
MSc Thesis Konstantinos Vlachos

University of Piraeus – Department of Informatics
Master Program in

«Informatics»

Postgraduate Thesis

 Thesis Title (iOS application Security Analysis)

Student First and Last Name Konstantinos Vlachos
Father’s Name Georgios
Registration Number MPSP15011
Supervisor Konstantinos Patsakis, Assistant Professor

Delivery Date November 20, 2017

iOS Application security analysis 1

MSc Thesis Konstantinos Vlachos

Three-member Examination Board

(signature) (signature) (signature)

Constantinos Patsakis
Assistant Professor

Efthimios Alepis
Assistant Professor

Panagiotis Kotzanikolaou
Assistant Professor

iOS Application security analysis 2

MSc Thesis Konstantinos Vlachos

TABLE OF CONTENTS

Abstract page 5

1. Introduction page 6

2. Prerequisites page 9
2.1 Install Xcode _______ page 9
2.2 iOS Simulator ______ page 11

3. Run-Load an application into Xcode page 14

4. Decompiling an iOS application page 15
4.1 otool page 15
4.2 class-dump page 17
4.3 Clutch (decrypt device binaries) page 18
4.4 Dumpdecrypted (Running app decryption) page 19

5. Static Code Analysis page 23
5.1 Xcode Analyzer page 23
5.2 iNalyzer (Static analysis) page 26

6. Dynamic Analysis page 28
6.1 Instruments page 28
6.2 iNalyzer (dynamic) page 30
6.3 Dtrace page 30
6.4 GDB (Runtime analysis) page 31
6.5 FLEX page 34
6.6 InspectiveC page 41
6.7 Cycript (runtime analysis) page 42

7. Data Protection page 48
7.1 Keyboard cache page 48
7.2 Snapshots page 49
7.3 UIPasteBoard page 49
7.4 SQLite Database page 50

8. Technical Terms page 51
8.1 .ipa files page 51
8.2 tweak page 52
iOS Application security analysis 3

MSc Thesis Konstantinos Vlachos

8.3 MobileSubstrate page 53
8.4 jailbroken device page 53
8.5 Nsobjects page 54
8.6 obj_Msg page 54
8.7 Cydia page 54
8.8 Theos page 54

9. Conclusion page 56

Resources page 58

iOS Application security analysis 4

MSc Thesis Konstantinos Vlachos

ABSTRACT
The purpose of this research is to explain the nature of the Apple iOS applications and provide all the
available Open Source tools for analyzing them, starting from decrypting any application’s binary
downloaded from the AppStore to reverse engineering it and even altering the flow of its running
process on the actual device.

 We start introducing the basic theory of the iOS operating system and its applications including the
security mechanisms incorporated by Apple that are also the main targets of every iOS exploit or
jailbreak developer. The next step is to describe the process of setting up the testing environment with a
Macintosh OS and the Xcode IDE and/or an actual jailbroken iOS device (iPhone, iPad, iPod). The rest of
the chapters describe the installation and usage of tools to implement the whole application security
analysis procedure, starting from static to dynamic analysis, after having decrypted and reverse
engineered the application’s binary and even interacting in an unplanned manner with the running
process to change its method calls or arguments.

 A walk through on Data Protection on iOS follows, describing possible ways of data leakage on such
devices. Finally, a chapter is dedicated to further in-depth explanation of important technical terms used
throughout the whole document. The dissertation concludes, in the last phase. In this chapter, it is being
assumed that for every step in application security analysis on the iOS platform the appropriate tools
have been provided in this document. Further suggestions for research are being provided for those
interested too.

DISCLAIMER: All the tools, software and commands used throughout this dissertation are
strictly restricted to the scope of this research and have not been used, in any case,
against Apple's commercial products like devices or software. Illegal use of any of the
reported tools is not allowed and is your own responsibility!

iOS application security analysis 5

MSc Thesis Konstantinos Vlachos

CHAPTER 1

INTRODUCTION
The default programming language used for developing iPhone / iPad applications is Objective C, which
brings back the dreaded buffer overflows that were a non-issue for J2ME and mobile .NET environments.
There have been several buffer overflow vulnerabilities already published against the iPhone operating
system, as will be discussed below. These applications can also be a combination of native and web
applications opening the possibility of both Cross-Site Scripting (XSS) and Cross Site Request Forgery
(XSRF) on top of the buffer overflows. However, Apple iOS devices (iPhone, iPad, iPod) also have their
own vulnerabilities that are known to have been exploited like Kernel exploits (heap overflow, API Kext
misuse), Sandbox misconfiguration, entitlements leverage and many more [1].

 Sometimes the vulnerabilities are found in the actual operating system and other times they are found
in the installed software. To fully compromise such a device, the first entry point of interaction has to be
exploited which is going to be most of the times a third party installed application or a system
application or a combination of them through their entitlements interaction. Therefore, our main focus
in this document is to create a baseline tutorial which provides the knowledge and tools to find any
possible security flaw in iOS applications.

 As commonly known, Apple puts a great amount of effort to provide its systems and end users with
security and privacy. This leads to few detailed resources available online about the current topic
regarding step by step guides on iOS application security analysis and potential exploitation. An effort to
provide such a walk-through guide is also the current document’s purpose.

 Firstly, the context in which applications run within the iOS must be broken down and understood. The
iOS uses a very similar to the OSX kernel the XNU based on Darwin, that functions underneath almost
the same way as Unix like Operating System. This leads to file and folder permissions of two types:

 read-write: everyone reads or writes this file or directory.

 Read-only: only the user of the application (owner) writes to it.
The users available on the iOS are mobile (user running the application with restricted permissions “501”
uid) and root (super user can be used by others and not the actual system only on jailbroken devices). [5]

 Every application is running in a sandbox, an environment where code is deemed untrusted and is iso-
lated from other resources and processes of the operating system. Apple also allows access to the device
resources through classes to specific interfaces like Camera, microphone, GPS but prevents the applica-
tion from directly accessing those components providing only an API that interacts with the Kernel ex-
tensions known as kexts [2]. APIs are categorized as Private and Public ones. Public APIs are used from
every developer and can be included in the source code of every third-party application. The Private
ones are only used from system applications and are not allowed to be used from any third party as they
would pose a security issue. They are commonly used with Theos on tweaks and Cydia though, for jail-
broken device application development (these terms will be discussed later). [3]

iOS application security analysis 6

MSc Thesis Konstantinos Vlachos

 Applications use entitlements for special capabilities that are like Android permissions and are included
in the binary. It is a single right granted to a particular application or other executable that gives addi-
tional permissions beyond what it would ordinarily have. The term entitlement is most commonly used
in the context of a sandbox. It is actually a piece of configuration information included in your app’s code
signature (in xml format as shown on the figure below) telling the system to allow your app to access
certain resources or perform certain operations. In effect, an entitlement extends the sandbox and capa-
bilities of your app to allow a particular operation to occur [6]. They are set during application develop-
ment using Xcode and the final result can be viewed using the command:
“ldid -e /Applications/Whatever.app/”
An example of insecure entitlements is demonstrated below, that was leveraged to achieve an iOS Wi-Fi
exploit (Marco Grassi CVE-2016-7630) [7]

WebSheet entitlements – Marco Grassi – CVE-2016-7630

 Apple also uses a code signing mechanism. Once the iOS kernel has started, it controls which user pro-
cesses and apps can be run. To ensure that all apps come from a known and approved source and
haven’t been tampered with, iOS requires that all executable code must be signed using an Apple-issued
certificate. Apps provided with the device, like Mail and Safari, are signed by Apple. Third-party apps
must also be validated and signed using an Apple-issued certificate making it difficult to run arbitrary un-
signed code [4]. On top of that, Apple introduced the DEP (Data Execution Prevention) mechanism on
iOS 2.0 and after iOS 4.3 the ASLR (Address Space Layout Randomization) was introduced which fully ran-
domizes the position of an application’s executable parts loaded in RAM if it is compiled as a PIE (posi-
tion-independent-executable) [8].

 All the aforementioned information needs to be taken into consideration in order to achieve a full
exploitation of an iOS system. Our focus in this document though; is mainly the applications of the
Apple’s mobile operating system as stated before and the ways of analyzing them from a security
perspective using only Open Source tools. So, this is going to be a walk-through guide on how to decrypt,
reverse engineer (to the best possible level for lateral analysis), statically and dynamically analyze and
even hook into an application’s process. The part of exploitation will not be covered as it is considered
beyond the scope of this thesis.

 Commercial iOS applications available on the AppStore are compressed (.ipa files described on
Chapter 8 “Technical Terms”) and encrypted files containing the application binaries and resources. On
the other hand, applications from Apple’s IDE “Xcode”, provide us with the full source code and project
directory. The first case scenario is the most common in terms of analysis and the second one comes up
iOS application security analysis 7

MSc Thesis Konstantinos Vlachos

in case the application owner or developers ask us for code auditing on their own application or we
somehow manage to get our hands on the original application’s Xcode project. Both options are going to
be discussed, providing you with the available options and tools, whatever the case is.

 As already stated Apple’s IDE for iOS application development is Xcode. We will cover the steps of
installing it on a MAC OSX system and how to interact with it using its built in iOS simulator or a directly
connected iOS device (iPhone or iPad) to run-debug an application. The IDE is useful in case we have to
deal with the original application project (second option stated above). In any other case you need to
interact with a jail broken (refer to “Technical Terms”) iPhone device over ssh protocol using the
described tools.

 In most cases, we will have to deal with commercial applications downloaded from the AppStore. So,
decryption and decompilation are key factors in a successful iOS application analysis and several tools
and options are going to be described on that, before we are able to go through a static or dynamic
analysis. Static analysis is more useful on Xcode projects, because on third party applications the initial
source code level could never be reached but only to a point of assembly language and Objective-C
message or NSobject calls and system interaction.

 Finally, the most important part is dynamic analysis and here is where the most effort is applied in
order to be able to analyze every commercial application available online. Options like heap inspection,
message calls and even process hooking will be described providing you with interaction level of even
changing the application’s process behavior, calls and functionality.

iOS application security analysis 8

MSc Thesis Konstantinos Vlachos

CHAPTER 2

PREREQUISITES
The required testing environment for iOS application analysis can be set up with minimum cost using an
OSX environment and the XCode’s iPhone simulator. An iOS device is always needed to interact with
third party applications that run only on ARM architecture. To begin with, the basic equipment needed
consists of the following:

• Mac Book running Snow Leopard 10.6.2 OS or above.
• Xcode 6.1 or greater (Apple’s iOS IDE).

• iOS SDK and/or iOS actual device to run/debug the applications against (a jail broken device).
• Preferably an apple ID – Account, to download application binaries.

 The steps to get into an OSX Desktop are not covered as this is a trivial task.

2.1 Install Xcode
Initially, the Xcode iOS IDE has to be installed on MAC OSX environment. After the file (xcode****.dmg)
is downloaded, we install it and then we type XCode into the quick search to launch the IDE (shown on
figure below) by selecting one of the already opened projects, same as Android Studio’s start up process.

(launching Xcode from OSX El Capitan)

iOS Application security analysis 9

MSc Thesis Konstantinos Vlachos

(Xcode home screen – demoapp chosen)

 Regarding the iOS environment on which XCode applications can be debugged and executed, Apple
does not allow the use of a packed simulator version as a standalone download. Although, Xcode
includes a built-in simulator as already stated, that can be used after successfully installing the whole
package (SDK).

 An important note here is that only registered Apple developers can download and use Xcode for
signed projects (legitimate Apple applications). An iOS device can also be used (similar to Android studio
with usb debugging mode on), while being connected over the wire (usb as shown in picture below). Both
options are used in this document.
Connecting iPhone to Xcode with Apple developer ID for production purposes

iOS Application security analysis 10

MSc Thesis Konstantinos Vlachos

2.2 iOS Simulator
The iOS Simulator included in the SDK (example of an iOS 6) can be accessed directly from Xcode under
Xcode → Open Developer Tool → iOS Simulator menu entry, as shown in the figures below:

(launching iOS simulator – Xcode built in iOS 6 simulator)

(actual simulator screen – virtual iPhone with iOS 6)

iOS Application security analysis 11

MSc Thesis Konstantinos Vlachos

 Additionally, in modern versions of the OS X including the El Capitan, it can be immediately accessed
from the finder by typing: /Applications/Xcode.app/Contents/Developer/Applications/Simulator.app
This is automatically done when building/running a project/application in Xcode as the default output is
the iOS simulator.

 Later versions of iOS can be also downloaded for use as simulators from the menu entry:
Xcode → Preferences → Downloads

(various iOS simulator versions in Xcode)

 A full in-depth analysis of an iOS application requires the complete Xcode project to be delivered by
the application owners. In most of the cases, this resource is not available so the use of alternative
solutions based only on the application binaries are incorporated. These binary files can be downloaded
from Apple’s AppStore, either in an actual iPhone device or in a Macintosh OSX so that the binary can be
reverse engineered. In any way, the steps covered in this chapter about the Xcode, constitute important
knowledge for several situations. Some examples are the examination of a jail brake .ipa file or exporting
a malicious application as a benign signed iOS application.

 Important note: AppStore applications cannot run on iOS simulator because it was built on x86
architecture instead of the application binaries in AppStore, which were compiled against ARM
architecture to run on iOS devices equipped with ARM processors. This leaves only two real case
scenarios of iOS applications analysis during runtime:

iOS Application security analysis 12

MSc Thesis Konstantinos Vlachos

a) Either analyze the application while running on an actual iPhone device through the connected
Mac OSX using ssh.

b) Or obtain the application's source code or .xcodeproj file and load it into Xcode for analysis.
 The second option requires the whole project to be loaded into Xcode and this will be explained on the
next chapter. The rest of the analysis is dedicated to the former and most used option that requires to
reverse engineer the application and dynamically analyze it during runtime. Similar to any reverse
engineering process of a binary file on other platforms.

iOS Application security analysis 13

MSc Thesis Konstantinos Vlachos

CHAPTER 3

RUN-LOAD AN APPLICATION INTO XCODE
 Based on the latter option, obtaining the application's source code or .xcodeproj file and loading it into
Xcode , the analysis will be conducted in this case using Xcode. The application can be loaded into Xcode
by pasting its whole folder (see the figure below of the root directory of Xcode project and its contents)
under the following directory:

/Users/<username>/Library/Application Support/iPhone Simulator/<iOS version e.g. 3.2 (iPad) or 4.0.1
(iPhone)>/Applications/<folder with unique application id>

 This action will also make the specific project tree available on Xcode’s home screen as a
recent/opened project. Once again, this option will probably only be used if the application owners
request a source code auditing service.

 Solutions for other cases that the Xcode project will not be available are:

 Decompile any application from the AppStore (this process will never reach the initial source
code). Then work with the product assembly code for a static code analysis investigating on
possible issues such as buffer overflows (iOS applications are written in objective C), method
calls, data access and more using static code analyzers.

 Analyze Memory dumps, system-kernel calls, logs and method calls like obj_MsgSend() by
dynamically analyzing the application during runtime.

 These options will be discussed later. Keep in mind that application packages downloaded from the
AppStore as .ipa files (refer to Technical Terms section for further details on this) are encrypted. There
are ways of bypassing this obstacle like the Clutch tool discussed in the Decompilation section. The
general application structure as an Xcode project is listed below (this will not be further explained as it is
considered beyond the scope of this dissertation):

iOS application structure as an Xcode project

iOS Application security analysis 14

MSc Thesis Konstantinos Vlachos

CHAPTER 4

DECOMPILING iOS APPLICATION
Working with applications installed on an iOS device, which are already compiled and no Xcode project is
available, locating the installation directory is required to begin the decompilation process. Based on the
fact that they are either pre-installed or downloaded from the AppStore on the iOS device, the binaries
will be located in two different directories respectively:

 /Applications (pre-installed applications)

 /var/mobile/Applications (downloaded from the AppStore)

 The demo application project “demoapp” of Xcode is going to be used as an example for the reverse
engineering process. After being built in Xcode, its binary file is available. The main application file
demoapp.app (every application contains its main file on a name convention of application_name.app)
will be required for the tools used and it resides under:
/Users/<username>/Library/Developer/Xcode/DerivedData/demoapp-frwksdfj…..d<random-
name>/Build/Products/Debug-iphonesimulator/demoapp.app

 This directory indicates that Xcode built the project to run against the iPhone simulator. Now that the
application's binary is available too, the reversing process can begin to identify what kind of information
can be gained from the initial source code of demoapp, pretending that the initial source code was not
available in the first place. Due to the fact that this process is extensive and crucial enough, several tools
are going to be presented.

 The basic tools for the decompilation process are presented below and both demoapp.app and third-
party applications are going to be used as examples. Third party applications are used for the decryption
process because, as already stated, AppStore .ipa files are encrypted.

4.1 otool
Otool comes with Xcode and is directly available on OSX console too (like other Xcode console features).
It is a powerful disassembling tool that provides information of object files or libraries. It can also
provide a compiled application’s assembly code [9]. All the options can be found with the command
otool –help. In order to acquire an application’s assembly dump file, the following terminal command is
used:

#otool -options “dir to .app/appname” >> output file
appname is used for the basic class of the application.

Regarding the demoapp, the command is going to be:
otool -toV /Users/<username>/Library/Developer/Xcode/DerivedData/demoapp-frw…..kd<random
name>/Build/ProductsDebug-iphonesimulator/demoapp.app/demoapp” >> /demoapp.dump

 The expected output is then available under the root directory and some parts of the extracted
assembly of the demoapp (beginning and end of the whole assembly code using head and tail
commands) are listed below:

iOS Application security analysis 15

MSc Thesis Konstantinos Vlachos

(assembly product of otool 1)

(assembly product of otool 2)

iOS Application security analysis 16

MSc Thesis Konstantinos Vlachos

4.2 class-dump
This tool provides easily readable information of class declarations and structs. It is similar to the strings
command output providing human readable strings, or to the output of “otool -ov” command except
that the information is presented as Objective-C declarations with this tool [10].
 It can be downloaded from “http://stevenygard.com/projects/class-dump/”. Then using the bash in a
terminal, the archive must be extracted and finally be used against the demoapp with the commands:
>macbook$ bash
>bash-3.2$ tar -xvf ~/Downloads/class-dump-3.5.tar
>bash-3.2$./class-dump “/Users/username/Library/Developer/Xcode/DerivedData/demoapp-
fwrm………/Build/Products/Debug-iphonesimulator/demoapp.app” >> demoapp.classdump

(general command is ./class-dump “dir to the .app file” >> output.file)

 Valuable information can be gathered by using this tool like the use of a method and its arguments (it
may be a vulnerable one) or the private Frameworks that the application may uses. The class-dumb
output file of the demoapp is shown in the picture below:

iOS Application security analysis 17

http://stevenygard.com/projects/class-dump/

MSc Thesis Konstantinos Vlachos

(first and last lines of classdump output for demoapp)

4.3 Clutch
Most of the time, the analyzed application is going to be installed on an actual iOS device. These
applications are either pre-installed on the device or downloaded from the AppStore. Two main things
need to be clear now:

1. iOS applications are located either under /Applications/ (preinstalled) or under
/var/mobile/Applications/ (downloaded) directories on the actual iOS devices.

2. Unlike pre-installed applications, the downloaded ones are encrypted, meaning that
decryption is required before analyzing them.

 The decryption process can be done using this specific tool called Clucth. It was once offered by
Hackulous but now is only available online here:

https://github.com/KJCracks/Clutch

 After the tool is downloaded, it has to be uploaded to the device, using sftp, with the put command to
the /usr/bin/ directory. Then, while connecting to the device using ssh, the tool could be used on any
installed application. The following pictures show the tool options listed from an iPhone device and the
process of decryption:

iOS Application security analysis 18

https://github.com/KJCracks/Clutch

MSc Thesis Konstantinos Vlachos

clutch options (within iPhone over ssh [11])

decrypting Facebook application with clutch

 After the tool completes the cracking process, it creates an .ipa file of the whole application bundle and
normally saves it under /var/root/Documents/Cracked/ directory. After decompressing the .ipa file
using the untar command, the application files are available. This extracted directory contains used
images, the plist file (property listing) and everything else that an unencrypted .ipa file contains. The
class-dump tool can also be used now against the Facebook main application file with:

class-dump dir-to-extracted-ipa-file/Payload/Facebook.app/Facebook > Facebook-class
All the class information is accessible as if the application was not encrypted in the first place. This
process demonstrates that even when dealing with an encrypted application from the AppStore,
information can still be extracted using the aforementioned and the rest of the tools described in the
document.

4.4 Dumpdecrypted (running application decryption)
This specific tool is used for application binaries installed on a device (that are of course encrypted) to
generate a decrypted version of them for lateral analysis using for example the class-dump tool. It is
available on the following link:

https://github.com/stefanesser/dumpdecrypted/archive/master.zip

 The installation and usage of the tool to decrypt a third-party application starts by downloading the
archive and decompressing it as usual and then using the “make” command to build it. Based on the iOS
version of the device, the specific option in the “Makefile” must be adjusted before building the project:

Mac:~ user$ cd /path-to-decompressed-project/dumpdecrypted-master/
Mac: dumpdecrypted user$ make

 Now a specific file generated under the current project’s directory called “dumpdecrypted.dylib” (on
the MAC OSX) is required along with the application’s executable directory on the iOS device and the
application’s Document directory in which it must also be saved (on the iOS device). To make things clear
here, the generated file is a dynamic library file (.dylib) that will be used in the sandbox directory of the
analyzed application.
 In order to locate the two directories, the analyzed application must be running on the iPhone device
(kill all other instances from background) and then by using the “ps” command the following output is
shown:

iOS Application security analysis 19

https://github.com/stefanesser/dumpdecrypted/archive/master.zip

MSc Thesis Konstantinos Vlachos

Mac:~ user$ ssh root@yourIP
iphone-5:~ root# ps -e
 PID TTY TIME CMD
 1 ?? 3:28.32 /sbin/launchd
……
5717 ?? 0:00.21
/System/Library/PrivateFrameworks/MediaServices.framework/Support/mediaartworkd
 5905 ?? 0:00.20 sshd: root@ttys000
 5909 ?? 0:01.86 /var/mobile/Containers/Bundle/Application/03B61840-2349-4559-B28E-
0E2C6541F879/TargetApp.app/TargetApp
 5911 ?? 0:00.07 /System/Library/Frameworks/UIKit.framework/Support/pasteboardd
 5907 ttys000 0:00.03 -sh
 5913 ttys000 0:00.01 ps –e

 Since only the TargetApp is running on the device, the directory to TargetApp’s executable is the one
listed below:

“/var/mobile/Containers/Bundle/Application/03B61840-2349-4559-B28E-
0E2C6541F879/TargetApp.app/TargetApp”.

 Now in order to locate TargetApp’s Documents directory too, Cycript must be used as follows from the
ssh shell to the iPhone device:
iphone-5:~ root# cycript -p TargetApp
cy# [[NSFileManager defaultManager] URLsForDirectory:NSDocumentDirectory
inDomains:NSUserDomainMask][0]
#"file:///var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents/"
and this is where the “dumpdecrypted.dylib” file must be copied to using the “scp” command:
Mac:~ user$ scp /Users/user/Code/dumpdecrypted/dumpdecrypted.dylib
root@192.168.2.2:/var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents/dumpdecrypted.dylib

 The reason why dumpdecrypted.dylib file must be copied under the analyzed application’s Documents
directory is because a running iOS application does not have the right to write outside of the Sandbox
(all applications run Sand boxed within the iOS, acting only in their own context for security purposes).
Additionally, dumpdecrypted runs with the same privileges as the running analyzed application and in
order to write the final decrypted file, the only directory it could write to would be the application’s
Documents directory. This is why it is placed in the Documents directory.

 The decryption process can start by using two commands on the iPhone device. The first one is
“DYLD_INSERT_LIBRARIES” and it sets the settings of where is the analyzed application’s Documents
directory containing the .dylib file and where its executable file resides. The second one simply runs the
tool against the application:
iphone-5:~ root# cd /var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents/
iphone-5:/var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents root# DYLD_INSERT_LIBRARIES=dumpdecrypted.dylib
/var/mobile/Containers/Bundle/Application/03B61840-2349-4559-B28E-
0E2C6541F879/TargetApp.app/TargetApp
mach-o decryption dumper

iOS Application security analysis 20

MSc Thesis Konstantinos Vlachos

DISCLAIMER: This tool is only meant for security research purposes, not for application crackers.

[+] detected 32bit ARM binary in memory.
[+] offset to cryptid found: @0x81a78(from 0x81000) = a78
[+] Found encrypted data at address 00004000 of length 6569984 bytes - type 1.
[+] Opening /private/var/mobile/Containers/Bundle/Application/03B61840-2349-4559-B28E-
0E2C6541F879/TargetApp.app/TargetApp for reading.
[+] Reading header
[+] Detecting header type
[+] Executable is a plain MACH-O image
[+] Opening TargetApp.decrypted for writing.
[+] Copying the not encrypted start of the file
[+] Dumping the decrypted data into the file
[+] Copying the not encrypted remainder of the file
[+] Setting the LC_ENCRYPTION_INFO->cryptid to 0 at offset a78
[+] Closing original file
[+] Closing dump file
 The “ls” command reveals the final decrypted product file:
iphone-5:/var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents root# ls
TargetApp.decrypted dumpdecrypted.dylib OtherFiles

 All standard operations of security analysis can be implemented now on the decrypted product file, like
on any other not encrypted .app file. For example, the class-dump tool can be used against the
decrypted TargetApp’s file without issues:
 Class-dump --arch armv7s Target.decrypted
 Finally, the reason why the dumpdecrypted.dylib file must be under application’s Documents directory
is the Sandbox permissions. In case it is not placed in application’s Documents directory but under the
tmp directory for instance, by running the tool (in the figure below), an erno=1 occurs, meaning that this
operation is not permitted (expected outcome due to Sandbox permissions).

iphone-5: /var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents root# mv dumpdecrypted.dylib /var/tmp/
iphone-5: /var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents root# cd /var/tmp
iphone-5:/var/tmp root# DYLD_INSERT_LIBRARIES=dumpdecrypted.dylib
/private/var/mobile/Containers/Bundle/Application/03B61840-2349-4559-B28E-
0E2C6541F879/TargetApp.app/TargetApp
dyld: could not load inserted library 'dumpdecrypted.dylib' because no suitable image found. Did find:
 dumpdecrypted.dylib: stat() failed with errno=1

Trace/BPT trap: 5

iOS Application security analysis 21

MSc Thesis Konstantinos Vlachos

 Taking all the above under consideration, dumpdecrypted is the tool that makes every iOS application
available for analysis as if it was pre-installed and unencrypted or its Xcode project was available in the
first place. The next chapter refers to the code analysis process (static or dynamic), that can now be
easily done as far as the application binary can be decrypted and used for this purpose. More details on
the described process and general usage of the dumpdecrypted tool can be found on the “Mobile
Application Penetration Testing” [12] book.

iOS Application security analysis 22

MSc Thesis Konstantinos Vlachos

Chapter 5

STATIC CODE ANALYSIS

Static code analysis is performed in most cases on the source code or the object code of an application.
In the previous chapter, the way of decompiling an application and having the object or assembly code
for static analysis was introduced. If the initial source code is available too then this type of analysis
brings the best possible results.
 Static analysis can be leveraged to uncover issues such as memory leaks, uninitialized variables, dead
code, type mismatch and buffer overflows among others. Should the source code for the application is
available, this can be done by using Xcode. The static analyzer travels down each possible code path
identifying logical errors such as memory leaks. Within the IDE this is performed by using Project >
Analyze that brings up the Xcode Analyzer.

5.1 Xcode Analyzer
iOS applications may usually include/use native C language libraries such as strcpy. This gives the option
to use the free tool “Flawfinder” as soon as the application uses the aforementioned C libraries. If it
does not use them and depends on Cocoa objects such as nsstring, the use of Clang free tool is also an
option, which is already located under /Applications/Xcode.app/Contents/Developer/usr/bin/clang.
 The static analyzer used by Xcode can be changed with another one from command line tools of the
IDE by the following procedure:

https://clang-analyzer.llvm.org/xcode.html [17]
https://lowlevelbits.org/getting-started-with-llvm/clang-on-os-x/ [18]

(Product → Analyze, Using XCode’s built in Clang static analyzer on source code)

iOS Application security analysis 23

https://lowlevelbits.org/getting-started-with-llvm/clang-on-os-x/
https://clang-analyzer.llvm.org/xcode.html

MSc Thesis Konstantinos Vlachos

 There is also some other important information available to the “Analyze” option from the IDE and
these are listed below (from the left side of the project tree, the master application’s node must be
selected to see the following tabs):

 what the application requires/uses from the OS (Capabilities)

 Configuration and architecture options (Build settings)

 and the most important linked libraries, compile sources, bundle resources (Build resources)

Check the figures below for every option’s information:

(capabilities – Xcode → Analyze)

iOS Application security analysis 24

MSc Thesis Konstantinos Vlachos

(Build Settings – Xcode → Analyze)

(Build Phases – Xcode → Analyze)

iOS Application security analysis 25

MSc Thesis Konstantinos Vlachos

 All those information, collected by static code analysis on the actual Xcode project, will not be available
for the public applications from the AppStore due to the lack of project binaries or source code files. In
such cases, different techniques and tools are used to find their dependencies, permissions, OS/kernel
requests and interactions. A great static code analysis tool for third party applications is presented next.

5.2 iNalyzer for static analysis
The iNalyzer tool can be used for black box assessment of IOS applications. It shows class information,
does runtime analysis and other things that will be presented below. Basically, it automates the tasks of
decrypting the application, dumping class information and presents it in a more readable way. It can also
hook into a running process and invoke methods during runtime. iNalyzer is developed and maintained
by Appsec Labs and is also available open source [13].
 On the MAC OSX, Graphviz and Doxygen also need to be installed for iNalyzer to work. A jail broken
iPhone device is also required in order to ssh to it as usual and retrieve the application data when they
are exported by iNalyzer for further investigation in our MAC.
 The installation and usage process consists of the following steps:

 Install iNalyzer on your jail broken iPhone device.

 ssh to the device and navigate to the iNalyzer application directory. iNalyzer is installed in the
/Applications directory because it needs to run as a root.

 This is done by using the terminal commands:
$ ssh root@<iphoneIP>
$ cd /Applications/iNalyzerX.app/

 Run the iNalyzer
$./iNalyxerX.app

 Visit the url iphoneIP:port from your browser (e.g. http://10.0.100.12:5443). After iNalyzer runs
on the device, the port number is shown on the iPhone’s screen on iNalyzer application’s logo.
Now a web interface is presented as shown in the figure below from where an application can
be selected and iNalyzer will create a zip file and download it on your MAC for analysis.

(iNalyzer web interface access from MAC)

iOS Application security analysis 26

http://www.stack.nl/~dimitri/doxygen/download.html
http://www.graphviz.org/download..php
https://appsec-labs.com/

MSc Thesis Konstantinos Vlachos

 In case this option does not work, iNalyzer can still be used from the command line by using ssh access
on the iPhone device, and run it with the desired application for analysis as argument (while being in
/Application/iNalyzer.app/ iPhone directory as root):

$./iNalyzerX NameOfAppToAnalyze
 This outputs an .ipa file in the same directory that can easily be transferred to the MAC (using sftp)
and then renaming it to .zip for extraction. The extracted folder contains a script under the directory
appname/Payload/Doxygen/doxMe.sh which generates and finally opens an index.html file to
represent all the gathered information using Graphviz. After running this script, the expected results are
presented in the figure below [14]:

(.zip contents of iNalyzer containing doxME.sh script)

(index.html file containing all the analyzed data of the chosen application, app name is hidden for
security purposes)

 Another way to analyze an iOS application is a dynamic analysis when it is actually running and
interacting with the iOS and this is discussed on the next chapter.

iOS Application security analysis 27

MSc Thesis Konstantinos Vlachos

Chapter 6

DYNAMIC ANALYSIS

Dynamic Analysis is the technique of assessing applications during execution. There are several tools
provided by Apple for this purpose. Two of the main tools are the “Instruments” and “Shark”, but Shark
is left aside right now and its operations are all included within the Instruments tool. iNalyzer for black
box dynamic analysis, Dtrace with Instruments and other tools will be presented in this chapter too.

6.1 Instruments
The dynamic analysis starts with this tool that was introduced with Mac OS X v10.5. It provides a set of
powerful options to assess the runtime behavior of the application [15]. It can be compared to several
SysInternals tools used for application testing on the Microsoft Windows platform such as procmon and
netmon. It can be launched from the directory /Developer/Applications/Instruments. Once launched,
select the “Blank” template under the iPhone simulator section and then the instruments needed to use
from the library. To inject this tool into a process select Choose Target > Attach to Process > iPhone
Simulator (<pid>). Finally, click record and start using the application in the simulator to generate the
activity data [16]. The type of data being captured by the tool includes:

1. File Activity Monitoring: This is similar to filemon in that it lets you identify the files
generated and processed by the application. It is useful for identification of files that may
be cached, or hidden files used by the application to store data on the client side.

2. Memory Monitoring : Helps to identify potential memory leaks.
3. Process Monitoring: This is similar to “Process Monitor” and shows real time process /

thread activity.
4. Network Monitoring: Records network activity like “netmon”.

 Here are some figures showing the usage of Instruments with the iPhone-simulator while running an
Xcode project compiled from the IDE.
 First step is choosing the Profile option from the run button in Xcode:

iOS Application security analysis 28

MSc Thesis Konstantinos Vlachos

Then the monitoring options are chosen, for instance the “Activity Monitor” option:

(Instruments – Choosing profile of Analysis)

 Finally, by hitting the record button, the application runs into the simulator and data are
simultaneously being gathered in the instruments console Graphs. In the end, all data can be saved
when the Stop button is clicked:

(Instruments recording “Activity Monitor” of demoapp at runtime)

iOS Application security analysis 29

MSc Thesis Konstantinos Vlachos

6.2 iNalyzer
This tool was also introduced during static code analysis. It can be used for dynamic analysis too.
Dynamic analysis with iNalyzer on IOS applications consists of invoking methods on runtime, finding the
value of a particular instance variable at a particular time in the application and several other features.
 Launching the tool’s runtime interpreter, requires the index.html file generated by Doxygen to be
opened (see iNalyzer for static analysis section above). Firefox is the recommended browser to work
with for the runtime analysis, as suggested by the iNalyzer developer.
 First of all, enter the IP address of your device (e.g. 10.0.1.23) on the box in the middle and then press
enter.

(IP of iPhone on index.html of iNalyzer)

 Then any type of command can be typed on the left box and get the specific response on the right box.
Important: The analyzed application must be running on the iPhone preferably on the foreground.
 In order to hide the status bar of the app for example the command [[UIApplication sharedApplication]
setStatusBarHidden:YES animated:YES]; is used on the left box. No response is received due to the
nature of this method (void) but actually the status bar is hidden in the iPhone application’s UI.

It is obvious now that any function (Cycript) can be called on the running application by using either
Objective C or JavaScript. There is a separate section dedicated to Cycript usage on iOS application later
on this document under Cycript (runtime analysis).
 This is one of the best ways for black box dynamic analysis of an iOS application used so far, because
the rest of the methods depend on the Xcode projects or run with the iPhone simulator. More methods
of dynamically analyzing any iOS application from the AppStore like this one, are going to be presented
on the next chapters.

6.3 Dtrace
DTrace is a dynamic tracing framework built by San Microsystems 10 years ago that provides zero
disable cost, i.e. probes in code have no overhead when disabled. It is only available for OS X systems.
Apple also uses DTrace on iOS in order to power tools such as Instruments. Although for third-party
developers, it is only available on MAC OS X applications or the iOS simulator and that is the only way it
can be used (Apple already ported it to the iOS though but only internally for the company’s labs and not
for third party developers).
 DTrace is dynamic, meaning that attaching to an already running program and detaching from it again
is possible without interrupting the program itself. There is also no need to recompile or restart the
application. It is also a system wide tool that it can monitor with a single script what allocations where
made by all processes on a system.
iOS Application security analysis 30

MSc Thesis Konstantinos Vlachos

 From the menu entry Xcode → Open Developer Tools → Instruments and then Instruments (menu on
the upper left) → Preferences the Dtrace options for iPhone Simulator of the IDE can be adjusted. The
rest of the functionality is built into the Instruments tool so it is actually being used transparently when
Instruments is running leaving only the part of configuration tab available for editing purposes on the
IDE. It can otherwise be used from a terminal as a command line tool [19] but this is out of the scope of
this research.

(Dtrace within Instruments for XCode’s iPhone Simulator)

6.4 GDB (runtime analysis)
iOS applications mostly use the Objective-C language, meaning that they are runtime oriented and
decisions for function calls are made during runtime and not during compilation of the source code or
linking to libraries.
 This behavior gives the opportunity to hook into a process of a running application using GDB for
runtime analysis. First of all, a proper version of gdb needs to be installed on the device. The Cydia
version of GDB does not work properly so another source like the following should be used:

https://github.com/swigger/gdb-ios
Then using sftp, the GDB must be uploaded to the device under the /usr/bin/ directory as shown in the
figure below:

uploading gdb to iPhone [20]

iOS Application security analysis 31

https://github.com/swigger/gdb-ios

MSc Thesis Konstantinos Vlachos

 Now the file permissions have to be changed in order to be able to run the GDB tool (chmod a+x
/usr/bin/gdb). The important information about the analyzed application is to locate its pid while it is
running on the device, to hook into it (Google Maps will be used here). So, by using #ps -aux | grep
AppName the process id can be located and finally run gdb against it with the command: #gdb -p PID.
Please note that the application should be running in the foreground.
Demonstrated below are the commands used for this step:

changing permissions of gdb tool on iPhone [20]

finding the application PID

hook into application process with gdb [20]

 Several warnings might come up during the hooking process, but they can be ignored right now. After
the successful hooking, the known gdb command line prompt is presented.

Gdb hooked into application process [20]

 From now on, the running process can be treated as in any other case of runtime analysis using gdb.
For example, the messaging mechanism of Objective-C that uses the obj_msgSend() method can be
leveraged by adding a breakpoint whenever the specific method is called to show us the application flaw
based on messaging and the actual selector/method that sent the message with the gdb command
shown below:

iOS Application security analysis 32

MSc Thesis Konstantinos Vlachos

breakpoint on obj_msgSend() to print class and selector sending the message ($r0 for class, $r1
for class selector) [20]

 Then typing the c command, reveals the values of each message sent with the help of the previous
defined gdb variables.

output of obj_msgSend() (class/selector) within gdb [20]

 The capabilities of gdb-ios are as extensive as the ones of the common gdb. This chapter covers the
fundamental steps of installation and hooking into a process with this debugger. Further analysis cannot
be included as it reaches out of this document’s purpose which is not to teach debugging skills rather
than familiarize the reader with the available tools and procedure of iOS application security analysis.
Following up, a more interactive tool is presented that includes a UI version of listing options and is
called FLEX.

iOS Application security analysis 33

MSc Thesis Konstantinos Vlachos

6.5 FLEX
FLEX (Flipboard Explorer) is a set of in-app debugging and exploration tools for iOS development. When
presented, FLEX shows a tool bar that lives in a window above your application. From this tool bar, you
can view and modify nearly every piece of state in your running application. You can inspect and modify
views in the hierarchy, view and modify the properties and ivars on any object, dynamically call instance
and class methods, view the file system within your application's sandbox, access any live object by a
scan of the heap and more.

Flex options from its GitHub repository

It can be downloaded from the following link:
https://github.com/Flipboard/FLEX

 As stated by the contributors it gives numerous options during runtime analysis of an application. FLEX
is designed to be used for your own application analysis and not on third party ones. Nevertheless, a
solution for this issue will be described after the actual options are presented, which makes FLEX
available for every iOS application of a device. This tool can be used either with the iOS simulator of
Xcode (iOS version must be greater than 7) or on an actual iOS device. The last option will be discussed
in further detail and is also the more interesting. The first one is only useful for application developers.
 This tool is a drop-in library that runs entirely inside the application without the need to connect to a
debugger. The options and usage are presented clearly at the contributors GitHub project website. Only
a short reference is demonstrated here about the capabilities of FLEX.

iOS Application security analysis 34

https://github.com/Flipboard/FLEX

MSc Thesis Konstantinos Vlachos

 First of all, FLEX must be downloaded on a Macintosh device with the Xcode installed. Installation then
can be achieved by either using the CocoaPods file (Xcode version 7,8) or by adding the files of the
extracted FLEX project .zip under the “Classes/” directory of the analyzed Xcode project.
 CocoaPods is a dependency manager for Swift and Objetive-C programming languages used for iOS
development. For instance, with a simple file looking like a .yml configuration file and actually being a
Podfile, the versions of JSON, StackView and several other options can be set as described in the
CocoaPods website tutorial [21].
 After FLEX is installed by using any of the aforementioned ways, it is ready for use with the iOS
simulator but its iOS version has to be greater than 7 for FLEX to work.
Following up is a list of the capabilities this tool offers:

 Modify Views
 When a View (View is a Screen of an application, a UI element) is selected by using the floating FLEX
tab, almost anything can be changed about it including the position of text and buttons, font style and
generally all the View’s properties and method calls.

 Network History
 When enabled, network debugging allows you to view all requests made by using NSURLConnection or
NSURLSession objects. Settings allow you to adjust what kind of response bodies get cached and the
maximum size limit of the response cache. You can choose to have network debugging enabled
automatically on app launch. This setting is persisted across launches, so any network call made by the
selected application and its desired part of the HTTP response can be cached and saved.

 Objects on the Heap
 It can query all objects (NS objects like strings, arrays, variables) saved on the memory Heap.

 Simulator Keyboard shortcuts
 Within the iOS simulator several keyboard shortcuts are available as shown below:

FLEX keyboard shortcuts on
iOS simulator

iOS Application security analysis 35

MSc Thesis Konstantinos Vlachos

 File Browser
 Inspect everything within the application’s sandboxed file system from .plist file to images and
temporary generated files during the application execution. Information can be copied for lateral analysis
from the file system to the user directory too.

 SQLite Browser
 SQLite database files (.db or .sqlite) can be explored using FLEX. The database browser allows you to
view all tables, and individual tables can be sorted by tapping column headers.

 System Library Exploration
 The classes of system libraries being used can be inspected by creating an instance of them whether
they are public or private and setting the desired values of their property.

 NSUserDefaults Editing
 These are the default settings of the user in the application like values to be displayed, the object types
and their order within the application context. For instance, the language, date or the pop up keyboard
layout are some of them and can be edited.

 Finally, the option of using FLEX on third party applications is the most interesting feature. Steps to
achieve this functionality are not provided by the contributors but will be presented and explained now
as the last and most important part of FLEX.
 This can be accomplished by using code/dynamic library injection, meaning that FLEX’s dynamic
library must be added into a jail broken iOS device’s dynamic library directory.
 Note: on iOS 7 or later, MobileSubstrate framework is provided after jailbreak for loading dynamic
libraries. On previous versions, the environment variable DYLD_INSERT_LIBRARY can be used to add the
dynamic library (not tested for FLEX).
 Since XCode does not support the iOS dynamic library project development by default, it has to be
enabled by copying from the folders
folder 1:
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/S
pecifications/

folder 2:
/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/Library/Xcode/Sp
ecifications/

to a write permission directory like Desktop, the iPhoneOSPackageTypes.xcspec,
iPhoneOSProductTypes.xcspec and MacOSXPackageTypes.xcspec, MacOSXProductTypes.xcspec files
respectively. Then these files must be opened with Xcode and:

 Drag Identifier for com.apple.package-type.mach-o-dylib from the
MacOSXPackageTypes.xcspec to the iPhoneOSPackageTypes.xcspec so the last one looks like
this:

iOS Application security analysis 36

MSc Thesis Konstantinos Vlachos

 Drag Identifier for com.apple.product-type.library.dynamic from MacOSXProductTypes.xcspec
to iPhoneOSProductTypes.xcspec so the last one looks as follows:

 Save the changes and copy the two iOS files iPhoneOSPackageTypes.xcspec and
iPhoneOSProductTypes.xcspec back to their original directory
“/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/Library
/Xcode/Specifications/ ” and provide your password if prompted.

 Create a project template and copy to Desktop the entire folder
“/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/Library
/Xcode/Templates/Project Templates / Framework & Library / Cocoa Touch Static
Library.xctemplate” now open the file TemplateInfo.plist and edit the three highlighted entries
as shown below:

iOS Application security analysis 37

MSc Thesis Konstantinos Vlachos

 Save and copy back the file Cocoa Touch Dynamic Library.xctemplate to
“/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/Library
/Xcode/Templates/Project Templates / Framework & Library /”.

 Restart Xcode and select a new dynamic library Cocoa touch object (the initial goal is achieved
and Xcode can be used for dynamic library development):

Now a new project called “libFlex” must be built by selecting just the “Cocoa Touch Dynamic Library”.
This option reveals that currently Xcode was correctly modified to support dynamic library projects.

iOS Application security analysis 38

MSc Thesis Konstantinos Vlachos

 Finally, import FLEX’s code from GitHub into the project. The whole FLEX project is going to be built by
using the dynamic library project option that was just enabled in order to acquire FLEX’s dynamic library
product file after compilation. Under the file “libFlex.m” add the following code snippet:

#import "libFlex.h"
#import <UIKit/UIKit.h>
#import "FLEXManager.h"

@implementation libFlex

- (id)init
{
 self = [super init];
 if (self) {
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(appLaunched:)
 name:UIApplicationDidBecomeActiveNotification
 object:nil];
 }
 return self;
}

- (void)appLaunched:(NSNotification *)notification
{
 NSLog(@"======================= libFlex dylib show ========================");

 [[FLEXManager sharedManager] showExplorer];
}
@end

static void __attribute__((constructor)) initialize(void)
{
 NSLog(@"======================= libFlex dylib initialize ========================");

 static libFlex *entrance;
 entrance = [[libFlex alloc] init];
}

 The project is ready to be compiled. When this is done and no errors come up, the product dynamic
library needs to be copied to the iPhone device using “scp -r libFlex.dylib
root@192.168.2.2:/Library/MobileSubstrate/DynamicLibraries”. Finally, either restart the iPhone
device or ssh to it and run “killall SpringBoard” to reload every Application together with FLEX. FLEX tool
bar is available now on the device:

iOS Application security analysis 39

mailto:root@192.168.2.2

MSc Thesis Konstantinos Vlachos

FLEX toolbar loaded on iPhone – itony.me [22]

 The FLEX tool bar will be loaded for each application dynamically. If this is not required it can be
adjusted from the /Library/MobileSubstrate/DynamicLibraries directory. In this place a file with the
same name configuration file libFlex.plist must be created, so that only the specified applications will
automatically load the FLEX tool bar. The following example of the “libflex.plist” file included the tool bar
only for the four specified applications:
{
Filter = {

Bundles = ("com.sina.weibo");
Bundles = ("com.burbn.instagram");
Bundles = ("com.apple.podcasts");
Bundles = ("com.apple.iTunes");

 };
}
 This now loads the FLEX tool bar dynamically only for the four specified applications. Hence, the way
to use FLEX’s debugging powers on every single application has also been described. Interaction,
modification and changing the properties of any installed application are some of the capabilities gained
with this tool by simply injecting FLEX’s dynamic library onto the jail broken iOS device. Deeper
inspection and analysis tools are presented on the next chapter providing the Objective C runtime
method call hierarchy and arguments passed revealing valuable source code information for the reverse
engineering process.

iOS Application security analysis 40

MSc Thesis Konstantinos Vlachos

6.6 Inspective C
When the main goal is to discover the implementation of an application based on the Objective C source
code including method calls and hierarchy, there is one main tool and this is Inspective C. This tool can
currently observe Objective C objects, objects of given classes and their selectors and every single call of
the obj_msgSend method.
 Instead of the conventional way of analyzing the executable file using IDA and diving into its assembly
code, Inspective C can be used to avoid this hassle. With InspectiveC, the following aspects can be
inspected dynamically:

 Calls to a method of a class

 Every method a class may be using.

 Identify the instance object of a method call.

 The invocation of methods by their signature.

 In order to install and use the tool against iOS applications, its project from the following GitHub
repository must be first downloaded:

https://github.com/DavidGoldman/InspectiveC
Theos installation is required too (refer to Chapter 8 for further details).
Modification of the “Makefile” according to the actual iPhoneSDK version of the machine and the
machine's CPU architecture is required prior to compiling the project:

Editing the Makefile of Inspective C project before compiling it [23]

 So, the Theos tool is required now to create a .deb package file for the installation of the tool on the
iOS device. “Make” the project using Clang on your MAC and then install the product .deb file into the
iPhone device. After the installation, find libinspectivec.dylib under /usr/lib device directory and copy
this file back to your Mac under /opt/theos/lib directory. This can be done by using scp from the iPhone
to your Mac:
IPhone: ~ root # scp ./libinspectivec.dylib mac@187.87.87.102: /opt/theos/lib
(On the Mac enable scp in the system preferences - shared - remote login)
and then copy InspectiveC.h too, into $THEOS/include.

 Now you can either use inspectiveC with Cycript or with your own tweak. In case of Cycript you have to
download it first from Cydia on your iPhone and then directly hook to the process of the desired
application by using the following command:
root# cycript -p ApplicationProcess
 On the other hand, when it is used with Tweak you have to copy the “InspCWrapper.m” file from the
GitHub project to the tweak directory, and then include this file in your tweak code with:
#include "InspCWrapper.m"
iOS Application security analysis 41

https://github.com/DavidGoldman/InspectiveC

MSc Thesis Konstantinos Vlachos

This gives the capability of dynamically using Inspective C every time the tweak runs. In order to proceed
using the tool you have to refer to our chapter about tweak and Cycript usage. In any case the log output
of Objective C calls recorded by Inspective C can be found and observed in the application’s directory
/Documents/InspectiveC as follows:
Tail -f AppDir/Documents/InspectiveC/12892_main.log

(Use tail by installing Core Utilities in Cydia)

sample Objective C calls hierarchy logged output using InspectiveC [23]

 By using Inspective C, a really close look of the initial source code can be achieved. The important part
is that no assembly language is involved to this process. Following up, is the last tool of dynamic analysis
that provides runtime manipulation and interaction with the application’s running process and is called
Cycript.

6.7 Cycript
Cycript is one of the most powerful assets for the iOS application security analysis. It basically is a
Framework built on top of Cydia Substrate (refer to technical terms) that uses an interpreter of
JavaScript and Objective C languages together, providing the ability to directly interact with the running
application and modify it while running on the device. This functionality is achieved by using the
underlying Substrate stated before, allowing interaction using only plain JavaScript and-or Objective C
commands. Its official website provides all the information required to start using and learning this
concept [24].

 The power of this Framework is its interaction with the running process of an application while being
hooked into its functions. It can inspect, change class instance variables or even do method Swizzling and
replace the actual executed code with a custom one.

 Installation of Cycript on an iOS device, starts with downloading the latest version of its SDK from the
official website [24] and then moving the downloaded deb package cycript.deb to the iOS device by
using sftp:

MAC# sftp root@192.168.2.2
sftp> put cycript.deb

Then with the dpkg command (like on a standard Debian environment) the package can be installed on
the device either using ssh from the Mac or directly from the device with a terminal if such an option is
available, using the command:

iPhone# dpkg -i cycript.deb
 If everything went as expected Cycript must have been installed correctly on the device. Check this out
by typing “Cycript” into a terminal on the iPhone. This should drop you into a cycript shell/prompt as
shown in the figure below:

Cycript prompt on iPhone [25]

iOS Application security analysis 42

mailto:root@192.168.2.2

MSc Thesis Konstantinos Vlachos

 When the interpreter is correctly installed it can be used against running applications on the device. An
interesting example is interacting with a Photovault application [26] using Cycript and manage to bypass
the security code required to browse photos.

 To begin with, the analyzed application must be running and be on the foreground. Any other state
leaves Cycript with no hooking capabilities because the application would be paused. The home screen
of this specific application prompts for the password input:

PhotoVault application home screen [26]

 Its corresponding process id is required now (as far as the application is in a running state). This can be
obtained using the command “ps -ax | grep “AppName” on the iPhone device over the ssh shell on the
Mac OSX:

hooking into application process with Cycript [26]

 The first Objective C command that is always used in Cycript is UIApp (short for [UIApplication
sharedApplication]) on iOS and [NSApplication sharedApplication] on OSX applications. These are the
basic application instance objects of Objective C that all methods and subclasses inherit from. An
equivalent to the “Object” class in Java.

 Having this object stored, you can later move deeper on the hierarchy of class and method calls to
retrieve any possible child class object used by the application. In the previous figure for example, the
delegate Class instance is obtained using the basic UIApp instance. The delegate class is defined for the
application to conform to the UIApplication protocol and must implement some of the protocol’s
methods. The application object informs the delegate of significant runtime events like the application
launch, low-memory warnings, and application termination, giving the opportunity to respond
appropriately.

 All the method calls can be discovered using the “intermediate” delegate object’s name
“AppDelegate” against a class-dump file containing all the class and method calls available (created

iOS Application security analysis 43

https://developer.apple.com/documentation/uikit/uiapplicationdelegate

MSc Thesis Konstantinos Vlachos

using the class-dump tool). By simply searching for the interface of AppDelegate class inside the class
dump file all the method calls can be found:

method calls of application using its delegate object instance name [26]

 The interesting part found here is the call of method (void)pinLockControllerDidFinishlocking; that
easily reveals its functionality of being called when the outcome of unlocking status check is true,
probably somewhere within the rest of the application’s code without any arguments. So, by calling this
method directly by using Cycript (no arguments required), the application’s process could be tricked into
a complete and successful password check that never took place. With the following Cycript command
the method is called directly as described:

calling a method out of applications runtime flow using Cycript [26]

 And eventually on the iPhone device, the application has changed state and opened up the photo
albums meaning that the Cycript commands successfully skipped the password vault check with a simple
method call:

iOS Application security analysis 44

MSc Thesis Konstantinos Vlachos

Password Vault step bypassed with Cycript on PhotoVault application [26]

 This simple example of hacking an iOS application with Cycript, is based on Cycript’s capability of
directly by calling instances of methods during runtime. In any other case, this could not be achieved by
changing the application’s assembly for example, due to the validation mechanism present on every iOS
application (code signing). Another very interesting way of using Cycript is method swizzling.

Method swizzling with Cycript

As already mentioned, Objective C is a runtime language. This allows modification or replacement of the
existing methods source code dynamically, something known as method swizzling. This feature can be
leveraged using Cycript. For demonstration purposes, a demo application called “HackTest” that requires
a password to login will be used. The login feature must be overridden by replacing the specific method
of the application that implements this step.
 This sample application is an unofficial .ipa file that can be found online for security testing purposes
[26]. After launching it on an iPhone device and providing a wrong password it arises the following error:

HackTest application Home screen [26]

 Now using an ssh connection to the iPhone device, Cycript must be launched against the application’s
process. After being hooked to the application’s instance object UIApp, the delegate class instance must
be also retrieved, in order to locate the interactive method calls by using this instance’s name as a search
term in the class-dump tool’s exported .txt file. The interface of the AppDelegate object inside the class-
dump.txt file section and its method calls are the following:

iOS Application security analysis 45

MSc Thesis Konstantinos Vlachos

delegate object’s Interface method calls found in class-dump export file [26]

 The method validatePasscode is declared in the ViewController interface and the ViewController
instance is present in the AppDelegate interface. Hence the ViewController instance is required to access
the validatePasscode method. Back on Cycript using the “UIApp.delegate.viewController” command,
the ViewController instance is grabbed and then with “UIApp.delegate.viewController-
>isa.messages[‘validatePasscode’]=function (){return 1;}” the function is overridden and always returns
the value 1. isa is a pointer of the class structure and gives access to the method implementation in
Cycript.

Overriding the ValidatePasscode function using cycript method swizzling [26]

 The application changed state and the login screen is bypassed without providing the actual password:

HackTest application password login successfully overridden [26]

iOS Application security analysis 46

MSc Thesis Konstantinos Vlachos

 What was actually done here, is an interaction with the application’s viewController object. This is
responsible for the View interactions (touch and input) of the user and a change of the code being
executed by its method for checking the password was done to return true (1). That tricked the
viewController and its running flow to proceed with the next View of the application which is the main
View.
 This example demonstrates accurately how the runtime nature of Objective C (message based
implementation during runtime) can be manipulated by using Cycript and less than 5 commands in total.
The capabilities of this framework are many more but cannot be totally covered in this research. For
further investigation and practice, the official website and even YouTube video series on this topic [27]
are a great resource to understand and learn its numerous capabilities and options.
 Runtime analysis ends with Cycript, one of the most powerful tools available for dynamic application
analysis, to proceed with the chapter of data protection on the iOS.

iOS Application security analysis 47

MSc Thesis Konstantinos Vlachos

CHAPTER 7

DATA PROTECTION

Data protection is another critical section when testing iOS applications. These applications are
susceptible to loss and theft and sensitive information like cached data may get copied to syncing
machines. Researches reveal that the iPhone does cache sensitive information like keystrokes and
snapshots for extended periods of time. Additionally, the application itself may be storing sensitive
information in form of temporary files, .plist files or in the client-side SQLite database.
 The basic sources that may expose sensitive information are sections where an application
permanently or temporarily stores information. These sources may be the user input which is stored in
the Keyboard cache for Autocomplete purposes, the SQLite database entries for permanent data storage
and any of the temporary snapshots of an application window while it is moving to the background on
the device home button press. The subject of this chapter is to demonstrate the ways in which these
sources can be leveraged, in case the application developers did not take into consideration the
appropriate security countermeasures.

7.1 Keyboard cache
The first and most important data source is the user input. An iPhone device can cache all the user
keystrokes under:
~/Library/Application Support/iPhone Simulator/4.0.1/Library/Keyboard/dynamic-text.dat
 This feature may be present on an application, based on the implementation techniques of the
developers. It is similar to the AUTOCOMPLETE feature on other devices and web browsers. Regarding
iOS, the AUTOCOMPLETE feature has to be set to off in UITextField, otherwise the text field input of the
application will get cached on the aforementioned directory [2].
 The most important thing is that passwords never get cached for these fields regardless the value of
AUTOCOMPLETE flags. Below is an example of a dynamic-tex.dat file containing keyboard cache and it is
being viewed with a HEX editor:

keyboard cache file of iOS [27]

 Potentially, almost any information provided in a text form as user input, may be directly accessible on
an attempt to penetrate into an iOS device. Once again, everything except passwords (they are
encrypted by default). Another way, in which user input or data could be gathered, is directly from the
screen when a part of it is captured as a snapshot.

iOS Application security analysis 48

MSc Thesis Konstantinos Vlachos

7.2 Snapshots
Snapshots are actual images/screenshots taken by the application, whenever a user pushes the Home
button. This helps creating the shrinking effect while the active application’s window disappears.

 They are stored in the snapshots directory of the application, for example a “Sample” application
stores them at “~/Library/Application Support/iPhone Simulator/4.0.1/Applications/RANDOM-
NUMBER /Library/Caches/Snapshots/com.yourcompany.Sample”.

 Applications may thus, not mask sensitive information on the screen sometimes, allowing not only
shoulder surfing attacks but also information leakage from such snapshots. Below is an example of a
snapshot from a sample application:

application snapshot on iOS [28]

 The type of data pictured in a snapshot may vary from username and credit card number input fields
to extended messaging conversations or email contents. This is may be a great opportunity for
information gathering. Applications also store data, either temporary or permanently. Temporary data
are stored in the UIPasteBoard.

7.3 UIPasteBoard
This is a common storage space for applications to copy and paste temporary data being used. If an iOS
application uses this feature, information could be obtained by other applications from the clipboard
too. There is also an option for developers to use the persistent pasteboard in order to keep data
available after application termination. This leads to copied data being stored unencrypted under:
“~/Library/Application Support/iPhone Simulator/4.0.1/Library/Caches/com.apple.UIKit
.pboard”
 In cases that the pasteboard is being used, there is a good chance sensitive information can be
obtained if no private pasteboard is being used instead. Finally, the permanent storage space on iOS is
the SQLite database.

iOS Application security analysis 49

MSc Thesis Konstantinos Vlachos

7.4 SQLite Database
Usually a well-designed iOS application stores most of the user data on the server side. In some cases
though, data has to be stored on the client side (on the iOS device) and this is accomplished by using the
SQLite database, which also leads to sensitive information like user names and credit card numbers
being saved, sometimes unencrypted, on the device’s file system.

 To read an application’s SQLite entries, any SQL client can be used like the Firefox add on “SQLite
Manager”. Moreover, in case the data is stored without encryption (the use of SQLite storage with
encryption becomes usually too complicated regarding the key management while developing an
application), much more interesting information can be found in the database [27].

 Here are some SQLite entries of an address book stored on an application’s database unencrypted:

Address book in SQLite [29]

 This is an example of database information that can potentially be exposed unencrypted from an iOS
application in its database files. There may be several other sources to look for sensitive data when
analyzing an application, but the ones described in this “Data Protection” chapter, usually hold most of
the valuable information and are the main targets of iOS hackers.

 The rest of this document, is dedicated to an extensive break down and explanation of all the technical
terms that were used throughout this research. Finally, in the conclusion chapter, the assumptions are
made about the topic being discussed and further resources are also provided.

iOS Application security analysis 50

MSc Thesis Konstantinos Vlachos

CHAPTER 8

TECHNICAL TERMS

This chapter aims to explain all the technical iOS terms that were used and referenced throughout this
research. It should be used as a reference guide while studying the previous chapters and come across
any of the following terms:

8.1 .ipa files
.ipa originally stood for iPhone Archive but after iOS was released it stands for iOS App Store Package.
Every .ipa file is a compressed application archive including a binary file for the ARM architecture, that
can only be installed on iOS devices. By changing the extension from .ipa to .zip and then unzipping it, all
the contents of this archive can be viewed.

 An ipa archive has a standard built-in structure for being recognized by iTunes and the App Store. This
structure consists of the following:

/Payload/
/Payload/Application.app
/iTunesArtwork
/iTunesArtwork@2x
/iTunesMetadata.plist
/WatchKitSupport/WK

 The Payload folder contains all the application data. The iTunes Artwork file is a 512×512 pixel PNG
image, containing the application's icon being displayed in iTunes and the App Store. The
iTunesMetadata.plist contains various bits of information, ranging from the developer's name and ID, the
bundle identifier, copyright information, genre, the name of the application, release date and purchase
date [30].

 The picture below graphically explains the structure of this compressed application file:

iOS Application security analysis 51

https://en.wikipedia.org/wiki/ITunes
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://en.wikipedia.org/wiki/Payload_(computing)
https://en.wikipedia.org/wiki/App_Store_(iOS)
https://en.wikipedia.org/wiki/ITunes

MSc Thesis Konstantinos Vlachos

.ipa file structure [31]

 An unsigned .ipa can be created by copying the folder with the extension .app from the Products folder
of the application in Xcode to a folder called Payload and compressing the latter using the command:

zip -0 -y -r myAppName.ipa Payload/

 It is then possible to install unsigned .ipa files on jail broken devices using third party software.

8.2 Tweak
iOS invasion cannot be separated from the development of jailbreak. The invasion is built on the basis of
jailbreak. Without system-level authority (root) nothing special can be accomplished other than dealing
with the flow of a specific application. Of course, free jailbreak crack patches exist on the market, but its
development process is also based on the environment they are escaping from.

 In the hacker community of iOS, to do crack or jailbreak development, tweaks are essential. Tweak is a
variety of crack patch collection. The use of tweak as a search term on google, regarding jailbreak
development information or open source crack patch code, brings up the best results.

iOS tweak is divided in two types:

➢ The first is released in the Cydia and requires a jailbroken device in order to be installed. Most
of the .deb format installation packages will default to install a dynamic library called
mobilesubstrate (see later on this chapter). Its role is to provide a system-level intrusion
Pipeline on which tweak can rely on for development. The current mainstream tweak
development tools are theos and iOSOpenDev. The former is a compilation of Makefile
framework, which provides a set of XCode project templates, it can directly use XCode
development and can also be debugged. Even though this project has stopped updating and
the latest version of Xcode support is not good, Theos remains the best option for developing
and making your own tweaks, as community took over the update and maintenance of the
whole project right now.

➢ The second type of tweak, is directly packaged into an ipa installation package which can use
its own development certificate or enterprise certificate signature and can also be installed
without jailbreak, by directly downloading it from the developer’s website. Dealing with
devices without a jailbreak though, due to Permissions restrictions, there is no way to write
system-level tweak. These tweaks are mostly used for an application to modify its injection
process, and then re-sign and publish it. This is a similar process to the windows software
cracking.

 Summarizing, without escaping/jailbraking the machine and no mobilesubstrate dynamic system
library available, there are only two options available. The first one is interacting directly with the
application’s library into its ipa file and using its API to achieve injection. The second is directly modifying
the application’s assembly code.

 The first option applies to more complex crack behavior, and the jailbreak tweak code can be reused.
The second one, applies to cracking some if ... else ... like conditional statements or simple parts of the
application’s code through its assembly code.

iOS Application security analysis 52

MSc Thesis Konstantinos Vlachos

 Tweaks can be used to alter the implementation of an application method by hooking on it and are
written and built by using the Theos framework that is described later on this chapter.
 A great example of a tweak development with Theos for bypassing iOS’ Safari restriction of viewing
system files using the url bar, is described on the following link:

https://testeaxeax.blogspot.gr/2016/09/a-first-look-at-tweak-development.html

8.3 Mobile Substrate
Cydia (Mobile) Substrate, is a framework and development library used to make modifications to code
written by other developers. This library is the foundation of most of the interesting hacks found on the
iPhone.

 It can also be used on Android (Native or Java). In any case, the first step to writing an extension is
knowing where the code to be modified lives, and then making certain the modifications get loaded to
those places. This will typically be done using the names of specific processes or libraries. Substrate
extensions are compiled to dynamic libraries (using the extension .dylib) and are placed in the Substrate
Dynamic Libraries folder on iOS/Darwin under “/Library/MobileSubstrate/DynamicLibraries”.
It consists of 3 parts:

1. MobileHooker which is used to replace system functions.

2. MobileLoader that loads 3rd-party patching code into the running application using
DYLD_INSERT_LIBRARIES environment variable.

3. Safe Mode used when an extension crashed the SpringBoard, MobileLoader will catch that and
put the device into safe mode while disabling all other 3rd party extensions.

More information about its usage and configuration for iOS can be found at the following links:
(usage-manual)

http://iphonedevwiki.net/index.php/MobileSubstrate
(configuration)

http://www.cydiasubstrate.com/inject/darwin/

8.4 Jail broken device
Jail breaking is the privilege escalation process for removing software restrictions imposed by Apple on
iOS while full execute and write access is obtained on all the partitions of the device. This is done by
using a series of kernel patches similar to “rooting” an Android device. Jail breaking provides root access
to the iOS, allowing a user to download and install additional applications, extensions, and themes that
are not available on the official App Store.

 When a device is booting, it loads Apple's own kernel initially. A jail broken device must be exploited
and have the kernel patched each time it is being booted up. An untethered jailbreak uses exploits that
are powerful enough to allow the user to reboot their device, and the kernel will be patched without the
help of a computer on the next start up.

 However, some jailbreaks are tethered meaning that they are only able to temporarily jailbreak the
device during a single boot [2].

iOS Application security analysis 53

http://www.cydiasubstrate.com/inject/darwin/
http://iphonedevwiki.net/index.php/MobileSubstrate
http://koichitamura.blogspot.com/2008/11/hooking-library-calls-on-mac.html
https://testeaxeax.blogspot.gr/2016/09/a-first-look-at-tweak-development.html

MSc Thesis Konstantinos Vlachos

8.5 Nsobjects
NSObject is the root class of the Objective-C class hierarchies, from which subclasses inherit a basic
interface to the runtime system and the ability to behave as Objective-C objects. In other words, this is
the base class of Objective C language and every other subclass object inherits from it. Therefore, any
type of object like NSString is an Objective C subclass object that inherits from the basic NSObject class.
It is like the Object class in Java programming language.

8.6 obj_MsgSend
This is a basic Objective C method that sends a message with a simple return value to an instance of a
class. When it encounters a method call, the compiler generates a call to one of the functions objc_msg,
objc_msg, objc_msg, or objc_msg. Hence, the actual mechanism that makes Objective C a runtime
language and not pre-determined upon compilation is the use of this method.

8.7 Cydia
Cydia is a package manager mobile app for iOS that enables a user to find and install software packages
on jail broken iOS devices. It also refers to the digital distribution platform for software on iOS accessed
through Cydia software. Most of the software packages available through Cydia are free of charge but
some require purchasing. It is like having a free version of the AppStore available for a jail broken device,
equipped with third party applications that originally are not available for standard devices.

 Compared to Android, it is similar to Aptoide for the end user but for developers it is a place to publish
their third party applications, ranging from simple ones to jailbreak tweaks.

8.8 Theos

Theos is a cross-platform suite of tools for building and deploying software for iOS and other platforms.
It was initially the “iPhone-framework”, a project created to simplify building code from command line
for iOS devices (primarily jail broken devices). It later underwent significant changes and became Theos,
a flexible Make-based build system primarily for jailbreak software development that also provides
complete support for building code for other supported platforms. Theos runs and can build projects for
macOS, iOS, Linux, and Windows (under Cygwin or Windows Subsystem for Linux).

 Information about Installation and configuration are available online at the following link:
https://github.com/theos/theos/

 After installation is complete, Theos offers several template project options to start from. Start up by
running its New Instance Creator (NIC) wizard with the command “$THEOS/bin/nic.pl”. This prompts
with the information required to create a new project as shown below:
$ $THEOS/bin/nic.pl
NIC 1.0 - New Instance Creator

 [1.] iPhone/application
 [2.] iPhone/library
 [3.] iPhone/preference_bundle
 [4.] iPhone/tool

iOS Application security analysis 54

https://github.com/theos/theos/
https://msdn.microsoft.com/commandline/wsl/about
https://cygwin.com/
https://www.gnu.org/software/make/

MSc Thesis Konstantinos Vlachos

 [5.] iPhone/tweak
Choose a Template (required): 1
Project Name (required): iPhoneDevWiki
Package Name [com.yourcompany.iphonedevwiki]: net.howett.iphonedevwiki
Authour/Maintainer Name [Dustin L. Howett]:
Instantiating iPhone/application in iphonedevwiki/...
Done.
$
 The rest of the process is clearly presented with an extensive example on the following link, that is
included under the Tweak section too:

https://testeaxeax.blogspot.gr/2016/09/a-first-look-at-tweak-development.html
 This cannot be fully explained, as it reaches out of the purpose of this research (which is not to teach
coding of tweaks, Cycript or Objective C commands).

iOS Application security analysis 55

https://testeaxeax.blogspot.gr/2016/09/a-first-look-at-tweak-development.html

MSc Thesis Konstantinos Vlachos

CHAPTER 9

CONCLUSION

This purpose of this research is to provide a step by step guide of the installation procedure and actual
usage of the most essential available Open Source tools an iOS application security analyst would need
to analyze and find possible security flaws on any specific iOS application.

 First of all, the procedure of setting up the appropriate testing environment and reverse engineering
any .ipa file or Xcode project package for further static or dynamic analysis is described. Then comes the
part of the interaction with an application and the modification of its running flow by hooking into its
process or doing a method swizzling to achieve the desired outcome.

 In many cases, details about the reverse engineering process or the way a code snippet is written were
left aside (e.g. Cycript syntax, tweak development, Objective C code) because this is not what this
document aims to describe. This aims to be a guide about the Open Source tools the iOS application
security analyst should use, the way they should be set up on the analysis environment and the crucial
information and examples required to understand their functionality. A basic knowledge of the iOS
operating system must be present by the reader though and some interaction with Objective C and its
runtime behavior is considered enough.

 After being familiar with these terms, this document can be easily used as a handbook for the tools
that may come in handy by the time an iOS application must be analyzed by a security perspective.

 Apple gives a great amount of effort to keep its operating system and users secure. This leads to iOS
being one of the most secure mobile device operating systems and very little knowledge is publicly
available about exploitation techniques and tutorials or complete and step by step guides on this topic.

 The best resource can be any Chinese blog or repository website that still have valuable information
available online about exploitation techniques and iOS application security analysis. Chinese hackers
were responsible for the well-known Pegasus Exploit too, that can be found online (pdf file) [32] and is a
good point to understand what it takes to fully exploit the iOS using an exploitation chain of even kernel
exploits. The Chinese Pangu team could not be left aside too, as it is responsible for most of the jail brake
exploits published for almost any iOS version [33]. To sum up, further research should also be based on
Chinese resources along with any of the following resources provided at the end of this document.

 There are some great books too, being listed below, in order to fully understand the iOS and the way
applications can be hacked or even study known techniques on how a penetration test is delivered to
them:

➢ iOS Hacker’s Handbook (Charlie Miller, Dion Blazakis, Dino DaiZovi, Stefan Esser, Vincenzo
Iozzo, Ralf-Philip Weinmann).

➢ Mac OS X and iOS Internals: To the Apple's Core (Jonathan Levin).

➢ iPhone and iOS Forensics: Investigation, Analysis and Mobile Security for Apple iPhone, iPad
and iOS Devices (Andrew Hoog, Katie Strzempka).

➢ Hacking and Securing iOS Applications: Stealing Data, Hijacking Software, and How to Prevent
It (Jonathan Zdziarski)

iOS Application security analysis 56

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Ralf-Philip+Weinmann
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Vincenzo+Iozzo
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Vincenzo+Iozzo
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Stefan+Esser
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Dino+DaiZovi
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Dion+Blazakis
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Charlie+Miller
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Jonathan+Zdziarski&search-alias=books&field-author=Jonathan+Zdziarski&sort=relevancerank
https://www.amazon.com/Katie-Strzempka/e/B00535FL4C/ref=dp_byline_cont_book_2
https://www.amazon.com/Andrew-Hoog/e/B0050OWD5Q/ref=dp_byline_cont_book_1
https://www.amazon.com/Jonathan-Levin/e/B008ZF7ZKK/ref=dp_byline_cont_book_1

MSc Thesis Konstantinos Vlachos

 Summarizing, this thesis proves that everyone interested in iOS security can easily get started, even
with minimum cost (when the iOS simulator is used instead of an actual device), by setting up a
complete Open Source testing environment. Another important note is that Apple already made iOS
Open Source except the kernel that is nothing more than a Darwin kernel, like the one used in the OSX
and as newer versions come up, it is easily observed that version numbers of these kernels are way too
close, so is their source code. Rumors has it that iOS kernel will be Open Sourced too. In any way, there is
a good chance that if a kernel exploit for the OSX kernel is found, it will be easily applicable to the iOS
kernel too as newer versions are being released. This document is a simple entry point for security
research on the iOS platform and it does not describe kernel exploitation, which already is a hot security
topic due to its advanced security mechanisms.

 As far as the iOS’ programming language is concerned, this research is fully based on Objective C.
Everything seems that Apple is planning on replacing it though, including the C language used for the
kernel with the Swift programming language. All the described tools currently work with Objective C and
even on iOS 11 they can still be used. On the other hand, a shift to the Swift language is going to be a
necessary step for every iOS security researcher and developer in the future.

 Finally, it should be acknowledged that all the information presented in this document are a product of
online research and personal effort to implement every step on each section or collect and even take the
actual screen shots in many cases using my own testing environment. For every information used by
another source/author a corresponding reference is available under the “Resources” chapter.

 Here are some more interesting resources for further research and in-depth analysis of iOS application
security. One of the greatest is Prateek Gianchandani’s website of Damn Vulnerable iOS Application
(DVIA) [34], a vulnerable by design iOS application for testing purposes. A wide variety of papers and
presentations regarding iOS security researches can also be found on securitylearn.com [35]. Last but
not least, is the infosecinstitute website where several tutorials and topics are analyzed regarding iOS
security [36].

iOS Application security analysis 57

MSc Thesis Konstantinos Vlachos

RESOURCES
[1] 8/12/2015 iOS Exploits - iOS - EDG Confluence:
https://wikileaks.org/ciav7p1/cms/files/iOS%20Exploits%20-%20iOS%20-%20EDG%20Conflu-
ence.pdf
[2] ISBN-13: 978-1449318741 by Jonathan Zdziarski (Author): Hacking and Securing iOS Applications:
Stealing Data, Hijacking Software, and How to Prevent It 1st https://www.amazon.com/Hacking-Se-
curing-iOS-Applications-Hijacking/dp/1449318746
[3] iDevice Central YouTube channel https://www.youtube.com/user/leonteiz

[4] Apple iOS Security Guide https://www.apple.com/business/docs/iOS_Security_Guide.pdf

[5] Usenix: Jekyll on iOS https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-
paper_wang-updated-8-23-13.pdf

[6] Application entitlements – developer.apple.com
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuid
e/AddingCapabilities/AddingCapabilities.html

[7] CVE-2016-7630 iOS exploit via Wi-Fi – Marco Grassi (Blackhat Asia 2017)
https://www.youtube.com/watch?v=bP5VP7vLLKo

[8] iOS Hacker’s Handbook – Charlie Miller - https://www.amazon.com/iOS-Hackers-Handbook-
Charlie-Miller/dp/1118204123

[9] Otool – iphonedevwiki.net
http://iphonedevwiki.net/index.php/Reverse_Engineering_Tools#otool

[10] class-dump tool – Steve Nugard

http://stevenygard.com/projects/class-dump/

[11] iOS application security analysis - getting class information
http://highaltitudehacks.com/2013/06/16/ios-application-security-part-2-getting-class-information-
of-ios-apps/

[12] Mobile Application Penetration Testing – Vijay Kumar Velu

https://www.packtpub.com/application-development/mobile-application-penetration-testing

[13] iNalyzer tool – GitHub

https://github.com/appsec-labs/iNalyzer

[14] infosecinstitute.com – Static Analysis of IOS Applications using iNalyzer

http://resources.infosecinstitute.com/part-15-static-analysis-of-ios-apps-using-inalyzer/

[15] developer.apple.com – Instruments User Guide

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/Instrume
ntsUserGuide/index.html

[16] developer.apple.com – Launching Instruments

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/Instrume
ntsUserGuide/LaunchingInstruments.html

[17] clang-analyzer

https://clang-analyzer.llvm.org/xcode.html
iOS Application security analysis 58

https://clang-analyzer.llvm.org/xcode.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/LaunchingInstruments.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/LaunchingInstruments.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/index.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/index.html
http://resources.infosecinstitute.com/part-15-static-analysis-of-ios-apps-using-inalyzer/
https://github.com/appsec-labs/iNalyzer
https://www.packtpub.com/application-development/mobile-application-penetration-testing
http://highaltitudehacks.com/2013/06/16/ios-application-security-part-2-getting-class-information-of-ios-apps/
http://highaltitudehacks.com/2013/06/16/ios-application-security-part-2-getting-class-information-of-ios-apps/
http://stevenygard.com/projects/class-dump/
http://iphonedevwiki.net/index.php/Reverse_Engineering_Tools#otool
https://www.amazon.com/iOS-Hackers-Handbook-Charlie-Miller/dp/1118204123
https://www.amazon.com/iOS-Hackers-Handbook-Charlie-Miller/dp/1118204123
https://www.youtube.com/watch?v=bP5VP7vLLKo
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_wang-updated-8-23-13.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_wang-updated-8-23-13.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.youtube.com/user/leonteiz
https://www.amazon.com/Hacking-Securing-iOS-Applications-Hijacking/dp/1449318746
https://www.amazon.com/Hacking-Securing-iOS-Applications-Hijacking/dp/1449318746
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Jonathan+Zdziarski&search-alias=books&field-author=Jonathan+Zdziarski&sort=relevancerank
https://wikileaks.org/ciav7p1/cms/files/iOS%20Exploits%20-%20iOS%20-%20EDG%20Confluence.pdf
https://wikileaks.org/ciav7p1/cms/files/iOS%20Exploits%20-%20iOS%20-%20EDG%20Confluence.pdf

MSc Thesis Konstantinos Vlachos

[18] Getting started with clang analyzer – lowlevelbits.org

https://lowlevelbits.org/getting-started-with-llvm/clang-on-os-x/

[19] developer.apple.com – Dtrace

https://en.wikipedia.org/wiki/DTrace

[20] highaltitudehacks.com - iOS application security – understanding the objective c runtime

http://highaltitudehacks.com/2013/06/16/ios-application-security-part-3-understanding-the-
objective-c-runtime/

[21] cocoapods.org – Get Started with FLEX

http://cocoapods.org/?q=FLEX

[22] itony.me – FLEX with iPhone applications

https://itony.me/774.html

[23] Use Inspective C to view the call stack – bbs.iosre.com

http://bbs.iosre.com/t/inspectivec/1584

[24] Cycript

http://www.cycript.org/

[25] resources.infosecinstitute.com - Runtime analysis using Cycript

http://resources.infosecinstitute.com/ios-application-security-part-4-runtime-analysis-using-cycript-
yahoo-weather-app/#gref

[26] www.securitylearn.net – Runtime analysis with Cycript

http://www.securitylearn.net/tag/pentest-iphone-applications/

[27] Keyboard Cache - securitylearn.net

http://www.securitylearn.net/tag/iphone-keyboard-cache/

[28] thehackpot.blogspot.gr - Unintended Data leakage

http://thehackpot.blogspot.gr/2015/08/unintended-data-leakage-application.html

[29] iOS forensics – bilgiguvelnik.net

http://www.bilgiguvenlik.net/2012/05/ios-forensic.html

[30] IPA File Format – theiphonewiki.com

https://www.theiphonewiki.com/wiki/IPA_File_Format

[31] The Structure of an iOS App – gowithfloat.com

https://gowithfloat.com/2011/11/re-signing-an-ios-app-without-xcode/

[32] outlook – Pegasus exploit analysis

https://info.lookout.com/rs/051-ESQ-475/images/pegasus-exploits-technical-details.pdf
[33] team Pangu
http://en.pangu.io/
[34] DVIA – Prateek Gianchandani
http://damnvulnerableiosapp.com/
[35] iOS hacking collection – securitylearn.net
http://www.securitylearn.net/2012/06/13/iphone-hacking-resource-collection/

[36] http://resources.infosecinstitute.com/

iOS Application security analysis 59

http://resources.infosecinstitute.com/
http://www.securitylearn.net/2012/06/13/iphone-hacking-resource-collection/
http://en.pangu.io/
https://info.lookout.com/rs/051-ESQ-475/images/pegasus-exploits-technical-details.pdf
https://gowithfloat.com/2011/11/re-signing-an-ios-app-without-xcode/
https://www.theiphonewiki.com/wiki/IPA_File_Format
http://www.bilgiguvenlik.net/2012/05/ios-forensic.html
http://thehackpot.blogspot.gr/2015/08/unintended-data-leakage-application.html
http://thehackpot.blogspot.gr/
http://www.securitylearn.net/tag/iphone-keyboard-cache/
http://www.securitylearn.net/tag/pentest-iphone-applications/
http://resources.infosecinstitute.com/ios-application-security-part-4-runtime-analysis-using-cycript-yahoo-weather-app/#gref
http://resources.infosecinstitute.com/ios-application-security-part-4-runtime-analysis-using-cycript-yahoo-weather-app/#gref
http://www.cycript.org/
http://bbs.iosre.com/t/inspectivec/1584
https://itony.me/774.html
http://cocoapods.org/?q=FLEX
http://highaltitudehacks.com/2013/06/16/ios-application-security-part-3-understanding-the-objective-c-runtime/
http://highaltitudehacks.com/2013/06/16/ios-application-security-part-3-understanding-the-objective-c-runtime/
https://en.wikipedia.org/wiki/DTrace
https://lowlevelbits.org/getting-started-with-llvm/clang-on-os-x/

