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10 ABSTRACT 

The presented thesis, entitled “A Review of Deep Learning: Theory, Methods & 

Applications”, is an extensive literature review of deep learning, with regard to the 

origins and the interdisciplinary nature of the field. Deep learning is a revolutionary 

machine learning approach, that constitutes a class of machine learning techniques, 

where many layers of information processing stages in hierarchical supervised 

architectures are exploited for unsupervised feature learning and for pattern analysis or 

classification. The origins and the motivations of deep learning are mainly found in 

artificial neural networks, as well as in other related scientific fields as artificial 

intelligence, cognitive neuroscience and signal processing among others. In recent 

years, systems based on deep learning techniques and algorithms have become 

extremely popular both in academia and in many industry sectors, due to the state of the 

art performance on numerous machine learning problems. This thesis investigates how 

the fundamental “deep” ideas have been defined and how research interests have shifted 

over the years. In this perspective the basic building blocks for building deep learning 

architectures are presented and analyzed. 

 

 

11 ΠΕΡΙΛΗΨΗ 

Η παρούσα μεταπτυχιακή εργασία, η οποία τιτλοφορείται "Μια Ανασκόπηση της 

Βαθιάς Μάθησης: Θεωρία, Μέθοδοι και Εφαρμογές", αποτελεί μια εκτενή 

βιβλιογραφική ανασκόπηση αναφορικά με την προέλευση και τη διεπιστημονική φύση 

του εν λόγω πεδίου. Η βαθιά μάθηση αποτελεί μια επαναστατική προσέγγιση 

μηχανικής μάθησης, που συνιστά μια ειδική κατηγορία τεχνικών μηχανικής μάθησης, 

κατά την οποία πολλά επίπεδα επεξεργασίας πληροφοριών σε συστήματα ιεραρχικά 
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εποπτευόμενων τεχνικών αξιοποιούνται για τη μη εποπτευόμενη εκμάθηση 

χαρακτηριστικών, καθώς για ανάλυση προτύπων ή κατηγοριοποίηση. Οι καταβολές και 

τα κίνητρα της βαθιάς μάθησης εντοπίζονται κυρίως στα τεχνητά νευρωνικά δίκτυα, 

καθώς και σε άλλους συναφείς επιστημονικούς τομείς, όπως η τεχνητή νοημοσύνη, η 

γνωσιακή νευροεπιστήμη και η επεξεργασίας σήματος μεταξύ άλλων. Τα τελευταία 

χρόνια, τα συστήματα που βασίζονται σε τεχνικές και αλγόριθμους βαθιάς μάθησης 

έχουν γίνει ιδιαιτέρως δημοφιλή τόσο στην ακαδημαϊκή κοινότητα όσο και σε πολλούς 

κλάδους της βιομηχανίας, λόγω των εξαιρετικών επιδόσεων των μεθόδων αυτών σε 

πληθώρα προβλημάτων μηχανικής μάθησης. Η παρούσα εργασία διερευνά πως έχουν 

καθοριστεί οι “βαθιές” θεμελιώδεις ιδέες και πως έχει μετατοπιστεί το ερευνητικό 

ενδιαφέρον κατά τη διάρκεια του χρόνου. Σε αυτό το πλαίσιο παρουσιάζονται και 

αναλύονται τα βασικά δομικά στοιχεία για την οικοδόμηση αρχιτεκτονικών βαθιάς 

μάθησης. 
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20 Machine Learning 

Introduction 

Learning is a fundamental cognitive process, which can modify behavior as a result of 

experience, forming the conditions for long-term optimization through change. This 

change reflects gradual modifications in behavior, according to a given criterion, when 

a similar situation occurs (Lampropoulos & Tsihrintzis, 2015). In that context, people 

modify their behavior in such a way that makes them perform better in the future 

(Witten & Frank, 2005). 

 Machine learning is the field of computer science where the objective is to 

develop algorithms, computer applications, and systems that have the ability to learn, 

and accordingly to improve their performance (Lampropoulos & Tsihrintzis, 2015). 

This is how to get computers to program themselves based on experience plus some 

initial structure-knowledge (Mitchell, 2006). 

The Learning Process: Basic Principles 

An explicit definition of learning process must meet the following conditions (Camastra 

& Vinciarelli, 2007): 

• Acquisition of new declarative knowledge. 

• Development of motor and cognitive skills through instruction or practice. 

• Organization of new knowledge into general effective representations.  

• Discovery of new facts and theories through observation and experimentation. 

 

 Most of the proposed learning definitions have as common the acquisition of 

knowledge or skills by study, instruction or experience (Lampropoulos & Tsihrintzis, 
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2015). Knowledge arises through the interaction with the environment, where this 

process results gradually in improving the behavior components, considering the 

following parameters (Russell & Norvig, 2010): 

• The components to be improved. 

• The prior knowledge the person (agent) already has. 

• The kind of representations to be used. 

• The available feedback to learn from. 

 

 The modeling process of information and knowledge, as well as the simulation 

of structures and mechanisms that make learning possible, introduce the concept of 

cognitive system. A cognitive system is a natural or artificial information processing 

system, including those systems with the capability of perception, learning, reasoning, 

decision making, communication and action. The concept of learning in a cognitive 

system is related with the capability of acquiring knowledge by interacting with the 

environment in which the system operates, and also the capability of improving the 

state it performs an operation, and consequently its performance through repetition 

(Vlahavas et al., 2006). Linear and nonlinear models, nonparametric models and 

support vector machines (SVM) are examples of typical learning systems (Russell & 

Norvig, 2010). 

The Field of Machine Learning 

Machine learning is a subcategory of artificial intelligence, that intersects with several 

scientific fields such as statistics, mathematics, computer science among others. Under 

this scope, the learning process is based on examples, which may be related to data 

from observations, instructions, etc. Machine learning focuses on algorithms that enable 

computers to do things, taking advantage of the previous information-knowledge. 
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 A prominent feature of machine learning is the processes automation with or 

without the least possible human effort. The classification and the regression constitute 

the two main categories of problems in the machine learning field. In the first case, the 

objective is to categorize data into predefined categories-classes, while in the second 

one the objective is to predict a real value. What is desirable in either case is the 

development of general purpose - efficient - algorithms (Schapire, 2008). 

Models and Patterns 

In order to understand and represent the environment in a simplified and abstract 

fashion, we use models. Α model is an artificial system that we build in order to 

simulate and understand a physical system. Key features of a model are the abstraction 

and the predictive power. Both of these features relate to the relationship of the model 

with the original (natural) system of reference. Abstraction is related to the selection of 

those features which are considered as essential, and therefore are incorporated into the 

model. The attributes that are considered as minor or coincidental or peripheral are 

omitted in order to simplify and comprehend the reference system. The selection of the 

essential features concerns both the construction and functionality of the model 

(Protopapas, 2004).  

 This methodology is a typical inductive example, where learning is defined as 

the acquisition or discovery of general relations - dependencies - rules from particular 

given examples (Vlahavas et al., 2006; Lampropoulos & Tsihrintzis, 2015). 

Respectively, the organization and correlation of experiences in a new kind of structure, 

recommends patterns. The construction of models or patterns from a dataset, within the 

context of a computational system, constitutes the framework of machine learning 

(Vlahavas et al., 2006). 
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Research Lines 

Machine learning refers to computational modeling of learning processes, based on the 

available learning theories. Within the field of machine learning, different approaches 

are distinguished. 

 The first approach is about the development and optimization of learning 

systems, which have the capacity to simulate accurately specific learning tasks (i.e., 

task-oriented studies). The second approach involves the design and construction of 

computational models of mind, in order to simulate the human learning processes. This 

research approach is part of a multidisciplinary effort, where scientists from different 

disciplines work together, in order to decipher the modus operandi of the human mind. 

The third approach studies the learning methods and algorithms independently of the 

application domain (Camastra & Vinciarelli, 2007). 

When A Machine Learns? 

According to the learning definition, people learn by changing their behavior in a way 

that makes them perform better in the future. But how and under which conditions does 

a machine learn? Actually, this question could be answered under a philosophical 

perspective, but this is outside the scope of this study. In a human-centered approach, 

learning implies thinking and purpose. Something that learns has to do so intentionally. 

Therefore, how could we describe learning without purpose - intentionality? 

 A machine learns whenever it changes its structure, program, or data, based on 

the input it receives or in response to external stimuli - information, in such a manner 

that its expected future performance improves (Nilsson et al., 1998). This improvement 

implies adaptation to new circumstances, as well as pattern detection (Russell & 

Norvig, 2010). Consequently, a machine learns with respect to a particular task “T”, 
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performance metric “P”, and type of experience “E”, if the system reliably improves its 

performance “P” at task “T”, following experience “E” (Mitchell, 2006). 

Machine Learning: Cross-Section of Disciplines 

Machine Learning is the natural outgrowth of the intersection of Computer Science and 

Statistics (Nilsson et al., 1998). Historically, the field of statistics has been more 

concerned with testing hypotheses, while the machine learning field has been more 

concerned with formulating the process of generalization as a search through possible 

hypotheses. Given the fact that while many machine learning techniques do not involve 

any searching at all, and statistics is far more than hypothesis testing, the above 

conceptualization is rather an oversimplification (Witten et al., 2011). Given the 

progress achieved during the last decades in statistics and machine learning in general, 

there have been emerged more than one convergence points. For example, in practice, 

standard statistical methods are applied in the phase of constructing and refining of an 

initial example set (e.g., visualization of data, selection of attributes, discarding outliers, 

etc.). In general, we can see that many statistical tests are used to validate machine 

learning models, as well as to evaluate machine learning algorithms (Witten et al., 

2011). 

 Machine learning is undoubtedly an interdisciplinary scientific field, consisting 

of the cross-fertilization of different disciplines and research directions, theories and 

methods. The disciplines that have contributed to the renaissance of machine learning, 

cover a wide range of fields which are summarized in the following chapter. 

Brain models 

An essential source of inspiration and motivation for various machine learning 

techniques is the study of the brain, namely the comprehension of biological neural 

networks. According to the biological paradigm, artificial neural networks, which are 
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brain-inspired computational models, consisting of non-linear elements (Nilsson et al., 

1998), constitute powerful machine learning tools. Neural networks models achieve 

state of the art performance on many complex problems. This. approach according to 

which systems are capable of learning by transforming their internal structure, is called 

connectionism 

Psychological Models 

The science of psychology investigates the relationship between brain function and 

behavior in the context of a precisely defined environment. This methodological 

framework studies humans performance in a series of learning tasks-problems using as 

main research tool the experimental procedure. 

 There are many different approaches that compose the landscape of psychology, 

depending on different research methodologies and tools. The cognitive approach 

focuses on the study of information processing in terms of mental-cognitive processes 

(e.g., memory, language skills, problem solving, etc.). This approach relies mainly on 

computational models of cognition, through which cognitive processes are being 

simulated. 

Artificial Intelligence 

Artificial intelligence and machine learning are closely related, since both fields share 

the idea that systems (models) should be able to learn and adapt through experience. 

Artificial intelligence refers to a wide range of problems and explores issues such as the 

role of analogies in learning, how to use the experience of previous situations to deal 

with new situations, discover rules for expert systems, etc. (Nilsson et al., 1998).  

 Artificial Intelligence has been influenced by several scientific disciplines (e.g., 

Philosophy, Mathematics, Economics, Psychology and Neuroscience, Linguistics, 

Computer engineering, Control theory and cybernetics) (Russell & Norvig, 2010). The 
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birth of artificial intelligence dates back to the decade of 1950. Since then, many 

transitional periods have taken place. The main phases-periods of AI are summarized as 

follows: 

• 1952-1969: The General Problem Solver (GPS) program was created. The GPS 

program was designed in order to imitate human problem-solving protocols. The 

success of GPS and subsequent similar modeling efforts of cognition led to the 

formulation of the physical symbol system hypothesis (Newell & Simon, 1976), 

according to which a physical symbol system has the necessary and sufficient 

means for general intelligent action (Russell & Norvig, 2010). The symbolic 

approach defines the nature of representations, as well as their relationship with 

the mechanisms that produce them. In this context, representations are 

considered as abstract symbols (Protopapas, 2004). Any system (human or 

machine) exhibits intelligence, is operating by manipulating data structures 

composed of symbols (Russell & Norvig, 2010). 

• 1966-1973: In these early years of artificial intelligence, the focus of interest 

was on creating systems, that could play chess or prove mathematical theorems, 

or generally simulate complex skills and processes. Most of the algorithms were 

developed during this period were centered around simple syntactic 

manipulations. The basic algorithm strategy was to test different approaches 

until the best solution is found (Russell & Norvig, 2010). 

• 1969-1979: The methods and strategies of this period were not expandable to 

larger scale problems. Towards this direction, emphasis was put on exploitation 

of domain-specific knowledge. This architecture can more effectively deal with 

problems concerning specific areas of expertise (Russell & Norvig, 2010). 

• 1986-present: The progress and achievements of modern artificial intelligence 

has been largely due to the return of neural networks. The arrival of new 

algorithms and the evolution of existing ones, as for example the reinvention of 
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the back-propagation learning algorithm (first found in Bryson & Ho, 1969), 

gave a new momentum to the field (Russell & Norvig, 2010). 

 

 The first attempts of artificial intelligence have not yielded the expected results 

due to various reasons:  

• Limited computational power of CPU's. 

• Inefficient algorithms. 

• The lack of a global vision. 

• Explicit and realistic goals. 

The true renaissance of artificial intelligence happened mainly during the last years.  

Approaches which are based on hidden Markov models (HMMs), Bayesian network 

formalism, and deep learning architectures are valuable tools in this direction 

Statistics 

Statistical learning lies in finding desired dependence-relation for an infinite domain 

using a finite amount of given data (Lampropoulos & Tsihrintzis, 2015). The problem 

in this context is to find the optimal way to use samples drawn from unknown 

probability distributions, in order to decide from which distribution some new sample is 

drawn. The method refers to predicting the estimated value of an unknown function at a 

new point, given the values of this function at a set of sample points (Nilsson et al., 

1998). 

 

 

 Usually, the number of the desired relations for a finite amount of given data is 

infinite. Given this fact, the interest shifts in choosing the most appropriate relation per 

case. To solve this problem, we use the principle of parsimony, or as is well known, the 

principle of Occam’s razor, according to which one should not increase the number of 
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entities unnecessarily or make further assumptions than are needed to explain anything. 

Therefore, when there are many suggested solutions for a problem, we have to choose 

the simplest one (Lampropoulos & Tsihrintzis, 2015). 

Adaptive Control Theory 

Under the adaptive control theory perspective, the problem is approached at the base of 

estimating the unknown parameters of a process during its operation. The difficulty lies 

in that the parameters continuously change during operation, and the control process 

must track these changes. The main difference between adaptive controllers and linear 

controllers, regards the controller’s ability for adjustment, in order to handle unknown 

model uncertainties (Cao et al., 2012). 

The Contribution of Machine Learning 

The modeling of learning processes in the context of machine learning, creates new 

perspectives in terms of exploring both research and technical issues. Some of them are 

summarized in the following questions: 

• How humans and animals learn, namely what are the possible learning 

processes that are responsible for the consolidation of memory and learning? 

• Which is the optimal way to reach out difficult computational problems? 

• How to develop automatic mechanisms for particular kind of problems? 

Engineering Reasons 

The contribution of machine learning, beyond the above mentioned, includes important 

engineering reasons as well.  

 The first reason concerns the capability of learning systems to adjust their 

internal structure, by transforming their network elements. This adjustment - 

regularization, corresponds to the production of correct outputs for a large number of 
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sample inputs, constraining this way their input - output function. The ultimate purpose 

of this process is to approximate the relationship that is implicit in the examples 

(Nilsson et al., 1998). 

 The second reason regards the process of discovering patterns in large quantities 

of data. Data mining, namely the discovery of hidden regularities (or important 

relationships) in the growing volumes of data, constitutes a popular machine learning 

method. The basic condition for data mining is the partial or complete automation of 

procedures. The extraction of patterns through these techniques must be in line with 

some basic principles, regarding technical and economic issues. Another basic 

requirement, regarding data mining, is that the availability of data should be in 

substantial quantities (i.e., Big Data). The proposed techniques approach the issue of 

data mining in two ways: finding the appropriate techniques for finding and describing 

structural patterns in data, as well as explaining these data and making predictions from 

it (Witten et al., 2011). 

 The third reason concerns the continuous improvement of existing machine 

designs (i.e., make machines being adaptable in the continuously changing 

environment). Machine learning methods can be used for on-the-job improvement of 

existing machine designs (Nilsson et al., 1998).  

 Machine learning is also used in computing problems, when designing and 

programming explicit algorithms is infeasible (Lampropoulos & Tsihrintzis, 2015). 

Things are getting complicated when the case concerns large amounts of data. A key 

advantage of machine learning methods is the management of large volumes of data, 

enabling to manipulate knowledge and capture more of it than humans do manually 

(Nilsson et al., 1998; Mitchell, 2006). The main focus of machine learning is about 

what computational architectures and algorithms can be used, in order to handle the 

large amount of available data, namely to effectively capture, store, index, retrieve and 

merge these data. 
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Types of Learning 

The underlying learning strategies are based on two discrete entities, the teacher and the 

learner. These two entities constitute a two-way (dynamic) relationship, according to 

which the teacher has the necessary information and knowledge (i.e., the know how), in 

order to perform a given task in a given context, while the learner has to learn the 

necessary information and therefore to acquire the knowledge needed, in order to 

perform a specific task in a given context (Camastra & Vinciarelli, 2007; Lampropoulos 

& Tsihrintzis, 2015). The taxonomy of learning strategies is determined by the amount 

of inference performed by the learner on the information provided by the teacher. 

According to this assumption, the following learning types are defined: learning from 

instruction, learning by analogy and learning from examples. 

Learning from Instruction 

Learning from instruction is one of the most common types of learning. Most 

educational systems around the world use this learning strategy as the main educational 

method in the curriculum process. This type of learning involves two entities (actors), 

the teacher and the learner. Teacher is responsible for organizing and transmitting 

information and knowledge to learner. Depending on the context, the teacher’s role may 

be replaced by a textbook or any other equivalent teaching medium. The learner has to 

perform some inference, in order to transform the incoming information in such a way 

that the resulting knowledge is potentially usable. This phase is subdivided into 

individual transformation processes, where intermediate representations arise. These 

representations must be compatible with learner’s cognitive system. The newly 

acquired information is incorporated in the learner’s existing cognitive schemes-

structures, by forming new records and/or integrating with prior knowledge (Camastra 

& Vinciarelli, 2007). 
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 In conclusion, we can say that the learner is required to perform some inference, 

while the teacher is responsible for the organization and supervision of the entire 

learning process, ensuring the terms and conditions which incrementally increase 

learner’s knowledge (Camastra & Vinciarelli, 2007; Lampropoulos & Tsihrintzis, 

2015). 

Learning by Analogy 

Learning by analogy refers to the learning process, that is based on finding similarities 

in the structure-core level between the pre-existing knowledge of the learner and the 

incoming information transmitted by the teacher. The acquisition of new knowledge 

and skills lies in the transformation and incremental processes of the existing 

knowledge, in a suitable form that is as similar as possible to the desired new concept or 

skill, on the basis of adaptation and utility in the new situation. An essential feature of 

learning by analogy is that much of the organization of information-knowledge, as well 

as the main part of inference procedures is performed almost exclusively by the learner 

(Camastra & Vinciarelli, 2007; Lampropoulos & Tsihrintzis, 2015). 

 In terms of processing steps, the presence of new information triggers an 

identification process, according to which a fact or skill analogous in relevant 

parameters should be retrieved from memory (Lampropoulos & Tsihrintzis, 2015). The 

next processing step is the transformation process of the retrieved knowledge, in a 

proper form, so as to be compatible and applicable to the new situation (Camastra & 

Vinciarelli, 2007). 

Learning from Examples 

The learning from examples approach, refers to the category of learning problem, 

according to which from a collection of input-output pairs, a learner infer a function 

that predicts the output for new inputs (Russell & Norvig, 2010) (i.e., given an example 
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set of limited size, find a concise data description) (Camastra & Vinciarelli, 2007). This 

type of learning is a key viewpoint of machine learning. In particular, the learning 

process is analyzed as finding desired dependencies using a limited number of 

observations (Lampropoulos & Tsihrintzis, 2015). 

 Learning from examples uses methods and techniques applied in statistics. 

Statistical learning is about the formalization of relationships between variables in the 

data in the form of mathematical equations. Both machine learning and statistics 

attempt to answer the same question, namely how learning from data is possible. 

According to statistics, the formulation of a problem is the discovery and processing of 

the samples drawn from an unknown probability distribution. The purpose here is to 

find out from which distribution a new sample has been drawn (Lampropoulos & 

Tsihrintzis, 2015). The role of the learner lies in the inference of a general concept 

description that describe the examples, given a set of examples. In this case, the roles 

between teacher and student are reversed, since the amount of inference performed by 

the learner is much greater than in other types of learning. Hence, the inference 

processes performed by the learner, imply a higher degree of complexity, comparing to 

the above mentioned learning types (i.e. learning from instruction, learning by analogy) 

(Camastra & Vinciarelli, 2007; Lampropoulos & Tsihrintzis, 2015). The classification 

of learning techniques in the context of machine learning recommends three classes 

(i.e., supervised learning, unsupervised learning and reinforcement learning). 

Inductive & Deductive Learning 

Focusing on the learning from examples approach, two basic subcategories are 

distinguished: the inductive and the deductive learning. 

 In inductive learning, the proceeding of inference, has as starting point one or 

more particular cases, in order to come up to a general case. Another formulation of this 

method, is to begin from a finite sample of data and to come up to a generalization 
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about a whole population. This kind of learning aims to search for a general function or 

rule, using exclusively input-output pairs. This inference process does not necessarily 

guarantee that the function describing this input-output relationship is always the 

correct one (Russell & Norvig, 2010). The key point in inductive learning is the 

extraction of general relations rules (dependencies), namely similar characteristics 

(common patterns) from a set of particular given examples, generalizing (potentially) 

for any future test set (Russell & Norvig, 2010; Lampropoulos & Tsihrintzis, 2015). 

Inductive learning is the most popular type of learning within the machine learning 

methods. 

 Deductive or analytical learning is based on existing facts and knowledge. The 

main goal is to extract new knowledge using previous knowledge. The deductive 

reasoning method uses a set of known relations-rules (dependencies) that match the 

training data (Lampropoulos & Tsihrintzis, 2015), going from a known general rule to a 

new rule that is logically entailed (Russell & Norvig, 2010). In conclusion, we can say 

that the new knowledge-inferences in deductive learning is in a sense implicit in the 

initial knowledge. 

 Depending on the type of feedback, learning from examples can be also be 

divided in three additional categories. This division is mostly based on how to use and 

exploit the training data. The purpose here is to find a general description (inference/ 

dependency relationship), that describe the data about a specific kind of problem 

(Lampropoulos & Tsihrintzis, 2015), namely to weigh the problem according to the 

data. These broad categories, which will be discussed in detail below, are the following: 

supervised learning, unsupervised learning and reinforcement learning.  

Supervised Learning 

Supervised learning or learning from examples is the most common form of machine 

learning, whether it's deep or not (LeCun et al., 2015). The system learns a function or 
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concept based on the dataset, which is a description of a model. The supervised learning 

process can be summarized as follows (Vlahavas et al., 2006): 

• The system must decode the incoming information (i.e., input data), forming an 

expression of the model, by learning inductively a function called target 

function (e.g., denoted by “c”). The target function is used to predict the value 

of a variable, called dependent variable or output variable, according to the 

values of a set of variables, called independent variables or input variables or 

characteristics. 

• A set of instances (e.g., denoted by “X”), corresponds to the total of the 

different input values of the function, where every instance is described from a 

set of attributes or features. Accordingly, a subset of the set of instances for 

which we know the variable output value, corresponds to the training set (e.g., 

denoted by “D”). 

• The system then examines several alternative functions, so as to approximate 

the target function in a more precisely manner. These alternative functions are 

called hypotheses (e.g., denoted by “h”), while the total of all these possible 

hypotheses is denoted by “H” (Vlahavas et al., 2006). 

• Inductive learning is based on the inductive learning hypothesis, according to 

which every hypothesis that has been found to closely approximate the target 

function for a sufficiently large set of examples, will also approach in the same 

manner the objective function for instances that have not previously examined. 

A hypothesized function is said to generalize when it guesses well on the testing 

set. Both mean-squared-error and the total number of errors are common 

measures (Nilsson et al., 1998). 

 

 Supervised learning includes classification, prediction and regression tasks, 

where the objects that are related to a specific concept are pairs of input-output patterns. 
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The system observes some example input - output pairs and learns a function that maps 

from input to output (Russell & Norvig, 2010). This assumption implies that data that 

belong to the same concept are already associated with target values (Lampropoulos & 

Tsihrintzis, 2015). 

 The main supervised learning techniques are the following: (Vlahavas et al., 

2006): 

• Concept Learning. 

• Classification or Decision Trees. 

• Rule Learning. 

• Instance Based Learning. 

• Bayes Learning. 

• Linear Regression. 

• Neural Networks. 

• Support Vector Machines (SVM). 

Unsupervised learning 

Unsupervised learning or learning from observation refers to formulation of a concise 

description of data by passively mapping or clustering data according to some order 

principles, where the system is required to discover correlations or groups in a dataset, 

in order to generate patterns. According to this type of learning, the data constitute only 

a set of objects, no label is available regarding the specific associated concept, while it 

is not known whether patterns will emerge (Vlahavas et al., 2006; Lampropoulos & 

Tsihrintzis, 2015). Consequently, there is only a training set of vectors without function 

values for them (Nilsson et al., 1998). The focus is on creating groups-clusters of 

similar objects according to a similarity criterion, and afterwards to infer a concept that 

is shared among these objects (Theodoridis & Koutroumbas, 1999). 
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 Unsupervised learning methods are implemented in taxonomic problems, where 

the goal is to invent ways to classify data into meaningful categories (Nilsson et al., 

1998). This class of methods focus on learning patterns in the input even though no 

explicit feedback is supplied. Detecting potentially useful clusters of input examples, is 

one of the most common tasks in unsupervised learning (Russell & Norvig, 2010). 

 Unsupervised learning deals with the issue of dimensionality reduction. The 

basic concept regarding the dimensions in a problem, is to preserve the initial 

information of data, while ensuring an optimal way of computational complexity. There 

are extensive references in the literature on this issue, which is commonly referred to as 

the curse of dimensionality. According to the curse of dimensionality, the number of 

variables in multivariate problems requires exponentially increasing the amount of 

computational resources (Lampropoulos & Tsihrintzis, 2015). High dimensionality of 

data is a fundamental barrier in many Computational science and engineering 

applications. One of the most characteristic problems, that is raised in the context of 

pattern classification tasks, is related to the learning complexity. In particular, the 

learning complexity grows exponentially with the linear increase in the dimensionality 

of the data. 

 In order to address the problem of dimensionality, some pre-processing steps on 

the raw data are required (Arel & Rose, 2010). Unsupervised learning techniques 

include algorithms that preserve the initial information of data, allowing a more 

efficient computation. This process is carried out by providing a transformation on the 

data, by computing an intermediate representation from high-dimensional to low-

dimensional spaces. This dimensionality reduction scheme is often referred to as feature 

extraction (Arel & Rose, 2010; Lampropoulos & Tsihrintzis, 2015). 
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Reinforcement Learning 

Reinforcement Learning is inspired by phycological theories, and in particular by 

behaviorist psychology. In terms of neurological level, reinforcement learning is 

referred to the basal ganglia in subcortical nuclei of the mammal brain (Lampropoulos 

& Tsihrintzis, 2015). Additionally, this type of learning has been influenced by control 

theory (Camastra & Vinciarelli, 2007; Russell & Norvig, 2010; Cao et al., 2012). Under 

the control theory perspective, the problem is approached at the base of estimating the 

unknown parameters of a process during its operation (Cao et al., 2012) in a dynamic 

environment that results in state-action-reward triples as the data (Camastra & 

Vinciarelli, 2007). 

 In reinforcement learning the basic idea is related to the procedure of 

performing actions in order to achieve a goal. The basic concept in this type of learning 

is to yield an efficient method to develop goal-directed action strategies, through trial 

and error procedures. Reinforcement learning applies to that category of problems 

where there is not a priori explicit knowledge on the actions to be taken in order to 

perform a task. An agent (system) is allowed to automatically determine the ideal 

behaviour within a specific context, in order to maximize its performance, defined by 

the rewards that the agent get in a given state (Camastra & Vinciarelli, 2007; 

Lampropoulos & Tsihrintzis, 2015). 

 This type of learning differs from the ones mentioned previously (i.e., 

supervised learning, unsupervised learning), since the learning algorithm is not 

informed which actions to take into account regarding a given situation (Camastra & 

Vinciarelli, 2007). Actually, there are not taken into account input-output pairs at all. 

The feedback the learner receives is a kind of reward, which may not be provided in 

real time, i.e., immediately after the action is taken (Camastra & Vinciarelli, 2007; 

Lampropoulos & Tsihrintzis, 2015), while the concise description of data is the strategy 

that maximizes the reward. A major challenge of a reinforcement learning algorithm is 
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to find out a trade-off between exploration and exploitation. This is feasible either by 

choosing those actions that have been successfully tested in the past and proved to be 

effective in producing reward, or by discovering those actions that have not been tried 

in the past so as to explore thoroughly the state space (Camastra & Vinciarelli, 2007). 
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Neural Networks 

Introduction 

Neural networks are brain-inspired computational models that belong to the class of 

parametric non-linear models. In general, a neural network is a collection of units 

connected together. The properties of the network are determined by its topology and 

the properties of the neurons (Russell & Norvig, 2010). The study of neural network 

theory has received significant influences from many different scientific disciplines. In 

this perspective, it has drawn extensively on concepts from neuroscience and 

psychology, as well as from the tools of mathematics and computer science. Neural 

network models are based on the biological paradigm, as they use structures and 

processes that mimic those of the human brain. Consequently, these models give us 

insights into the cognitive functions, as an attempt to model the information processing 

capabilities of the brain. 

 Neurons are the base elements of the brain, that transmit impulses in the nervous 

system (Basegmez 2014). As an artificial neuron is defined a computational model, the 

parts of which can be matched with those of a biological neuron (Vlahavas et al., 2006). 

Artificial neural networks are algorithms inspired from the biological neurons and 

synaptic links (Hamed et al. 2013). They are data processing systems consisting of 

artificial neurons organized in structures similar to those of human brain, and can be 

considered as non-linear estimators, which depend on nonlinear approximations applied 

directly on the input space (Lampropoulos & Tsihrintzis, 2015). The architecture and 

the basic principles of operation of neural networks models, make them an important 

tool for dealing with many difficult problems. In many cases, neural networks are used 

as a black box, regarding the processing procedures that take place in the hidden layers 

of the network. In a typical neural network, a certain input produces a desired output, 
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but how the network achieves this result is left to a self-organizing process (Rojas, 

1996). 

 Neural networks consist of non-linear elements, interconnected through 

adjustable weights, where computation is explained in terms of network interactions. 

Neural networks have been widely used as computational models of knowledge and 

cognition. They constitute one of the most popular and effective forms of learning 

systems, and play an important role in the machine learning field (Nilsson et al., 1998). 

 The comparison between a biological and an artificial neuron is evaluated in 

terms of an abstract fashion. According to this scheme, there are retained some 

functional properties of natural neural networks, which are considered to be important 

for computational properties, regarding the capability of implementing distributed 

processing, tolerance to noisy inputs and learning (Protopapas, 2004). 

Biological Neural Networks 

A biological neural network is composed of a collection of neurons, which are the 

elementary building blocks of the network, interconnected with each other via axon 

terminals. The constituent parts of a typical biological neuron, are the body, which 

constitutes the core of the neuron, the dendrites, which collect information sent on by 

other neurons, and the axon, a primary output pathway by which neurons send 

information to other neurons.  

 Signals (input) that reach a neuron are defined as afferent inputs. The fact that 

the axon of the afferent neuron does not contact the dendrite of the receiving neuron, 

results in the creation of a gap between the neurons. These gaps between neurons are 

called synapses. The axons and dendrites are connected to each other via synapses 

(Protopapas, 2004; Kandel et al., 2006; Basegmez, 2014). Chemical procedures that 

take place among the synapses attain the acceleration or deceleration of the flow of 

electrical charges in the body of the neuron. Subsequently, neurotransmitters released 
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by the afferent neuron into the synapse are picked up by receptors in the receiving 

neuron’s dendrites. The action of some neurotransmitters results in an excitatory effect 

on the receiving neuron, thus increasing the network activation. Vice versa, other 

neurotransmitters have an inhibitory effect, reducing the network activity of the 

receiving neuron. Both excitatory and inhibitory inputs can vary in strength depending 

on two things: the chemical composition of the neurotransmitters and the strength of the 

synapse (Gluck & Myers, 2001). 

 Cognitive functions, as they emerge from the underlying brain processes, 

suggest that the brain function is resulting from the ability of the synapses to constantly 

change their conductance. The electrical signals that enter the body of neurons operate 

in combination rather than individually. This property combined with the existence of a 

threshold trigger, defines the architecture and the basic principles of neural network 

operation. In particular, when the combined result exceed a threshold value (usually this 

value is predefined), the signal is propagated to the other neurons through the axon 

(Vlahavas et al., 2006). 

 Given the above, we conclude that biological neural networks are self-

organizing systems and each individual neuron is also a delicate self-organizing 

structure capable of processing information in many different ways. This massive and 

hierarchical-network structure of the brain seems to be the basic precondition for the 

emergence of complex behavior and consciousness (Rojas, 1996). 

Artificial neuron 

The modeling processes of a biological neuron are based on the choice of the 

fundamental elements of its basic architecture and function. According to this 

abstraction, an artificial neuron is considered to be a biological model. Unlike the 

electrical pulses detected in the brain, the input signals received by an artificial neuron 

are continuous variables. The variation of any such input signal varies depending on the 
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weight value. This corresponds to the role of the synapse in a biological neuron. This 

value receives a positive or negative sign respectively, simulating this way the 

accelerating or decelerating operation of the synapse. The body of the artificial neuron 

consists of two parts. The first one is the sum module, which adds the modulated input 

signals, in order to produce a quantity (i.e., “S”). The other part of the body is the 

activation function, which operate as a kind of filter and forms the final value of the 

output signal (Vlahavas et al., 2006). 

 The design and construction of artificial neural networks is based, as is true for 

any attempt to model a system, on an abstraction process, with regard to the physical 

system - network. The degree of complexity of a real biological neuron defines the 

context of artificial neural networks theory. According to this, we do not consider the 

whole complexity of the real biological neurons. The general practice used in order to 

model neural networks is to conceive each neuron as a function that produces numerical 

results at some points in time. Therefore, only some principles of biological neural 

networks are used, while each case determine the desired level of detail (Rojas, 1996). 

 A network structure (network) is composed by multiple artificial neurons, which 

are connected to each other. The type and structure of the connection depends on the 

architecture and the topology of each network. In the most common case, each neuron 

transmits its activation to all the following neurons it is connected with. The input 

received by each neuron is the result of the processing being performed by its weighted 

input connections. Specifically, the incoming input value gets multiplied by the weight 

associated with that connection. The final product of this process (i.e., the resulting 

signal) is combined with signals, respectively derived from other connected neurons. 

Finally, through the activation function, the activation of the neuron is performed or not 

(Gudi, 2014). 
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 The essential properties of neurons, which are considered as elementary on 

network-level and are usually retained in the artificial neural models are the following 

(Protopapas, 2004): 

• Each neuron receives signals and is activated or not to send signals to other 

neurons. 

• The neuron transmits the activity of its inputs, meaning that it can accept a total 

of strong or weak inhibition or stimulation. 

• The effect of stimulating a neuron on another is proportional to the connection 

strength between them. 

• The learning process in a neural network is achieved through the changing in the 

synaptic weights. 

Artificial Neural Networks 

Artificial neural networks theory, which is also called connectionism, parallel 

distributed processing (PDP), or neural computation, lies on the essential properties of 

biological neural networks, in terms of information processing and without considering 

the whole complexity of real biological neurons. Artificial neural networks, in general, 

are networks of interconnected units, which serve as model neurons, computing 

nonlinear functions of their input. Beyond the similarities with the biological model, an 

artificial neural network may be viewed as a statistical processor, which delivers 

probabilistic assumptions about data (Jordan et al., 2006). The main difference between 

artificial neural networks and conventional computer systems lies in the massive 

parallelism and redundancy processeses. These processes allow to address issues with 

regard to the unreliability of the individual computation units. 
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Structure of Neural Networks 

The functionality and flexibility of neural networks arises from the incorporation of 

several key features, such as adaptability, nonlinearity and arbitrary function mapping 

capacity. These features, in the context of neural network architecture, make them one 

of the most reliable solutions to resolve problems such as pattern and sequence 

recognition (classification), data processing (e.g., filtering, clustering, etc.) (Zorbas et 

al. 2015). The hierarchical multilayered structure of neural networks enable the 

transmission of information not only to the immediate neighbours but also to more 

distant units (Rojas, 1996). 

 An artificial neural network is actually a graph, with vertices (neurons, or units) 

and edges (connections) between vertices (Jordan et al., 2006). Such a network is 

composed of a system of interconnected artificial neurons, which can compute their 

activations based on the weights of their connections and the activations of their 

neighbours (Gudi, 2014). The processing units of a neural network are the nodes (or 

units), that constitute a simplified mathematical abstraction of the basic functionality of 

a neuron. The neurons are connected each other with directed connections (links). Each 

node in a network includes two types of connections, i.e., afferent and abductive 

connections. Furthermore, each node is characterized by a degree of stimulation or 

activation level. The degree of stimulation depends both on the particular node and on 

the sum of all the incoming connections.  

 The power of nodes on a neural network, as is also the case in a network of 

biological neurons, is not the result of individual neuronal activity but the result of the 

collective power that occurs when many nodes are interconnected in a network (Gluck 

& Myers, 2001). The relationship between the activity carried through the afferent 

connections and the consequent stimulation of a node is called activation function or 

integration function (Protopapas, 2004). 
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 The function of each synapse is modeled by a modifiable weight, which is 

associated with each connection (Polk & Seifert, 2002). Each link is associated with a 

numeric weight, which determines the strength and sign of the connection and is 

characterized by a numeric value called associative weight (weight) (Protopapas, 2004; 

Russell & Norvig, 2010). Each node in the network is characterized by an activation 

level. This activation level can be considered as the probability that the node will 

generate output of its own, or as an approximation of the node’s response strength on a 

scale from 0, where the node is not active, to 1, where the node is fully active (Gluck & 

Myers, 2001). 

 Each unit-node converts the pattern of incoming activities it receives into a 

single outgoing activity, which transmits to other units-nodes. The sequence of steps 

that make up this process is as follows: Initially, the node multiplies each incoming 

activity by the weight on the connection, and then adds together all these weighted 

inputs to get the total input. Subsequently, the node uses an activation function that 

transforms the resulting total input into the outgoing activity (Polk & Seifert, 2002). 

Activation Functions 

The selection of the activation function is mainly based on their properties to simplify 

or enhance the overall behavior of the network (Gudi, 2014). The activation function 

meets two basic conditions. The first condition is related to the activation or not of a 

node. The node is active close to 1, given the correct inputs, and inactive close to 0, 

given erroneous inputs. According to the second condition, the activation should be 

non-linear, because otherwise the overall neural network will degenerate into a simple 

linear function, by significantly limiting the computing power of the network (Rojas, 

1996). 

 There are several types of activation functions, with the following cases being 

the most typical (Polk & Seifert, 2002; Vlahavas et al., 2006): 
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• Step function. This function gives as an output result, usually 1, if and only if 

the value calculated by the adder is greater than a given threshold value (i.e., 

“T”). 

• Sign function. The resulting value of the output is positive or negative 

respectively, if the rate calculated by the adder is greater or lower than a given 

threshold value (i.e., “T”). 

• Logistic function. This type of function is part of a broader class of functions, 

called sigmoid functions. The comparative advantage of sigmoid functions lies 

in their ability to be continuous and differentiable in the entire range of input 

values, as well as in their ability to limit the output between 0 and 1 or between 

-1 and 1. Another property of sigmoid functions is that they are used as a filter, 

by suppressing the large values, while giving satisfactory output for small input 

values. The fact that the output varies continuously but not linearly as the input 

changes, ensures that the network can implement a nonlinear function. The 

structure and the functionality of sigmoid units is closer to the biological 

plausibility of real neurons (Polk & Seifert, 2002; Vlahavas et al., 2006). 

Neural Network Architectures 

The efficiency of a neural network is directly related to its topology (i.e., architecture) 

and the learning algorithm that is used per case in order to find the weights of the 

network. Depending on the oroblem to be solved, network's nodes may be linked in 

different ways (Polk & Seifert, 2002), recommending different learning styles (Polk & 

Seifert, 2002). 

 The most common type of artificial neural network, in terms of its architecture 

and structure, consists of three groups or layers of units: the input layer, the hidden 

layer/layers and the output layer (Polk & Seifert, 2002; Protopapas, 2004): 
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• Input layer - nodes. These nodes are at the input layer of the network and 

represent the raw information that is fed into the network. Each input can be 

either excitatory or inhibitory, whilst is can also be characterized as strong or 

weak.  

• Output layer - nodes. Output nodes are referred to those nodes from which we 

choose to take the result of the network processing. 

• Hidden layer(s) - nodes. Between the input and output nodes there is a layer of 

intermediate nodes, the hidden nodes. These nodes neither accept external 

stimuli nor are they part of the network processing result. The activity of each 

hidden node is determined by the activities of the input nodes, as well as the 

weights on the connections between the input and hidden nodes (Polk & Seifert, 

2002; Protopapas, 2004). 

 

 The most popular neural network architectures are the feedforward and recurrent 

neural networks, which are discussed in the next section. 

Feedforward Neural Networks 

A Feedforward network or multi-layer perceptron (MLP) is the most widely used 

architecture for implementing neural network models. According to this type of 

architecture, a network is consisted of a sequence of layers, where each layer is 

composed of a number of units (nodes). Information flows from the bottom to the top 

(i.e., bottom-up approach). In other words, every node in the network receives input 

from upstream nodes and delivers output to downstream nodes. The connectivity of a 

feedforward network is complete in the sense that the units are arranged in layers, so 

that all units in successive layers are fully connected (Hamed et al. 2013). 

 Typically, feedforward networks have one input layer, one or more hidden 

layers, and an output layer. The connection between the input and output layers is 
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unidirectional and there is no connection between the neurons within a layer. This is 

equivalent to a directed acyclic graph, namely the units-nodes and connections of the 

network correspond to the nodes and edges of the graph (Russell & Norvig, 2010; 

Kriegeskorte, 2015). 

 When the number of hidden layers in a network increases, the network is called 

deep neural network. There is no clear limit or some formal definition according to 

which a network is defined as deep. In that sense, if there is more than one hidden 

layers, the network is called deep neural network (DNN). Each neuron in the hidden 

layer(s) calculates its output using the activation function, so the values are propagated 

from the input layer through hidden layer(s) to the output layer. Moreover, a basic 

feature of this type of network is that there are no loops (Basegmez, 2014). 

 Feedforward neural networks are universal function approximators, which 

calculates a static function mapping inputs to outputs. Therefore, the presentation of a 

stimulus (input) leads to the direct production of a response (output). These processes 

within the layers of the network represent a snapshot of the current input to the output 

(Protopapas, 2004). Actually, all the weights themselves define the internal state of the 

network (Russell & Norvig, 2010). 

 Both the training process and the mathematical description of the function of a 

neural network can be described as relatively simple. The drawback of this type of 

networks lies on the limited range of their computational capacity (Protopapas, 2004). 

Recurrent Neural Networks 

Recurrent Neural Networks (RNN) are networks that are based on a special type of 

architecture, where units can be connected in cycles. A recurrent network is equivalent 

to a feedforward network, which is consisted of an infinite number of layers, where 

each layer is connected to the next one by the same weights matrix. The information 

flow within the network in a recurrent manner, generates ongoing dynamics, which 
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contribute to the processing of temporal sequences of inputs. This feature constitutes a 

comparative advantage over feedforward networks, since it can approximate any 

dynamical system, given a sufficient number of nodes (units) (Kriegeskorte, 2015). 

 The structure and architecture of recurrent networks is similar to that of 

biological neural networks, in which lateral and feedback connections are ubiquitous. 

Given these properties, recurrent networks are characterized as more realistic compared 

to feedforward network (Kriegeskorte, 2015). Α recurrent network is also a powerful 

tool for modeling sequence data. 

 In a recurrent network there may be connections between the neurons within a 

layer, feeding its outputs back into its own inputs (Russell & Norvig, 2010), namely 

each hidden unit can interact with each other hidden unit (Kriegeskorte, 2015). These 

networks process the data stream successively, e.g., an input sequence one element at a 

time. According to this processing model, a history of the data is created, maintaining 

additional - implicit - information about the elements of the sequence in the form of a 

state vector (LeCun et al., 2015). The dynamic behavior of the system emerges from 

this sequential processing style. Particularly, the activation levels of the network form a 

dynamical system that may reach a stable state or exhibit oscillations or even chaotic 

behavior (Russell & Norvig, 2010). The stability of such a network - system depends on 

the relationship between inhibitory and excitatory connections (Protopapas, 2004). 

 Recurrent networks can support short-term memory (STM), since the response 

of the network to a given input depends on its initial state, which may depend on 

previous inputs (Russell & Norvig, 2010). This structure makes it possible to remember 

the context of sequential data (Basegmez, 2014). 

 The benefits of using recurrent models to solve complex computational 

problems, make these systems a worthwhile solution. Meanwhile, the use of these 

systems has several disadvantages. Problems are mostly related to the training phase, 

which may be quite difficult and problematic because of several instabilities (e.g., get 
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stuck in local minima, etc.). Also, the mathematical description of the functions used is 

often impossible due to high complexity of networks parameters (Protopapas, 2004). 

Indicatively, a common problem that occurs during the training process, is that the 

backpropagated gradients either grow or shrink at each time step, so over many time 

steps they typically explode or vanish (LeCun et al., 2015), an issue that will be 

extensively analyzed in the next section. 

Neural Networks: Learning and Training Processes 

Learning process in terms of neural networks implies the adjustment of the weights of 

the connections between the neurons in the system. This adjustment of the weights in 

the synapses define the behavior of the individual neurons, as well as the overall 

behavior of the network. The training of a neural network is accomplished using 

sophisticated algorithms. Depending on the network's architecture, the algorithm that is 

appropriate for each case is chosen. In any case, regardless of the type of learning, i.e., 

whether it is supervised or unsupervised learning, the objective is to optimize the 

distribution of network weights. That means to bring the network into a state of 

equilibrium. 

 From time to time dozens of algorithms have been proposed in the international 

literature. Some of these algorithms laid the foundation for the evolution of artificial 

neurons and inspired the creation of new algorithms. Some of the most popular, 

efficient and commonly involved in machine learning tasks algorithms are the 

following (Basegmez, 2014; Lake et al., 2016): 

• The Perceptron algorithm (Rosenblatt, 1958). 

• Hebbian learning (Hebb, 1949). 

• The BCM rule (Bienenstock et al., 1982). 

• Backpropagation algorithm (Rumelhart et al., 1986). 

• The wake-sleep algorithm (Hinton et al., 1995). 
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• Contrastive divergence (Hinton, 2002). 

The Perceptron Network 

Perceptron network, or single-layer neural network is a network with all the inputs 

connected directly to the outputs (Russell & Norvig, 2010). Perceptrons are the basic 

neural network building blocks, which are used for training algorithms (Basegmez, 

2014). Given the fact that each weight of the network affects only one of the outputs, 

we consider a perceptron network as corresponding to n separate networks, according to 

the n number of output units. In other words, what the perceptron networks actually 

does, is the decomposition into n separate learning problems, given an n-output 

problem. Consequently, it will be n separate training processes (Russell & Norvig, 

2010). As we will see later, even if this particular process of decomposition works well 

for this type of network architecture, it fails in a multilayer network. 

 The basic training process of a three-layer neural network includes the following 

steps. The first step corresponds to the training phase, during which we feed the 

network with examples. These examples or as we usually call them “training data”, 

consist of a pattern of activities for the input units together with the desired pattern of 

activities for the output units. Given some well-defined criteria, which are usually set at 

the beginning of the network training process, we then examine the degree of similarity 

between the desired output of the network and the actual output of the network. This 

comparison process leads to the determination of the error rate. 

 In order to achieve better results and produce a better approximation of the 

desired output in the network, we change slightly the weight of each connection, so as 

to succeed gradually an optimized result (Polk & Seifert, 2002). The weights should be 

adjusted gradually to reach the desired behavior, which is possible using different 

activation functions. This gradual adjustment will allow new neurons to produce values 
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between the range of 0 and 1. A major drawback of perceptron's networks is that they 

can only carry out linearly separable functions (Basegmez, 2014). 

 Depending on the type of activation function used per case, the training 

algorithm will be either the perceptron learning rule, i.e., wi ← wi + α (y − hw (x)) × xi, 

or the gradient descent rule for the logistic regression (Russell & Norvig, 2010). 

Gradient Descent Training Rule 

The output produced by a neuron, whether it is a neuron belonging at the hidden 

layer/layers, or respectively a neuron belonging at the output layer, depends both on the 

weight of the connections and an additional numeric value, called bias. Bias is a value 

that is added to the sum calculated at each node, without counting the nodes belonging 

at the input layer, during the feedforward phase. The bias value is usually by default 1 

and is used within a neural network architecture mostly for computational purposes 

(Protopapas, 2004). The expected goal during the training phase of a network is to find 

the minimum output error, i.e., the minimum difference between the desired output and 

the actual output of the network. 

Description 

As discussed in the previous section, the training phase of a neural network is done by 

feeding it using training data. The assessment of whether the network has been 

adequately trained and can generalize the acquired knowledge into new examples, is 

done through comparing the actual activity of the output(s) units with the desired result. 

Subsequently, what needs to be done is the calculation of the error, which is defined as 

the square of the difference between the actual and the desired activities. 

 In order to reduce the error, we have to modify the weight of each connection in 

a sophisticated way. To perform this process, we first have to compute the error 

derivative for each weight. Calculating this quantity, i.e., the error derivative, we 
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perform the necessary change at each weight on the nodes of the network by an amount 

that is proportional to the rate at which the error changes as the weight is changed (Polk 

& Seifert, 2002), that is the derivative of the error with respect to the weight. This 

iterative reduction of the errors through small adjustments to the weights, is one of the 

most popular and effective training methods for training a neural network model and is 

known as gradient descent (Kriegeskorte, 2015). 

 Gradient descent learning algorithm is based on the idea of finding how much a 

slight change of the weights will reduce the output error. The initialization of weights at 

the beginning of the training process is done randomly. The adjustment of each weight 

is being calculated in proportion to the effect on the error. The gradient descent method 

guarantees that we are moving in that direction in weight space, along which the error 

descends most steeply (Kriegeskorte, 2015).  

 The gradient descent method is a local algorithm, which takes into account only 

the local neighborhood in the weight space. This local nature of the method is an 

important advantage compared to other training algorithms. The comparative advantage 

lies in the fact that with so many available directions to move in, gradient descent is 

unlikely to get stuck in local minima. Getting stuck in local minima means that the error 

increases in all directions and no further progress is possible (Russell & Norvig, 2010; 

Polk & Seifert, 2002; Kriegeskorte, 2015). All these properties of gradient descent 

algorithm make it a valuable tool for finding stable and effective solutions. 

Limitations 

Meanwhile, the high dimensional training data, pose a series of challenges and 

obstacles to the algorithm’s optimal operation. The increased dimensionality in the 

weight space in combination with the architecture of the network (e.g., connections 

driving the preceding layers), make the use of gradient base algorithm, at least in its 

simplest version, insufficient. 
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 A classic problem that arises concerns the calculation derivative of the output 

error. The difficulty lies on the individual calculation for each training sample. The 

solutions that have been proposed to address the problem focus on variations of 

sampling. 

Stochastic Gradient Descent (SGD) 

Stochastic gradient descent method (SGD) is a proposed solution, used to speed up the 

training process. The algorithm is based on the estimation of the true gradient, using 

small amount of samples, from which samples it then extracts the average (mean) 

(Basegmez, 2014). 

 The basic processes of the algorithm are described as follows (Polk & Seifert, 

2002; LeCun et al., 2015): 

• Initially, the input vector is presented only for a few examples. 

• Then the outputs, as well as the errors, are calculated. 

• The next step of the algorithm corresponds to the calculation of the average 

gradient for the selected examples and to the corresponding weights adjustment. 

• These processes are performed iteratively for many small sets of examples, 

drawing from the total set of instances (training examples), until the average of 

the objective function stops decreasing (LeCun et al., 2015). 

Back-propagation Algorithm 

The essential theoretical ideas regarding the back-propagation learning algorithm were 

first developed in 1969 by Bryson and Ho, while the algorithm was reinvented a few 

years later, in the mid-1980s by several different research groups (Rogers & 

McClelland, 2004; Russell & Norvig, 2010; LeCun et al., 2015). The back-propagation 

(or backpropagation) algorithm is an efficient process for calculating the error 

derivative for the weight (EW). The algorithm has been applied successfully towards a 
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wide range of problems with regard to different scientific fields (e.g., computer science, 

psychology, cognitive science, etc.). The back-propagation algorithm was mainly 

spread within the framework of Parallel Distributed Processing (PDP) (Russell & 

Norvig, 2010), and is still a valuable option for neural networks training. 

Description 

Backpropagation algorithm is a gradient-descent method that makes iterative small 

adjustments to the weights of the nodes, in order to reduce the errors of the outputs 

(Rumelhart et al., 1986). This method constitute an inherently gradual learning process, 

which is based on the presentation of many training examples. The algorithm addresses 

the fundamental problem of discovering useful representations in data, which means 

that it can teach the hidden units of the network to produce interesting representations 

of complex input patterns (Polk & Seifert, 2002). 

 We can see the backpropagation algorithm as a practical application of the chain 

rule for derivatives. That is the computation of the gradient of an objective function 

with respect to the weights of a multilayer stack of modules. Under this perspective, the 

key point of the process is that the gradient of the objective function can be calculated 

with respect to the input of a module. The process works backwards from the gradient 

with respect to the output of that module or respectively the input of the subsequent 

module. This process can be applied repeatedly to propagate gradients through all 

modules, starting from the output layer to the input layer (LeCun et al., 2015). 

 As previously mentioned, a perceptron network (i.e., a simple form of neural 

network) decomposes into n separate learning problems for an n-output problem. 

However, this kind of decomposition is not possible if the network consists of many 

hidden levels. This is the case of a multilayer neural network. In this regard, the 

problem lies in the computational complexity involved in adding additional layers of 

hidden nodes. While the error calculation in the output layer is clearly evident, the 
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situation is more complicated in hidden layers. Having as a sole source of information 

the training data, we cannot estimate accurately the values of the nodes in the hidden 

layers (Rumelhart et al., 1986; Russell & Norvig, 2010). 

 In particular, if we add the gradient contributions from each layer during the 

weights' update, a multilayer network decomposes an n-output learning problem into n 

learning problems. In order to accomplish this decomposition process, we have to 

propagate the error from the output layer directly to the hidden layers. The 

backpropagation process emerges directly from a derivation of the overall error 

gradient. A basic requirement for updating the connections between the input units and 

the hidden units, is the definition of a quantity, which must be analogous to the error 

term for the output nodes (Russell & Norvig, 2010). 

 The basic processes of the backpropagation algorithm are described as follows 

(Russell & Norvig, 2010; Basegmez, 2014; Rogers & McClelland, 2004): 

• The network is given the input and the neurons (nodes) are activated until the 

upper layer. 

• The output error of the upper layer is calculated using the observed error of the 

layers below. 

• Then, the error(s) is backpropagated, in order to calculate the error of the former 

layer. 

• The gradient of the error function corresponds to the multiplication of the output 

error of the neuron and the activation function of the stimulating neuron in the 

former layer. This multiplication process is repeated for each training sample. 

 

 Based on the assumption that all the units of the network are linear, the 

algorithm computes each error derivative of the weights (EW), while computing the 

rate at which the error changes as the activity level (EA) of a unit (node) is changed. 
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Specifically, for the output nodes, the EA corresponds to the difference between the 

actual and the desired output. 

 When we want to compute the EA for a hidden unit, which belongs in the 

hidden layer just before the output layer (i.e., last hidden layer), we must take into 

account all the weights between that hidden unit(s) and the output units to which it is 

connected. Subsequently, we multiply those weights by the EAs of those output units 

and then add the products. After calculating all the EAs in the last hidden layer, we 

similarly follow the same procedure for the remaining layers of the network. The 

workflow (i.e., direction of processing) is evolving from layer to layer in a direction 

opposite to the way the activities propagate through the network. The EW is the product 

of the EA and constitute the outcome activity through the incoming connection. When 

we want to apply this method in a network composed of nonlinear units, the process is 

not significantly different. The differentiation, unlike a network consisting of linear 

units, lies on the processing step before applying the back-propagation. In that case, the 

EA must be converted into the rate at which the error changes as the total input received 

by a unit is changed (EI) (Polk & Seifert, 2002; Rogers & McClelland, 2004). 

Advantages of Back-propagation 

Back-propagation algorithm is an important tool for training neural networks based 

models, consisting of multiple hidden layers and large amount of data. The technique of 

back propagation makes it possible to create useful representations. These 

representations, also called internal or intermediate representations, address several 

fundamental problems related to learning processes. In order to train a multilayer neural 

network, we use the global convergence technique, according to which the weights are 

gradually adjusted, so that to reduce the total output error. However, as it turns out, for 

many machine learning tasks, the global convergence technique is not taken as a 

prerequisite in order to achieve good performance (Polk & Seifert, 2002). 
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 In terms of Bayesian learning, the backpropagation algorithm implements a 

Bayes optimal process in the sense that it learns connection weights that maximize the 

probability of the output given the input (Rogers & McClelland, 2004). 

Limitations 

Back-propagation algorithm is an innovative method that combines many advantages. 

However, it also has some significant drawbacks, depending on the perspective and 

implementation context. 

 A major drawback concerns to the biological plausibility of the method. The 

term biological plausibility refers to the structure and mode of operation of the 

biological neural system, according to which the information flow does not look like 

the way the back-propagation algorithm works. Specifically, back-propagation 

activation seems to require that information must travel through the same connections 

in the reverse direction, namely from one layer to the previous one. The transmission of 

information backwards along the axon does not fit with realistic models of neuronal 

function (Polk & Seifert, 2002; Lake et al., 2016). However, this objection is actually 

under question, since the brain seems to have many pathways, namely from upper 

layers back to previous layers. Consequently, the brain could use these pathways in 

many ways to transmit the information required for learning (Polk & Seifert, 2002). 

 Another objection to back-propagation as a realistic model of learning has to do 

with the learning strategy it uses. A basic assumption of the method is that it 

presupposes feedback for each training instance, namely providing the correct output 

per case. This seems to contradict what is actually true in real learning conditions, since 

people learn without direct instructions of how to construct the internal representations 

of the received stimuli (Polk & Seifert, 2002). 

 In addition to the above drawbacks, the speed of the algorithm raises questions 

about its efficiency and computational completeness. The main argument lies in the fact 
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that the relationship between the learning time and the size of the network is 

proportional. This dependency shows that the bigger the network, the more time it takes 

to learn. What actually happens is that the time needed to compute the error derivatives 

for the weights on a given training example is proportional to the size of the network 

because the amount of computation is proportional to the number of weights (Gluck & 

Myers, 2001; Polk & Seifert, 2002). Assuming that bigger scale networks require more 

training data, it is concluded that the update rate of the weights is also rising. Therefore 

the learning time grows much faster than does the size of the network (Polk & Seifert, 

2002). 
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Deep Learning 

Introduction 

Deep learning (DL), also known as deep structured learning, hierarchical learning, 

representation learning or feature learning among others, is a popular research area of 

machine learning research, that constitutes a class of machine learning techniques, 

where many layers of information processing stages in hierarchical supervised 

architectures are exploited for unsupervised feature learning and for pattern analysis or 

classification (Deng & Yu, 2014). Deep learning methods allow computational models, 

that are composed of multiple processing layers or stages of nonlinear information 

processing, to learn representations of data hierarchically with multiple levels of 

abstraction, by extracting complex relationships among the data (Deng, 2013; LeCun et 

al., 2015; SAP SE, 2015). 

 Deep learning techniques constitute a revolutionary machine learning approach 

that has been applied across a wide range of fields regarding classification, information 

retrieval, image recognition-retrieval, dimensionality reduction, natural language 

processing and robotics among others (SAP SE, 2015). While most of these problems 

are studied extensively in the light of classical machine learning methods (e.g., shallow 

neural network architectures, Support Vector Machines, etc.), during the last years, 

deep learning has demonstrated state of the art performance on many of these tasks 

(Hinton & Osindero, 2006; Vincent et al., 2010; SAP SE, 2015), by discovering 

intricate structures (patterns) in high-dimensional data (LeCun et al., 2015). 

Furthermore, the hierarchical nature of learning processes taking place in deep learning 

architectures, facilitates the processing of big data.  

 The key point behind the philosophy of deep architectures is the computation of  

hierarchical features or representations of the observational data (i.e., raw data), where 



Postgraduate Dissertation Ioannis Kontoulis 

 51 

the higher-level features are defined from the lower-level ones (Deng & Yu, 2014). The 

features in a deep learning scheme are represented automatically from the data using a 

general purpose learning procedure (LeCun et al., 2015), drawing ideas and inspiration 

from biological and circuit complexity theories (SAP SE, 2015). 

A Brief History of Deep Learning 

Deep learning is in the point of intersections among several disciplines involving the 

research areas of artificial neural networks (ANN), artificial intelligence (AI), cognitive 

science and neuroscience, computational neuroscience, graphical modeling, 

optimization, pattern recognition and signal processing (Deng & Yu, 2014; Poggio, 

2016; Goodfellow et al., 2016). This interdisciplinary machine learning approach has 

drawn heavily on knowledge from the fields of statistics and applied math (Goodfellow 

et al., 2016). It also relies on the structure and functionality of the human brain - mind, 

that is believed to operate in a deep fashion. This architecture, composed of multiple 

layers of abstraction, allows the creation of multiple types of representation, which have 

simpler features at the lower levels and  more complex features on the upper layers. 

The Origins of Deep Learning Approach 

Historically, the concept of deep learning originated from artificial neural network 

research, within the field of artificial intelligence. The main idea is based on learning 

large neural network style models with multiple layers of representation, approaching 

the data in an hierarchical and abstract fashion (Poggio, 2016; Lake et al., 2016). The 

architecture of deep network models consists of multiple layers of hidden layers, which 

are capable of learning abstract features of the input by constructing internal 

representations. The ultimate goal of this iterative process is the creation of even more 

internal representations independent of the raw data (input), that have been derived 

from the integration of several patterns (Basegmez, 2014). Consequently, the purpose is 
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the construction of intermediate representations, through an hierarchical learning 

process, having as a result the emergence of complex and high level abstractions, driven 

from the raw data (Najafabadi et al., 2015). These methods have made great progress 

and have contributed significantly in solving problems, which for a long time remained 

intractable. (e.g., object recognition, speech recognition, control, etc.) (Schmidhuber, 

2014; LeCun et al., 2015). 

 Although deep learning approach seems to count only a few years as a machine 

learning paradigm, its origins date back many years ago. Trying to briefly review the 

milestones of deep learning, we observe the influence of different scientific directions. 

Recently, deep learning has seen stunning growth in its popularity and usefulness, 

mainly because of the increased computational power, the availability of larger datasets, 

as well as of the available techniques to train deeper networks in a more efficient way. 

The core idea behind deep learning is based primarily on the composition of features at 

multiple levels under an hierarchical scheme (Goodfellow et al., 2016). 

 The key points of development of deep learning are summarized in three 

periods, reflecting different philosophical viewpoints and technological innovations. 

The field was not always known as deep learning, since it has been renamed several 

times. The first period of development of deep learning, known as cybernetics, covers 

the decades between 1940-1960. The second period, known as connectionism, refers to 

the decades between 1980-1990 (Goodfellow et al., 2016). In the year 2006, the interest 

in deep feedforward networks was revived and is now known as deep learning. In that 

context, specific unsupervised learning procedures enable the creation of feature 

detectors without the need of labelled data (LeCun et al., 2015). 

Deep Motivations 

The fundamental assumption of deep learning theory refers to the computation of 

hierarchical representations of the available input data, where the higher-level features 
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emerge from lower-level ones. This is probably what the brain seems to do. Actually, 

brain seems to operate in a deep fashion, attempting to represent the received stimuli 

into meaningful internal representations (Bengio & LeCun, 2009). 

 The inspiration behind the hierarchical learning architecture of deep learning 

algorithms is reinforced by the observation that humans learn concepts in a sequential 

order (Rocki, 2016), and they organize their ideas and concepts hierarchically, through 

composition of simpler ideas. They first learn simpler concepts and then compose them 

in order to represent more abstract ones (Bengio & LeCun, 2009). In particular, the 

whole process of learning is based on the creation of simple patterns, that contribute to 

the formulation of more complex patterns in terms of those previously learned, through 

intermediate (abstract) representations (Rocki, 2016). This idea is coherent with human 

information processing mechanisms, regarding the processes of vision and audition. 

 These complex information processing systems indicate the need of deep 

architectures, in order the brain to manage the vast amount of information, by 

decomposing sensory stimuli, and accordingly extracting complex structures and 

constructing internal representations (Deng & Yu, 2014). This kind of architecture 

allows the function of complex cognitive processes - skills (e.g., observation, analysis, 

learning, decision making, etc.) These factors contributed to the creation of the deep 

learning approach, where the main point is the modeling of real world data in an 

hierarchical fashion, emulating the deep layered learning process and attributes of the 

primary sensory areas in the neocortex (Najafabadi et al., 2015). 

Brain and Neocortex 

The roots of deep learning architectures are based in the science of the brain. One of the 

fundamental features of the brain is associated with its ability of performing parallel 

and distributed processing. The brain is an inherently parallel system, that is composed 

of multiple subsystems (modules), where there is no explicit distinction between 
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memory and processing functions, which are performed together, simultaneously and 

uninterruptedly (Protopapas, 2004; Kandel et al., 2006). 

 Basic findings from neuroscience have provided insight into the principles 

governing information representation in the mammalian brain, formulating the 

hypothesis that mental (cognitive) activity consists primarily in the electrochemical 

activity in networks of neurons. Anatomical studies in conjunction with functional and 

neuroimaging techniques show that the mammal brain is organized in a deep 

architecture, where each input stimulus is represented at multiple levels of abstraction, 

and each level corresponding to a different area of the cortex (Serre et al., 2007; 

Bengio, 2009; Bengio & LeCun, 2009). The brain handles huge amounts of information 

through multiple stages of transformation. Each of these stages corresponds to different 

(intermediate) representations, which are considered to be sparse and distributed. These 

distributed representations are important in order to untangle underlying causes of 

variation, and they can be significantly more noise resistant, comparing to dense 

representations (Ahmad & Hawkins, 2015), as well as much more expressive (Rocki, 

2016).  

 A specialized and extremely complex brain area is the neocortex, that is found 

only in mammals and is believed to be the place from which the intelligence emerges. 

Neocortex, which is associated with many cognitive abilities, is layered and 

hierarchical. There is not universal convergence and unanimity in the scientific 

community regarding the general principles of its operation, due to the increased 

complexity of the brain cells network (Rocki, 2016). Neocortex handles functions such 

as sensing, motor control, as well as higher-level cognitive functions, such as attention, 

planning, navigation, execution etc. (Palm, 2012). This particular brain structure does 

not explicitly pre-process sensory signals, but defines the structure and the conditions 

for the propagation of those signals through a complex hierarchy of modules, that 

progressively learn to represent observations based on the regularities they exhibit (Lee 
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et al., 1998; Lee & Mumford, 2003). Extensive studies on neocortex reveal the presence 

of multiple networks, where the organization in columns reflects the local connectivity 

of the cerebral cortex. These findings demonstrate that all the parts of neocortex are 

involved and interact each other, constituting a network of parallel and distributed 

processing (Rogers & McClelland, 2004; Rocki, 2016).  

 The neocortex of human brain is a thin, extended, convoluted sheet of tissue 

with a surface area of about 2600 cm2, and thickness 3-4 mm. It contains up to 28 x 109 

neurons. Cortical neurons are connected with each other and with cells in other parts of 

the brain by a vast number of synapses. The cortex is organized horizontally into six 

layers, where lower layers projecting to higher layers and higher layers projecting back 

to lower layers (Mountcastle, 1997; Kandel et al., 2006; ). The structure of neocortex is 

sparse and distributed, allowing the optimal information processing of the input stream. 

Neocortex cells are grouped into clusters of cells, depending on their functionality, and 

they act as feature detectors. A feature detector includes those cells that exhibit similar 

behavior, by being simultaneously active or inactive. For example, the cells belonging 

to each column in the neocortex that respond to sensory stimuli, regarding the 

representation of a certain muscle or a region of vision or sound or even a region of 

another modality, are excited simultaneously (Rocki, 2016). This functionality 

constitutes a lateral inhibition mechanism, according to which a column that is active 

will prohibit other nearby columns from becoming active simultaneously. This 

mechanism, that leads to sparse activity patterns, allows the existence of independent 

feature detectors in the cortex (Bell & Sejnowski, 1997). 

 The most representative example, regarding to the hierarchical nature of the 

brain, came from basic neuroscience work in visual cortex. In their research study, 

Hubel and Wiesel (Hubel & Wiesel, 1962) recorded simple and complex cells in the 

primary visual cortex, suggesting a model according to which simple, complex and 

hyper-complex cells constitute a series of layers of units supporting the construction of 
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complex features, while preserving high degree of invariance (Kriegeskorte, 2015). The 

mechanisms of the primate visual system (visual pathway) propagate the incoming 

information in a sequence of processing stages, corresponding to detection of edges, 

primitive shapes, that gradually lead to more complex visual shapes (Bengio, 2009).  

 Significant discoveries from the fields of visual neuroscience, neuroimaging and 

neurophysiology suggest that the hierarchical nature of visual perception is based on the 

division of the connections into three different types, namely feedforward, lateral, and 

feedback connections. This hierarchy is based on the fact that several neurons are 

separated from the input by a large number of synapses. This kind of structure allows 

for the creation of more complex representations of the input features (Levine, 2013; 

Kriegeskorte, 2015). In particular, as information flows from the primary visual area V1 

to the extrastriate areas V2 and V4, as well to the inferior temporal cortex (IT cortex), 

the neurons respond gradually to increasingly abstract features, while preserving 

increased invariances to several aspects of the perceived image, such as rotation, 

viewpoint, lighting, background, etc. (Bar et al., 2001; Kandel et al., 2006). 

 In conclusion, the structure and functionality of neocortex consists of the 

following essential features (Palm, 2012): 

• It is a highly repetitive structure built of a vast number of nearly identical 

columns (Mountcastle, 1997). Τhis complex and interconnected brain structure 

is layered and hierarchical such that each layer is capable of learning more 

abstract concepts (Felleman & Van Essen, 1991). 

• A major feature of neocortex relates to the capacity of plasticity. Actually, 

neocortex is plastic to such an extent that one neocortical area can take over 

another areas function (Buonomano & Merzenich, 1998). 

• Several high level cognitive skills, related to the neocortex (e.g., sensory 

perception, spatial reasoning, language, motor control, etc.), constitute 
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procedures that are acquired in an evolutionarily manner, during the early stages 

of development (Palm, 2012). 

 

 According to the above attributes, some theories, most of them arising from the 

domain of neuroscience, suggest that the neocortex is built using a general purpose 

learning algorithm and a general purpose architecture, capable of solving many 

different and complicated tasks. This general purpose architecture seems to be adequate 

to explain intelligence, and therefore how consciousness emerges (Palm, 2012; Rocki, 

2016), and at the same time it constitutes an argument in favor of the view that there are 

not specific-region algorithms. This theory is based on the assumption that the 

complexity of the neocortex is limited to a single learning module, while the 

expectation is that if we can understand and decode this module, we can replicate and 

apply it in a scale that leads to reliable and effective artificial intelligence.  

 Deep learning theory considers that much of the power of neocortex results 

from this deep and hierarchical structure. Consequently, any research efforts and 

implementations in the deep learning domain focus on these issues and attempt to 

unlock these powers by examining the effects of layered and hierarchical structures 

(Palm, 2012). The idea of a layered hierarchical computational brain model has 

emerged early in the scientific community within the fields of cognitive psychology and 

cognitive science. The Deep Learning field borrows a lot from these ideas and can be 

seen as trying to implement some of these ideas (Bengio, 2009). 

Reverse Engineering 

The neural perspective on deep learning, which refers to the use of deep neural network 

architecture of multiple non-linear processing layers, is motivated by two general 

assumptions.  
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 The first one is related to the understanding of the basic computational 

principles behind the brain. Having as a starting point the hypothesis that the brain 

seems to work in a deep learning mode, a conceptually realistic way to create artificial 

intelligence is via the reverse engineering perspective. Reverse engineering refers in 

general to the process of analyzing a subject system, in order to identify the system’s 

components and their interrelationships. This approach gradually leads to the depiction 

- transformation of the system’s representations in another form and/or at a higher level 

of abstraction (Chikofsky & Cross 1990). This is achieved by breaking up the potential 

solutions into multiple levels of abstraction and processing (Bengio & LeCun, 2009). 

The reasoning used here is about implementing the practice of decomposing a system in 

order to gain understanding about its function (Mikowski, 2013).  

 The second assumption refers to the promotion of the scientific questions that 

are related to the basic principles governing the structure and functioning of the brain 

and resulting cognition, contributing in this way greatly in many scientific fields 

(Goodfellow et al., 2016). 

 While the field of neuroscience has contributed greatly and in many ways to the 

emergence of deep learning and is regarded as a valuable source of information for the 

basic and applied scientific principles that govern the field, the modern era of deep 

learning exceeds the neuroscientific perspective, in favor of the recent generation of 

machine learning models (Poggio, 2016; Goodfellow et al., 2016). Besides the neural-

based models, deep learning can also be implemented in different machine learning 

frameworks, regarding to a more general principle of learning multiple levels of 

composition and abstraction. Although there has been notable progress in the study of 

the brain, there is still lack of knowledge, on how to replicate proportionally the brain 

processes (algorithmic learning processes) in the field of machine learning. The reasons 

for this lack of progress in the study of the brain, are related mainly with technical 

issues, regarding the methods used for the imprinting (simulation) of the operation of 
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thousands (millions) of interconnected neurons simultaneously. TThe spatial and time 

localization restrictions of neuroimaging techniques, as for example the Functional 

Magnetic Resonance Imaging (fMRI), combined with the required computing power, 

that is necessary for conducting large-scale simulations of the brain function in real 

time, gradually shifted the interest of research in areas beyond the field of 

neurobiology. In other words, we don’t have as this moment enough information about 

the brain, in order to use it as a main guide for exploring the deep learning perspective 

(Goodfellow et al., 2016). 

 Consistent with the above principles and findings, one can approach the deep 

learning in the sense of simulating the brain functions, by constructing more accurate 

models of how the brain actually/potentially works. This is an extremely interesting and 

promising challenge, which relates inherently to the scientific fields that study the brain 

and cognition related issues. The researchers that study the brain, as for example, 

psychologists, cognitive scientists, neurologists, neuroscientists, tend to use the deep 

learning methods and tools as the medium for their research.  

 In the case of computer science and in particular of artificial intelligence, this is 

not the objective. The main goal of deep learning is related with how to build computer 

systems, which manage to solve successfully complex and demanding tasks-projects, 

that require skills akin to these of human intelligence. Applied math fundamentals like 

information theory, linear algebra, probability theory, and numerical optimization 

inspire in a catalytic way the deep learning progress (Goodfellow et al., 2016). 

Furthermore, over the last years the increasing computing power and the availability of 

labeled large datasets, have contributed greatly to the development and performance of 

deep learning systems (Poggio, 2016). 
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Cognitive Science 

Cognitive science is the scientific interdisciplinary field which study the mind. This 

multidimensional perspective is the result of the intersection of many different scientific 

fields, including psychology, philosophy, artificial intelligence, neuroscience and 

linguistics among others. This wide range of fields makes it possible to formulate 

theoretical directions and ideas beyond the scope of each field individually. 

Consequently, cognitive science is not limited to the sum of the individual constituent 

components, but to their intersection or converging work on specific problems. 

 A fundamental principle of cognitive science is the idea of computation, 

according to which the mind is an information processor. This theoretical perspective 

(i.e., information processing) on what the mind is, assumes some form of mental 

representations and processes, on the basis of which information is processed. The 

concept of representation is central to almost all the theoretical approaches of cognitive 

science (Protopapas, 2004; Friedenberg & Silverman, 2006). The approach in which the 

concept of representation is not used, is that of the dynamic approach, which employs-

implements dynamic systems. 

The Interdisciplinary Perspective: Methodological Approaches 

The interdisciplinary perspective of cognitive science, is based on the co-existence of 

several individual disciplines. The different approaches that make up the cognitive field 

are the following (Friedenberg & Silverman, 2006): 

• The Philosophical Approach: This branch of cognitive science does not 

contribute descriptions of observations or models of experimental results, but a 

priori arguments for the structure and function of the mind. The consequence of 

the philosophical approach to thinking of the mind as an information processor 

is the conception of consciousness as a symbolic processing (Protopapas, 2004). 

The primary method of philosophical inquiry is reasoning (deductive and 
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inductive reasoning). According to the first one, given an initial set of 

statements assumed to be true, some statements are extracted that logically must 

be correct. Correspondingly, according to inductive reasoning, some 

observations are made about specific instances in the world, some 

commonalities among them are extracted, which in turn lead to conclusions 

being drawn (Friedenberg & Silverman, 2006). 

• The Psychological Approach: The method that psychologists use is based on 

the experimental method, according to which a working hypothesis is 

formulated about how internal mental phenomena and accordingly external 

behaviors arise, which is confirmed or not in the context of an experiment under 

a set of controlled conditions. The field of psychology includes several 

subdisciplines (e.h., functionalism, Gestaltists, Psychoanalytic psychology, etc.) 

(Friedenberg & Silverman, 2006). 

• The Cognitive Approach: The emphasis is shifted to internal mental 

operations-processes. Mental functionality is described in terms of the 

information processing (i.e., representation and computation). The basic tools 

used are the experimental and computational modeling. Computational 

modeling methods use software based implementations, in order to describe 

several cognitive processes as memory, attention, pattern recognition, etc. This 

modeling method is also used in the artificial intelligence and network 

approaches (Friedenberg & Silverman, 2006). 

• The Neuroscience Approach: Cognitive neuroscience studies the mental 

events in terms of underlying brain mechanisms (i.e., brain and endocrine 

system), providing a description of the cognitive/mental processes at the 

implementation level. At this level of analysis, the subject of study is the cell 

biology of individual neurons and of neuron-to-neuron synaptic transmission, 

the patterns of activity in local cell populations, and the interrelations of larger 



Postgraduate Dissertation Ioannis Kontoulis 

 62 

brain areas. The great evolution that has been made recently in neuroimaging 

techniques (e.g., Positron Emission Tomography - PET, Computerized Axial 

Tomography - CAT, and functional Magnetic Resonance Imaging - fMRI) has 

contributed significantly in measuring the brain activity concurrently with the 

performance on a given task (e.g., pattern recognition, attention, memory, 

imagery, and problem solving) (Kandel et al., 2006; Friedenberg & Silverman, 

2006). 

• The Network Approach: A key building block of this approach is the 

collection of individual computing units, which are connected to each other and 

they form a network of interdependence and interaction between them 

(Friedenberg & Silverman, 2006). 

• The Evolutionary Approach: In this perspective, the basic principles of 

selection theory are used to analyze and interpret the various cognitive 

processes. An example in this direction is the evolutionary psychology 

(Friedenberg & Silverman, 2006). 

• The Linguistic Approach: In this perspective, the interest lies in linking the 

symbolic philosophy of mind and the classical theoretical linguistics, as 

expressed in Chomsky's theory. In both cases it is assumed a priori that the 

system (cognition and language) is a formalistic computational system, while 

any variations relate to the exact type of formalistic system or details of its 

operation (Protopapas, 2004). The methods used are the experiments as well as 

the construction of computational models (Friedenberg & Silverman, 2006). 

• The Artificial Intelligence Approach: Artificial Intelligence (AI) is the field of 

computer science dealing with the design and implementation of programs that 

are capable of mimicking human cognitive abilities, thus displaying features that 

we usually attribute to human behavior. Such abilities are problem solving, 

vision through learning, learning and memory, drawing conclusions, 
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understanding natural language (NLP), etc. (Vlahavas et al., 2006). In this 

direction AI gives insights into the function of human mental operations 

(Friedenberg & Silverman, 2006). 

• The Robotics Approach: The fields of robotics, brain and cognitive science 

respectively set up an interaction framework that is analyzed into three main 

streams of research: cognition, action and perception. The basic principles here 

are associated with learning and development, as well as the dynamics of 

knowledge acquisition in the framework of goal directed actions (Friedenberg & 

Silverman, 2006). 

Theoretical Approaches to Cognitive Science: The Classical & Connectionist 

View of Computation 

The computational tradition of mathematical logic is expressed in cognitive science 

with the symbolic approach. Under this scope, symbolic representations participate into 

algorithmic syntactic processes, regardless of their content. The tradition of association 

and empiricism is expressed through the connectionist approach. Connectionism is 

based on the basic principles of Parallel Distributed Processing (PDP) (Russell & 

Norvig, 2010), and on flexible learning on networks of simple interconnected nodes. 

The dynamic approach incorporates the time dimension, introducing a continuous non-

representational view based on mathematical formalism (Protopapas, 2004). 

 The Classical (symbolic) Cognitive Science: The essence of the hypothesis 

that the mind is a computer concerns the syntactic properties of symbols' 

representations, according to which to which these symbols interact and participate in 

several processes. Their semantic content is the product of the observer’ s interpretation 

of the system that has access to the external environment of the mind and the 

relationship between the mind and its environment (Protopapas, 2004). Within this 
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view, knowledge is represented locally, in the form of symbols, while processing occurs 

in discrete stages (Friedenberg & Silverman, 2006). 

 The Connectionist Cognitive Science: Another approach, alternative to the 

symbolic one, is to study the mind by using models based on the brain architecture. 

Within this concept, some functional properties of natural neural networks are 

preserved, which are considered as important for the computational properties of the 

mind. These models are called artificial neural networks (ANN) or connectionist 

models (Protopapas, 2004). The operation of these models in the context of cognitive 

science focuses on understanding the cognition and relative cognitive processes, and 

not so much on the description of neuronal function (Protopapas, 2004).  

 In the view of connectionist approach, knowledge is not represented as in the 

traditional symbolic processing systems, where processing and storage are distinct 

functions. In contrast, knowledge is represented as a pattern of activation, which results 

from changes in the weights of the connections, that is distributed throughout a 

network. In connectionism processing occurs in parallel through the simultaneous 

activation of nodes (Friedenberg & Silverman, 2006). 

Learning Deep Architectures 

The deep learning approach is differentiated significantly comparing to the previous 

generation of machine learning methods (e.g., shallow structured architectures), both in 

terms of structure and computational efficiency. In the deep learning framework, the 

features are distributed in different layers and are separated between blocks, stacking up 

the non-linear transformation layers. This spatial arrangement recommends an 

hierarchical architecture, and allows the construction of abstractions and complex 

representations from a huge amount of unsupervised data in an automated schema 

(Deng, 2013; Najafabadi et al., 2015). 
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Deep Learning: A General Purpose Learning Procedure 

Shallow vs Deep Structured Architectures 

Shallow structured architectures are typically consisted of just a few layers of nonlinear 

feature transformations. Systems based on shallow architectures have limited 

capabilities regarding modeling and representational power (Deng & Yu, 2014). 

applications involving natural signals has been reported to be problematic when applied 

on shallow architectures and can be inefficient (Bengio & LeCun, 2009; Deng & Yu, 

2014; SAP SE, 2015). The hierarchical multi-level approach of deep learning mdthods 

achieve greater efficiency at extracting non-local and global relationships and patterns 

on the data, compared to shallow network architectures (Bengio & LeCun, 2009; 

Najafabadi et al., 2015).  

 The main distinction between the deep approach and other machine learning 

methods, related to unsufficiently deep architectures, is referred to the processes that 

take place in the hidden layers (nodes), the units where the internal representations are 

formed. Shallow classifiers require for their operation a suitable feature extractor. The 

suitability of feature extractors is defined as the capacity of forming representations, 

which are selected depending on the input stream-data (e.g., images), and therefore are 

important for discrimination processes. In addition, the produced representations must 

be invariant concerning the irrelevant aspects of the input stimuli (LeCun et al., 2015).  

 The procedure of choosing the right features for a given task is an extremely 

complex and sophisticated process. This problem becomes even more difficult, when 

the case concerns complicated problems and high dimensional data (Gudi, 2014). 

Conventional methods for discovering abstractions, namely higher-level concepts from 

lower level features, requires to ensure a large set of relevant hand labeled examples, 

and at the same time to define manually all the necessary abstractions (Bengio, 2009). 

The option of hand designing efficient and reliable feature extractors, requires a 
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considerable amount of domain expertise and advanced engineering skills (LeCun et al., 

2015). Furthermore, defining manually the right features for a given task, implies 

interdependence relationships among the proposed solutions and the user’s domain 

knowledge, while this process needs to be repeated for almost every different task 

(Gudi, 2014). 

 All these handcrafted processes can be avoided using a general purpose learning 

procedure, that exhibits similar characteristics to those of neocortex (Arel & Rose, 

2010), focusing on learning hierarchical models of data (Palm, 2012). This is the 

objective in a deep learning framework, where the construction of feature detectors is 

accomplished using unsupervised learning procedures, without requiring labelled data 

(LeCun et al., 2015). The interest in this case is shifted to procedures and strategies, 

according to which we try to discover the structure in the data through a general 

purpose learning algorithm (Bengio et al., 2012; LeCun et al., 2015). 

Deep Architectures and automated feature learning 

Deep learning methods are closely related to representation learning, where the 

objective is to discover the representations needed for classification or detection tasks 

based on unlabelled (raw) data, that are available in vast quantities (Palm, 2012). Deep 

learning algorithms are based on a hierarchical multi-level learning scheme, according 

to which a deep learning based solution is intuitive and principle-oriented. In that 

context, multiple lower level concepts, namely less abstract concepts and 

representations in the lower levels of network’s hierarchy, compose progressively 

groups of concepts, that in turn lead to higher level concepts (i.e., more complex 

representations). Finally, these abstract concepts compose a complex representation, 

which is a highly non-linear function of the input data (Gudi, 2014; Deng & Yu, 2014, 

Najafabadi et al., 2015). 
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 In a deep learning architecture, the extracted features are defined by the network 

itself (Gudi, 2014). To achieve this, each layer is pre-trained with an unsupervised 

learning algorithm, namely a nonlinear transformation of its input or the output of the 

previous layer, and accordingly provides a representation in its output. These processes 

are performed autonomously through a series of processing stages in consecutive layers 

(Hinton & Salakhutdinov, 2006; Najafabadi et al., 2015), deriving high-level 

representations directly from the raw data (Gudi, 2014). This automated way of 

learning features makes it possible to learn very complex functions, through the 

mapping process of the input data to the output directly from the data (LeCun et al., 

2015; SAP SE, 2015). The benefit deriving, inter alia, from the use of these techniques, 

is that human intervention and mediation is minimized (Bengio, 2009). 

 The basic architecture and operating principles of a typical deep learning 

network are summarized as follows (Hinton & Osindero, 2006; Najafabadi et al., 2015): 

• The input (raw) data is fed to the first layer. 

• The first layer is then trained based on this data. 

• The output from the first layer, which constitute the first level of transformed 

representation, is provided as input stream to the second layer. 

• This process continues until the required number of iterations is reached, 

namely when the desired number of the consecutive layers is obtained. Each 

layer computes a non-linear transformation of the previous layer (Gudi, 2014), 

and propagates the extracted features of each layer to the next one, until the final 

output of the network is achieved (SAP SE, 2015). What is important here, is 

the reuse of the output of each layer of the network as input to the next layer. 

Learning each layer of feature detectors corresponds to modeling the activities 

of feature detectors in the layer below (Hinton & Osindero, 2006). 

• This structure involves multiple levels of abstractions, where lower-level 

abstractions tend to be more related to segments of data, while higher-level 
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abstractions are more directly tied to meaningful concepts (SAP SE, 2015), 

yielding increasingly abstract associations between these concepts (Rocki, 

2016). 

 

 Deep learning, as a branch of machine learning, refers to the algorithms that 

model complex patterns. The operation of these algorithms is based on the data that 

feed the multiple non-linear transformations, aiming each level to capture a different 

level of abstraction (Schmidhuber, 2014). Automatic learning of features in data, 

through this iterative reconstruction procedure of pre-training several layers, is a key 

aspect of deep learning, that leads progressively to more complex detectors, with higher 

representational power, contributing to the optimal initialization of networks weights. 

Under this perspective, a system is able perform complicated functions, that are high 

sensitive to details and at the same time insensitive to large and irrelevant variations 

(LeCun et al., 2015). 

 In conclusion, the ability of a network to learn more complex functions depends 

mainly on its depth. This automated method gives satisfactory solutions to many of the 

above mentioned drawbacks of shallow modelling techniques. The utility of learning 

features in this way (i.e., automatically) is extremely useful, especially in cases where 

the amount of data continue to grow (Bengio, 2009). 

Advantages of Deep Learning Methods 

Deep learning is one of the basic methodologies that are widely used in the context of 

machine learning. Methods and algorithms based on deep learning techniques have 

been proved to be extremely successful in solving complex problems. Deep learning 

models are widely applied in the domains of computer vision, natural language 

processing, recommendation systems, biomedical informatics, etc. The superiority of 

deep techniques is primarily due to three key components, which are related to 
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efficiency, precision and flexibility. These properties are illustrated in the following 

principles (Bengio et al., 2006; SAP SE, 2015): 

• Deep learning systems are capable of learning complex and highly varying 

functions. 

• They analyze low, intermediate, and high level abstractions, with minimal 

human mediation. 

• They process a very large set of examples, using mostly unlabeled data. 

• They also exploit the synergies that take place across a wide number of tasks 

(Bengio et al., 2006). 

Why depth matters 

One of the key features of deep learning networks is their ability to represent efficiently 

complex functions. This comparative advantage is a direct result of the basic structure 

and architecture of deep networks. This special structure is consisting of fewer units 

and weights, comparing to other machine learning methods as for example the shallow 

neural networks and the support vector machines (SVM) (Bengio, 2009). Algorithms 

based on deep learning architectures demonstrate state of the art performance on many 

machine learning tasks, as they exploit the inherent structure of the target function 

(Deng & Yu, 2014; Kriegeskorte, 2015). The use of a general purpose learning 

procedure (i.e., models consisting of multiple stages of nonlinear information 

processing units), is related to the fact that each module in the stack transforms its input 

to increase both the selectivity and the invariance of the representation (LeCun et al., 

2015). 

 A significant difference between a shallow neural network with a single hidden 

layer and a deeper network respectively, concerns the reuse of computations within the 

network, namely using the output of each layer as input to the next layer, in a bottom-

up fashion (feedforward neural networks). Every node in a shallow three-layer network 
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receives input from the upstream nodes and delivers output to downstream nodes. 

Respectively, maintaining the same number of units in a deeper network, the last node 

is able to compute any function the shallow network can compute. In a network with 

several hidden layers, the units of the single layer are distributed across multiple hidden 

layers. According to this configuration, the deep network could have the same 

connectivity from the input to the hidden units, and respectively from the hidden units 

to the output. 

 Under this perspective, the two networks seem equivalent. However, the reverse 

is not true. The deep network is permitted additional non zero weights from any given 

layer to higher layers, enabling the reuse of the results of previous computations, and 

therefore extending the deep network’ s expressive power (Kriegeskorte, 2015). 

Popularity of Deep Learning 

The term deep learning is relatively recent, and is extremely popular both in academia 

and in many sectors of industry. The popularity of deep learning is due to the state of 

the art performance on numerous machine learning tasks. Nevertheless, the basic 

characteristics of deep learning appeared relatively early in the historical trends of the 

machine learning engineering community, as well as in other related disciplines. The 

underlying mathematics as well several key points of deep learning theory, regarding 

the computation of  hierarchical representations of the input data, have been known to 

the scientific community for many decades. 

 Many of the ideas and techniques that have contributed to the development of 

neural networks (shallow or deeper networks), as for example the parallel distributed 

processing theory (PDP), distributed representations and the backpropagation 

algorithm, arose in the context of cognitive science and artificial intelligence. 
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Breakthrough Technologies 

Deep learning models have grown in size over time, as computer hardware and software 

infrastructure for deep learning techniques has improved (Goodfellow et al., 2016). 

Consequently, the impressive achievements and progress that has been observed during 

the last decades in the deep learning field, are to a very large extent a consequence of 

much faster hardware, large amounts of data, as well improvements in processing 

methods. 

 The optimal performance of a neural network is primarily based on the training 

process-phase. A basic prerequisite for the successful training of a neural model is the 

availability of large amount of data. The availability of large volumes of exploitable 

data is a major issue with regard to deep learning. Several limitations regarding data 

collection and storage technologies did not allow previously the exploit of large 

datasets. But even when data became available in large quantities, other problems arose 

regarding algorithmic and computational issues. 

 The revival of neural networks is largely due to the available computational 

resources and the recent technological achievements. Progress in these areas made it 

possible to run much larger models. This progress is driven by faster computer systems, 

capable of performing calculations much faster and efficiently on large available 

datasets (Gudi, 2014). The aforementioned parameters allowed the construction of 

large-scale networks, which achieve better and more accurate results in more complex 

and demanding tasks (Goodfellow et al., 2016). 

 The success of deep learning models is also due to the increased chip processing 

abilities of general-purpose powerful graphical processing units (GPUs) (Deng & Yu, 

2014; Gudi, 2014). The highly parallel structure of GPUs makes them more efficient 

than general purpose CPUs for calculating complex algorithms, where the processing of 

large blocks of data is done in parallel. Deep networks are inherently parallelizable and 

fit well in a parallel computational architecture. The mainstream methods used for 
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training deep learning models is via platforms using CPUs and multi-thread GPUs. This 

powerful combination is a key aspect for achieving state of the art performance on 

numerous machine learning tasks (Gudi, 2014), exploiting successfully large volumes 

of data (Deng & Yu, 2014; Goodfellow et al., 2016). 

 Other factors that undoubtedly contributed to the evolution of deep learning are 

the general progress in other methods and techniques of machine learning, as well as 

achievements of the signal-information processing research. 

 Deep Learning can be conceptualized as an optimization problem, where the 

objective is finding a function of the model error. Deep learning networks, trained with 

large datasets, surpass overfitting issues and show a testing error similar to the training 

error (Poggio, 2016).  

 Summarizing all those previously mentioned, i.e. the increase in model size over 

time due to the availability of faster CPUs and the advent of general purpose GPUs, the 

faster network connectivity and the better software infrastructure for parallel and 

distributed computing (Goodfellow et al., 2016), the use of deep learning systems is a 

new gold standard both in informatics research and industry. Systems based on deep 

learning architectures are capable of exploiting complex nonlinear functions, making 

effective use of both labeled and unlabeled data, in order to learn distributed and 

hierarchical feature representations (Deng, 2014; Goodfellow et al., 2016). 

Distributed representations 

The Origins of Distributed Representations 

One of the key concepts of deep learning is that of distributed representation (Hinton, 

1986). This type of representation sets the core of connectionist view, where knowledge 

is represented as a pattern of activation or weights that is distributed throughout a 

network (Friedenberg & Silverman, 2006). Connectionism is an approach to the study 
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of the mind, using models based on the architecture of the brain. This conception 

maintains some functional properties of natural neural networks, which are considered 

essential for the computational properties of the mind. The models used in this context 

are called artificial neural networks or connectionist models (Protopapas, 2004). 

 Distributed representations are fundamental to deep learning models. The term 

distributed representation, as expressed and introduced by Hinton in 1986, refers to the 

idea, according to which each input to a system should be represented by many 

features, and each feature should be involved in the representation of many possible 

inputs (Hinton, 1986; Goodfellow et al., 2016). Concepts can be represented by 

distributed patterns of activity in networks of neuron like units. The advantage resulting 

from such a structured architecture, is that it leads to automatic generalization. 

Integrating Distributed Representations into Deep Learning Systems 

During the training phase of a network, the weights are changed in order to incorporate 

new knowledge about one or more concepts. Accordingly, these changes affect the 

knowledge associated with other concepts that are represented by similar activity 

patterns (Hinton, 1986). This type of representations that have these characteristic 

properties are called distributed representations, because their elements are not mutually 

exclusive and their many configurations correspond to the variations seen in the 

observed data (LeCun et al., 2015). 

 Distributed representations recognize patterns in data. This recognition process 

is based on training the networks in a supervised or unsupervised way, where the input 

pattern is represented by a set of features that are not mutually exclusive, and might 

even be statistically independent (Bengio, 2009; Gudi, 2014). Computational 

architectures integrating distributed representations make possible the transformation of 

the input data into abstract features, that are automatically captured and compactly 

represented across the hidden layers of the network (SAP SE, 2015). The compact 
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representation of each sample, through a large number of possible configurations of the 

abstract features, leads to enriched representations, where the number of possible 

configurations is exponentially related to the number of extracted abstract features 

(Najafabadi et al., 2015). 

 Data are generated through interactions processes among several factors, some 

of which are known, while several others are unknown. These interactions enable new 

combinations of the values of the learnt features beyond those seen during training 

(LeCun et al., 2015). What is achieved through these internal processes, is that when a 

data pattern is obtained through configurations of the learnt factors, additional data 

patterns, which previously were not known, can likely be described through new 

configurations of the already learnt factors and patterns (Bengio, 2009; Bengio et al., 

2012). 

 Deep networks are efficient computational models, achieving state of the art 

performance on numerous machine learning tasks (Hinton & Osindero, 2006; Vincent 

et al., 2010). This is mainly due the multi-level architecture of these networks where the 

information to be processed is not located in just a single layer of the network, but it is 

distributed across multiple layers, allowing learning intermediate representations. 

Intermediate (abstract) representations, can be invariant to the local changes of the input 

data, separating the different sources of variations observed in data (Najafabadi et al., 

2015) and produce generalizations that are based on different levels of abstraction, 

focusing on a small subset of a large number of features. One of the most important 

benefits of incorporating intermediate representations, is the fact that these 

representations can be shared across different problem areas. Knowledge resulting from 

this type of abstract learning is reusable, since new high-level features can be learned 

by combining lower-level intermediate features from a common pool of information 

(SAP SE, 2015). 
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Big Data and Deep Learning 

Big data, also known as massive data, is referred to the exponential growth and wide 

availability of digital data, that are difficult to be managed and analyzed using 

conventional software tools and technologies, such as the traditional machine learning 

techniques, which are based mainly on shallow structured architectures. The collection 

of these massive amounts of unlabeled data, often in the form of real-time streams, is 

coming from many different sources and is growing at astonishing rates, both in shape 

and size (Chen & Lin, 2014). The increasing data volume, which defines the scope of 

big data, is mainly due to powerful data collection sensors, sophisticated digitalization 

techniques and increased storage capabilities, in the form of large datasets, high 

dimensionality and complex data formats (Hammer et al., 2014). 

 Deep learning methods exploit massive amounts of unlabeled data (i.e., 

extraction of abstract representations from the raw data by using a hierarchical multi-

level learning approach), which is the objective in the big data analytics era. 

Big Data Analytics 

Big data analytics define a number of challenges related to computational and technical 

restrictions (e.g., limits of the typical storage hardware, processing and computing 

capacity of traditional data analysis techniques). (Elaraby et al., 2016). The amount of 

data collected on a daily basis is increasing rapidly, posing challenges for the machine 

learning community. 

 Given the above, big data analytics provide the appropriate tools and methods in 

order to analyze and extract hidden correlations and complex patterns from large scale 

data (Najafabadi et al., 2015; Elaraby et al., 2016). 

 The conventional machine learning and feature engineering algorithms have not 

been designed to handle massive amounts of raw data that are usually observed in big 
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data problems. Furthermore, it is not considered as trivial the fact that the big data 

systems incorporate inherent complexities (Najafabadi et al., 2015). 

Deep Learning: An Effective Big Data Analytic Tool 

Big data involve data analysis from very large collections of data. Shallow structured 

architectures, consisting often just a single layer of hidden units, transform the input 

information into a structured feature space. This relatively simple structure is effective 

for well-constrained problems (Elaraby et al., 2016). Big data problems require specific 

processes, that provide automated extraction of complex data. 

 Deep learning networks, composed of feature detector units organized in multi 

layers (Lee et al., 2009), is a valuable tool for big data analytics. Systems based on deep 

learning architectures extract complex abstractions providing high-level data 

representations from unlabeled data. This class of problems is summarized on 

extracting hidden patterns from massive volumes of data, fast information retrieval, 

data indexing and tagging, and simplifying discriminative tasks (Elaraby et al., 2016). 

 Deep learning algorithms exhibit remarkable performance compared to 

traditional shallow learning architectures at extracting global patterns and relationships 

in the data. The multilevel structure at the hidden layers of deep learning systems, often 

resulting in thousands or even millions of free parameters, achieves efficient solutions 

(Bengio & LeCun, 2007). An important advantage of deep learning, is the capability of 

generalization in non-local and global ways, generating learning patterns and 

relationships beyond immediate neighbors in the data.  

 Computer industry giants like Apple, IBM, Microsoft, Google, Facebook, etc., 

in order to deal with huge amounts of data on a daily base, have focused on the research 

and development of deep learning technologies. Examples in this direction are Apple’s 

Siri virtual personal assistant, IBM’s brain-like computer (IBM Watson), Microsoft’s 
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real-time translation (Microsoft Translator Speech API), as well as many other artificial 

intelligence projects and applications (Chen & Lin, 2014). 

Characteristics of Big Data: The Four V’s 

Big data analytics and deep learning are interrelated domains that relate on issues such 

as large scale models, heterogeneity, noisy labels, and non-stationary distribution, 

among many others. Big data analytic tools focus on the following (Najafabadi et al., 

2015; Elaraby et al., 2016): 

• Address issues related to volume and variety of large amounts of labeled or 

unlabeled data. 

• Handle its incompleteness and noise properties, providing high level 

representations. 

• Learn factors of data variation and make effective integration of different data 

formats. 

• Provide online learning for handling fast coming of data streams. 

 

 The basic challenges posed by big data, can be described by the three V’s 

model, introduced by Doug Laney (Laney, 2001). The three V’s refer to volume (i.e., 

large scale of data), variety (i.e., different types of data) and velocity (i.e., speed of 

streaming data) (Katal et al., 2013; Chen & Lin, 2014). In addition, the three V’s model 

has been extended to the four V’s model, taking also into account the dimension of 

veracity (Hammer et al., 2014; Najafabadi et al., 2015). 

Deep Learning From High Volumes of Data 

Data volume refers to the size of datasets and it depends on the number of data points, 

its dimensionality, or both (Hammer et al., 2014). High volumes of data pose high 

challenges to deep learning systems. There are two conditions to be met, according to 
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which the data size that is being processed cannot be limited, while the speed of 

processing remains constant (Elaraby et al., 2016). The properties that define the field 

of big data impose a special kind of architecture, according to which the input is 

consisted by a large number of examples and the output generates large varieties of 

class types. According to these properties they arise multiple attributes and high 

dimensionality, increasing geometrically the running-time complexity and model 

complexity (Chen & Lin, 2014). 

 Analyzing and processing big amounts of data involves new resources. The use 

of large amounts of data complicates the process of training a deep learning algorithm, 

using only a central processor. Algorithms training optimization is accomplished via 

distributed frameworks with parallelized data machines. The method that is extensively 

used to optimize training processes, maintaining at the same time the accuracy stable, is 

through utilizing clusters of CPU and/or GPU (Chen & Lin, 2014). 

 High volumes of data, often contain incomplete data and noisy labels (Katal et 

al., 2013; Chen & Lin, 2014). In fact, a large percentage of the data to be processed may 

not be labeled at all. Deep learning algorithms can inherently manage unlabeled data, 

by learning data distribution during training process without using label information. In 

addition, deep learning methods can also deal with noisy data, showing high tolerance 

to data messiness (Chen & Lin, 2014). 

Deep Learning For High Variety of Data 

Data variety refers to heterogeneous data formats, collected by multiple sensors, 

derived from distributed data sources, different representation methods and different 

technologies (Hammer et al., 2014). Nowadays, data production is continuous and 

uninterrupted, contributing to the creation of many different data types. This results in 

increasingly diverse and complex data formats, coming from a variety of sources, 

presumably with different distributions (Chen & Lin, 2014 ; Elaraby et al., 2016). Deep 
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learning techniques combine data that show irregularities and dissimilarities in their 

source or structure, addressing successfully the several challenges (Elaraby et al., 

2016). 

 But how can we actually deal with high variety of data, namely data coming 

from different sources with different distributions? The solution lies in integrating data 

through deep learning architectures. This integration process is achieved through 

learning data representations from each data source individually. As mentioned 

previously, one of the most important features of deep learning systems lies in the 

capability of representations learning. The discovery of intermediate representations in 

deep networks is achieved through unsupervised learning, maintaining multiple levels 

of abstraction, by extracting complex relationships among the data (Deng, 2013; Chen 

& Lin, 2014; LeCun et al., 2015). 

 Consequently, to address the integration data problem, we first have to learn 

data representations from each individual data source, and then to integrate the learned 

features at different levels in the network architecture (Chen & Lin, 2014). 

Deep Learning For High Velocity of Data 

Data velocity refers to the speed of data accumulation. The production of data is an 

uninterrupted and continuous process, that poses high challenges for big data learning. 

A basic requirement for data processing of this type is their timely processing (Chen & 

Lin, 2014). While transfer rates can be limited, the same it’ s not true for the requests, 

the number of which remains unlimited (Elaraby et al., 2016). These restrictions are 

pushing the traditional machine learning methods and systems to their limits. 

 A promising solution for managing this mass amount of information in such a 

high velocity, is online learning approaches. According to this type of learning, the 

system learns one instance at a time. As soon as the true label of each instance is 

available, it can be used for refining the model (Shwartz, 2012; Elaraby et al., 2016). 
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 Stochastic gradient descent is a widely used method in the context of deep 

learning systems and can be successfully implemented to online learning as well. 

According to stochastic gradient descent method, one training example with the known 

label is used at a time to update the model parameters (Chen & Lin, 2014). In particular, 

the estimation of the true gradient is accomplished by taking small amount of samples 

and averaging them (Basegmez, 2014). This is a repetitive process, which is being 

conducted for many small sets of examples, drawing from the total training set until the 

average of the objective function stops decreasing (LeCun et al., 2015). An efficient 

way to accelerate the training process, instead of proceeding (processing) sequentially 

one example at a time, is to perform updates on a mini-batch basis (Scherer et al., 

2010). 

 High velocity in data implies that data distribution is not stable but is changing 

over time. Non-stationary data tend to be separated into chunks, using data from a small 

time interval. The theoretical background behind this observation, is that data adjacent 

in time may be characterized by a high degree of correlation, and consequently follow 

the same distribution (Chien & Hsieh, 2013). The capability of handling the data as a 

stream, is a fundamental feature of deep learning algorithms (Chen & Lin, 2014). 

Deep Learning for High Veracity of Data 

Data veracity refers to the biases, noise and abnormality in data, namely to the fact that 

data quality varies considerably for big data sources, making any intervention almost 

impossible (Hammer et al., 2014). Given the fact that veracity aspect deals with 

uncertain or imprecise data, the information that is derived from it is unreliable, and 

therefore not directly usable. Addressing veracity problems is achieved through the use 

of data quality strategies and tools as part of a big data infrastructure (Jewell et al., 

2014). 
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 In conclusion, we can say that the main problems related to big data analytics 

are the following (Chen & Lin, 2014): 

• Performing parallel and distributed data processing. 

• Implementing high dimensionality and data reduction (Hammer et al., 2014). 

• Integrating heterogenous data. 

• Tracking and analyzing data provenance in real time. 

• Decision making (Chen & Lin, 2014). 

Deep Learning Challenges in Big Data Analytics 

Deep learning is an important step toward big data analytics. This coexistence allows 

the extraction of distributed representations directly from unsupervised data, while 

keeping balanced the need for human intervention (Najafabadi et al., 2015). The basic 

properties of deep learning systems, which are crucial for big data analytics, are the 

following (Najafabadi et al., 2015): 

• Deep learning systems inherently exploit the availability of massive amounts of 

data. 

• The multiple intermediate-abstract representations enable the analysis of raw 

data presented in different formats and coming from different sources. 

• The extraction from every new data type can minimize the need for input from 

human experts. 

 

 In order to exploit the potential of big data, many challenges need to be 

addressed, concerning the optimization of existing algorithms and the technical issues 

arising (Chen & Lin, 2014). Although there has been remarkable progress in the field of 

deep learning during the last years, there are still many things to be done with regard to 

big data. In particular, issues to be resolved are the following (Najafabadi et al., 2015): 

• Handling streaming data of high dimensionality.  
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• Distributed/parallel computing (Elaraby et al., 2016). 

• Data sampling for generating useful high-level abstractions. 

• Domain adaptation, (i.e. suitable data distribution). 

• Semi-supervised and active learning. 

Real-Time Non-Stationary Data 

A basic feature of real-time non-stationary data regards the high rate of production, 

where the distribution of these data is varying over time.  

 In order to extract the optimal number of features in a dataset, most learning 

algorithms use the cross-validation method (Zhou et al., 2012). However, this is not the 

case for real-time non-stationary data. A proposed solution to address this problem is 

the online incremental learning (Chen & Lin, 2014; Najafabadi et al., 2015). 

Incremental learning is a widely used method in the field of machine learning, 

especially in those cases where the training samples become available one after another 

over time, in a constantly changing learning environment (Liu et al., 2008). 

 Incremental feature learning addresses successfully the problem of learning 

from large amounts of data. This is possible by starting with a slight set of initial 

features, and automatically adjusting the number of features as the training proceeds 

(Zhou et al., 2012). In that context, Zhou et al. (Zhou et al., 2012) propose an 

incremental feature learning algorithm, that is based on denoising autoencoders. The 

gist of this learning method lies on adding new features mappings to the existence 

feature set, and then merging them redundantly (Zhou et al., 2012; Elaraby et al., 2016). 

The progress made so far in deep learning algorithms on big data is important, but there 

is much more to be done in this direction (Elaraby et al., 2016). 
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Data Parallelism 

The complexity of a model is comprised of many parameters, including the large scale 

data input, high dimensionality attributes and great varieties of output (Najafabadi et al., 

2015). Traditional computational systems, consisting of just a single central processor 

and a storage unit, are unable to support sufficiently complex models. The ever 

increasing complexity of computational models requires the adoption of a platform, 

consisting of distributed computational frameworks with parallelized machines. 

 Parallel implementation is based on the combination of multiple CPU’s and 

GPU’s in increasing speed of training, while maintaining the accuracy of learning 

algorithms (Dean et al., 2012; SAP SE, 2015). This parallel and distributed 

computational framework solve many of the problems associated with training deep 

machine learning algorithms. 

Multimodal Data 

Big data analytics is directly related with multimodal learning, since the large amounts 

of data is usually collected from multi-modalities. Multimodal learning involves 

relating information from multiple sources, where each modality usually involves a 

different representational schema and alterative correlational structure (Elaraby et al., 

2016). 

 Deep learning algorithms can handle heterogeneous data integration 

successfully, since they can learn variation factors in data and provide intermediate - 

abstract representations. However, the number of modalities that these algorithms can 

handle is limited. In fact, this number is limited to integrate data coming from just two 

modalities (Chen & Lin, 2014). Fusion and confliction are two additional problems that 

arise due to the high variability of the data. Systems based on deep learning 

architectures are unable to cope adequately with these problems (Elaraby et al., 2016). 
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 The contribution of deep learning in the big data analytics domain is 

undoubtedly important. Although deep learning provides the required complex 

(distributed) representations for handling big data tasks, there are many more things to 

be done in order to fill existing needs and gaps. A key point of all these efforts is to find 

out how we can adapt the deep learning algorithms in order to support specific types of 

problems. These types of problems often involve, among others, streaming data 

analysis, high dimensionality, distributed computing, information retrieval, domain 

adaption etc. (Najafabadi et al., 2015). 

Building Blocks for Building Deep Learning Architectures 

Introduction 

The concept of deep learning and artificial neural networks are interdependent. As 

mentioned previously, the origins and the basic ideas of deep learning spring up from 

the basic disciplines of neuroscience and cognitive science. In that context, the role and 

contribution of connectionism has undoubtedly been significant. In particular, the 

processing in connectionism occurs in parallel through the simultaneous activation of 

nodes at multiple levels of hierarchy, using intermediate (abstract) representations. In 

this section, we will focus on two basic neural network structures that define the 

building blocks for building deep neural networks architectures. 

 Neural networks use a variety of topologies and learning algorithms, depending 

on the requirements and specifications of the problem to be solved. Two of the most 

widespread and predominant architectural structures are the probabilistic and the direct 

encoding models. A typical example of the first case is the Restricted Boltzmann 

Machine (RBM), while Autoencoder (AE) is a representative example of direct 

encoding models. Both RBM and AE are unsupervised single layer learning algorithms, 

which are used to build deeper models (Najafabadi et al., 2015; Elaraby et al., 2016). 
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Auto-Encoders (AEs) 

Auto-encoders (AEs), also called autoassociators, are feedforward neural networks 

constructed of three layers (i.e., input, hidden and output layer), that copy its input to its 

output (Basegmez, 2014; Najafabadi et al., 2015; Goodfellow et al., 2016; Elaraby et 

al., 2016; Liu et al., 2016). An auto-encoder is an unsupervised single-layer learning 

algorithm (Elaraby et al., 2016; Liu et al., 2016), which try to capture the structure of 

the input data, in a manner that learn to produce a compressed encoded representation 

form the raw input (Basegmez, 2014; Elaraby et al., 2016). The basic idea of the 

algorithm is to reconstruct the input using compression, based on intermediate 

representations. Consequently, in a sense, the target output is the input itself 

(Basegmez, 2014; Najafabadi et al., 2015). 

 The network structure is composed of two modules: an encoder function h = f(x) 

and a decoder respectively that produces a reconstruction r = g(h) (Goodfellow et al., 

2016). The approach is based on abstraction, namely the input (raw data) is converted 

into an intermediate representation, which is then transformed in its original form by 

the encoder function. What is being sought throughout the processing process is to 

approximate the identity function (Liu et al., 2016). Auto-encoders are unable to learn 

to copy perfectly. This is mainly due to the training process of the network (Goodfellow 

et al., 2016). This network behavior results from the fact that only data that resembles 

the training data are being processed. Unlike other methods, which use different 

learning algorithms, an auto-encoder is not based exclusively on the training data and 

their labels, but attempts to capture (recreate) the internal structure of the input streams. 

In that sense, the hidden layers of the network can be seen as feature detectors 

(Basegmez, 2014). According to this architecture and functionality, an auto-encoder is a 

powerful model that is capable of extracting useful features, continuously, during the 

propagation process, while filtering the useless information and finally learning useful 

properties about the data (Liu et al., 2016; Goodfellow et al., 2016). 
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 An auto-encoder network structure contains the same number of nodes in the 

input and output layer. Network's training is done using several techniques, including 

stochastic gradient descent (mini-batch gradient descent following gradients computed 

by the backpropagation algorithm), as well as using recirculation, which however is not 

as efficient as the backpropagation algorithm (Najafabadi et al., 2015; Goodfellow et 

al., 2016). 

 The training process is carried out in two stages. At first, unsupervised learning 

is used for feature learning, while during the next phase, supervised learning is used for 

fine-tuning the network. Getting a closer look of the training process, we observe the 

following: (Liu et al., 2016): 

• Feed-forward propagation is first performed for each input, in order to obtain 

the output value . 

• In the next phase, squared errors are used to measure the deviation of  from the 

input value. 

• Then, the error will be backpropagated through the layers of the network to 

update the weights (Elaraby et al., 2016; Liu et al., 2016). 

Restricted Boltzmann Machines (RBMs) 

Restricted Boltzmann Machines (RBMs) are generative stochastic neural networks, 

namely probabilistic generative models, which learn a joint probability distribution over 

the input (raw data), without using data labels (Chen & Lin, 2014; Basegmez, 2014; 

Najafabadi et al., 2015). A RBM is a diversified version of the conventional Boltzmann 

machines (BMs). A Boltzmann machine can be seen as a non-multilayered neural 

network, where units are bi-directional and make stochastic decisions, taking per case 

the value 1 or 0 (Liu et al., 2016; Elaraby et al., 2016). 

 Actually, a RBM is a special type of Markov random fields, containing one 

visible and one hidden layer (Najafabadi et al., 2015; Liu et al., 2016). The connections 
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between the layers are undirected, namely there are not connections between the units 

withing the same layer. Hence, connections are exclusively between units (neurons) of 

different layers, enabling the propagation of the values across the layers in both 

directions (Basegmez, 2014; Najafabadi et al., 2015). 

 The training process of a RBM is done through a sequence of successive 

processes. At first, Gibbs sampling is applied on a random state in one layer. Once the 

states of the units in one layer are given, it is automatically updated all the units in the 

other layers. This update process is repeated until a threshold value is met (Liu et al., 

2016). In conclusion, we can say that RMBs are capable of utilizing large amounts of 

unlabeled data for exploiting complex data structures (Chen & Lin, 2014). 

Deep Neural Network (DNN) Architectures 

Artificial neural networks (ANNs) based on deep architectures, recommend a powerful 

computational framework for machine learning. There are several types of deep 

architectures used in ANNs. In this section we will discuss two of the most popular and 

effective architectures used to build deep neural networks. Most notable, among others, 

are the deep belief networks (DBNs) and the convolutional neural networks (CNNs). 

Deep Belief Networks (DBNs) 

Introduction 

Deep Belief Networks (DBNs) are probabilistic generative models, composed of 

multiple layers of stochastic, latent variables (Liu et al., 2016; Arel et al., 2009). The 

typical DBN architecture consists of multi layers of hidden, random variables, that can 

be used as feature detectors (Elaraby et al., 2016). This deep architecture exploits both 

labeled and unlabelled data, allowing the learning of feature representations (Chen & 

Lin, 2014). The DBN approach incorporates strategies of unsupervised pre-training and 
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supervised fine-tuning in order to construct the models (Chen & Lin, 2014; Elaraby et 

al., 2016). A DBN model is made up of several individual modules. In particular, the 

model is composed of a stack of Restricted Boltzmann Machines (RBMs), aligned on 

top of each other (Hinton & Osindero, 2006; Basegmez, 2014; Chen & Lin, 2014; Liu 

et al., 2016; Elaraby et al., 2016). 

The structure and the algorithm 

The building blocks that compose a deep belief network (DBN) consist of a stack of 

RBMs. Each such structure has one visible layer at the input and hidden layers up to the 

output. The connections of the network are located between the two adjacent layers, 

while in the same layer there are no connected units (Chen & Lin, 2014). The visible 

layer of each RBM is connected directly to the hidden layer of the previous RBM. 

Network's connectivity is not uniform across the entire network and is differentiated at 

the two higher levels, which are non-directional and symmetric. This configuration at 

the upper layers of the network recommends an associative memory (Elaraby et al., 

2016; Liu et al., 2016). 

 A DBN can be considered as a special form of the Bayesian probabilistic 

generative model. This kind of model is able to learn a joint probability distribution of 

the training data, without being based on labeled data (Elaraby et al., 2016; Liu et al., 

2016). DBNs, due to their specific topology and functionality, are an excellent choice 

for dealing with highly nonlinear parameter estimation problems, especially when 

applied on tasks with unlabeled data, providing efficient unobserved initialization 

points (i.e., the initial weights of the network are learned from the structure of the raw 

data) (Deng, 2011; Liu et al., 2016). 

 The training process of a DBN is divided into two distinct phases. During the 

first training phase, which is also called pre-training stage, a bottom-up strategy of 

information processing is carried out. The learning method used here is unsupervised 
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learning, which serves for feature extraction. Subsequently, during the second training 

phase, which is also called fine-tuning stage, a top-down strategy of information 

processing is carried out. The learning method used is supervised learning. In particular, 

a supervised learning algorithm is executed, in order to optimize the parameters and the 

overall network performance (Liu et al., 2016). This dual nature of a DBN, i.e., the 

combination of both bottom-up and top-down information processing, characterizes it 

as a hybrid model. 

 Learning processes carried out in a DBN are analyzed in two phases, the pre-

training and the fine-tuning (Basegmez, 2014; Chen & Lin, 2014; Elaraby et al., 2016; 

Liu et al., 2016): 

• Initially, a pre-training process is carried out. The basic principles followed are 

those that apply on Restricted Boltzmann Machines training. 

• Under this prism, the first layer processes the raw data. This processing results 

in an intermediate representation, which is used as input to the next layer. 

• The second layer is fed with the output data of the first layer, used as training 

data. 

• The second layer is also trained as a RBM, exploiting the training examples 

from the previous step. 

• The aforementioned procedure is repeated for all the remaining layers, until all 

the weights of the network are initialized. 

• Then, a last layer is added to the network, representing the preferred outputs. 

This fine-tuning phase implements a top-down strategy, optimizing network’s  

performance. 

 

 The pre-training phase, which is a fundamental procedure of DBNs, can also be 

implemented through the use of alternative architectures (e.g., stacked denoising auto-

encoders) (Chen & Lin, 2014). Random initialization of weights can have several 
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implications and performance issues (e.g., local optima and over-fitting problems). 

Initializing the weights with the techniques used in DBN’s, leads to avoiding such 

problems (Chen & Lin, 2014; Liu et al., 2016). 

Convolutional Neural Networks 

Introduction 

Convolutional Neural Network (CNN) is a special feedforward-backpropagate neural 

network, which constitutes a variation of multiple layer perceptrons (MLP) 

architectures (Basegmez, 2014). This kind of network is directly inspired by the 

biological processes taking place in the visual system (Hubel & Wiesel, 1962; Palm, 

2012; Basegmez, 2014; LeCun et al., 2015). Extensive experimental studies conducted 

in the 1960s by Hubel and Wiesel (Hubel & Wiesel, 1962) on the mammalian visual 

cortex, revealed that this part of the brain is composed of specific cells with high 

specificity to patterns within a localized area (i.e., receptive fields). The spatial 

arrangement of these cells covers the entire visual field, and the activation is gradually 

propagated into higher level cells. Respectively, higher levels cells, which have greater 

receptive fields, receive input from these simple cells. This architecture allows the 

learning of translational-invariant representations (Arel et al., 2009; Palm, 2012; 

Basegmez, 2014; Najafabadi et al., 2015). 

 From a technical point of view, the origin of convolutional models is based on 

Neocognitron model, which resembles the structure of the mammalian visual system. 

Back in the 1980s, Neocognitron model introduced a powerful image processing tool 

(Fukushima, 1980). Beyond the common origin and similarities between the two 

models, there are also some fundamental differences, concerning architectural issues. A 

basic difference lies in the fact that CNN’s use the backpropagation algorithm 

(Fukushima & Miyake, 1982; LeCun et al., 2015). 
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 Convolutional neural network was introduced by Y. LeCun in the 1990s (LeCun 

et al., 1990), and is mostly used in image recognition tasks, as well as in other machine 

learning problems (e.g., face detection, document analysis, speech detection) (Arel & 

Rose, 2010; Palm, 2012; Goodfellow et al., 2016). CNN’s can deal with several 

important aspects of natural signals such as local connections, shared weights, pooling, 

as well as the use of multiple successive layers of hierarchy, namely multiple layers of 

neuron groups (Basegmez, 2014; Chen & Lin, 2014; LeCun et al., 2015; Goodfellow et 

al., 2016). 

Basic Ideas 

Conventional artificial neural networks (e.g., shallow feedforward neural networks) are 

a powerful and reliable machine learning tool, which however, due to inherent 

architectural and structural constraints, is not the optimal choice for several machine 

learning problems (e.g., time-series and image data problems). Convolutional neural 

networks operate directly on input data, minimizing the need for extensive data pre-

processing (Arel & Rose, 2010; Basegmez, 2014). This property is very useful when 

dealing with two (or more) dimensional data as is the case of image recognition tasks. 

(Arel & Rose, 2010; Basegmez, 2014). While ANN’s concatenate the two dimensional 

data into vectors, CNN’s layers are associated directly to portions of the input 

(Basegmez, 2014). 

 Inspired by the architecture of the visual cortex pathway, which is being 

consisted of simple and complex cells recommending a hierarchical structure, in a 

typical convolutional neural network there are multiple levels of hierarchy. Some layers 

serve for feature representations, while others for classification processes (Chen & Lin, 

2014). According to this functionality, a CNN is composed of convolution layers and 

sub-sampling or pooling layers. The convolution layers form a kind of intermediate 

representations called feature maps, where each such map is derived over feature maps 
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of former layers. The subsampling (pooling) layers reduce the sizes of proceeding 

layers, by downsampling the feature maps based on a stable coefficient (Palm, 2012; 

Chen & Lin, 2014). 

 CNN’s are designed to take advantage of the properties of natural signals 

(LeCun et al., 2015). The procedure of modeling physical signal processing raises 

several challenges and requirements that need to be overcome. One of the most 

important challenges is to take into account the spatial dimensions properties of the 

input (Gudi, 2014). The standards that meet the above challenges and are embedded in 

CNN’s are local connections, shared weights and pooling processes (LeCun et al., 

2015). 

 The basic (binary) function implemented in neural networks is matrix 

multiplication. What differentiates CNN’s both in terms of architecture and 

functionality is the implementation of a mathematical operation called convolution 

(Goodfellow et al., 2016). Convolution is a mathematical operation that captures the 

amount of overlap of one function as it is shifted over another function. The 

implementation of a convolution operation on two functions, results in the production 

of another function, which is a modified version of one of the original functions. This 

kind of linear operation, which is actually a filtering process, allows pattern detection in 

different parts of an array (LeCun et al., 2015). 

 The representations resulting by the convolution process are smaller than the 

input itself. This is due to the fact that convolutional networks use sparse weights. The 

sparse connectivity implies that only some of the output units interact with some of the 

input units (Goodfellow et al., 2016). Another property of convolutional networks is 

concerned with parameter sharing. According to this property, the same parameter is 

being used for multiple functions (Goodfellow et al., 2016). Parameter sharing scheme 

is based on the assumption that if one feature is useful to compute at some spatial 

location, then it should also be useful to compute at a different location. The benefits of 
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incorporating these properties results in minimizing memory requirements, and  

improving the total performance of the model. The main advantage of CNN’s is the 

tolerance to the translation of the input data, meaning that if the input changes, then 

accordingly the output changes in the same manner (Basegmez, 2014; Goodfellow et 

al., 2016). 
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