
UNIVERSITY OF PIRAEUS DEPARTMENT OF DIGITAL SYSTEMS

Link Discovery on the
Web of Data

Time and Space Efficient Large Scale Link
Discovery using String Similarities

2/11/2017

Postgraduate student: Andreas Karampelas

Supervisor: Professor George A. Vouros

This work proposes and evaluates a time and space efficient approach for computing links
between a source data set and a target dataset by exploiting string similarities. Evaluation
results show the time and space efficiency of the proposed method against state-of-the-art
approaches for link discovery.

2

Acknowledgements

I wish to express my gratitude to my thesis supervisor, Professor George A. Vouros
for his tireless help and guidance, but also for his encouragement and valuable advice
throughout my research for this work.

I would also like to thank Post Doctorate student George Santipantakis for his
generous assistance for solving many practical problems that occurred.

3

Table of Contents
Table of Contents .. 3

List of Figures ... 5

List of Algorithms ... 6

List of Tables .. 7

List of Graphs ... 8

1. Abstract ... 9

2. Introduction ... 10

3. Related work.. 12

a. Related problems .. 12

b. Proposed methods – Algorithms - Frameworks .. 13

c. Silk [22] – The Linked Data Integration Framework .. 14

d. LIMES [10] - LInk discovery framework for MEtric Spaces .. 15

e. String similarity algorithms .. 16

4. Contribution .. 17

5. Problem Formulation .. 18

a. The Link Discovery problem .. 18

b. Mathematical framework .. 18

c. Notation ... 20

6. Overview of the examined methods ... 20

7. The Blocking step ... 23

a. Exemplar class ... 23

b. Length Based Clustering .. 23

c. Creating Exemplars (per length, for every different length) 24

d. First Fit Approach .. 24

e. Best Fit Approach .. 25

8. The Filtering Step ... 27

a. Length Filtering .. 27

b. Triangle inequality filtering ... 27

c. Matching Substring Filtering ... 29

d. OptSema - Optimized application of Matching Substring Filter.................................. 31

9. The Verification Step ... 34

4

a. Naive approach for calculating distances .. 34

b. Optimized verification Length – aware verification .. 37

c. Length pruning .. 38

d. Improving length pruning .. 38

e. Optimized verification based on early termination/prefix pruning 39

10. Experimental evaluation.. 41

a. Data sets used ... 41

b. First Fit vs Best Fit .. 42

c. The impact of the number of exemplars used .. 44

d. Comparison for strings with 10 – 20 characters .. 48

e. Comparison for 20000 strings with 10-20 & 20-30 characters 53

f. OptSema vs LIMES on large datasets .. 56

11. Conclusion ... 60

12. Bibliography ... 62

5

List of Figures

Fig. 1 General workflow of LD Frameworks [12] ... 13

Fig. 2 : Silk Workbench - GUI ... 14

Fig. 3 : LIMES graphical user interface ... 15

Fig. 4 : A query Q(s, T, θ) in the data structure of the target dataset T using Sema 28

Fig. 5 : A query Q(s, T, θ) in the data structure of the target dataset T using OptSema 33

Fig. 6 : Step by step execution of the dp algorithm for edit distance computation 35

Fig. 7 : Early termination technique .. 37

Fig. 8 : Length pruning technique .. 38

Fig. 9 : Optimized Length pruning technique .. 39

Fig. 10 : Combination of prefix and length pruning... 39

6

List of Algorithms

Alg. 1: Computation of Exemplars and organization of T - First Fit Approach 25

Alg. 2 : Computation of Exemplars and organization of T - Best Fit Approach 26

Alg. 3 : Computation of Candidate Matching strings C ... 28

Alg. 4 : Determining if t is a candidate string .. 30

Alg. 5 : Computation of all candidates matching strings C΄ .. 30

Alg. 6 : Creating the list of segments of target string t.. 32

Alg. 7 : Computation of the Levenshtein distance .. 36

7

List of Tables

Table 1: Comparison between First Fit method and Best Fit method 42

Table 2 : Pruning power of TI and MS for different number of exemplars 45

Table 3 : Pruning power of TI and MS for different number of exemplars 47

8

List of Graphs

Graph 1 : Pruning power between FF and BF .. 43

Graph 2 : Difference of comparisons needed between FF and BF .. 43

Graph 3 : Sema runtime for different number of exemplars .. 44

Graph 4 : Pruning power of TI and MS filtering... 45

Graph 5 : OptSema runtime for different number of exemplars .. 46

Graph 6 : Pruning power of TI and MS filtering... 47

Graph 7 : Comparison of runtime between OptSema and Sema .. 48

Graph 8 : Runtime comparison for θ = 0.8 .. 49

Graph 9 : Runtime comparison for θ = 0.5 .. 49

Graph 10 : Runtime comparison for θ = 0.33 .. 50

Graph 11 : Runtime comparison for θ = 0.25 .. 50

Graph 12 : Memory footprint for θ = 0.8 ... 51

Graph 13: Memory footprint for θ = 0.5 .. 51

Graph 14: Memory footprint for θ = 0.33 .. 52

Graph 15 : Memory footprint for θ = 0.25 ... 52

Graph 16 : Runtime comparison from θ = 0.8 to θ = 0.16 .. 53

Graph 17 : Memory footprint from θ = 0.8 to θ =0.16 .. 54

Graph 18 : Runtime comparison from θ = 0.8 to θ = 0.14 .. 55

Graph 19 : Memory footprint from θ = 0.8 to θ =0.14 .. 55

Graph 20 : Runtime comparison from θ = 0.8 to θ = 0.16 for 100000 triples 56

Graph 21 : Memory footprint from θ = 0.8 to θ =0.16 for 100000 triples 57

Graph 22 : Runtime comparison from θ = 0.8 to θ = 0.16 for 100000 triples 58

Graph 23 : Memory footprint from θ = 0.8 to θ =0.16 for 100000 triples 58

9

1. Abstract

This work proposes and evaluates a time and space efficient approach for computing
links between a source data set and a target dataset by exploiting string similarities among
entities’ properties. The proposed approach builds on a basic indexing method that
facilitates pruning dissimilar pairs and supports effective verification of candidate pairs. It
proposes a blocking method that organizes the target data set appropriately, to perform
queries concerning matching a specific string. It supports an effective filtering approach that
uses three filters that lead to a relatively small amount of candidate strings that need
verification. Lastly, for the verification of each candidate string it uses an optimized
algorithm for computing the edit distance between two strings. Evaluation results show the
time and space efficiency of the proposed method against state-of-the-art approaches for
link discoveries.

10

2. Introduction

The web of data forms a data space where data sources are connected via RDF links.
The (semi-)automatic computation of such links is a problem that is related to the time and
space efficiency of the computations, to the precision and recall of the computations, and of
course to the involvement of human guiding (e.g. via link specifications) and verifying the
computations: Overall, the challenge of computing these links for large data sets is big.
Therefore, the need for scalable, automatic and reliable (in terms of precision and recall) link
discovery tools that scale to very large data sources is growing fast, as the web of data is
growing.

Using the widely used filter-verification framework, proposed methods aim to (a)
apply filters early enough in the process to prune large numbers of dissimilar pairs and
generate a small number of matching candidates; and (b) reduce the complexity of verifying
each candidate pair towards computing similarities and outputting the final results.

To dismiss non-matching pairs prior to verification (i.e. to prune the candidate pairs)
there are many generic methods, the most-well known of which are those mentioned as
blocking methods [18]. As it is known, standard blocking techniques lead to decrease of
recall due to false dismissals [3]. While blocking techniques create blocks in one dimension,
the multiblocking technique used in SILK [26] creates multiple blocks for a number of
properties in multiple dimensions. This increases the time efficiency of the link discovery
process significantly, in high precision and without sacrificing recall.

Regarding the computation of links using string similarities, there are many filtering
techniques that have been proposed [25].

Also, while the emphasis is on filtering (which is reasonable given that the need to
effectively prune the search space in scalable ways is big), the need to further improve the
verification stage emerges. This is true especially in cases where strings are large enough.
Many state-of-the-art algorithms for reducing the complexity of computations for comparing
(large) strings do exist [9].

This work proposes and evaluates a time and space efficient approach for computing
links between data sources, exploiting string similarities. The proposed approach builds on a
basic indexing method that facilitates pruning dissimilar pairs and verifying candidate pairs,
effectively. It proposes a filtering approach that utilizes string lengths and further partitions
the target datasets to blocks of entities according to dissimilarities between strings of equal
length. For the verification stage, this work presents and utilizes methods that aim to reduce
the complexity for computing the string metric used to quantify the similarity between two
strings.

11

Motivation

Linked Data refers to data published on the Web in such a way that the machine is
able to read these data, their meaning is defined explicitly, they are linked to external links
and they can be linked from external links[20].

Tim Berners-Lee [11] created a set of rules, so that the data published can be
interconnected. These rules are the following:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL)

4. Include links to other URIs, so that they can discover more things

The RDF Vocabulary Definition Language (RDFS) [20] and the Web Ontology
Language (OWL) [17] are used to create vocabularies that describe entities that exist on the
Web as well as their relation to other entities.

Over the last years there is an increasing interest on Link Discovery frameworks,
while the web of data is growing. This interest is analog to the growth of the amount of data
which is published as Linked Data [24]. So, there is undeniable and increasing demand for
efficient and reliable tools for discovering and maintaining data links between data sources
on the Web of Data. The main task that these tools have to perform is to identify
semantically similar instances in different data-sources and link them.

12

3. Related work

a. Related problems

A common statement of the Link Discovery (LD) problem is the following: Given two
sets of instances S, T find the matching pairs in S x T, that would be related with the OWL
property owl:sameAs [17]. The Link Discovery problem is closely related with the problem of
Record Linkage, which is the process of detecting pairs of matching instances between

individually clean(duplicate free) but overlapping sets of instances. This problem is
systematically examined in the following technical reports [29, 30]. There are several other
names used from researchers for this problem like object identification, data cleaning,
approximate matching (joins) [1]. Also it is related to the task of De-duplication, which has a

set of instances S as an input and detects the duplicate instances that this set S contains
[12]. Also these two tasks are often referred as the Entity Resolution (ER) problem [18].
Although similar techniques are used to address the ER and LD problems, different tools and
software has been developed because they still have significant differences [12].

The rationale behind the software used to address these problems is to reduce it to
a problem of computing the similarity of instances, based on properties of these instances.
These properties are expressed or represented by common data-types such as arithmetical
values, characters or strings. The similarity metric used to perform the matching task
depends on the data-type of these properties.

In the case that a property ranges to strings, then these frameworks utilize a string
similarity metric. A very common string similarity measure used is the Levenshtein distance
[8], but there are many other string similarity metrics such as Jaro – Wrinkler metrics [30],
which are primarily intended for short strings. There is an extended literature on string
similarity metrics and many experimental comparisons between them [23]. We will examine
thoroughly string similarity algorithms in the next chapter.

Another related problem to Link Discovery, when considering properties ranging to
string values, is called “String Similarity Joins” [7]. The formulation of the problem is the
following: Given two sets of strings R, S and a similarity metric, the string similarity join
problem is to find the set { (r, s) | r R, s S, r and s are similar w.r.t. the similarity metric}.

There are many algorithms proposed to solve this problem. Some of them use an optimized
version of the prefix filtering technique, which is the most effective filtering technique to
address to this problem. The following 7 algorithms are proposed to optimize the prefix
filtering concept: AllPair [2], PPJoin [32], EDJoin [31], TrieJoin [5], QChunk [19], VChunk [28],
AdaptJoin [27]. Others use different signature schemes than prefix filtering like PartEnum
[1], PassJoin [9], FastSS [4].

A comprehensive survey on the existing string similarity join algorithms can be found
in this work “String Similarity Joins: An Experimental Evaluation” [7]. The main contribution
of this work is that it offers a thorough experimental comparison of string similarity
algorithms under the same experimental framework utilizing a variety of authentic datasets.
According to the findings of this work the PassJoin algorithm outperforms other algorithms
in terms of both running time and memory usage. Also the work that presented the PassJoin
algorithm [9] showed that this algorithm achieved better results than EDJoin and PPJoin.

13

b. Proposed methods – Algorithms - Frameworks

Several frameworks have been proposed for link discovery (LD) between instances in
different knowledge bases, such as SILK[22] and LIMES[10]. An overview of these
frameworks is available in the paper “A Survey of Current Link Discovery Frameworks” [12].
The main contribution of this work is that it offers a generic schema of the link discovery
frameworks and a comprehensive evaluation of the performance and characteristics of
current link discovery frameworks.

Most state-of-the-art LD frameworks have a similar workflow which consists of a
preprocessing module, a matching module and a post-processing module. The preprocessing
module deals with tasks such as data cleaning or finalizing the linking specification. The post-
processing module usually deals with tasks such as determining the type of mapping needed
or applying a matching rule. For example we could restrict the matching task so that each
instance is linked with at most one instance and this instance is the optimal fit choice. The
matching module is the heart of the framework and it consists of three main steps: The first
step is the blocking step, where a property or an attribute is being used as a blocking key to
divide the target dataset to partitions. The output of this step usually creates the
appropriate data structure to implement the next two steps. The next step is the filtering
step, where several criteria and methods are being used to prune as much as possible the
number of instances that need verification. The output of this step is a relatively small set of
candidate instances that have to be verified. The last step is the verification step, where this
set of candidate instances is checked to see if every instance meets the specified criteria.

The following schema shows the general workflow of the LD frameworks where you
can see the main modules used as well as how they are related:

Fig. 1 General workflow of LD Frameworks [12]

14

c. Silk [22] – The Linked Data Integration Framework

Silk is a Link Discovery framework that is used to generate links between entities
from different data sets. It was introduced in the following work “Silk – A Link Discovery
Framework for the Web of Data” by J. Volz, C. Bizer, M.Gaedke and G.Kobilarov in 2009[26].
It is based on the Linked Data paradigm exploiting both the data model provided via RDF for
structured information and the ability to set RDF links between different data sources. It
supports the generation of owl:sameAs links as well as other RDF links.

This framework is provided with a special declarative language called Silk-LSL (Link
Specification Language) which is used to specify the linking conditions. This language
provides the flexibility of the framework. You can specify the conditions that should be
satisfied to link two entities from different sources but also the type of RDF link that you
wish to apply. Also you have the flexibility to combine various similarity metrics applied in
different properties of an entity in order to create link between two entities.

The following picture is indicative of the Silk Workbench. This is the graphical user
interface provided by Silk to tune all the parameters mentioned above.

Fig. 2 : Silk Workbench - GUI

15

d. LIMES [10] - LInk discovery framework for MEtric Spaces

We will briefly refer to the state-of-the-art Link Discovery framework called LIMES
that we have mentioned earlier. We will use this framework to compare it with our
algorithm in several different experiments and this is the reason that we will cover many
more features that this framework has. We have selected this framework instead of Silk
because it outperforms Silk in terms of runtime and memory as it was shown in the work
that introduced LIMES as a new Link Discovery framework.

LIMES was introduced in the following work “LIMES—A Time-Efficient Approach for
Large-Scale Link Discovery on the Web of Data” in 2011. At the beginning LIMES dealt with
Link Discovery based on properties that were strings. It could use different similarity metrics
for strings like Levenshtein, trigrams, Jaccard, Cosine etc. The first innovation introduced by
LIMES was the blocking technique that was based on the creation of exemplars and the
second innovation was the filtering technique used, that exploited the triangle inequality
property which holds for several string similarity metrics (such as Levenshtein, Jaccard etc)
to prune a large number of candidate strings. One year later the framework abandoned the
idea of exploiting the triangle inequality property and adopted the algorithms EDJoin[31]
and PPJoin[32] to perform string matching tasks, as it was presented in the following work
“On Link Discovery using a Hybrid Approach” in 2012[15]. We mentioned these algorithms in
a previous chapter as algorithms that are used for solving the “String Similarity Joins”
problem. Many new features were added from 2011 such as (1) the ability to perform
complex queries using Boolean operators [13] (2) the ability to perform queries using
different data types by the integration of the HYPPO and HR3 algorithms [15], (3) the ability
to use parallel hardware to perform fast link discovery tasks [16], (4) lastly it implements
supervised and unsupervised machine-learning algorithms for finding accurate link
specifications. The algorithms include the supervised, active and unsupervised versions of
EAGLE[14] and WOMBAT[10]

The following picture shows the graphical user interface used to tune the
parameters of LIMES:

Fig. 3 : LIMES graphical user interface

16

LIMES framework uses a language which is called LIMES Specification Language (LSL)

[10] to create a configuration file that specifies the parameters of the matching task we

want to perform. It can work as a standalone tool or as a Java library and using the

configuration file you can either access the datasets that will be used as source and target

locally or by including the URL of the SPARQL endpoint.

e. String similarity algorithms

There are many string similarity algorithms proposed over the last decades. Based

on the method used to quantify the similarity of strings we can divide them into two

different categories. The first category is the Token- based Metrics and the second category

is the Character- based Metrics [23].

In the first category the metrics transform the strings into sets of tokens and then

they use the set-based similarity metrics to quantify their similarity. There are two types of

tokens; those that rely on one or more special characters such as white space, semi-colon

etc, so since the string is tokenized depending on the position of the special characters each

token has a different length. The second type is called q-grams, where each token has a fixed

length. For example, the 5-gram set of “all strings” is {“all s”, “ll st”, “l str”, “ stri”, “strin”,

“tring”, “rings”}. If we tokenize using as a special character the white space then we have the

following set {“all”, “strings”}. The token-based metrics are suitable for long strings such as

essays and documents. For simplicity, each element in the set (token or q-gram) is called a

token and we also use string s to denote its corresponding token set. The well-known token-

based metrics include Overlap, Jaccard, Cosine, and Dice [31].

In the second category the metrics quantify the similarity of strings based on

character transformations. In this category there are many algorithms proposed such

Hamming distance, the Levenshtein distance(edit distance), the Damerau-Levenshtein

distance and the Jaro-Winkler distance. A comparison of string similarity metrics can be

found in “A comparative evaluation of string similarity metrics for ontology alignment” [23].

The main contribution of this work is that it offers a thorough experimental comparison of

string similarity algorithms under the same experimental framework and utilizing a variety of

authentic datasets.

We will use the Levenshtein distance [8] as a string similarity metric to perform our

experiments. This is also called edit distance which is, commonly used as a strings similarity

metric. The Levenshtein distance quantifies how similar two strings are to one another by

calculating the minimum edit operations needed to align these two strings. The method

used to compute the distance is presented in detail in the section where we explain our

framework. We are using this metric because (1) we focus on relatively small strings (2) we

exploit the triangle inequality property which holds for this metric while for other Character

–based metrics (e.g. Jaro-Winkler) this property does not hold.

17

4. Contribution

This work presents a lossless, time and space efficient approach for large scale link
discovery using string similarities. The proposed approach uses the idea of dividing the
target data set to blocks by using exemplars. This idea was initially presented by LIMES. Our
approach uses a different strategy than LIMES for partitioning the target dataset T to blocks.
It creates clusters by utilizing string length and then blocks by utilizing the Levenshtein
distance between strings. It combines different filtering and verification methods for string
similarities, towards pruning the set of candidate pairs to be considered and reducing the
comparisons needed for linking the entities.

The contributions of this work are as follows:

 Optimized blocking method: There is a new proposal in organizing the target
dataset T in order to have more pruning power. The two main criteria for the target dataset
clustering are two properties of these strings. The first one is the string length and the
second one is the Levenshtein distance in relation to a reference string which is called
exemplar string e. These two properties are associated with each string as key values of the
data structure used. Lastly, we present an indexing method to create a dictionary of string
segments per block that correspond to a list of strings that contain this segment.

 Optimized filtering methods: There is a proposal for the application of length
filtering, triangle inequality filtering and matching substring filtering. These three filtering
steps guaranty a time efficient output of all the candidate pairs of strings. So, every query
uses these three filtering steps to produce a relatively small set of strings for verification. We
compare two different implementations of the matching substring filtering in terms of
runtime in order to select the most efficient method.

 Optimized verification method: the verification step uses an optimized
approach for computing the edit distance between two strings. This approach exploits prefix
pruning, length pruning and early termination technique to compute efficiently the distance
between two strings.

 We have tested our method against LIMES using various datasets of
different size containing strings of various lengths. The experimental results show that the
optimized version of our algorithm outperforms LIMES in terms runtime and memory
footprint.

18

5. Problem Formulation

Subsequently we refer to the link discovery task as a matching task, given that we
aim to compute matching pairs of entities via the computation of joins between strings given
as values to key properties of entities in data sources.

a. The Link Discovery problem

MT(S, T, θ)

Definition 1 (Μatching Τask). Given two datasets S (source) and T (target) of

entities, a metric m and a threshold θ  [0,1], the goal of the matching task is to compute

the matching pairs (s,t) of all entities s  S and t  T, such that m(s,t) θ.

Q(s, T, θ)

Definition 2 (Query). Given one entity s (source) and a dataset T (target) of entities,

a metric m and a threshold θ  [0,1], the goal of a query is to compute the matching pairs (s,

t) of all entities t  T, such that m(s, t) θ.

Consequently a matching task can be seen as a set of queries.

Since we deal with a matching task considering string similarities, when referring to
an entity we refer to an aggregation of string values to key properties of that entity, denoted
by s. Thus s denotes the entity and the corresponding string representing that entity.

b. Mathematical framework

Given a set of points in an affine space A, a function m:AAR is a metric such that
for any x, y, z in A the following properties are true:

 m(x, y)  0 (non-negativity)

 m(x, y) =0  x=y (identity of indiscernible)

 m(x, y)=m(y, x) (symmetry)

 m(x, z)  m(x, y) + m(y, z) (triangle inequality)

The pair (A, m) is called a metric space. Although any metric may be used, in this
work we use the Levenshtein distance towards comparing strings. It should be noticed
however that any distance function (i.e any function that measures the distance or
dissimilarity between entities) can be transformed into a normed similarity function.

The computation of the distance m(s, t) is called a comparison. The computation of
the Levenshtein distance between a pair of strings is explained in details in the next
paragraphs. Concerning the complexity of the matching task, this is measured by the
number of necessary comparisons: A-priori this requires O(|S|*|T|) comparisons. The aim of
matching algorithms is to reduce this complexity by applying advanced filtering and
verification methods: This reduction is very important for algorithms in order to scale to very
large datasets. While the cost of comparisons is usually neglected, this may also be an
additional cause of increased complexity, especially when comparing, for instance, large

strings: Doing it in a naive way, this will require |s|*|t| operations, for any pair (s, t)  ST,
where |.| denotes the length of a string.

19

The triangle inequality (4th property of metric functions mentioned above) has been
extensively used for filtering out candidates in many tasks performed in metric spaces. As it is
mentioned in [13], the triangle inequality can be used to approximate the distance between
two points x, z in a metric space, when one knows the distances of those points to a third,
reference, point y. This can be done via the inequality

m(x, y) - m(y, z)  m(x, z)  m(x, y) + m(y, z)

These reference points in [13] are called exemplars and are representatives, or
samples, of portions of the metric space. According to the above inequality, information on
distances from exemplars (e.g. y) can be used to compute lower and upper bounds between
points (e.g. x,z) in the metric space. Furthermore, given a threshold θ for distances and the
lower bound of the m(x,z), it holds that:

 m(x, y) – m(y, z) > θ  m(x, z) > θ

Thus, knowing the distances from exemplars is enough to filter out matching
candidates.

Aiming to compute matching pairs of entities via the computation of joins between
strings given as values to key properties of entities in data sources, as already mentioned,
this work proposes an approach that builds on a basic indexing method, facilitating pruning
dissimilar pairs and verifying candidate pairs, effectively. The basic algorithm builds an index
for strings in the target set T , partitioning T into portions and identifying exemplars for each
portion in an incremental way (i.e. while scanning T), and then scans S using the index on T
to compute the results.

As said, the metric function used to measure the edit distance between two strings s,
t is the Levenshtein distance,. Using a dynamic programming algorithm, a 2d array M with
|s|+1 columns and |t|+1 rows is used. M[i][j] is the distance between the prefix of t with

length i and the prefix of s with length j. Initially M[i][0]=i and M[0][j]=j for 0i|t| and

0j|s| . Then each matrix cell can be computed by the following equation:

M[i][j]=min(M[i-1][j]+1,M[i][j-1]+1, M[i-1][j-1]+γ)

where γ=0 if the i-th character of t is equal to the j-th character of s, else γ=1.

While the complexity of the algorithm is O(|s|*|t|), we can avoid unnecessary

computations, given the threshold θ, by computing only values M[i][j] for |i-j|θ. Doing so,

the complexity is improved to O(θ  min(|t|,|s|)). Other termination techniques (e.g. those
proposed in [9]) may further improve performance.

20

c. Notation

We will use the following notation to explain all the methods and algorithms used.

TI : Triangle Inequality

dp: dynamic programming

Lev(s, e): the Levenshtein distance of the two strings s, e

|s|: the number of characters of string s

C: the set of clusters

E: the set of exemplars

E(i): the set of exemplars for length i

|E|: the number of exemplars

|E(i)|: the number of exemplars for length i

S, T: source and target dataset

|S|, |T|: the number of instances of every dataset respectively

floor(x) : returns the smaller integer value of the real number x

ceil(x) : return the larger integer value of the real number x

θ: threshold of a matching task

θe : threshold used to trigger the creation of a new exemplar

6. Overview of the examined methods

In the next two paragraphs there will be a brief overview of the examined methods.

These methods can be divided in three distinct parts: the blocking step, the filtering step

and the verification step.

For the blocking step we introduce a method to divide the target dataset to clusters

based on the strings’ lengths. Strings t of the target dataset T that have the same length are

in the same cluster. We create a set of exemplars per cluster (or per string length) by

choosing the most dissimilar strings inside each cluster. Each of these exemplars creates a

block of strings. This work examines two main methods to organize each cluster of the target

dataset to blocks using the exemplars. The first one is called First Fit (FF) approach and the

second one is called Best Fit (BF) approach. These two methods are thoroughly explained in

the paragraph where the creation of exemplars is examined. Also, based on an experimental

evaluation we select the Best Fit approach, which is more efficient in pruning a relatively

larger amount of candidate strings. While the blocking step takes place before we execute

21

any query as a preprocessing stage, the filtering step and the verification step take place

while we execute queries from the source dataset.

The filtering step consists of three distinct filtering methods that are applied when

we execute a query. The length filtering is based on the strings’ lengths. The application of

this filter determines a range of clusters that have to be processed further to find the

candidate strings matching the query string. The number of strings that is produced as an

output is steady and it does not depend on the parameters used. The triangle inequality

filter exploits the triangle inequality (TI) property. Inside any cluster of the range of clusters

determined, the TI filter determines a relatively small set of candidate strings for matching

per exemplar (block). The number of candidate strings determined depends on the number

of exemplars and on the partitioning scheme that is used to partition clusters to blocks. The

last filter used is the matching substring filter which further reduces the number of strings

that have to be verified.

The third part is the verification step. The verification step calculates edit distances

to verify a candidate matching string. In order to make this step efficient we have to apply as

many optimizations as possible, so that the complexity of the quadratic edit distance

dynamic programming algorithm for computing the Levenshtein method is reduced.

The target dataset:

The algorithm begins by determining the cluster of each string of the target dataset

T. The main criterion used in the first place is the length of the string. For example, if a target

dataset contains strings with 20 different lengths, then our method will create 20 different

clusters. Every string of the target dataset needs to be inside the cluster which contains

strings, whose length is exactly the same. So, each cluster contains the strings that share the

same length. Each cluster has none, one or many exemplars. The first exemplar of a cluster

whose length is A, is the first string s1 from the target dataset that has the given length A.

This is how we initialize a cluster. The next exemplar of this cluster is another string s2 whose

length is A, but Lev(s1, s2) is greater than the threshold that the user has predetermined for

triggering the creation of a new exemplar (θe). Inside each cluster, every string of the target

dataset is organized based on the Levenshtein distance that is calculated between the string

and the exemplars of the cluster. To be more precise we examine the two methods

mentioned earlier as First Fit and Best Fit approach. In the first approach the string that we

want to organize becomes a member string of an exemplar (block), if the Levenshtein

distance is less than the specific threshold θe that is predetermined from the user. We call

this method “First Fit” because a string will be classified inside the first exemplar satisfying

the threshold test. This means that there is a possibility that another exemplar is more

similar to the string, that we want to classify. In case there is no exemplar satisfying this

threshold criterion, then the new string becomes a new exemplar of the specific cluster. In

the second approach we have to find the edit distance between the string t and all the

exemplars of cluster |t| and insert the string to the block whose exemplar’s distance from t is

the minimum. This is the reason that this method is called “Best Fit”.

The source dataset part:

Each string s of the source dataset S corresponds to a query Q(s, T, θ). For each one

of these queries we apply three filtering methods. By using length filtering we specify the

22

set of clusters (and thus, blocks) that we have to search. By using triangle inequality

filtering we specify for every exemplar, the “area” in a block where candidate strings for

matching exist. By using matching substring filtering we exploit the fact that in order for

two strings s, t to match within a threshold θ, the string s should have a substring that

matches a segment of t, considering that t is divided in θ+1 segments. This property is

necessary but not sufficient to answer if the string satisfies the edit distance threshold set by

the user. The filtering techniques used output a small set of strings for each query Q(s, T, θ)

that have to be further verified as matching to the string s, within a distance θ.

After the filtering step the last step is verification. Verification is based on calculating

the Levenshtein distances between each candidate pair <s, t> to see if a string meets the

predefined requirements. Since we have to calculate the distance to verify that a string

matches any candidate one, we propose and implement several optimizations on how the

calculation of edit distance between two strings can be performed efficiently.

23

7. The Blocking step

a. Exemplar class

The exemplar class has two data members. The first data member is the string of the

exemplar. The second data member is the block of the exemplar. The data structure used to

represent the block is a hash map, which has an integer value as a key value and a list of

strings as the content of the key value. We have selected the hash map as our data structure

to organize the strings inside an exemplar. We have made this choice so that the key value

of the hash map corresponds to the calculated edit distance between the string and the

exemplar. So, if we want to find all the strings that have distance between Lev(s, e) - θ and

Lev(s, e) + θ, we can retrieve all the lists of strings in constant time.

b. Length Based Clustering

The first algorithm begins by clustering each string of the target dataset. The main

criterion used is the length of the string. Every string of the target dataset T needs to be

inside the cluster which contains strings, whose lengths are equal. This step will categorize

all the strings using the number of characters that a string has. The next idea is to create a

set of exemplars per string length. This set of exemplars is a very small subset of all the

strings that a cluster contains. They divide the cluster to blocks of strings. So, we can say that

each exemplar represents a block of strings. Two questions that rise and they are very

important to answer are the following:

1) What is the cost of this pre-computation step?

2) Is it worth paying this cost and in which cases?

The first question is very easy to answer, since we only have to take into account the

computation needed to calculate the length of a string. For a string s, the length of the string

is a property of class String, which means that the time complexity to retrieve the length is

O(1).

The second question does not have an obvious answer. Based on the length of a

string we can conclude if this string is worth verifying or not. This pre-computation step

organizes the target dataset so that in constant time we can retrieve all the strings that

have the proper length. Assuming that we have the query Q(s, T, θ) which means that we

have a source string s with length |s|, a target dataset T that has M strings organized in N

clusters, where N is the number of different lengths of the M strings and θ is the given

threshold. Then we know that the clusters that we have to take into account are those

whose length is |s| – θ to |s| + θ. This is the first filtering technique that we will use to

minimize the number of verifications needed to find all the matches.

24

c. Creating Exemplars (per length, for every different

length)

To create the set of exemplars E for each cluster we use a comparison between a
threshold θe that the user has predetermined and the Levenshtein distance between the
target strings t and the exemplars of a cluster.

Let us consider a cluster whose members are of length A. This cluster could have
none, one or many exemplars. The first exemplar of a cluster whose length is A, is the first
string s1 that we will encounter in the target dataset, that has the given length |s1|=A. This is
how we initialize the set of exemplars of a cluster. The next exemplar of this cluster is
another string s2 whose length is again A, but the Levenshtein distance between s1 and s2 is
greater than the threshold θe that the user has predetermined.

The reason behind the use of this threshold θe is that we want to test the behavior
of the algorithm when we increase or decrease the number of exemplars per length. We
want to see the way the number of exemplars and the partitioning of each cluster, through
these exemplars, affects the number of comparisons needed. Theoretically, even one
exemplar per length can give us the desired result but we are not sure for the efficiency of
this method.

d. First Fit Approach

Inside each cluster, every string of the target dataset is organized based on the
Levenshtein distance that is calculated between the string and the exemplars of the cluster.
To be more precise a given string s becomes a member string of an exemplar e, if the
Levenshtein distance is less than |e| - θe. We call this method “First Fit” because a string
will be classified inside an exemplar based on the order followed to check if this specific
requirement is satisfied.

This means that there is a possibility that another exemplar is more similar to our
string, but in this method we do not care about this fact. In case there is no such exemplar,
so that the distance is less than the given threshold, then this string becomes a new
exemplar of the specific cluster.

Another fact that is implied is that there is a strong possibility to have strings in the
target dataset that are “closer” to exemplars in different clusters (i.e. with different lengths).
This means that these exemplars don’t have exactly the same lengths but still they are very
close so that one may consider them near duplicates.

In case this threshold θe is set to zero this means that we will create exactly one
exemplar per cluster. This happens because between an exemplar e and a string t that has
the same length (|t|=|e|) the distance Lev(e, t) could be less or equal to its length
Lev(e,t) .

25

Data: Target dataset T, threshold θe
Output: N Clusters with a set E(i) of exemplars and their

matching to the instances in T, where i corresponds to a

string length

for t T do

Set i = |t|

if E(i) = then
 Set E(i) = E(i) {t}
else

 for e E(i) do
 if Lev(t,e)<= θe then
 Add t to the List of Strings in the

 hashmap of e with key value = Lev(t,e)

 else

 Set E(i) = E(i) {t}
 endif

 end

endif

end

Alg. 1: Computation of Exemplars and organization of T - First Fit Approach

e. Best Fit Approach

The above method creates exemplars per cluster and puts every string inside each
exemplar block using the minimum comparisons (computations of the Levenshtein distance
between two strings), but it has some disadvantages. The most important is that inside each
cluster, depending on the order that we follow, the first exemplars’ blocks are filled with
strings but the last exemplars’ blocks remain relatively empty. So, this leads to non balanced
blocks. To be more precise the comparisons needed to insert every single string inside the
data structure that we have created is in the worst case scenario |T|*c, where c is a
constant which is a small integer that represents the average number of exemplars that we
have created per length. We will show that this scheme leads to poor pruning of candidate
strings.

The scheme that we will adopt is called Best Fit Approach. According to that, every
string of the target dataset is organized based on the Levenshtein distance that is calculated
between the string and the exemplars of the cluster it corresponds. To be more precise a
given string s becomes a member string of an exemplar e under two conditions. The first
condition is that the Levenshtein distance of s to e is the minimum distance between all the
distances of s to E(i), where i = |s|. The second condition that has to be satisfied is that the
Lev(s, e) has to be less than θe. In case no exemplar inside the cluster satisfies these
conditions, then this string becomes a new exemplar of the specific cluster. Thus, in this
“Best Fit” approach a string will be inserted in the block of an exemplar based on the
minimum distance between the string s and every e E(i), where i =|s|. This scheme leads to
a more balanced allocation of the strings in exemplars’ blocks.

26

Data: Target dataset T, threshold θe
Output: N Clusters with a set E(i) of exemplars and their

matching to the instances in T, where i corresponds to a

string length

for t T do

Set i = |t|

if E(i) = then

 Set E(i) = E(i) {t}
else

 minDistance=|t|

 minIndex = -1

 for e E(i) do
 if Lev(t,e) < minDistance then

 minIndex = index of e

 minDistance = Lev(t,e)

 endif

 end for

 if(minDistance < θe)

 Add t to the List of Strings in the hashmap of e

with key value = minDistance

 else

 Set E(i) = E(i) {t}
 endif

End for

Alg. 2 : Computation of Exemplars and organization of T - Best Fit Approach

27

8. The Filtering Step

a. Length Filtering

The first filtering method that we will use is based on the length of the strings. For a
matching task MT(S, T, θ), we have arranged the target dataset, so that all the strings that
share the same length are in the same cluster. For a given string s from the source dataset S,
we execute a matching query Q(s, T, θ). We know that all the candidate matching strings are
inside the clusters whose length is between |s| – θ and |s| + θ. Let us assume that we have
a string t for which ||s| - |t|| > θ. This means that t has either θ + 1 less characters or θ + 1
more characters than s. In both cases even when we have the best case scenario (s is exactly
the same as a substring of t or s has a substring which is exactly the same as t), we need at
least θ + 1 edit operations (deletes or inserts) to align the strings. Thus, the candidate strings
t have a length string for which it holds that ||s| - |t|| <= θ. So, we can ignore all the other
clusters.

b. Triangle inequality filtering

The second filtering method that we will use is based on triangle inequality in metric
spaces.

Let us think every string as a point in a metric space. Each point has a distance from
another point based on a string similarity measure, such as the Levenshtein distance, so that
the triangle inequality is satisfied.

As a generalization for metric spaces, we can say that the distance between two
points x, z in a metric space is less or equal to the sum of the distances between x and a
reference point y and the distance between the reference point y and z.

Also there is the reverse triangle inequality which is more useful in our case because
it gives us lower bounds.

 m(x, z) |m(x, y) - m(y, z)| (1)

Any side of a triangle is greater or equal to the absolute difference between the
other two sides.

Inequality (1) implies that the distance between two points x, z in a metric space is
greater or equal to the absolute difference of the distances between x and a reference point
y and the distance between the reference point y and z.

As a consequence of inequality (1) we can conclude that if the difference between
two sides that are known is greater than a threshold θ, then the other side of the triangle is
greater than this threshold T too.

|m(x, y) - m(y, z)| θ => m(x, z) θ (4)

We will use the above conclusion for filtering / pruning the candidate strings for
verification. This is the exact implementation of the filtering.

28

Data: N Clusters with a set E(i) of exemplars and their

matching to the instances in T, where i corresponds to a

string length, threshold θ, source string s
Output: set of candidate strings C

for i = |s| – θ to |s| + θ

 for e E(i) do

 for key = Lev(s, e) – θ to Lev(s, e) + θ

 C = C {list(key)}

Alg. 3 : Computation of candidate matching strings C

The following shape explains what happens when we execute a new query with a

source string s. In the highlighted area we have all the strings that are candidate strings for

verification.

key 0 1 … |s| - θ … |s| … |s| + θ …

content List of exemplars

E(|s|- θ)

 List of exemplars

E(|s|)

 List of exemplars

E(|s|+ θ)

 e1 e4 e7

 e2 e5 e8

 e3 e6 e9

i.e.

e5

key 0 1 … Lev(s,e5) – θ … Lev(s,e5) … Lev(s,e5) + θ …

content List of strings List of strings List of strings

 t1 t4 t7

 t2 t5 t8

 t3 t6 t9

Fig. 4 : A query Q(s, T, θ) in the data structure of the target dataset T using Sema

Clusters (shown by their

representative exemplars) that we

have to check based on length

filtering

Strings in the block of e5 that we have to verify

based on triangle inequality filtering

29

c. Matching Substring Filtering

The third filtering method that we will apply is based on the properties that two
strings have to meet in order to have an edit distance which is less or equal that a threshold
θ. First of all we define a segment of a string as a substring of a given string. Given a string s
= “computer” we can partition it to 4 non overlapping segments in many different ways. For
example these four segments can be {“co”, “mp”, ”ut”, ”er”} or {“com”, “put”, “e”, “r”} etc.

 The following is the lemma used for filtering:

Lemma 1. Given a string t with θ + 1 segments and a string s, if s is similar to t within
the threshold θ, s must contain a substring which matches a segment of t [9].

So, let us assume that we have a string t T, a string s S and a given threshold θ.
Another assumption that we have to make is that |t| is larger than the threshold θ. The
lemma above states that if we partition t into θ + 1 disjoint segments (so that each segment
has at least one character) then, in order to satisfy the condition Lev(s, t) < θ, there has to be
at least one substring of s which matches a segment of t. Subsequently we can adopt this
filtering method as follows: A string is a candidate string for verification if and only if there is
a substring of s that matches a segment of t, from the t’ s θ + 1 disjoint segments.

Partition scheme

There are many partition schemes that we can adopt in order to create the θ + 1
disjoint segments of t. An effective scheme is able to reduce the number of candidate pairs
and improve the performance of our algorithm. If our partition scheme leads to short
segments then we lose pruning power. This is due to the fact that it is more likely to find
matching substrings for a segment which is short. At the same time if we try to create large
segments of a string then we are creating short segments, too. Consider the example of
string “computer” that we have already used. Obviously, the partitioning to {“co”, “mp”,
”ut”, ”er”} has 4 segments with the same length, while the partitioning to {“com”, “put”, “e”,
“r”} also has 4 segments but two of them have three characters and two of them have just
one character. The second set of segments will not prune strings that just have an “e” or an
“r” as a character. Another idea that we could adopt is to find rare characters or substrings
and rely on this information to partition the string t. On the other hand, in order to create
something like this we have to sacrifice again runtime. So, based on these observations the
partition scheme that we adopt is an even-partition scheme, which is very simple to apply
and it leads to a balanced partitioning so that there are almost equal segments. To be more
precise every segment will have either floor(|t|/ (θ + 1)) or ceil(|t|/ (θ + 1)) length.

30

This is the exact implementation of the filtering.

Function MatchingSubstringToSegment(t,s)

Data: target string t, source string s

Output: Boolean

d = |t| / (θ +1)

m = |t| % (θ +1)

 for (i =0; i < (θ +1)-m; i++)

 if(s.contains (t.substring(i*d, (i+1)*d))

 return true

 for(i = (θ +1)-m ; i < (θ +1) ; i++)

 if(s.contains(t.substring(i*d, (i+1)*d+1))

 return true

return false

Alg. 4 : Determining if t is a candidate string

Data: set of candidate strings C, source string s

Output: set of candidate strings C΄

for t C

 if (MatchingSubstringToSegment(t,s))

 C΄ = C΄ {t}

 Endif

end

Alg. 5 : Computation of all candidates matching strings C΄

The above algorithms are implemented in the first version of our program called Sema which
we will test against LIMES. An optimized version of our method is called OptSema.

31

d. OptSema - Optimized application of Matching Substring

Filter

The algorithm shown above is a rather naïve application of the lemma presented in
the previous paragraph. For a query Q(s, T, θ) length filtering and triangle inequality filtering
leads to a subset T΄ of candidate strings. For every single target string t of the set T΄ we have
to partition the target string t to θ+1 segments and find if there is at least one matching
substring of the source string s. The complexity of this operation is O(|s|*|t|/(θ+1)). Instead
of using this expensive operation for every single query that we need to perform we could
prepare the target dataset T to be able to find the strings that have a matching segment
more efficiently by using the proper data structure. The idea that we will present is based on
the creation of an index of segments for the target dataset T. This index will be implemented
using a hashmap that has string segments as the key values and as content they consist of
the list of strings that contain that segment. Using this data structure we are able to retrieve
all the strings that contain a segment in constant time.

Changes made in the exemplar class

Every exemplar string forms a block of strings and in this block every string is
classified based on its edit distance with the exemplar. Now we will add a new data
structure in each exemplar that will hold an index of segments for the strings that the
exemplar contains. To create this index of segments we will utilize the even partition scheme
that we mentioned earlier. Every string classified inside an exemplar will be partitioned to
segments. Every segment is a new smaller string than the original which could be a part of
other strings too, contained in the block of the exemplar. Using this segment as an index we
will build the list of strings that have this segment. To create this index we will use a hash
map that has a string as a key value and as content the strings that have this string as a
segment.

32

This is the exact implementation of the creation of segments for a target
string t.

Function targetSegments(String t)

Data: target string t, threshold θ
Output: List of Strings

List is a list of Strings

int d = |t| / (θ +1);

int count = |t| % (θ +1);

 if(d!=0){

 int i = 0;

 for (i =0; i < (θ +1)-count; i++) {

 List.add(t.substring(i*d, (i+1)*d));

 }

 for(i = (θ +1)-count ; i < (θ +1) ; i++) {

 List.add(t.substring(i*d, (i+1)*d+1));

 }

 }

 else{

 List.add(t);

 }

return List;

}

Alg. 6 : Creating the list of segments of target string t

The following shape explains what happens when we execute a new query with a source
string s. In the highlighted area we have all the strings that are candidate strings for
verification.

33

key 0 1 … |s| - θ … |s| … |s| + θ …

content List of exemplars

E(|s|- θ)

 List of exemplars

E(|s|)

 List of exemplars

E(|s|+ θ)

 e1 e4 e7

 e2 e5 e8

 e3 e6 e9

i.e.

e5

key 0 1 … Lev(s,e5) – θ … Lev(s,e5) … Lev(s,e5) + θ …

content List of strings List of strings List of strings List of strings

 t10 t1 t4 t7

 t12 t2 t5 t8

 t13 t3 t6 t9

e5: Index of segments of all target strings inside e5’s block

key “seg1” “seg2” … “segK” … “segX” … “segN” …

content List of strings List of strings List of strings

 t3 t4 t7

 t9 t10 t13

 t5 t9 t9

List of substrings of s with length |t|/(θ+1), |t|/(θ+1) +1

s1 s2 … sx=“segX” … sN=“segN”

Fig. 5 : A query Q(s, T, θ) in the data structure of the target dataset T using OptSema

Clusters that we have to check

based on length filtering

Strings that we have to verify based

on triangle inequality filtering

34

As shown in Fig. 5 when we execute a query Q(s, T, θ) we create a list of all the possible
substrings of a source string that have length |t|/(θ+1) and |t|/(θ+1) +1. In approximately
linear time O(|s|) we are able to retrieve the subset of strings T’ of the target data set T
that have a segment that matches a substring of s. In approximately constant time we are
able to check if a string t of the subset T’ belongs to the subset of strings that the Length
and TI filtering produces. In other words our main task now is to find the intersection of
two subsets of T, the subset produced from applying the Length and TI filtering and the
subset produced from the Matching Substring filtering. From Fig. 5 we can see that string
t10 has a segment that matches a substring of s, but we can prune it since it does not satisfy
the triangle inequality property. On the other hand, if we have a string like t1 which satisfies
the triangle inequality but there is no segment of t1 that matches a substring of s then again
we can prune the string.

The above algorithms are implemented in the second version of our program called
OptSema. We will test it against LIMES and the naïve version for implementing matching
substring filter called Sema.

9. The Verification Step

a. Naive approach for calculating distances

The edit distance algorithm answers to the following problem:

Given a pair of strings s and t and a set of edit operations (insertion, deletion, substitution)
that are allowed with a given cost for each one of them, find the edit operations needed to
align s to t, with the minimum cost.

So, in our case the minimum cost calculated by the edit distance has to be less or equal to θ.

So, our first approach to verify a pair of strings is to calculate the Levenshtein
distance or edit distance and see if the condition is satisfied. The computation of the edit
distance uses the dynamic programming (dp) paradigm which divides a problem into sub
problems. For each of these sub problems dp uses a memo to store their solution and based
on these solutions the algorithm finds the solution to the next sub –problems. The method
begins by determining the base cases which are these instances of the problem that have an
obvious solution.

In our case the mathematical background for implementing dp to find the edit
distance is the following:

There are three edit operations that are allowed to align these two strings.

1. Insert a character
2. Delete a character
3. Substitute a character

Each one of these operations has a cost that we have to pay to perform them. This
cost is added and the total cost is the edit distance. There is a variation of the Levenshtein
distance where each operation has a different cost. In our case we consider that every edit
operation has the same cost, which can be equal to 1.

Given a pair of strings s and t, and i, j pointers, where si corresponds to the substring
from character 0 to ith character of s and tj corresponds to the substring from character 0 to
jth character of t, then:

35

Base cases:

Opti0 =
 where

Opt0j =

 where

Recursive formula:

 Opti-1, j-1 if si = tj

 Opti-1, j + 1

Optij = Min Opti, j-1 +1 if si tj

 Opti-1, j-1 +1

We will perform a calculation of an edit distance using s=”COMPUTERS” and
t=”CIOMUTES”. We have selected these two strings because the edit operations needed to
align them involve all three edit operations that are available.

The following table is an example of the computation using the above formulas.

 i 0 1 2 3 4 5 6 7 8 9

j Opt null C O M P U T E R S

0 null 0 1 2 3 4 5 6 7 8 9

1 C 1 0 1 2 3 4 5 6 7 8

2 I 2 1 1 2 3 4 5 6 7 8

3 O 3 2 1 2 3 4 5 6 7 8

4 M 4 3 2 1 2 3 4 5 6 7

5 U 5 4 3 2 2 2 3 4 5 6

6 T 6 5 4 3 3 3 2 3 4 5

7 E 7 6 5 4 4 4 3 2 3 4

8 S 8 7 6 5 5 5 4 3 3 3

Fig. 6 : Step by step execution of the dp algorithm for edit distance computation

The base cases are highlighted with green color. The distance is the value of cell
Opt[8,9] = 3. This is the optimal solution to align the strings in the sub problem / instance we

are solving.

36

The pseudo code for the Levenshtein distance is the following:

int Levenshtein_Distance (string s[1..m], string t[1..n])

 // d is a table with m+1 rows and n+1 columns

 int d[m+1, n+1]

 for i from 0 to m+1

 d[i, 0] = i

 for j from 0 to n+1

 d[0, j] = j

 for i from 1 to m

 for j from 1 to n

 {

 if s[i] = t[j] then

 cost = 0

 else

 cost = 1

 d[i, j] = minimum(

 d[i-1, j] + 1, // deletion

 d[i, j-1] + 1, // insertion

 d[i-1, j-1] + 1 // substitution

)

 }

 return d[m+1, n+1]

Alg. 7 : Computation of the Levenshtein distance

The time complexity of the dynamic programming algorithm is O(|s|*|t|).

37

b. Optimized verification Length – aware verification

Simple early termination

To organize the target dataset we cannot avoid computing the edit distance of the
strings of the target dataset with the corresponding exemplars. The reason is that we have
to position each string in the hash map of an exemplar based on the edit distance between
the string and the exemplar. This distance is used as the key value of the hash map. It is
worth paying the cost, since it is a nice way to take advantage of the triangle inequality
property. By organizing strings like this, we can retrieve all the strings that satisfy the
Triangle Inequality property in O(1). On the other hand when we are executing queries from
the source dataset, then we are not interested on the exact distance between the source
string and the target strings. We are interested to find out if a source string and a target
string are “closer” than a threshold θ. This implies that when we verify a candidate target
string we could quickly exclude it as a matching pair if we can deduce that the string has a
distance greater than the threshold θ.

To simplify the analysis we will use the same example as before when talking about
the Levenshtein distance. Let us assume that string t is “COMPUTERS”, string s is
“CIOMUTES” and the given threshold θ = 1.

The algorithm begins by calculating the base cases and continues by calculating each
row from the left to the right side of the 2d array. For the Opt44 the value is already 2 and
since there are characters added on the right while we increment i, then the optimal
distance increments too. For the next row Opt53 is already 2 and it decrements from 5 to 2,
while we add characters by incrementing i. The next computation selects the minimum
between the three options that are highlighted with orange color. So since there is a
mismatch the minimum is Opt43 + 1 = 2. From now on we are sure that every value that we
calculate can be greater or equal to the values that are already calculated for the previous
sub problems. This is a direct consequence of the recursive formula used to calculate every
next optimal solution. So the algorithm can terminate earlier, without having to calculate all
the values that are highlighted with dashed cells.

 i null C O M P U T E R S

j 0 1 2 3 4 5 6 7 8 9

null 0 0 1 2 3 4 5 6 7 8 9

C 1 1 0 1 2 3 4 5 6 7 8

I 2 2 1 1 2 3 4 5 6 7 8

O 3 3 2 1 2 3 4 5 6 7 8

M 4 4 3 2 1 2 3 4 5 6 7

U 5 5 4 3 2 2 2 3 4 5 6

T 6 6 5 4 3 3 3 2 3 4 5

E 7 7 6 5 4 4 4 3 2 3 4

S 8 8 7 6 5 5 5 4 3 3 3

Fig. 7 : Early termination technique

38

c. Length pruning

The next improvement that we can implement is based on length pruning. Since the
threshold is 1, every instance of the problem involves i characters from the first string and j
characters from the second string. So, in this case we have to calculate only the instance
d[i,j], where |i-j| is less or equal to θ. This is because for every other instance for which |i -
j| > θ we conclude that d[i, j] > θ.

 i null C O M P U T E R S

j 0 1 2 3 4 5 6 7 8 9

null 0 0 1 2 3 4 5 6 7 8 9

C 1 1 0 1 2 3 4 5 6 7 8

I 2 2 1 1 2 3 4 5 6 7 8

O 3 3 2 1 2 3 4 5 6 7 8

M 4 4 3 2 1 2 3 4 5 6 7

U 5 5 4 3 2 2 2 3 4 5 6

T 6 6 5 4 3 3 3 2 3 4 5

E 7 7 6 5 4 4 4 3 2 3 4

S 8 8 7 6 5 5 5 4 3 3 3

Fig. 8 : Length pruning technique

So there is no need to compute these values. So in other words we only have to
compute only the values that are inside the orange cells. This optimization improves the
complexity of the algorithm from O(|s|*|t|) to O((2*θ +1)*min(|s|,|t|).

d. Improving length pruning

 We have another useful observation that leads to the next optimization. From the
2d - table we can deduce that d[2,2] instance aligns “CI” to “CO “ with 1 edit operation, and
the remaining substrings are “OMUTES” and “MPUTERS” that need at least one edit
operation to align based on their length difference. This means that we don’t need to
compute this value too since we know that it has exceeded the threshold θ. This method is
called length-aware verification method [9]. Let Δ= |s|-|t| (assuming that |s| is greater that
|t|) and Δ is less or equal to θ (if not then Lev(s, t) would be greater than θ).

For each row of the 2d array d, we have to compute d[i,j] for

i -floor((θ-Δ)/2) <= j <= i+floor((θ+Δ)/2).

This improves the complexity to O((θ + 1)*min(|s|, |t|). So in our case Δ= 9-8=1 => i
<= j <= i + 1. The optimization that we have achieved is shown by the deleted cells:

39

 i null C O M P U T E R S

j 0 1 2 3 4 5 6 7 8 9

null 0 0 1 2 3 4 5 6 7 8 9

C 1 1 0 1 2 3 4 5 6 7 8

I 2 2 1 1 2 3 4 5 6 7 8

O 3 3 2 1 2 3 4 5 6 7 8

M 4 4 3 2 1 2 3 4 5 6 7

U 5 5 4 3 2 2 2 3 4 5 6

T 6 6 5 4 3 3 3 2 3 4 5

E 7 7 6 5 4 4 4 3 2 3 4

S 8 8 7 6 5 5 5 4 3 3 3

Fig. 9 : Optimized Length pruning technique

e. Optimized verification based on early termination/prefix

pruning

 By observing again the way that the optimal distances are calculated in the 2-
dimensional array we can propose another optimization of the algorithm. This optimization
is called prefix pruning. Based on the discussion from the first optimization proposed we can
observe that after d[3,*] there is no chance that the strings have a distance which is less
than θ. This is because we have two calculated values which are shown in blue color d[3,3],
d[3,4] which are greater than θ = 1, thus we can stop the algorithm earlier because we are
sure that the distance is greater than θ.

 i null C O M P U T E R S

j 0 1 2 3 4 5 6 7 8 9

null 0 0 1 2 3 4 5 6 7 8 9

C 1 1 0 1 2 3 4 5 6 7 8

I 2 2 1 1 2 3 4 5 6 7 8

O 3 3 2 1 2 3 4 5 6 7 8

M 4 4 3 2 1 2 3 4 5 6 7

U 5 5 4 3 2 2 2 3 4 5 6

T 6 6 5 4 3 3 3 2 3 4 5

E 7 7 6 5 4 4 4 3 2 3 4

S 8 8 7 6 5 5 5 4 3 3 3

Fig. 10 : Combination of prefix and length pruning

40

So the main conclusion is that we can stop in row d[3,*]. Can we do better than this? What
can we say about the previous row which is d[2,*]? In this row one computation d[2,3] is
greater than θ but d[2,2] is equal to θ. So if we think about it we need d[2,2] = 1 to align
“CO” and “CI” and then we have to align “OMUTES” which has 6 characters to “MPUTERS”
which has 7 characters and we need at least one more edit operation. This means that we
can stop our algorithm even before d[3,*], in row d[2,*] by computing the sum of the
calculated value and the expected value based on the length difference of the substrings
remaining. So, we can stop the computation if for a row i it holds that d[i,*] + ||s|-i |-||t|-
*| > θ. For both Sema and OptSema we have used the combination of all the techniques
shown above to get the best runtime, when verifying a candidate string.

41

10. Experimental evaluation

The next section shows the experimental evaluation of the above methods in the following
order. We evaluate “First Fit” and “Best Fit” based on the comparisons that we need to do in
order to reach a result. We show the results and we adopt the better of these two methods.
The machine used for the experiments is a

Pentium® Dual-Core CPU T4500 @ 2.30Ghz 2.30Ghz RAM 4.00GB, 64-bit OS

a. Data sets used

The data sets that we have used for our experiments are triples from Ariadne
http://www.ariadne-eu.org/ that we have processed. To simplify the process we have
distinguished only the triples with the property “title”. We further processed the dataset so
that our dataset does not have duplicate URIs and the length of the string value would vary
from 10 to 20, from 20 to 30 characters and from 30 to 40 characters. Then we have created
different files using different number of triples per file. We will use these datasets to
perform experiments to measure the pruning power of our methods, to support further
what is theoretically stated and documented in the previous paragraphs for the efficiency of
our algorithms and to compare in terms of runtime and memory our algorithms with a state-
of-the-art LD framework that we have presented earlier called LIMES.

http://www.ariadne-eu.org/

42

b. First Fit vs Best Fit

We have tested the two methods for creating blocks inside a cluster, that are mentioned in a
previous paragraph of this work, in order to select the most efficient one. We have used
data sets containing strings from 1 to 10 characters. The size of the data sets begins from
1000 triples incrementing by 1000 to 10000 triples. The results are shown in the following
table:

size naïve Exemplars First Fit
FF pruning
power Best Fit

BF pruning
power difference

1000 1000000 77 200455 20,0% 198430 19,8% 2025

2000 4000000 92 847923 21,2% 808435 20,2% 39488

3000 9000000 106 1898234 21,1% 1786402 19,8% 111832

4000 16000000 111 3362485 21,0% 3116953 19,5% 245532

5000 25000000 122 5142627 20,6% 4766106 19,1% 376521

6000 36000000 125 7538683 20,9% 6883601 19,1% 655082

7000 49000000 130 10219565 20,9% 9302606 19,0% 916959

8000 64000000 140 13344899 20,9% 12146182 19,0% 1198717

9000 81000000 143 16838606 20,8% 15278929 18,9% 1559677

10000 100000000 146 21198689 21,2% 18791190 18,8% 2407499

Table 1: Comparison between First Fit method and Best Fit method

The column “size” contains the number of triples used per experiment. The column “naïve” contains the
number of comparisons that would be needed in the case that a naïve algorithm O(N2) was used to find the
matching pairs. The column “Exemplars” contain the exact number of exemplars that were created per
experiment. “First Fit” column contains the total number of comparisons (distance computations) needed
after the application of the Length and Triangle Inequality filtering. “FF pruning power” column holds the
quotient of number of FF comparisons over the naïve number of comparisons represented as a
percentage. “Best Fit” column contains the total number of comparisons needed after the application of
the Length and Triangle Inequality filtering. “BF pruning power” column holds the quotient of number of BF
comparisons over the naïve number of comparisons represented as a percentage. The column “difference”
contains the difference in the numbers of comparisons needed between the two methods in absolute
numbers (FF number of comparisons – BF number of comparisons).

The graph below offers a graphical representation of the pruning power in percentages that the two
methods have depending on the number of triples of datasets used.

43

Graph 1 : Pruning power between FF and BF

The following graph shows the difference between the two methods in absolute numbers.

Graph 2 : Difference of comparisons needed between FF and BF

The x- axis has the number of triples of the data set used, while the y-axis shows the

number of comparisons needed in absolute numbers. We can observe that the difference in
comparisons needed, between the two methods, increases as the size of the dataset

20,0%

21,2%
21,1% 21,0%

20,6%

20,9% 20,9% 20,9% 20,8%

21,2%

19,8%

20,2%

19,8%

19,5%

19,1% 19,1%
19,0% 19,0%

18,9% 18,8%

17,5%

18,0%

18,5%

19,0%

19,5%

20,0%

20,5%

21,0%

21,5%

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

p
e

rc
e

n
ta

ge
 p

as
si

n
g

th
e

 f
ilt

e
r

number of triples

Pruning Power

First Fit

Best Fit

0

5000000

10000000

15000000

20000000

25000000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2
0

2
5

3
9

4
8

8

1
1

1
8

3
2

2
4

5
5

3
2

3
7

6
5

2
1

6
5

5
0

8
2

9
1

6
9

5
9

1
1

9
8

7
1

7

1
5

5
9

6
7

7

2
4

0
7

4
9

9
 n

u
m

b
e

r
th

at
 p

as
se

d

number of triples

Best Fit vs First Fit

First Fit

Best Fit

difference

44

increases. For example in the case of 10000 triples the FF method needs approximately two
and a half million more comparisons than the BF method to finish the matching task.

We see that, in terms of comparisons needed to complete a matching task, the BF
method outperforms the FF method. So this is the method that we have selected as our
main method for creating blocks in each cluster.

c. The impact of the number of exemplars used

Testing Sema

We have tested Sema using 20000 strings with lengths that vary from 10 to 20
characters. The following experiment uses different number of exemplars to divide the
target dataset T and on each case we measure the pruning power and the runtime of the
“Best Fit” approach. The goal of this experiment is to measure the impact of the different
number of exemplars in terms of comparisons needed and runtime and to see if there is a
number of exemplars that we have to use depending on the size of the target dataset T, to
optimize the performance of our algorithm. The following chart shows the runtime of our
implementation depending on the number of exemplars.

Graph 3 : Sema runtime for different number of exemplars

From the above chart we conclude that we get better results as we increase the
number of exemplars. But there is a number of exemplar above which we get the opposite
result and the runtime increases. We can conclude that there is an optimal number of
exemplars that we have to use to achieve a better runtime. So, to get better results we have
to tune the parameters used to run our algorithm.

103

67 68

55 55
50

60

0

20

40

60

80

100

120

39 99 184 223 323 420 815

ti
m

e
 (

se
c)

Number of exemplars

Runtime per Number of exemplars

Sema

45

Graph 4 : Pruning power of TI and MS filtering

From the chart above we can see that while the pruning power of the triangle
inequality filter increases pruning power the other filter loses pruning power. If we tune the
number of exemplars to 39 then 31% of strings pass the TI filter. After this we apply the
Matching Substring filter and we get only 2.3% of the strings that need verification. If we
tune the number of exemplars to 815 only 8.8% of strings pass the TI filter. With the
application of the Matching Substring we get 7.7% of these strings that need verification.

 The following table shows the experimental results.

Naïve No of exemplars

No of
comparisons
after TI filtering TI Pruning Power

No of
comparisons for
verification after
MS filtering

MS Pruning
Power

4,00E+08 39 122590951 30,6% 2824362 2,3%

4,00E+08 99 95904909 24,0% 2762912 2,9%

4,00E+08 184 71027630 17,8% 2693435 3,8%

4,00E+08 223 68504819 17,1% 2679303 3,9%

4,00E+08 323 58027326 14,5% 2650476 4,6%

4,00E+08 420 51076663 12,8% 2633775 5,2%

4,00E+08 815 35008353 8,8% 2617074 7,7%

Table 2 : Pruning power of TI and MS for different number of exemplars

The column “Naïve” contains the total number of comparisons needed if we used
the naïve version for matching the two data sets. The column “No of exemplars” contains
the number of exemplars that we used per experiment. The column “No of comparisons
after TI filtering” contains the number of comparisons that we need after the application of
the Triangle Inequality filtering. The column “TI Pruning Power” contains the quotient of the
number of comparisons after TI filtering over the number of comparisons of the naïve
version. The column “No of comparisons for verification after MS filtering” contains the

30,6%

24,0%

17,8% 17,1%

14,5%
12,8%

8,8%

2,3% 2,9%
3,8% 3,9% 4,6% 5,2%

7,7%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

39 99 184 223 323 420 815

Number of exemplars

Triangle Inequality & Matching Substring Pruning Power

TI Pruning Power

Matching Substring
Pruning Power

46

number of comparisons that we need after the application of the Matching Substring
filtering. The column “MS Pruning Power” contains the quotient of the number of
comparisons after MS filtering over the number of comparisons of the naïve version.

We observe that in the case where the exemplars are 39 the number of comparisons
(marked with yellow) is enormous after the application of TI filter. The application of the
Matching Substring filter then results to rather small number of strings that need
verification. Now let us compare the above case with the case of 420 exemplars (marked
with green). We can see that we have less than half comparisons than we needed before
based on the TI filter. But after Matching Substring filter the difference between the
numbers of strings that need verification is quite small (2824362-2633775=190587).

Testing OptSema

We have repeated the same experiment using the same input file and number of
exemplars using the optimized version of our algorithm OptSema. The following chart shows
the runtime of our implementation depending on the number of exemplars.

Graph 5 : OptSema runtime for different number of exemplars

Obviously we get better results with as fewer exemplars as possible. A question that
we have to answer is why this is happening.

The chart below shows that we have exactly the same behavior in terms of the
number of comparisons needed as before.

15

20

24
26

31

35

0

5

10

15

20

25

30

35

40

39 99 184 223 323 420

ti
m

e
 (

se
c)

Number of exemplars

Runtime per Number of exemplars

OptSema

47

Graph 6 : Pruning power of TI and MS filtering

The table below explains in more detail our findings.

Naïve No of exemplars
No of
comparisons
after TI filtering

TI Pruning Power

No of
comparisons for
verification after
MS filtering

MS Pruning
Power

4,00E+08 39 122590951 30,6% 2824362 2,3%

4,00E+08 99 95904909 24,0% 2762912 2,9%

4,00E+08 184 71027630 17,8% 2693435 3,8%

4,00E+08 223 68504819 17,1% 2679303 3,9%

4,00E+08 323 58027326 14,5% 2650476 4,6%

4,00E+08 420 51076663 12,8% 2633775 5,2%

Table 3 : Pruning power of TI and MS for different number of exemplars

If we check Table 2 and Table 3 we got exactly the same results. Now we have to answer
why we get better runtime using OptSema than with Sema.

30,6%

24,0%

17,8% 17,1%

14,5%
12,8%

2,3% 2,9% 3,8% 3,9% 4,6% 5,2%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

39 99 184 223 323 420

Number of exemplars

Triangle Inequality & Matching Substring Pruning Power

TI Pruning Power

Matching Substring Pruning
Power

48

Graph 7 : Comparison of runtime between OptSema and Sema

The difference is justified based on the algorithm used for the application of the Matching
Substring filter. The optimized version OptSema leads to very efficient and quick pruning of
the set of strings that is produced from the TI filter. So even though we have to check huge
numbers of strings our method can prune quickly these strings and produce a relatively
small set of strings for verification.

d. Comparison for strings with 10 – 20 characters

We have tested LIMES, Sema, OptSema using strings with lengths that vary from 10 to
20 characters. The datasets used begin from 2000 triples, they increment by 2000 until they
reach 20000 triples. Based on our previous observations in the case of Sema we have
executed the algorithm for different number of exemplars and we have stored the best
results. For OptSema we have used the minimum number of exemplars needed to execute
the experiment. There is a need for a brief explanation of the threshold used. LIMES uses the
following formula to calculate the number of edit operations θ = 1/(1+d) and d is the
number of edit operations. So this means that when the threshold is 1 this means that the
number of edit operations is 0. If the threshold is equal to a value that belongs to (0.5, 1]
then again d = 0. So we have the following conditions:

d=0, if threshold (0.5, 1]

d=1, if threshold (0.33, 0.5]

d=2, if threshold (0.25, 0.33]

d=3, if threshold (0.2, 0.25]

15
20

24 26
31

35

103

67 68

55 55
50

0

20

40

60

80

100

120

39 99 184 223 323 420

ti
m

e
 (

se
c)

Number of exemplars

Runtime per Number of exemplars

OptSema

Sema

49

Runtime comparison

Graph 8 : Runtime comparison for θ = 0.8

Graph 9 : Runtime comparison for θ = 0.5

2
3

5

7
8

9

11

13

19

21

12

10
11

12

14
15

16

18

20

22

3 3
4

6
7

8
9 9 9

10

0

5

10

15

20

25

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 (

se
c)

number of triples

θ = 0.8

Sema time(sec)

Limes time(sec)

OptSema time

6 6

8
9

10
11

14

17

19

21

7

10

12

14

16
17

20

22 22
23

2

4

6
7 7

8
9 9

10

14

0

5

10

15

20

25

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 (

se
c)

number of triples

θ = 0.5

Sema time(sec)

Limes time(sec)

OptSema time

50

Graph 10 : Runtime comparison for θ = 0.33

Graph 11 : Runtime comparison for θ = 0.25

From the above graphs we can see that Sema has a good performance only for θ=
0.8 and 0.5, in other words only for none or one edit operation. In all the other cases LIMES
outperforms Sema as we can observe on the graphs as we increase the number of triples the
difference expands. On the other hand our optimized version called OptSema has better
results in terms of runtime for all the thresholds θ. The difference in runtime steadily
increases, as we increase the number of triples. This is more obvious in the last experiment
where we use 20000 triples. For 2000 triples OptSema finishes the matching task in 3
seconds while LIMES finishes the matching task in 9 seconds and the difference is 6 seconds.
For 20000 triples OptSema finishes the matching task in 29 seconds while LIMES finishes the
matching task in 54 seconds so the difference expands to 25 seconds.

2
6

9

14
17

22

28

35

40

48

10
12 13

15
17

20

25

33
30

36

2
5

8 9 9 10
12

14 15

20

0

10

20

30

40

50

60

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 (

se
c)

number of triples

θ = 0.33

Sema time(sec)

Limes time(sec)

OptSema time

5
11

15
22

32

41

50

64

77

89

9
13

16

24
28 27

31
38

46

54

3
6

9 10
14 15 17 19

22
29

0

10

20

30

40

50

60

70

80

90

100

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
 (

se
c)

number of triples

θ = 0.25

Sema time(sec)

Limes time(sec)

OptSema time

51

Memory comparison

Graph 12 : Memory footprint for θ = 0.8

Graph 13: Memory footprint for θ = 0.5

0 0 0

130 130
150

160

195

250
270

30

70 70

150
160

210

120

150

420 420

60 60

120

148
170

200
220

180 180

210

0

50

100

150

200

250

300

350

400

450

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
e

m
o

ry
 (

M
B

)

number of triples

θ = 0.8

Sema

Limes

OptSema

50

90

140 140 140
160

220

370
350

400

50

80
100

140

260

350

210

300 300

360

180
200

240

210

180
200

330

290 290

210

0

50

100

150

200

250

300

350

400

450

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
e

m
o

ry
 (

M
B

)

number of triples

θ = 0.5

Limes

Sema

OptSema

52

Graph 14: Memory footprint for θ = 0.33

Graph 15 : Memory footprint for θ = 0.25

From the graphs above we can deduce that both our implementations Sema and
OptSema have approximately the same behavior in memory usage. From the last two
experiments it is clear that both methods achieve better results in memory usage than
LIMES.

100

150

250

200

250 250
270

340 340
300

70

130

190
210

230

380
400

700 700

800

80

150

270
230

260 270

340 340
320 320

0

100

200

300

400

500

600

700

800

900

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
e

m
o

ry
 (

M
B

)

number of triples

θ = 0.33

Sema

Limes

OptSema

70

260
320

250
290 300

350 350
300

340

60
130

300

400

500

700
620

800

1150
1200

260 260
300

140

320 320 320 310 320
360

0

200

400

600

800

1000

1200

1400

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

m
e

m
o

ry
 (

M
B

)

number of triples

θ = 0.25

Sema

Limes

OptSema

53

e. Comparison for 20000 strings with 10-20 & 20-30 characters

Comparison for strings between 10 -20 characters

We performed two experiments with two datasets that contained 20000 triples. The
first dataset contained strings whose length varied from 10 to 20 characters. The second
dataset contained strings whose length varied from 20 to 30 characters. The purpose is to
see the performance of these methods for different lengths.

In the first case we have tested LIMES, Sema, OptSema using strings with lengths
that vary from 10 to 20 characters. The dataset used contained 20000 triples and the
threshold θ varies from the value 0,8 to the value 0,16. When θ is equal to 0.2 this means
that we have 4 edit operations while 0.16 means that we have 5 edit operations. In these
two cases we match two strings even if they need 1/5 or 1/4 of their length as edit
operations in order to align. The following graphs show the comparison of the three
methods in terms of runtime and memory usage.

Runtime comparison

Graph 16 : Runtime comparison from θ = 0.8 to θ = 0.16

20 21

48

89

159

285

22 23
36

54

138

228

10 14 20
29

38

89

0

50

100

150

200

250

300

0,8 0,5 0,33 0,25 0,2 0,16

ti
m

e
 (

se
c)

threshold θ

Runtime for matching task 20000 triples / String length between 10 to 20
characters

Sema

Limes

OptSema

54

Memory comparison

Graph 17 : Memory footprint from θ = 0.8 to θ =0.16

From the above graphs we can see that OptSema outperforms LIMES both in runtime and
memory footprint, but now we have a few more findings. All methods have worst
performance as we decrease θ but OptSema has a more smooth change in its’ behavior,
while LIMES has a very abrupt change.

Comparison for strings between 20 -30 characters

We have tested LIMES, OptSema using strings with lengths that vary from 20 to 30
characters. The dataset used contained 20000 triples and the threshold θ varies from the
value 0,8 to the value 0,14. We performed this experiment to see the behavior of our best
method OptSema in comparison to LIMES in larger strings. The following graphs show the

comparison of the methods in terms of runtime and memory usage.

270
360

300
340 350 360

420 400

800

1200

1300

1600

210 210

320 330 350 370

0

200

400

600

800

1000

1200

1400

1600

1800

0,8 0,5 0,33 0,25 0,2 0,16

m
e

m
o

ry
 (M

B
)

threshold θ

Memory footprint for matching task 20000 triples / String length between 10 to
20 characters

Sema

Limes

OptSema

55

Runtime comparison

Graph 18 : Runtime comparison from θ = 0.8 to θ = 0.14

Memory comparison

Graph 19 : Memory footprint from θ = 0.8 to θ =0.14

From the above graphs we can see that OptSema outperforms LIMES both in runtime and
memory footprint. We can also observe that even though we have larger strings OptSema
performs better than before and LIMES performs much better than before (see Graph 16).
This due to fact that the pruning power of our method depends on the length of the
segments produced in the blocks of the target dataset. So since we have larger strings this

12 15 17
24

29

62

139

8 8
13

17
23

34

59

0

20

40

60

80

100

120

140

160

0,8 0,5 0,33 0,25 0,2 0,16 0,14

ti
m

e
 (

se
c)

threshold θ

Runtime for matching task 20000 triples , string length between 20 and 30

Limes

OptSema

50

160 130

390
320

1000

1500

300

180

320 300 330 300
230

0

200

400

600

800

1000

1200

1400

1600

0,8 0,5 0,33 0,25 0,2 0,16 0,14

ti
m

e
 (

se
c)

threshold θ

Memory footprint for matching task 20000 triples , string length between 20 and
30

Limes

OptSema

56

means that we create larger segments that are less likely to be found as a substring of a
source string.

f. OptSema vs LIMES on large datasets

100000 triples – Strings vary from 20 to 30 characters

We have tested again Limes, OptSema using strings with lengths that vary from 20 to 30
characters. The dataset used contained 100000 triples and the threshold θ varies from the
value 0.8 to the value 0.16. The following graphs show the comparison of the two methods
in terms of runtime and memory usage.

Runtime comparison

Graph 20 : Runtime comparison from θ = 0.8 to θ = 0.16 for 100000 triples

0,8 0,5 0,33 0,25 0,2 0,16

Limes 52 73 89 167 395 1175

OptSema 24 39 91 186 315 575

52 73 89

167

395

1175

24 39
91

186

315

575

0

200

400

600

800

1000

1200

1400

ti
m

e
 (

se
c)

threshold θ

100000 triples / String length between 20 to 30 characters

Limes

OptSema

57

Memory comparison

Graph 21 : Memory footprint from θ = 0.8 to θ =0.16 for 100000 triples

We can see that there are two cases when θ is equal to 0,33 and 0,25 that LIMES has a
better runtime. In all the other cases OptSema performs better. From the aspect of memory
usage again we can observe that OptSema performs better in all the cases.

100000 triples – Strings vary from 30 to 40 characters

We have tested again LIMES, OptSema using strings with lengths that vary from 30 to 40
characters. The dataset used contained 100000 triples and the threshold θ varies from the
value 0,8 to the value 0,16. The following graphs show the comparison of the two methods
in terms of runtime and memory usage.

735

500

970

1700
1600

1900

370 400 400 450 450 500

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0,8 0,5 0,33 0,25 0,2 0,16

m
e

m
o

ry
 (

M
B

)

threshold θ

100000 triples / String length between 20 to 30 characters

Limes

OptSema

58

Runtime comparison

Graph 22 : Runtime comparison from θ = 0.8 to θ = 0.16 for 100000 triples

Memory comparison

Graph 23 : Memory footprint from θ = 0.8 to θ =0.16 for 100000 triples

162 169
188

231

338

567

37
55

88

159

269

408

0

100

200

300

400

500

600

0,8 0,5 0,33 0,25 0,2 0,16

ti
m

e
 (

se
c)

threshold θ

100000 triples / String length between 30 to 40 characters

Limes

OptSema

1500

1650
1700

1800 1800
1900

250
350 350 380 420

500

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0,8 0,5 0,33 0,25 0,2 0,16

m
e

m
o

ry
 (

M
B

)

threshold θ

100000 triples / String length between 30 to 40 characters

Limes

OptSema

59

We can see that in all the cases tested OptSema performs better than LIMES. From the
aspect of memory usage again we can observe that OptSema performs better in all the
cases. In comparison to the previous experiment we can deduce that our algorithm performs
better when the threshold θ is small and it represents a small number of edit operations
compared to the length of the string. For example, the runtime for θ = 0.2 (i.e. 4 edit
operations) is 315 seconds for the length 20-30 characters, while in this case the runtime is
269 for the length 30 -40 characters.

60

11. Conclusion

This work proposed and evaluated a time and space efficient approach for
computing links between data sources, exploiting string similarities. The proposed approach
builds on a basic indexing method that facilitates pruning dissimilar pairs and verifying
candidate pairs, effectively. It proposed a filtering approach that utilizes string lengths and
further partitions the target source to blocks of entities according to dissimilarities between
strings of equal length. For the verification stage, this work presented methods that aim to
reduce the complexity for computing the string metric used to quantify the similarity
between two strings. We have created two implementations (Sema, OptSema) and we have
compared them to LIMES which is a state-of-the-art framework for link discovery.

We have presented a blocking method that efficiently divides the target dataset T to
clusters based on the length of strings and then to blocks by creating exemplars per cluster.
We evaluated two methods for the creation of blocks the “First Fit” and the “Best Fit”
approach concerning the pruning power of these methods when we apply the Triangle
Inequality filter. We showed that “Best Fit” leads to better results. Subsequently, we have
presented a method that creates an index per block that contains string segments and the
strings that contain this segment. All the above summarizes the methods applied on the
target dataset.

We have presented three filters that can be applied in a sequential manner per
query: (1) length filter, (2) triangle inequality filter and (3) matching substring filter. We have
used these filters per query to produce a small number of candidate strings for verification.
We showed that these filters applied produce a small number of candidate strings by testing
their pruning power for different thresholds θ. We showed the relation between number of
exemplars and the pruning power of the Triangle Inequality filter and the Matching
Substring filter.

We have presented two implementations of the matching substring filter. The first
implementation was used in the version of our algorithm called Sema. The second
implementation was used in the version of our algorithm called OptSema. Both
implementations lead to the same number of comparisons that have be performed in order
to complete a matching task. The OptSema performs better in terms of runtime compared
to Sema.

We evaluated OptSema, Sema and LIMES using datasets of different size that
contained strings with various lengths. We showed that Sema and OptSema have
approximately the same memory footprint. All the experiments have shown that both
versions have a better memory footprint than LIMES. In terms of runtime LIMES
outperforms Sema. This becomes clearer as we increase the number of triples of the dataset
as well as the length of the strings. On the other hand the optimized implementation of our
algorithm OptSema outperforms LIMES in terms of runtime. This becomes clearer as we
increase the triples of our dataset as well as the length of the strings.

The indexing method that we have introduced made a big difference in the
efficiency and runtime of the matching substring filter and made our method competitive to
LIMES in terms of runtime. We can deduce this conclusion from the fact that the only
difference between Sema and OptSema is the implementation of the matching substring
filter.

61

In terms of memory usage LIMES has proven to be a very memory consuming
framework especially in cases where the threshold θ was very small and it had to deliver a
large number of matches.

Future work

This work could serve as a starting point for the creation of a more complex and
delicate framework for link discovery that efficiently performs a more complex matching
task. The first thing that could be implemented is to add more string similarity metrics such
as trigrams, Jaccard and cosine that could be more appropriate than Levenshtein distance
depending on the property that will be used for the matching task. For example Trigrams is a
more appropriate string similarity metric for long strings. Another function that would add
value to our framework is to be able to combine more than one condition that has to be met
in order to match two instances. This combination of conditions could concern more than
one property of a data item. Also these conditions could refer to properties that can have all
the data types that are used for the creation of Linked Data like numerical values, strings,
dates etc.

62

12. Bibliography

[1] Arasu, A., Ganti, V., & Kaushik, R.(2006). Efficient exact set-similarity joins. In VLDB,

918–929.

[2] Bayardo, R. J., Ma, Y. & Srikant, R. (2007). Scaling up all pairs similarity search. In

WWW, pages 131–140.

[3] Bizer, C.,Jentzsch, A., Isele, R.(2011) Efficient Multidimensional Blocking for Link

Discovery without losing Recall. 14th International Workshop on the Web and Databases

(WebDB 2011), June 12, 2011 - Athens, Greece

[4] Bocek, T., Burkhard, S., Hunt, E.(2007). Fast Similarity Search in Large Dictionaries.

Technical Report ifi-2007.02, Department of Informatics, University of Zurich.

[5] Feng, J., Wang, J., & Li, G. (2011). Trie-join: a trie-based method for efficient string

similarity joins. The VLDB Journal,21(4), 437-461. doi:10.1007/s00778-011-0252-8

[6] Hillner, S., & Ngomo, A. N. (2011). Parallelizing LIMES for large-scale link

discovery. Proceedings of the 7th International Conference on Semantic Systems - I-

Semantics '11. doi:10.1145/2063518.2063520

[7] Jiang, Y., Li, G., Feng, J., & Li, W. (2014). String similarity joins. Proceedings of the

VLDB Endowment,7(8), 625-636. doi:10.14778/2732296.2732299

[8] Levenshtein V. I. (1966) Binary codes capable of correcting deletions, insertions, and

reversals. Technical Report 8.Retrieved January 30, 2017,

from https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf

[9] Li, G., Deng, D., Wang, J., & Feng, J. (2011). Pass-join. Proceedings of the VLDB

Endowment,5(3), 253-264. doi:10.14778/2078331.2078340

[10] LIMES — Agile Knowledge Engineering and Semantic Web (AKSW). (n.d.). Retrieved

January 30, 2017, from http://aksw.org/Projects/LIMES.html

[11] Linked Data. (n.d.). Retrieved January 30, 2017, from

63

https://www.w3.org/DesignIssues/LinkedData.html

[12] Nentwig, M., Hartung, M., Ngomo, A. N., & Rahm, E. (2016). A survey of current Link

Discovery frameworks. Semantic Web,8(3), 419-436. doi:10.3233/sw-150210

[13] Ngonga Ngomo, A.-C. & Auer, Sö. (2011). LIMES - A Time-Efficient Approach for

Large-Scale Link Discovery on the Web of Data. Proceedings of IJCAI, .

[14] Ngonga Ngomo, A.-C. & Lyko, K. (2012). EAGLE: Efficient Active Learning of Link

Specifications using Genetic Programming. Proceedings of ESWC, .

[15] Ngonga Ngomo, A.-C. (2012). On Link Discovery using a Hybrid Approach. Journal on

Data Semantics, 1, 203 -- 217.

[16] Ngonga Ngomo, A.-C. (2014). HELIOS -- Execution Optimization for Link

Discovery. Proceedings of ISWC, .

[17] OWL. (n.d.). Retrieved January 30, 2017, from https://www.w3.org/OWL/

[18] Papadakis, G., Ioannou, E., Palpanas, T., Niederee, C., & Nejdl, W. (2013). A Blocking

Framework for Entity Resolution in Highly Heterogeneous Information Spaces. IEEE

Transactions on Knowledge and Data Engineering,25(12), 2665-2682.

doi:10.1109/tkde.2012.150

[19] Qin, J., Wang, W., Lu, Y., Xiao, C., & Lin, X. (2011). Efficient exact edit similarity query

processing with the asymmetric signature scheme. Proceedings of the 2011 international

conference on Management of data - SIGMOD '11. doi:10.1145/1989323.1989431

[20] RDF. (n.d.). Retrieved January 30, 2017, from https://www.w3.org/RDF/

[21] Sherif, M. A. & Ngonga Ngomo, A.-C. (2015). An Optimization Approach for Load

Balancing in Parallel Link Discovery. SEMANTiCS 2015, .

[22] Silk. (n.d.). Retrieved January 30, 2017, from http://silkframework.org/

[23] Sun, Y., Ma, L., Shuang, W.: A comparative evaluation of string similarity metrics for

ontology alignement. J. Inf. Comput. Sci. 12(3), 957–964 (2015)

http://silkframework.org/

64

[24] The Linking Open Data cloud diagram. (n.d.). Retrieved January 30, 2017, from

http://lod-cloud.net/

[25] Volz, J., Bizer, C., Gaedke, M., & Kobilarov, G. (2009). Discovering and Maintaining

Links on the Web of Data. Lecture Notes in Computer Science The Semantic Web - ISWC

2009, 650-665. doi:10.1007/978-3-642-04930-9_41

[26] Volz, J., Bizer, C., Gaedke, M., & Kobilarov, G. (2009). Silk – A Link Discovery

Framework for the Web of Data . 2nd Workshop about Linked Data on the Web

(LDOW2009), Madrid, Spain, April 2009.

[27] Wang, J., Li, G., & Feng, J. (2012). Can we beat the prefix filtering? Proceedings of

the 2012 international conference on Management of Data - SIGMOD '12.

doi:10.1145/2213836.2213847

[28] Wang, W., Qin, J., Xiao, C., Lin, X., & Shen, H. T. (2013). VChunkJoin: An Efficient

Algorithm for Edit Similarity Joins. IEEE Transactions on Knowledge and Data

Engineering,25(8), 1916-1929. doi:10.1109/tkde.2012.79

[29] Winkler, W. (1999). The state of record linkage and current research

problems. Technical report, Statistical Research Division, U.S. Bureau of the Census, 1999.

[30] Winkler, W. (2006). Overview of record linkage and current research directions.

Technical report, Bureau of the Census - Research Report Series, 2006.

[31] Xiao, C., Wang, W., & Lin, X. (2008). Ed-Join. Proceedings of the VLDB

Endowment,1(1), 933-944. doi:10.14778/1453856.1453957

[32] Xiao, C., Wang, W., Lin, X., & Yu, J. X. (2008). Efficient similarity joins for near

duplicate detection. Proceeding of the 17th international conference on World Wide Web -

WWW '08. doi:10.1145/1367497.1367516

