lots of Qi enabled
devices out there. That's why phone manufacturers are very likely to stick to the Qi charging
standard with new devices, some may add AirFuel as well, but Qi is guaranteed.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

As a long time proponent of wireless charging, the mobile phone consumers will be thrilled to see
the technology so close to being universal. It's going to make people's lives just that little bit better.
Running low on phone power will no longer cause panic, with so many charging options.

There will be less messing with cables which currently people don’t think as a major issue. But
resolving a small problem for millions of people is still a worthwhile endeavour. It is also the first
step in creating a completely waterproof phone and a safe compartment where a phone can
connect to your car and be charged, all while linking you to your phone safely.

2 Crowdsourcing

The wireless charging technology is the medium of achieving the goal of this thesis project. The
vision of this project is to enable users of mobile devices to exchange battery levels with each
other’s phones based on user preference and previous charging history of a user. This is where we
will need to combine wireless charging technology with crowdsourcing algorithms and software.
Imaging the following scenario, user A is in a shopping mall and his/her mobile phone is very low on
battery. User A needs to be able to search in a pool of mobile phone’s batteries to drain some
energy from a candidate mobile device. The pool of mobile devices is created by other users
located in the same shopping mall or the around perimeter, the prerequisite for a user to be
included in the pool is to use the MyCrowdCharger mobile application that registers the mobile geo
location data along with user details. A mobile device is considered candidate based on various
factors that we will explore in later chapters.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Shopping Mall

User B, Battery 90%

User A, Battery 5%

User C, Battery 15%

Fig 2.a User case of MyCrowdCharger

As you can see in the diagram our user pool consists of 3 users, all of them located in the shopping
mall. User A is in search of some battery energy from the pool, the pool contains two available
users, User B and User C with their respective battery levels. It is make sense that the most
successful candidate to give some energy will be the user with the most full battery. In our case will
be User B. It will not make sense for User C to give energy as User C will be in the same situation
as User A and will be in search of a new user to refill his/her battery. User B on the other hand will
be glad to give some battery and after the energy transfer he/she will have sustainable battery
levels egain.

2.1 Crowdsourcing methods

Crowdsourcing like the wireless charging technology is the other aspect that we need to achieve a
community of user based charging. Much like the wireless charging it is a whole different scientific
field that in combination with physics’ wireless charging field will give us the tools to achieve our
goal.

Crowdsourcing is a specific sourcing model in which individuals or organizations use

contributions from Internet users to obtain needed services or ideas. Crowdsourcing was coined in
2005 as a portmanteau of crowd and outsourcing. This mode of sourcing to divide work between

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

participants to achieve a cumulative result was already successful before the digital age (i.e.,
"offline"). Crowdsourcing is distinguished from outsourcing in that the work can come from an
undefined public (instead of being commissioned from a specific, named group) and in that
crowdsourcing includes a mix of bottom-up and top-down processes. Advantages of using
crowdsourcing may include improved costs, speed, quality, flexibility, scalability, or diversity.
Crowdsourcing in the form of idea competitions or innovation contests provides a way for
organizations to learn beyond what their "base of minds" of employees provides (e.g., LEGO Ideas).
Crowdsourcing can also involve rather tedious "microtasks" that are performed in parallel by large,
paid crowds (e.g., Amazon Mechanical Turk). Crowdsourcing has also been used for
noncommercial work and to develop common goods (e.g., Wikipedia). Arguably the best-known
example of crowdsourcing as of 2015 is crowdfunding, the collection of funds from the crowd (e.g.,
Kickstarter).

Crowdsourcing can either take an explicit or an implicit route. Explicit crowdsourcing lets
users work together to evaluate, share, and build different specific tasks, while implicit
crowdsourcing means that users solve a problem as a side effect of something else they are doing.

With explicit crowdsourcing, users can evaluate particular items like books or webpages, or
share by posting products or items. Users can also build artifacts by providing information and
editing other people's work.

Implicit crowdsourcing can take two forms: standalone and piggyback. Standalone allows
people to solve problems as a side effect of the task they are actually doing, whereas piggyback
takes users' information from a third-party website to gather information.

In his 2013 book, Crowdsourcing, Daren C. Brabham puts forth a problem-based typology of
crowdsourcing approaches:

Knowledge discovery and management is used for information management problems
where an organization mobilizes a crowd to find and assemble information. It is ideal for creating
collective resources.

e Distributed human intelligence tasking is used for information management problems
where an organization has a set of information in hand and mobilizes a crowd to
process or analyze the information. It is ideal for processing large data sets that
computers cannot easily do.

e Broadcast search is used for ideation problems where an organization mobilizes a
crowd to come up with a solution to a problem that has an objective, provable right
answer. It is ideal for scientific problem solving.

e Peer-vetted creative production is used for ideation problems where an organization
mobilizes a crowd to come up with a solution to a problem which has an answer that is
subjective or dependent on public support. It is ideal for design, aesthetic, or policy
problems.

Crowdsourcing can be achieved in many different fields but in more modern days is widely
used in internet and mobile.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

A specific aspect of crowdsourcing that is very much interesting for our case is the mobile
crowdsourcing.

Mobile crowdsourcing involves activities that take place on smartphones or mobile platforms,
frequently characterized by GPS technology. This allows for real-time data gathering and gives
projects greater reach and accessibility. However, mobile crowdsourcing can lead to an urban bias,
as well as safety and privacy concerns.

Crowdsourcing includes three different actors:

e Crowd Sourcers
e Contributors
e Requesters

The crowd sources are the initiative of a crowd resource operation. It might be a business,
the government, an organization etc. In our case the crowdsource is the actual mobile application
that initiates a crowdsource in a pool of users to achieve its goal. The goal for the crowdsources is
to find an eligible mobile phone to give mobile energy and will use crowdsourcing to find which is
the best candidate for this purpose.

The contributors are the entities that take part in crowdsourcing, without contributors is
impossible to achieve crowdsourcing as it is the main essence to apply it. The contributors are the
“crowd” that are contributing data in other to be “sourced” by the crowdsourcer. In our case the
contributors are the mobile devices and their users. They are submitting data like geolocation and
other criteria to the crowdsources in order to be sourced.

The requesters are the entities that requests from the contributors. In our case a requester
is a user with a depleted battery on his/her mobile device. The requester is asking the contributors
through the crowdsources to find the best candidate from the pool of contributors (users).

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn Zmupidwv AecUAAag

§

Volunteer

Volunteer \ Volunteer

battery levels
charging history

application instances

Fig 2.1.a Crowd sourcing in our application

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

2.2 Crowdsourcing based on criteria points

The crowdsourcing that will be performed to the pool of contributors will need to include a
combination of criteria in order to be successful and more accurate. As we noticed before it is
obvious that a more succesful candidate will need to have plenty of battery to spare but there are
actually more criteria that we will need to factor in. A new criteria that we can introduce is, with a
scale of 1 to 10, how keen is the user to give energy. This is not easy to measure as we need to
construct this criteria by user’s history and user behaviour in general. Also to convince the user to
give energy we will need to reward this user with the chance of getting energy when he/she needs
in return. The basic idea of this project is to drain energy from other users so that we can re-charge
our device but also give the users in the pool a reward. A reward can be no other than helping the
users in need and “pay back” the energy that we’ve got from them so that they can benefit in a
similar situation.

In the table below we will include all the basic criteria that will construct our level of successful
candidate. From now on we will name this criteria “willingness” as it will show to use how eager is
the candidate to give the requested amount of energy.

Willingness will be :

W=Bx*xT

where B is Battery Level and T is the number of times gave energy in the past.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Willingness will be a point based criteria generated in the following table using the equation above.

1 times 10 times 20 times 100 times
Charging history
Battery level
100% 1 10 20 100
90% 0.9 9 18 90
50% 0.6 6 12 60
30% 0.3 3 6 30
15% 0.15 1.5 3 15
5% 0.05 0.5 1 5

Table 2.2.a Willingness points based system

For example if a user has full battery 100% and had given energy 10 times in the past the level of
willingness he/she achieves is 10.

wW=B -T=4.190=10

If a user with nearly depleted battery at 5% had given battely 100 times in the past the level of
willingness he/she has is

W=8-T=5-100 =5

Respectively when the first user with full battery has given energy only 1 time in the past the
willingness will be:

wW=B-T=1.1-1

This may seems odd at the first place but it make sense, even though the first user has full
battery he/she achieves lower score than the user with 5% battery levels. The reason is that the
despite the user has full battery and could make a perfect candidate based on the user history
he/she only gave battery just once in the past thus making him a not very ideal candidate. In fact

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

the user with nearly depleted battery has given energy many times in the past, even though he has
depleted energy he/she may willing more to give energy.

But what is the point of the Willingness factor. In fact when a user asks for a candidate from
the pool of user all candidates are sorted by their Willingness level in a descending manner, this
way the user with the best willingness comes first in the list and makes the ideal choice for the
requester. If this user for some reason (connection lost, application not responding etc..) is not
available then the immediate user in the list becomes the ideal candidate to give energy to the
requestor.

2.2.1 Criteria based on user behaviour

In order to make the use of the application appealing to the users, even though to the users that
usually give battery instead of asking for energy we use the willingness level for a threshold of the
requester as well. Of course the willingness level is used for the sorting of the candidates to make
the ideal candidate for energy sharing but also it can be used as a threshold to the requester to limit
the amount of energy that he/she can asks. In this way we can create an eco-system of contributors
competing with each other to achieve the best score of willingness so that they can ask more
energy levels the more they use the application and the more they contribute.

We will introduce a new value for the requester and we will name this value threshold.

The Threshold categorizes the users into the following categories.

User Category Energy to drain
New starter (0 - 10 times) 5%

Average (10 - 50 times) 10%

Good (50 - 100 times) 20%

Very Good (>=100 times) 30%

Table 2.2.1.a Application user categories

This way we can limit the appetite of each user and we can prevent the abuse of the
candidate’s energy consumption. A new started can only borrow 10% of energy from a candidate as
a new user the application does not yet now if this user will be a valuable contributor in the future,
thus we will have to limit the energy drain until there are sufficient information that this specific user
not only asks for energy but also is willing to give energy and be a valuable peer that will help the
life cycle and the network of our application.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

We can now represent these two values in a Cartesian field to gain a better understanding.

Points scored

—] timE

10 times

2.2b Graph of willingness, in the x axis is the battery level, in the y axis is the willingness for a user
that has given energy 1 time in the past and for another user that has given energy 10 times in the
past.

As we can see the user that contributed 10 times in the past will get many more points and
will be a more valuable peer to contribute energy. The second user although has used the
application only once so even though the battery levels are high he will score far less points in the
sorting operation.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

2.2.2 Criteria based on geolocation

We introduced the criteria points of the outsourcing operation in regards with User’s Battery levels
but also with User’s behaviour in order to provide a better user experience and a healthier network
of peers that consume but also contribute to the network ecosystem. At this point it would be wise to
include another factor to our equation. Regardless of the technology that will be used for the
wireless charging we will have to consider that the distance of the user’'s mobile device will always
be a major factor in terms of the choice and the final selection of the energy giver and consumer. If
the devices are far away to each other is more likely to have some issues during the charging
process or maybe even slower charging and bad performance in general.

Picture 2.2.2a Geographical representation of peers

In the above example the User A needs battery levels from all the available users in a
specific perimeter. Users B, C and D are holding mobile devices with sustainable levels of battery
and are crowdsources extensively but the crowdsourcing mechanism of our application. In this case
we need to answer another question to User A. Which is the closest user near him that will be able
to transfer these levels of energy more secure and more reliable than the other users. We will need
to apply a Geolocation query and more specifically a Nearest Neighbour query to find which users
are more close by to user A.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Nearest Neighbour algorithm

The training examples are vectors in a multidimensional feature space, each with a class label. The
training phase of the algorithm consists only of storing the feature vectors and class labels of the
training samples.

In the classification phase, k is a user-defined constant, and an unlabeled vector (a query or
test point) is classified by assigning the label which is most frequent among the k training samples
nearest to that query point.

A commonly used distance metric for continuous variables is Euclidean distance. For
discrete variables, such as for text classification, another metric can be used, such as the overlap
metric (or Hamming distance). In the context of gene expression microarray data, for example,
k-NN has also been employed with correlation coefficients such as Pearson and Spearman.[3]
Often, the classification accuracy of k-NN can be improved significantly if the distance metric is
learned with specialized algorithms such as Large Margin Nearest Neighbor or Neighbourhood
components analysis.

A drawback of the basic "majority voting" classification occurs when the class distribution is
skewed. That is, examples of a more frequent class tend to dominate the prediction of the new
example, because they tend to be common among the k nearest neighbors due to their large
number.[4] One way to overcome this problem is to weight the classification, taking into account the
distance from the test point to each of its k nearest neighbors. The class (or value, in regression
problems) of each of the k nearest points is multiplied by a weight proportional to the inverse of the
distance from that point to the test point. Another way to overcome skew is by abstraction in data
representation. For example, in a self-organizing map (SOM), each node is a representative (a
center) of a cluster of similar points, regardless of their density in the original training data. K-NN
can then be applied to the SOM.

L] &
- =
- 1‘1.
- -
- -
. H ~
LY
¢ w
Ly]
Ly 4
J i
] i
I 0
! 1
i]
. '
']
i

- -

Picture 2.2.2b Example of k-NN classification. The test sample (green circle) should be classified
either to the first class of blue squares or to the second class of red triangles. If k = 3 (solid line

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

circle) it is assigned to the second class because there are 2 triangles and only 1 square inside the
inner circle. If k = 5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles
inside the outer circle).

Parameter Selection

The best choice of k depends upon the data; generally, larger values of k reduce the effect of noise
on the classification,[5] but make boundaries between classes less distinct. A good k can be
selected by various heuristic techniques (see hyperparameter optimization). The special case
where the class is predicted to be the class of the closest training sample (i.e. when k = 1) is called
the nearest neighbor algorithm.

The accuracy of the k-NN algorithm can be severely degraded by the presence of noisy or irrelevant
features, or if the feature scales are not consistent with their importance. Much research effort has
been put into selecting or scaling features to improve classification. A particularly popular[citation
needed] approach is the use of evolutionary algorithms to optimize feature scaling. Another popular
approach is to scale features by the mutual information of the training data with the training classes.
In binary (two class) classification problems, it is helpful to choose k to be an odd number as this
avoids tied votes. One popular way of choosing the empirically optimal k in this setting is via
bootstrap method

The 1-nearest neighbour classifier

The most intuitive nearest neighbour type classifier is the one nearest neighbour classifier that
assigns a point x to the class of its closest neighbour in the feature space, that is

Cr™ (z) = Y

As the size of training data set approaches infinity, the one nearest neighbour classifier
guarantees an error rate of no worse than twice the Bayes error rate (the minimum achievable error
rate given the distribution of the data).

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

The weighted nearest neighbour classifier

The k-nearest neighbour classifier can be viewed as assigning the & nearest neighbours a weight 1/k and

all others 0 weight. This can be generalised to weighted nearest neighbour classifiers. That is, where the
T

ith nearest neighbour is assigned a weight w,;, with Z wWp; = 1. An analogous result on the strong
i=1
consistency of weighted nearest neighbour classifiers also holds.

Let Cp™™ denote the weighted nearest classifier with weights {wm- }:f“=1. Subject to regularity conditions

on to class distributions the excess risk has the following asymptotic expansion

Re(Cmm) — Re (CP) = (Bys3 + Byt2) {1+ o(1)},

T)

for constants B; and By where s2 = Zwii andt, = n_ 2/ Z:wm-{'rilwfld — (i — 1)1H%/dy,
i=1 i=1

The optimal weighting scheme {wjzi i1, that balances the two terms in the display above, is given as

4
follows: set k* = | Bnd+ |,
1 d d
o & % pa+2fd s y1+2/d . _ N
Wni = L 1+ 2 g/ {i (1 —1) }] fori =1,2,...,k" and

wh. =0fori=k"+1,...,n.

Picture 2.2.2c The Weighted nearest neighbour equation

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

2.2.2 Criteria based on battery level

We investigated the criteria points based on the user scoring willingness to donate energy as well

as the points scored by the nearest neighbour algorithm based on geolocation data. The third and
final factor for our scoring points will be the battery level of the mobile devices of the candidates. It
is logical to include this factor in the equation as it would be meaningless for a candidate to score

high in the board and will to give energy if the user’s device itself has a depleted battery.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

2.3 Summary of points that construct the algorithm

In a nutshell the algorithm of sorting the candidates that can donate battery energy levels will be the
following

candidates.OrderBy(x => x.Distance).
.ThenBy(x => x.Willingness)

.ThenBy(x => x.BatterylLevel);

2.3 Algorithm to sort candidates using C# lambda expressions

For our algorithm we are using C# language code in with lambda expressions.

Each code snippet and algorithm in this project will be represented in C# as this will be the
language of our technical implementation in the mobile devices that we will talk about in the next
chapter.

Lambda expression is an anonymous function that you can use to create delegates or expression
tree types. By using lambda expressions, you can write local functions that can be passed as
arguments or returned as the value of function calls. Lambda expressions are particularly helpful for
writing LINQ query expressions.

To create a lambda expression, you specify input parameters (if any) on the left side of the
lambda operator =>, and you put the expression or statement block on the other side. For example,
the lambda expression x => x * x specifies a parameter that's named x and returns the value of x
squared.

Lambda Expressions (C# Programming Guide) :
https://msdn.microsoft.com/en-us/library/bb397687.aspx

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://msdn.microsoft.com/en-us/library/bb397687.aspx

MetatTuxiakf AlaTpiBn

3 Technical Implementation

2TTUPiIdwv AeaUAAag

In order to develop this project numerous and different frameworks and tools can be considered.
At the time this thesis project is written the following frameworks are available for the needs of our

project.

Framework Programming Mobile OS Native or Web
Language

Android Studio Java Android Native

XCode Swift i0S Native

lonic HTML /CSS/ Cross Platform Web
Javascript

Xamarin C# Cross Platform Native

Appendix 3.a Available mobile application development technologies

There are some other various frameworks to develop web or native application but we will not go in
depth as it is out of scope of this project.

Although all frameworks can cover the needs of our application we will choose Xamarin, the
reasons are :

e C#is a powerful language implementing all the modern programming features that we
expect from a object oriented language
Use one codebase but build the application both for Android iOS and Windows phone
Use Visual Studio powerful IDE capabilities to build Cross Platform applications.
Use .Net Frameworks features to build an application according to SOLID programming
principles.

The aim is to use C# and Xamarin to create a robust application using SOLID principles.
SOLID principles are five basic principles of object-oriented programming and design. The intention
is that these principles, when applied together, will make it more likely that a programmer will create
a system that is easy to maintain and extend over time. The principles of SOLID are guidelines that
can be applied while working on software to remove code smells by providing a framework through
which the programmer may refactor the software's source code until it is both legible and extensible.
It is part of an overall strategy of agile and Adaptive Software Development.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Initial | Stand Concept
s for

S SRP Single responsibility principle
a class should have only a single responsibility (i.e. only one potential change

in the software's specification should be able to affect the specification of the
class)

O OCP Openl/closed principle

“software entities ... should be open for extension, but closed for
modification.”

L LSP Liskov substitution principle

“objects in a program should be replaceable with instances of their subtypes
without altering the correctness of that program.” See also design by contract.

| ISP Interface segregation principle

“many client-specific interfaces are better than one general-purpose

interface.”(®!

D DIP Dependency inversion principle

one should “depend upon abstractions, [not] concretions."!

Appendix 3.b SOLID Principles of object oriented programming.

At this point it would be wise to say that SOLID principles are not exclusive to C# and
Xamarin as they are more rules and methodologies rather than technical features but C#
programming language features enable developers to apply SOLID principles in a more guided,

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Design_by_contract
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)#cite_note-martin-design-principles-8
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)#cite_note-martin-design-principles-8
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)#cite_note-martin-design-principles-8

MetatTuxiakf AlaTpiBn

2TTUPiIdwv AeaUAAag

intuitive and easier manner. This is a personal opinion of the writer of this thesis and does not
derive from any research or evaluation of other technologies.

3.1 A Cross Platform Mobile Framework

As we mentioned before our intention is to create an application using a single programming
language and a single framework and use one and only one codebase for every available mobile
OS (Cross Platform). Xamarin framework will provide all the tools that we will need in order to
achieve the elasticity and rapid development of this project.

The application will look and feel native because it will benefit from Native User Interfaces,

Native APl Access and Native Performance.

Xamarin Features

Description

Native User Interfaces

Xamarin apps are built with standard, native
user interface controls. Apps not only look the
way the end user expects, they behave that
way too.

Native API Access

Xamarin apps have access to the full spectrum
of functionality exposed by the underlying
platform and device, including platform-specific
capabilities like iBeacons and Android
Fragments.

Ol O &

Native Performance

Xamarin apps leverage platform-specific
hardware acceleration, and are compiled for
native performance. This can’t be achieved
with solutions that interpret code at runtime.

Appendix 3.1.1 Xamarin Features

The application will use a Shared Logic layer written in C# that will be shared to a
middleware layer build on .Net framework. The middleware framework is responsible to share the
components of the application to the specific device OS providing a common interface code.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing

2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn Zmupidwv AecUAAag

Iy —

Native iOS App Native Android app MNative Windows Phone app

Shared C# User Interface Code

Platform-specific C# —

Shared C# App Logic

Pic 3.1.2 Architectural layers of our common interface approach

The shared C# Application logic consists of all the components that provide the logic to our
application. All logic components are testable in isolation while mocking out all of their
dependencies. For this reason all the components of the shared layer are written using all of the
SOLID principles providing a separation of control of the dependencies of the classes by injecting
them in the constructor using a dependency injection framework.

The Shared C# User Interface Code is provided by Xamarin and is acting as a middleware
between the application logic that we will write and the specific code that is needed by each device
operation system.

Previously we mention dependency injection briefly but it is time now to go in depth into this
programming technique as it is essential for the success of this project. We want the application
logic to be hardware agnostic in a way that the logic will exist and function the same way regardless
of the medium that is being used for wireless charging all other hardware specific features. Using
dependency inversion we can invert the dependencies of the classes of the application logic to a
third party framework. The reasons are that it will be very easy to test our application logic while
mocking the hardware dependencies, the dependency injection framework will be responsible to
inject any implementation to the logic, fake or real the application will not be affected whatsoever.
We will choose Simple Injector as our third party injector for various reasons but the main reason is
the performance comparing to other similar frameworks.

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn Zmupidwv AecUAAag

Owerview "Basic' (Maximum total time: 6000ms)

Mo

Grace

Dryloc

HaveBox

Lightinject

Simplelnjector

DrylocZero—

E

[

e

| B

m

ifinjector—{ [

a
Il

Stashbox 4

Dynamo —

fFastinjector—
Mef2

Fung -

Microsoft Extensions Dependencylnjection —

Mung —

StyleMVVM -
Griffin

Maestro—

Singleton WM Transient WM Combined B Complex

] 1000 2000 5000

Appendix 3.1.3 Comparison of Dependency Injection frameworks performance

Simple Injector is responsible to inject the dependencies to the application according to a
configuration storage that contains all the implementations for each logic component.

An an example imagine the component that will be used for the actual charging, lets name
this component MyCrowdCharger.Battery.Charger, this component is a class with the following
methods and properties.

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Charger
-Energy Sent
+3endEnengy (Recipient)

Pic 3.1.3 Charger Class diagram

The Charger class has one method SendEnergy(Recipient) and one property EnergySent.
The SendEnergy method simply sends energy levels to a recipient while the EnergySent property
responds back the total energy that this charger has sent to any recipients. While this class will
contain the logic for the energy sending mechanism we don’t want to couple this logic with any
actual implementation of a real hardware wireless charging. By decoupling the logic and the actual
hardware implementation it will be easy for our application to adapt different charging mechanism in
the future, or use a mocking charging mechanism for testing. When the application starts the
Charger dependencies will be injected via the class constructor so that during the application
runtime the Interface of the Charger will be using an actual implementation of a mock charger or a
specific wireless charger that the mobile device provides.

Cilargm
-Energy Sent
+SendEn Recipient
ooy Feacd planiy | .[mockWirelessCharger
+Changen\Wirel essHardware hardware) iy

Picture 3.1.4 Charger Injected with a mock wireless charger.

In the example above the Charger class is being injected my Simplelnjector framework with
a mock implementation of the Wireless Charger instead of a real one in its constructor. By doing so
it is helping us to test this component in isolation writing unit tests and also demonstrate the
application in a controlled test environment without the dependency of the physical medium of the
charging. In the time being we may use a specific wireless hardware technology but if a better
technology is available in the future we want our application to be as adaptive as possible and
integrate this new technology with no changes in the logic layer whatsoever.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

3.2 Architecture Design

We described our Cross Platform approach so now it is time to dive into the architecture of our
application and explain thoroughly each component.

The application is consisting of a native mobile application, a web service layer for data
communication with the server and a NoSQL Database instance. The application will perform all the
basic CRUD operations via the web services layer which will use noSQL Database engine for data
storage in JSON file format. The web service will be implemented as a RESTfull api using simple
JSON data object at the Data Transfer Objects (DTOs). Below we will explain the REST
architecture as well as the NoSQL Database engines.

3.2.1 REST API

Representational state transfer (REST) or RESTful Web services are one way of providing
interoperability between computer systems on the Internet. REST-compliant Web services allow
requesting systems to access and manipulate textual representations of Web resources using a
uniform and predefined set of stateless operations. Other forms of Web service exist, which expose
their own arbitrary sets of operations such as WSDL and SOAP. "Web resources" were first defined
on the World Wide Web as documents or files identified by their URLs, but today they have a much
more generic and abstract definition encompassing every thing or entity that can be identified,
named, addressed or handled, in any way whatsoever, on the Web. In a RESTful Web service,
requests made to a resource's URI will elicit a response that may be in XML, HTML, JSON or some
other defined format. The response may confirm that some alteration has been made to the stored
resource, and it may provide hypertext links to other related resources or collections of resources.
Using HTTP, as is most common, the kind of operations available include those predefined by the
HTTP verbs GET, POST, PUT, DELETE and so on. By making use of a stateless protocol and
standard operations, REST systems aim for fast performance, reliability, and the ability to grow, by
re-using components that can be managed and updated without affecting the system as a whole,
even while it is running.

The term representational state transfer was introduced and defined in 2000 by Roy
Fielding in his doctoral dissertation. Fielding used REST to design HTTP 1.1 and Uniform Resource
Identifiers (URI). The term is intended to evoke an image of how a well-designed Web application
behaves: it is a network of Web resources (a virtual state-machine) where the user progresses
through the application by selecting links, such as /user/tom, and operations such as GET or
DELETE (state transitions), resulting in the next resource (representing the next state of the
application) being transferred to the user for their use.

The architectural properties affected by the constraints of the REST architectural style are:

e Performance - component interactions can be the dominant factor in user-perceived
performance and network efficiency

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-SOA_with_REST-8
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch2-9

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

e Scalability to support large numbers of components and interactions among
components. Roy Fielding, one of the principal authors of the HTTP specification,
describes REST's effect on scalability as follows:

REST's client—server separation of concerns simplifies component implementation, reduces
the complexity of connector semantics, improves the effectiveness of performance tuning, and
increases the scalability of pure server components. Layered system constraints allow
intermediaries—proxies, gateways, and firewalls—to be introduced at various points in the
communication without changing the interfaces between components, thus allowing them to
assist in communication translation or improve performance via large-scale, shared caching.
REST enables intermediate processing by constraining messages to be self-descriptive:
interaction is stateless between requests, standard methods and media types are used to
indicate semantics and exchange information, and responses explicitly indicate cacheability.

Simplicity of a Uniform Interface

Modifiability of components to meet changing needs (even while the application is
running)

Visibility of communication between components by service agents

Portability of components by moving program code with the data

Reliability is the resistance to failure at the system level in the presence of failures
within components, connectors, or data

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Proxy_server
https://en.wikipedia.org/wiki/Gateway_(telecommunications)
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Web_cache
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch5-2
https://en.wiktionary.org/wiki/reliability
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-Fielding-Ch2-9

MetatTuxiakf AlaTpiBn

Uniform Resource Locator (URL) GET PUT
Collection, such as List the Replace the
http://api.example.com/resources |URIs and entire
/ perhaps collection
other details | with another
of the collection.
collection's
members.
Element, such as Retrieve a | Replace the
http://api.example.com/resources representati | addressed
/item17 on of the member of

addressed | the

member of | collection, or
the if it does not
collection, exist, create
expressed it.

inan

appropriate

Internet

media type.

2TTUPiIdwv AeaUAAag

Table 3.2.1.a The following shows how HTTP methods are typically used in a RESTful API

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing

POST DELETE
Create a Delete
new entry |the
in the entire
collection. | collectio
The new n.
entry's URI
is assigned
automatical
ly and is
usually
returned by
the
operation.[1
7]

Not Delete
generally | the
used. Treat | addresse
the d
addressed | member
member as | of the

a collection | collectio
in its own n.

right and

create a

new entry

within it.!""]

2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-thereisnorightway-17
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-thereisnorightway-17
https://en.wikipedia.org/wiki/Representational_state_transfer#cite_note-thereisnorightway-17

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

3.2.2 NoSQL Database Engine

A NoSQL (originally referring to "non SQL", "non relational" or "not only SQL") database provides a
mechanism for storage and retrieval of data which is modeled in means other than the tabular
relations used in relational databases. Such databases have existed since the late 1960s, but did
not obtain the "NoSQL" moniker until a surge of popularity in the early twenty-first century, triggered
by the needs of Web 2.0 companies such as Facebook, Google, and Amazon.com. NoSQL
databases are increasingly used in big data and real-time web applications. NoSQL systems are
also sometimes called "Not only SQL" to emphasize that they may support SQL-like query
languages.

Motivations for this approach include: simplicity of design, simpler "horizontal" scaling to
clusters of machines (which is a problem for relational databases), and finer control over availability.
The data structures used by NoSQL databases (e.g. key-value, wide column, graph, or document)
are different from those used by default in relational databases, making some operations faster in
NoSQL. The particular suitability of a given NoSQL database depends on the problem it must solve.
Sometimes the data structures used by NoSQL databases are also viewed as "more flexible" than
relational database tables.

Many NoSQL stores compromise consistency (in the sense of the CAP theorem) in favor of
availability, partition tolerance, and speed. Barriers to the greater adoption of NoSQL stores include
the use of low-level query languages (instead of SQL, for instance the lack of ability to perform
ad-hoc joins across tables), lack of standardized interfaces, and huge previous investments in
existing relational databases. Most NoSQL stores lack true ACID transactions, although a few
databases, such as MarkLogic, Aerospike, FairCom c-treeACE, Google Spanner (though
technically a NewSQL database), Symas LMDB, and OrientDB have made them central to their
designs. (See ACID and join support.)

Instead, most NoSQL databases offer a concept of "eventual consistency" in which
database changes are propagated to all nodes "eventually" (typically within milliseconds) so queries
for data might not return updated data immediately or might result in reading data that is not
accurate, a problem known as stale reads. Additionally, some NoSQL systems may exhibit lost
writes and other forms of data loss. Fortunately, some NoSQL systems provide concepts such as
write-ahead logging to avoid data loss. For distributed transaction processing across multiple
databases, data consistency is an even bigger challenge that is difficult for both NoSQL and
relational databases. Even current relational databases "do not allow referential integrity constraints
to span databases. There are few systems that maintain both ACID transactions and X/Open XA
standards for distributed transaction processing.

There have been various approaches to classify NoSQL databases, each with different
categories and subcategories, some of which overlap. What follows is a basic classification by data
model, with examples:

e Column: Accumulo, Cassandra, Druid, HBase, Vertica, SAP HANA
e Document: Apache CouchDB, ArangoDB, Clusterpoint, Couchbase, DocumentDB,
HyperDex, IBM Domino, MarkLogic, MongoDB, OrientDB, Qizx, RethinkDB

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/Column_(data_store)
https://en.wikipedia.org/wiki/Accumulo
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Druid_(open-source_data_store)
https://en.wikipedia.org/wiki/HBase
https://en.wikipedia.org/wiki/Vertica
https://en.wikipedia.org/wiki/SAP_HANA
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/Clusterpoint
https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/DocumentDB
https://en.wikipedia.org/wiki/HyperDex
https://en.wikipedia.org/wiki/Lotus_Notes
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Qizx
https://en.wikipedia.org/wiki/RethinkDB

MetatTuxiakf AlaTpiBn

2TTUPiIdwv AeaUAAag

o Key-value: Aerospike, ArangoDB, Couchbase, Dynamo, FairCom c-treeACE,
FoundationDB, HyperDex, InfinityDB, MemcacheDB, MUMPS, Oracle NoSQL
Database, OrientDB, Redis, Riak, Berkeley DB

e Graph: AllegroGraph, ArangoDB, InfiniteGraph, Apache Giraph, MarkLogic, Neo4J,
OrientDB, Virtuoso, Stardog

e Multi-model: Alchemy Database, ArangoDB, CortexDB, Couchbase, FoundationDB,
InfinityDB, MarkLogic, OrientDB

Type

Key-Value Cache

Key-Value Store

Key-Value Store
(Eventually-Consiste
nt)

Key-Value Store
(Ordered)

Data-Structures
Server

Tuple Store

Object Database

Document Store

Wide Column Store

Examples of this type

Coherence, eXtreme Scale, GigaSpaces, GemFire, Hazelcast,
Infinispan, JBoss Cache, Memcached, Repcached, Terracotta, Velocity

ArangoDB, Flare, Keyspace, RAMCloud, SchemaFree, Hyperdex,
Aerospike

DovetailDB, Oracle NoSQL Database, Dynamo, Riak, Dynomite,
MotionDb, Voldemort, SubRecord

Actord, FoundationDB, InfinityDB, Lightcloud, LMDB, Luxio,
MemcacheDB, NMDB, Scalaris, TokyoTyrant

Redis

Apache River, Coord, GigaSpaces

DB40, Obijectivity/DB, Perst, Shoal, ZopeDB

ArangoDB, Clusterpoint, Couchbase, CouchDB, DocumentDB, IBM
Domino, MarkLogic, MongoDB, Qizx, RethinkDB, XML-databases

BigTable, Cassandra, Druid, HBase, Hypertable, KAI, KDI,
OpenNeptune, Qbase

Table 3.2.2.a A more detailed classification of NoSQL databases

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/Key-value_store
https://en.wikipedia.org/wiki/Aerospike_database
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/C-treeACE
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/HyperDex
https://en.wikipedia.org/wiki/InfinityDB
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/MUMPS
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Riak
https://en.wikipedia.org/wiki/Berkeley_DB
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/AllegroGraph
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/InfiniteGraph
https://en.wikipedia.org/wiki/Apache_Giraph
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/Neo4J
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Stardog
https://en.wikipedia.org/wiki/Multi-model_database
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/InfinityDB
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Oracle_Coherence
https://en.wikipedia.org/wiki/IBM_WebSphere_eXtreme_Scale
https://en.wikipedia.org/wiki/GigaSpaces
https://en.wikipedia.org/wiki/Hazelcast
https://en.wikipedia.org/wiki/Infinispan
https://en.wikipedia.org/wiki/Memcached
https://en.wikipedia.org/wiki/Terracotta,_Inc.
https://en.wikipedia.org/wiki/Velocity_(memory_cache)
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/Hyperdex
https://en.wikipedia.org/wiki/Aerospike_database
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/Riak
https://en.wikipedia.org/wiki/Voldemort_(distributed_data_store)
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/InfinityDB
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Jini
https://en.wikipedia.org/wiki/GigaSpaces
https://en.wikipedia.org/wiki/Objectivity/DB
https://en.wikipedia.org/wiki/Perst
https://en.wikipedia.org/wiki/Zope_Object_Database
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/Clusterpoint
https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/CouchDB
https://en.wikipedia.org/wiki/DocumentDB
https://en.wikipedia.org/wiki/Lotus_Notes
https://en.wikipedia.org/wiki/Lotus_Notes
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Qizx
https://en.wikipedia.org/wiki/RethinkDB
https://en.wikipedia.org/wiki/XML_database
https://en.wikipedia.org/wiki/Wide_column_store
https://en.wikipedia.org/wiki/BigTable
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Druid_(open-source_data_store)
https://en.wikipedia.org/wiki/Apache_HBase
https://en.wikipedia.org/wiki/Hypertable

MetatTuxiakf AlaTpiBn Zmupidwv AecUAAag

In our case we are going to choose a Document Database for our needs and more
specifically we will use MongoDB which we will talk about in a later chapter.
In MongoDB as well as all document NoSQL databases data is stored in a form of a JSON file that
represents a document.

3.2.3 Architecture and Deployment

Our application web service layer and database storage will use Cloud infrastructure for hosting due
to the elasticity, performance and reliability that a large scale mobile application needs. The
application will use Microsoft's AZURE cloud for deployment and will use Web Application SaaS
(Software as a service) for the RESTful web api and laaS (Platform as a service) for the MongoDB
shards.

MongoDB Shard

JSON READ,/WRITE

>

Web API

Azure Cloud

Asp.Net MVC Rest API

‘ ‘ DTOs over HTTP

Picture 3.2.3a MyCrowdCharger Deployment Architecture

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

Metarrtuyiakn Aiatpin Zmupidwv AecUAAag

3.3 C# with .Net Framework and Xamarin.

As we mentioned in the previous chapters our application will be written in C# using .Net
framework in the hood in order to be able to use Xamarin’s' cross platform feature and
interobilability between all layers.

In this chapter we will present all the basic entities of our application which will be represented as
C# classes.

Picture 3.3a Class diagram of the user entities

' "Xamarin." https://www.xamarin.com/. Accessed 29 May. 2017.

Egappoyr Alapoipacpol Evépyeiag Mmratapiog Kivntwv péow Crowdsourcing 21upidwv AeoUAAag

https://www.xamarin.com/

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

3.4 MongoDB JSON Documents

For all our storage needs we will use MongoDB’s document storage capabilities and utilise JSON
file format for our objects. Before transferring the C# class objects from our Xamarin layer we will
need to serialize these objects into JSON files and then pass them to the web api layer and towards
the MongoDB storage.

3.4.1 Javascript Object Notation (JSON)

In computing, JSON (canonically pronounced /'d3eisen/ jay-sen 2 sometimes JavaScript Object
Notation) is an open-standard format that uses human-readable text to transmit data objects
consisting of attribute—value pairs. It is the most common data format used for asynchronous
browser/server communication, largely replacing XML, and is used by AJAX.

JSON is a language-independent data format. It derives from JavaScript, but as of 2017
many programming languages include code to generate and parse JSON-format data. The official
Internet media type for JSON is application/json. JSON filenames use the extension .json.

JSON's basic data types are:

e Number: a signed decimal number that may contain a fractional part and may use
exponential E notation, but cannot include non-numbers like NaN. The format makes no
distinction between integer and floating-point. JavaScript uses a double-precision
floating-point format for all its numeric values, but other languages implementing JSON
may encode numbers differently.

e String: a sequence of zero or more Unicode characters. Strings are delimited with
double-quotation marks and support a backslash escaping syntax.

Boolean: either of the values true or false
Array: an ordered list of zero or more values, each of which may be of any type. Arrays
use square bracket notation with elements being comma-separated.

e Object: an unordered collection of name/value pairs where the names (also called keys)
are strings. Since objects are intended to represent associative arrays,!'? it is
recommended, though not required,'® that each key is unique within an object. Objects
are delimited with curly brackets and use commas to separate each pair, while within
each pair the colon "' character separates the key or name from its value.

e null: An empty value, using the word null

Limited whitespace is allowed and ignored around or between syntactic elements (values
and punctuation, but not within a string value). Only four specific characters are considered
whitespace for this purpose: space, horizontal tab, line feed, and carriage return. In particular, the
byte order mark must not be generated by a conforming implementation (though it may be accepted
when parsing JSON). JSON does not provide any syntax for comments.

2"JSON." http://www.json.org/. Accessed 29 May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/File_format#Chunk-based_formats
https://en.wikipedia.org/wiki/Human-readable_medium
https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Language-independent_specification
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/E_notation
https://en.wikipedia.org/wiki/NaN
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Escape_character
https://en.wikipedia.org/wiki/Boolean_datatype
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/List_(abstract_data_type)
https://en.wikipedia.org/wiki/Square_bracket
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/JSON#cite_note-ecma2013-12
https://en.wikipedia.org/wiki/JSON#cite_note-rfc7519-13
https://en.wikipedia.org/wiki/Braces_(punctuation)#Braces
https://en.wikipedia.org/wiki/Nullable_type
https://en.wikipedia.org/wiki/Whitespace_character
https://en.wikipedia.org/wiki/Byte_order_mark
http://www.json.org/

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Early versions of JSON (such as specified by RFC 4627) required that a valid JSON "document”
must consist of only an object or an array type, which could contain other types within them. This
restriction was removed starting with RFC 7158, so that a JSON document may consist entirely of
any possible JSON typed value.

The following example shows a possible JSON representation describing a person.

{

"firstName": "John",

"lastName": "Smith",

"isAlive": true,

"age": 25,

"address": {
"streetAddress": "21 2nd Street",
"city": "New York",

"state": "NY",
"postalCode": "10021-3100"
3
"phoneNumbers": [
{

"type": "home",
"number": "212 555-1234"
3
{
"type": "office",
"number": "646 555-4567"
3
{
"type": "mobile",
"number": "123 456-7890"
b
1

"children": [],
"spouse": null

¥

Picture 4.3.1 A Basic JSON example to represent a person’s information

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc7158

MetatTuxiakf AlaTpiBn

3.4.2 Object Serialization

2TTUPiIdwv AeaUAAag

As we mentioned the application’s Xamarin layer will serialize all the C# DTO object to JSON before
passing them to the web service. Doing that the application decouples all the complexity of the

objects while maintaining minimal size for efficient transfer.

For our serialization purposes we are going to use a JSON serialize/deserialize library for .Net
framework. After evaluation of different libraries the choice is to use Newtonsoft's JSON.Net to
perform the object serializations to JSON and deserialization from JSON back to C# objects and

classes.

Product product = new Product();
product.Name = "Apple”;

product.Expiry = new DateTime(2@@8, 12, 2
product.5izes = new string[] { "Small"™ };

B);

string json = JsonConvert.SerializeObject{product);

I

I/ "Mame™: “"Apple”,

I "Expiry™: "2088-12-23T90:00:08",
I "sizes"; [

rr "Small”

]

f1 ¥

Serialize JSON
Picture 3.4.2.a JSON.Net serialization Example

string json = @"{
'Name': 'Bad Boys',
'ReleaseDate': '1985-4-7T88:00:88",
'Genres": [
*Action”’,
"Comedy *
]
b diH

Movie m = JsonConvert.DeserializeObject<Movie>{json);

string name = m.MName;
f Bad Boys

Deserialize JSON

Picture 3.4.2b JSON.net deserialization example

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing

2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn

Zmupidwv AecUAAag

The evaluation and experimentation of different libraries including .Net out of the box json serializer

and Javascript serializer is presented in the following diagram:

Json.NET Performance

Time in milliseconds. Loweris better.

M Serialize M Deserialize

Json MET 5 DataContractlsonSerializer

437ms

lavascriptSerializer

Picture 3.4.2c Json.Net Performance vs DataContractJsonSerialize vs JavaScriptSerializer

Json.NET performed significantly better that other known converted thus justified our choice for

using it instead of the Microsoft .Net out of the box library.

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing

2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn

Requester
-DateTimeRequested
-PercentageRequest

C# Class

lic DateTime DateTimeRequest
int Percentage { get; L

Requester requester = new Requester();
requester.DateTimeRequested = DateTime.MNow();
reguester.Percentage = 38;

2TTUPiIdwv AeaUAAag

JSON Serialize

"Requester” : {
"dateTimeRequester”

"percentage

Picture 3.4.2d Representation of Object, C# class and serialized JSON object.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing

2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

3.5 MongoDB geospatial Queries

The backend of our application needs to support basic Geospatial queries in order to support the
Geosocial aspect that our business logic needs, that means that the framework should be able to
respond to queries such as NearestNeighbour, WithinRadius and various other geo location
queries.

In our research of selection of such a database technology we needed to reassure that we will be
able to support the following geo-location primitive queries?.

Nearest Friends (NF)
Range Friends (RF)
Nearest Star Group (NSG)

The theory of these queries and the algorithms behind them are very well covered by the
work of Nikos Papadias et al A General Framework for Geo-Social Query Processing. We will need
to implement these queries in our backend system or at least of portion of them by using
MongoDB’s geospatial capabilities and apply the social aspect on top of them. The friends in the
case of our project will be the “friend” users that we have exchange battery levels in the past and
are well known users to us.

3.5.1 Nearest Friends

NF returns the k friends of user u that are closest to location q in ascending distance.
There are three different variations that we can implement to achieve the Nearest Friends geosocial
query which we will explore in the following figure:

3 "A General Framework for Geo-Social Query Processing."

http://www.vldb.org/pvidb/vol6/p913-papadopoulos.pdf. Accessed 29 May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

http://www.vldb.org/pvldb/vol6/p913-papadopoulos.pdf

MetatTuxiakf AlaTpiBn

Zmupidwv AecUAAag

Input: User u, location g, positive integer k
Output: Result set I

/* Algorithm 1 (N Fp) */

. F = GetFriends(u), R=10

2. For eachuser u; € F, compute GetUserLocation(u;)
3. Sort F' in ascending order of ||q, u;||

4. Insert the first k entries of F' into R

5. Return R

/* Algorithm 2 (N Fz) */

1. F = GetFriends(u), R=10

2. While |[R| < k

3. u; = NextNearestUser(q)
4 If uw; € F.add u; into R

5. Return i

/* Algorithm 3 (N F3) */

1. R=0

2. While [R| < k

3. ui = NextNearestUser(q)

4 If AreFriends(u,u;), add u; into R
5. Return R

Figure 3.5.1a Nearest Friends variations

3.5.2 Range Friends

Simply stated, RF returns the friends of user u that are within distance r to a location q

For range friends query respectively :

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing

2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Input: User u, location g, radius r
Output: Result set R

/* Algorithm 1 (RFy) */

1. F = GetFriends(u), R=10

2. For each user u; € F

3. GetUserLocation(u;)

+ If ||g, u;|| < r,add u; into R
5. Return R

/* Algorithm 2 (RF5) */
1. Return R = GetFriends(u) N Range Users(q,r)

/* Algorithm 3 (RF3) */

1. U = RangeUsers(q,r), R=10

2. For each user u; € [J

3 If AreFriends(u,u;), add u; into R
4 Return R

Figure 3.5.2a Range Friends variations

3.5.3 Implementation in MongoDB

Implementation of the primitive geo-location queries in MongoDB. We need to implement the
primitive queries in MongoDB and apply the social functionality in top of if using the application
logic. But for the primitive geolocation queries we will MongoDB’s geospatial indexes and
functionality.

3.5.3.1 Nearest Friends Implementation

Let’s start with the Nearest Friends query. For this query we will to use the Social engine of the
framework to fetch the friend users first with the following query in MongoDB, please note that this
query does not use any geosocial indexes as it's only a query to get the users that have a high level
of Willingness and high battery levels with the following method calls to our framework

This is the full query that we will want to achieve in a nutshell:
candidates.OrderBy(x => x.Distance).

.ThenBy(x => x.Willingness)

.ThenBy(x => x.BatterylLevel);

E@appoyn Alapoipacuou Evépyeiag Mmatapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

We have the willingness and battery level already in the system, the battery level is a direct
feedback from each user’s device while the Willingness is a variable we use to show the willingness
of the user to give battery and as we saw in a previous chapter is calculated by the following form.

W=Bx*xT

where B is Battery Level and T is the number of times gave energy in the past.

So only variable that our method will need to rely on MongoDB'’s geospatial indexes is the
Distance. By distance we mean the actual distance (km, m and miles, yards) from the user’s
device to all other users devices in a radius.

To achieve this query in MongoDB we will need to create a geospatial index for the
distance field in the database, we can use 2d indexes or 2dsphere indexes. 2d indexes are more
simple and are easier for testing purposes as it calculates the distance in the cartesian field while
the 2dsphere indexes fit better in a real world scenario because it calculates distance in an
earth-like surface. 2d indexes return data in a x,y pair format for long and lat while 2dsphere stores
data in GeoJson format*.

A 2d index would return the actual point of an object in the format of [40, 5] while the 2dsphere
would return a GeoJson object in the format of:

{ type: "Point", coordinates: [40, 5] }

The 2d index supports queries that calculate distances on a Euclidean plane (flat surface).
The index also supports the following query operators and command that calculate distances using
spherical geometry.

These three queries use radians for distance. Other query types do not.

For spherical query operators to function properly, you must convert distances to radians, and
convert from radians to the distances units used by your application.

To convert:

e (distance to radians: divide the distance by the radius of the sphere (e.g. the Earth) in the
same units as the distance measurement.

e radians to distance: multiply the radian measure by the radius of the sphere (e.g. the Earth)
in the units system that you want to convert the distance to.

The equatorial radius of the Earth is approximately 3,963.2 miles or 6,378.1 kilometers.

Consider a collection places that has a 2dsphere index.

4 "GeoJSON." http://gecjson.org/. Accessed 29 May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

http://geojson.org/

MetatTuxiakf AlaTpiBn Zmupidwv AecUAAag

The following query would return documents from the places collection within the circle described
by the center [-74, 40.74] with a radius of 100 miles:

db.users.find({ loc: { $geoWithin: { $centerSphere: [[-74, 40.74],
100/3963.21} 3} 3})

The following spherical query, returns all documents in the collection places within 100 miles from
the point [-74, 40.74].

db.runCommand({ geoNear: "users",
near: [-74, 40.74],

spherical: true

¥)

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn

The output of the above command would be:

{
]
"results" : [
{
"dis" : 0.01853688938212826,
"obj" : {
"_id" : ObjectId(...)
"loc" : [
=73,
40
]
¥
b
1
"stats" : {
/any
"avgDistance" : 0.01853688938212826,
"maxDistance"” : 0.01853714811400047
3
"ok" : 1
b

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing

Zmupidwv AecUAAag

2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

3.5.3.2 Range Friends Implementation.

Respectively for the range friends we will rely on MongoDB 2dsphere indexes.

We will use $near query in mongoDB to get the nearest devices of the user’s location:

$near Specifies a point for which a geospatial query returns the documents from nearest to farthest.
The $near operator can specify either a GeoJSON point or legacy coordinate point.

$near requires a geospatial index:

e 2dsphere index if specifying a GeoJSON point,

e 2d index if specifying a point using legacy coordinates.
To specify a GeoJSON point, $near operator requires a 2dsphere index and has the following
syntax:

{
<location field>: {
$near: {
$geometry: {
type: "Point" ,
coordinates: [<longitude> , <latitude>]
T
$maxDistance: <distance in meters>,
$minDistance: <distance in meters>
b
b
b

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

When specifying a GeoJSON point, you can use the optional $minDistance and $maxDistance
specifications to limit the $near results by distance in meters:

e $minDistance limits the results to those documents that are at least the specified distance
from the center point. $minDistance is only available for use with 2dsphere index.

e $maxDistance limits the results to those documents that are at most the specified distance
from the center point.

To specify a point using legacy coordinates, $near requires a 2d index and has the following syntax:

{
$near: [<x>, <y>],
$maxDistance: <distance in radians>

¥

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Consider a collection places that has a 2dsphere index.

The following example returns documents that are at least 3meters from and at most 5000 meters
from the specified GeoJSON point, sorted from nearest to farthest:

db.users.find(
{

location:
{ $near :

{
$geometry: { type: "Point", coordinates: [-73.9667, 40.78] },

$minDistance: 3,

$maxDistance: 5000
b

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

3.6 Cloud technology for remote accessible data storage.

To achieve a backend that is truly independent of location boundaries and be agile and adaptive to
the different devices whenever they are on the planet we will need to utilize Cloud technology.
Utilizing cloud we achieve geo replication of data to literally put data nearest to the user for better
performance and reliability, we can also scale out the application depending on the traffic and the
processing needs to accumulate all the different scenarios of our framework.

In previous chapters we designed the architecture of the application backbone and we decided that
we have 3 different entities that form our solution.

First we have the mobile application in user’s device itself, this is the client of our framework and will
be written in C# using Xamarin cross-platform mobile framework. Then we have the RESTful web
services that will accept all the calls from the client (mobile devices) and respond back data to the
client. The RESTful services will be written in C# using ASP.NET MVC and web api technology.
Finally we have the backend database which is able to respond to geosocial queries with complex
geolocation data structure. MongoDB will be used due to its geo-location indexes, also MongoDB’s
NoSQL technology will enable us to achieve maximum performance and fulfil thousands of reads
and writes without affecting the performance of the application. MongoDB will be deployed in a
cloud environment together or separately with the web services.

In a production environment Azure will be used for the web service deployment, in more detail the
following services in Azure will be utilized for the web service deployment.

e Azure App Services for web service hosting with scale up, scale out capabilities
e Azure Application Insights for web service monitoring and logging

For MongoDB we will use:
e MongoDB shards in Azure
e Or Mongo Atlas cloud provided by Mongo enterprises.

For testing purposes and during development in the lab we will deploy MongoDB in a
Raspberry PI ® 3 mini computer. Raspberry Pi is the chosen solution for us as is a tiny and
affordable micro-computer but powerful enough to be an application server for testing purposes.

® "Raspberry Pi." https://www.raspberrypi.org/. Accessed 29 May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://www.raspberrypi.org/

MetatTuxiakf AlaTpiBn Zmupidwv AecUAAag

The framework architecture on Azure will fully cover our needs of scalability and
geo-replication serving data from a data center closer to the user’s device location for maximum
performance and less latency.

@

MongoDB Shard

JSON READ,/WRITE

=

Web API

Azure Cloud
Asp.Net MVC Rest API

‘ ‘ DTOs over HTTP

Figure 3.6.b Deployment in production environment using Azure Cloud.

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn Zmupidwv AecUAAag
For testing purposes a Raspberry Pi will be used as in the following diagram:

Raspberry Pi 3
MongeDB

G FRON READWRITD

Web API

python eve/ ﬂask framework

1 . Dynamic DNS Sarvice
y ; A for Lab non-static IP
: mapping.

http calls

Nolp service for
Dynamic DNS

s

Xamarin .Net C#

Figure 3.6.b Deployment in the Lab using Raspberry Pi 3

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn Zmupidwv AecUAAag

For the Lab environment we will use a different set of hardware and technologies to be more
adaptive in testing and evaluation purposes while maintaining a minimum cost for both hardware
and software. The mobile-clients part will use the same software and tools as production and will
use .Net framework’s Xamarin cross-platform development SDK. However for the server part we
will not use any cloud architecture as this would increase the cost of this project without any actual
need of scalability and performance in the lab environment. For this reason we will choose comonly
cheap hardware with minimal energy footprint and low energy consumption. For the software part of
the server side we will use open source frameworks and lightweight web servers with which require
minimum effort of development as well as they are high compatible and easy to configure in the
chosen hardware.

In more detail for the hardware part that will act as a Server with 24/7 uptime we will use:
e Raspbberry Pi 3° Minicomputer with Raspbian debian OS’
For the software part of the services we will use:

MongoDB Community edition® NoSQL Database engine

Python® programming language for the logic of the REST services
Flask web framework'® as web server

Cerberus'' Data Validation framework for Python DTO objects
Python-Eve'? REST Api framework to glue everything together

6 "Raspberry Pi 3 Model B - Raspberry Pi."

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. Accessed 31 May. 2017.

" "Download Raspbian for Raspberry Pi." hitps://www.raspberrypi.org/downloads/raspbian/.
Accessed 31 May. 2017.

"InstaII MongoDB Community Ed|t|on — MongoDB Manual 3.4."
' ity. Accessed 31 May. 2017.

"Python org." hﬂn&;[bmm&.mﬂhmgngl Accessed 31 May. 2017
' "Welcome | Flask (A Python Microframework)." http:/flask.pocoo.org/. Accessed 31 May. 2017.
" "Cerberus." http:/docs.python-cerberus.org/. Accessed 31 May. 2017.

2 "Python-Eve." http:/python-eve.org/. Accessed 31 May. 2017.

Egappoyn Alapoipacpou Evépyeiag Mtrartapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/downloads/raspbian/
http://docs.mongodb.com/manual/administration/install-community
https://www.python.org/
http://flask.pocoo.org/
http://docs.python-cerberus.org/
http://python-eve.org/

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

3.7 Source Code Repositories

All source code will be hosted in a Git Repository using Github service under a free academic
license.

Our project will consist of two parts, the server side and the client side. The server side is a python
codebase for communicating with MongoDB and responding back to the mobile devices and will act
as a middleware between the MongoDB database and the clients’ mobile devices. The client side
code will be a C# codebase solution built with Visual Studio 2017 and Xamarin.

Both parts of this project are hosted on GitHub'® in the following URLS:
e mycrowdcharger-mobileclient https://github.com/sdesyllas/mycrowdcharger-mobileclient.qgit
e mycrowdcharger-api
https://qithub.com/sdesyllas/mycrowdcharger-api.qgit

13 "GitHub." https://github.com/. Accessed 31 May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://github.com/sdesyllas/mycrowdcharger-mobileclient.git
https://github.com/sdesyllas/mycrowdcharger-api.git
https://github.com/

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

4. Testing And Evaluation

Last but not least | would like to talk about testing, by testing some times we refer to actual testing
but QA teams and testers that they do manual testing with human interaction, while this is
necessary for the evaluation of our application most of the times is not enough. By testing in this
chapter we will talk about unit testing of the components of our application, all the classes in the
code, the interfaces, the service and all the different entities have to be testable in isolation to
ensure that every component work as intended like a good polished cog, and then if you put all the
cogs together we need to ensure that the machine is still working, this is the integration testing.
While developing each component of the application we will write a unit test for each and everyone
of them ensuring that they work good in isolation, we expect that every part of the application has a
dependency to another part, for example we will write a service to get results from our MongoDB
database and log the results into a logger, this service has two dependencies, the MongoDB Logger
and a logger service.

GetUsers API

Figure 4.a GetUsers API with two dependencies.
In this example we have a GetUsers API that is an Interface and a class that implements this

interface, This class has two other dependencies respectively two different interfaces that the need
to be injected through the constructor of the GetUsers class. In testing though we are only

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

interested to test the GetUsers Api without actually testing each dependency because all the
dependencies are expected to have their own unit tests and can be fully tested in isolation.

We will see in the next chapter how we can achieve this technique which complies with the five
principles of SOLID™ modern software design.

4.1 Unit Testing framework and Test Driven Development.

To achieve this technique we need to mock all the dependencies and test GetUser service in
isolation without much worry about the other two dependencies (MongoDB and Logger Service).
Please note that when we say with no worry about the dependencies it does not mean the we don’t
want to test them, but the unit tests for them will be written separately and in isolation. For example
the logger service will have it's own unit tests as well as MongoDB dependency, but each
component will be testable in isolation, when the time comes to use these components as
dependencies to the service APl then we can mock them and mock their behaviour of them so that
our unit tests can focus on the GetUser Service only.

It doesn’t mean that we don’t care about the dependencies completely, we do care actually but our
care is limited to their expected usage throughout the GetUser Api and not about their actual
implementation. For example the GetUser Api will log a message before returning all the data, we
will test if the logger logged something and this something it might be any sequence of characters,
we have to remember that we don’t focus on the logger at this point, our focus is completely
targeted into the Api component, but the Api component unit tests need to test if the logger was
called, if the logger is called with whatever results then we can be satisfied about our isolated unit
test. This technique usually referred to Unit testing with Mocks'® is widely used and commonly found
when developers take the Test Driven Approach on software development.

We will now write a unit test for the GetUsers service that will have two dependencies of
MongoDB and Logger to get a better understanding of this approach.

First we will use the logger service which we can see in the following code snippe together
with its interface:

4 "SOLID (object-oriented design) - Wikipedia."

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design). Accessed 29 May. 2017.
'8 "Unit Testing with Mock Objects - MSDN - Microsoft."

https://msdn.microsoft.com/en-us/library/ff650441.aspx. Accessed 29 May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://msdn.microsoft.com/en-us/library/ff650441.aspx

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

public class LogService : IlogService

{
public void Log(string s)
{
Console.Writeline(s);
'
¥
public interface IlLogService
{
vold Log(string s);
}

Figure 4.1.1 LogService

The log service is a simple service implementing the ILogInterface with a simple Log
method. Note the actual LogService implementation that writes the log message to the console, the
goal for our unit test is to not use this actual implementation but to mock the behaviour generating a
mock that implements the ILoglInterface.

Now we can see the DataContext interface with the MongoDB implementation, again this will be
mocked at our unit test.

public interface IDataContext

{

User GetUserFromMongoDB(string userld);

Figure 4.1.2 IDataContext interface, this interface is responsible to fetch data from MongoDB. You
don’t see the actual implementation here as we will again mock the behaviour in it.

Now let's have a look at the System under test which in our case is the UserService.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

public class UserService : IUserSerwvice

{
private readonly IlLogService logService;
private readonly IDataContext dataContext;
public UserService(IlLogService logService, IDataContext dataContext)
{
_logService = logService;
_dataContext = datacontext;
¥
public string GetUser{int input)
{
_logService.lLog($"Ready to get user with id : {input}");
var user = _dataContext.GetUserFromMongoDB(input);
_logService.log($"result : {result}");
return result;
}
¥

Figure 4.1.3 UserService, our system under test

The UserService implementing a GetUser method with only one input parameter which is
the user id. When we call this method with the given user id we expect it to fetch the user for us and
return the User Object in the return statement. At this point let’'s have a look at the highlighted code
and think about what else we expect this method to do.

We expect this method to do two other things expect fetching the user.
e We expect it to call the Log method of the logger service twice, one before getting the user
and one after the user is fetched.
e We expect it do call the GetUserFromMongoDB method and pass the parameter to
MongoDB to fetch the user from the actual data context.

The highlighted code underlines the dependencies of this class, we have the following
dependencies

e _logService of type ILogService

e dataContext of type IDataContext

Each dependency is injected through the GetUser class constructor. This way we achieve a
separation of concern as an external entity is responsible to inject the dependencies to the class’
constructor. An loC container will be used to inject the dependencies and resolve them during

'8 "Inversion of control - Wikipedia." hitps://en.wikipedia.org/wiki/Inversion_of control. Accessed 29
May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://en.wikipedia.org/wiki/Inversion_of_control

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

runtime. With an loC container we achieve inversion of control as the control of injecting the
dependencies is passed into an external provider such as Simple Injector”.

Now that we saw the implementation of the GetUser Class let’s proceed to the actual unit test and
find out how the dependencies are mocked.

[TestFixture]
public class GetUsersTests
{
[TestCase(1, ExpectedResult = "Userl™)]
[TestCase(2, ExpectedResult = "User2")]
public string GetUsers Can_Return_ UsersFromDataStorage(int input)

{
// Arrange
var mocklogService = new Mock<ILogService>();
var mockdatacontext = new Mock<IDataContext>();
mocklogService.Setup(x => x.Log(It.IsAny<string>())).Callback(

() => Console.WritelLine("mock logger called")).Verifiable();
datacontext.Setup(x => x.GetUserFromMongoDB(It.IsAny<string>().Verifiable();
var userService = new UserService(mocklLogService.Object, datacontext.Object);
// Act
var result = userService.GetUser(input);

// Assert
mocklLogService.Verify(x => x.Log(It.IsAny<string>()), Times.Exactly(2));
mockdatacontext . Verify(x => x.GetUserFromMongoDB.IsAny<string>(), Times.Exactly(1);)
return result.Userlame;

}

Figure 4.1.4 GetUsers unit test

Let’s go through the code and explore line by line what is happening.

1. We write the test with the given user id and the expected result, as you can see for user id
1 the expected result is “User1” and for user id 2 the expected result is “User2”, the
expected result is the UserName as you can see in the highlighted section in the return
statement of the unit test method.

2. We follow the triple AAA pattern and we start with Arranging our system under test first

3. We create two mocks for ILogService and for IDataContext using a Mocking .Net library
Moq'® .

7 "Simple Injector." hitps://simpleinjector.org/. Accessed 29 May. 2017.

'8 "GitHub - mog/moqg4: Repo for managing Moq 4.x." hitps:/github.com/moq/mog4. Accessed 29
May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://simpleinjector.org/
https://github.com/moq/moq4

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

4. We mock up the behaviour for our mock dependencies and we declare that whenever we
call their methods with the given type of any parameter they will be verifiable at the end of
the test.

5. We create a new instance of the UserService, we pass the mock Object which is a fake
instance of our mock objects created by Moq library. This way we inject a mocked object
that fulfills the expectations of the UserService constructor, in our case the mock objects
implement the respectively interfaces.

6. Now we act against the system under test, we call the GetUser Method of the newly
created instance of our system under test and we set the return in a variable.

7. Finally before returning we asserting the values. For the Log service we expect it to be
called twice from within the GetService method and for the DataContext we expect it to be
called once. Remember in the implementation of the GetUser method the log is being
called twice and this is the reason why we expect to be called twice in the test assertion.

This is the technique of unit testing with mocks and in isolation, we will write similar tests for each
component of our application using the following tools and frameworks:

e NUnit *°. Library for unit testing for .Net framework
e Mog %°. The most popular and friendly mocking framework for .Net framework
e AAA pattern?'. A pattern for arranging and formatting code in Unit Test methods.

9 "NUnit - Home." hitps://www.nunit.org/. Accessed 29 May. 2017.

20 "GitHub - mog/mog4: Repo for managing Moq 4.x." https:/github.com/mog/moq4. Accessed 29
May. 2017.

21 "Arrange Act Assert - C2 Wiki." http://wiki.c2.com/?ArrangeActAssert. Accessed 29 May. 2017.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://www.nunit.org/
https://github.com/moq/moq4
http://wiki.c2.com/?ArrangeActAssert

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

5. Application Demonstration

5.1 Android Activities

Our application consists of 3 main activities
e Main Activity
e Register Device Activity
e Nearest Devices Activity

Each activity is responsible for every different functionality of our application making use of the
crowd charger Api REST client for communication with the NoSql database.

5.2 Main Activity

The main activity is the entry point of our application, here the user can watch information as the
current battery level, the user info and the current location of the device. If it's the first time that the
user opens the application the pipeline will be transferred to the Register device activity for in order
for the user to provide a nickname for the device that is using the app. In the main activity there are
two buttons, a button to search for the nearest devices and a button to unregister the device, the
unregister device button will call the DELETE method in the REST Api to remove the device id from
the NoSQL database, this functionality will be performed within the same activity, while the Get
nearest devices activity will transfer the application context to the Nearest Devices Activity.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Spyros - battery: 100%

Battery: 100%
contributed: 1

United Kingdom, EN5, Barnet, Greater London
long:-0.18806217, lat:51.64986211

FIND DEVICES NEAR YOU

UNREGISTER DEVICE

Picture 5.2.a - Main Activity

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

5.3 Register Device Activity

The register Device activity is where the user can register the device id with a nickname to make it
more user friendy, generally the device name is an ugly alphanumeric sequence, thus we use the
nickname to represent this device to other users.

RegisterDeviceActivity

long:-0.18793278, lat:51.64985074

Spyrosl

REGISTER NEW DEVICE

Pic 5.3a - Register Device Activity

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

5.4 Nearest Devices Activity

In the nearest device activity we can get all the nearby devices, sorted by distance ascending within
a radius of 1 mile.

Tap to get battery!

Fenia's Device battery:20% | 26 contributions

Onesa battery:90% | 14 contributions

Pic 5.4a - Nearest Devices, Tap to get battery

The the user is able to tap on any user from the list to get a percentage from his/her device battery.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Spyros - battery: 100%

Fenia's Device battery:20% | 26 contributions

Onesa battery:88% | 16 contributions

Pic 5.4a - Nearest Devices, Got battery from a user

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

5.5 Conclusion

For our prototype we used a mock battery transmission framework which can be easily replaced
with a real energy transmission framework depending on the technology and the hardware that is
available at that time. The main aspects of this project are the geo location querying and the factor
of contributions among the users creating a community of energy contributors. There a couple of
things we can consider for implementation in the future such as replacing the mock battery
transmitter and receiver with a real electrical energy implementation, also we can consider the
usage of messaging queue so that a message broker engine can raise energy consumption tickets
to the sender’s device and only if they accept the ticket the energy transfer can happen. Another
field of improvement will be the implementation and design of more sophisticated crowdsourcing
algorithms as for the sake of this project a lot of effort was put on the geospatial queries and
geolocation searching algorithms of the devices.

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

MetatTuxiakf AlaTpiBn 2TTUPiIdwv AeaUAAag

Bibliography

e Xamarin mobile framework https://www.xamarin.com

e MongoDB NoSQL database engine https://www.mongodb.com/

e Flask Web development python framework http://flask.pocoo.org/

e Raspberry Pi micro computer https://www.raspberrypi.org/

e A general framework for geo-social query processing Nikos Armenatzoglou Et al.
e Above the Clouds : A Berkeley View of Cloud Computing Michael Armbrust Et al.

e JavaScript Object Notation Data interchange format https://www.json.org/

e Microsoft .Net Framework https://en.wikipedia.org/wiki/.NET Framework

e Dependency injection https://en.wikipedia.org/wiki/Dependency_injection

e Simple Injector https://simpleinjector.org/index.html

e Adaptive Code via C# Gary McLean Hall, Microsoft Press Redmond, USA 2014

E@appoyn Aiapoipacpol Evépyeiag Mratapiag Kivntwy péow Crowdsourcing 2TTUPidwv AecUANAag

https://www.xamarin.com/
https://www.mongodb.com/
http://flask.pocoo.org/
https://www.raspberrypi.org/
https://www.json.org/
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Dependency_injection
https://simpleinjector.org/index.html

