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1. Abstract 

This work proposes and evaluates a time and space efficient approach for computing 
links between a source data set and a target dataset by exploiting string similarities among 
entities’ properties. The proposed approach builds on a basic indexing method that 
facilitates pruning dissimilar pairs and supports effective verification of candidate pairs. It 
proposes a blocking method that organizes the target data set appropriately, to perform 
queries concerning matching a specific string. It supports an effective filtering approach that 
uses three filters that lead to a relatively small amount of candidate strings that need 
verification. Lastly, for the verification of each candidate string it uses an optimized 
algorithm for computing the edit distance between two strings. Evaluation results show the 
time and space efficiency of the proposed method against state-of-the-art approaches for 
link discoveries. 
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2. Introduction 

The web of data forms a data space where data sources are connected via RDF links. 
The (semi-)automatic computation of such links is a problem that is related to the time and 
space efficiency of the computations, to the precision and recall of the computations, and of 
course to the involvement of human guiding (e.g. via link specifications) and verifying the 
computations: Overall, the challenge of computing these links for large data sets is big. 
Therefore, the need for scalable, automatic and reliable (in terms of precision and recall) link 
discovery tools that scale to very large data sources is growing fast, as the web of data is 
growing.  

Using the widely used filter-verification framework, proposed methods aim to (a) 
apply filters early enough in the process to prune large numbers of dissimilar pairs and 
generate a small number of matching candidates; and (b) reduce the complexity of verifying 
each candidate pair towards computing similarities and outputting the final results. 

To dismiss non-matching pairs prior to verification (i.e. to prune the candidate pairs) 
there are many generic methods, the most-well known of which are those mentioned as 
blocking methods [18]. As it is known, standard blocking techniques lead to decrease of 
recall due to false dismissals [3]. While blocking techniques create blocks in one dimension, 
the multiblocking technique used in SILK [26] creates multiple blocks for a number of 
properties in multiple dimensions. This increases the time efficiency of the link discovery 
process significantly, in high precision and without sacrificing recall.  

Regarding the computation of links using string similarities, there are many filtering 
techniques that have been proposed [25]. 

Also, while the emphasis is on filtering (which is reasonable given that the need to 
effectively prune the search space in scalable ways is big), the need to further improve the 
verification stage emerges. This is true especially in cases where strings are large enough. 
Many state-of-the-art algorithms for reducing the complexity of computations for comparing 
(large) strings do exist [9].  

This work proposes and evaluates a time and space efficient approach for computing 
links between data sources, exploiting string similarities. The proposed approach builds on a 
basic indexing method that facilitates pruning dissimilar pairs and verifying candidate pairs, 
effectively. It proposes a filtering approach that utilizes string lengths and further partitions 
the target datasets to blocks of entities according to dissimilarities between strings of equal 
length. For the verification stage, this work presents and utilizes methods that aim to reduce 
the complexity for computing the string metric used to quantify the similarity between two 
strings. 
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Motivation 

Linked Data refers to data published on the Web in such a way that the machine is 
able to read these data, their meaning is defined explicitly, they are linked to external links 
and they can be linked from external links[20]. 

Tim Berners-Lee [11] created a set of rules, so that the data published can be 
interconnected. These rules are the following:  

1. Use URIs as names for things  

2. Use HTTP URIs so that people can look up those names  

3. When someone looks up a URI, provide useful information, using the standards 
(RDF, SPARQL)  

4. Include links to other URIs, so that they can discover more things 

The RDF Vocabulary Definition Language (RDFS) [20] and the Web Ontology 
Language (OWL) [17] are used to create vocabularies that describe entities that exist on the 
Web as well as their relation to other entities.  

Over the last years there is an increasing interest on Link Discovery frameworks, 
while the web of data is growing. This interest is analog to the growth of the amount of data 
which is published as Linked Data [24]. So, there is undeniable and increasing demand for 
efficient and reliable tools for discovering and maintaining data links between data sources 
on the Web of Data. The main task that these tools have to perform is to identify 
semantically similar instances in different data-sources and link them.   
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3. Related work 

a. Related problems 

A common statement of the Link Discovery (LD) problem is the following: Given two 
sets of instances S, T find the matching pairs in S x T, that would be related with the OWL 
property owl:sameAs [17]. The Link Discovery problem is closely related with the problem of 
Record Linkage, which is the process of detecting pairs of matching instances between 

individually clean(duplicate free) but overlapping sets of instances. This problem is 
systematically examined in the following technical reports [29, 30]. There are several other 
names used from researchers for this problem like object identification, data cleaning, 
approximate matching (joins) [1]. Also it is related to the task of De-duplication, which has a 

set of instances S as an input and detects the duplicate instances that this set S contains 
[12]. Also these two tasks are often referred as the Entity Resolution (ER) problem [18]. 
Although similar techniques are used to address the ER and LD problems, different tools and 
software has been developed because they still have significant differences [12]. 

The rationale behind the software used to address these problems is to reduce it to 
a problem of computing the similarity of instances, based on properties of these instances. 
These properties are expressed or represented by common data-types such as arithmetical 
values, characters or strings. The similarity metric used to perform the matching task 
depends on the data-type of these properties. 

In the case that a property ranges to strings, then these frameworks utilize a string 
similarity metric. A very common string similarity measure used is the Levenshtein distance 
[8], but there are many other string similarity metrics such as Jaro – Wrinkler metrics [30], 
which are primarily intended for short strings. There is an extended literature on string 
similarity metrics and many experimental comparisons between them [23]. We will examine 
thoroughly string similarity algorithms in the next chapter.  

Another related problem to Link Discovery, when considering properties ranging to 
string values, is called “String Similarity Joins” [7]. The formulation of the problem is the 
following: Given two sets of strings R, S and a similarity metric, the string similarity join 
problem is to find the set { (r, s) | r   R, s   S, r and s are similar w.r.t. the similarity metric}. 

There are many algorithms proposed to solve this problem. Some of them use an optimized 
version of the prefix filtering technique, which is the most effective filtering technique to 
address to this problem. The following 7 algorithms are proposed to optimize the prefix 
filtering concept: AllPair [2], PPJoin [32], EDJoin [31], TrieJoin [5], QChunk [19], VChunk [28], 
AdaptJoin [27]. Others use different signature schemes than prefix filtering like PartEnum 
[1], PassJoin [9], FastSS [4].  

A comprehensive survey on the existing string similarity join algorithms can be found 
in this work “String Similarity Joins: An Experimental Evaluation” [7]. The main contribution 
of this work is that it offers a thorough experimental comparison of string similarity 
algorithms under the same experimental framework utilizing a variety of authentic datasets. 
According to the findings of this work the PassJoin algorithm outperforms other algorithms 
in terms of both running time and memory usage. Also the work that presented the PassJoin 
algorithm [9] showed that this algorithm achieved better results than EDJoin and PPJoin. 
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b. Proposed methods – Algorithms - Frameworks 

Several frameworks have been proposed for link discovery (LD) between instances in 
different knowledge bases, such as SILK[22] and LIMES[10]. An overview of these 
frameworks is available in the paper “A Survey of Current Link Discovery Frameworks” [12].  
The main contribution of this work is that it offers a generic schema of the link discovery 
frameworks and a comprehensive evaluation of the performance and characteristics of 
current link discovery frameworks. 

Most state-of-the-art LD frameworks have a similar workflow which consists of a 
preprocessing module, a matching module and a post-processing module. The preprocessing 
module deals with tasks such as data cleaning or finalizing the linking specification. The post-
processing module usually deals with tasks such as determining the type of mapping needed 
or applying a matching rule. For example we could restrict the matching task so that each 
instance is linked with at most one instance and this instance is the optimal fit choice. The 
matching module is the heart of the framework and it consists of three main steps: The first 
step is the blocking step, where a property or an attribute is being used as a blocking key to 
divide the target dataset to partitions. The output of this step usually creates the 
appropriate data structure to implement the next two steps. The next step is the filtering 
step, where several criteria and methods are being used to prune as much as possible the 
number of instances that need verification. The output of this step is a relatively small set of 
candidate instances that have to be verified. The last step is the verification step, where this 
set of candidate instances is checked to see if every instance meets the specified criteria.  

The following schema shows the general workflow of the LD frameworks where you 
can see the main modules used as well as how they are related:   

 

Fig. 1 General workflow of LD Frameworks [12] 
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c. Silk [22] – The Linked Data Integration Framework 

Silk is a Link Discovery framework that is used to generate links between entities 
from different data sets. It was introduced in the following work “Silk – A Link Discovery 
Framework for the Web of Data” by J. Volz, C. Bizer, M.Gaedke and G.Kobilarov in 2009[26]. 
It is based on the Linked Data paradigm exploiting both the data model provided via RDF for 
structured information and the ability to set RDF links between different data sources. It 
supports the generation of owl:sameAs links as well as other RDF links. 

This framework is provided with a special declarative language called Silk-LSL (Link 
Specification Language) which is used to specify the linking conditions. This language 
provides the flexibility of the framework. You can specify the conditions that should be 
satisfied to link two entities from different sources but also the type of RDF link that you 
wish to apply. Also you have the flexibility to combine various similarity metrics applied in 
different properties of an entity in order to create link between two entities. 

The following picture is indicative of the Silk Workbench. This is the graphical user 
interface provided by Silk to tune all the parameters mentioned above.   

 

Fig. 2 : Silk Workbench - GUI 
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d. LIMES [10] - LInk discovery framework for MEtric Spaces 

We will briefly refer to the state-of-the-art Link Discovery framework called LIMES 
that we have mentioned earlier. We will use this framework to compare it with our 
algorithm in several different experiments and this is the reason that we will cover many 
more features that this framework has. We have selected this framework instead of Silk 
because it outperforms Silk in terms of runtime and memory as it was shown in the work 
that introduced LIMES as a new Link Discovery framework.  

LIMES was introduced in the following work “LIMES—A Time-Efficient Approach for 
Large-Scale Link Discovery on the Web of Data” in 2011. At the beginning LIMES dealt with 
Link Discovery based on properties that were strings. It could use different similarity metrics 
for strings like Levenshtein, trigrams, Jaccard, Cosine etc. The first innovation introduced by 
LIMES was the blocking technique that was based on the creation of exemplars and the 
second innovation was the filtering technique used, that exploited the triangle inequality 
property which holds for several string similarity metrics (such as Levenshtein, Jaccard etc) 
to prune a large number of candidate strings. One year later the framework abandoned the 
idea of exploiting the triangle inequality property and adopted the algorithms EDJoin[31] 
and PPJoin[32] to perform string matching tasks, as it was presented in the following work 
“On Link Discovery using a Hybrid Approach” in 2012[15]. We mentioned these algorithms in 
a previous chapter as algorithms that are used for solving the “String Similarity Joins” 
problem. Many new features were added from 2011 such as (1) the ability to perform 
complex queries using Boolean operators [13] (2) the ability to perform queries using 
different data types by the integration of the HYPPO and HR3 algorithms [15], (3) the ability 
to use parallel hardware to perform fast link discovery tasks [16], (4) lastly it implements 
supervised and unsupervised machine-learning algorithms for finding accurate link 
specifications. The algorithms include the supervised, active and unsupervised versions of 
EAGLE[14] and WOMBAT[10] 

The following picture shows the graphical user interface used to tune the 
parameters of LIMES:  

 

Fig. 3 : LIMES graphical user interface 
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LIMES framework uses a language which is called LIMES Specification Language (LSL) 

[10] to create a configuration file that specifies the parameters of the matching task we 

want to perform. It can work as a standalone tool or as a Java library and using the 

configuration file you can either access the datasets that will be used as source and target 

locally or by including the URL of the SPARQL endpoint. 

e. String similarity algorithms 

There are many string similarity algorithms proposed over the last decades.  Based 

on the method used to quantify the similarity of strings we can divide them into two 

different categories. The first category is the Token- based Metrics and the second category 

is the Character- based Metrics [23]. 

In the first category the metrics transform the strings into sets of tokens and then 

they use the set-based similarity metrics to quantify their similarity. There are two types of 

tokens; those that rely on one or more special characters such as white space, semi-colon 

etc, so since the string is tokenized depending on the position of the special characters each 

token has a different length. The second type is called q-grams, where each token has a fixed 

length. For example, the 5-gram set of “all strings” is {“all s”, “ll st”, “l str”, “ stri”, “strin”, 

“tring”, “rings”}. If we tokenize using as a special character the white space then we have the 

following set {“all”, “strings”}. The token-based metrics are suitable for long strings such as 

essays and documents. For simplicity, each element in the set (token or q-gram) is called a 

token and we also use string s to denote its corresponding token set. The well-known token-

based metrics include Overlap, Jaccard, Cosine, and Dice [31]. 

In the second category the metrics quantify the similarity of strings based on 

character transformations. In this category there are many algorithms proposed such 

Hamming distance, the Levenshtein distance(edit distance), the Damerau-Levenshtein 

distance and the Jaro-Winkler distance. A comparison of string similarity metrics can be 

found in “A comparative evaluation of string similarity metrics for ontology alignment” [23]. 

The main contribution of this work is that it offers a thorough experimental comparison of 

string similarity algorithms under the same experimental framework and utilizing a variety of 

authentic datasets.  

We will use the Levenshtein distance [8] as a string similarity metric to perform our 

experiments. This is also called edit distance which is, commonly used as a strings similarity 

metric. The Levenshtein distance quantifies how similar two strings are to one another by 

calculating the minimum edit operations needed to align these two strings. The method 

used to compute the distance is presented in detail in the section where we explain our 

framework. We are using this metric because (1) we focus on relatively small strings (2) we 

exploit the triangle inequality property which holds for this metric while for other Character 

–based metrics (e.g. Jaro-Winkler) this property does not hold. 
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4. Contribution 

This work presents a lossless, time and space efficient approach for large scale link 
discovery using string similarities. The proposed approach uses the idea of dividing the 
target data set to blocks by using exemplars. This idea was initially presented by LIMES. Our 
approach uses a different strategy than LIMES for partitioning the target dataset T to blocks. 
It creates clusters by utilizing string length and then blocks by utilizing the Levenshtein 
distance between strings.  It combines different filtering and verification methods for string 
similarities, towards pruning the set of candidate pairs to be considered and reducing the 
comparisons needed for linking the entities. 

The contributions of this work are as follows: 

 Optimized blocking method: There is a new proposal in organizing the target 
dataset T in order to have more pruning power. The two main criteria for the target dataset 
clustering are two properties of these strings. The first one is the string length and the 
second one is the Levenshtein distance in relation to a reference string which is called 
exemplar string e. These two properties are associated with each string as key values of the 
data structure used. Lastly, we present an indexing method to create a dictionary of string 
segments per block that correspond to a list of strings that contain this segment. 

 Optimized filtering methods: There is a proposal for the application of length 
filtering, triangle inequality filtering and matching substring filtering. These three filtering 
steps guaranty a time efficient output of all the candidate pairs of strings. So, every query 
uses these three filtering steps to produce a relatively small set of strings for verification. We 
compare two different implementations of the matching substring filtering in terms of 
runtime in order to select the most efficient method. 

 Optimized verification method: the verification step uses an optimized 
approach for computing the edit distance between two strings. This approach exploits prefix 
pruning, length pruning and early termination technique to compute efficiently the distance 
between two strings. 

 We have tested our method against LIMES using various datasets of 
different size containing strings of various lengths. The experimental results show that the 
optimized version of our algorithm outperforms LIMES in terms runtime and memory 
footprint.  
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5. Problem Formulation 

Subsequently we refer to the link discovery task as a matching task, given that we 
aim to compute matching pairs of entities via the computation of joins between strings given 
as values to key properties of entities in data sources. 

a. The Link Discovery problem 

MT(S, T, θ)  

Definition 1 (Μatching Τask). Given two datasets S (source) and T (target) of 

entities, a metric m and a threshold θ  [0,1], the goal of the matching task is to compute 

the matching pairs (s,t) of all entities s  S and t  T, such that m(s,t) θ.  

Q(s, T, θ) 

Definition 2 (Query). Given one entity s (source) and a dataset T (target) of entities, 

a metric m and a threshold θ  [0,1], the goal of a query is to compute the matching pairs (s, 

t) of all entities t  T, such that m(s, t) θ. 

Consequently a matching task can be seen as a set of queries.  

Since we deal with a matching task considering string similarities, when referring to 
an entity we refer to an aggregation of string values to key properties of that entity, denoted 
by s. Thus s denotes the entity and the corresponding string representing that entity.  

b. Mathematical framework 

Given a set of points in an affine space A, a function m:AAR is a metric such that 
for any x, y, z in A the following properties are true: 

 m(x, y)  0 (non-negativity) 

 m(x, y) =0  x=y (identity of indiscernible) 

 m(x, y)=m(y, x) (symmetry) 

 m(x, z)  m(x, y) + m(y, z) (triangle inequality) 

 

The pair (A, m) is called a metric space. Although any metric may be used, in this 
work we use the Levenshtein distance towards comparing strings. It should be noticed 
however that any distance function (i.e any function that measures the distance or 
dissimilarity between entities) can be transformed into a normed similarity function.  

The computation of the distance m(s, t) is called a comparison. The computation of 
the Levenshtein distance between a pair of strings is explained in details in the next 
paragraphs. Concerning the complexity of the matching task, this is measured by the 
number of necessary comparisons: A-priori this requires O(|S|*|T|) comparisons. The aim of 
matching algorithms is to reduce this complexity by applying advanced filtering and 
verification methods: This reduction is very important for algorithms in order to scale to very 
large datasets. While the cost of comparisons is usually neglected, this may also be an 
additional cause of increased complexity, especially when comparing, for instance, large 

strings: Doing it in a naive way, this will require |s|*|t| operations, for any pair (s, t)  ST, 
where |.| denotes the length of a string. 
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The triangle inequality (4th property of metric functions mentioned above) has been 
extensively used for filtering out candidates in many tasks performed in metric spaces. As it is 
mentioned in [13], the triangle inequality can be used to approximate the distance between 
two points x, z in a metric space, when one knows the distances of those points to a third, 
reference, point y. This can be done via the inequality 

 

m(x, y) - m(y, z)    m(x, z)    m(x, y) + m(y, z)  

 

These reference points in [13] are called exemplars and are representatives, or 
samples, of portions of the metric space. According to the above inequality, information on 
distances from exemplars (e.g. y) can be used to compute lower and upper bounds between 
points (e.g. x,z) in the metric space. Furthermore, given a threshold θ for distances and the 
lower bound of the m(x,z), it holds that: 

 

 m(x, y) – m(y, z) > θ   m(x, z) > θ 

  

Thus, knowing the distances from exemplars is enough to filter out matching 
candidates. 

Aiming to compute matching pairs of entities via the computation of joins between 
strings given as values to key properties of entities in data sources, as already mentioned, 
this work proposes an approach that builds on a basic indexing method, facilitating pruning 
dissimilar pairs and verifying candidate pairs, effectively. The basic algorithm builds an index 
for strings in the target set T , partitioning T  into portions and identifying exemplars for each 
portion in an incremental way (i.e. while scanning T ), and then scans S using the index on T  
to compute the results.  

As said, the metric function used to measure the edit distance between two strings s, 
t is the Levenshtein distance,. Using a dynamic programming algorithm, a 2d array M with 
|s|+1 columns and |t|+1 rows is used.  M[i][j] is the distance between the prefix of t with 

length i and the prefix of s with length j. Initially M[i][0]=i and M[0][j]=j for 0i|t| and 

0j|s| . Then each matrix cell can be computed by the following equation: 

 

M[i][j]=min(M[i-1][j]+1,M[i][j-1]+1, M[i-1][j-1]+γ) 

 

where γ=0 if the i-th character of t is equal to the j-th character of s, else γ=1.  

While the complexity of the algorithm is O(|s|*|t|), we can avoid unnecessary 

computations, given the threshold θ, by computing only values M[i][j] for |i-j|θ. Doing so, 

the complexity is improved to O(θ  min(|t|,|s|)). Other termination techniques (e.g. those 
proposed in [9]) may further improve performance. 
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c. Notation  

We will use the following notation to explain all the methods and algorithms used. 

TI : Triangle Inequality 

dp: dynamic programming  

Lev(s, e): the Levenshtein distance of the two strings s, e   

|s|: the number of characters of string s 

C: the set of clusters 

E: the set of exemplars 

E(i): the set of exemplars for length i 

|E|: the number of exemplars 

|E(i)|: the number of exemplars for length i 

S, T: source and target dataset  

|S|, |T|: the number of instances of every dataset respectively  

floor(x) : returns the smaller integer value of the real number x 

ceil(x) : return the larger integer value of the real number x 

θ: threshold of a matching task 

θe : threshold used to trigger the creation of a new exemplar 

6. Overview of the examined methods 

In the next two paragraphs there will be a brief overview of the examined methods. 

These methods can be divided in three distinct parts: the blocking step, the filtering step 

and the verification step.  

For the blocking step we introduce a method to divide the target dataset to clusters 

based on the strings’ lengths. Strings t of the target dataset T that have the same length are 

in the same cluster. We create a set of exemplars per cluster (or per string length) by 

choosing the most dissimilar strings inside each cluster. Each of these exemplars creates a 

block of strings. This work examines two main methods to organize each cluster of the target 

dataset to blocks using the exemplars.  The first one is called First Fit (FF) approach and the 

second one is called Best Fit (BF) approach. These two methods are thoroughly explained in 

the paragraph where the creation of exemplars is examined. Also, based on an experimental 

evaluation we select the Best Fit approach, which is more efficient in pruning a relatively 

larger amount of candidate strings. While the blocking step takes place before we execute 
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any query as a preprocessing stage, the filtering step and the verification step take place 

while we execute queries from the source dataset. 

The filtering step consists of three distinct filtering methods that are applied when 

we execute a query. The length filtering is based on the strings’ lengths. The application of 

this filter determines a range of clusters that have to be processed further to find the 

candidate strings matching the query string. The number of strings that is produced as an 

output is steady and it does not depend on the parameters used. The triangle inequality 

filter exploits the triangle inequality (TI) property. Inside any cluster of the range of clusters 

determined, the TI filter determines a relatively small set of candidate strings for matching 

per exemplar (block). The number of candidate strings determined depends on the number 

of exemplars and on the partitioning scheme that is used to partition clusters to blocks. The 

last filter used is the matching substring filter which further reduces the number of strings 

that have to be verified.  

The third part is the verification step. The verification step calculates edit distances 

to verify a candidate matching string. In order to make this step efficient we have to apply as 

many optimizations as possible, so that the complexity of the quadratic edit distance 

dynamic programming algorithm for computing the Levenshtein method is reduced. 

The target dataset:  

The algorithm begins by determining the cluster of each string of the target dataset 

T. The main criterion used in the first place is the length of the string. For example, if a target 

dataset contains strings with 20 different lengths, then our method will create 20 different 

clusters. Every string of the target dataset needs to be inside the cluster which contains 

strings, whose length is exactly the same. So, each cluster contains the strings that share the 

same length. Each cluster has none, one or many exemplars. The first exemplar of a cluster 

whose length is A, is the first string s1 from the target dataset that has the given length A. 

This is how we initialize a cluster. The next exemplar of this cluster is another string s2 whose 

length is A, but Lev(s1, s2) is greater than the threshold that the user has predetermined for 

triggering the creation of a new exemplar (θe). Inside each cluster, every string of the target 

dataset is organized based on the Levenshtein distance that is calculated between the string 

and the exemplars of the cluster. To be more precise we examine the two methods 

mentioned earlier as First Fit and Best Fit approach. In the first approach the string that we 

want to organize becomes a member string of an exemplar (block), if the Levenshtein 

distance is less than the specific threshold θe that is predetermined from the user. We call 

this method “First Fit” because a string will be classified inside the first exemplar satisfying 

the threshold test. This means that there is a possibility that another exemplar is more 

similar to the string, that we want to classify. In case there is no exemplar satisfying this 

threshold criterion, then the new string becomes a new exemplar of the specific cluster. In 

the second approach we have to find the edit distance between the string t and all the 

exemplars of cluster |t| and insert the string to the block whose exemplar’s distance from t is 

the minimum.  This is the reason that this method is called “Best Fit”. 

The source dataset part: 

Each string s of the source dataset S corresponds to a query Q(s, T, θ).  For each one 

of these queries we apply three filtering methods. By using length filtering we specify the 
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set of clusters (and thus, blocks) that we have to search. By using triangle inequality 

filtering we specify for every exemplar, the “area” in a block where candidate strings for 

matching exist. By using matching substring filtering we exploit the fact that in order for 

two strings s, t to match within a threshold θ, the string s should have a substring that 

matches a segment of t, considering that t is divided in θ+1 segments. This property is 

necessary but not sufficient to answer if the string satisfies the edit distance threshold set by 

the user. The filtering techniques used output a small set of strings for each query Q(s, T, θ) 

that have to be further verified as matching to the string s, within a distance θ. 

After the filtering step the last step is verification. Verification is based on calculating 

the Levenshtein distances between each candidate pair <s, t> to see if a string meets the 

predefined requirements. Since we have to calculate the distance to verify that a string 

matches any candidate one, we propose and implement several optimizations on how the 

calculation of edit distance between two strings can be performed efficiently. 
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7. The Blocking step 

a. Exemplar class 

The exemplar class has two data members. The first data member is the string of the 

exemplar. The second data member is the block of the exemplar. The data structure used to 

represent the block is a hash map, which has an integer value as a key value and a list of 

strings as the content of the key value. We have selected the hash map as our data structure 

to organize the strings inside an exemplar. We have made this choice so that the key value 

of the hash map corresponds to the calculated edit distance between the string and the 

exemplar. So, if we want to find all the strings that have distance between Lev(s, e) - θ and 

Lev(s, e) + θ, we can retrieve all the lists of strings in constant time. 

b. Length Based Clustering 

The first algorithm begins by clustering each string of the target dataset. The main 

criterion used is the length of the string. Every string of the target dataset T needs to be 

inside the cluster which contains strings, whose lengths are equal. This step will categorize 

all the strings using the number of characters that a string has. The next idea is to create a 

set of exemplars per string length. This set of exemplars is a very small subset of all the 

strings that a cluster contains. They divide the cluster to blocks of strings. So, we can say that 

each exemplar represents a block of strings. Two questions that rise and they are very 

important to answer are the following: 

1) What is the cost of this pre-computation step? 

2) Is it worth paying this cost and in which cases? 

The first question is very easy to answer, since we only have to take into account the 

computation needed to calculate the length of a string. For a string s, the length of the string 

is a property of class String, which means that the time complexity to retrieve the length is 

O(1).  

The second question does not have an obvious answer. Based on the length of a 

string we can conclude if this string is worth verifying or not. This pre-computation step 

organizes the target dataset so that in constant time we can retrieve all the strings that 

have the proper length. Assuming that we have the query Q(s, T, θ) which means that we 

have a source string s with length |s|, a target dataset T that has M strings organized in N 

clusters, where N is the number of different lengths of the M strings and θ is the given 

threshold. Then we know that the clusters that we have to take into account are those 

whose length is |s| – θ to |s| + θ. This is the first filtering technique that we will use to 

minimize the number of verifications needed to find all the matches. 
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c. Creating Exemplars (per length, for every different 

length) 

To create the set of exemplars E for each cluster we use a comparison between a 
threshold θe that the user has predetermined and the Levenshtein distance between the 
target strings t and the exemplars of a cluster. 

Let us consider a cluster whose members are of length A. This cluster could have 
none, one or many exemplars. The first exemplar of a cluster whose length is A, is the first 
string s1 that we will encounter in the target dataset, that has the given length |s1|=A. This is 
how we initialize the set of exemplars of a cluster. The next exemplar of this cluster is 
another string s2 whose length is again A, but the Levenshtein distance between s1 and s2 is 
greater than the threshold θe that the user has predetermined.  

The reason behind the use of this threshold θe is that we want to test the behavior 
of the algorithm when we increase or decrease the number of exemplars per length. We 
want to see the way the number of exemplars and the partitioning of each cluster, through 
these exemplars, affects the number of comparisons needed. Theoretically, even one 
exemplar per length can give us the desired result but we are not sure for the efficiency of 
this method.    

d. First Fit Approach 

Inside each cluster, every string of the target dataset is organized based on the 
Levenshtein distance that is calculated between the string and the exemplars of the cluster. 
To be more precise a given string s becomes a member string of an exemplar e, if the 
Levenshtein distance is less than |e| - θe. We call this method “First Fit” because a string 
will be classified inside an exemplar based on the order followed to check if this specific 
requirement is satisfied.  

This means that there is a possibility that another exemplar is more similar to our 
string, but in this method we do not care about this fact. In case there is no such exemplar, 
so that the distance is less than the given threshold, then this string becomes a new 
exemplar of the specific cluster.  

Another fact that is implied is that there is a strong possibility to have strings in the 
target dataset that are “closer” to exemplars in different clusters (i.e. with different lengths). 
This means that these exemplars don’t have exactly the same lengths but still they are very 
close so that one may consider them near duplicates.   

In case this threshold θe is set to zero this means that we will create exactly one 
exemplar per cluster. This happens because between an exemplar e and a string t that has 
the same length (|t|=|e|) the distance Lev(e, t) could be less or equal to its length 
Lev(e,t)    .   
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Data: Target dataset T, threshold θe 
Output: N Clusters with a set E(i) of exemplars and their 

matching to the instances in T, where i corresponds to a 

string length 

for t   T do  

Set i = |t| 

if E(i) =      then 
 Set E(i) = E(i)   {t} 
else 

 for e   E(i) do 
  if Lev(t,e)<= θe then 
   Add t to the List of Strings in the  

                      hashmap of e with key value = Lev(t,e) 

  else 

   Set E(i) = E(i)   {t} 
  endif 

 end 

endif 

end 

 

Alg. 1: Computation of Exemplars and organization of T - First Fit Approach 

 

e. Best Fit Approach 

The above method creates exemplars per cluster and puts every string inside each 
exemplar block using the minimum comparisons (computations of the Levenshtein distance 
between two strings), but it has some disadvantages. The most important is that inside each 
cluster, depending on the order that we follow, the first exemplars’ blocks are filled with 
strings but the last exemplars’ blocks remain relatively empty. So, this leads to non balanced 
blocks. To be more precise the comparisons needed to insert every single string inside the 
data structure that we have created is in the worst case scenario |T|*c, where c is a 
constant which is a small integer that represents the average number of exemplars that we 
have created per length. We will show that this scheme leads to poor pruning of candidate 
strings.   

The scheme that we will adopt is called Best Fit Approach. According to that, every 
string of the target dataset is organized based on the Levenshtein distance that is calculated 
between the string and the exemplars of the cluster it corresponds. To be more precise a 
given string s becomes a member string of an exemplar e under two conditions. The first 
condition is that the Levenshtein distance of s to e is the minimum distance between all the 
distances of s to E(i), where i = |s|. The second condition that has to be satisfied is that the 
Lev(s, e) has to be less than θe. In case no exemplar inside the cluster satisfies these 
conditions, then this string becomes a new exemplar of the specific cluster. Thus, in this 
“Best Fit” approach a string will be inserted in the block of an exemplar based on the 
minimum distance between the string s and every e   E(i), where i =|s|. This scheme leads to 
a more balanced allocation of the strings in exemplars’ blocks. 
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Data: Target dataset T, threshold θe 
Output: N Clusters with a set E(i) of exemplars and their 

matching to the instances in T, where i corresponds to a 

string length 

for t    T do  

Set i = |t| 

if E(i) =   then 

 Set E(i) = E(i)   {t} 
else 

 minDistance=|t| 

 minIndex = -1 

 for e    E(i)  do 
  if Lev(t,e) < minDistance then 

   minIndex = index of e 

   minDistance = Lev(t,e) 

  endif 

 end for 

 if(minDistance < θe) 

  Add t to the List of Strings in the hashmap of e 

with key value = minDistance 

 else 

  Set E(i) = E(i)   {t} 
 endif 

End for  

 

Alg. 2 : Computation of Exemplars and organization of T - Best Fit Approach 
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8. The Filtering Step 

a. Length Filtering 

The first filtering method that we will use is based on the length of the strings. For a 
matching task MT(S, T, θ), we have arranged the target dataset, so that all the strings that 
share the same length are in the same cluster. For a given string s from the source dataset S, 
we execute a matching query Q(s, T, θ). We know that all the candidate matching strings are 
inside the clusters whose length is between |s| – θ and |s| + θ. Let us assume that we have 
a string t for which ||s| - |t|| > θ. This means that t has either θ + 1 less characters or θ + 1 
more characters than s. In both cases even when we have the best case scenario (s is exactly 
the same as a substring of t or s has a substring which is exactly the same as t), we need at 
least θ + 1 edit operations (deletes or inserts) to align the strings. Thus, the candidate strings 
t have a length string for which it holds that ||s| - |t|| <= θ. So, we can ignore all the other 
clusters.  

b. Triangle inequality filtering 

The second filtering method that we will use is based on triangle inequality in metric 
spaces.  

Let us think every string as a point in a metric space. Each point has a distance from 
another point based on a string similarity measure, such as the Levenshtein distance, so that 
the triangle inequality is satisfied. 

As a generalization for metric spaces, we can say that the distance between two 
points x, z in a metric space is less or equal to the sum of the distances between x and a 
reference point y and the distance between the reference point y and z.   

Also there is the reverse triangle inequality which is more useful in our case because 
it gives us lower bounds.  

  m(x, z)   |m(x, y) - m(y, z)|      (1) 

Any side of a triangle is greater or equal to the absolute difference between the 
other two sides. 

Inequality (1) implies that the distance between two points x, z in a metric space is 
greater or equal to the absolute difference of the distances between x and a reference point 
y and the distance between the reference point y and z.   

As a consequence of inequality (1) we can conclude that if the difference between 
two sides that are known is greater than a threshold θ, then the other side of the triangle is 
greater than this threshold T too. 

|m(x, y) - m(y, z)|   θ   =>   m(x, z)     θ     (4) 

We will use the above conclusion for filtering / pruning the candidate strings for 
verification. This is the exact implementation of the filtering. 
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Data: N Clusters with a set E(i) of exemplars and their 

matching to the instances in T, where i corresponds to a 

string length, threshold θ, source string s 
Output: set of candidate strings C 

for i = |s| – θ  to  |s| + θ 

 for e   E(i) do  

  for key = Lev(s, e) – θ to Lev(s, e) + θ 

   C = C   {list(key)} 

Alg. 3 : Computation of candidate matching strings C 

The following shape explains what happens when we execute a new query with a 

source string s. In the highlighted area we have all the strings that are candidate strings for 

verification. 

 

key 0 1 … |s| - θ … |s| … |s| + θ … 

content    List of exemplars 

E(|s|- θ) 

 List of exemplars 

E(|s|) 

 List of exemplars 

E(|s|+ θ) 

 

    e1  e4  e7  

    e2  e5  e8  

    e3  e6  e9  

 

 

i.e.   

e5 

key 0 1 … Lev(s,e5) – θ … Lev(s,e5) … Lev(s,e5) + θ … 

content    List of strings  List of strings  List of strings  

    t1  t4  t7  

    t2  t5  t8  

    t3  t6  t9  

 

 

 

Fig. 4 : A query Q(s, T, θ) in the data structure of the target dataset T using Sema 

Clusters (shown by their 

representative exemplars) that we 

have to check based on length 

filtering 

Strings in the block of e5 that we have to verify 

based on triangle inequality filtering 
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c. Matching Substring Filtering 

The third  filtering method that we will apply is based on the properties that two 
strings have to meet in order to have an edit distance which is less or equal that a threshold 
θ. First of all we define a segment of a string as a substring of a given string. Given a string s 
= “computer” we can partition it to 4 non overlapping segments in many different ways. For 
example these four segments can be {“co”, “mp”, ”ut”, ”er”} or {“com”, “put”, “e”, “r”} etc. 

 The following is the lemma used for filtering: 

Lemma 1. Given a string t with θ + 1 segments and a string s, if s is similar to t within 
the threshold θ, s must contain a substring which matches a segment of t [9]. 

So, let us assume that we have a string t   T, a string s   S and a given threshold θ. 
Another assumption that we have to make is that |t| is larger than the threshold θ. The 
lemma above states that if we partition t into θ + 1 disjoint segments (so that each segment 
has at least one character) then, in order to satisfy the condition Lev(s, t) < θ, there has to be 
at least one substring of s which matches a segment of t. Subsequently we can adopt this 
filtering method as follows: A string is a candidate string for verification if and only if there is 
a substring of s that matches a segment of t, from the t’ s θ + 1 disjoint segments. 

 

Partition scheme 

There are many partition schemes that we can adopt in order to create the θ + 1 
disjoint segments of t. An effective scheme is able to reduce the number of candidate pairs 
and improve the performance of our algorithm. If our partition scheme leads to short 
segments then we lose pruning power. This is due to the fact that it is more likely to find 
matching substrings for a segment which is short. At the same time if we try to create large 
segments of a string then we are creating short segments, too. Consider the example of 
string “computer” that we have already used. Obviously, the partitioning to {“co”, “mp”, 
”ut”, ”er”} has 4 segments with the same length, while the partitioning to {“com”, “put”, “e”, 
“r”} also has 4 segments but two of them have three characters and two of them have just 
one character. The second set of segments will not prune strings that just have an “e” or an 
“r” as a character. Another idea that we could adopt is to find rare characters or substrings 
and rely on this information to partition the string t. On the other hand, in order to create 
something like this we have to sacrifice again runtime. So, based on these observations the 
partition scheme that we adopt is an even-partition scheme, which is very simple to apply 
and it leads to a balanced partitioning so that there are almost equal segments. To be more 
precise every segment will have either floor(|t|/ (θ + 1)) or ceil(|t|/ (θ + 1)) length. 
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This is the exact implementation of the filtering. 

Function MatchingSubstringToSegment(t,s) 

Data: target string t, source string s 

Output: Boolean 

d = |t| / (θ +1) 

m = |t| % (θ +1) 

 for ( i =0; i < (θ +1)-m; i++) 

                if(s.contains ( t.substring(i*d, (i+1)*d) )  

             return true 

 for(i = (θ +1)-m ; i < (θ +1) ;  i++) 

                if(s.contains( t.substring(i*d, (i+1)*d+1)) 

             return true 

return false 

 

Alg. 4 : Determining if t is a candidate string 

 
Data: set of candidate strings C, source string s 

Output: set of candidate strings C΄ 

for t   C 

  if (MatchingSubstringToSegment(t,s)) 

                                        C΄ = C΄   {t} 

                             Endif 

end 

  

Alg. 5 : Computation of all candidates matching strings C΄ 

The above algorithms are implemented in the first version of our program called Sema which 
we will test against LIMES. An optimized version of our method  is called OptSema. 
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d. OptSema - Optimized application of Matching Substring 

Filter 

The algorithm shown above is a rather naïve application of the lemma presented in 
the previous paragraph. For a query Q(s, T, θ) length filtering and triangle inequality filtering 
leads to a subset T΄ of candidate strings. For every single target string t of the set T΄ we have 
to partition the target string t to θ+1 segments and find if there is at least one matching 
substring of the source string s. The complexity of this operation is O(|s|*|t|/(θ+1)). Instead 
of using this expensive operation for every single query that we need to perform we could 
prepare the target dataset T to be able to find the strings that have a matching segment 
more efficiently by using the proper data structure. The idea that we will present is based on 
the creation of an index of segments for the target dataset T. This index will be implemented 
using a hashmap that has string segments as the key values and as content they consist of 
the list of strings that contain that segment. Using this data structure we are able to retrieve 
all the strings that contain a segment in constant time. 

Changes made in the exemplar class 

Every exemplar string forms a block of strings and in this block every string is 
classified based on its edit distance with the exemplar. Now we will add a new data 
structure in each exemplar that will hold an index of segments for the strings that the 
exemplar contains. To create this index of segments we will utilize the even partition scheme 
that we mentioned earlier.  Every string classified inside an exemplar will be partitioned to 
segments. Every segment is a new smaller string than the original which could be a part of 
other strings too, contained in the block of the exemplar.  Using this segment as an index we 
will build the list of strings that have this segment. To create this index we will use a hash 
map that has a string as a key value and as content the strings that have this string as a 
segment. 
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This is the exact implementation of the creation of segments for a target 
string t. 

Function targetSegments(String t) 

Data: target string t, threshold θ 
Output: List of Strings 

List is a list of Strings 

int d = |t| / (θ +1); 

int count = |t| % (θ +1); 

     if(d!=0){ 

         int i = 0; 

         for (i =0; i < (θ +1)-count; i++) { 

               List.add(t.substring(i*d, (i+1)*d));        

          } 

          for(i = (θ +1)-count ; i < (θ +1) ; i++) { 

               List.add(t.substring(i*d, (i+1)*d+1)); 

         }   

     } 

     else{ 

          List.add(t); 

     } 

return List;   

} 

Alg. 6 : Creating the list of segments of target string t 

The following shape explains what happens when we execute a new query with a source 
string s. In the highlighted area we have all the strings that are candidate strings for 
verification. 
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key 0 1 … |s| - θ … |s| … |s| + θ … 

content    List of exemplars 

E(|s|- θ) 

 List of exemplars 

E(|s|) 

 List of exemplars 

E(|s|+ θ) 

 

    e1  e4  e7  

    e2  e5  e8  

    e3  e6  e9  

 

 

i.e.   

e5 

key 0 1 … Lev(s,e5) – θ … Lev(s,e5) … Lev(s,e5) + θ … 

content  List of strings  List of strings  List of strings  List of strings  

  t10  t1  t4  t7  

  t12  t2  t5  t8  

  t13  t3  t6  t9  

 

 

 

e5: Index of segments of all target strings inside e5’s block  

key “seg1” “seg2” … “segK” … “segX” … “segN” … 

content    List of strings  List of strings  List of strings  

    t3  t4  t7  

    t9  t10  t13  

    t5  t9  t9  

 

 

List of substrings of s with length |t|/(θ+1), |t|/(θ+1) +1 

s1 s2 … sx=“segX” … sN=“segN” 

 

Fig. 5 : A query Q(s, T, θ) in the data structure of the target dataset T using OptSema 

 
  

Clusters that we have to check 

based on length filtering 

Strings that we have to verify based 

on triangle inequality filtering 
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As shown in Fig. 5 when we execute a query Q(s, T, θ) we create a list of all the possible 
substrings of a source string that have length |t|/(θ+1) and |t|/(θ+1) +1. In approximately 
linear time O(|s|) we are able to retrieve the subset of strings T’ of the target data set T 
that have a segment that matches a substring of s. In approximately constant time we are 
able to check if a string t of the subset T’ belongs to the subset of strings that the Length 
and TI filtering produces.  In other words our main task now is to find the intersection of 
two subsets of T, the subset produced from applying the Length and TI filtering and the 
subset produced from the Matching Substring filtering. From Fig. 5 we can see that string 
t10 has a segment that matches a substring of s, but we can prune it since it does not satisfy 
the triangle inequality property. On the other hand, if we have a string like t1 which satisfies 
the triangle inequality but there is no segment of t1 that matches a substring of s then again 
we can prune the string.  

The above algorithms are implemented in the second version of our program called 
OptSema. We will test it against LIMES and the naïve version for implementing matching 
substring filter called Sema. 

9. The Verification Step 

a. Naive approach for calculating distances 

The edit distance algorithm answers to the following problem: 

Given a pair of strings s and t and a set of edit operations (insertion, deletion, substitution) 
that are allowed with a given cost for each one of them, find the edit operations needed to 
align s to t, with the minimum cost.  

So, in our case the minimum cost calculated by the edit distance has to be less or equal to θ. 

So, our first approach to verify a pair of strings is to calculate the Levenshtein 
distance or edit distance and see if the condition is satisfied.  The computation of the edit 
distance uses the dynamic programming (dp) paradigm which divides a problem into sub 
problems. For each of these sub problems dp uses a memo to store their solution and based 
on these solutions the algorithm finds the solution to the next sub –problems.  The method 
begins by determining the base cases which are these instances of the problem that have an 
obvious solution.  

In our case the mathematical background for implementing dp to find the edit 
distance is the following: 

There are three edit operations that are allowed to align these two strings.  

1. Insert a character 
2. Delete a character 
3. Substitute a character 

Each one of these operations has a cost that we have to pay to perform them. This 
cost is added and the total cost is the edit distance.  There is a variation of the Levenshtein 
distance where each operation has a different cost. In our case we consider that every edit 
operation has the same cost, which can be equal to 1. 

Given a pair of strings s and t, and i, j pointers, where si corresponds to the substring 
from character 0 to ith character of s and tj corresponds to the substring from character 0 to 
jth character of t, then: 
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Base cases: 

Opti0 =    
    where         

Opt0j =   
 
    where         

Recursive formula: 

 Opti-1, j-1     if si = tj 

     Opti-1, j + 1 

Optij =  Min Opti, j-1 +1 if si   tj 

 Opti-1, j-1 +1 

 

We will perform a calculation of an edit distance using s=”COMPUTERS” and 
t=”CIOMUTES”. We have selected these two strings because the edit operations needed to 
align them involve all three edit operations that are available.  

The following table is an example of the computation using the above formulas.  

 i 0 1 2 3 4 5 6 7 8 9 

j Opt null C O M P U T E R S 

0 null 0 1 2 3 4 5 6 7 8 9 

1 C 1 0 1 2 3 4 5 6 7 8 

2 I 2 1 1 2 3 4 5 6 7 8 

3 O 3 2 1 2 3 4 5 6 7 8 

4 M 4 3 2 1 2 3 4 5 6 7 

5 U 5 4 3 2 2 2 3 4 5 6 

6 T 6 5 4 3 3 3 2 3 4 5 

7 E 7 6 5 4 4 4 3 2 3 4 

8 S 8 7 6 5 5 5 4 3 3 3 

Fig. 6 : Step by step execution of the dp algorithm for edit distance computation 

  

The base cases are highlighted with green color. The distance is the value of cell 
Opt[8,9] = 3. This is the optimal solution to align the strings in the sub problem / instance we 

are solving.  
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The pseudo code for the Levenshtein distance is the following: 

int Levenshtein_Distance (string s[1..m], string  t[1..n]) 

   // d is a table with m+1 rows and n+1 columns 

   int d[m+1, n+1] 

   for i from 0 to m+1 

       d[i, 0] = i 

   for j from 0 to n+1 

       d[0, j] = j 

   for i from 1 to m 

       for j from 1 to n 

       { 

           if s[i] = t[j] then  

                cost = 0 

           else  

                cost = 1 

           d[i, j] = minimum( 

                                d[i-1, j] + 1,     // deletion 

                                d[i, j-1] + 1,     // insertion 

                                d[i-1, j-1] + 1   // substitution 

                            ) 

       } 

    return d[m+1, n+1] 

Alg. 7 : Computation of the Levenshtein distance 

The time complexity of the dynamic programming algorithm is O(|s|*|t|). 
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b. Optimized verification Length – aware verification 

Simple early termination 

To organize the target dataset we cannot avoid computing the edit distance of the 
strings of the target dataset with the corresponding exemplars. The reason is that we have 
to position each string in the hash map of an exemplar based on the edit distance between 
the string and the exemplar. This distance is used as the key value of the hash map. It is 
worth paying the cost, since it is a nice way to take advantage of the triangle inequality 
property. By organizing strings like this, we can retrieve all the strings that satisfy the 
Triangle Inequality property in O(1). On the other hand when we are executing queries from 
the source dataset, then we are not interested on the exact distance between the source 
string and the target strings. We are interested to find out if a source string and a target 
string are “closer” than a threshold θ. This implies that when we verify a candidate target 
string we could quickly exclude it as a matching pair if we can deduce that the string has a 
distance greater than the threshold θ. 

To simplify the analysis we will use the same example as before when talking about 
the Levenshtein distance. Let us assume that string t is “COMPUTERS”, string s is 
“CIOMUTES” and the given threshold θ = 1.  

The algorithm begins by calculating the base cases and continues by calculating each 
row from the left to the right side of the 2d array. For the Opt44 the value is already 2 and 
since there are characters added on the right while we increment i, then the optimal 
distance increments too. For the next row Opt53 is already 2 and it decrements from 5 to 2, 
while we add characters by incrementing i. The next computation selects the minimum 
between the three options that are highlighted with orange color. So since there is a 
mismatch the minimum is Opt43 + 1 = 2. From now on we are sure that every value that we 
calculate can be greater or equal to the values that are already calculated for the previous 
sub problems. This is a direct consequence of the recursive formula used to calculate every 
next optimal solution. So the algorithm can terminate earlier, without having to calculate all 
the values that are highlighted with dashed cells. 

 i null C O M P U T E R S 

j  0 1 2 3 4 5 6 7 8 9 

null  0 0 1 2 3 4 5 6 7 8 9 

C 1 1 0 1 2 3 4 5 6 7 8 

I 2 2 1 1 2 3 4 5 6 7 8 

O 3 3 2 1 2 3 4 5 6 7 8 

M 4 4 3 2 1 2 3 4 5 6 7 

U 5 5 4 3 2 2 2 3 4 5 6 

T 6 6 5 4 3 3 3 2 3 4 5 

E 7 7 6 5 4 4 4 3 2 3 4 

S 8 8 7 6 5 5 5 4 3 3 3 

Fig. 7 : Early termination technique 
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c. Length pruning 

The next improvement that we can implement is based on length pruning. Since the 
threshold is 1, every instance of the problem involves i characters from the first string and j 
characters from the second string. So, in this case we have to calculate only the instance 
d[i,j], where |i-j| is less or equal to θ.  This is because for every other instance for which |i - 
j| >  θ we conclude that d[i, j] >  θ.  

 i null C O M P U T E R S 

j  0 1 2 3 4 5 6 7 8 9 

null  0 0 1 2 3 4 5 6 7 8 9 

C 1 1 0 1 2 3 4 5 6 7 8 

I 2 2 1 1 2 3 4 5 6 7 8 

O 3 3 2 1 2 3 4 5 6 7 8 

M 4 4 3 2 1 2 3 4 5 6 7 

U 5 5 4 3 2 2 2 3 4 5 6 

T 6 6 5 4 3 3 3 2 3 4 5 

E 7 7 6 5 4 4 4 3 2 3 4 

S 8 8 7 6 5 5 5 4 3 3 3 

Fig. 8 : Length pruning technique 

So there is no need to compute these values. So in other words we only have to 
compute only the values that are inside the orange cells. This optimization improves the 
complexity of the algorithm from O(|s|*|t|) to O((2*θ +1)*min(|s|,|t|). 

d. Improving length pruning 

 We have another useful observation that leads to the next optimization. From the 
2d - table we can deduce that d[2,2] instance aligns “CI” to “CO “ with 1 edit operation, and 
the remaining substrings are “OMUTES” and “MPUTERS” that need at least one edit 
operation to align based on their length difference. This means that we don’t need to 
compute this value too since we know that it has exceeded the threshold θ. This method is 
called length-aware verification method [9]. Let Δ= |s|-|t| (assuming that |s| is greater that 
|t|) and Δ is less or equal to θ (if not then Lev(s, t) would be greater than θ). 

For each row of the 2d array d, we have to compute d[i,j] for  

i -floor( (θ-Δ)/2)  <= j <= i+floor((θ+Δ)/2).  

This improves the complexity to O(( θ + 1)*min(|s|, |t|). So in our case Δ= 9-8=1 => i 
<= j <= i + 1. The optimization that we have achieved is shown by the deleted cells: 
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 i null C O M P U T E R S 

j  0 1 2 3 4 5 6 7 8 9 

null  0 0 1 2 3 4 5 6 7 8 9 

C 1 1 0 1 2 3 4 5 6 7 8 

I 2 2 1 1 2 3 4 5 6 7 8 

O 3 3 2 1 2 3 4 5 6 7 8 

M 4 4 3 2 1 2 3 4 5 6 7 

U 5 5 4 3 2 2 2 3 4 5 6 

T 6 6 5 4 3 3 3 2 3 4 5 

E 7 7 6 5 4 4 4 3 2 3 4 

S 8 8 7 6 5 5 5 4 3 3 3 

Fig. 9 : Optimized Length pruning technique 

e. Optimized verification based on early termination/prefix 

pruning 

 By observing again the way that the optimal distances are calculated in the 2-
dimensional array we can propose another optimization of the algorithm. This optimization 
is called prefix pruning. Based on the discussion from the first optimization proposed we can 
observe that after d[3,*] there is no chance that the strings have a distance which is less 
than  θ. This is because we have two calculated values which are shown in blue color d[3,3], 
d[3,4] which are greater than θ = 1, thus we can stop the algorithm earlier because we are 
sure that the distance is greater than θ. 

 i null C O M P U T E R S 

j  0 1 2 3 4 5 6 7 8 9 

null 0 0 1 2 3 4 5 6 7 8 9 

C 1 1 0 1 2 3 4 5 6 7 8 

I 2 2 1 1 2 3 4 5 6 7 8 

O 3 3 2 1 2 3 4 5 6 7 8 

M 4 4 3 2 1 2 3 4 5 6 7 

U 5 5 4 3 2 2 2 3 4 5 6 

T 6 6 5 4 3 3 3 2 3 4 5 

E 7 7 6 5 4 4 4 3 2 3 4 

S 8 8 7 6 5 5 5 4 3 3 3 

Fig. 10 : Combination of prefix and length pruning 
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So the main conclusion is that we can stop in row d[3,*]. Can we do better than this? What 
can we say about the previous row which is d[2,*]? In this row one computation d[2,3] is 
greater than θ but d[2,2] is equal to θ. So if we think about it we need d[2,2] = 1 to align 
“CO” and “CI” and then we have to align “OMUTES” which has 6 characters to “MPUTERS” 
which has 7 characters and we need at least one more edit operation. This means that we 
can stop our algorithm even before d[3,*], in row d[2,*] by computing the sum of the 
calculated value and the expected value based on the length difference of the substrings 
remaining. So, we can stop the computation if for a row i it holds that d[i,*] + ||s|-i |-||t|-
*| > θ. For both Sema and OptSema we have used the combination of all the techniques 
shown above to get the best runtime, when verifying a candidate string. 
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10. Experimental evaluation 

The next section shows the experimental evaluation of the above methods in the following 
order. We evaluate “First Fit” and “Best Fit” based on the comparisons that we need to do in 
order to reach a result. We show the results and we adopt the better of these two methods.  
The machine used for the experiments is a  

Pentium® Dual-Core CPU T4500 @ 2.30Ghz 2.30Ghz RAM 4.00GB, 64-bit OS 

a. Data sets used 

The data sets that we have used for our experiments are triples from Ariadne 
http://www.ariadne-eu.org/  that we have processed. To simplify the process we have 
distinguished only the triples with the property “title”. We further processed the dataset so 
that our dataset does not have duplicate URIs and the length of the string value would vary 
from 10 to 20, from 20 to 30 characters and from 30 to 40 characters. Then we have created 
different files using different number of triples per file. We will use these datasets to 
perform experiments to measure the pruning power of our methods, to support further 
what is theoretically stated and documented in the previous paragraphs for the efficiency of 
our algorithms and to compare in terms of runtime and memory our algorithms with a state-
of-the-art LD framework that we have presented earlier called LIMES. 

  

http://www.ariadne-eu.org/
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b. First Fit vs Best Fit 

We have tested the two methods for creating blocks inside a cluster, that are mentioned in a 
previous paragraph of this work, in order to select the most efficient one. We have used 
data sets containing strings from 1 to 10 characters. The size of the data sets begins from 
1000 triples incrementing by 1000 to 10000 triples. The results are shown in the following 
table: 

size naïve Exemplars First Fit 
FF pruning 
power Best Fit 

BF pruning 
power difference 

1000 1000000 77 200455 20,0% 198430 19,8% 2025 

2000 4000000 92 847923 21,2% 808435 20,2% 39488 

3000 9000000 106 1898234 21,1% 1786402 19,8% 111832 

4000 16000000 111 3362485 21,0% 3116953 19,5% 245532 

5000 25000000 122 5142627 20,6% 4766106 19,1% 376521 

6000 36000000 125 7538683 20,9% 6883601 19,1% 655082 

7000 49000000 130 10219565 20,9% 9302606 19,0% 916959 

8000 64000000 140 13344899 20,9% 12146182 19,0% 1198717 

9000 81000000 143 16838606 20,8% 15278929 18,9% 1559677 

10000 100000000 146 21198689 21,2% 18791190 18,8% 2407499 

Table 1: Comparison between First Fit method and Best Fit method  
       

        
The column “size” contains the number of triples used per experiment. The column “naïve” contains the 
number of comparisons that would be needed in the case that a naïve algorithm O(N2) was used to find the 
matching pairs. The column “Exemplars” contain the exact number of exemplars that were created per 
experiment. “First Fit” column contains the total number of comparisons (distance computations) needed 
after the application of the Length and Triangle Inequality filtering. “FF pruning power” column holds the 
quotient of number of FF comparisons over the naïve number of comparisons represented as a 
percentage. “Best Fit” column contains the total number of comparisons needed after the application of 
the Length and Triangle Inequality filtering. “BF pruning power” column holds the quotient of number of BF 
comparisons over the naïve number of comparisons represented as a percentage. The column “difference” 
contains the difference in the numbers of comparisons needed between the two methods in absolute 
numbers (FF number of comparisons – BF number of comparisons). 

       
The graph below offers a graphical representation of the pruning power in percentages that the two 
methods have depending on the number of triples of datasets used. 
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Graph 1 : Pruning power between FF and BF  
       

The following graph shows the difference between the two methods in absolute numbers.  
       

 

Graph 2 : Difference of comparisons needed between FF and BF 
       

        

        
The x- axis has the number of triples of the data set used, while the y-axis shows the 

number of comparisons needed in absolute numbers. We can observe that the difference in 
comparisons needed, between the two methods, increases as the size of the dataset 
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increases. For example in the case of 10000 triples the FF method needs approximately two 
and a half million more comparisons than the BF method to finish the matching task. 

We see that, in terms of comparisons needed to complete a matching task, the BF 
method outperforms the FF method. So this is the method that we have selected as our 
main method for creating blocks in each cluster.  

c. The impact of the number of exemplars used 

Testing Sema 

We have tested Sema using 20000 strings with lengths that vary from 10 to 20 
characters. The following experiment uses different number of exemplars to divide the 
target dataset T and on each case we measure the pruning power and the runtime of the 
“Best Fit” approach. The goal of this experiment is to measure the impact of the different 
number of exemplars in terms of comparisons needed and runtime and to see if there is a 
number of exemplars that we have to use depending on the size of the target dataset T, to 
optimize the performance of our algorithm. The following chart shows the runtime of our 
implementation depending on the number of exemplars.  

 

Graph 3 : Sema runtime for different number of exemplars 

From the above chart we conclude that we get better results as we increase the 
number of exemplars. But there is a number of exemplar above which we get the opposite 
result and the runtime increases. We can conclude that there is an optimal number of 
exemplars that we have to use to achieve a better runtime. So, to get better results we have 
to tune the parameters used to run our algorithm. 
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Graph 4 : Pruning power of TI and MS filtering 

From the chart above we can see that while the pruning power of the triangle 
inequality filter increases pruning power the other filter loses pruning power. If we tune the 
number of exemplars to 39 then 31% of strings pass the TI filter. After this we apply the 
Matching Substring filter and we get only 2.3% of the strings that need verification. If we 
tune the number of exemplars to 815 only 8.8% of strings pass the TI filter. With the 
application of the Matching Substring we get 7.7% of these strings that need verification.  

 The following table shows the experimental results.  

Naïve No of exemplars 

No of 
comparisons 
after TI filtering TI Pruning Power  

No of 
comparisons for 
verification after 
MS filtering 

MS Pruning 
Power 

4,00E+08 39 122590951 30,6% 2824362 2,3% 

4,00E+08 99 95904909 24,0% 2762912 2,9% 

4,00E+08 184 71027630 17,8% 2693435 3,8% 

4,00E+08 223 68504819 17,1% 2679303 3,9% 

4,00E+08 323 58027326 14,5% 2650476 4,6% 

4,00E+08 420 51076663 12,8% 2633775 5,2% 

4,00E+08 815 35008353 8,8% 2617074 7,7% 

Table 2 : Pruning power of TI and MS for different number of exemplars 

The column “Naïve” contains the total number of comparisons needed if we used 
the naïve version for matching the two data sets. The column “No of exemplars” contains 
the number of exemplars that we used per experiment. The column “No of comparisons 
after TI filtering” contains the number of comparisons that we need after the application of 
the Triangle Inequality filtering. The column “TI Pruning Power” contains the quotient of the 
number of comparisons after TI filtering over the number of comparisons of the naïve 
version. The column “No of comparisons for verification after MS filtering” contains the 
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number of comparisons that we need after the application of the Matching Substring 
filtering. The column “MS Pruning Power” contains the quotient of the number of 
comparisons after MS filtering over the number of comparisons of the naïve version. 

We observe that in the case where the exemplars are 39 the number of comparisons 
(marked with yellow) is enormous after the application of TI filter. The application of the 
Matching Substring filter then results to rather small number of strings that need 
verification. Now let us compare the above case with the case of 420 exemplars (marked 
with green). We can see that we have less than half comparisons than we needed before 
based on the TI filter. But after Matching Substring filter the difference between the 
numbers of strings that need verification is quite small (2824362-2633775=190587). 

Testing OptSema 

We have repeated the same experiment using the same input file and number of 
exemplars using the optimized version of our algorithm OptSema. The following chart shows 
the runtime of our implementation depending on the number of exemplars.  

 

Graph 5 : OptSema runtime for different number of exemplars 

Obviously we get better results with as fewer exemplars as possible. A question that 
we have to answer is why this is happening. 
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Graph 6 : Pruning power of TI and MS filtering 

The table below explains in more detail our findings.  

Naïve No of exemplars 
No of 
comparisons 
after TI filtering 

TI Pruning Power 

No of 
comparisons for 
verification after 
MS filtering 

MS Pruning 
Power 

4,00E+08 39 122590951 30,6% 2824362 2,3% 

4,00E+08 99 95904909 24,0% 2762912 2,9% 

4,00E+08 184 71027630 17,8% 2693435 3,8% 

4,00E+08 223 68504819 17,1% 2679303 3,9% 

4,00E+08 323 58027326 14,5% 2650476 4,6% 

4,00E+08 420 51076663 12,8% 2633775 5,2% 

Table 3 : Pruning power of TI and MS for different number of exemplars 

If we check Table 2 and Table 3 we got exactly the same results. Now we have to answer 
why we get better runtime using OptSema than with Sema.  
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Graph 7 : Comparison of runtime between OptSema and Sema 

The difference is justified based on the algorithm used for the application of the Matching 
Substring filter. The optimized version OptSema leads to very efficient and quick pruning of 
the set of strings that is produced from the TI filter. So even though we have to check huge 
numbers of strings our method can prune quickly these strings and produce a relatively 
small set of strings for verification. 

d. Comparison for strings with 10 – 20 characters 

We have tested LIMES, Sema, OptSema using strings with lengths that vary from 10 to 
20 characters. The datasets used begin from 2000 triples, they increment by 2000 until they 
reach 20000 triples. Based on our previous observations in the case of Sema we have 
executed the algorithm for different number of exemplars and we have stored the best 
results. For OptSema we have used the minimum number of exemplars needed to execute 
the experiment. There is a need for a brief explanation of the threshold used. LIMES uses the 
following formula to calculate the number of edit operations θ = 1/(1+d) and d is the 
number of edit operations. So this means that when the threshold is 1 this means that the 
number of edit operations is 0. If the threshold is equal to a value that belongs to (0.5, 1] 
then again d = 0. So we have the following conditions: 

d=0, if threshold   (0.5, 1] 

d=1, if threshold   (0.33, 0.5] 

d=2, if threshold   (0.25, 0.33] 

d=3, if threshold   (0.2, 0.25]  

  

15 
20 

24 26 
31 

35 

103 

67 68 

55 55 
50 

0 

20 

40 

60 

80 

100 

120 

39 99 184 223 323 420 

ti
m

e
 (

se
c)

 

Number of exemplars 

Runtime per Number of exemplars 

OptSema 

Sema 



 

49 
 

Runtime comparison 

 

Graph 8 : Runtime comparison for θ = 0.8 

 

 

Graph 9 : Runtime comparison for θ = 0.5 
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Graph 10 : Runtime comparison for θ = 0.33 

 

Graph 11 : Runtime comparison for θ = 0.25 

From the above graphs we can see that Sema has a good performance only for θ= 
0.8 and 0.5, in other words only for none or one edit operation. In all the other cases LIMES 
outperforms Sema as we can observe on the graphs as we increase the number of triples the 
difference expands. On the other hand our optimized version called OptSema has better 
results in terms of runtime for all the thresholds θ. The difference in runtime steadily 
increases, as we increase the number of triples. This is more obvious in the last experiment 
where we use 20000 triples. For 2000 triples OptSema finishes the matching task in 3 
seconds while LIMES finishes the matching task in 9 seconds and the difference is 6 seconds. 
For 20000 triples OptSema finishes the matching task in 29 seconds while LIMES finishes the 
matching task in 54 seconds so the difference expands to 25 seconds. 
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Memory comparison 

 

Graph 12 : Memory footprint for θ = 0.8 

 

 

Graph 13: Memory footprint for θ = 0.5 
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Graph 14: Memory footprint for θ = 0.33 

 

Graph 15 : Memory footprint for θ = 0.25 
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e. Comparison for 20000 strings with 10-20 & 20-30 characters 

Comparison for strings between 10 -20 characters 

We performed two experiments with two datasets that contained 20000 triples. The 
first dataset contained strings whose length varied from 10 to 20 characters. The second 
dataset contained strings whose length varied from 20 to 30 characters. The purpose is to 
see the performance of these methods for different lengths. 

In the first case we have tested LIMES, Sema, OptSema using strings with lengths 
that vary from 10 to 20 characters. The dataset used contained 20000 triples and the 
threshold θ varies from the value 0,8 to the value 0,16. When θ is equal to 0.2 this means 
that we have 4 edit operations while 0.16 means that we have 5 edit operations. In these 
two cases we match two strings even if they need 1/5 or 1/4 of their length as edit 
operations in order to align. The following graphs show the comparison of the three 
methods in terms of runtime and memory usage. 

 

Runtime comparison 

 

 

Graph 16 : Runtime comparison from θ = 0.8 to θ = 0.16 
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Memory comparison 

 

Graph 17 : Memory footprint from θ = 0.8 to θ =0.16 
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Runtime comparison 

 

 

Graph 18 : Runtime comparison from θ = 0.8 to θ = 0.14 

Memory comparison 

 

 

Graph 19 : Memory footprint from θ = 0.8 to θ =0.14 
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means that we create larger segments that are less likely to be found as a substring of a 
source string.  
 

f. OptSema vs LIMES on large datasets 

100000 triples – Strings vary from 20 to 30 characters 

 

We have tested again Limes, OptSema using strings with lengths that vary from 20 to 30 
characters. The dataset used contained 100000 triples and the threshold θ varies from the 
value 0.8 to the value 0.16. The following graphs show the comparison of the two methods 
in terms of runtime and memory usage. 

 

Runtime comparison 

 

Graph 20 : Runtime comparison from θ = 0.8 to θ = 0.16 for 100000 triples 
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Memory comparison 

 

Graph 21 : Memory footprint from θ = 0.8 to θ =0.16 for 100000 triples 
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Runtime comparison 

 

Graph 22 : Runtime comparison from θ = 0.8 to θ = 0.16 for 100000 triples 

Memory comparison 

 

Graph 23 : Memory footprint from θ = 0.8 to θ =0.16 for 100000 triples 
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We can see that in all the cases tested OptSema performs better than LIMES. From the 
aspect of memory usage again we can observe that OptSema performs better in all the 
cases. In comparison to the previous experiment we can deduce that our algorithm performs 
better when the threshold θ is small and it represents a small number of edit operations 
compared to the length of the string. For example, the runtime for θ = 0.2 (i.e. 4 edit 
operations) is 315 seconds for the length 20-30 characters, while in this case the runtime is 
269 for the length 30 -40 characters. 
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11. Conclusion 

This work proposed and evaluated a time and space efficient approach for 
computing links between data sources, exploiting string similarities. The proposed approach 
builds on a basic indexing method that facilitates pruning dissimilar pairs and verifying 
candidate pairs, effectively. It proposed a filtering approach that utilizes string lengths and 
further partitions the target source to blocks of entities according to dissimilarities between 
strings of equal length. For the verification stage, this work presented methods that aim to 
reduce the complexity for computing the string metric used to quantify the similarity 
between two strings. We have created two implementations (Sema, OptSema) and we have 
compared them to LIMES which is a state-of-the-art framework for link discovery.  

We have presented a blocking method that efficiently divides the target dataset T to 
clusters based on the length of strings and then to blocks by creating exemplars per cluster. 
We evaluated two methods for the creation of blocks the “First Fit” and the “Best Fit” 
approach concerning the pruning power of these methods when we apply the Triangle 
Inequality filter. We showed that “Best Fit” leads to better results. Subsequently, we have 
presented a method that creates an index per block that contains string segments and the 
strings that contain this segment. All the above summarizes the methods applied on the 
target dataset.  

We have presented three filters that can be applied in a sequential manner per 
query: (1) length filter, (2) triangle inequality filter and (3) matching substring filter. We have 
used these filters per query to produce a small number of candidate strings for verification. 
We showed that these filters applied produce a small number of candidate strings by testing 
their pruning power for different thresholds θ. We showed the relation between number of 
exemplars and the pruning power of the Triangle Inequality filter and the Matching 
Substring filter. 

We have presented two implementations of the matching substring filter. The first 
implementation was used in the version of our algorithm called Sema. The second 
implementation was used in the version of our algorithm called OptSema. Both 
implementations lead to the same number of comparisons that have be performed in order 
to complete a matching task. The OptSema performs better in terms of runtime compared 
to Sema.  

We evaluated OptSema, Sema and LIMES using datasets of different size that 
contained strings with various lengths. We showed that Sema and OptSema have 
approximately the same memory footprint. All the experiments have shown that both 
versions have a better memory footprint than LIMES. In terms of runtime LIMES 
outperforms Sema. This becomes clearer as we increase the number of triples of the dataset 
as well as the length of the strings. On the other hand the optimized implementation of our 
algorithm OptSema outperforms LIMES in terms of runtime. This becomes clearer as we 
increase the triples of our dataset as well as the length of the strings.   

The indexing method that we have introduced made a big difference in the 
efficiency and runtime of the matching substring filter and made our method competitive to 
LIMES in terms of runtime. We can deduce this conclusion from the fact that the only 
difference between Sema and OptSema is the implementation of the matching substring 
filter.  
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In terms of memory usage LIMES has proven to be a very memory consuming 
framework especially in cases where the threshold θ was very small and it had to deliver a 
large number of matches. 

Future work 

This work could serve as a starting point for the creation of a more complex and 
delicate framework for link discovery that efficiently performs a more complex matching 
task. The first thing that could be implemented is to add more string similarity metrics such 
as trigrams, Jaccard and cosine that could be more appropriate than Levenshtein distance 
depending on the property that will be used for the matching task. For example Trigrams is a 
more appropriate string similarity metric for long strings. Another function that would add 
value to our framework is to be able to combine more than one condition that has to be met 
in order to match two instances. This combination of conditions could concern more than 
one property of a data item. Also these conditions could refer to properties that can have all 
the data types that are used for the creation of Linked Data like numerical values, strings, 
dates etc.  
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