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Abstract 

 

 

We will describe an extension of Hadoop, (SpatialHadoop), the structure and 

the functionality. Then we will analyze the steps we took to expand this extension to 

spatial data with 3 dimensions, and present the experimental results using a range 

query on a dataset. 

 

 

 

 

 

 

 

Περίληψη 

 

 

 Θα παρουσιάσουμε μία επέκταση για το Hadoop, (SpatialHadoop), τη δομή 

του καθώς και τη λειτουργία του. Έπειτα θα αναλύσουμε τα βήματα που πήραμε για 

να υλοποιήσουμε αυτή την επέκταση ώστε να υποστηρίζει τρείς διαστάσεις, και θα 

δείξουμε τα πειραματικά αποτελέσματα χρησιμοποιώντας ένα ερώτημα 

διαστήματος. 

 

 

 

 

 

 

 

 

 



1. Introduction 

 

 

In the recent days there has been an explosion of the amount of data we 

generate. Handling those data, analyzing and trying to derive decisions from them 

has been a challenge. From scientific studies to hospitals the amount of data that is 

generated cannot be handled by the tools that we already used. Big data poses a 

challenge and demands a new way of handling them. Tools such as Parallel DBMS 

and Hadoop have emerged to provide a way to handle these amounts of data. Parallel 

DBMS tries to solve the problem using parallel database systems and partitioning 

data through multiple disks. This way they can reduce the I/O operations, while on 

the other hand, Hadoop uses the MapReduce algorithm to provide a less expensive 

approach. 

Spatial Big data is another challenge that needs to be tackled. Systems such 

as OpenStreetMap or highly detailed images in the range of 100.000x100.000 pixels 

pose a big challenge to our current computational technology. On top of that, queries 

on those data are highly compute-intensive and require a scalable and efficient 

solution to execute them. For example, filtering data using MBRs and/or executing 

spatial join queries is a highly cpu-intensive task. 

Hadoop is a framework to run parallel code on cheap machines that are 

forming a cluster. Hadoop runs using the MapReduce framework. MapReduce is 

designed to support parallel execution of code. Upon this framework many 

extensions have been implemented in order to support new features. One drawback 

of Hadoop is its low speed in performing GIS queries. This is because it is unable to 

use spatial indexes. For this reason there are extensions that enable Hadoop to 

perform such queries much faster. One such extension is SpatialHadoop. It supports 

a wide array of queries, as well as indexes upon spatial data. It uses the MapReduce 

framework to take advantage of the parallel execution it supports, in order to speed 

up execution time. SpatialHadoop employs MapReduce to create a spatial index and 

then appropriately store the data in HDFS. This has the result that spatial queries will 

generate fewer MBRs for the shapes because the data are stored based on the index 

and thus nearby shapes are stored in the same node with the query result to be 

completed more quickly. Below we will present in more detail the above function. 



The structure of the index is based on a global index (it can be a Grid or an Rtree), 

this index will be the master index across all nodes, and then the local index which 

will be stored in every node separately. SpatialHadoop will first consult the global 

index to identify which partitions have the data that we need, and then it will query 

the local index of every node to get the data. The local index is stored in a single file 

followed by the raw data. A small check in the code of SpatialHadoop will identify 

this header and skip it to retrieve the data lines from the file. In order to more 

effectively run spatial queries as well as run more complex queries, Pigeon was 

introduced in SpatialHadoop. Pigeon is an extension of Pig to easily create spatial 

queries. Using the language of Pig, who resembles SQL, we can add spatial features 

that may be used together with SpatialHadoop. The queries posed are converted into 

MapReduce form suitable for Hadoop. One limitation of SpatialHadoop is that it 

does not support 3D data operations. 

We will implement an extension to SpatialHadoop so that it can support 3D 

data inputs as well as querying these data. The implementation starts with the Rtree 

index that needs to be modified to support a new Z variable. This variable will be 

able to represent either a Z coordinate or time data. In our case this variable 

represents time data using epoch time. The Rtree algorithm will be enhanced to take 

advantage of this new variable in order to index the 3d data. Continuing we will 

modify the query used to run with 2D data, to be able to query 3D data. Using this 

new extension we will run some test runs in order to check the speed to the queries 

and indexing process using various node sizes on a Hadoop cluster.  

 

 

 

 

 

 

 

 

 

 

 

 



2. Description 

 

 

In this dissertation we will present a way to run 3D data queries using Hadoop 

framework. Hadoop runs using the MapReduce framework. MapReduce is designed 

to support parallel execution of code. Hadoop is an application designed to run 

programs in large cluster of computers. It uses a different file system than usual 

operating systems, HDFS, which enables it to be acceptable to errors that can occur 

during operation. Specifically Hadoop is designed to run on low-cost computers that 

are likely to present errors. To run any algorithm on Hadoop, the code has to be 

implemented using the MapReduce framework. One computer has the role of the 

master who runs the NameNode, SecondaryNameNode and JobTracker, but 

alternatively also the DataNode and TaskTracker, and the other computers have the 

role of slaves and only run the DataNode and TaskTracker. The NameNode is 

responsible for coordinating the usage of HDFS, which is the storage layer of 

Hadoop. The JobTracker coordinates the execution of jobs using the MapReduce 

framework. Slave nodes run the corresponding slave parts of these modules. The 

DataNode is the slave of the NameNode, and the TaskTracker is the slave of the 

JobTracker. 

A typical Hadoop workflow is like the following: 

 Load data into the cluster (write to HDFS) 

 Analyze the data (run MapReduce) 

 Store results in the cluster (write to HDFS) 

 Read the results (read from HDFS) 

To write files to HDFS the client computer needs to first communicate with the 

NameNode. The NameNode will then provide a number of slaves that these data 

need to be written. The data will be broken into blocks and written in each slave by 

the DataNode. The DataNode will then replicate the block to other slaves based on 

the replication factor that was set. Hadoop also supports Rack Awareness. This 

means that an administrator can provide specific ids to the DataNodes in order to 

create a topology. This is done in order to be less affected from possible failures. The 

NameNode will occasionally send heartbeats to the DataNodes. Every 10th heartbeat 

the DataNode needs to provide a block report, so the NameNode knows which 



blocks are at which DataNodes. There is also a SecondaryNameNode which will 

connect to the NameNode and get a snapshot of the metadata that hold block 

information. This is not done frequently (about once per hour) and 

SecondaryNameNode cannot be considered a high availability backup of NameNode. 

To run MapReduce first the client submits a Map Reduce job to the Job Tracker. The 

Job Tracker asks the NameNode about which DataNodes have the necessary blocks 

for the file required to run the job. The Job Tracker then provides the TaskTrackers 

running on those nodes with the Java code required to execute the Map task on their 

local blocks. The Task Tracker starts a Map task and monitors the progress while 

sending regular heartbeats to the Job Tracker. 

But before the Map task can begin, resources (CPU, memory, etc.) have to be 

allocated. This is done by the ResourceManager. When the MapReduce job is about 

to start, the ResourceManager will allocate a container where the ApplicationMaster 

for this job will run. A container is a collection of resources. When the 

ApplicationMaster starts, it will allocate more containers to actually run the Map and 

Reduce tasks. The process can also be seen in figure 1. 

 

 

Figure 1: Hadoop MapReduce resource allocation 

 

During the Map task the RecordReader will read the split data provided by the 

InputFormatter and output (key, value) pairs. When the Map task completes, each 

node stores the result of its local output in a temporary local storage. This is called 



the intermediate data. These intermediate data (the (key, value) pairs) will be used in 

the next step, the reduce phase. 

The Job Tracker starts a Reduce task on any one of the slaves in the cluster and 

instructs the Reduce task to go grab the intermediate data from all of the Mappers. 

There is a chance that the Map tasks may send these data to the Reducer almost 

simultaneously, resulting in a situation called Incast. Networks need to be able to 

handle possible incast situations. 

The Reducer task now can begin the final computation. After the result is ready, the 

process to write the results to the HDFS (as described above) begins again. The 

RecordWriter and the OutputFormatter are responsible for this task. After this step 

the job completes. [11] On figure 2 there is an overview of the whole process. 

 

Figure 2: Hadoop MapReduce lifecycle 

 

Upon this framework many extensions have been implemented in order to support 

new features. 

This dissertation has the purpose of extending SpatialHadoop in order to be able to 

create spatial indexes and run spatial queries. On chapter three we will present a 

literature search of the systems that are similar to SpatialHadoop. We will provide a 

small description as well as their most important characteristics. On chapter four we 

will analyze SpatialHadoop and describe its structure as well as the underlying code. 

We will also provide a brief description of Pigeon, a module to support easier 



execution of spatial queries using SpatialHadoop. On chapter five we will present the 

necessary changes that we implemented in order for SpatialHadoop to support 3D 

data queries. On chapter six we will show the experimental results after running the 

new extension. And finally on chapter seven we will provide suggestions for future 

improvements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Related work 

 

 

On this chapter we will present some of the work that has been done to use 

big spatial data with Hadoop. There are many different approaches and tools that 

differ based on their implementation and the features they provide. 

The systems that we will present are: HadoopGIS, ESRI Tools, GeoMesa, SciDB, 

LocationSpark, MD-HBase. 

The first system that we will present is HadoopGIS. HadoopGIS is structured on top 

of Hadoop and its goal is to provide an efficient solution capable of handling big 

spatial data in daily operations. It supports multiple spatial operations, as well as 

global indexing and local indexing to speed up queries. HadoopGIS provides spatial 

data partitioning to achieve task parallelization, an indexing-driven spatial query 

engine to process various types of spatial queries, implicit query parallelization 

through MapReduce, and boundary handling to generate correct results. [1] 

HadoopGIS is also integrated with Hive and through this interface it can provide an 

expressive spatial query language by extending HiveQL. It supports a lot of the basic 

spatial queries such as spatial join and nearest neighbor but it can also be extended 

by using Hive to provide more complex queries. The architecture of HadoopGIS is 

shown in the below image: 

 

 

Figure 3: Hadoop GIS architecture 

 



As shown in the Figure 3, the query engine used is called RESQUE (Real Time 

Spatial Query Engine). This special query engine was built because a general spatial 

query engine was not enough to its specialized purpose. RESQUE is a shared library 

and using it HadoopGIS can create queries in different levels. At a higher level it 

uses the global index to filter tiles and at tile level it supports indexing on demand in 

order to dynamically build indexes on the fly. 

To be able to support a large variety of geometric computations, HadoopGIS has 

adopted a set of open source tools, for example SpatialIndex, GEOS and Hilbert 

RTree. In order for HadoopGIS to achieve greater speed while processing spatial 

queries it needs to identify the time consuming parts of the algorithm and break 

down those parts to be processed in parallel. These parts are called tiles or buckets 

and the goal is to run the algorithm on those tiles independently while also making 

sure that the results are consistent. 

A typical spatial query using HadoopGIS and MapReduce then follows below 

algorithm: 

First it partitions the data to generate the tiles. By doing this, HadoopGIS can process 

a large number of data in parallel without the need to communicate. The goal here is 

to create tiles with approximately the same number of data points in order to avoid 

data skewing. To achieve this, HadoopGIS breaks high density regions into smaller 

ones and uses a recursive partitioning approach to further break tiles. 

After this step, the MBRs and the UID of the tile are stored in HDFS. The UID will 

be the key for the MapReduce algorithm. The MBRs will form the global index. 

Further indexing on tile level will be done on demand. Since modern hardware is 

widely available, the computational cost of such a task is small. 

Since HDFS is more efficient using large files (default block size is 64MB), 

HadoopGIS merges multiple small tiles into large files and then stores them in 

HDFS. A pre-processing step can be run optionally here to perform further filtering. 

When this step is complete, the MapReduce algorithm can run on the data to perform 

the spatial queries. Boundary object handling is done using multiple assignment 

approach which means that objects that intersect in many different tiles will be stored 

in all of those tiles. After the algorithm is run, another post-processing step can be 

run optionally in case data needs for example another step of a MapReduce job, for 

example joining spatial query results in feature tables. Finally data is aggregated 

from all tiles and results are stored in HDFS. Performance results show that Join and 



Containment queries are faster in HadoopGIS but aggregation queries are faster in 

RDMSs. Later was attributed to the fact that HadoopGIS has a record parsing 

overhead where it needs to parse every single record in real time but in RDMSs this 

step is already done and data are stored in binary format. 

Overall HadoopGIS provides an effective partition approach and good boundary 

handling for correct results, as well as indexing in multiple levels (global and tile) 

and custom spatial queries using HiveQL. 

 

ESRI Tools will be the second system that will be presented. 

ESRI Tools is an open source toolkit [2]. At the core of the system is ESRI Geometry 

API written in Java. This API offers basic geometry objects such as point, lines and 

polygons, as well as spatial operations and indexing. It also offers ‘acceleration’ in 

spatial queries when a geometry type is used multiple times. It achieves this by 

building a quad tree on the geometry. This API can be used standalone with Hadoop 

to allow custom MapReduce applications with spatial data or it can also be used with 

other tools that the system offers. 

One step above the API is the Spatial Framework for Hadoop. This framework is 

written in Java and extends the features by adding support for reading JSON files. It 

uses custom InputFormats and RecordReader classes to import JSON files in the 

MapReduce algorithm. InputFormats split the data into data-splits, these splits then 

act as input to the mappers. Mappers use RecordReader to read the split and run Map 

function on every record. The key for the Map function is the character offset from 

the start of the JSON file and the value is the JSON text. Below there is an example 

of a JSON file and how it is accepted by the Mappers. 

/path/to/data/ 

data-1.json 

json { "attributes" : { "Name" : "California" }, "geometry" : ... } { "attributes" : { "Name" : "Arizona" }, "geometry" : ... } 

data-2.json json 

{ "attributes" : { "Name" : "Utah" }, "geometry" : ... } { "attributes" : { "Name" : "Colorado" }, "geometry" : ... } 

 

This JSON formatted text will then enter the Mappers: 

Mapper 1 (data-1.json) 

Record 1 

Key 0 

Value { "attributes" : { "Name" : "California" }, "geometry" : ... } 

Record 2 

Key 62 

Value { "attributes" : { "Name" : "Arizona" }, "geometry" : ... } 



 

Mapper 2 (data-2.json) 

Record 1 

Key 0 

Value { "attributes" : { "Name" : "Utah" }, "geometry" : ... } 

Record 2 

Key 56 

Value { "attributes" : { "Name" : "Colorado" }, "geometry" : ... } 

 

ESRI tools also support user defined functions (UDFs) that extend Hive and offer 

new capabilities on top of ESRI API. Using these UDFs the user can create queries 

in Hive Query Language (HQL) and avoid the complexities of building queries using 

the MapReduce algorithm. Similar to Spatial Framework are the Geoprocessing tools 

that ESRI provides, written in Python. These tools add functionality to connect with 

ArcGIS. Using these tools a user can run Hadoop workflow jobs with ArcGIS and 

check the status, as well as exchange data between ArcGIS and Hadoop. This is 

especially useful if the user wants to visualize his data on ArcGIS. 

Finally ESRI tools have a wide range of samples that the user can study in order to 

build new custom spatial tools. 

 

Figure 4: ESRI Tools architecture 

 

GeoMesa [3] is the third spatial extension that will be examined, which is also open 

source. GeoMesa uses Accumulo, HBase and Cassandra to provide data persistence 

and storage of large amounts of geographic data such as point, line or polygons. It 

also supports real time stream processing of spatial data using Apache Kafka as a 

bottom layer. 

Also through the use of GeoServer, the user can access all those capabilities using 

APIs such as OGC and protocols such as WFS and WMS. 



The architecture of GeoMesa is shown in Figure 5. 

 

Figure 5: GeoMesa architecture 

 

Specifically, GeoMesa supports cloud-based data storage such as Apache Accumulo, 

Apache HBase and Google Cloud Bigtable. For data streaming Apache Kafka is 

used. 

Apache Storm helps user with processing and manipulating streaming data and 

Apache Spark allows analytics of the stored data or of real time streaming data. 

To allow access to the stored data in Accumulo, GeoMesa implements GeoTools 

through HTTP access. Figure 5 shows an overview of the structure. 

 

Figure 6: GeoMesa tools system 

 

To ingest streaming or regular data, GeoMesa uses a range of tools (shown in Figure 

6) such as Apache Hadoop or Apache Storm. GeoMesa uses a key-value approach to 



store data in the database. It is a type of NoSQL database in which every record of 

data has a specific key that identifies the data. This key unlike relational databases is 

not just a sequential number; rather it stores properties of the actual data. For 

example orders from customer can have as key the order number. Then queries for 

customer orders can be more efficient. This can be expanded in spatio-temporal data. 

As explained in [3]: 

“To store spatio-temporal data, we need to create a key that represents the 

time/space location of the record. GeoMesa uses this system to store locations as 

points along a special line that visits all the sectors of a map, like the red line shown 

in Figure 7: 

 

Figure 7: GeoMesa Zcurve example 

 

This red line is known as a space-filling curve, or to be more specific, a Z-Curve. 

This line visits each cell exactly once, establishing a unique ordering of cells. Each 

point in this curve can be assigned a sequential value, letting GeoMesa represent 

what might have been a latitude-longitude pair as a single integer. This is great for 

representing two-dimensional data in a one-dimensional key, as is the case with a 

key-value datastore. Even more significantly, these space-filling curves can be 

adapted for n dimensions, letting GeoMesa linearize n dimensions of data in a single 

dimension.” 

The index used by GeoMesa uses  a specifically constructed key by taking advantage 

of the three dimensions (latitude, longitude, timestamp) to create the following key 

as it appears in Figure 8. 



 

Figure 8: GeoMesa index key 

 

Z3 encoding is used in the key section constructed by the three dimensions. The 

value is a byte-encoded SimpleFeature. SimpleFeature is a standard of OGC that 

defines a common storage and access model of two or more dimensional data. It is 

used by many popular DBs such as MySQL and PostGIS. [4] 

 

Following GeoMesa, we will present LocationSpark. LocationSpark is a distributed 

framework that gives users the ability to work on in-memory data and is built upon 

Apache Spark. This is the biggest difference of LocationSpark and the previous tools 

that were analyzed. LocationSpark architecture is shown in Figure 9. 

 

Figure 9: LocationSpark architecture 

 

LocationSpark stores data in a key-value format. The key can be any two-

dimensional point, for example latitude-longitude, rectangle etc. The value can be 

specified by the user that adds information about the key. 

It supports a large number of spatial queries like KNN and spatial-join as well as 

spatial analytics like skyline computation. The main advantage of LocationSpark is 

its ability to use in-memory intermediate data instead of having to store data of each 

intermediate step in HDFS. It also uses access frequencies and timestamps which are 

recorded in the spatial index to determine the usage frequency of those data and 



depending on the results it can decide which data should be stored into the disk or 

should be cached into memory. A problem with spatial data and queries is data skew. 

As shown in Figure 7 the query scheduler is responsible of minimizing data skew. 

Data skew means that data is unevenly distributed in the nodes and some specific 

nodes have a lot more data than others. This can cause performance problems when 

running the spatial queries. To solve this problem, LocationSpark collects statistical 

data about the use of each partition. Then the query scheduler will use these data to 

allocate more workers to specific partitions in order to increase speed. Next the query 

executor will decide how it will use the available spatial indexes to minimize 

memory usage and runtime delays. For example it can decide if it is worth to build an 

index over the query data and traverse both the query index and the data index at the 

same time. 

LocationSpark uses a global index which has the target to ensure that each partition 

has the same amount of data. Each partition will also have its own local index. A 

good addition to LocationSpark involves spatial range queries. During those queries, 

it has to be determined which data partitions overlap the range query. This can cause 

a lot of network communication because data have to be moved between partitions. 

LocationSpark uses a filter called sFilter which is embedded into the global index 

and can better understand if the partition overlaps with the range query. 

 

The next system that will be presented is MD-HBase. MD-HBase [6] is focused on 

supporting location based services. Location based services put a high load on both 

traditional DBMSs due to their high insertion rates and real time queries but also on 

key-value stores which despite the fact that can handle large scale operations, do not 

support multi-attribute access which location based services need. To overcome these 

issues, MD-HBase uses a two index approach. a K-d tree and a Quad tree over a key-

value store. Using a key-value store MD-HBase can sustain a high insertion rate and 

can ensure fault tolerance and high availability. On the other hand the overlaid index 

layer can support real time data processing on multi-dimensional queries. The 

architecture of MD-HBase is shown in figure 10. 



 

Figure 10: MD-HBase architecture 

 

The index layer splits the space into splits called subspaces. These subspaces are 

mapped to abstract physical locations called buckets. This mapping can be one-to-

one, many-to-one or many-to-many depending on the need of the application. Then 

the index layer uses a technique called ‘longest common prefix naming scheme’ to 

map the multi-dimensional index to a single dimension list which in turn points to 

buckets on the storage layer. On the other hand the storage layer is based on HBase. 

In HBase a table is a collection of splits, also called regions. Each of these regions 

stores a range partition of the space. MD-HBase uses three different techniques to 

store data: 

1) Table share model. This model stores all buckets in a single HBase table. Data use 

their Z-value, which is the key, to be sorted. 

2) Table per bucket model: This model stores buckets in their own HBase table. 

3) Hybrid model: It uses both table share and table per bucket model. 

4) Region per bucket model: In this model, each HBase region has its own bucket. 

Experimental results, done by the authors, report a better performance than 

MapReduce systems. 

Lastly we will examine a different that provides analysis for scientific or geospatial 

data which is SciDB. SciDB [5] is different than the previous tools we present 

because it does not necessarily rely on Hadoop to run. SciDB does support running 

on top of HDFS but user is free to choose. 

The biggest difference between SciDB and regular databases is that SciDB uses 

arrays to maintain the data instead of tables. As described in [5] “Each SciDB array 

has a name and consists of an ordered list of named dimensions that define the 

array’s shape. Each cell in the space implied by the product of an array’s 

dimensions contains a tuple which is a record of one or more named, typed, 



attributes.” User of SciDB use algebra operations that are supported in order to do 

math on top of those arrays. Those operations include simple filtering of data, 

combination of multiple arrays and even array factorization and image processing. 

Some operators like regrid will even change the shape of the array and this includes 

many other operators that can change the shape and the attributes of the output array 

compared to their inputs. 

One other difference with typical SQL databases is that SciDB handles missing data 

using up to 128 difference codes instead of just null. This means that the user can 

specify different level and meaning to missing data. 

In order to run the queries SciDB uses a pipeline execution. This means that it reads 

the data from the disk and passes these data to every instance in a typical SciDB 

installation. These queries can have many operators and data are moving from one 

operator to the other. But in contrast with Hadoop and Map/Reduce, SciDB does not 

store intermediate results (similar to LocationSpark). Instead it immediately passes 

the data to the next operator in the pipeline until it reaches the final result. These 

SciDB instances can run using basic file system APIs and plain TCP/IP, so they do 

not necessarily depend on systems like HDFS, although the can run on top of them. 

When the query is complete, SciDB will store the data on its instances. The way this 

happens is again different than what happens with Hadoop. SciDB uses a share-

nothing approach. Data are stored in specific instances and computations are done 

locally. Every instance does not know all the data that exist but only the part that is 

stored locally, in contrast with Hadoop and HDFS where that data are shared 

between all nodes. Before the query is run, SciDB will split the query and each 

instance will run its own share of it. SciDB uses a process known as 

Multidimensional Array Clustering to map data to the actual physical locations, this 

approach means that there is no global index, and the computations start immediately 

at the local level. Also when SciDB stores the data it will do it using a column-store 

strategy instead of the traditional row-store.  This has a couple of advantages. It 

minimizes I/O for scientific data, which they have a lot of attributes, it stores the 

attributes physically close and encoding these data provides more efficient queries. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Analysis 

 

 

We will analyze the code of SpatialHadoop and Pigeon through spatial 

queries. For the execution of all commands we use Linux. 

 

4.1 SpatialHadoop Structure 

 

 

 SpatialHadoop is composed of four layers. From bottom to top we have the 

storage layer, the MapReduce layer, the operations layer and the language layer. 

 The storage layer is responsible for storing the spatial indexes. Traditionally, 

Hadoop works on non-indexed files. But in order to achieve good execution time we 

need indexes for spatial queries. Existing indexes cannot be applied to Hadoop. 

SpatialHadoop creates specialized spatial indexes for use on top of HDFS. The 

structure of the index includes a global index and local indexes. The global index 

will partition the data across multiple machines. So depending on the partition that 

each spatial object belongs, it will go to a specified machine. Below the global index 

we have a local index for each partition. 

 The MapReduce layer is the component that will use the spatial index for 

spatial queries. SpatialHadoop uses specialized components to take advantage of 

these spatial indexes. A SpatialFileSplitter is used for the global index, and a 

SpatialRecordReader for the local index. As we described above MapReduce 

framework consists of two phases, map and reduce. For SpatialHadoop during the 

map phase, the SpatialFileSplitter will receive the raw data and use a filter function 

to read the global index and prune data that are not part of the query, it will then split 

the data and send the splits to map tasks. Each map task will read the split using the 

SpatialRecordReader and create (k, v) pairs, based on the local index and depending 

on the query that was used. Each of these pairs corresponds to a record in the split. 

 The Operations layer consists of the various spatial operations that are 

supported by SpatialHadoop, for example RangeQuery or SpatialJoin. A 

RangeQuery will first use the SpatialFileSplitter to remove partitions that are not part 

of the query (using the global index), and then use the SpatialRecordReader to find 

the spatial objects that are inside the query range using the local index. 

The language layer supports a specific language to be used in order to extend 

the below functionality. SpatialHadoop uses Pigeon, which is a spatial extension to 

Pig. Pigeon conforms to the OGC standard. Also it can use user defined functions 



(UDFs) in order to extend the functionality of existing queries. Pigeon will be 

described in more detail on a next chapter. [10] 

Following we will start analyzing the code of SpatialHadoop. We will start 

with the indexing process at chapter 4.2 and on chapter 4.3 we will analyze the query 

process. Finally on chapter 4.4 we will describe Pigeon. All these three chapters are 

based on SpatialHadoop 2.2. 

 

4.2 Analyzing SpatialHadoop Indexing 

 

 

Unlike Hadoop, SpatialHadoop trying to place, for example polygons, that 

are close together on the same node for faster queries. This process is achieved using 

the command index which uses already created GIS data that are in HDFS and the 

MapReduce framework saves them based on the index selected. The two supported 

indexes supported are the grid and RTree. SpatialHadoop makes use of a customized 

InputFormat, OutputFormat and RecordReader to read the data from the index and 

then place them accordingly. 

In case of the grid index only a global index is used that is stored in the file 

_master, while in case of the RTree index a global index which resides in the _master 

file is used but also local indexes for each partition that resides at the beginning of 

each partition and before the actual data. 

Before going on we have to clarify that when we talk about data file we mean 

the folder with the files or file containing our data. And when we talk about partition 

we mean each file created after the indexing and contains data and the local index if 

one exists. Finally the term shape means any line in the data file that contains a 

spatial shape. 

Visualization of the data of the IMIS data (downloaded from 

http://chorochronos.datastories.org/) set are shown in figure 11 by executing the 

command bin/shadoop plot imis_data output.png shape:ogc -vflip -fast 

 

http://chorochronos.datastories.org/


 

Figure 11: IMIS 2d dataset plot 

 

Using all the data of imis dataset we create an RTree index by running bin/shadoop 

index imis_data imis_data.rtree sindex: rtree shape: ogc. Attention should be paid to the 

fact that for the indexing to work, the geometry type must be at the beginning of 

each line of the file imis_data and that the separator has to be a comma (,). The 

above command creates an RTree index in imis_data.rtree folder. 

This file contains _master file where the global index is, and the partitions (which the 

file _master points to), which each contain the local index and data. 

 

The Repartition.java file is what will perform the indexing. If the data file is small, 

then this is done in local mode, otherwise it runs in MapReduce mode (as in our 

own). 

 

For start MapReduce is configured and the appropriate classes are selected for 

InputFormat, OutputFormat, RecordReader and MapReduce, as we see in the 

following code fragment. 

job.setMapperClass(RepartitionMap.class); 

job.setInputFormat(ShapeInputFormat.class); 

job.setOutputFormat(GridOutputFormat.class); 

job.setReducerClass(RepartitionReduce.class); 

job.setOutputCommitter(RepartitionOutputCommitter.class); 

 

Now MapReduce is executed with the command. 



JobClient.runJob(job); 

 

Initially the method Repartition.reparti tionMapReduce performed (Path,  

Path, OperationsParams)  is executed. This method aims to create the cells that 

will form the global index if it is not already created. Depending on the type of 

index, the process selected is different. In the case of RTree, execution continues 

with the Repartition.packInRectangles method (FileSystem, Path [],  

FileSystem, Path, long, S) , which does the following. Initially reads a part 

(sample) of the data file using the method 

Sampler.sampleMapReduceWithRatio (Path [], ResultCollector <T>, 

OperationsParams) and from the shapes that it reads, it chooses center points and 

generates an approximate MBR by expanding the MBR for each center point, and 

which MBR is used for an initial determination of the variable gridInfo which is of 

type global index (which at that time consists of only one cell, i.e. the specific MBR) 

and through which the method GridInfo.calculateCellDimensions (int)  runs 

which will make an initial calculation of the number of cells that will form the global 

index. 

The code of the above method is shown below. 

  public void calculateCellDimensions(int numCells) { 

    int gridCols = 1; 

    int gridRows = 1; 

    while (gridRows * gridCols < numCells) { 

      // (  cellWidth          >    cellHeight        ) 

      if ((x2 - x1) / gridCols > (y2 - y1) / gridRows) { 

        gridCols++; 

      } else { 

        gridRows++; 

      } 

    } 

    columns = gridCols; 

    rows = gridRows; 

  } 

 

After running the above method we have an MBR that we parted on specific columns 

and rows, i.e. cells, and which is stored in a variable of type gridInfo. 

Then that variable is passed as a parameter for Rtree.packInRectangles method 

(GridInfo, Point [])  method, together with the table of all the center points 

calculated previously. This method by taking this original MBR, is trying to optimize 

the cells to contain approximately the same number of points from the sample. These 



cells are created and stored in a variable of type CellInfo []. Part of these cells is 

shown below and also in figure 12. 

Cell #1 Rectangle: (-1.7976931348623157E308,-1.7976931348623157E308)-(23.50675833333335,36.256275) 

Cell #2 Rectangle: (-1.7976931348623157E308,36.256275)-(23.50675833333335,37.71416666666666) 

Cell #3 Rectangle: (-1.7976931348623157E308,37.71416666666666)-(23.50675833333335,37.939775) 

 

 

Figure 12: SpatialHadoop Grid index plot 

 

Once these cells are calculated, and according to the index that we have 

chosen, the appropriate Mapper is chosen between repartition with replication and 

repartition without replication. In our case for RTree index the Mapper 

RepartitionMapNoReplication.class is used. As Reducer the 

RepartitionReduce.class is set which is also the same for each index. As input 

formatter the ShapeInputFormat.class is defined who is also identical for each 

index. The InputFormatter specifies an appropriate RecordReader to read our data in 

the file and pass the data to the map function. As OutputFormatter which will store 

the data set the RTreeGridOutputFormat.class is chosen. 

 

Then the Input Format phase starts. In this phase the InputFormatter 

initializes the RecordReader. The RecordReader once initialized, begins to read the 

splits of the data files that have been returned by the getSplits ()  method. It 

continues to read line by line the data checking each time the file if it has finished 

with the SpatialRecordReader.nextLine ()  method. Inside this method we see 



the special handling if we choose RTree index file, in which we should skip the 

RTree local index header stored at the beginning of the file. 

pos += RTree.skipHeader(in); 

 

The RecordReader after reading each line returns (key, value) pairs in the Mapper. 

The key contains the cellMBR which is the cell to which the partition belongs which 

contains any shape based on global index if there is already one, otherwise it contains 

an invalid shape, and the value contains the data line, i.e. each shape. 

 

In the next stage the Map phase begins. Initially the method 

Repartition.RepartitionMapNoReplication performed <T extends 

Shape> runs, particularly the method 

Repartition.RepartitionMapNoReplication.map (Rectangle, T, 

OutputCollector <IntWritable, T>, Reporter)  therein. The process map (), 

shown below, takes these (key, value) pairs and sends them to the RecordReader. 

      public void map(Rectangle cellMbr, T shape, 

        OutputCollector<IntWritable, T> output, Reporter reporter) 

        throws IOException { 

      Rectangle shape_mbr = shape.getMBR(); 

      if (shape_mbr == null) 

        return; 

      double maxOverlap = -1.0; 

int bestCell = -1; 

      // Only send shape to output if its lowest corner lies in the cellMBR 

      // This ensures that a replicated shape in an already partitioned file 

      // doesn't get send to output from all partitions 

      if (!cellMbr.isValid() || cellMbr.contains(shape_mbr.x1, shape_mbr.y1)) { 

        for (int cellIndex = 0; cellIndex < cellInfos.length; cellIndex++) { 

          Rectangle overlap = cellInfos[cellIndex].getIntersection(shape_mbr); 

          if (overlap != null) { 

            double overlapArea = overlap.getWidth() * overlap.getHeight(); 

            if (bestCell == -1 || overlapArea > maxOverlap) { 

              maxOverlap = overlapArea; 

              bestCell = cellIndex; 

            } 

          } 

        } 

      } 

      if (bestCell != -1) { 

        cellId.set((int) cellInfos[bestCell].cellId); 

        output.collect(cellId, shape); 

      } else { 

        LOG.warn("Shape: "+shape+" doesn't overlap any partitions"); 



      } 

    } 

 

If the key (i.e. cellMBR) is invalid or if it is valid and the lower left corner of the 

shapeMBR (which we count through the value, which contains the shape) is within 

the cellMBR (this check is done so as to not include more than one shapes, which are 

covered by many cellMBR) then it checks all the cells that we calculated previously 

and sees which one intersects with larger overlap with this shapeMBR. Using the 

cellID and the shape of this cell, a (key, value) pair is formed. This (key, value) will 

be sent by the Mapper to the Reducer. The Mapper will continue to read until all the 

shapes are read and sends the Reducer for each shape the cellID it belongs. 

 

Below we see a sample of these intermediate (key, value) pairs created by the 

Mappers. 

cellid: 5 shape: Rectangle: (981227.3105095724,332176.6021628698)-(981248.3105095724,332195.6021628698) 

cellid: 4 shape: Rectangle: (497662.4341413035,985988.3460651748)-(497715.4341413035,986070.3460651748) 

cellid: 1 shape: Rectangle: (214548.39263360525,388885.2276846203)-(214572.39263360525,388971.2276846203) 

 

After finishing the Map phase, we proceed to the next phase which is the Partition 

phase. In this stage the intermediate (key, value) pairs created by the Mappers are 

directed to specific Reducers, so that for example, any shape that belongs to a 

specific cell is directed to a particular Reducer. So each Reducer takes all values 

(shapes) of a particular key (cellID). The process that controls this is the Partitioner, 

where Hadoop by default computes a hash value. SpatialHadoop does not use a 

customized Partitioner. During this phase the sorting of keys is also done. 

 

 After the Partition phase, we continue to the Reduce phase which is shown below. 

    public void reduce(IntWritable cellIndex, Iterator<T> shapes, 

        OutputCollector<IntWritable, T> output, Reporter reporter) 

        throws IOException { 

      T shape = null; 

      while (shapes.hasNext()) { 

        shape = shapes.next(); 

        output.collect(cellIndex, shape); 

      } 

      // Close cell 

      output.collect(new IntWritable(-cellIndex.get()), shape); 

    } 

 



Here all the intermediate keys from the Mappers are taken from the Reducers. The 

Reducers receive a list with key a specific cellID and value a list of all shapes 

belonging to this cell. Then using Iterator it runs across this list and generates the 

same (key, value) pairs (already sorted). But every time it runs out of data from a list 

that contains a specific cell, an additional negative cellID is added, which will be 

used by the OutputFormatter to write data to files. A sample of these (key, value) 

pairs is shown below (the negative cellIndex is also shown). 

cellIndex: 1 shape: Rectangle: (285046.9044709395,66127.0327746073)-(285099.9044709395,66136.0327746073) 

cellIndex: 1 shape: Rectangle: (204314.60092697517,57576.037546577696)-(204394.60092697517,57584.037546577696) 

cellIndex: -1 shape: Rectangle: (204314.60092697517,57576.037546577696)-(204394.60092697517,57584.037546577696) 

cellIndex: 5 shape: Rectangle: (933426.9695659386,298756.318296197)-(933438.9695659386,298840.318296197) 

 

Once the Reduce phase is completed we continue to the Output Format phase. In 

this phase the goal is to write the data files to the HDFS. It tries, in the case of RTree 

index, to create the local index and store data or in the case of grid index simply store 

the data. To achieve this, the method RTreeGridRecordWriter.writeInternal  

(int , S) is executed. It reads the (key, value) pairs of the Reducers and check 

whether we can insert it in the RTree by checking the degree of RTree. (The degree 

of the RTree is a constant number calculated by the formula: degree = 4096 /  

RTree.NodeSize, wherein RTree.NodeSize is equal to 36. However there is 

another method SpatialHadoop RTree.findBestDegree (int , int)  for better 

calculating RTree degree, but which is not used yet). 

If they can be imported, then the method GridRecordWriter.writeInternal (int,  

S) is executed, which keeps the shapes in an output stream. As shapes are imported 

in the appropriate cells, the MBR of these cells is changed accordingly. These cells 

in their final form will be the global index. When exceeding the degree of RTree or if 

you encounter a negative cellID (which means that the data for this cell is finished) 

then the retained shapes must be stored in the file and a new stream must be opened. 

This process is done by RTreeGridRecordWriter.flushAllEntries method 

(Path, OutputStream, Path) . Initially all the data is written to a file. Then this 

file is read again to create a local rtree index. This is done by 

RTree.bulkLoadWrite method (byte [],  int , int,  int,  DataOutput,  

boolean). After calculating the RTree, it is stored at the beginning of the file before 

the data. And finally a new entry is added in the file _master (where the global index 



resides) which contains the number of the cell, the MBR of that cell and the file 

containing the data. 

The process continues until the RecordReader reads all the data and completes the 

indexing. 

 

The _master file of RTree global index is shown below. Each entry in the _master 

file shows which file contains the shapes of this MBR. Each of these files contains its 

own RTree local index. An example is shown below: 

4,19.000025,34.60005,29.1073916666667,40.6386,part-00000_data_00004 

4,19.0,34.6000666666667,29.39878,40.6373666666667,part-00000_data_00004_1 

4,19.0000083333333,34.6,29.9890166666667,40.63796,part-00000_data_00004_2 

4,19.0000266666667,34.6001166666667,29.3920166666667,40.5436333333333,part-00000_data_00004_3 

 

In figure 13 we can see the final RTree global index which is created for the whole 

imis dataset. 

 

Figure 13: SpatialHadoop RTree index plot 

 

The above procedure has the result that the files contain shapes that are close 

together (based on the index we used). These files will be stored in Hadoop to 

specific nodes so queries on the shapes will run faster, because using the indexed 

files, the generated MBRs are much less. 

 

 

 

 



4.3 Analyzing SpatialHadoop queries 

 

 

Then we will perform some spatial queries using SpatialHadoop and the 

index we created. 

 The first query that we will perform is a Range Query.  

The command is as follows bin/shadoop rangequery imis_data.rtree rq_results rect: 

25,37,24,36 shape: ogc. Using this command we will find which shapes are inside or 

intersect with the square with coordinates 25.37 and 24.36. The file that executes the 

command is RangeQuery.java. Specifically, initially the method 

RangeQuery.rangeQuery (Path, Path, Shape, OperationsParams)  defines 

the method that will filter the data. Filtering is the stage at which a selection is made 

of the partitions that will be used in the Input Format phase, depending on our 

query range using the global index. This method is RangeQuery.RangeFilter ()  

and will run before Map Phase. Its results are the partitions that will be read by the 

RecordReader and send to the Mapper. To achieve this, the execution passes to 

Spatial InputFormat.l istStatus (JobConf)  method where a blockFilter is 

defined which is an object of class RangeFilter (). After that all the files in the folder 

we have defined are read during the execution of the method (in our case only 

imis_data.rtree) and for each one the method Spatial InputFormat.l istStatus 

(FileSystem, Path,  List <FileStatus>, BlockFilter)  runs. This method 

checks for a global index on the data files, if yes then for each partition of the global 

index the method RangeQuery.selectCells (GlobalIndex <Partition>, 

ResultCollector <Partition>)  runs, which checks if the MBR owned by each 

partition intersects or is contained in the query range rectangle. For each partition 

that has one of these criteria  a customized collect method runs which is shown 

below, which adds the path of each partition in the variable result which will be 

returned to Spatial InputFormat.l istStatus (JobConf)  method. 

public void collect(Partition partition) { 

          try { 

            Path cell_path = new Path(indexDir, partition.filename); 

            if (!fs.exists(cell_path)) 

              LOG.warn("Matched file not found: "+cell_path); 

            result.add(fs.getFileStatus(cell_path)); 

          } catch (IOException e) { 

            e.printStackTrace(); 



          } 

        } 

 

These partitions will be read by the RecordReader which will send to the Mapper 

(key, value) pairs, where the key is the cellMBR and the value contains an RTree or 

shape (in our case RTree). Having found the partitions we need for our query via the 

global index, execution returns to RangeQuery.rangeQuery (Path, Path,  

Shape, OperationsParams)  method, which according to the number of the 

partitions that we found, i.e. splits, will choose whether the query will run on local or 

MapReduce mode and pass on to the Map Phase. In the case of MapReduce, 

execution continues with RangeQuery.rangeQueryMapReduce (Path, Path,  

Shape, OperationsParams)  method, where appropriate classes for the execution 

of the query are set. We check what type of index we have (in our case it is RTree 

and class RTreeInputFormat.class will be used as InputFormatter), and if we have 

a replicated index (in the case of RTree we don’t, so using the Mapper will use the 

class RangeQueryMapNoDupAvoidance.class). 

The Mapper will create (key, value) pairs with key Null value and a shape, while 

zero Reducers are defined. The method 

RangeQuery.RangeQueryMapNoDupAvoidance.map (Rectangle,  

Writable,  OutputCollector <NullWritable,  Shape>, Reporter)  takes the 

pairs from the RecordReader and in the case of RTree where there is a local index it 

uses Rtree.search (Shape, ResultCollector <T>, int  ,  int)  method to check 

the RTree (i.e. the local index sent by the RecordReader) and return the shapes that 

satisfy the query range. 

For the Range Query there is no Reduce phase and Output Format phase will only 

store the data. Plotting the result of the range query with the command bin/shadoop 

plot rq_results output.png shape:ogc -vflip -fast, we can see the results in figure 14. 



 

Figure 14: SpatialHadoop RangeQuery query result plot 

 

 The next query that we will execute is the KNN. 

The command is as follows bin/shadoop knn imis_data.rtree knn_results point:25,37 k:10 

shape:ogc . We will find the 10 closest shapes at the point with coordinates 25.37. The 

file that will execute the command is KNN.java. Starting from KNN.main (String 

[]) method, it is checked whether closeness is set otherwise the default value is -1. If 

yes, then the center points of the MBRs of the global index are calculated and with 

the following piece of code they are assigned in the variable queryPoints [i]. 

Partition partition = iterator.next(); 

double cx = (partition.x1 + partition.x2) / 2; 

double cy = (partition.y1 + partition.y2) / 2; 

double cw = partition.x2 - partition.x1; 

double ch = partition.y2 - partition.y1; 

int signx = ((direction & 1) == 0)? 1 : -1; 

int signy = ((direction & 2) == 1)? 1 : -1; 

double x = cx + cw * closeness / 2 * signx; 

double y = cy + ch * closeness / 2 * signy; 

queryPoints[i] = new Point(x, y); 

 

Otherwise, the variable contains only the point we specified. Then the process 

KNN.knnMapReduce (Path, Path, Point,  int, OperationsParams)  runs 

wherein MapReduce is adjusted. First it checks for the type of index and set the 

appropriate InputFormatters and Mappers. Specifically for non RTree indexes a 

Combiner class must also be defined. Once MapReduce is set, the first iteration 

begins and we pass to the Input Format phase where, as with the Range Query, also 

here there is a selection of partitions associated with our query range using the filter 

RangeQuery.RangeFilter.java and the global index. After finding these partitions 

then the RecordReader passed them to the Mappers during Map phase in the form of 



(key, value), wherein the key contains cellMBR and the value a shape or an RTree 

(depending on the index). The next method that runs is KNN.KNNMap <S 

extends Shape> containing specific separate map functions depending on whether 

the index contains local index (as herein). Specifically, for each (key, value) pair that 

the RecordReader sends, the Mapper runs the RTree.knn (double, double, int ,  

ResultCollector2 <T, Double>)  method on the RTree. This method after 

creating a query range, from the point we have set, with the following code 

double query_area = ((getMBR().x2 - getMBR().x1) * (getMBR().y2 - getMBR().y1)) * k / getElementCount(); 

double query_radius = Math.sqrt(query_area / Math.PI); 

Rectangle queryRange = new Rectangle(); 

queryRange.x1 = qx - query_radius / 2; 

queryRange.y1 = qy - query_radius / 2; 

queryRange.x2 = qx + query_radius / 2; 

queryRange.y2 = qy + query_radius / 2; 

 

it searches the local index of each partition with RTree.search (Shape, 

ResultCollector <T>, int,  int)  method as with the query Range Query, but now 

the query refers to the queryRange that was set. Upon returning the appropriate 

shapes it checks if the number is greater than k. 

a) If not, then if there are other elements (shapes) in RTree, it doubles the 

query_radius and reruns the method. 

b) If yes, then the shapes that are returned are sorted with QuickSort () and returns 

the k first shapes. 

c) If there are no other elements in RTree then it returns. 

 

The Mapper creates (key, value) pairs from the results with key Null and a value type 

TextWithDistance, which contains the shape in text form and its distance from the 

queryRange. Reduce phase does not exist and in the Output Format phase data are 

written to disk files. After that the command returns back to 

KNN.knnMapReduce (Path, Path, Point,  int, OperationsParams)  method 

wherein it is tested again that the number of results it is less than k. 

a) If not, then a test circle is created with center the query point that we have defined 

and radius the distance to the kth shape (i.e., the final shape that has been written in 

the partition). This is done by the method Tail.tail (FileSystem, Path, int , T, 

ResultCollector <T>). Then it is checked by GlobalIndex.rangeQuery 



(Shape, ResultCollector <S>)  method if there is a MBR in the global index that 

intersects with this test circle but it did not intersect with the original query point. 

a1) If there is, then KNN.knnMapReduce (Path, Path,  Point , int ,  

OperationsParams)  is executed for a second iteration, but this time with query 

range the new test circle that had been created. 

a2) If there is no such MBR in the global index, the method ends and we find the 

k nearest neighbors. 

b) If yes, then it checks how many MBRs intersect with the query range, and stores 

the distance of the MBR with the greatest distance. 

b1) If the number of MBRs that do intersect is zero then the GlobalIndex.knn 

(double, double, int , ResultCollector2 <S, Double>) method, which is 

similar to the method we described for the RTree local index, doubles the query 

radius until we find k MBRs or until there are no other MBRs in global index, and 

again the maximum distance from to query range is returned. Having returned to the 

maximum distance, a circle is created with center the previous point and radius the 

maximum distance and KNN.knnMapReduce (Path,  Path,  Point,  int , 

OperationsParams)  runs again. In each new execution of 

KNN.knnMapReduce (Path,  Path,  Point,  int ,  OperationsPa rams) the 

results that were stored in HDFS from the previous iteration are deleted. 

After the successful execution of the KNN query we plot the results with the 

command bin/shadoop plot knn_results output.png shape: ogc -vflip -fast and which appear 

in figure 15. 

 

 

Figure 15: SpatialHadoop KNN query result plot 



 

 Finally we will analyze a Spatial Join query. 

We will split the data set in two pieces, removing lines from the original .txt file 

using the Linux commands: 

sed -n '1,1000000p' imis1month.txt > imis1month_part1.txt 

sed -n '2000000,3000000p' imis1month.txt > imis1month_part2.txt 

 

These commands will create two data files. Again we use Pigeon to create the 

geometry columns from the data and using SpatialHadoop we create the RTree 

indexes for each one. Plotting those two indexes we get the following for the first in 

figure 16 and second in figure 17 respectively. 

 

Figure 16: First data split for SpatialJoin query 

 

 

Figure 17: Second data split for SpatialJoin query 

 

The command that will run for the spatial join query is bin/shadoop dj 

imis_data_part1.rtree imis_data_part2.rtree sj_results shape:ogc 

The DistributedJoin.java file will run the command. Initially in method 

DistributedJoin.main (String []) it is checked if repartitioning needs to be done 



(i.e. re-create the index) of one of the two data files, depending on what we have 

defined in the command. 

a) If we choose to do repartitioning then firstly the method 

DistributedJoin.selectRepartition (Path  [], OperationsParams) runs 

which will choose which of the two data files will be repartitioned. The data file to 

be selected depends on certain criteria. If only one data file has an index then the one 

that does not will be selected, otherwise the smaller file will be selected. Then the 

method DistributedJoin.repartitionStep (Path [],  int,  OperationsParams)  

runs which after extracting the global index of the first data file, it will repartition the 

second (which we choose by controlling the above criteria) based on the index of the 

first and using Repartition.repartitionMapReduce (Path, Path,  

OperationsParams) method which we have already described. 

b) If we choose the option for auto repartitioning then the method 

DistributedJoin.distributedJoinSmart (Path  [], Path, 

OperationsParams) undertakes the task to ascertain whether it should be 

repartitioned. Sorts the two data files based on their size and calculates the size of the 

global index for each one based on how many partitions each one contains, otherwise 

if there is no global index then it calculates the number of blocks in HDFS. It will 

compare the cost of join with and without repartition according to the following 

function. 

cost_without_repartition = gIndexes[0] != null && gIndexes[1] != null ? 

        GlobalIndex.spatialJoin(gIndexes[0], gIndexes[1], null) : 

        (numBlocks[0] * numBlocks[1]); 

cost_with_repartition = numBlocks[0] * 3 + numBlocks[1]; 

 

The variable numBlocks [] contains the number of blocks or partitions of each data 

file that we calculated previously. In the case of cost without repartitioning, if any 

global indexes exist for both files the cost will be calculated by the method 

GlobalIndex.spatialJoin (GlobalIndex <S1>, GlobalIndex <S2>, 

ResultCollector2 <S1, S2>)  which only runs the method 

SpatialAlgorithms.SpatialJoin_planeSweep (S1 [], S2 [], 

ResultCollector2 <S1, S2>) . This method takes all shapes of each global index 

and makes a spatial join on the two indexes and increases a counter for each shape 

that intersects. This counter will be the cost. If the cost of repartition is less than the 

cost without repartition then we continue to step a) otherwise we move to c). 



c) When step a) or b) is finished or if we did not choose to repartition then the 

method DistributedJoin.joinStep (Path [], Path,  OperationsParams)  runs 

which will set MapReduce. Adjusts the appropriate InputFormatter depending on 

whether we have RTree indexes (in our case the DJInputFormatRTree.class will 

be the InputFormatter), then the suitable Mapper is selected depending on what kind 

of index we have (if we have replicated index or not, in our case not, so the Mapper 

RedistributeJoinMapNoDupAvoidance.class is selected). As a filter class, which 

will filter the data that the RecordReader will receive, is defined the 

SpatialJoinFilter.class. And finally a Reduce phase does not exist here. 

 

Then the Input Format phase begins during which a specific InputFormatter is used 

for binary data (i.e. data that contain duplicate data, as in our case with the spatial 

join). This InputFormatter is the BinarySpatialInputFormat.java and which will 

create CombineFileSplits from data files that we execute spatial join on. The 

CombineFileSplits is a specific variable which contains two splits, that is, two 

partitions from the two global indexes. 

a) If an index exists for both data files the filter selects which partitions qualify the 

criteria. The filter (i.e. the method DistributedJoin.SpatialJoinFilter) makes a 

spatial join between the two indexes with the method GlobalIndex.spatialJoin 

(GlobalIndex <S1>, GlobalIndex <S2>, ResultCollector2 <S1, S2>)  and 

tries to find partitions which will intersect and for which the intersection is greater 

than zero, which means that it skips the partitions that just touch. It returns pairs with 

these two partitions that satisfy the constraints, and the 

BinarySpatialInputFormat.java creates CombineFileSplits. 

b) If even one data file has no index then a Cartesian product is generated from all 

partitions of each index and the generated pairs are stored in a variable of type 

CombineFileSplits. All these CombineFileSplits are returned to the RecordReader 

who is the DistributedJoin.DJInputFormatArray.DJRecordReader  and who 

implements the BinaryRecordReader.BinaryRecordReader 

(Configuration, CombineFileSplit) . The specific RecordReader uses two 

internal RecordReaders to create (key, value) pairs for the Mappers, wherein the key 

is a pair of two MBRs, i.e. the MBRs of each partition from the previous 

CombineFileSplit, and value a pair of the two RTree local indexes of each partition. 

These (key, value) pairs are sent to the Mappers and the Map phase begins. The 



Mappers check if the value is an RTree or if it just contains simple array of shapes 

(i.e. no local index). In our case with an RTree, a spatial join between the RTrees is 

performed by the method RTree.spatialJoinDisk (RTree <S1>, RTree 

<S2>, ResultCollector2 <S1, S2>) which is shown below. This method 

searches both RTrees starting from the root node and traversing each RTree 

downwardly it checks which MBR pairs between the two RTree intersect using 

Cartesian product between all MBRs of the two RTrees. 

With those that do intersect it checks whether we are in a leaf node level. 

a) If yes, then it continues checking the shapes and which one intersects again using 

a Cartesian product. The ones that do intersect are stored in the output. 

b) If not, then it continues to run down the RTree. 

This process continues until it checks all the nodes/leaves which intersect. 

 

After finishing the Map phase, there is no Reduce phase so we move to the Output 

Format phase where we just store the generated shapes. 

We plot the results with the command bin/shadoop plot sj_results output.png shape: ogc -

vflip -fast and we can see the result in figure 18. 

 

 

Figure 18: SpatialHadoop SpatialJoin query result plot 

 

 

 

 



4.4 Process data and execute queries with Pigeon 

 

To edit and run queries we used a dataset from http://chorochronos.datastories.org/. 

We will use SpatialHadoop and Pigeon for performing queries. We will carry out the 

following Pig script using the methods that Pigeon provides us for processing spatial 

data. You choose all objects containing more than 10,000 points. Below the script 

and the explanation is shown. 

 

 We register the necessary .jar files so that we can use spatial methods of Pig from 

Pigeon in our script, and define the specific methods we use. 

REGISTER /home/user/hadoop-1.2.1/pigeon.jar; 

REGISTER /home/user/hadoop-1.2.1/lib/esri-geometry-api-1.1.1.jar; 

DEFINE MakePoint edu.umn.cs.pigeon.MakePoint(); 

DEFINE MakeLine edu.umn.cs.pigeon.MakeLine(); 

DEFINE AsText edu.umn.cs.pigeon.AsText(); 

 

 Here we load the data file and add column names to variables. 

file = LOAD 'imis1month.txt' USING PigStorage(',') AS (t, lon, lat, obj_id, flag, subtraj_id, subtraj_type, traj_id, port_id:int, 

port_title); 

 

 We remove the first line of data as it contains header info. 

rawdata = FILTER file BY t != 't'; 

 

 We choose which columns we want to keep from the data and from the columns 

lon and lat we create Point type geometry. 

data = FOREACH rawdata GENERATE t AS time, MakePoint(lon,lat) AS position, obj_id AS vessel, subtraj_id AS 

sub_trajectory; 

 

 We group the rows relating to each specific vessel and sub_trajectory. With this 

command Pig creates a bag data type that contains all the points we created for 

each object. This data type has the following format: <A, {<B, C>, <E, F>}>, 

where the first element is A and the is the element on which the grouping was 

done, while the second is a bag which contains one or more rows (<B, C>) by 

one or more elements (B, C), which belong to the A element. Specifically in our 

case A will be the vessel, while the B, C and E, F will contain the lon, lat 

coordinates. 



group _data = GROUP data BY (vessel, sub_trajectory); 

 

 We classify the points of each object according to the date. 

sorted_group = FOREACH group_data {data_sorted = ORDER data BY time ASC; GENERATE group, data_sorted;}; 

 

 We find the number of points of each object and then the objects that have more 

than 10,000 points. 

count_records = FOREACH sorted_group GENERATE group.vessel, group.sub_trajectory, COUNT(data_sorted) AS total; 

filter_records = FOREACH (FILTER count_records BY total > 10000) GENERATE vessel, sub_trajectory; 

 

 We join all our data to a table containing the records that have over 10,000 

points, rest of data take NULL values. 

nullify_non = JOIN sorted_group BY (group.vessel, group.sub_trajectory) LEFT OUTER, filter_records BY 

(vessel,sub_trajectory); 

 

 We choose only the items that have over 10,000 points. 

data_filter = FOREACH (FILTER nullify_non BY filter_distinct::vessel IS NOT NULL) GENERATE sorted_group::group, 

sorted_group::data_sorted; 

 

 Creates a line geometry which consists of all the points of each object on our 

query and then all of data. 

sub_trajectories_filter = FOREACH data_filter {GENERATE MakeLine(sorted_group::data_sorted.position) AS 

sub_trajectory_geom, sorted_group::group.sub_trajectory AS sub_traj, sorted_group::group.vessel AS vessel;}; 

sub_trajectories = FOREACH sorted_group {GENERATE MakeLine(data_sorted.position) AS sub_trajectory_geom, 

group.sub_trajectory AS sub_traj, group.vessel AS vessel;}; 

 

 After finishing our queries we convert the geometry column in WKT string 

format and store it in a file in HDFS. Also we store the dataset. 

sub_traj_filter_wkt = FOREACH sub_trajectories_filter GENERATE AsText(sub_trajectory_geom) AS line, sub_traj, vessel; 

sub_traj_wkt = FOREACH sub_trajectories GENERATE AsText(sub_trajectory_geom) AS line, sub_traj, vessel; 

STORE sub_traj_filter_wkt INTO 'query'; 

STORE sub_traj_wkt INTO 'imis_data'; 

 

The below script is executed in the grunt shell of Pig. To get the grunt shell of Pig we 

execute the command pig. Then we can insert all the command of Pigeon we 

described. It can also be performed via the above website 

http://83.212.97.255:50070/pigeon.jsp, entering commands in Pigeon script field and 



clicking Submit Query. Then we can see the results in the field Relations in figure 

19. 

 

Figure 19: Pigeon introduction page 

 

Executing the command bin/shadoop plot query output.png shape: ogc -vflip -fast we plot 

the data. The same effect can be also achieved through another website that 

SpatialHadoop provides http://83.212.97.255:50070/visualizer.jsp and using 

Preprocess choice shown in figure 20. Then we can download from the HDFS and 

open the created image. 

 

Figure 20: SpatialHadoop Visualizer 

 

In figure 21 we can see the results of the query. 



 

Figure 21: SpatialHadoop Visualizer query plot 

 

At this point we do an analysis of Pigeon to describe how it creates these 

geometries. Pigeon uses UDFs (User Defined Functions) to add the necessary 

methods in Pig. For each spatial query there is a corresponding UDF. We will 

analyze two methods we used above, the MakePoint () and MakeLine (), which are 

responsible for creating lines. We begin with the MakePoint (). This method takes as 

input two points. Below we see the code, where we analyze each line. 

 UDF extends the EvalFunc method in Pig which is the basis for all UDFs. 

public class MakePoint extends EvalFunc<DataByteArray> { 

 

 Implementing the exec method which is executed in each row (tuple) of the input. 

public DataByteArray exec(Tuple input) throws IOException { 

 

 Checking if each tuple contains two elements, as MakePoint () requires two 

numbers for the point x, y. 

 if (input.size() != 2) 

throw new IOException("MakePoint takes two numerical arguments"); 

 

 Using the GeometryParser () we store the two values in two variables x, y. 

double x = GeometryParser.parseDouble(input.get(0)); 

double y = GeometryParser.parseDouble(input.get(1)); 

 

 We create a Point using these two coordinates and esri-geometry-api. 

Point point = new Point(x, y); 

OGCPoint ogc_point = new OGCPoint(point, SpatialReference.create(4326)); 



 

 We return the result as DataByteArray. 

        return new DataByteArray(ogc_point.asBinary().array()); 

 

GeometryParser () checks the values that the Pig script returns and depending on the 

format, it stores the values in a suitable form. If the input is ByteArray then it returns 

WKB form, if it is string then it returns WKT format, and if it is a number, as here, it 

returns the same type. Then we analyze the MakeLine () method. 

public class MakeLine extends EvalFunc<DataByteArray>{ 

private GeometryParser geometryParser = new GeometryParser(); 

@Override 

public DataByteArray exec(Tuple b) throws IOException { 

 

 This creates a data type DataBag because as described above all points are in that 

form after performing GROUP. 

DataBag points = (DataBag) b.get(0); 

 

 Creating a table of points of size equal to the size of the DataBag. 

Point[] coordinates = new Point[(int) points.size()]; 

int i = 0; 

 

 For loop to import points from DataBag to the coordinates table. 

for (Tuple t : points) { 

coordinates[i++] = (Point) (geometryParser.parseGeom(t.get(0))).getEsriGeometry(); 

} 

MultiPath multi_path = new Polyline(); 

 

 In the following for loop we inserts each line (segment) consisting of two 

elements in the final multi_path which contains all points. 

for (i = 1; i <coordinates.length; i++) { 

    Segment segment = new Line(); 

    segment.setStart(coordinates[i-1]); 

    segment.setEnd(coordinates[i]); 

    multi_path.addSegment(segment, false); 

    } 

 

 Create LineString geometry using esri-geometray-api and return data in the form 

of DataByteArray. 

OGCLineString linestring = new OGCLineString(multi_path, 0, 



SpatialReference.create(4326)); 

return new DataByteArray(linestring.asBinary().array()); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. SpatialHadoop 3D data extension implementation 

 

 

5.1 3D Rtree Algorithm 

 

In this section we will describe the structure of Rtrees. This type of index is 

what SpatialHadoop uses for local indexing and it will need to be modified in our 

case, in order to support 3D data. 

An Rtree is a height balanced index which is structured using nodes in a tree form. 

Nodes are separated in non-leaf and leaf nodes. Non-leaf nodes point to other non-

leaf nodes or leaf-nodes. They contain entries in the form (I, child-pointer). I is the 

MBR covering all the lower node rectangles and child-pointer is the address of the 

lower node. The first non-leaf node in the Rtree is called the root node. Leaf nodes 

point to the actual data objects. Leaf nodes contain entries in the form (I, tuple-

identifier), where I is the bounding box of the spatial object and tuple-identifier is the 

tuple in the database. [8] 

If M is the maximum number of entries in a node and m is the minimum number of 

entries in a node, then the Rtree has the following properties: [8] 

 Every leaf node contains between m and M records unless it is the root 

 For each index record (I, tuple-identifier) in a leaf node, I is the smallest 

rectangle that spatially contains the n-dimensional data object represented by 

the indicated tuple 

 Every non-leaf node has between m and M children unless it is the root 

 For each entry (I, child-pointer) in a non-leaf node, I is the smallest rectangle 

that spatially contains the rectangles in the child node 

 The root node has at least two children unless it is a leaf 

 All leaves appear on the same level 

 

The height of the RTree is calculated by the following formula: ceil(logmN)-1. The 

RTree searching algorithm is simple. It uses bounding boxes to decide whether or not 

to descend into a node and search inside a subtree. This way, most of the nodes in the 

tree are never read. This makes R-trees suitable for large data sets and databases, 



where nodes can be paged to memory when needed, and the whole tree cannot be 

kept in main memory. [9] 

The search starts at the root node. The input for the search is bounding box. Every 

rectangle inside the root node is checked if it overlaps with the input bounding box. 

If it does then the connected node below needs to be searched also. This is done 

recursively for every node in the Rtree that overlaps with the input bounding box. 

When a leaf node is reached then all the spatial objects contained are queried against 

the input bounding box. [9] 

In figure 22 we can see a finished Rtree for 3D data. [9] 

 

 

Figure 22: 3DRtree example index plot 

 

5.2 Implementation on SpatialHadoop 

 

In this section we will describe the implementation and the modifications we 

did using SpatialHadoop to support 3D data. We will use the Trucks.txt dataset from 

http://chorochronos.datastories.org/. This dataset consists of data lines of x,y 

coordinates along with a z coordinate that indicates time. 

For SpatialHadoop to correctly parse the data, the geometry type needs to be first in 

every line. We use below python script to convert the Trucks dataset to the format 

we want. Also in this script we parse the date and time into an epoch object to 

convert it to a simple number for our Z coordinate. 

http://chorochronos.datastories.org/


The end result is a data line in the form of the following regular expression 

\d+,\d+,\d+ (x,y,epoch_time). Digits are important and affect the RTree header, so 

the format needs to be as mentioned above. If this format changes then the RTree 

header needs to be changed. 

import time 

 

dataFile = open("trucks.txt", "r") 

outFile = open("trucks_modified.txt", "w") 

datePattern = '%d/%m/%Y_%H:%M:%S' 

for line in dataFile: 

    line = line.rstrip().split(";") 

    dateString = line[2] + "_" + line[3] 

    dateEpoch = int(time.mktime(time.strptime(dateString, datePattern))) 

    outString = line[6] + "," + line[7] + "," + str(dateEpoch) 

    print >>outFile, outString 

dataFile.close() 

outFile.close() 

 

Visualization of trucks dataset using SpatialHadoop command bin/shadoop gplot 

trucks.txt output.png shape:point -vflip -fast is shown in figure 23. 

 

 

Figure 23: Trucks dataset plot 

 

This is a 2D representation which ignores Z coordinate (epoch time).  

In order for SpatialHadoop to support 3D data structures we need to change both the 

basic objects used by the extension as well as various data structures used to build 



the index and run the queries. The spatial objects in SpatialHadoop need to support a 

new coordinate Z. The first modification starts with the implementation of the Z 

variable in the basic data objects. Point and Rectangle classes have been completely 

overridden to support a new Z coordinate, as well as Shape interface which is 

implemented by Cube class (Rectangle class has been renamed to Cube). This Z 

coordinate will store the time variable as an integer. Regular time format, for 

example time 15/10/2016 20:32:45, is converted to epoch time 1476552765, and 

stored in Z variable. 

Below is the new constructor for both Point and Cube classes. 

public Point(double x, double y, double z) { 

 this.x = x; 

 this.y = y; 

 this.z = z; 

} 

 

public Cube(double x1, double y1, double z1, double x2, double y2, double z2) { 

  this.set(x1, y1, z1, x2, y2, z2); 

} 

 

The mathematical formulas inside those classes have been changed to allow 3d data 

calculations, for example distance and MBR calculations. 

CellInfo class has also been modified to use these new basic structures and support 

3D data. New constructor is the following. This class holds information for the 

global index cells, which in our case will be cubes. 

public CellInfo(int id, double x1, double y1, double z1, double x2, double y2, double z2) { 

  super(x1, y1, z1, x2, y2, z2); 

  this.cellId = id; 

} 

 

Storage Layer Modifications: 

Storage layer is responsible for creating the global and local indexes and storing the 

indexes on HDFS. GridInfo is the object that corresponds to the global grid index. It 

holds information about the grid index. Methods have been modified to support grid 

calculations using new Z coordinate. A new dimension has been added called slices 

along with row and columns for 2D data. All calculations to support the 3D grid have 

been modified to use this new dimension. Below most important methods are shown. 

public CellInfo getCell(int cellId) { 

  int col = (cellId - 1) % columns; 



  int row = ((cellId - col - 1) / columns) % rows; 

  int slice = (((cellId - col - 1) / columns) - row) / rows; 

  double xstart = x1 + (x2 - x1) * col / columns; 

  double xend = col == columns - 1? x2 : (x1 + (x2 - x1) * (col + 1) / columns); 

  double ystart = y1 + (y2 - y1) * row / rows; 

  double yend = (row == rows - 1)? y2 : (y1 + (y2 - y1) * (row + 1) / rows); 

  double zstart = z1 + (z2 - z1) * slice / slices; 

  double zend = (slice == slices - 1)? z2 : (z1 + (z2 - z1) * (slice + 1) / slices); 

  return new CellInfo(cellId, xstart, ystart, xend, yend, zstart, zend); 

} 

 

public int getCellId(int column, int row, int slice) { 

  return (row * columns + column + slice * rows * columns) + 1; 

} 

These methods calculate the id of a partition (cell) or retrieve a partition given an id. 

Slice variable will hold the information for the third dimension. 

GridRecordWriter, OGCESRIShape, OGCJTSShape, SpatialAlgorithms and 

SpatialSite have also been modified to use Cube class. 

From indexing module, GlobalIndex, GridPartitioner, IndexOutputFormat, Indexer, 

Partition, Partitioner, RTree, STRPartitioner classes have been adapted to use 3D 

data. 

GlobalIndex supports a basic spatial index, and was modified to support new 

coordinate. 

GridPartitioner is the partitioner type class which will partition the data into multiple 

partitions that will go to various slaves. An important method here is: 

public void createFromPoints(Cube mbr, Point[] points, int capacity) throws IllegalArgumentException { 

 

This method will create the index given as input a number of Points from a sample 

(Sample class under operations module). We modified the method so it can create a 

3d grid to partition the data based on that grid, using overlapping check. Method is 

below: 

public int overlapPartition(Shape shape) { 

  if (shape == null) 

    return -1; 

  Cube shapeMBR = shape.getMBR(); 

  if (shapeMBR == null) 

    return -1; 

  Point centerPoint = shapeMBR.getCenterPoint(); 

  int col = (int)Math.floor((centerPoint.x - x) / tileWidth); 

  int row = (int)Math.floor((centerPoint.y - y) / tileHeight); 

  int slice = (int)Math.floor((centerPoint.z - z) / tileAltitude); 



  return getCellNumber(col, row, slice); 

} 

 

It will check with which partition each point overlaps. If our shapes are not points, 

the central point is calculated and given to the Sampler and later to the 

GridPartitioner class. In case we choose to replicate shapes another method support 

this: 

public void overlapPartitions(Shape shape, ResultCollector<Integer> matcher) { 

 

Replicate option will replicate shapes that overlap on two partitions, on both partition 

data files. 

Also in order to correctly retrieve the correct partition below class is modified: 

public CellInfo getPartition(int partitionID) { 

  // Retrieve column and row of the given partition 

  int col = partitionID % numColumns; 

  int row = ((partitionID - col) / numColumns) % numRows; 

  int slice = (((partitionID - col) / numColumns) - row) / numRows; 

  return new CellInfo(partitionID, x + col * tileWidth, y + row * tileHeight, z + slice * tileAltitude, x + (col + 1) * tileWidth, y + 

(row + 1) * tileHeight, z + (slice + 1) * tileAltitude); 

} 

 

The type of partitioner is set in Indexer class: 

PartitionerClasses.put("rtree", GridPartitioner.class); 

 

So this implies that if the rtree index is chosen then the partitioner will be a grid 

index. Note that this has nothing to do with the underlying local RTree index. The 

partitioner only splits the data to given slaves for further indexing. This can be 

changed if a user needs a different partitioner. 

The RTree class is responsible for creating the local RTree index of every partition 

file. The following methods have been extensively modified to calculate the index 

based on 3D data and also use Z coordinate during the sorting algorithms. 

bulkLoadWrite method will now have a new direction called DIRECTION_Z to sort 

elements based also on this coordinate. 

public static void bulkLoadWrite(final byte[] element_bytes, 

    final int offset, final int len, final int degree, DataOutput dataOut, 

    final Shape stockObject, final boolean fast_sort) { 

 

public static Cube[] packInRectangles(GridInfo gridInfo, final Point[] sample) { 

 



Additionally the header of the RTree for the node size has been changed. This is 

needed because we added a new dimension. We changed 4 to 6. 

public static final int NodeSize = 4 + 8 * 6; 

 

These changes compensate for the new increased size of the nodes inside the RTree 

due to the new dimension. 

A similar approach was done for GridPartitioner, which is the index type that we 

used for the global index between all slave nodes. This class is responsible to 

partition the data into a grid. We have to modify it so the data are partitioned in a 3D 

grid instead. Below methods (but not exclusively) have been modified to both create 

the Grid index and calculate overlapping partitions using also the new coordinate. 

public void createFromPoints(Cube mbr, Point[] points, int capacity) throws IllegalArgumentException { 

 

public void overlapPartitions(Shape shape, ResultCollector<Integer> matcher) { 

 

public int overlapPartition(Shape shape) { 

 

We can also see the getCellNumber and getPartition function which are important for 

the calculations of the correct cell id for the 3D grid index as well as get the correct 

partition given a cellid. This is important during the creation of the index but also 

during the query process in order to retrieve the correct cells from the grid. 

private int getCellNumber(int col, int row, int slice) { 

    return row * numColumns + col + slice * numRows * numColumns; 

  }  

 

public CellInfo getPartition(int partitionID) { 

    // Retrieve column and row of the given partition 

    int col = partitionID % numColumns; 

    int row = ((partitionID - col) / numColumns) % numRows; 

    int slice = (((partitionID - col) / numColumns) - row) / numRows; 

    return new CellInfo(partitionID, x + col * tileWidth, y + row * tileHeight, z + slice * tileAltitude, x + (col + 1) * tileWidth, y 

+ (row + 1) * tileHeight, z + (slice + 1) * tileAltitude); 

  } 

 

 

MapReduce layer modifications: 

MapReduce layer is responsible for running the map and reduce functions that 

control the way the jobs run. It splits the data and builds the indexes on slave nodes.  



Both InputFormatters and RecordReaders will also need modifications. 

InputFormatters accept data and direct it to RecordReaders in order to read the data 

from files. They handle the partitioning of the data as well as the creation of the local 

index. Mathematical calculations inside those files need to adapt to the new Z 

coordinate. Index files will be modified to create a 3D index along with the provided 

data. The algorithm of the RTree will be used and will be extended to support a 

3DRTree. 

The OutputFormatters that will commit the job will have to be modified to create the 

files on disk using the correct format. These files are the partitioned data files that 

contain the data as well as the local index. For the purposes of this dissertation we 

will support only global index as grid and local indexes as a 3DRtree. The index 

structure for the global index is a grid index and for the local index is a 3DRTree. 

Modifications have also been made to mapred module and classes: 

BinarySpatialInputFormat, CombinedSpatialInputFormat, GridOutputFormat3, 

GridRecordWriter3, RTreeRecordReader, RandomInputFormat, 

RandomInputGenerator, ShapeArrayInputFormat, ShapeArrayRecordReader, 

ShapeInputFormat, ShapeIterInputFormat, ShapeIterRecordReader, 

ShapeLineInputFormat, ShapeLineRecordReader, ShapeRecordReader, 

SpatialInputFormat, SpatialRecordReader. 

These classes will read the records from a data file and need support for 3D data. 

From mapreduce module following classes have been modified: 

RTreeRecordReader3, SpatialInputFormat3, SpatialRecordReader3. 

 

Operations layer modifications: 

From operations module which implements the supported queries Main, FileMBR 

and RangeQuery classes have been modified. Initially, as we explained, support 

exists only for Range type queries. 

RangeQuery class that will run the query on top of the index will now use the new 

3DRtree and 3D data to produce the query results. 

 

From temporal module, RepartitionTemporal class is modified and from util, 

FileUtil class. 

 

To support the large numbers of epoch time (Z variable) we modify function: 



public static void serializeDouble(double d, Text t, char toAppend) { 

 

in TextSerializerHelper file and parse the number as following: 

byte[] bytes = (new BigDecimal(Double.toString(d))).toPlainString().getBytes(); 

 

Finally from main module OperationsParams and RandomSpatialGenerator classes 

were modified. We compile the module using maven with command: 

mvn clean package 

 

With these modifications, SpatialHadoop supports 3D data using 3DRTree index 

(specifically using STR algorithm to load the RTree), and range queries. After 

preparing the data as described above, the data are copied on HDFS using below 

commands: 

bin/hadoop fs -mkdir /hadoop_user 

bin/hadoop fs -copyFromLocal /home/hadoop_user/trucks.txt /hadoop_user 

 

We now have the data on HDFS and we are ready to build the index. This is done 

with below command which will use MapReduce algorithm: 

bin/shadoop index /hadoop_user/trucks.txt trucks3d.rtree sindex:rtree shape:point 

 

sindex specifies the type of index and shape describes the type of our data. In our 

case, the data are 3D points, with x,y,epoch_time coordinates. Figure 24 shows part 

of the output of the command: 

 

Figure 24: Command line result of 3DRtree indexing 

 

We can see the time it took for the index to be created. Here it took 62.687 

milliseconds. Executing this command and depending on the size of our data, several 

files will be created. A _master.rtree file containing the master grid index. A 

_rtree.wkt file containing the same index in wkt format. And (in our case) a part-

00000.rtree containing the data split and the local 3DRTree index along with the 

data. Larger data input files will result in more part- data output files. Next the range 



query is run upon the RTRee index. We run the following command, bin/shadoop 

rangequery trucks3d.rtree rq_results3d 

rect:470000,4200000,1031982663,480000,4210000,1032127416 shape:point This command will 

select the points inside the rectangle 470000,4200000, 480000,4210000 but will also 

query the time variable based on the epoch time provided (1031982663, 

1032127416). The query returns 183 results as shown in figure 25. 

 

Figure 25: Command line result of 3DRtree querying 

 

The query took 4.567 milliseconds to complete. In figure 26 we can the 2D 

representation of the 3D query result. 

 

 

Figure 26: Plot result of 3DRtree querying 

 

The above indexing and querying have been done using 1 slave node in a Hadoop 

cluster. 

 

 

 



6. Experimental Results 

 

 

In order to evaluate the new extension we used a cluster of vms running 

Hadoop on okeanos IAAS (https://okeanos.grnet.gr/home/). The cluster consists of 1 

master node and 4 slave nodes. The specifications of the cluster are following: 

For the master node: 

 8 Cores 

 8192 MB Memory 

 40GB System disk 

For the slave nodes: 

 4 Cores 

 8192 MB Memory 

 10GB System disk 

For all nodes: 

 Hadoop-2.7.3 

 SpatialHadoop 2.4.1 

(All following commands should be run under {HADOOP_HOME} directory). 

 

In order to test with various node sizes we used the following process to 

decommission nods from the cluster. We make sure that under etc/hadoop/hdfs-

site.xml there is the following property: 

<property> 

  <name>dfs.hosts.exclude</name> 

  <value>$HADOOP_CONF_DIR/exclude</value> 

  <final>true</final> 

</property> 

 

And under etc/hadoop/yarn-site.xml the following property: 

<property>          

  <name>yarn.resourcemanager.nodes.exclude-path</name>         

  <value>$HADOOP_CONF_DIR/exclude</value> 

  <final>true</final>    

</property> 

 

https://okeanos.grnet.gr/home/


We edit the file under etc/hadoop/exclude, and add the hostname of the node to be 

decommissioned. Then we run command hdfs dfsadmin -refreshNodes to refresh the 

nodes. We wait until decommissioning is over and then we remove the node from the 

etc/hadoop/include file. We run command hdfs dfsadmin -refreshNodes again. This will 

stop the datanode and the blocks on that node will be replicated on live nodes. Next 

we need to remove the node from yarn also. We run command yarn rmadmin -

refreshNodes. Finally we remove the node from file etc/hadoop/slaves and we restart 

the cluster. After this process the node is decommissioned and is no longer used. We 

followed this process to do the tests with 1, 2, 3 and 4 nodes. 

In our tests we run the index command and two queries. 

The index command was: 

{HADOOP_HOME}/bin/shadoop index /user/hduser/dataset_3d.txt test3d.rtree sindex:rtree 

shape:point 

 

The query commands include one small query and one large query, shown below: 

{HADOOP_HOME}/bin/shadoop rangequery test3d.rtree rq_results3d 

rect:500,500,1246562000,10000,10000,1246564000 shape:point 

{HADOOP_HOME}/bin/shadoop rangequery test3d.rtree rq_results3d2 

rect:500,500,1246562000,200000,200000,1246774000 shape:point 

 

The small query will match with one partition from the data and the large query will 

match with three partitions. Along with the indexing time, the results from the 

queries can be seen on figure 27. 

 

Figure 27: 3d data test results 

 

On figure 28 we can see the plot of the indexing times and on figure 29 we can see 

the plot of the query results. 

 



 

Figure 28: Indexing time for 3d data 

 

 

Figure 29: Query time for 3d data 

 

On X axis is the number of nodes and on Y axis the time in milliseconds it took to 

run the command. 

For the indexing time there is a decrease until we reach 4 nodes where it seems to 

stabilize. This can be attributed to the fact that HDFS stores index partitions in 

different nodes. But depending on the index this number of partitions is limited. It is 

expected that with a much larger data set the time it takes to index the data will be 

benefitted even more by an increased number of nodes. 

We can also see that when not using the RTree index the time to do the queries does 

not change much when changing the node number. This time is fixed because 



SpatialHadoop will have to always search the entire file to find the query results. The 

time to query the index keeps decreasing as the number of nodes increases. 

Searching the index seems to take more time than when not using the index. 

Although it is expected that with a much larger dataset and with an increased number 

of nodes the index query time will drop to levels lower than scanning the entire file. 

Scanning the entire file seems to not take so much benefit from using larger number 

of nodes. Also index query time can also be affected by the type of our data and the 

way they are organized by the global index and the local index. For example in our 

case we used a grid index as a global index and an RTree as a local index. This can 

be further improved to use also an RTree for global indexing. This will better 

distribute the partitions on different nodes. 

As a control group and in order to exclude possible issues with our new code 

modifications we did a similar test with the unmodified SpatialHadoop module, 

using 2d data and queries. 

The same results for indexing time and query time can be seen on figures 30 and 31 

respectively. 

 

 

Figure 30: Indexing time of 2d data 

 



 

Figure 31: Query time of 2d data 

 

Finally we verified the actual results from the queries using a python script to 

validate that the correct shapes are returned for each query. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. Conclusions and Future Work 

 

 

Results from our runs indicate that the new module works as expected and that the 

queries correctly use the new Z variable. Test runs to check the speed show a 

decrease in time when running queries especially for large queries. Scanning the 

entire file without the index seems to give faster results although with no benefit 

from node sizes. Increasing the node size positively affects the time it takes to query 

the index and also a benefit it takes to build the index. The way that the global index 

is created and the actual type of the data might be the cause of this issue. Also an 

improvement can be made to the Z variable. We used epoch time as a metric, but a 

different way of calculating the time might give better and faster results. Epoch time 

is a very large number which might cause performance issues when building the 

index or running the queries, especially for large volumes of data. The index can also 

be further improved to give better query times. The size and the type of the data can 

also affect this speed as we noticed that the same speed pattern appears even when 

using the unmodified SpatialHadoop module. This might indicate that the 

performance can be improved using a better index, contrary to, for example, grid 

index as a global index. Finally further test with a wide variety of data set can be 

done to verify the speed of the indexing as well as the time it takes to query non-

index and indexed data. Performance modifications of the code can also be a 

potential topic for further time decrease. 
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Appendix 1 

 

 Hadoop Installation and Configuration 

 

The process begins with the installation of Hadoop. We will install the Hadoop as a 

multi-node cluster on two computers. One computer will function as the master, 

which will run all the daemons of Hadoop, and the second computer as the slave, 

which will run only TaskTracker and DataNode daemons. The operating system that 

we will use is Debian Linux. 

After we download the Hadoop along with the source code, we install it on the 

master and all slave nodes. Then follow the steps below. At each step in brackets 

there are two labels, m which means that the step must be done only at the master 

node and s which means that the step must be done at all the slave nodes. 

First and because we only have one public IP address to okeanos, we will adjust the 

master node in a way that the slave nodes have access to the internet. This is done so 

we can install the necessary packages. We create the file /etc/iptables.rules, add the 

following rules and execute the following command to load the rules. (m) 

*nat 

:PREROUTING ACCEPT [0:0] 

:INPUT ACCEPT [0:0] 

:OUTPUT ACCEPT [0:0] 

:POSTROUTING ACCEPT [0:0] 

-A POSTROUTING -o eth2 -j MASQUERADE 

COMMIT 

 

*filter 

:INPUT ACCEPT [0:0] 

:FORWARD ACCEPT [0:0] 

:OUTPUT ACCEPT [0:0] 

-A INPUT -i lo -j ACCEPT 

-A FORWARD -i eth1 -o eth2 -j ACCEPT 

-A FORWARD -i eth2 -o eth1 -j ACCEPT 

-A OUTPUT -o lo -j ACCEPT 

COMMIT 

 

iptables-restore < /etc/iptables.rules 



 

Add the following in file /etc/network/interfaces so the rules are loaded in every 

restart. (m) 

pre-up iptables-restore < /etc/iptables.rules 

 

Enable IP forwarding in master node by adding in file /etc/sysctl.conf the variable 

net.ipv4.ip_forward = 1 and running the command sysctl -p /etc/sysctl.conf. (m) 

 

Install the following packages (m) 

apt-get update 

apt-get install openjdk-7-jdk 

apt-get install vim 

apt-get install libtool 

apt-get install autoconf 

apt-get install ivy 

apt-get install maven 

apt-get install sshpass 

apt-get install unzip 

apt-get install p7zip-full 

 

Set the java version that we just installed as the default version. 

update-alternatives --config java 

 

Create a new Linux user specifically for Hadoop, for example user. The next steps 

will be performed as this new user, unless clearly specified. (m,s) 

adduser hadoop_user 

 

Add the following environmental variables in file /home/user/.bashrc: (m,s) 

export CLASSPATH=. 

export HADOOP_PREFIX=/home/user/hadoop-2.7.3 

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64 

export PIG_HOME=/home/user/hadoop-2.7.3/contrib/pig-0.12.0 

export PATH=$PATH:$PIG_HOME/bin:$JAVA_HOME/bin:$HADOOP_PREFIX/bin 

 

Download and compile esri-geometry-api using Ant inside the lib folder of Hadoop. 

(m) 

ant 

 



Change the dependency inside file spatialhadoop/ivy.xml to hadoop-2.7.3. (m) 

 

We download 2d version of SpatialHadoop and install it. (m,s) 

In order to modify our packet to support 3d data we compile the new SpatialHadoop 

source code: (m) 

mvn clean package 

 

We copy spatialhadoop-2.4.1_SNAPSHOT.jar under directory spatialhadoop2-

master/target/ to folder {HADOOP_HOME}/share/hadoop/common/lib/ 

spatialhadoop-2.4.1.jar (m,s) 

 

We change execute permissions of shadoop file under {HADOOP_HOME}/bin 

directory with command: (m,s) 

chmod +x shadoop 

 

As a root user copy the dependency jar files of SpatialHadoop: (m) 

cp /home/user/hadoop-2.7.3/share/hadoop/common/lib/esri-geometry-api-1.2.1.jar 

/usr/lib/jvm/java-7-openjdk-amd64/jre/lib/ext/ 

cp /home/user/hadoop-2.7.3/share/hadoop/common/lib/jts-1.13.jar /usr/lib/jvm/java-7-openjdk-

amd64/jre/lib/ext/ 

 

Extract SpatialHadoop package (under/dist/package) that was just created inside 

Hadoop folder. (m) 

 

Download and compile Pig inside main Hadoop folder: (m) 

ant 

 

Download and compile Pigeon inside main Hadoop folder, after adding the following 

in  pom.xml file so it uses Java 1.7: (m) 

<build> 

    <plugins> 

      <plugin> 

        <groupId>org.apache.maven.plugins</groupId> 

        <artifactId>maven-compiler-plugin</artifactId> 

        <configuration> 

          <source>1.7</source> 

          <target>1.7</target> 

        </configuration> 



      </plugin> 

    </plugins> 

</build> 

 

mvn package. After the above we continue with the configuration of Hadoop. 

 

If we want to enable remote debugging using an IDE we add the following in file 

etc/hadoop/hadoop-env.sh: (m) 

export HADOOP_OPTS="$HADOOP_OPTS -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005" 

 

If we want to add Hadoop to an Eclipse project we run the following command: (m) 

ant eclipse 

 

Increase the heap size of Hadoop by adding the following in file etc/hadoop/hadoop-

env.sh: (m,s) 

export HADOOP_HEAPSIZE=4096 

 

Create an SSH key with the following commands: (m) 

ssh-keygen -t rsa -P "" 

cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys 

 

Add names and IP addresses of the nodes inside file /etc/hosts. For example master 

and slave-X. (m) 

 

Create a file named script.sh with the following contents (This step can be skipped if 

we are willing to make the configuration of nodes manually): (m) 

#!/bin/bash 

USERNAME=root 

USERNAME2=user 

#slave node names 

HOSTS[0]="slave-1" 

HOSTS[1]="slave-2" 

HOSTS[2]="slave-3" 

HOSTS[3]="slave-4" 

HOSTS[4]="slave-5" 

HOSTS[5]="slave-6" 

HOSTS[6]="slave-7" 

HOSTS[7]="slave-8" 

 

#slave node passwords 



PASS[0]="VJO5HrSiqP" 

PASS[1]="ZOm0CQe08R" 

PASS[2]="h5BDVLG9HR" 

PASS[3]="uvvYaKMq9h" 

PASS[4]="D3sGvSg4dQ" 

PASS[5]="Fq7s1quZ4e" 

PASS[6]="C30F1kCOtF" 

PASS[7]="V5wZUuNuUu" 

#/etc/hosts configuration 

SCRIPT="echo '#Entries for hadoop nodes' >> /etc/hosts; 

echo '192.168.0.3       master' >> /etc/hosts; 

echo '192.168.0.2       slave-1' >> /etc/hosts; 

echo '192.168.0.4       slave-2' >> /etc/hosts; 

echo '192.168.0.5       slave-3' >> /etc/hosts; 

echo '192.168.0.6       slave-4' >> /etc/hosts; 

echo '192.168.0.7       slave-5' >> /etc/hosts; 

echo '192.168.0.8       slave-6' >> /etc/hosts; 

echo '192.168.0.9       slave-7' >> /etc/hosts; 

echo '192.168.0.10       slave-8' >> /etc/hosts" 

for ((i=0;i<${#HOSTS[@]};i++)); 

do 

        echo 'Starting configuration of node' ${HOSTS[$i]} 

        echo 'Copying hadoop' 

        sshpass -p ${PASS[$i]} ssh -o StrictHostKeyChecking=no -l ${USERNAME2} ${HOSTS[$i]} 'rm -r /home/user/hadoop-

2.7.3' >/dev/null 

        sshpass -p ${PASS[$i]} scp -r /home/user/hadoop-2.7.3 ${USERNAME2}@${HOSTS[$i]}:/home/user >/dev/null 

        echo 'Configuring SSH key' 

        sshpass -p ${PASS[$i]} ssh-copy-id -i $HOME/.ssh/id_rsa.pub ${USERNAME2}@${HOSTS[$i]} >/dev/null 

        echo 'Configuring /etc/hosts' 

        sshpass -p ${PASS[$i]} ssh -o StrictHostKeyChecking=no -l ${USERNAME} ${HOSTS[$i]} ${SCRIPT} >/dev/null 

        echo 'Configuring hostname' 

        sshpass -p ${PASS[$i]} ssh -o StrictHostKeyChecking=no -l ${USERNAME} ${HOSTS[$i]} 'sed -i '1d' /etc/hostname' 

>/dev/null 

        sshpass -p ${PASS[$i]} ssh -o StrictHostKeyChecking=no -l ${USERNAME} ${HOSTS[$i]} 'echo '${HOSTS[$i]}' >> 

/etc/hostname' >/dev/null 

        sshpass -p ${PASS[$i]} ssh -o StrictHostKeyChecking=no -l ${USERNAME} ${HOSTS[$i]} 'hostname -F /etc/hostname' 

>/dev/null 

        echo 'Configuring default gateway' 

        sshpass -p ${PASS[$i]} ssh -o StrictHostKeyChecking=no -l ${USERNAME} ${HOSTS[$i]} 'route add default gw 

192.168.0.3' >/dev/null 

        echo 'Installing java 7' 

        sshpass -p ${PASS[$i]} ssh -o StrictHostKeyChecking=no -l ${USERNAME} ${HOSTS[$i]} 'apt-get update && apt-get 

-y install openjdk-7-jdk' >/dev/null && sshpass -p ${PASS[$i]} ssh -o StrictHostKeyChecking=no -l ${USERNAME} 

${HOSTS[$i]} 'echo 3 | update-alternatives --config java' >/dev/null && echo 'Node' ${HOSTS[$i]} 'configured' 

        echo ' ' 

done 

 

The above commands will copy the master node SSH key to all slave nodes, so 

master node can connect to all the slaves without password prompt. Additionally we 



configure /etc/hosts and /etc/hostname files and install java 7 in all slave nodes after 

configuring the default gateway. We do the same for all slave nodes. 

 

Make script executable: (m) 

chmod u+x script.sh 

./script.sh 

 

SSH to localhost as well as the master node and all slave nodes so the SSH key 

fingerprint can be stored in the known_hosts file in master node. (m) 

 

Add the following variable in etc/hadoop/hadoop-env.sh and etc/hadoop/yarn-env.sh 

files to configure Java. (m,s) 

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64 

 

Add the following in file etc/hadoop/core-site.xml: (m,s) 

<property> 

<name>hadoop.tmp.dir</name> 

    <value>/home/user/hadoop-2.7.3/tmp</value> 

</property> 

<property> 

    <name>fs.defaultFS</name> 

    <value>hdfs://master-node:8020</value> 

</property> 

 

Create a file name mapred-site.xml with the command cp 

{HADOOP_HOME}/etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml and 

add the following: (m,s) 

<property> 

    <name>mapreduce.framework.name</name> 

    <value>yarn</value> 

</property> 

<property> 

    <name>mapreduce.map.java.opts</name> 

    <value>-Xmx3072m</value> 

</property> 

<property> 

    <name>mapreduce.reduce.java.opts</name> 

    <value>-Xmx3072m</value> 

</property> 

<property> 

<name>mapreduce.map.memory.mb</name> 

<value>2048</value> 



<description>No description</description> 

</property> 

<property> 

<name>mapreduce.reduce.memory.mb</name> 

<value>2048</value> 

<description>No description</description> 

</property> 

 

Add the following in file etc/hadoop/hdfs-site.xml to configure replication: (m) 

<property> 

    <name>dfs.replication</name> 

    <value>2</value> 

</property> 

<property> 

    <name>dfs.namenode.name.dir</name> 

    <value>/home/user/hadoop_store/hdfs/namenode</value> 

</property> 

<property> 

    <name>dfs.datanode.data.dir</name> 

    <value>/home/user/hadoop_store/hdfs/datanode</value> 

</property> 

 

Add the following in file etc/hadoop/hdfs-site.xml to configure replication: (s) 

<property> 

    <name>dfs.replication</name> 

    <value>2</value> 

</property> 

<property> 

    <name>dfs.datanode.data.dir</name> 

    <value>/home/user/hadoop_store/hdfs/datanode</value> 

</property> 

 

Add the following in file etc/hadoop/yarn-site.xml: (m,s) 

<property> 

    <name>yarn.resourcemanager.resource-tracker.address</name> 

    <value> master-node:8025</value> 

</property> 

<property> 

    <name>yarn.resourcemanager.scheduler.address</name> 

    <value> master-node:8030</value> 

<property> 

</property> 

    <name>yarn.resourcemanager.address</name> 

    <value> master-node:8050</value> 

</property> 

<property> 

    <name>yarn.nodemanager.aux-services</name> 

    <value>mapreduce_shuffle</value> 



</property> 

<property> 

    <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> 

    <value>org.apache.hadoop.mapred.ShuffleHandler</value> 

</property> 

 

Add in file etc/hadoop/slaves all the hostnames of the slave nodes. For example 

slave-1. We add also add master node so it can also run DataNode and TaskTracker 

daemons. In file etc/hadoop/master we add the hostname of the master node. (m) 

 

Add in file etc/hadoop/slaves the name of the slave node and in file 

etc/hadoop/master add the master node. (s) 

 

Run the following commands to create the necessary HDFS folders: 

mkdir -p /home/user/hadoop_store/hdfs/namenode 

chmod 755 /home/user/hadoop_store/hdfs/namenode 

mkdir -p /home/user/hadoop_store/hdfs/datanode 

chmod 755 /home/user/hadoop_store/hdfs/datanode 

 

Format HDFS with the command {HADOOP_HOME}/bin/hdfs namenode -format. (m) 

 

Start cluster with command {HADOOP_HOME}/sbin/start-all.sh and stop it with 

command {HADOOP_HOME}/sbin/stop-all.sh. (m) 

 

Start JobTracker with the command {HADOOP_HOME}/sbin/mr-jobhistory-daemon.sh 

start historyserver. To stop it, run the command {HADOOP_HOME}/sbin/mr-jobhistory-

daemon.sh stop historyserver. 

 

 Following steps describe the process to configure Eclipse IDE for remote debugging. 

Install java 7. 

 

Install Ant and in Eclipse go to window -> preferences -> java -> build path -> 

classpath variables and add a new variable with name ANT_HOME and as a path, 

the path to Ant folder. 

 



Add (if not already) tools.jar file from java. Go to window -> preferences -> java -> 

installed jres. Select the correct java version and click edit -> add external jars. 

Navigate to jdk folder and in lib folder select tools.jar. 

 

In remote VM and under Hadoop folder we run command ant eclipse to create the 

necessary files for the eclipse project. 

 

Copy from the remote VM, the Hadoop folder, as well as the ivy2 jar dependencies 

which will be needed for compilation. 

pscp -r -l user <remote VM IP>:<remote Hadoop path> <local path> 

pscp -r -l user <remote VM IP>:<remote ivy2 path> <local path> 

 

In Eclipse IDE go to file -> import -> general -> existing projects into workspace and 

select import to project. 

 

Go to properties of the project and then java build path -> libraries, configure the 

path to the ivy2 jar dependencies. (The path where these files where downloaded in 

the previous step). 

 

Copy SpatialHadoop source code to folder src/contrib under Hadoop project, and go 

to project properties, java build path -> source and add this folder in java build path 

variable of the project. 

 

Finally to connect Eclipse IDE to the remote VM go to Run -> Debug Configurations 

-> Remote Java Application -> New. Under field Host and Port add the IP of the VM 

and the port which was previously configured in file conf/hadoop-env.sh. 

 

 Generating experimental results dataset and running queries 

 

The data that we used for the experimental results are generated with SpatialHadoop. 

We run command: 

{HADOOP_HOME}/bin/shadoop generate test mbr:0,0,1000000,1000000 size:500.mb 

shape:point 



It will generate a data file. This data file will be generated as a 2d file at first. Using a 

python script, shown below, we converted the data file by adding a third coordinate 

in the form of epoch time. 

f = open("input_file", "r") 

f2 = open("dataset_3d.txt ", "w") 

start_epoch = 1246395600 

i = 0 

for line in f: 

    if i == 10: 

        i = 0 

        start_epoch += 1 

    else: 

        i += 1 

    line = line.rstrip() 

    print >>f2, line + "," + str(start_epoch) 

f.close() 

f2.close() 

 

After converting the data we store them into the HDFS using command: 

{HADOOP_HOME}/bin/hadoop fs -copyFromLocal /usr/local/hadoop/dataset_3d.txt 

/user/hduser 

The file will have data lines as following: 

550112.8992165184,568785.044501004,1246427280 

451068.2165806743,467595.5849949601,1246427280 

537850.9298712214,621531.5314808576,1246427280 

446283.4455272704,147200.20182653604,1246427280 

 

To build the index we run command: 

{HADOOP_HOME}/bin/shadoop index /user/hduser/dataset_3d.txt test3d.rtree sindex:rtree 

shape:point 

 

and to run the queries we used following commands: 

bin/shadoop rangequery test3d.rtree rq_results3d 

rect:500,500,1246562000,10000,10000,1246564000 shape:point 

bin/shadoop rangequery test3d.rtree rq_results3d2 

rect:500,500,1246562000,200000,200000,1246774000 shape:point 

bin/shadoop rangequery dataset_3d.txt rq_results3d3 

rect:500,500,1246562000,10000,10000,1246564000 shape:point 

bin/shadoop rangequery dataset_3d.txt rq_results3d4 

rect:500,500,1246562000,200000,200000,1246774000 shape:point 

 


