

University of Piraeus
Department of Digital Systems

Post Graduate Studies

Master Thesis

Computer Laboratory Setup for the Assessment of State-of-the-Art

Penetration Testing Tools

George Diathesopoulos MTE14003

Supervised by Christoforos Dadoyan

Piraeus 2017

Abstract

The purpose of this thesis is to provide an overview of the most state-of-the-art

penetration testing tools used for post-exploitation purposes and assess their

efficiency against different Windows operating systems. We have created a lab

configured according to modern security standards and best practices in order to

examine specific test cases that simulate real attack scenarios. We evaluate the

efficiency of these tools against Windows defensive mechanisms and other

commercial antivirus software, present results and compare them.

1

Table of Contents
1. Introduction ... 3

1.1 Motivation ... 3

1.2 Objective ... 4

1.3 Thesis Organization ... 4

2. Background and Literature .. 6

2.1 Penetration Testing .. 6

2.1.1 Types of Penetration Testing .. 6

2.1.2 Penetration Testing Methodology .. 8

2.1.3 Post-Exploitation ... 9

2.2 Windows Security ... 9

2.3 Security in Windows 10 .. 12

2.3.1 Virtualization-based-security .. 12

2.3.2 Authentication and Authorization .. 13

2.3.3 Antimalware Scan Interface AMSI .. 14

2.4 Active Directory .. 15

2.5 Security in Active Directory .. 17

3. Computer Laboratory .. 20

3.1 Setup and Configuration .. 20

3.2 Components ... 21

4. Tools for Post-Exploitation ... 25

4.1 PowerShell for Penetration Testing ... 25

4.2 PowerShell Empire ... 25

4.3 Nishang ... 28

5. Testing Phase & Results ... 31

5.1 Penetration Testing with Empire .. 31

5.1.1 Creating Payload and Gaining Access ... 31

5.1.2 Post-Exploitation ... 33

5.2 Penetration Testing with Nishang ... 36

5.3 Results ... 40

6. Conclusions & Future Work ... 43

Abbreviations ... 44

2

References ... 45

3

Chapter 1

1. Introduction
“The scariest moment is always just before you start.”

Stephen King, On Writing: A Memoir of the Craft

1.1 Motivation

Companies and organizations today face increasing risks due to growing complexity in

technologies and communications, combined with shrinking investments in

information protection. However, research has shown that involving information

security early in business initiatives, dramatically reduces the risks and tangibly

enhances the benefits of strategic changes. The importance of information security is

therefore high, as companies and organizations rely to a great extent on the security

of their business applications and network infrastructure.

As a result, they need to assess, analyze and mitigate their risk. The most common

approaches to achieve that and in order to improve the overall security posture,

companies must perform regular vulnerability assessments and penetration testing.

These two terms are often used interchangeably; however, they are actually quite

different. Vulnerability assessments involve automated scanning tools to identify a list

of potential vulnerabilities. These scans often result in a massive number of issues per

system and a significant number of false positives. While vulnerability scanning can be

useful when performed on a regular and continuous basis to monitor compliance with

security and configuration standards, it typically does not provide an organization with

actionable and practical remediation steps to improve its overall security posture.

In contrast, penetration testing includes manual effort. It attempts to break into a

target system utilizing an assortment of tools and techniques similar to those of real

attackers. It includes extensive discovery activities as well as validation and

exploitation of identified exposures and vulnerabilities.

However, since there is already a wide variety of available tools and new ones are

continuously developed, penetration testers encounter difficulties in choosing the

most efficient and suitable for their activities. As a result, they should be able to test

currently available and new tools on a regular basis in order to develop new attacks

or techniques and for this reason, it is essential to establish an environment that

allows the testing of such tools. Ideally, that environment should meet the

requirements and specifications of a real business network in order to be able to

simulate a real attack scenario from all aspects.

4

Additionally, many companies and organizations are not willing to welcome change in

general and that also applies in IT infrastructures. Consequently, they result in using

outdated technologies, software versions and operating systems which are vulnerable

to common exploits and introduce new risk. For this reason, it is essential to assess

the defensive mechanisms and capabilities of different operating systems used in

modern networks so as to identify the importance of patching and upgrading of

systems and technologies.

1.2 Objective

The study throughout this thesis and all conclusions will be based on two main

objectives as shown below:

 Setup a testing environment, according to best practices and modern security

standards

 Investigate and test penetration testing tools used especially for post

exploitation, compare them and assess their efficiency against different

Windows environments

1.3 Thesis Organization

This thesis follows the outline as described below:

Chapter 1 – This chapter. We give an introduction on the subject and an insight of

what follows in this Thesis.

Chapter 2 – We present some basic terms regarding penetration testing and

defensive/ security mechanisms in Windows.

Chapter 3 – We present the setup of our laboratory its components and the

relationships between them

Chapter 4 – Here we discuss about the tools that we used during our testing

procedures presenting their capabilities

Chapter 5 – This chapter describes the testing procedures we performed in detail and

evaluate their results

Chapter 6 – This chapter refers to the conclusions from the tests we performed and

the future work that could be done

5

6

Chapter 2

2. Background and Literature

2.1 Penetration Testing

“Penetration testing is the process of attempting to gain access to resources without

knowledge of usernames, passwords and other normal means of access” (1) . It is

performed to identify vulnerabilities and exploit them by circumventing or defeating

the security measures of system components. It is a manual process that may include

the use of vulnerability scanning or other automated tools in order to produce a

comprehensive report that usually includes:

 Executive summary, emphasizing in business impact of any issues identified

during testing

 Summary of technical findings

 Detailed technical report of findings emphasizing in the risk, business impact

and threats

 Detailed evidence demonstrating any unauthorized access achieved during

testing

 Detailed recommendations prioritized by risk level

 Estimation of resources required to apply recommendations

The above mentioned may differ depending on the scope of penetration testing and

the agreement between the tester and system owner. Furthermore, it should be

noted that a penetration tester must always have the permission from the owner of

the computing resources under test.

2.1.1 Types of Penetration Testing

There are different types of penetration testing; however, it depends on what the

entity under test needs to test, whether the scope is to simulate an attack from an

external source or by an insider. There are two widely accepted approaches which are

White-box and Black-box. However, we are going to split up these main approaches

into six in order to explain more precisely all the possible types of penetration testing.

The six types of tests described below are different depending on the amount of

information that the penetration tester has on the target and the knowledge

possessed by the target from the penetration tester.

7

Figure 1: Types of Penetration Test

 Blind: The penetration tester undertakes tests on the target with no prior

knowledge of the security system, its components or its flows. The target is

prepared to be tested while knowing in advance the details of the test.

 Double Blind: The penetration tester undertakes tests on the target with no

prior knowledge of the security system, its components or its flows. The target

is not notified in advance on the scope of this test. Channels and vectors used

for testing are also not announced.

 Grey Box: The penetration tester undertakes tests on target with limited

knowledge of the security system, its components and flows. The target is

prepared to be tested while knowing in advance the details of the test.

 Double Grey Box: The penetration tester undertakes tests on target with

limited knowledge of the security system, its components and has complete

visibility of flows. The target is prepared to be tested with limited details of the

test.

 Tandem: The penetration tester and the target are prepared to test and know

in advance all the details of the test.

 Reversal: The penetration tester undertakes a test of the target with full

knowledge of all its processes and its operational security system. On the other

hand, the target has no information on the nature of the tests or the date of

their launches and how they are realized.

8

2.1.2 Penetration Testing Methodology

According to NIST, penetration testing consists of four main phases (2):

 Planning phase. Includes management approval, identification of rules and

goals definition

 Discovery phase. Includes information gathering about the target and

vulnerability scanning

 Attack phase. Includes additional discovery activities and exploitation

 Reporting delivery as described in section 2.1

The following image displays the aforementioned:

Figure 2: Penetration Testing Methodology by NIST (2)

Below, we analyze how these four steps apply on an infrastructure penetration

testing:

Infrastructure penetration testing

An infrastructure penetration testing can be divided into two distinct phases:

Phase 1: Infrastructure scan: This phase of the methodology consists of techniques

aimed at exploiting weaknesses in IP network services. EY has developed a

sophisticated and effective program to test the security surrounding network-

connected systems. This includes controlled penetration tests that are used to

attempt to gain unauthorised access to systems on the internal network. The following

aspects of the methodology were used:

 Host identification

 Service scan

 Information retrieval

 Proprietary footprinting tools

 Vulnerability scan

Although automated scanning tools provide a solid foundation for vulnerability

detection, they have several limitations. Firstly, many of the tools generate

inconclusive reports due to a high number of false positives, false negatives and the

inherent ambiguity in automated scanning techniques. Additionally, due to the

relatively static nature of many scanners, these products may not test for the most

9

recently identified vulnerabilities and are unable to perform the actions that an

experienced penetration tester would do. To overcome these issues, it is essential to

evaluate the outputs of automated tools and, where possible manually verify the

existence of vulnerabilities to improve the quality of testing and the accuracy of

reporting.

The primary tools commonly used in this phase of the assessment are Nmap, Nessus,

netcat and Wireshark.

Phase 2: Exploitation of hosts: During this phase, it is attempted to exploit

vulnerabilities in the target hosts. Both proprietary and widely available exploits are

used to attempt to circumvent selected systems’ security. This specific exploitation

approach includes the following:

 Vulnerability mapping

 Configuration attacks

 Local attacks

 ‘Next step’ attacks

The primary tools commonly used in this phase of the assessment were Nmap, Nessus,

Metasploit and Cain.

2.1.3 Post-Exploitation

During the post-exploitation phase of penetration testing, it is important to assess the

value of the compromised machine and find ways to maintain control for later use and

further compromise of the network. Penetration testers attempt to identify sensitive

information, communication channels and connections with other network devices

that may be useful in further access to the network. A number of possible actions

during post-exploitation is shown below:

 Privilege escalation - The attempt to get elevated access to system resources

that are normally protected

 Maintaining access - Create a backdoor so that to access system resources

anytime

 Data harvesting - Gathering of useful information such as usernames and

passwords etc.

 Get password hashes - Acquire password hashes in order to perform more

sophisticated attacks such as “Pass The Hash” and get access to another

system

 Pivoting - The movement from one system to another in the same network

2.2 Windows Security

Microsoft Windows operating system provides a number of security mechanisms to

prevent several attacks.

10

Canary

Stack canaries work by modifying every function's prologue and epilogue regions to

place and check a value on the stack respectively. As such, if a stack buffer is

overwritten during a memory copy operation, the error is noticed before execution

returns from the copy function. When this happens, an exception is raised, which is

passed back up the exception handler hierarchy until it finally hits the OS's default

exception handler. If you can overwrite an existing exception handler structure in the

stack, you can make it point to your own code. This is a Structured Exception Handling

(SEH) exploit, and it allows you to completely skip the canary check.

DEP (Data Execution Prevention) / NX

DEP and NX essentially mark important structures in memory as non-executable, and

force hardware-level exceptions if you try to execute those memory regions. This

makes normal stack buffer overflows immediately run an arbitrary shellcode

impossible since the stack is non-executable. Bypassing DEP and NX requires an attack

technique called Return-Oriented Programming.

ROP essentially involves finding existing snippets of code from the program (called

gadgets) and jumping to them, such that you produce a desired outcome. Since the

code is part of legitimate executable memory, DEP and NX cannot prevent the attack.

These gadgets are chained together via the stack, which contains the exploit payload.

Each entry in the stack corresponds to the address of the next ROP gadget. Each

gadget is in the form of instr1; instr2; instr3; ... instrN; ret, so that the ret will jump to

the next address on the stack after executing the instructions, thus chaining the

gadgets together. Often additional values have to be placed on the stack in order to

successfully complete a chain, due to instructions that would otherwise get in the way.

An attacker must chain these ROPs together in order to call a memory protection

function such as VirtualProtect, which is then used to make the stack executable, so

an arbitrary shellcode can run, via a “jmp esp” or equivalent gadget. Tools like

mona.py and (3) can and be used to generate these ROP gadget chains, or find ROP

gadgets in general.

ASLR (Address Space Layout Randomization)

In older versions of Windows, core processes tended to be loaded into predictable

memory locations upon system startup. Some exploits work by targeting memory

locations known to be associated with particular processes. ASLR randomizes the

memory locations used by system files and other programs, making it much harder for

an attacker to correctly guess the location of a given process. The combination of ASLR

and DEP creates a fairly formidable barrier for attackers to overcome in order to

achieve reliable code execution when exploiting vulnerabilities.

11

ASLR was introduced in Windows Vista and has been included in all subsequent

releases of Windows. As with DEP, ASLR is only enabled by default for core operating

system binaries and applications that are explicitly configured to use it via a new linker

switch.

Structured Exception Handling

Structured Exception Handling (SEH) is a uniform system for dispatching and handling

exceptions that occur during the normal course of a program's execution. This system

is similar in spirit to the way that UNIX derivatives use signals to dispatch and handle

exceptions, such as through SIGPIPE and SIGSEGV. SEH, however, is a more

generalized and powerful system for accomplishing this task, in the author's opinion.

In terms of implementation, structured exception handling works by defining a

uniform way of handling all exceptions that occur during the normal course of process

execution. In this context, an exception is defined as an event that occurs during

execution that necessitates some form of extended handling. There are two primary

types of exceptions. The first type, known as a hardware exception, is used to

categorize exceptions that originate from hardware. For example, when a program

makes reference to an invalid memory address, the processor will raise an exception

through an interrupt that gives the operating system an opportunity to handle the

error. Other examples of hardware exceptions include illegal instructions, alignment

faults, and other architecture-specific issues. The second type of exception is known

as a software exception. A software exception, as one might expect, originates from

software rather than from the hardware. For example, in the event that a process

attempts to close an invalid handle, the operating system may generate an exception.

One of the reasons that the word structured is included in structured exception

handling is because of the fact that it is used to dispatch both software and hardware

exceptions. This generalization allows applications to handle all types of exceptions

using a common system, thus allowing for greater application flexibility with regards

to error handling.

The most important detail of SEH is the mechanism through which applications can

dynamically register handlers to be called when various types of exceptions occur. The

act of registering an exception handler is most easily described as inserting a function

pointer into a chain of function pointers that are called whenever an exception occurs.

Each exception handler in the chain is given the opportunity to either handle the

exception or pass it on to the next exception handler.

12

2.3 Security in Windows 10

As with every release of a Microsoft operating system, Microsoft 10 includes new

security features and mechanisms that are implemented to cover gaps and

inconsistencies in the overall security environment of the operating system. Most of

these new features are based on virtualization technologies provided by recent

processors (Intel i5 and later) and are presented by Microsoft as “Virtualization-based-

security”.

As passwords management adds considerable overhead to many organizations,

Microsoft has added authentication mechanisms based on simplified Multi-factor

Authentication (MFA) and the use of biometrics. Microsoft has called the new

authentication/ Single Sign On (SSO) mechanism “Microsoft Passport” and the

biometric authentication mechanism is performed by “Windows Hello”.

Windows 10 Enterprise also includes a new edition of Microsoft browser, named Edge,

which also includes new security features that aim to prevent standard browser

exploitation and protect its users.

2.3.1 Virtualization-based-security

Virtualization technologies like Microsoft Hyper-V have proven extremely effective in

isolating and protecting virtual machines (VMs) in the data center. Now, with those

virtualization capabilities becoming more pervasive, there is an incredible opportunity

for new Windows client security scenarios. Windows 10 can use virtualization

technology to isolate core operating system services in a segregated, virtualized

environment, similar to a VM. This additional level of protection, called virtualization-

based security, ensures that no one can manipulate those services, even if the kernel

of the host operating system is compromised. Windows are able to take advantage of

processors equipped with second-level address translation (SLAT) technology and

virtualization extensions to create a secure execution environment for sensitive

Windows functions and data:

 Hypervisor Code Integrity (HVCI). The HVCI service in Windows 10 determines

if code execution in kernel mode is securely designed and trustworthy. It offers

Zero-Day and vulnerability exploit protection capabilities by ensuring that all

software running in kernel mode, including drivers, securely allocate memory

and operate as they are intended. In Windows 10, kernel mode code integrity

is configurable, which allows organizations to scope pre-boot code execution

to their desired configuration.

 Local Security Authority (LSA). The LSA service in Windows manages

authentication operations, including NT LAN Manager (NTLM) and Kerberos

mechanisms. In Windows 10, the Credential Guard feature isolates a portion

of this service and helps mitigate the pass-the-hash and pass-the-ticket

13

techniques by protecting domain credentials. In addition to logon credentials,

this protection is extended to credentials stored within Credential Manager.

For more information about Credential Guard, see the Credential Guard

section.

The following image displays an architectural layer overview of Virtualization-based-

security (VBS). It should also be noted that Virtualization-based-security offers two

Virtual Trust Levels (VTLs):

0. Normal World (VLT 0)

1. Secure World (VLT 1)

Figure 3: VBS Architectural Layer Overview

Applications running in VTL 1 are called Trustlets. Obviously, if virtual machine file

systems are stored on the hypervisor’s file system and loaded by a compromised

kernel, this method is redundant. As such, the implementation of VBS of Windows 10

Enterprise relies on Trusted Platform Module (TPM), Secure Boot and code signing

certificates in order to validate code that should be loaded in privileged virtual

machines. At boot, a small footprint hypervisor signed by Microsoft is run, the role of

which is to load the virtual machines running Trustlets at the required privilege levels.

2.3.2 Authentication and Authorization

Windows 10 introduced “Windows Hello”, a new technology for biometric-based

authentication. The set of methods currently include the following:

 Face recognition

 Iris scan

 Fingerprint scan

14

Face recognition is performed with a certified camera. The iris scan is specific to

Windows 10 Mobile devices and as with face recognition, the method for iris scanning

is based on both a high resolution camera and an infrared camera. All methods require

the user to enter a PIN code to unlock the device first. This PIN complexity can be

configured by a group policy and contains not only numeric values but alphanumeric

and special characters as well. Once the PIN is entered, the user can enroll the device

using one of the supported methods. Secrets for Windows Hello are stored on the host

TPM chip and are not transmitted outside of the device.

Additionally, Windows 10 introduced “Microsoft Passport”. Passport is the main

authentication mechanism for Windows 10. It is based on a multi-factor

authentication principle and consists of an enrolled device and either Windows Hello

or a PIN. As the secrets unlocked by “Windows Hello” or the PIN are stored in the

device TPM chip, the device itself is considered as the other half of the two-factor

authentication system

2.3.3 Antimalware Scan Interface AMSI

The Antimalware Scan Interface (AMSI) is a generic interface standard that allows

applications and services to integrate with any antimalware product present on a

machine. It provides enhanced malware protection for users and their data,

applications, and workloads.

AMSI is designed to allow for the most common malware scanning and protection

techniques provided by today's antimalware products that can be integrated into

applications. It supports a calling structure allowing for file and memory or stream

scanning, content source URL/IP reputation checks, and other techniques.

AMSI also supports the notion of a session so that antimalware vendors can correlate

different scan requests. For example, the different fragments of a malicious payload

can be associated to reach a more informed decision, which would be much harder to

reach just by looking at those fragments in isolation.

Figure 4: AMSI Architecture [7]

15

2.4 Active Directory

Active Directory has been developed by Microsoft and it is used to manage Windows

domain networks. It is actually how things are handled in most production

environments except that there are several domain controllers in order to avoid

having a single point of failure for all services. A server running Active Directory

Domain Services (AD DS) is called Domain Controller. It provides a set of services

including:

 DNS (Domain Name Server) - DNS records defines what services are available

on the domain and who provides them

 LDAP (Lightweight Directory Services) - This service is responsible for keeping

track of the domain network components

 Kerberos - Kerberos is responsible for handling the Single Sign On (SSO)

throughout the domain and allows a user to provide his credentials to log into

multiple computers within the domain

 SMB - It is used for file sharing throughout the domain as well as to share group

policies.

Active Directory is basically a database. It keeps track of all the user accounts and
passwords in an organization. It allows you to improve your organization’s security
by storing your user accounts and passwords in one protected location.

It is subdivided into one or more domains – a security boundary – and each and
every one of the domains, is hosted by a server computer called a domain
controller (DC). The domain controller is a server computer that responds to security
authentication requests (logging in, checking permissions, etc.) within a Windows
domain.

Security principals are any entity that can be authenticated by the operating system,
such as a user account, a computer account, or a thread or process that runs in the
security context of a user or computer account, or the security groups for these
accounts.
There are two forms of security principals in Active Directory: user accounts and
computer accounts in both each category, represent a physical entity. User accounts
can also be used as dedicated service accounts for some applications. Security
groups are used to collect user accounts, computer accounts, and other groups into
manageable units.
In the Windows Server operating system, there are several built-in accounts and
security groups that are preconfigured with the appropriate rights and permissions
to perform specific tasks. For Active Directory, there are two types of administrative
responsibilities:

 Service administrators: Responsible for maintaining and delivering Active

Directory Domain Services (AD DS), including managing domain controllers and

configuring the AD DS.

https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Windows_domain
https://en.wikipedia.org/wiki/Windows_domain

16

 Data administrators: Responsible for maintaining the data that is stored in

AD DS and on domain member servers and workstations.

About Active Directory groups

Groups are Active Directory objects that can contain users, contacts, computers, and
other groups. In Windows 2000, groups are created in domains, using the Active
Directory Users and Computers tool. You can create groups in the root domain, in any
other domain in the forest, in any organizational unit, or in any Container class object
(such as the default Users container). Like user and computer accounts, groups are
Windows 2000 security principals; they are directory objects to which SIDs are
assigned at creation.

In general, groups are used to collect user accounts, computer accounts, and other
groups into manageable units. Working with groups instead of with individual users
helps simplify network maintenance and administration. There are two types of
groups in Active Directory:

 Distribution groups: Used to create email distribution lists.

 Security groups: Used to assign permissions to shared resources.

Distribution groups

Distribution groups have only one function—to create e-mail distribution lists. You use
distribution groups with e-mail applications (such as Microsoft Exchange) to send e-
mail to the members of the group. As with a security group, you can add a contact to
a distribution group so that the contact receives e-mail sent to the group.
Distribution groups play no role in security (you do not assign permissions to
distribution groups), and you cannot use them to filter Group Policy settings and that
they cannot be listed in discretionary access control lists (DACLs).

Security groups

In the Windows 2000 operating system, security groups are an essential component
of the relationship between users and security. Security groups have two functions:

 To manage user and computer access to shared resources

 To filter Group Policy settings

Assign user rights to security groups in Active Directory

User rights are assigned to a security group to determine what members of that group
can do within the scope of a domain or forest. User rights are automatically assigned
to some security groups when Active Directory is installed to help administrators
define a person’s administrative role in the domain.

17

For example, a user who is added to the Backup Operators group in Active Directory
has the ability to back up and restore files and directories that are located on each
domain controller in the domain. This is possible because, by default, the user
rights Backup files and directories and Restore files and directories are automatically
assigned to the Backup Operators group. Therefore, members of this group inherit the
user rights that are assigned to that group. You can use Group Policy to assign user
rights to security groups to delegate specific tasks. For more information about using
Group Policy, see User Rights Assignment.

Assign permissions to security groups for resources

Permissions are different than user rights. Permissions are assigned to the security
group for the shared resource. Permissions determine who can access the resource
and the level of access, such as Full Control. Some permissions that are set on domain
objects are automatically assigned to allow various levels of access to default security
groups, such as the Account Operators group or the Domain Admins group.
Security groups are listed in DACLs that define permissions on resources and objects.
When assigning permissions for resources (file shares, printers, and so on),
administrators should assign those permissions to a security group rather than to
individual users. The permissions are assigned once to the group, instead of several
times to each individual user. Each account that is added to a group receives the rights
that are assigned to that group in Active Directory, and the user receives the
permissions that are defined for that group.

2.5 Security in Active Directory

Object and Attribute Protection

An access-control list (ACL) protects all objects in Active Directory Domain Services.
ACLs determine who can view the object, what attributes they can read, and what
actions each user can perform on the object. The existence of an object or an attribute
is never revealed to an unauthorized user.
An ACL is a list of access-control entries (ACEs) stored with the object that it protects.
In Windows NT and Windows 2000, an ACL is stored as a binary value, called a security
descriptor. Each ACE contains a security identifier (SID), which identifies the principal
(user or group) to whom the ACE applies, and data about what type of access the ACE
grants or denies.
ACLs for directory objects contain ACEs that apply to the object as a whole and ACEs
that apply to the individual attributes of the object. This allows an administrator to
control not only which users can see an object, but also what properties those users
can view. For example, all users might be granted read access to the email and
telephone number attributes for all other users, but security properties of users might
be denied to all but members of a special security administrators group. Individual
users might be granted write access to personal attributes such as the telephone and
mailing addresses on their own user objects.

https://technet.microsoft.com/en-us/library/dn221963(v=ws.11).aspx

18

Delegation

Delegation is one of the most important security features of Active Directory Domain
Services. Delegation enables a higher administrative authority to grant specific
administrative rights for containers and subtrees to individuals and groups. Domain
administrators, with broad authority over large segments of users, are no longer
required.

An ACE can grant specific administrative rights for the objects in a container to a user
or group. Rights are granted for specific operations on specific object classes using
ACEs in the container's ACL. For example, to enable a user named "user 1" to be an
administrator of the "Corporate Accounting" organizational unit, add ACEs to the ACL
on "Corporate Accounting" as follows:
""user 1";Grant ;Create, Modify, Delete;Object-Class User"user 1";Grant ;Create,
Modify, Delete;Object-Class Group"user 1";Grant ;Write;Object-Class User; Attribute
Password"

Now, user 1 can create new users and groups in Corporate Accounting and set the
passwords on existing users, but user 1 cannot create any other object classes and
cannot affect users in any other containers, unless, of course, user 1 is granted that
access by ACEs on the other containers.

Inheritance

Inheritance allows a given ACE to be propagated from the container where it was
applied to all children of the container. Inheritance can be combined with delegation
to grant administrative rights to a whole subtree of the directory in a single operation.

https://msdn.microsoft.com/en-us/library/ms681910(v=vs.85).aspx#_ds_inheritance

19

20

Chapter 3

3. Computer Laboratory

3.1 Setup and Configuration

As we already mentioned, it is essential for penetration testers to have their own

testing environment in order to explore new tools and test them under different

conditions as well as to develop new attacks and techniques. For this reason, we have

setup an isolated computer laboratory according to modern security standards and

best practices. To simulate a real scenario and meet the requirements of a real

network, we have established a domain controller using Active Directory.

In more detail, we have established a virtual network using Oracle VM VirtualBox

Manager Version 5.1.14 r112924 which hosts the following network components:

 Virtual Host-Only Network

 Windows Server 2012 R2 64-bit

 Windows 7 Ultimate 64-bit

 Windows 10 Professional 64-bit

 pfSense

 Kali Linux, Rolling Edition 64-bit

Figure 5: Architecture Diagram

21

3.2 Components

The Virtual Network

There are three options to use for our virtual network depending on what we are

trying to achieve as described below:

 NAT - The virtualization software creates a new virtual network in which virtual

machines are hosted. The software acts as a router, transmitting traffic

between the virtual network and the real network that the host computer is

associated with.

 Host-Only - The virtualization software creates a new virtual network, but it

does not act as a router. All virtual machines hosted in a host-only network can

communicate among themselves, but their traffic cannot leave the host

device.

 Bridged - The virtualization software puts the virtual machine on the same

network as the host computer and as a result it acts exactly as another

computer on the network.

To satisfy the needs of our virtual network, we used the Host-Only option. The

following image displays the configuration settings that we used.

Figure 6: Host-Only Network

22

From now on, in order to add a virtual machine into this network, we have to change

its network settings so as to be attached to the virtual Host-Only adapter that we just

created.

Windows Server 2012 R2

This is our Domain Controller. We attached its network adapter to the Host-Only

Network we created and assigned a static IP. Then, we installed the ADDS role as we

mentioned before and promoted this server to be Domain Controller. Finally, we

added a new forest and created our root domain named “EXAMPLE.COM”.

Regarding hardware settings, we provisioned this virtual machine with the following

specifications:

 30GB of HDD space

 1GB of RAM

 1 virtual CPU

Windows 7 Ultimate

This is our 1st victim workstation. In order to harden the system and simulate slightly

better a real network’s workstation, we have installed AVG Free Antivirus version

17.2.3419.0. This computer is under the management of the above mentioned domain

controller.

Regarding hardware settings, we provisioned the pfSense virtual machine with the

following specifications:

 25GB of HDD space

 1,4GB of RAM

 1 virtual CPU

Windows 10 Professional

This is our 2nd victim workstation. In order to harden the system and simulate slightly

better a real network’s workstation, we have installed Avast Free Antivirus version

17.2.2288. This computer is under the management of the above mentioned domain

controller.

Regarding hardware settings, we provisioned this virtual machine with the following

specifications:

 32GB of HDD space

 1,4GB of RAM

 2 virtual CPUs

23

pfSense

Since our network is Host-Only, we prevent the domain traffic from crossing over

other networks that we are connected to, however that causes our network to have

no Internet access. To that end, we used pfSense as a firewall that will handle routing

between our Host-Only Network and our host computer’s network. It should be noted

that pfSense virtual machine is built off BSD operating system. For this machine, we

enabled two network adapters, the first set to NAT and the second attached to our

Host-Only Network.

Regarding hardware settings, we provisioned the pfSense virtual machine with the

following specifications:

 5GB of HDD space

 256MB of RAM

 1 virtual CPU

Kali Linux, Rolling Edition

This is our attacking machine. Kali Linux is maintained by Offensive Security and is

considered to be the best distribution for penetration testing as it offers a variety of

tools ranging from information gathering, web application penetration testing to

wireless scanning and social engineering.

For our testing, we will assume that this machine at the same network as the victim

machines so as to focus more on the post-exploitation phase of penetration testing.

Regarding hardware settings, we provisioned our Kali Rolling with the following

specifications:

 10GB of HDD space

 1GB of RAM

 1 virtual CPU

24

25

Chapter 4

4. Tools for Post-Exploitation

4.1 PowerShell for Penetration Testing

Windows PowerShell is built on the .NET Framework. It is an interactive shell and also

a scripting language that is designed specifically for system administration in order to

automate administration of operating systems and processes related to the

applications that run on those operating systems. (4)

However, PowerShell has introduced a considerable risk for the environments using it

as it can be used as a powerful attack platform especially for post-exploitation.

Defensive mechanisms such as AVs, and IDS struggle to deal with PowerShell exploits

due its tight integration with the Windows operating system as it is entirely based on

the .NET framework and offers plenty of legitimate activities.

4.2 PowerShell Empire

Powershell Empire is a post-exploitation agent built on cryptographically secure

communications and a flexible architecture. Empire implements the ability to run

PowerShell agents without needing powershell.exe, rapidly deployable post-

exploitation modules and adaptable communications to evade network detection.

PowerShell Empire consists of four main components; Listeners, Stagers, Agents and

Modules (5).

Listeners

PowerShell Empire listeners are similar to Metasploit handlers. Listeners receive your

PowerShell session that is launched on the target system. This needs to be set up first

as stagers (payload) need to know which listener it should communicate to.

Stagers

Stager is similar to payloads that will be executed on the target system to establish a

connection to an Empire listener. Empire can generate several different types of

stager depending on the needs of the exploit.

Available Stagers:

 Launcher – This stager generates a one-liner stage0 launcher for an Empire

agent. Available options:

o standard Listener and OutFile (not required)

26

o Base64 – if True, generate a base64-encoded (-enc *) version of the

launcher, otherwise generate normal PowerShell code

o UserAgent – User-agent string to use for the staging request. Can be

set to default (uses Empire database default), none (clears any UA), or

other text which is set at the UA.

o Proxy – Proxy to use for request. Can be set to default (uses system

defaults), none (clears any proxy), or custom server.

o ProxyCreds – Proxy credentials ([domain]username:password) to use

for request. Can be set to default (uses system defaults), none (clears

any proxy creds), or custom credentials.

 Launcher_bat – This stager generates a self-deleting .BAT file that executes a

one-liner stage0 launcher for an Empire agent. Available options:

o standard Listener and OutFile (not required)

o Delete – if True, the .BAT file deletes itself after execution.

o UserAgent – User-agent string to use for the staging request. Can be

set to default (uses Empire database default), none (clears any UA), or

other text which is set at the UA.

o Proxy – Proxy to use for request. Can be set to default (uses system

defaults), none (clears any proxy), or custom server.

o ProxyCreds – Proxy credentials ([domain]username:password) to use

for request. Can be set to default (uses system defaults), none (clears

any proxy creds), or custom credentials.

 Launcher_vbs – This stager generates a .VBS file that executes a one-liner

stage0 launcher for an Empire agent. Available options:

o standard Listener and OutFile (not required)

o UserAgent – User-agent string to use for the staging request. Can be

set to default (uses Empire database default), none (clears any UA), or

other text which is set at the UA.

o Proxy – Proxy to use for request. Can be set to default (uses system

defaults), none (clears any proxy), or custom server.

o ProxyCreds – Proxy credentials ([domain]username:password) to use

for request. Can be set to default (uses system defaults), none (clears

any proxy creds), or custom credentials.

 Macro – This stager generates an office macro that launches an Empire stager.

It can be embedded into any office document for the purposes of phishing.

Available options:

o standard Listener and OutFile (not required)

o UserAgent – User-agent string to use for the staging request. Can be

set to default (uses Empire database default), none (clears any UA), or

other text which is set at the UA.

27

o Proxy – Proxy to use for request. Can be set to default (uses system

defaults), none (clears any proxy), or custom server.

o ProxyCreds – Proxy credentials ([domain]username:password) to use

for request. Can be set to default (uses system defaults), none (clears

any proxy creds), or custom credentials.

 PTH-wmis – This stager generates a Bash script that executes that executes a

one-liner stage0 launcher using pth-wmis on a number of target machines.

Available options:

o standard Listener and OutFile (required)

o Target – comma-separated target list

o Username – [domain/]username used to execute the command on

remote targets

o Password – password used to execute the command on remote targets

o UserAgent – User-agent string to use for the staging request. Can be

set to default (uses Empire database default), none (clears any UA), or

other text which is set at the UA.

o Proxy – Proxy to use for request. Can be set to default (uses system

defaults), none (clears any proxy), or custom server.

o ProxyCreds – Proxy credentials ([domain]username:password) to use

for request. Can be set to default (uses system defaults), none (clears

any proxy creds), or custom credentials

 DLL – This stager generates a reflectively-injectable MSF-compliant .DLL that

loads up the .NET runtime into a process and execute a download-cradle to

stage an Empire agent. These .DLLs are the key to running Empire in a process

that’s not powershell.exe. Available options:

o standard Listener and OutFile (required)

o Arch – determines the architecture of the .DLL being generated. Values

can be x86 or x64

 Hop.php – This stager generates a hop.php redirector for a relevant Empire

listener. This module takes a valid existing listener, patches in the necessary

resource/header information into the base ./data/misc/hop.php file, and spits

everything out to a file. Available options:

o standard Listener and OutFile (required)

 Ducky – This stager generates a Rubber Ducky script that launches an Empire

stager. Available options:

o standard Listener and OutFile (required)

28

Agents

Agents allow interaction with the target system via which it is possible to gather

information and run shell commands.

Modules

Additionally, PowerShell Empire has the following categories for modules:

 Code Execution - Ways to run arbitrary code

 Collection - Post exploitation data collection

 Credentials - Collect and use creds

 Exfiltration - Identify egress channels

 Lateral Movement - Move around the network

 Management - Host management and auxilary

 Persistence - Survive reboots

 Privesc - Privilege escalation capabilities

 Recon - Test further entry points (HTTP Basic Auth etc)

 Situational Awareness - Network awareness

 Trollsploit - For the lulz

4.3 Nishang

Nishang is an open source framework developed by Nikhil Mittal (6). It contains a

collection of scripts and payloads which enables usage of PowerShell for offensive

security and emphasizing on post-exploitation during penetration tests. It has several

scripts categorized into various categories such as information gathering, privilege

escalation, scanning etc.

It should be noted that in order to use Nishang, it is necessary to have a remote shell

on the target system. Metasploit framework offers a few payloads to get an interactive

PowerShell console on a victim’s machine but Meterpreter seems to malfunction

when the command “powershell.exe” is executed. Additionally, Nishang scripts are

detected as malicious by many anti-viruses and as such, they are meant to be executed

in memory using PowerShell.

Nishang framework includes the following script categories:

 ActiveDirectory

 Antak-WebShell

 Backdoors

 Bypass

 Client

 Escalation

 Execution

29

 Gather

 MiTM

 Misc

 Pivot

 Prasadhak

 Scan

 Shells

 Utility

 powerpreter

Each of the abovementioned categories contain a number of different scripts covering

a wide variety of actions that a penetration tester would perform during post-

exploitation phase.

30

31

Chapter 5

5. Testing Phase & Results

5.1 Penetration Testing with Empire

In this section, we are going to explore the post-exploitation capabilities of PowerShell

Empire in practice. We begin from the creation of a malicious file (Microsoft office

documents, .exe, .htm) then we will to establish an interactive session with the victim

and finally, we will continue with post-exploitation.

5.1.1 Creating Payload and Gaining Access

Powershell Empire provides a very clear set of commands to create payloads. As we

already mentioned, it is possible to create files of many different types for all

purposes; Microsoft Office documents infected with payloads, .exe, .htm etc. Before

creating our payload, it is necessary to create a listener in order to receive PowerShell

sessions.

Figure 7: Creating a listener

Microsoft Office Document

PowerShell Empire uses macros injected into Microsoft Office documents that when

enabled, they trigger a reverse shell that gives access to the attacker. The following

32

image displays the commands we used to create a file containing macro commands

for Microsoft documents.

Figure 8: Stager Creation

As a next step, we copy and paste the macro commands in a word document as

displayed in the image below.

Figure 9: Macros embedded in a Word Microsoft Office document

33

Be opening the word document above and by enabling macros a session is established

with the attacker. It should be noted that neither windows native security mechanisms

nor AVG antivirus have detected the established session.

Figure 10: Session is established

5.1.2 Post-Exploitation

Having established a session is invaluable as it is necessary in order to proceed with

the post-exploitation phase. The first thing that it should be done is to check if our

sessions is established under a privileged user. In most cases, in real environments

that will not be the case and as such it is required to elevate privileges. For this reason

empire has implemented a number of scripts to elevate privileges. The following

image displays the “privesc/powerup/allchecks” module that we run to identify

possible ways to elevate our privileges.

Figure 11: Identifying ways to elevate privileges

That script identified that it is possible to elevate our privileges by running BypassUAC.

However, by running that script, AVG was able to identify the privilege escalation

attempts and blocked the procedure.

34

Figure 10: AVG detected privilege escalation attempt

However, BypassUAC was successful when we tried against a Windows 7 machine

without AVG installed. A new agent has spawned and the “*” character near

Username indicates we have high privileges.

Figure 11: High privileged session

As a next step we run Mimikatz that extracts credentials in plaintext from memory,

password hashes from local SAM/NTDS.dit databases etc. The following image

displays that we were able to capture the password of the victim2 in user in plaintext.

35

Figure 12: Password dump for user victim2

Maintaining access is crucial since unplanned reboots or user logout may occur

unexpectedly and in most cases it is required to keep control of a machine for

indefinite time. To achieve persistence, we tested “persistence/elevated” modules

that required elevation privileges. The available modules are:

 Registry - It uses the HKLM version of the Run key to trigger. This means that

it will trigger for any user that logs into the system (instead of just the current

user), but a prompt still displays.

 Schtasks - Schtasks is provides schedules DailyTime and IdleTime trigger

options, but has also an OnLogon option as well so that payload runs when a

user logs in but will not display a prompt. Additionally, it is very powerful as it

runs as SYSTEM.

 WMI – This module adds a permanent WMI subscription either at a DailyTime

parameter or within 5 minutes of system boot with AtStartup. This will run as

SYSTEM, regardless of whether a user has logged in or not.

The following image displays that we were able to establish a new session under

SYSTEM privileges after rebooting the victim machine. That was possible via the

“persistence/elevated/schtasks” module and by setting the parameter “OnLogon” to

“True”.

36

Figure 13: Persistence after reboot

Results of Empire against Windows 10 were similar to a great extent. However it is

noticeable that it was not possible to run mimikatz with elevated privileges as did not

have access rights on the LSASS (Local Security Authority Subsystem Service). LSASS is

a process is responsible for enforcing security policies on the system. It verifies users

logging in, handles password changes and creates access tokens and writes to the

Windows Security Log. We are going to present our results against Windows 10 in

detail in section 5.3.

5.2 Penetration Testing with Nishang

In this section, we are going to explore and assess the post-exploitation capabilities of

Nishang. For all tests we perform, we assume that we have already established a

remote session with the target machine as our goal is to focus on post-exploitation.

Having established a remote session there are two different approaches to use

Nishang:

 Download scripts on the disk and then execute

 Execute scripts on memory, without touching the disk

37

Both approaches have pros and cons with regards to ease of use, stealthiness and

efficiency. Although downloading scripts on the disk and then executing them is more

convenient as it requires a few simple cmdlets, it is not a reliable method since

Nishang scripts are detected by many Anti-Viruses. As a result, scripts on the target

should be executed in memory which is definitely a stealthier approach. Having

established a remote session, for example via meterpreter native shell, Powershell is

able to download and execute any script in memory by using the following command:

powershell iex (New-Object
Net.WebClient).DownloadString('http:///Invoke-
PowerShellTcp.ps1');Invoke-PowerShellTcp -Reverse -IPAddress
[IP] -Port [PortNo.]

Table 1: Powershell cmdlet to download and run scripts in memory

The command above downloads the PowerShellTcp.ps1 script from http:///Invoke-

PowerShellTcp.ps1 and executes the Invoke-PowerShellTcp function with the

parameters IPAddress and Port.

In order to be able to download our scripts on the target’s memory, we are going to

use a python HTTP server as displayed in the image below.

Figure 14: Using a python HTTP server to serve Nishang scripts

As a next step, we will use a netcat to set up a listener on port TCP 8005 so that to

receive the reverse powershell. Having set up our listener we will use the following

command that downloads the Invoke-PowerShellTcp.ps1 script from

http://10.10.10.103:8005 and runs the function Invoke-PowershellTcp using as

arguments the IP and Port that netcat is listening to.

Figure 15: Download and execute a Nishang script

Now we have a powershell as displayed below.

http://invoke-powershelltcp.ps1/
http://invoke-powershelltcp.ps1/
http://10.10.10.103:8005/

38

Figure 16: Powershell session on the target machine

In this way we can run any powershell script in memory and that was the approach

that we mostly used during our testing activities, since Nishang scripts were easily

detected on drive.

The following image displays the output of the Check-VM.ps1 powershell script that

we used to check if the target machine is a Virtual Machine. As described in section

3.2, our environment is virtual and all machines are hosted on Virtual Box as confirmed

the Check-VM.ps1.

Figure 17: Output of Check-VM powershell script.

One of the most powerful scripts in Nishang is Get-Information.ps1 as it provides

useful information about the target machine. Specifically it includes the following

among others:

 Powershell environment

 logged in users

 shares on the machine

 local users and groups

 domain name

 installed application for current user

 account policy

 running services

The following image displays a sample output of Get-Information.ps1.

39

Figure 18: Output from Get-Information.ps1

40

5.3 Results

In this section, we will present the results collected during our testing procedures with

PowerShell Empire and Nishang.

The following table summarizes the results of our testing using PowerShell Empire

against our Windows 7. We present a number of actions and the ability of the system

to detect them as unauthorized/malicious.

PowerShell Empire

Action
Setup

Windows 7 Windows 7 &
AVG

File resides on drive  

Session establishment  

Bypass UAC  ×

Password Dump (Mimikatz)  n/a

Persistence High-Priv
(registry/Schtasks/WMI)

 n/a

Persistence Low-Priv(registry)  

The following table summarizes the results of our testing using PowerShell Empire

against our Windows 10.

PowerShell Empire

Action
Setup

Windows 10 Windows 10 &
Avast

File resides on drive  

Session establishment  

Bypass UAC  ×

Password Dump (Mimikatz) × n/a

Persistence High-Priv
(registry/Schtasks/WMI)

 n/a

Persistence Low-Priv(registry)  

41

The following table summarizes the results of our testing using Nishang against our

Windows 7. The “mem only” indicates that the Nishang module was only successful

when run on memory.

Nishang

Action
Setup

Windows 7 Windows 7 &
AVG

File resides on disk  

Reverse shell  (mem only)

Bypass UAC  ×

Get-PassHashes  (mem only)

Get-Information module  (mem only)

Credentials Phish module  ×

Mimikatz × n/a

The following table summarizes the results of our testing using Nishang against our

Windows 10.

Nishang

Action
Setup

Windows 10 Windows 10 &
Avast

File resides on disk × ×

Reverse shell  (mem only)

Bypass UAC × ×

Get-PassHashes n/a n/a

Get-Information module  (mem only)

Credentials Phish module  (mem only)

Mimikatz × ×

42

43

Chapter 6

6. Conclusions & Future Work

In this master thesis we compared two state of the art powershell tools used during

post-exploitation phase, Nishang and Empire. We tested their effectiveness against

Windows 7 and Windows 10 operating systems with installed antivirus software and

examined specific modules to identify their bypass capabilities.

We conclude that Windows 7 is not very effective in detecting payloads generated by

the tested tools compared to Windows 10 where native windows defensive

mechanisms (Windows Defender) seemed to be very effective. Additionally, both AVG

and Avast proved effective against most payloads but there is a still lot of work to be

done to increase their detection capabilities.

Information Security is a field that requires continuous work and research as

technologies are evolving with tremendous speed. Many exploits have a very short

time being effective before getting flagged by defensive mechanisms, AVs etc. As a

result, penetration testers, security researchers and security enthusiasts have to be

able to adapt to current conditions especially during the post-exploitation phase

where serious efforts are made by antivirus companies and Microsoft to detect

malicious activities.

There is a lot work to be done on Powershell based attacks and that derives from the

immense need of System Administrators to use Powershell scripts to facilitate their

administrative procedures. Sooner or later the techniques described in this master

thesis will not be effective and as such future work should focus on testing new tools

that come up from time to time and manually modify their code to become even

stealthier. Obfuscating already developed tools can be priceless to bypass defensive

mechanisms as many of them are applying signature based detection techniques

making a slight source code change sufficient.

44

Abbreviations

LSASS: Local Security Authority Subsystem Service

WMI: Windows Management Instrumentation

SAM: Security Account Manager

AD: Active Directory

DC: Domain Controller

ADDS: Active Directory Domain Services

NAT: Network Address Translation

ACL: Access Control List

ACE: Access Control Entries

SID: Security Identifier

AMSI: Antimalware Scan Interface

VTL: Virtual Trust Level

VBS: Virtualized Based Security

HVCI: Hypervisor Code Integrity

SLAT: Second Level Address Translation

MFA: Multi-factor Authentication

SSO: Single Sign On

SEH: Security Exception Handling

ASLR: Address Space Layout Randomization

DEP: Data Execution Prevention

45

References
1. SANS Institute. Penetration Testing: Assessing Your Overall Security Before

Attackers Do. 2006.

2. NIST. Technical Guide to Information Security Testing and Assessment. 2008.

3. ROPInjector: Using Return Oriented Programming for Polymorphism and Antivirus

Evasion. Giorgos Poulios, Christoforos Ntantogian, Christos Xenakis. 2015.

4. Jofre, JuanPablo. msdn.microsoft.com. [Online] 2016.

https://msdn.microsoft.com/en-us/powershell/scripting/powershell-scripting.

5. Powershell Empire. [Online] http://www.powershellempire.com.

6. Mittal, Nikhil. Lab of a penetration tester. [Online]

http://www.labofapenetrationtester.com/.

7. Nikhil, Mittal. Nishang - PowerShell for penetration testing and offensive

security. [Online] 2015. https://github.com/samratashok/nishang.

8. Symantec. The increased use of powershell in attacks v1.0. s.l. : Symantec, 2016.

9. Investigating Powershell Attacks. Ryan Kazanciyan, Matt Hastings. Black Hat

USA 2014 : s.n., 2014.

