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Preface 
 

Recommender systems, or recommendation systems, is a way to predict the behavioral patterns 

of a user, his preferences or dislikes, in order to provide personalized recommendations. These 

systems work based on prior explicit or implicit feedback.  

The much more extensively researched explicit feedback systems gather their knowledge directly 

from the users, in the form of a simple rating. For example, Netflix uses a rating scale, from one 

to five stars, to determine whether a user enjoyed a specific movie or not. On the other hand, 

implicit feedback systems work passively in the background, tracking different sorts of user 

behavior, such as browsing activity, watching habits or purchase history. 

Thus, in the case of implicit feedback systems, we do not have any direct indication of the user’s 

preferences and, specifically, we do not have any significant evidence on which items a user 

dislikes. 

The aim of this study is to analyze the unique properties of implicit feedback datasets, especially 

tailored to fit the retail sector, confronting a vast variety of consumer products, their price 

differences and user-item interaction sparsity. 
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Πρόλογος 
 

Τα συστήματα συστάσεων ή προτάσεων, αποτελούν ένα τρόπο για την κατανόηση των 

προτύπων συμπεριφοράς ενός χρήστη, τις προτιμήσεις του, με σκοπό τη δημιουργία 

προσωποποιημένων συστάσεων. Τα συστήματα αυτά, λειτουργούν βασισμένα σε ιστορικά 

στοιχεία, τα οποία αποτελούνται από σύνολα δεδομένων άμεσης ή έμμεσης ανατροφοδότησης.  

Τα σύνολα δεδομένων άμεσης ανατροφοδότησης, εξάγουν τα στοιχεία τους κατευθείαν από 

τους χρήστες, για παράδειγμα μέσω μιας μορφής βαθμολόγησης. Για παράδειγμα, το Netflix 

χρησιμοποιεί μια κλίμακα βαθμολόγησης, μεταξύ ενός και 5 άστρων, με σκοπό να εξάγει από 

το χρήστη άμεσα, αν διασκέδασε με μια ταινία ή όχι. Αντίθετα, τα συστήματα που βασίζονται 

σε έμμεση ανατροφοδότηση, λειτουργούν σιωπηλά στο περιθώριο, συλλέγοντας δεδομένα που 

μπορεί να αποκαλύψουν τις προτιμήσεις ενός χρήστη, όπως τις συνήθειες του καθώς πλοηγείται 

στο διαδίκτυο, ή το ιστορικό αγορών του κ.α.. 

Με αυτό τον τρόπο, στην περίπτωση ενός συστήματος που βασίζεται σε δεδομένα έμμεσης 

ανατροφοδότησης, δεν έχουμε μια ισχυρή και άμεση ένδειξη για τις προτιμήσεις του κάθε 

χρήστη. Συγκεκριμένα, δεν έχουμε καμία ένδειξη για την οποιαδήποτε αρνητική εμπειρία είχε 

ένας συγκεκριμένος χρήστης. 

Ο σκοπός της συγκεκριμένης εργασίας είναι να αναλύσει τις ιδιότητες των συνόλων δεδομένων 

έμμεσης ανατροφοδότησης, συγκεκριμένα για τον τομέα των πωλήσεων. 
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Chapter One 
 

 

 

1 Introduction 
 

With the expansion of internet technologies, as well as the mobile and cloud computing, in a 

huge variety of application areas data is being produced, processed and consumed at 

unprecedented scale. This tendency comes with enormous challenges and opportunities, to 

which researchers, and also the industry sector, respond with great excitement and eagerness, 

searching for insightful ways to extract useful information from these data. Such big data analysis 

is everywhere and fuels our modern society, showing its influence on a broad range of services, 

including, but not limited to, retail, financial services and life sciences. 

Gartner hype cycle for emerging technologies shows a movement toward services, which either 

frame or utilize the so-called world of big data, to create immersive, personalized experiences in 

the form of personal assistants and cognitive advisors or machine learning applications such as 

recommendation systems (Figure 1-1). 

 

Figure 1-1 - Gartner Hype Cycle for Emerging Technologies, 2016 
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This need comes from the fact that people are awash in a flood of data, which converts any 

information into noise. To surpass this obstacle, big organizations, that either create or manage 

content, turn to solutions provided by machine learning and recommendation systems to create 

a much more personalized and tailored experience for their users. 

 

1.1 Problem statement 
 

The field of machine learning has been developing at a high pace the recent years, yielding 

excellent results both in the scientific and industry fields. It is considered an active area of 

research, but at the same time commercial products, applications and services are being created 

and utilized everywhere in our modern society. 

Definition 1.1: Machine Learning 

Machine learning is the subfield of computer science that gives computers the ability to learn 

without being explicitly programmed [1]. 

Machine learning has many subfields, such as computer vision, natural language processing or 

speech recognition. It evolved from the study of pattern recognition, although the origins of the 

latter can be traced in engineering rather than computer science. It explores the design and 

implementation of algorithms that can learn from data (training examples) and make predictions 

about the state of the environment given a specific input. 

 

1.1.1 Recommender systems 

 

Recommender systems, or recommendation systems, aim to discover behavioral patterns, in 

order to provide a personalized experience to the users. 

Definition 1.2: Recommender Systems 

Recommender Systems (RSs) are software tools and techniques providing suggestions for items 

to be of use to a user [2]. 

Chris Anderson, who is widely-known for his 2004 article entitled “The Long Tail”, said that we 

are leaving the age of information and entering the age of recommendation [3]. He stated that 

in the context of the information overload that we absorb every day, arguing that unless we have 

a way to filter it out and extract what is important to us, information reduces to useless noise. 

In his book “The Paradox of Choice”, the American psychologist Barry Schwartz presents many 

examples and experiments, which show why having many options is not always a good idea. He 
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concludes that more is less [4]. In his famous experiment, his team put six different flavors of jam 

in a store and prompt the clients to taste and buy. In the next phase, they used more than 60 

flavors of jam and, interestingly enough, the sales of the store dropped. 

Moreover, it seems that we are leaving the era of search and entering the era of discovery. The 

difference is that when searching, a user is actively looking for something. Discovery means that 

something the user did not know existed, or even did not know how to ask for it, finds him [5]. 

However, the meaning of the word recommendation remains an area of confusion in the minds 

of many. Recommendation should not be interpreted as personalized search, where the user 

forms an explicit query using filters to extract the desirable result. In recommendation, the query 

is implicit, and it formulates by the user and the context. 

 

1.1.2 The value of recommendation 

 

Maybe the first example that comes to mind when talking for recommender systems is that of 

Netflix. This organization owes a lot to the development of such algorithms. By 2014 over 65% of 

the movies watched on Netflix are recommended. Today, the percentage has raised to roughly 

around 80%. 

Other organization has also discovered the benefits of such systems. Google news has seen a 38% 

boost to its click through rate, while Amazon reported that 35% of its sales come from 

recommendations. 

 

1.1.3 The recommendation problem 

 

The recommendation problem can be mathematically described by a utility function, that is 

trying to estimate or predict how a user would like an item. 

This can be achieved by looking on user’s previous behavior, his relationship to other users, item 

similarity, context and many more kind of information. 

Thus, more formally, let 𝑼 be a set of all users and let be 𝑰 a set of every possible recommendable 

item. Let 𝒇 be the utility function, measuring the preference that a user 𝒖 would show to an item 

𝒊.  

𝒇 ∶ 𝑼 × 𝑰 → 𝑹 

Where 𝑹 is a totally ordered set. 
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For each user 𝒖 ∈ 𝑼 the system chooses items 𝒊 ∈ 𝑰 that maximize the utility function 𝒇. The 

value of the utility function 𝒇  is usually a scalar number, represented by rating. Finally, the new 

set 𝑰′ satisfies the following statement: 

∀ 𝒖 ∈ 𝑼, 𝑰′
𝒖 = 𝒂𝒓𝒈𝒎𝒂𝒙(𝒇(𝒖, 𝒊)), 𝒊 ∈ 𝑰  

  

1.1.4 The recommendation pipeline 

 

The recommendation process is a two-step process, where the first half is an offline process and 

second half comes online, and in many cases real-time.  

During the offline process, also called the learning process, the system tries to train a machine 

learning algorithm, and build a model from the data it has. Similarly, the learning algorithms may 

produce useful clusters, which can be used for market segmentation and better understanding 

the users’ needs. 

The online process is where the recommendation happens. A user connects to the system and 

the recommendations are being formulated based on a specific context (Figure 1-2). 

 

Figure 1-2 - The recommendation pipeline 
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1.1.5 Approaches to recommendation 

 

There are many approaches on how to build a recommendation system and each has its 

advantages and weaknesses. The most common approach is that of collaborative filtering. With 

this approach recommendations are generated based on the users’ past behavior. This approach 

can be either user-based or item-based.  

Using user-based collaborative filtering, the system tries to discover similarities between users 

and recommend common favorable items. On the other hand, in item-based collaborative 

filtering, the engine tries to find similar items to those a user already has expressed a preference, 

and form the recommendations. The item-oriented approach is favorable in many cases [6] [7] 

[8], because of better scalability and improved accuracy. Furthermore, it’s easier to explain the 

reasoning behind the predictions of item-based approaches. This work mostly explores the field 

of collaborative filtering. 

Other approaches are those of content-based algorithms, where recommendations are based on 

item features, demographic, which recommends items based on user features, social 

recommendations, which take advantage of trust-based structures that take shape in social 

networks and hybrid approaches, which combine any of the above. 

 

1.1.6 Explicit Vs Implicit feedback 

 

The kind of data that recommender systems utilize to learn are of two kinds. Implicit feedback 

and explicit feedback. Explicit feedback means that the system takes advantage of direct 

feedback from the user. The user willingly express his preference or dislike about an item usually 

in the form of a scalar number, a rating. In the case of implicit feedback, the system tries to 

disclose user preferences, monitoring different sorts of behavior, such as browsing activity or 

purchases. Sources of implicit feedback that have been explored in the past are time spent 

reading [9] or URL references in Usenet postings [10]. 

Although it may seem that explicit feedback has an advantage, in most cases, the opposite is true. 

Implicit feedback is easier to extract, immediately applicable, readily available and in most cases 

more accessible. Also, implicit feedback usually consists of much more data and, even though it 

seems counter intuitively, explicit data are noisy. For example, a Netflix user might give a great 

movie a rating of five stars, but this is something that is called an aspirational rating. That does 

not mean, though, that this is the kind of entertainment he calls for after a long and tiring day. In 

this case a user is more likely to ask for a comedy or something that will allow him to relax, but 

will only rate with two or three stars. Thus, there is some sort of contradiction between the 

explicit information that the system gets from the users and what the users want to watch. 
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1.2 Research objectives 
 

This work explores the mechanisms of extracting meaningful implicit feedback, from user-item 

interactions, and ways to transform and use it to create a system of recommendations tailored 

to fit the world of retail. In such cases, gathering explicit information is either impossible or too 

expensive, because it is time and resource consuming. 

It is important to analyze the unique characteristics of implicit feedback datasets, which prevent 

the application of already successful algorithms, that were designed with explicit feedback 

datasets in mind [11]. 

i. By observing the users’ behavioral patterns, we can extract with some confidence that 

someone likes the item he is interacting with. But, in such cases, there is no negative 

feedback. For example, if a user chooses not to purchase a product, this does not mean 

that he dislikes it. It may very well be the case that he does not even know the product’s 

existence, or that it is too expensive for him now. Nevertheless, it might still be in his wish 

list. On the other hand, a user might purchase a product as a gift, not showing his true 

intentions. Furthermore, in the case of explicit feedback, there is an indication whether a 

user likes a product or not. This allows the algorithms to treat every other field, the empty 

ratings, as missing data. That is not possible in the case of implicit feedback, because 

concentrating only on the available information leaves most negative feedback 

untouched, as it is expected to be found in missing data. 

ii. Implicit feedback can be inherently noisy. As shown in the aforementioned example, 

purchasing an item does not necessarily show preference, because it may be a gift. 

iii. The numerical output of an algorithm using explicit feedback datasets indicates 

preference, whereas the numerical output using implicit information indicates 

confidence. A recurring event is more likely to capture the user’s opinion, but the output 

given by an algorithm using implicit feedback datasets is merely the probability that a user 

will like an item. 

iv. Evaluation of such algorithms also differs. In the presence of ratings, a clear metric like 

the mean squared error is sufficient. However, in our case, parameters like stock or 

product competition should be considered. 

 

1.3 Document outline 
 

This work consists of six chapters that cover in full length the development of this research thesis 

on recommender systems. 
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Chapter One, Introduction: This chapter specified the problem statement and brought forward 

the research objectives for the successful completion of the dissertation. 

Chapter Two, Theoretical Background: This chapter presents the theoretical background about 

recommender systems and machine learning in general. It describes the learning problem, argues 

that learning is in fact feasible, discusses error and noise and explains the theory of 

generalization. 

Chapter Three, Related Work: In this section State of the Art techniques, already in use, are 

presented. This chapter forms an extended report of recommender system techniques, compare 

them and emerge open research areas that exist in the field. 

Chapter Four, Proposed Model: In this chapter, the proposed model for building a 

recommendation system, using implicit feedback datasets and tailored to fit the retail sector is 

presented. The model is described and analyzed in in full detail. 

Chapter Five, Experimental Study: In this chapter the evaluation process of the proposed model 

is examined and presented. The chosen criteria are explained and the results of this process are 

discussed.  

Chapter Six, Summary and Future Research: The final section of this document presents the 

summary and conclusions of this research. Also, it argues on possible open areas of future 

research and modifications. 
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Chapter Two 
 

 

 

2 Theoretical background 
 

The problem of pattern recognition is an ancient one and dates back to the age of the first 

astronomical observations. The field is concerned with the automatic discovery of arrangements 

in data through computer algorithms. Using these regularities in data machine learning systems 

can learn to classify objects, predict values or detect useful information otherwise invisible. 

 

2.1 The components of machine learning 
 

Machine learning, in its foundations, has three components. When those three ingredients exist, 

then machine learning techniques are ready to be applied and utilized. 

The first of these components is that the existence of a pattern. If no pattern exists, someone 

could still try and apply machine learning techniques, but most likely he would be trapped in a 

dead-end. 

The second component is that there is a target function, which the system tries to compute and 

mimic its behavior. But, certainly, will never exactly discover it. In other words, there is a pattern 

but we cannot describe it mathematically. If we could, machine learning would not be of much 

use, because we would have a simple mathematical formula to apply. 

The last, and most important, component is the data itself. We need to have data on the problem, 

because machine learning, in its essence, is trying to learn from data. 

 

2.2 The “movie” example 

 
In this example, we try to predict the preference of a user for a movie, in other words, how a user 

would rate a particular movie. A simple solution is described by the figure below (Figure 2-1):  



 
  23 
 

 

Figure 2-1 - The "movie" example 

In this example, a user is described as a vector of factors, comprising a user profile. These factors 

express the user’s preferences for certain movie characteristics, e.g. does the user likes comedy? 

Does he prefer blockbusters?   

On the other side, there are movies which are described by corresponding characteristics, 

features, e.g. if they are a comedy or has a lot of action. 

The system compares the active user to the movie, match the movie and user factors, add the 

contribution from each factor and predicts how this user would rate the movie. If this rating 

exceeds a specific threshold, the system decides that the user would like this movie and proceeds 

to recommend it. 

The problem with the previous approach is that this is not machine learning.  To create such a 

system, an engineer would have to watch every movie, extract their characteristics and then, 

interview each user separately, asking them for their preferences. 

The learning approach reverse engineers the process that was mentioned above. It starts from 

the rating and then tries to find which factors would be consistent with that rating. The system 

randomly initializes the movie and user factors. This would produce an error in the calculation of 

the rating that actually took place. Then, it tries to gently manipulate those factors in order to 
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reduce the error. This process is going on for thousands of ratings and hundreds of iterations 

over them, until the algorithm converges, meaning that it has minimized the error below a certain 

acceptable value. In this case, the factors are meaningful and consistent with the ratings, thus, 

the system can predict how a new viewer would rate an unseen before movie. 

 

2.3 Types of Machine Learning 

 

Machine Learning is a broad subject and is divided in three main categories. There are also 

subsets of these categories, but we can argue that these are subfields or hybrids of the main 

three ones [12]. 

The first approach is called supervised learning. In such applications, the data that are used to 

train the machine learning algorithms take the form of examples. In other words, the input 

vectors come along with their corresponding target vectors, in an input-output (result) 

relationship. The field of supervised learning is further divided by classification and regression. In 

classification, the aim is to assign each input to a finite number of labels. On the other hand, 

when the system tries to come up with a real-valued output, such us predicting the value of stock 

prices, the task is called regression.  

Other machine learning problems fall under the field of unsupervised learning. In this approach, 

the data consist of the input but there is no corresponding, target output. Unsupervised learning 

tries to discover groups of similar examples inside the data, a technique that is called clustering. 

Other types of unsupervised learning are density estimation, which determines the distribution 

of data within the input space, and dimensionality-reduction, which projects data from a high-

dimensional space to a lower dimension space, for compression or visualization. 

The third field of machine learning is called reinforcement learning [13]. This problem is 

concerned with taking certain steps in order to maximize a reward, a feedback that is given to 

the system. The process is therefore explained by the trial and error paradigm. Appropriate 

examples of such approaches can be found in the gaming industry, where AI agents, which learn 

to play the game using reinforcement learning techniques, are playing the role of user opponents. 

Other examples, of reinforcement learning systems working in the real world, can be found in 

energy efficiency optimization programs, where Google is using similar techniques to reduce the 

cost for cooling data centers by 40%. 
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2.4 A probabilistic approach to learning 
 

In machine learning and pattern recognition problems there is a target function 𝒇, from which 

the training examples are generated from. When the system uses a machine learning algorithm, 

it tries to come up with a hypothesis function 𝒉, that approximates the target function well.  

The target function is unknown and it remains unknown throughout the process of learning. 

Thus, even if the system forms a hypothesis function that approximates the training data points 

generated by 𝒇, the target function can still take any value outside the data given to the system. 

Consequently, the question is if we can infer something outside the sample data that we have. Is 

learning feasible? 

 

2.4.1 A simple probabilistic experiment 

 

Consider the following situation; there is a box filled with black and white tennis balls. We are 

going to generate a sample from this box (Figure 2-2).  

 

Figure 2-2 - Tennis balls probabilistic experiment 

Formally, let 𝝁 be the probability of picking a black tennis ball. So, 

𝑷[ 𝒑𝒊𝒄𝒌𝒊𝒏𝒈 𝒂 𝒃𝒍𝒂𝒄𝒌 𝒃𝒂𝒍𝒍] = 𝝁  
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The probability 𝝁 is independent of the repetitions of the experiment, so every time we reach 

into the box, the probability of picking a black ball is 𝝁. According to this, the probability of picking 

a white tennis ball is 𝟏 − 𝝁. So,  

𝑷[ 𝒑𝒊𝒄𝒌𝒊𝒏𝒈 𝒂 𝒘𝒉𝒊𝒕𝒆 𝒃𝒂𝒍𝒍] = 𝟏 − 𝝁  

The value of 𝝁 is unknown to us. Sampling from the box, we pick 𝑵 balls independently. So now, 

we call the frequency of black tennis balls in the sample, the fraction of black tennis balls, 𝝂. The 

question is: Does 𝝂 says anything about 𝝁? In other words, can we depend on the fraction of 

black balls in sample to make inferences about the fraction of black balls in the box (population)? 

 

2.4.2 Possible Vs Probable 

 

In science and engineering, we can go a huge distance by settling not for certain but almost 

certain. It opens a world of possibilities. In accordance to probability theory, if the number of 

samples is big enough, the sample frequency 𝝂 is likely to be close to the population frequency 

𝝁.  

More formally, having a large number of samples, 𝜨, makes it possible to consider the sample 

frequency 𝝂 to be within a tolerance level 𝜺 from the population frequency 𝝁.  

Thus, per Hoeffding’s inequality, the probability that 𝝂 does not track 𝝁 out of sample is: 

𝑷[ |𝝂 − 𝝁| > 𝜺| ] ≤  𝟐𝒆−𝟐𝜺𝟐𝑵  

This inequality perfectly demonstrates the importance of a big sample. According with the 

aforementioned formula, this probability can be small number because of the negative 

exponential on the right side. However, the smaller out tolerance level 𝜺 is, the greater this 

number becomes, because the 𝒆𝟐 in the exponent will severely dampen the number 𝑵. 

Nevertheless, using the Hoeffding’s inequality we can say that 𝝂 is probably, approximately, equal 

to 𝝁. Probably because of the inequality and approximately because of 𝜺. 

The Hoeffding’s inequality is valid for every positive integer 𝑵 and every 𝜺 greater than zero. 

Moreover, the Hoeffding’s inequality bound does not depend on the unknown to us quantity 𝝁. 

The tradeoff happens between 𝑵 and 𝜺. Usually, the number of sample points 𝑵 is 

predetermined from the data we have in our disposal. So, the number of 𝜺 we choose as our 

tolerance, should be such that the number of sample data we have can compensate. 

Finally, the accurate statement would be that 𝝂 tends to be close to 𝝁. This means that 𝝁 affects 

the way 𝝂 is behaving and not the other way around. However, the form of the probability is 

symmetric, thus, using a subtle logical leap, instead of saying that 𝝂 approximates 𝝁 well, we infer 

that 𝝁 tends to be close to 𝝂. 
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2.4.3 Connection to learning 

 

Let us now try and connect the previous simple probabilistic example to the learning problem. In 

the case of the box, the unknown quantity that we are trying to approximate is the number 𝝁. 

The corresponding quantity in the learning problem, discussed on the preface of this subchapter, 

is the full-fledged function 𝒇 ∶ 𝑿 → 𝒀. 

Next, we assume that each tennis ball from the previous example is a point 𝒙 ∈ 𝑿. Thus, the box 

containing the balls is now the input space 𝑿. Let us now correspond the white balls to the 

assumption that the hypothesis, 𝒉, learnt from the system agrees with the target function 𝒇. 

Consequently, the black balls represent the points that the two functions disagree. 

 

Figure 2-3 - Connecting the box experiment to learning 

The key point we should make, in order to relate those examples, is to introduce a probability 

distribution over the input space 𝑿. So now, the points in this space are not just generic data 

points. There is a probability of picking one versus another. Let 𝑷 capture this probability. Despite 

of demanding a probability distribution over the input space, we do not need to have any prior 

knowledge about its properties. Moreover, we do not even need to know the value of 𝑷. The 

choice of a different probability distribution though, will always affect the outcome of the 

experiment, the probability of getting a black or a white tennis ball, thus, it could affect the value 

of 𝝁. But being able to bound the accuracy of the inferences we make independently of 𝝁, 

through the Hoeffding’s inequality, we can continue our machinery given any 𝑷. 

The problem with making this connection to learning though, is that we are verifying that 𝝂 

generalizes to 𝝁 for a specific hypothesis 𝒉. This is called verification and not learning. Someone 
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comes up with this specific hypothesis 𝒉, and through our connection we are verifying that this 

particular hypothesis generalizes well to the population, using the Hoeffding’s inequality. But 

what are the chances of picking a right hypothesis in the first place? The idea of learning is 

searching the whole space to find the best hypothesis, that agrees with the training data and 

generalizes well to the population. Thus, in order to relate the box example to learning, we need 

to choose from multiple hypotheses the one that has the minimum generalization error (Figure 

2-4). 

 

Figure 2-4 - Box example with multiple hypotheses 

Generalizing the box example, we can assume that we have a finite number of hypotheses to 

choose from. Some of them generalizes well out of sample and some don’t. Our objective is to 

choose the one with the least error. In the figure below we denote 𝑬𝒊𝒏(𝒉) the error of the 

hypothesis 𝒉 in the sample we have (training data), and 𝑬𝒐𝒖𝒕(𝒉) the error of the hypothesis 𝒉 

out of sample (population). Thus, if 𝑬𝒐𝒖𝒕(𝒉) is small, then the hypothesis generalizes well, and 

by picking this hypothesis the system has learnt. So, the Hoeffding’s inequality now becomes:  

𝑷[ |𝑬𝒊𝒏(𝒉) − 𝑬𝒐𝒖𝒕(𝒉)| > 𝜺| ] ≤  𝟐𝒆−𝟐𝜺𝟐𝑵 

This means that the probability that the error the system has in-sample, deviates from the error 

the system has when it generalizes is hopefully a small number. In other words, the in-sample 

error tracks the out of sample error well. Now the above figure transforms to Figure 2-5, shown 

below: 
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Figure 2-5 - Multiple hypotheses error 

The problem now is that the Hoeffding’s inequality doesn’t apply to multiple boxes, so, multiple 

hypotheses. In a coin analogy, if a coin is tossed ten times, the probability of getting ten heads is 

0.1%. But if 1000 coins are tossed ten times each, the probability of some coin gives ten heads 

rises to 63%. Although the Hoeffding’s inequality applies to all of them separately, there is still a 

small chance that the experiment will give ten heads. If those small probabilities are disjoined, 

we will end up with a significant probability value, that this, almost impossible outcome, will 

happen. 

In order to deal with multiple hypotheses properly we should transform the Hoeffding’s 

inequality as shown below. Now, instead 𝒉 denotes the final hypothesis, the one the system 

chooses: 

𝑷[ |𝑬𝒊𝒏(𝒉) − 𝑬𝒐𝒖𝒕(𝒉)| > 𝜺| ] ≤ ∑ 𝑷[ |𝑬𝒊𝒏(𝒉𝒎) − 𝑬𝒐𝒖𝒕(𝒉𝒎)| > 𝜺 ]

𝑴

𝒎=𝟏

 ≤  ∑ 𝟐𝒆−𝟐𝜺𝟐𝑵

𝛭

𝜇=1

 

This derives using the union bound, where we make the pessimistic assumption that the 

individual probabilities for each hypothesis from 𝒉𝟏 … 𝒉𝑴 are non-overlapping, disjoined, so the 

overall probability for the hypothesis 𝒉 we choose, is less than the sum of the probabilities of 

every hypothesis. So, in other words we are considering the worst-case scenario. 

Finally, to capture the learning problem, the Hoeffding’s inequality is written as: 

𝑷[ |𝑬𝒊𝒏(𝒉) − 𝑬𝒐𝒖𝒕(𝒉)| > 𝜺| ]  ≤  𝟐𝑴𝒆−𝟐𝜺𝟐𝑵 
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Thus, intuitively, the more complex the model the more we lose the link between in-sample and 

out of sample performance. This is a typical problem of performing well in-sample but 

generalizing poorly in the population, that this work addresses in the subchapters to come. 

 

2.5 Error measures 
 

Previously, in the probabilistic approach to machine learning, it is mentioned that the goal of the 

system is to learn the hypothesis 𝒉 that approximates well the target function 𝒇. Thus, there 

should be a measure of error, which is a quantitative measure.  

So, the error measure is formally defined as  𝑬(𝒉, 𝒇), a functional that takes two parameters, the 

hypothesis 𝒉 and the target function 𝒇, and measures how well 𝒉 approximates 𝒇. Therefore, the 

goal of the system is to minimize this function, with a value of zero meaning that the system has 

found the perfect hypothesis.  

The result of 𝑬 is the summed difference of each point, between 𝒉 and 𝒇. Thus, there is a 

pointwise definition 𝒆(𝒉(𝒙), 𝒇(𝒙)), that takes as parameters the value of the hypothesis 𝒉 at a 

particular point 𝒙 and the value of the target function 𝒇 at the same point. 

Examples include the squared error, 𝒆(𝒉(𝒙), 𝒇(𝒙)) = (𝒉(𝒙) − 𝒇(𝒙))𝟐, or the binary error used 

in classification problems, defined as 𝒆(𝒉(𝒙), 𝒇(𝒙)) =  ⟦𝒉(𝒙) ≠ 𝒇(𝒙)⟧, where it returns one if 

the statement inside the squared brackets is true and zero otherwise. So, if 𝒉(𝒙) =  𝒇(𝒙) at 𝒙, 

then this function returns zero, so the error is equal to zero.  

Finally, the overall error is defined as the average of the pointwise error, and formally, the in-

sample and out of sample overall error is defined as follows: 

• In-sample error 

𝑬𝒊𝒏(𝒉) =
𝟏

𝑵
∑ 𝒆(𝒉(𝒙𝒏), 𝒇(𝒙𝒏)

𝑵

𝒏=𝟏

) 

• Out of sample error 

𝑬𝒐𝒖𝒕(𝒉) =  𝔼𝑥 [𝒆(𝒉(𝒙), 𝒇(𝒙))] 

For the out of sample error, 𝔼𝒙 is the expected value with respect to 𝒙.  

 

 

 



 
  31 
 

2.5.1 False positive and false negative 

 

There are two types of error, when trying to choose the error measure the system should use. 

We will borrow a medical example to describe them. The first is called false positive, where a 

patient in taking a test for some disease and the test wrongfully comes back positive. The second 

type of error is called false negative, where the test comes back negative, although the patient 

suffers from this disease.  

 

2.5.2 How to choose an error measure 

 

According to the definition of false positive and false negative types of error, the system should 

penalize each of those in a way that the final hypothesis performs better, in agreement with the 

chose type of error. 

For example, in the case of the patient mentioned above, the false positive error does not look 

that serious. It may be the cause of elevated anxiety for the patient, or inconvenience because 

of the follow-up tests he should take, but overall the case of being ill and not being informed, the 

case of false negative, is worse. 

Thus, penalizing the false negative type of error more makes sense for that system. Putting it in 

a matrix form, the system architect could choose to penalize the false positive case with a lower 

penalty weight than the case of false negative. 

 

𝒇 

1 0 

𝒉 

1 No error False positive (1) 

0 False Negative (100) No error 

Figure 2-6 - False positive and False negative matrix 

The outcome of this is that there is not some method in choosing and error measure versus 

another. It is not an analytic question. It is an application domain question. Thus, the error 

measure is usually specified by the user of the system and its context.  
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However, this is not always happened. Alternatively, as a second choice the system architect 

could resolve to so-called plausible measures, measures that he could argue that they have merit. 

In such a case, the error measure could simply be the squared error.  

Another form of error that could be chosen is the so-called practical measure. In this case the 

system architect could choose an error measure that helps him solve the problem and justify the 

solution easier.  

 

2.6 Noise 

 
The case of a clean target function 𝒇 is very rare. In reality, the target function is not always a 

function.  In other words, the target function 𝒇 does not always return a unique value for every 

point in its domain, thus, mathematically it is not a function. Two independent training examples 

can return the same outcome and make the same prediction. There is always information that is 

not captured and contributes noise to the result. 

To address this issue, we use a target probability distribution 𝑷(𝒚|𝒙) instead of the target 

function 𝒚 = 𝒇(𝒙). This means that some outcomes 𝒚, are more possible than others, given the 

training data points. 

Therefore, 𝒙 is always generated from the unknown input probability distribution 𝑷(𝒙), that was 

introduced before to gain the advantages of the Hoeffding’s inequality. But now, what changes 

is that 𝒚 instead of being deterministic once we have the generated value of 𝒙, is now 

probabilistic, given that specific 𝒙, and is given by the target probability distribution, that remains 

unknown, just like the target function 𝒇 that was used until now. Thus, every pair (𝒙, 𝒚) is now 

generated by the joint distribution 𝑷(𝒙, 𝒚) = 𝑷(𝒙)𝑷(𝒚|𝒙). 

The system now has a noisy target, given by the aforementioned target probability distribution, 

that can be thought of as the deterministic target that we had up until now, plus noise. Intuitively, 

if we define the target function 𝒇 to be the expected value of 𝒚 given 𝒙, 𝒇(𝒙) =  𝔼(𝒚|𝒙), then 

whatever remains can be thought of noise.  

 

2.7 The learning diagram 

 

Below is presented and analyzed the learning diagram, the diagram that sums up every 

component that forms and frames what is supervised machine learning. It incorporates the 

knowledge that is built up so far in a concise and intuitive way [14]. 
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Figure 2-7 - The learning diagram 

In the learning diagram, we can see that the input probability distribution 𝑷(𝒙), generate the 

training points 𝒙, and in turn the target distribution, instead of deterministically generating pairs 

of (𝒙, 𝒚) training examples, it uses the data points 𝒙 to generate the labels 𝒚 in a probabilistic 

way. 

In turn the training examples are given to the learning algorithm, which chooses by a hypothesis 

set 𝑯, the right hypothesis, that approximates the unknown target distribution well. Last but not 

least, the performance of any chosen hypothesis, as well as the final hypothesis 𝒉, are measured 

by the error measure of choice. 

 

2.8 Training and testing 

 
Formally, we can see the difference between testing and training using the Hoeffding’s inequality. 

In the case of testing, the system has already a fixed hypothesis and in turn, it applies it on data 

that it has not yet presented with, trying to come up with the right predictions. This is shown 

below, using the already seen before Hoeffding’s formula: 
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𝑷[ |𝑬𝒊𝒏(𝒉) − 𝑬𝒐𝒖𝒕(𝒉)| > 𝜺| ]  ≤  𝟐𝒆−𝟐𝜺𝟐𝑵 

In other words, this means that the probability that the in-sample error does not track well the 

out of sample error, is low. 

On the other hand, during the process of training, the system is presented with numerous 

examples and consequently, it constantly refines its results, trying to figure out the best 

hypothesis to fit the training data. Formally, this is shown below using the same formula with one 

small addition; the parameter 𝑴. This parameter accounts for the number of the hypotheses 

included in the hypothesis set, 𝑯, from which the system is trying to pick the best one. 

𝑷[ |𝑬𝒊𝒏(𝒉) − 𝑬𝒐𝒖𝒕(𝒉)| > 𝜺| ]  ≤  𝟐𝑴𝒆−𝟐𝜺𝟐𝑵 

According with how we defined the parameter 𝑴 in the corresponding chapter, there is a major 

problem. Even the simplest machine learning algorithm has 𝑴 to be equal to infinity. Thus, the 

above statement does not really make sense. To establish the feasibility of learning in an actual 

model, we need to replace this quantity with something more friendly. 

 

2.8.1 Refining the union bound assumption 

 

To replace the quantity 𝑴 in the latter form of the Hoeffding’s inequality transformation, we 

need to understand what it means. As we have seen before, in order to measure the performance 

of the final hypothesis that he system picked, we need to take into account every possible 

hypothesis. Thus, we said that the probability that the chosen hypothesis does not track the out 

of sample error well, is no greater than the sum of the corresponding probabilities of every 

hypothesis in the set. 

𝑷[ |𝑬𝒊𝒏(𝒉) − 𝑬𝒐𝒖𝒕(𝒉)| > 𝜺| ] ≤ ∑ 𝑷[ |𝑬𝒊𝒏(𝒉𝒎) − 𝑬𝒐𝒖𝒕(𝒉𝒎)| > 𝜺 ]

𝑴

𝒎=𝟏

 ≤  ∑ 𝟐𝒆−𝟐𝜺𝟐𝑵

𝛭

𝜇=1

 

This sum can be depicted using a Venn diagram, as shown below: 
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Figure 2-8 - Summing unwanted events 

The events 𝑨, 𝑩, 𝑪 depict three different hypotheses, taken from the hypothesis set 𝑯 (Figure 

2-8). These events can be disjoint, or coincident, or independent, in which case the would be 

proportionally overlapping etc. The union bound considers the worst-case scenario, that those 

events are disjoint. Thus, to replace the 𝑴 quantity, we need to consider the overlaps. 

In order to achieve that, we need to abstract from the hypothesis set, a quantity that is sufficient 

to characterize the overlaps, thus, lessen the bound, without trying to analyze the intricate details 

of every situation and its correlations. Formally, we are trying to suggest that how a hypothesis 

𝒎 performs is comparable to a hypothesis 𝒏: 

|𝑬𝒊𝒏(𝒉𝒎) − 𝑬𝒐𝒖𝒕(𝒉𝒎)|  ≈  |𝑬𝒊𝒏(𝒉𝒏) − 𝑬𝒐𝒖𝒕(𝒉𝒏)| 

That, in other words, means that the events are overlapping. If the probability that 𝒉𝒎 exceeds 

𝜺 is a number 𝒂, then the probability of  𝒉𝒏 to exceeds 𝜺 is barely different. 

 

2.8.2 Replacing the 𝑴 quantity 

 

To justify the way we are replacing the quantity 𝑴, we need to consider a finite sample of data, 

instead of the whole input space. Therefore, the number 𝑴 reduces to how many different 

patterns can I recognize in the sample. 

For example, if we consider a classification algorithm, which tries to classify a finite number of 

data points, we count the ways that those data points can be classified. This way, we are counting 
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the different hypotheses in a restricted set, instead of the input space. We are going to call the 

hypotheses restricted to this set, dichotomies. 

Considering the above notion, a hypothesis 𝒉 is a function that is defined as: 

𝒉: 𝑿 → {−𝟏, 𝟏} 

A dichotomy is also a function 𝒉, but it is defined as:  

𝒉: {𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵} → {−𝟏, 𝟏} 

Thus, a dichotomy is just like a hypothesis, but its domain is not the whole input space, but a 

restricted sample. So, the number of hypotheses, |𝑯|, is infinite. However, the number of 

possible dichotomies, |𝑯(𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵)| is at most 𝟐𝑵. We assume that a classification algorithm 

can classify every point of the sample set, as -1 or 1. The number of hypothesis that we can 

impose on this training sample is infinite. Yet, not every hypothesis alters the classes that was 

given by the previous one. Thus, we conclude to the number 𝟐𝑵. This number becomes a 

candidate for replacing 𝑴.  

 

2.8.3 The growth function 

 

The growth function counts the maximum number of dichotomies, that can be used to separate 

any 𝑵 points, in a classification process. More formally: 

𝒎𝑯(𝑵) =  𝐦𝐚𝐱
𝒙𝟏,𝒙𝟐,…,𝒙𝑵∈𝑿

|𝑯(𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵)| 

Thus, we can bound the growth function as follows: 

𝒎𝑯(𝑵)  ≤  𝟐𝑵 

For example, we will apply the growth function definition on a simple, binary classification 

algorithm, the perceptron. If we are given three data points,  𝑵 = 𝟑, the value of the growth 

function is 𝒎𝑯(𝑵) = 𝟖. But if we are given four data points, the value of the growth function 

reduces to 14, and not 16. This is depicted in the figure below (Figure 2-9). 
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Figure 2-9 - Perceptron algorithm breaking point 

As we can see, given three data points, we can come up with eight different classifiers. But in the 

case of four data points, we cannot classify the data the way they are depicted above. This is true 

even if we reverse the classes of the data points. Thus, in total, we are two classifiers short. Hence 

the 14 classifiers and not 16. We now can expand and measure the value of the growth function 

in the examples depicted in the figure below. 
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Figure 2-10 - Growth function examples 

In the first example, the most classifiers that we can get are 𝑵 + 𝟏. It is a simple linear model, 

but in the second example, we ha (𝑵+𝟏
𝟐

) + 𝟏 =  
𝟏

𝟐
𝑵𝟐 +  

𝟏

𝟐
𝑵 + 𝟏. In the third example, we can 

arrange the given data points in such a way, that we can get the maximum number of classifiers, 

which is 𝟐𝑵. 
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What we need, finally, is to replace the quantity 𝑴 with a friendlier measure. If that number was 

a polynomial, then we would be in great shape because the negative exponential in Hoeffding’s 

inequality would kill any polynomial, given a fair amount of data points, 𝑵.  

 

2.8.4 Break point 

 

The definition of the break point, for a dichotomy 𝒉, is the point at which the system fails to get 

all possible classifiers. For example, as we have seen before, for the perceptron algorithm the 

break point is the number four. Generally, if the breaking point of an algorithm is 𝑵, that means 

that we can classify 𝑵 − 𝟏 points in whatever way we want and then, start failing at the 

𝑵𝒕𝒉 point. 

Definition 2.5: Break Point 

If no data set of size 𝒌 can be shattered by 𝑯, then 𝒌 is the breaking point for 𝑯. 

Intuitively, this definition translates to 𝒎𝑯(𝑯) <  𝟐𝒌. Thus, for the examples of positive rays, 

positive intervals and convex areas, depicted in the figure above (Figure 2-10), the breaking 

points are respectively: 

• Positive rays 

𝒎𝑯(𝑯) = 𝑵 + 𝟏, 𝒌 = 𝟐 

 because for 𝑵 = 𝟐, 𝒎𝑯(𝟐) <  𝟐𝟐 

• Positive intervals 

𝒎𝑯(𝑯) =  
𝟏

𝟐
𝑵𝟐 + 

𝟏

𝟐
𝑵 + 𝟏, 𝒌 = 3 

 because for 𝑵 = 𝟑, 𝒎𝑯(𝟑) <  𝟐𝟑 

• Convex sets 

𝒎𝑯(𝑯) = 𝟐𝑵, 𝒌 = ∞ 

Thus, the result is that if there is any break point, the growth function is polynomial in 𝑵. 

Therefore, all we need to declare that learning is feasible is that there is a break point. 

 

2.9 The theory of generalization 

 
The important next stop on this roadmap is to prove that the growth function, 𝒎𝑯(𝑯), is a 

polynomial and, finally, prove that it can replace the 𝑴 quantity. 
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2.9.1 Bounding the growth function 

 

To show that the growth function is a polynomial, all we need to prove is that it is bounded by a 

polynomial. We are not trying to prove that the growth function is a specific polynomial. So, we 

show that: 

𝒎𝑯(𝑯)  ≤ 𝒂 𝒑𝒐𝒍𝒚𝒏𝒐𝒎𝒊𝒂𝒍  

As a reminder, having the growth function be less or equal to a polynomial, gives us a great 

advantage concerning the feasibility of learning. In this case, if we replace the 𝑴 quantity by the 

value of the growth function, the negative exponential in the Hoeffding’s inequality will kill any 

exponential, eventually, given the right amount of data. 

Now, we should define a key quantity, that we will call 𝑩(𝑵, 𝒌), and is defined as the number of 

classifiers we can derive, given 𝑵 data points and a break point 𝒌.  

𝑲(𝑵, 𝒌): 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒊𝒄𝒉𝒐𝒕𝒐𝒎𝒊𝒆𝒔 𝒐𝒏 𝑵 𝒑𝒐𝒊𝒏𝒕𝒔, 𝒈𝒊𝒗𝒆𝒏 𝒂 𝒃𝒓𝒆𝒂𝒌 𝒑𝒐𝒊𝒏𝒕 𝒌 

Thus, we can define the following example; we have 𝑵 data points and we are trying to shatter 

the data, i.e. get as many classifiers as I can, under the constraint that there is a break point 𝒌. 

This is shown on the figure below (Figure 2-10).  

Every row is a unique combination of classes (+1, -1), but, if we keep the last data point, 𝒙𝑵, 

separated, the remaining 𝒙𝟏, … , 𝒙𝑵−𝟏 data points can fall into one of the following categories. 

They define either unique rows, independently of the last element 𝒙𝑵, or they can be duplicates 

that have either +1 or -1 in the last position. 

We are keeping the last data point separated, so we can divide the matrix of classified data points 

into three big bins; in the first one, that we name 𝑺𝟏, we are keeping the data points that can 

only have +1 or -1 as the class of the last element. The 𝑺𝟐 bin is divided into two categories. The 

rows from 𝒙𝟏, … , 𝒙𝑵−𝟏 are the same, but the last element is always +1 for the bin 𝑺𝟐
+ and -1 for 

𝑺𝟐
−. In other words, the first row in either 𝑺𝟐

+ or 𝑺𝟐
− is the same, except the last element 𝒙𝒏. 
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Figure 2-11 - Bounding the growth function [14] 

From the figure above, we can derive that 𝑩(𝑵, 𝒌) = 𝜶 + 𝟐𝜷. Thus, we should estimate the 

value of 𝜶 and 𝜷. 

First, we should concentrate on 𝒙𝟏, … , 𝒙𝑵−𝟏 columns (Figure 2-12). In this, new, submatrix the 

region 𝑺𝟐
+ and 𝑺𝟐

− have duplicate rows, so we can reduce the total number of rows to only the 

rows that are within the regions 𝜶 and 𝜷. In those regions, we can be sure by design, that there 

are no duplicates either within the same region or between regions 𝜶 and 𝜷. 

For the original matrix, we could not find all possible patterns on any 𝒌 columns. So, by extension, 

we cannot find all possible patterns on any 𝒌 columns on the newly created submatrix. This is 

because if we could, then these patterns would serve as all possible patterns on the full, original 

matrix. Thus, we can argue that the total number of rows 𝜶 + 𝜷, are less or equal to 𝑩(𝑵 − 𝟏, 𝒌). 

𝜶 + 𝜷 ≤ 𝑩(𝑵 − 𝟏, 𝒌)  

We say that it is less or equal than and not equal, because the original matrix was constructed in 

such way, that it maximizes the number of patterns that we can get on 𝑵 data points. The new 

submatrix was constructed in a special way, so we cannot be certain that it is maximizing the 

number of rows.  
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Figure 2-12 - Recursive bound on the growth function – Part I 

Next, we should concentrate on estimating the quantity 𝜷. Thus, we should concentrate on either 

the 𝑺𝟐
+ or 𝑺𝟐

− regions. 

In those regions, we can argue that the break point is 𝒌 − 𝟏. This is because, if we could get all 

possible patterns on 𝒌 − 𝟏 columns, then by adding the 𝒙𝑵 extension we could get all possible 

patterns on 𝒌 columns. 

Having establish that the break point is 𝒌 − 𝟏, we can estimate the value of b as: 

𝜷 ≤ 𝑩(𝑵 − 𝟏, 𝒌 − 𝟏) 
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Figure 2-13 - Recursive bound on the growth function - Part II 

Finally, we should put everything together. By putting together the three formulas computing 

the quantities 𝜶, 𝜷, we get: 

𝑩(𝑵, 𝒌) ≤  𝑩(𝑵 − 𝟏, 𝒌) +  𝑩(𝑵 − 𝟏, 𝒌 − 𝟏)  

 

2.10 Numerical computation of 𝐵(𝑁, 𝑘) 
 

Having compute an estimate for the upper bounds of the key quantity 𝑩(𝑵, 𝒌), we can form a 

table that computes numerically the value of this quantity, given 𝑵, 𝒌 (Figure 2-14). 

 
𝒌 

 1 2 3 4 … 

𝑵 

1 1 2 2 2 … 

2 1 3 4 4 … 

3 1 4 7 8 … 

4 1 5 … … … 

5 1 … … … … 

… … … … … … 

Figure 2-14 - Computation of B(N, k) 
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We have two base key values. The one is when we have the break point equal with one and when 

the number of data points is equal to one. For the first base value, if we have a break point of 1, 

then the value of the quantity 𝑩(𝑵, 𝒌) is equal to one, no matter how many data points we have. 

On the other hand, if the value of data points is equal to one, then we can only have two different 

patterns, +1 and -1. Thus, no matter the valued of the break point, except the case in which it is 

one, the value of 𝑩(𝑵, 𝒌) is two. 

We can easily fill the rest of the table now by adding the values that the 𝑩(𝑵, 𝒌) takes, 

recursively, using the formula we derived in the previous subchapter:  

𝑩(𝑵, 𝒌) ≤  𝑩(𝑵 − 𝟏, 𝒌) +  𝑩(𝑵 − 𝟏, 𝒌 − 𝟏) 

Formally we can say that the value of the upper bound of 𝑩(𝑵, 𝒌) is given by the formula: 

𝑩(𝑵, 𝒌) =  ∑ (
𝑁

𝑖
)

𝑘−1

𝑖=0

 

We will prove the aforementioned formula, analytically. So, starting from the boundary 

conditions we verify that the formula returns the expected values from Figure 2-14, given the 𝑵 

and 𝒌. 

Next, we should prove the induction step: 

∑ (
𝑵

𝒊
)

𝒌−𝟏

𝒊=𝟎

=  ∑ (
𝑵 − 𝟏

𝒊
)

𝒌−𝟏

𝒊=𝟎

+ ∑ (
𝑵 − 𝟏

𝒊
)

𝒌−𝟐

𝒊=𝟎

  

= 𝟏 + ∑ (
𝑵 − 𝟏

𝒊
) +  ∑ (

𝑵 − 𝟏

𝒊 − 𝟏
)

𝒌−𝟏

𝒊=𝟏

𝒌−𝟏

𝒊=𝟏

 

= 𝟏 + ∑ [(
𝑵 − 𝟏

𝒊
) + (

𝑵 − 𝟏

𝒊 − 𝟏
)]

𝒌−𝟏

𝒊=𝟏

 

= 𝟏 + ∑ (
𝑵

𝒊
) = 

𝒌−𝟏

𝒊=𝟏

∑ (
𝑵

𝒊
)

𝒌−𝟏

𝒊=𝟎

 

So, the formula stands. With the above argument, we conclude that the maximum number of 

patterns on 𝑵, given the fact that we have a break point 𝒌, is a 𝑵𝒌−𝟏 degree polynomial. Thus, 

𝒎𝑯(𝑯)  ≤  ∑ (
𝑵

𝒊
)

𝒌−𝟏

𝒊=𝟎
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2.11 The Vapnik–Chervonenkis inequality 

 
We now have seen that the maximum number of patterns on 𝑵, given the fact that we have a 

break point 𝒌, in other words the growth function, 𝒎𝑯(𝑯), is bounded by a 𝑵𝒌−𝟏 degree 

polynomial. This means that if we can substitute the 𝑴 quantity of the Hoeffding’s inequality, 

with the growth function, then we can consider learning feasible, in any case.  

The only problem is that the growth function considers only what happens in-sample. Thus, we 

need to get a method to relate the in-sample error with the out of sample error, in order to 

generalize well. The way to do this, is by completely ignoring the out of sample error. So, 

returning to the box and balls example, instead of taking sampling the box once, we do it twice. 

 

Figure 2-15 - The Vapnik–Chervonenkis example 
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Using this simple logic, we can now compare the two generated samples, by studying if 𝑬𝒊𝒏(𝒉) 

tracks 𝑬𝒊𝒏
′ (𝒉) well. 

According to the Hoeffding’s inequality, in the case of one box, the two in-sample errors track 

the out of sample error well. Thus, we expect them to track each other as well. But if we consider 

the case of multiple boxes, then they start to grow apart. For example, there is a probability that 

in some case, the first sample would consist of only black balls and the second with only white 

ones. 

However, there is a great advantage. The simple argument that characterizes the Vapnik–

Chervonenkis idea, is that now, we can describe the problem we have with multiple boxes, using 

the two samples. Having done that, we are completely in the realm of dichotomies. The only 

difference is that now we have a bigger sample to work with. Thus, the Hoeffding’s inequality 

transforms to the Vapnik–Chervonenkis inequality, as shown below: 

𝑷[ |𝑬𝒊𝒏(𝒉) − 𝑬𝒐𝒖𝒕(𝒉)| > 𝜺| ]  ≤  𝟒𝒎𝑯(𝟐𝑵)𝒆−
𝟏
𝟖

𝜺𝟐𝑵 

We now have twice the sample, so the growth function transforms to 𝒎𝑯(𝟐𝑵), but nonetheless 

it is still bounded by a polynomial in 𝑵. 

Finally, the Vapnik–Chervonenkis inequality is a statement that holds true, for any hypothesis 

that has a break point, and moreover, 𝒎𝑯(𝟐𝑵) is bounded by a polynomial in 𝑵 with the order 

of the polynomial decided by the break point. So, we conclude that learning is feasible, given 

enough training examples 𝑵. 

 

2.12 The problem of Overfitting 

 
Overfitting is a problem that causes the performance of machine learning algorithms to drop, 

proportionally to their complexity. When trying to approximate the unknown target distribution, 

which is the goal of every machine learning algorithm, we use a finite set of training examples. In 

this case, the learning algorithm tries to minimize the in-sample error, by choosing the right 

hypothesis from a hypothesis set 𝑯. 

The problem appears when the complexity of the model increases. The final hypothesis that will 

be chosen by the algorithm may yield great results in the training set, fitting every data point. 

From calculus, we know that an infinite Taylor series can approximate any function. But this does 

not guarantee a good generalization performance. 

For example, we will use the sine function, generate random data points as training examples 

from it and finally try to learn from the data points to approximate the sin function. 

Figure 2-16 shows the “unknown” target function we are trying to approximate: 
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Figure 2-16 - The sin function 

The next step is to generate random data points from this function. Figure 2-17 depicts the 

process: 

 

Figure 2-17 - Generating random data points 
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In the following figures is depicted how different degree polynomials approximate the target 

function. Note that because the data points are generated randomly every time, they differ from 

those of Figure 2-17. 

 

 

Figure 2-18 - Sine approximation with a degree five polynomial 
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Figure 2-19 - Sine approximation with a degree seven polynomial 

As we can see, a degree five polynomial does not fit well the data points. It may pass through 

some of them, but it actually underfits the data. 

For a degree seven polynomial we have a different case. In this example, a degree seven 

polynomial fits almost every data point perfectly. Thus, if we were to choose this as out final 

hypothesis, we would have an in-sample error very close to zero. Although, we can see that in 

the areas that we do not have a sufficient number of examples, our model generalizes poorly.  

This is the problem of overfitting. We can reduce the amount of in-sample error as much as we 

want, by increasing the complexity of our model. But the cost we pay is that it might not 

generalize well. Thus, because machine learning does not try to fit past data perfectly, but predict 

future behavioral patterns, overfitting is something that we should always take notice, when 

trying to solve such problems. 

Figure 2-20 depicts how in-sample error correlates to out of sample error, showing perfectly the 

overfitting problem. 
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Figure 2-20 - Train error curve Vs Test error curve 

  

2.13 Bias-Variance tradeoff 

 
Bias-Variance tradeoff, gives us a different angle on generalization. It will be analyzed in this 

subchapter, along with a very helpful tool, which is called learning curves. Learning curves are 

mainly used to illustrate and visualize the learning process. 

 

2.13.1 Approximation-generalization tradeoff 

 

The purpose of learning, as discussed during the analysis of the theory, is to get a small out of 

sample error, 𝑬𝒐𝒖𝒕, thus, generalize well and generate solid predictions. In other words, this 

means that the final hypothesis chosen by the system, approximates the target function (target 

probability distribution) well. 
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There is a delicate notion in the above sentence. Having small out of sample error has two 

components. The first one is that the final hypothesis approximates well the target function, 

while the second component implies that it approximates well the target function out of sample.  

Thus, considering a more complex hypotheses set, we have better chance of approximating the 

target function.  But as we saw, we might face an overfitting problem. Consequently, having less 

complexity gives us better chance of generalizing out of sample. So, the ideal situation would be 

if the target function lies within the hypothesis set; 𝑯 = {𝒇}. 

Using the Bias-Variance analysis, we get a way of quantifying the approximation and 

generalization notions. It decomposes 𝑬𝒐𝒖𝒕 to two pieces: 

• How well 𝑯 approximates 𝒇 

• How well can we discover a good 𝒉 ∈ 𝑯 

We are going to restrict this analysis to real-valued target function, such as the ones that linear 

regression tries to approximate, and use the squared error as our error measure. 

Our starting point is 𝑬𝒐𝒖𝒕, which we can quantify by comparing the value of the final hypothesis 

to the target function, and take the squared number of the result. The final hypothesis depends 

on several things. In mainly depends on the dataset that the system uses to learn. This is an 

important aspect for the Bias-Variance analysis, so, we should take special notice. 

Thus, more formally: 

𝑬𝒐𝒖𝒕(𝒉(𝑫)) =  𝔼𝒙[(𝒉(𝑫)(𝒙) −  𝒇(𝒙))𝟐] 

That formula describes the out of sample error of the hypothesis, derived from a specific dataset, 

as the expected value of the squared error. We take the expected value because we need to 

measure the error for the whole input space.  

Now, to analyze the general behavior of the model, we need to get rid of the dependency of a 

specific dataset 𝑫. To do that, we take the expected value of 𝑬𝒐𝒖𝒕(𝒉(𝑫)); 𝔼𝑫[𝑬𝒐𝒖𝒕(𝒉(𝑫))]. So, the 

formula above now transforms to: 

𝔼𝑫[𝑬𝒐𝒖𝒕(𝒉(𝑫))] =  𝔼𝑫[𝔼𝒙[(𝒉(𝑫)(𝒙) −  𝒇(𝒙))
𝟐

]] 

And in turn, by reversing the order of the expectations, this is equal to: 

𝔼𝑫[𝑬𝒐𝒖𝒕(𝒉(𝑫))] =  𝔼𝒙[𝔼𝑫[(𝒉(𝑫)(𝒙) −  𝒇(𝒙))
𝟐

]] 

This allows us to focus on the inside quantity 𝔼𝑫[(𝒉(𝑫)(𝒙)  −  𝒇(𝒙))
𝟐

], and when we get a clean 

decomposition, we can return and get the expected value with respect to 𝒙. 
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2.13.2 The average hypothesis  

 

In the previous subchapter, it is presented the idea of an average hypothesis, via the formula 

𝔼𝑫[(𝒉(𝑫)(𝒙)  −  𝒇(𝒙))
𝟐

]. This is an interesting notion, which will be analyzed next. 

In order to understand this notion, think of a hypothesis set 𝑯 and a dataset that the system uses 

to learn. We define the average hypothesis, 𝒉̅(𝒙), as follows: 

𝒉̅(𝒙) =  𝔼𝑫[𝒉(𝑫)(𝒙)] 

In other words, we get a final hypothesis for every dataset we have. The form of the final 

hypothesis depends on the dataset the system uses, thus, for a different dataset we get a 

different hypothesis. Therefore, getting the expected value of every different hypothesis, with 

respect to all possible datasets, would be an ideal situation. The variable 𝒙 is a fixed value and 

thus, we are exploiting the benefit of an infinite number of datasets on this point. Of course, in 

reality, we can never compute that. So, logically, in an ideal situation, where we have a great 

number of datasets, 𝑫𝟏, … , 𝑫𝑲, the perfect hypothesis would be: 

𝒉̅(𝒙)  ≈  
𝟏

𝑲
 ∑ 𝒉(𝑫)(𝒙)

𝑲

𝒌=𝟏

 

Next, we can use the notion of the average hypothesis to get the decomposition we are after. 

First, we need to transform it a little, by using a simple trick: 

𝔼𝑫 [(𝒉(𝑫)(𝒙) −  𝒇(𝒙))
𝟐

] =  𝔼𝑫 [(𝒉(𝑫)(𝒙) +  𝒉̅(𝒙) −  𝒉̅(𝒙)  −  𝒇(𝒙))
𝟐

] 

Then, we need to expand the square: 

𝔼𝑫 [(𝒉(𝑫)(𝒙)  −  𝒇(𝒙))
𝟐

] =  𝔼𝑫[(𝒉(𝑫)(𝒙)  −   𝒉̅(𝒙))
𝟐

+  (𝒉̅(𝒙) −   𝒇(𝒙))
𝟐

 

+ 𝟐((𝒉(𝑫)(𝒙)  −   𝒉̅(𝒙)) (𝒉̅(𝒙) −   𝒇(𝒙))] 

We can observe that we are asking for the expected value with respect to 𝑫. This means that the 

quantity (𝒉̅(𝒙) −   𝒇(𝒙)) is a constant. Thus, getting the expected value, with respect to 𝑫, of 

𝟐((𝒉(𝑫)(𝒙) −  𝒉̅(𝒙)) (𝒉̅(𝒙)  −   𝒇(𝒙)), diminishes to computing the expected value, with 

respect to 𝑫, of (𝒉(𝑫)(𝒙)  −   𝒉̅(𝒙)).  

𝔼𝑫 [(𝒉(𝑫)(𝒙)  −   𝒉̅(𝒙))] =  𝔼𝑫[𝒉(𝑫)(𝒙)] −  𝒉̅(𝒙) =  𝒉̅(𝒙) −  𝒉̅(𝒙) = 𝟎 
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Thus, we see that our original formula diminishes to: 

𝔼𝑫 [(𝒉(𝑫)(𝒙)  −  𝒇(𝒙))
𝟐

] =  𝔼𝑫 [(𝒉(𝑫)(𝒙) −  𝒉̅(𝒙))
𝟐

+  (𝒉̅(𝒙)  −   𝒇(𝒙))
𝟐

] 

𝔼𝑫 [(𝒉(𝑫)(𝒙)  −  𝒇(𝒙))
𝟐

] =  𝔼𝑫 [(𝒉(𝑫)(𝒙) −  𝒉̅(𝒙))
𝟐

] +  (𝒉̅(𝒙)  −   𝒇(𝒙))
𝟐

 

What we derived above can be explained by the following simple logic; the first term quantifies 

how much the final hypothesis differs from the target function. This is decomposed to the second 

term as follows; how much the final hypothesis, which was formed by exploring a specific dataset 

𝑫, differs from the average hypothesis, plus how much the average hypothesis differs from the 

target function. 

The second term,  (𝒉̅(𝒙) −   𝒇(𝒙))
𝟐

, describes the bias. This means, that even in an ideal 

situation, the results are biased away from the ground truth.  

The first term, 𝔼𝑫 [(𝒉(𝑫)(𝒙) −  𝒉̅(𝒙))
𝟐

], describes the variance. This means, that if we had 

every information at our disposal, meaning all datasets, the best we could conclude is the average 

hypothesis, 𝒉̅(𝒙). But because we only work with one dataset, we come up with a hypothesis 

limited to this dataset, 𝒉(𝑫)(𝒙), thus, we are measuring how far we fall from 𝒉̅(𝒙).  

Therefore, putting it all together, we result to the formula given below: 

𝔼𝑫[𝑬𝒐𝒖𝒕(𝒉(𝑫))] =  𝔼𝒙[𝔼𝑫[(𝒉(𝑫)(𝒙) −  𝒇(𝒙))
𝟐

]] 

𝔼𝑫[𝑬𝒐𝒖𝒕(𝒉(𝑫))] =  𝔼𝒙[𝒃𝒊𝒂𝒔(𝒙) +  𝒗𝒂𝒓(𝒙)] 

Last, for a higher level of abstraction we get that: 

𝑬𝒐𝒖𝒕 = 𝑩𝒊𝒂𝒔 + 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 

For example, that means that if we have a learning situation, and the final out of sample error 

proves to be 0.2, we could say that 0.05 is because of bias and the rest is because of variance. In 

other words, 0.05 means that the hypothesis approximates well the target function, but it seems 

to be too complex, so it has 0.15 variance. 

 

2.13.3 The tradeoff 

 

In the previous subchapter, are defined the notions of bias and variance. We came up with two 

simple formulas to describe them: 
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𝑩𝒊𝒂𝒔 =  𝔼𝒙[(𝒉̅(𝒙)  −   𝒇(𝒙))
𝟐

] 

𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =  𝔼𝒙[𝔼𝑫 [(𝒉(𝑫)(𝒙)  −  𝒉̅(𝒙))
𝟐

]] 

Considering these two quantities, we can see that there is a tradeoff. By increasing the complexity 

of our model, we get better approximation. On the other hand, higher complexity brings the 

problem of overfitting, thus, more bias. 

 

Figure 2-21 - Bias-Variance tradeoff 

As we can see from Figure 2-21, having a small hypothesis set can cause high bias. This is because 

the final hypothesis cannot really approximate the target function well. In contrast, when we 

have a bigger hypothesis set of higher complexity, even in the case of a set that contains the 

target function, we get high variance.  
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For example, we will use the simple, sine function once more: 

 

Figure 2-22 - Bias-Variance sine example 

The system should try to learn the target function, using two hypothesis sets; the 𝑯𝟎 and the 𝑯𝟏, 

as show in Figure 2-22. The system will try to learn using two examples, so, 𝑵 = 𝟐. Thus, 

concerning approximation, we expect that 𝑯𝟏 will approximate the target function better: 

 

Figure 2-23 - Bias-Variance approximation 
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In the case of approximation, as expected we get a value of error that is higher on 𝑯𝟎 than 𝑯𝟏. 

So, in terms of approximation, knowing the target function, the more complexity we have the 

better it is. Let us now go through the case of learning.  

 

Figure 2-24 - Bias-Variance learning 

In the case of learning, we have the two data points and we are trying to fit our model. So, trying 

to fit two data points with a line is an easy task for 𝑯𝟏. When the process is completed, we bring 

back the target function and evaluate our two hypotheses. The problem is that the value of out 

of sample error depends on which data points we have. In other words, it depends on the dataset. 

Thus, we cannot be sure about how we compare 𝑯𝟎 and 𝑯𝟏. This is where the bias-variance 

analysis plays an important role. So, Figure 2-25 depicts the bias-variance decomposition for 𝑯𝟎. 

 

Figure 2-25 - Bias-Variance analysis for 𝐻0 
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In Figure 2-25, 𝒈̅(𝒙) is the average hypothesis we defined before. It is expected, by symmetry, 

that on average we will get a hypothesis close to zero. Thus, we see that the average hypothesis 

happens to be equal to the best approximation. This is not the result of learning though. The 

result of learning depends on the dataset and it can be any hypothesis depicted in the first 

schema of Figure 2-25. So, the grey area around the average hypothesis depicts the variance. 

Next, let us do the corresponding to 𝑯𝟏 analysis. 

 

Figure 2-26 - Bias-Variance analysis for 𝐻1 

Now we can see that the variance increases. This is a great example of how a model with 

increased complexity has higher variance. However, the argument is that we get better 

approximation. Nevertheless, we can now compare. 

 

Figure 2-27 - Bias-Variance comparison 
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Finally, the big question is not if a constant or a line can approximate the sine function better. 

The big question comes from the learning perspective, and it wonders about what can we use to 

approximate better something that we don’t know, using two examples. 

Thus, in the example above, the out of sample error for a hypothesis set that uses just a constant 

is 0.75. Contrary, the out of sample error for a more complex hypothesis set is much higher. 

The take-out from this analysis is that the model complexity should match to the data resources, 

not the target complexity [14]. 

 

2.14 Learning curves 
  

So far, we looked only the out of sample error. Plotting the learning curves allows us to visualize 

both the in-sample and out of sample error, as a function of 𝑵. 

Thus, we have a dataset, 𝑫 of size 𝑵. The expected value of the out of sample error is computed 

as such;  𝔼𝑫[𝑬𝒐𝒖𝒕(𝒉(𝑫))]. Consequently, we have the expected value of the in-sample error; 

𝔼𝑫[𝑬𝒊𝒏(𝒉(𝑫))].  

Below, Figure 2-28 shows the learning curves for a simple model of 𝑵 data points: 

 

Figure 2-28 - Learning curves for a simple model 
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Because we have a simple model, for example a constant hypothesis like we discussed before, it 

does not approximate the target function well. Thus, we have a high expected error, as it is 

depicted by the black, horizontal line. This shows the best that our model can do. 

During the process of learning, the more examples we have, the more likely it is for our 

hypothesis to approximate the target function. Thus, the out of sample error is decreasing. 

However, the in-sample error increases. At the beginning, there is few examples to fit, so this is 

an easy task even for a simple hypothesis set. As we increase the number of samples, the model 

has a hard time fitting them all, therefore, the in-sample error goes up. 

The case of a complex model is similar: 

 

Figure 2-29 - Learning curves for a complex model 

The difference is that the in-sample error is close or equal to zero at the beginning. This is because 

a complex model could fit every training example, and in turn produce a zero in-sample error, 

But the model cannot learn anything. Instead, it is as it memorized the training examples. On the 

other hand, because of the problem of overfitting, the out of sample error is huge at the 

beginning. So, we see, that even if our complex hypothesis fits every example in our training set 

perfectly, it does not generalize well. Going forward, we see that getting more training examples 

helps the case of the out of sample error, although the increase of the in-sample error. 
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Finally, visualizes the learning curves under the bias-variance analysis: 

 

Figure 2-30 - Learning curves under Bias-Variance analysis 

The bias is given by the blue region. The black horizontal line depicts the best-case scenario for 

this model, concerning the value of the out of sample error. This is given by considering the 

notion of the average hypothesis, introduced in previous subchapters, 𝒉̅(𝒙). So, the black line is 

the best pick in the hypothesis set, and below that is the error the system makes, by picking a 

different hypothesis. 

The red area depicts the variance. So by taking the sum of the area of those regions, we compute 

the expected value of the out of sample error. 
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2.15 Regularization 

 
Regularizations is the cure to the overfitting problem. Although there are a few other methods 

of attacking the problem of overfitting, for example increasing the number of training examples, 

regularization is used in any machine learning algorithm. 

 

2.15.1 Approaches of regularization 

 

There are two approaches in regularization in the bibliography [14]: 

• Mathematical 

It mostly comes from function approximation. When we are facing the problem of 

approximating a function, and there are many functions that get the job done, we impose 

smoothness constraints on it, to be able to solve it. 

• Heuristic 

In this case, we are hindering the minimization of the in-sample error. This is the most used 

one, as it attacks the problem in great specificity. 

To better understand the notion of regularization, we are going to borrow an example from a 

previous subchapter. Figure 2-31 revisits the familiar example of trying to fit the sine function, 

using a linear model, with two training examples: 

 

Figure 2-31 - Regularization example 1 
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As we know, without regularization, the main problem of this model is high variance. In this case, 

even a simplistic constant model performed better. By regularizing the model, we are restricting 

the lines (hypotheses), in terms of the offset and slope they can have. This results in sacrificing 

the perfect fit in-sample, but the gain in terms of variance is something to consider.  

 

Figure 2-32 bellow depicts the final analysis of computing the out of sample error in the two 

different cases, with or without regularization. 

 

Figure 2-32 - Regularization example 2 

The two obvious changes are that the grey area, which describes the value of variance, is 

diminished, and the bias value has slightly increased, because, now, we cannot fit the in-sample 

data perfectly. Thus, in general, regularization decreases the variance at the expense of slightly 

increasing the bias. As we said before, this is a cause of hindering the fit. Having the new values 

for bias and variance, after regularization, the linear model wins over the simplistic constant 

model. 

 

2.15.2 Choosing a regularizer 

 

The first and simplest regularizer is that of early stopping. This is perfectly depicted in Figure 

2-33, below: 
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Figure 2-33 - Early-stopping regularizer 

Using this approach, we are terminating the learning process, at the point of minimal out of 

sample error. This is the simplest approach of regularization and it does not provide a solid 

solution. 

The next approach is called L2 regularization (ridge regression). This is used to attack outliers in 

out sample data. The idea is to modify the original cost function, by penalizing the large weights 

derived from the system. 
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The original cost function, using a mean squared error measure is modified as such: 

𝑱 =  ∑(𝒉(𝒙) − 𝒚)𝟐 + 𝝀

𝑵

𝒏=𝟏

||𝒘||
𝟐

 

Now, the new regularization term 𝝀 appeared, and what it tries to do is penalize the large weights 

𝒘, pulling their value downwards, in the process of minimizing the cost function 𝑱. Thus, to 

compute the value of the weight vector 𝒘, we get the following formula: 

𝒘 = (𝑿𝑻𝑿 + 𝝀𝑰)−𝟏𝑿𝑻𝑿 

Another approach is called L1 regularization. This approach faces the problem when we have a 

small number of high dimensional training data. So, in general when 𝑫 ≫ 𝑵. The main notion of 

an L1 regularizer is that many features in are training data are contributing only noise. Thus, using 

L1 regularization we are setting most weights to zero.  

The cost function after the modifications made from L1 regularization, transforms to: 

𝑱 =  ∑(𝒉(𝒙) − 𝒚)𝟐 + 𝝀||𝒘||

𝑵

𝒏=𝟏

 

In order to solve for w, we use an algorithm called gradient descent, due to singularity problems.  
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Chapter Three 
 

 

 

3 Related work 
 

Recommender systems and collaborative filtering has become an invaluable technique for 

reducing information overload. It is widely and successfully used on the web or web applications 

like Amazon.com, a retail giant, and Netflix, one of the most visited movie services today. 

The most widely used approach, when it comes to recommender systems, is this of collaborative 

filtering. This term is coined by the developers of the first recommender system, Tapestry [15]. 

Tapestry was an experimental mail system, developed at Xerox Palo Alto Research Center, which 

supported both content-based and collaborative filtering, by introducing the human element into 

the information filtering process. Tapestry was intended to handle any incoming stream of 

electronic documents and server both as a mail filter and repository. 

Since then, the area of recommender systems has been extensively researched, and the results 

are divided into two broad categories; neighborhood models and latent factor models. 

 

3.1 Neighborhood models 
 
Neighborhood models sets the base and the most common approach to collaborative filtering 

and recommendation systems. They, in turn, divide into two categories; user-oriented and item-

oriented. 

User-oriented approaches, predicted the missing ratings, by identifying similar minded users. On 

the other hand, item-oriented approaches strive to group similar items, and fill in the missing 

ratings by looking at how the same user rates similar items. 

 

3.1.1 User-oriented neighborhood models 
 

Information filtering systems used content-based filtering, to arrive to a filtering decision. For 

this to work, content-based tools gather information about each item and match them with 

whatever the interest of users is. Content-based techniques are successful in filtering textual 

documents, which might be of interest to a specific user. To achieve that, content-based tools 
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utilize techniques such as vector-space queries [16], intelligent agents [17] and information 

visualization [18]. 

On the other hand, user-oriented collaborative filtering approaches, collects user feedback, also 

known as ratings, for items within a specific domain, i.e. movies, and match together users with 

the same preferences or needs. This way, and automated collaborative filtering process, provides 

personalized recommendations to users. 

Furthermore, user-oriented collaborative filtering approaches, have three main advantages over 

content-based information filtering systems [19]. They can: 

• Filter items whose content is not easy to analyze, thus, cannot easily extract insightful 

information 

• Filter items based on quality, taste or needs 

• Provide serendipitous recommendations 

First, collaborative filtering approaches can enable filtering even to items that are hard or time 

consuming to analyze with computers, such as movies, music or people.  

Second, collaborative filtering systems can measure user preference in dimensions that are not 

easily captured by a simple information filtering system. Those dimensions can prove to be too 

vague for a human to capture, during a content-based approach, and too hard to analyze by 

computer systems. 

Finally, collaborative filtering systems can introduce items that were unexpected, or the user 

have never heard of. Especially in art domain, movies or song recommendations are often 

serendipitous, allows the user to expand his or her preferences in unexpected ways. 

The problem scope of any collaborative filtering system is to predict how a user would like an 

item that has not rated yet, given his historical data, on preferences and judgements. Those 

preferences come in the form of explicit or implicit feedback, as we saw during the introduction. 

Next, the system collects all feedback and through the collaborative filtering algorithm provide 

its predictions. In our case, the user-oriented approach, an active user provides a list of items and 

the engine returns the predictions for those items. Furthermore, with a minor modification, the 

engine most of the times returns the top-k results [20] [21] [22]. 

The problem space can be visualized as a matrix, with each cell holding the rating of the user to 

a specific item. The missing ratings, the ratings the system is expected to predict, are empty cells 

in that matrix. In the case of collaborative filtering, most of the times, every user has rated only 

a few items, resulting to a very sparse matrix. Figure 3-1 depicts this matrix in the form of a table: 
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Movies/Users Lion Arrival Kubo Moonlight 

John 1 3 5 ? 
Peter 5 1 ? 4 
James ? 4 3 5 
Kelly 1 2 5 1 

Figure 3-1 - User-Movies sparse matrix 

User-oriented collaborative filtering approaches are the on-side of the neighborhood-based 

models in recommendation systems. In such systems, a subset of users, who are similar to an 

active user, are chosen and a weighted aggregate of their ratings on a specific item is calculated, 

in order to generate new predictions for the active user.  

User-oriented neighborhood-based models use the methodology described below [19]: 

1. Weight all the users with respect to similarity to an active user 
2. Select a set of predictors, a set consisting of users that are most similar to the active user 
3. Compute predictions from a weighted aggregate of selected neighbors’ ratings 

For example, using Figure 3-1, let us assume that we are trying to predict the rating for the movie 

Moonlight, that user one, John, would give. Seems that Kelly is the best neighbor for John, 

because they have rated the movies they both have seen similarly. Thus, Kelly’s opinion would 

John influence more than Peter’s. 

One of the first to introduce a neighborhood-based, user-oriented collaborative filtering system 

was GroupLens [23] [21].  GroupLens has a few featured projects. One of them is MovieLens, that 

is a huge resource in the area of movie recommendations, Cyclopath, which discovers bike routes 

that match the way a user rides, and LensKit, an open source toolkit for building, researching, 

and studying recommender systems. 
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Figure 3-2 - MovieLens - A featured project of GroupLens 

The original system user Pearson correlations to measure user similarity, used all available 

related neighbors and computed a weighted average of deviations from the neighbor’s mean, as 

show below: 

𝒑𝒂,𝒊 =  𝒓𝒂̅̅ ̅ + 
∑ (𝒓𝒖,𝒊 −  𝒓𝒖̅̅ ̅) ∗ 𝒘𝒂,𝒖

𝒏
𝒖=𝟏

∑ 𝒘𝒂,𝒖
𝒏
𝒖=𝟏

 

The quantity 𝒑𝒂,𝒊 represents the predicted rating of an active user 𝒂 for an item 𝒊. The number 

of neighbors is defined as 𝒏 and 𝒘𝒂,𝒖 is the similarity weight, between the active user and 

neighbor 𝒖 as defined by the Pearson correlation coefficient: 

𝒘𝒂,𝒖 =
∑ (𝒓𝒂,𝒊 −  𝒓𝒂̅̅ ̅)  ∗  (𝒓𝒖,𝒊 −  𝒓𝒖̅̅ ̅)𝒎

𝒊=𝟏

𝝈𝒂 − 𝝈𝒖
 

The Ringo music recommender [22], improved the GroupLens model, using a restricted Pearson 

correlation coefficient: 

𝒘𝒂,𝒖 =
∑ (𝒓𝒂,𝒊 −  𝟒)  ∗  (𝒓𝒖,𝒊 −  𝟒)𝒎

𝒊=𝟏

𝝈𝒂 − 𝝈𝒖
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The number four was chosen because it was the median of a seven-scaled rating system. The 

strong point of Ringo music recommender was the greater accuracy, because of the selection of 

users whose correlation was greater than a fixed high threshold. On the other hand, Ringo music 

recommender could not make predictions for many items, because of this restriction. 

Another approach, the Bellcore video recommender [20], used Pearson correlation coefficient to 

weight a random sample of neighbors, and consequently, selecting only the best of those. Finally, 

the system preformed a multiple regression on them to create a prediction. 

In an empirical analysis, Breese et al. [24] found than the Pearson correlation coefficient 

performed better as a similarity metric than cosine vector similarity, on many of the previously 

mentioned algorithms. 

On the other hand, B. Sarwar et al. [7] enumerates the challenges of user-oriented approaches. 

They argue that although the user-oriented approach has been very successful in the past, years 

of experience have undisclosed their various challenges.  

Firstly, the main problem is that of sparsity. In big, retail datasets, active users have purchased 

very few products, as a fraction to the total number of products. As a result, the accuracy of 

recommendations may be poor or groundless.   

The other important issue is that of scalability. Having a great number of customers and products, 

to the count of millions, can pose great problems to existing neighborhood model algorithms. 

This is because the computation of nearest neighbors algorithms grows with both the number of 

users and the number of items. 

Those limitations, led researches to consider alternative methods in order to build trusted 

recommendation systems. 

 

3.1.2 Item-oriented neighborhood models 

 

User-oriented neighborhood models for collaborative filtering, quickly lost their appeal to later 

analogous item-oriented approaches. In such methods, the ratings are predicted using known 

known ratings that the user has previously given to similar items. 

The item-oriented approach has a few significant advantages over the analogous, user-oriented 

approach: 

• Better scalability 

• Improved accuracy 

• Prominent reasoning behind predictions 
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Trying to create targeted advertisement and more accurate email campaigns, Amazon used 

recommendations throughout most of their online presence, including their high traffic 

homepage [25]. When a user added an item into their shopping cart, and during the process of 

checkout, Amazon offered recommendations based on the items placed inside the previously 

mentioned shopping cart. This way, Amazon digitalized the notion of impulse items placed in a 

supermarket checkout line, but it enhanced the idea by offering what we would might call 

“personalized impulse items”. 

 

Figure 3-3 - Amazon's impulse products recommendations 

 

Using item-to-item collaborative filtering, Amazon built a recommendation algorithm that could 

scale to its huge catalog, covering tens of millions of customers and products. Moreover, the 

Amazon algorithm could produce high-quality recommendations in real time. 

Rather than computing the similarity between users, Amazon’s item-to-item collaborative 

filtering created recommendation lists consisting of items similar to what the customer had inside 

his shopping cart [26]. 
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Figure 3-4 - Amazon's recommendation engine 

 

To determine the similarity between items, the algorithm creates a table of items that the 

customer tends to purchase together. Figure 3-5 shows the iterative algorithm that was used to 

compute the similarity between a single product and every related item: 

 

Figure 3-5 - Amazon item-to-item similarity computation 

B. Sarwar et al. [7] studied a class of item-base collaboration filtering algorithms, that consider a 

set of items previously purchased or liked by a specific user, and compute the similarity between 

those item and previously unseen ones. The main notion is that a user would like to be presented 

with items that are similar to ones that he liked before. However, a user would not care about 

items that are similar to others that he has previously expressed a negative opinion. This 

approach attacks mainly the sparsity problem, thus, improves the accuracy of such 

recommendation engines. 
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Finally, the Gravity Recommendation System (GRS), which attained RMSE 0.8743 in the Netflix 

Prize Contest [8], discusses also the problem of scalability. However, it is important to note, that 

it is easier to measure the success of an item-to-item recommendation approach. For example, 

we can compare two movies, based on their genres, cast or director, and conclude about the 

performance of the algorithm. On user-oriented approaches, comparing two users could prove 

to be much vaguer. 

 

3.2 Latent factor models 
 

Latent factor model aim to uncover latent features that could explain the ratings given by users. 

This approach associates every user with a weight vector 𝒙𝒖 and each item with a corresponding 

feature vector 𝒚𝒊. Examples of this approach include pLSA [27], neural networks [28], and Latent 

Dirichlet Allocation [29]. 

In this approach, every user is associated with a weigh vector 𝒙𝒖, which encapsulates the user’s 

preferences. On the other side, each item is defined by a feature vector 𝒚𝒊, which, in essence, 

holds the features that characterizes the item. Finally, the predicted rating comes for the dot 

product of those vectors: 

𝒓𝒖,𝒊 =  𝒙𝒖
𝑻𝒚𝒊 

The cost function that we need to optimize, i.e. minimize, is using regularization to avoid the 

problem of overfitting: 

𝐦𝐢𝐧
𝒙∗,𝒚∗

∑ (𝒑𝒖,𝒊 −  𝒙𝒖
𝑻𝒚𝒊)

𝟐
+ 𝝀 (||𝒙𝒖||

𝟐
+ ||𝒚𝒊||

𝟐
)

𝒓𝒖,𝒊 𝒊𝒔 𝒌𝒏𝒐𝒘𝒏

 

where 𝝀 is the regularization parameter. 

In this approach, we randomly initialize the users’ weight vectors, as well as the items’ feature 

vectors. Then, by keeping the feature vectors fixed, we are iterating over the training examples 

to get a better estimate for the weight vectors. Next, we are using the weight vectors that we 

learned in the previous step, to get a better estimate for the feature vectors. This happens 

repeatedly, and after many iterations the algorithm produces exceptional results. Figure 3-6 

depicts the process. 
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Figure 3-6 - Latent factor models process 

  

This model yielded great results on the Netflix dataset, which was the largest available dataset 

to date [30]. 

In this work, we borrow this approach, as well as the approach presented by Yifan Hu et al. [11], 

which applies the latent factor model approach to implicit feedback datasets. In this case, the 

ratings matrix becomes a binary preference matrix, that captures whether there was an 

interaction between a user and an item. 

𝒑𝒖,𝒊 =  {
𝟏 𝒓𝒖,𝒊 > 𝟎

𝟎 𝒓𝒖,𝒊 = 𝟎
  

In the place of ratings, 𝒓𝒖,𝒊 is filled with an implicit feedback, such as the quantity of purchased 

products, the minutes watch for a show etc. 

In addition, there is a confidence matrix, associated with every interaction, that characterizes 

the confidence we have about any interaction. A simple way to capture this confidence is: 

𝒄𝒖,𝒊 = 𝟏 + 𝜶𝒓𝒖,𝒊 

where 𝜶 is a constant, that controls the rate of confidence increase. For example, if there is no 

interaction between a user and a product, the confidence takes the value one, thus, it does not 

contribute anything to our model. 

𝑦 1 , … , 𝑦 𝑛𝑢

𝑥 1 , … , 𝑥 𝑛𝑚𝑦 1 , … , 𝑦 𝑛𝑢

…
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The confidence matrix is the element that we will focus most in this work. We will try and 

optimize the heuristics of this function for the retail sector, where many aspects should be 

considered. For example, the stock quantity or the great variety in product prices.   
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Chapter Four 
 

 

 

4 Proposed Model 
 

In this section, we define the model used in this work. The goal is to build a recommendation 

system, tailored to fit the needs, and overcome the challenges of the retail sector. In most cases, 

the retail sector cannot benefit from the use of explicit user feedback. This is because the product 

catalogue count is in the thousands, and even if the store asks users about their opinion, the 

organization’s analysts cannot rely on that and, of course, cannot base their findings on such 

sparse data.  

This means that the users have not expressed any preference for the products they buy, and 

moreover, we cannot assume anything about the products they have not interacted with yet. 

Thus, we should work based on implicit feedback, that we extract observing the consumers’ 

behavior. This approach has a few special characteristics that are described below [11]: 

• We cannot extract negative feedback. By observing every consumer interaction, we can 

only assume that they show a preference to the products they purchase. But we do not 

have any knowledge about the products they do not choose to consume. They might not 

like them, but it is equally likely that they do not have any knowledge of their existence. 

This asymmetry does not appear on explicit feedback dataset. In the case of explicit 

feedback, the user is expected to provide a feedback in the form of a rating, that scales 

within a numerical range. For example, if the user rates a movie using five stars rating 

system, with one defining the worst-case scenario while five means brilliant, the user can 

express his preference or not. This leads explicit feedback recommender systems to treat 

the not yet rated items as missing values. Thus, their job is to fill those missing values. 

That could not be the case of implicit feedback recommender systems, because 

considering only the gathered data would leave us with only the positive feedback. That 

could lead to great misinterpretations of user profiles. Hence, it is important to mix the 

missing data into the recipe, because this is where the majority of negative feedback 

would lie. 

• Implicit feedback is inherently noisy. This means that although we can guess that a user 

likes the product that he bought, we can never be too certain. A user might have 

purchased something and ended up not liking it. Or even he bought a specific product as 

a gift. And how can we take into consideration the return of a product? These questions 
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and challenges make the implicit feedback problem much more complex than having to 

deal directly with the user opinion, in the case of an explicit rating. 

• We should treat the numeric value of implicit feedback as a confidence level. That means 

that while the explicit feedback numerical value, i.e. the rating, indicates preference, the 

implicit feedback equivalent indicates how confident we are that a user interaction shows 

preference. As we saw before, the value of an explicit rating indicates preference if it is in 

the upper levels of the rating scale and dislike if not. The numerical value of the implicit 

feedback can describe many aspects of a user-item interaction. For example, it can 

indicate the frequency of this interaction, how many times a customer purchased a 

product. However, this can be very useful. For example, if a user has purchased a product 

many times, we have a strong indication that this user likes the specific item. 

• The evaluation metrics of implicit-feedback recommender systems has also its 

implications. In explicit feedback cases, a clear metric such as the mean squared error can 

easily measure the success of the algorithm. Using implicit feedback datasets brings other 

aspects into consideration though. For example, we should address the issue of out of 

stock products, or the returns of a product. 

 

4.1 Preliminaries 
 

We are considering a set of users 𝑿, which consists of user vectors 𝒙𝟏, … , 𝒙𝒖, where every vector 

characterizes the user’s preferences. In other words, each vector holds the weights, which define 

the preference of each user for a specific item feature. Thus, the user vectors’ shape can be 

thought of 𝑫 ×𝟏, where 𝑫 is the number of dimensions, i.e. the number of product features. The 

matrix 𝑿, which holds all the users takes the form of: 

[
𝑥1

(1)
⋯ 𝑥1

(𝑑)

⋮ ⋱ ⋮

𝑥𝑢
(1)

⋯ 𝑥𝑢
(𝑑)

] 

where every row is a transposed user vector. 

Similarly, the set of products 𝒀, which consists of item vectors 𝒚𝟏, … , 𝒚𝒊, where every vector 

characterizes the product’s features. Thus, the corresponding matrix 𝒀 is: 

[
𝑦1

(1)
⋯ 𝑦1

(𝑑)

⋮ ⋱ ⋮

𝑦𝑖
(1)

⋯ 𝑦𝑖
(𝑑)

] 

We consider another matrix 𝑹, which holds the user-item interactions. Thus, 𝒓𝒖,𝒊 holds a 

numerical value, that holds the interaction between user 𝒖 and item 𝒊. Below, Figure 4-1 depicts 

a visual representation of our recommendation problem: 
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Figure 4-1 - Visual representation of the recommendation problem 

Each item is characterized by a vector 𝒚𝒊 and similarly each user by a vector 𝒙𝒖. The numerical 

values, in place of an explicit rating, indicate confidence. For example, let us consider the quantity 

of a purchased product. Thus 𝒓𝟏,𝟏 is equal to five, indicating that the first user has purchased the 

first product five times. The zeros in the sparse matrix 𝑹 are indicating no interaction between 

user 𝒖 and item 𝒊. 

 

4.2 The model 
 

First, we need to formalize the notion of confidence, which is captured by the matrix 𝑹. To 

achieve this, we need to introduce a binary variable, that show preference. We call this variable 

𝒑𝒖,𝒊, and it indicates the preference of user 𝒖 for the item 𝒊. Formally we write:  

𝒑𝒖,𝒊 =  {
𝟏 𝒓𝒖,𝒊 > 𝟎

𝟎 𝒓𝒖,𝒊 = 𝟎
 

Thus, if the user 𝒖 has interacted with the item 𝒊, we assume that the user has shown a 

preference for this specific item. On the other hand, if the user has not yet interacted with this 

item, we have no indication (𝒑𝒖,𝒊 = 𝟎). 

However, we should capture the notion of how confident we are, for every user-item interaction. 

Somehow, we should associate low levels of preference with low confidence and work from the 

bottom up. This does not mean that low levels of confidence indicate dislike. We are just trying 

to capture the various levels of uncertainty, which exist in absence of data. Finally, the main 

notion is that as the numerical value of 𝒓𝒖,𝒊 raises, the levels of confidence become stronger. 

Formally, we introduce a set of variables, 𝒄𝒖,𝒊, that capture the level of confidence for the 

interaction 𝒓𝒖,𝒊. A simple heuristic function that could take this role could be: 

𝒄𝒖,𝒊 = 𝟏 + 𝜶𝒓𝒖,𝒊 
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where 𝜶 is a constant that controls the increase rate of the confidence.  

Now, we have a minim confidence for every interaction, even if there is no interaction at all. In 

this case, the confidence measure takes its lower value, and it is equal to one. 

The goal is to find the vectors 𝒙𝒖 and 𝒚𝒊, in ℝ𝒇, for every user and item, where 𝒇 is the number 

of item features and, consequently, user weights. Finally, we should have: 

𝒑𝒖,𝒊 = 𝒙𝒖
𝑻𝒚𝒊 

The vectors 𝒙𝒖 and 𝒚𝒊 are called user-factors and item-factors respectively. Thus, the technique 

we are using is similar to the matrix factorization techniques, used in latent factor models. There 

are a couple of differences though: 

• We need to introduce the notion of confidence in our model 

• We need to take into consideration every data point in the dataset not only the known 

values 

Thus, the final cost function of our model is shown below: 

𝐦𝐢𝐧
𝒙∗,𝒚∗

∑ 𝒄𝒖,𝒊(𝒓𝒖,𝒊 −  𝒙𝒖
𝑻𝒚𝒊)

𝟐
+ 𝝀 (||𝒙𝒖||

𝟐
+ ||𝒚𝒊||

𝟐
)

𝒓𝒖,𝒊 𝒊𝒔 𝒌𝒏𝒐𝒘𝒏

 

where 𝝀 (||𝒙𝒖||
𝟐

+ ||𝒚𝒊||
𝟐

) is performing the necessary regularization and 𝝀 is the regularization 

parameter. 

Solving for 𝒙𝒖 and 𝒚𝒊, as we would in the case of a linear model such as linear regression, we have 

the two equations that calculate the user-factors and item-factors: 

𝒙𝒖 = (𝒀𝑻𝑪𝒖𝒀 + 𝝀𝑰)−𝟏𝒀𝑻𝑪𝒖𝒑(𝒖) 

𝒚𝒊 = (𝑿𝑻𝑪𝒊𝑿 + 𝝀𝑰)−𝟏𝑿𝑻𝑪𝒊𝒑(𝒊) 

 

4.3 Mathematical process 

 
The cost function contains 𝒎 × 𝒏 terms, where 𝒎 is the number of users and 𝒏 the number of 

items in this case. This could easily reach numbers that are in millions or even billions in many 

real-world datasets. Thus, the standard techniques of stochastic gradient descent used for 

explicit dataset system optimization, cannot be applied light-heartedly.  

In this case, we will use the alternating least squares optimization process, where we alternate 

between user and item factors, keeping one fixed at any point. 
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First, for each user 𝒖 we define a diagonal 𝒏 × 𝒏 matrix 𝑪𝒖, where 𝑪(𝒊𝒊)
𝒖 = 𝒄𝒖,𝒊. Also, we construct 

the vector 𝒑(𝒖) ∈ 𝑹𝒏, which holds every preference of user 𝒖, i.e. the 𝒑𝒖,𝒊 values. By 

differentiating the cost function, with respect to 𝒙𝒖, we arrive at the statement we saw before: 

𝒙𝒖 = (𝒀𝑻𝑪𝒖𝒀 + 𝝀𝑰)−𝟏𝒀𝑻𝑪𝒖𝒑(𝒖) 

Using the same process and differentiating with respect to 𝒚𝒊, we get the value of 𝒚𝒊: 

𝒚𝒊 = (𝑿𝑻𝑪𝒊𝑿 + 𝝀𝑰)−𝟏𝑿𝑻𝑪𝒊𝒑(𝒊) 
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Chapter Five 
 

 

 

5 Experimental Study 
 

5.1 Data description 
 

This analysis is based on retail data, of a physical store. The dataset consists of 4000 unique 

products, 4500 unique customers and 550000 transactions. All data was collected with user 

consent and in agreement with relevant privacy policies. Moreover, the dataset is fully 

anonymized and no personal information was collected in connection with this research. 

The training data consists of users that are denoted by 𝒖 and items (products), that are denoted 

by 𝒊. The 𝒓𝒖𝒊 matrix, that captures the interaction between the user 𝒖 and the item 𝒊, represents 

how many times a user interacted (in this specific case bought) with an item, times the catalog 

price of that item: 

𝒓𝒖𝒊 = 𝒒𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗ 𝒖𝒏𝒊𝒕 𝒑𝒓𝒊𝒄𝒆 

Thus, the 𝒓𝒖𝒊 is represented by a real value. A zero 𝒓𝒖𝒊 value indicates no interaction between a 

specific user and a specific item. 

Similarly, a test dataset is constructed. In this dataset, though, the values of 𝒓𝒖𝒊 are either one or 

zero, capturing what is known as the ground truth; a user has either interacted with an item or 

not. 

In the training dataset, a small proportion of interactions has been masked. That means that the 

real value has been replaced by zero. This is the prominent way to test the algorithms 

performance in the end. 

 

5.2 Evaluation 
 

5.2.1 Receiver Operating Characteristic 

 

To evaluate the algorithm, we use the Receiver Operating Characteristic Curve (ROC Curve) and 

the Area Under its Curve (AUC). This is a commonly used way to visualize and evaluate the 
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performance of a binary classifier, i.e. a classifier that has two possible output classes. In our 

study, those classes are denoting the interaction-or lack thereof, between a user and an item.  

 

Figure 5-1 - ROC Curve 

Consider the example of Figure 5-1. The red curve, denotes a positive outcome, i.e. the user 

interacted with an item, while the blue one denotes the opposite. To evaluate the algorithm, we 

want to judge how well out model is doing, by comparing the model’s predictions to the true 

user-item interaction statuses. 

The blue and red regions are visualizing the corresponding probability distributions of the 

predicted values. Thus, the x-axis of Figure 5-1 represents the predicted probabilities, while the 

y-axis represents a count of observations, much like a histogram. Setting the threshold at 0.5, we 

classify everything that has a probability greater or equal to 0.5 to have a positive interaction and 

everything below 0.5 the opposite.  
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With that threshold, and assuming that red and blue regions accurately depicting the predictions 

of our classifier, the accuracy of the model would be above 90%. Figure 5-2 depicts a classifier 

that has a significantly lower performance, no matter where we would set the threshold. 

 

Figure 5-2 - Low-performance classifier 

Figure 5-1 and Figure 5-2 also depict the ROC curve on the upper left corner. This is a plot of the 

True Positive Rate (TPR), on the y-axis, versus the False Positive Rate (FPR), on the x-axis, for 

every possible classification threshold. As a reminder, the TPR and FPR are defined as: 

𝑻𝑷𝑹 =  
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑨𝒍𝒍 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
 

𝑭𝑷𝑹 =  
𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑨𝒍𝒍 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 

Both TPR and FPR rate from zero to one. 
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Finally, the area under the ROC curve, of a classifier that performs exceptionally well, is close to 

one. On the other hand, when we have an AUC close to 0.5, the classifier does no better job than 

random guessing. 

 

5.2.2 Popularity metric 

 

As a baseline, we constructed a recommender system based on popularity. In other words, we 

take the most popular items in the store, we exclude the ones that a customer might have already 

bought, sort them and finally recommend those items. Beating popularity is difficult task for any 

algorithm that tries to make personalized recommendations. The test set remains the same as 

before, as well as the evaluation method, described in the previous subchapter. 

 

5.3 Proposed approach 

 
The approach that was followed during this analysis is described on chapter four. There are some 

slight variations concerning the confidence matrix 𝒄𝒖𝒊. 

In chapter four we thought of the confidence matrix as: 

𝒄𝒖𝒊 = 𝟏 + 𝜶𝒓𝒖𝒊 

Due to high variance on the metric we used in place of implicit rating (quantity * unit price), the 

confidence matrix took the shape of: 

𝒄𝒖𝒊 = 𝟏 + 𝐥𝐨𝐠 (𝟏 +  
𝒓𝒖𝒊

𝜺
) 

For this experiment, we found that the values of 𝜶 = 𝟏𝟓 and 𝜺 =  𝟏𝟎−𝟐 work best. 

 

5.4 Results 
 

We compared the model to popularity metric, as we mentioned before, and evaluated it using 

the Receiver Operating Characteristic Curve (ROC Curve). 

Figure 5-3 depicts the score of the algorithm (ALS) versus the recommender system based on 

popularity: 
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Figure 5-3 - Model Vs Popularity Score 

We can see that our model (Alternating Least Squares – ALS) performs better than the popularity 

recommender system. Moreover, our model offers personalized recommendations instead of 

recommending just the most popular items.  

Furthermore, using an algorithm like ALS we can uncover user preferences and item features, in 

a vector format. These discoveries can be used in other scenarios, like reverse top-k queries [31].  
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Chapter Six 
 

 

 

6 Summary and Future Research 
 

In this work, it was presented a study of collaborative filtering algorithm using implicit feedback 

datasets. We studied the broad subject of machine learning and laid the foundations of learning 

theory, and learning feasibility on chapter two.  

Next, we distinguished a subset of machine learning, that includes recommender systems. We 

presented the notable previous work done on the subject and separated the case of implicit vs 

explicit feedback datasets. 

We, then, proceed to propose a model for recommendations, using collaborative filtering for 

implicit feedback datasets, and, in particular, we studied the case of retail.  

Finally, a corresponding experiment, its results and evaluation were presented on chapter five of 

this dissertation. 

 

6.1 Summary 
 

When talking about user feedback, it is necessary to distinguish the feedback that we take 

directly from the users, to the one that we ourselves extract from the users’ behavior. Thus, we 

have the explicit feedback datasets and the implicit feedback datasets.  

The first kind of feedback, explicit feedback, indicates preference. The second one indicates 

confidence. In other words, when a user directly shows an interest or dislike towards an item, 

then we get explicit feedback, which contains both positive and negative feedback. On the other 

hand, implicit feedback derives from our observations on users’ behavior. This sets us with a 

confidence level about whether a user likes an item. Implicit feedback does not directly contain 

negative feedback. 

In our model, we applied a latent factor algorithm, and expand it to use an implicit feedback 

dataset, considering the confidence notion. The algorithm should take every user-item 

interaction as input, including the situation where no user-item interaction has been recorder. In 

this case, the cell in the user-item interaction matrix takes the value zero. This is crucial for our 
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model because if we skip those values, our model will be heavily biased towards a positive 

preference, ignoring any negative feedback that is most likely to be discovered wherever no 

interaction has been occurred. In such a case, the algorithm would not represent correctly the 

user profile. 

 

6.2 Future research 
 

Next steps include ways to improve the accuracy and performance of the algorithm. When we 

are talking about accuracy, there are a few elements of the algorithm that will be revisited. The 

confidence matrix function is one of them. Another part of that process is the evaluation and 

analysis of the zero values in the user-item interaction matrix. Since those values form the 

majority of that matrix, we need to analyze and reevaluate their properties. One simple example 

is how to treat those zeros when an item is out of stock. 

A major problem of collaborative filtering algorithms is that of high sparsity. When the user-item 

interaction matrix consists mainly of zeros, then the sparsity is high and the algorithms yields 

poor results. Thus, the next steps will try to alleviate this problem, using techniques such as 

associative retrieval techniques. 

On the side of the performance, this algorithm will be transformed in order to be able to work in 

parallel and scale linearly. Moreover, there will be a study to make this algorithm work iteratively, 

and be able to learn using only some delta differences that would occur, instead of going through 

the whole dataset from the beginning.    
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