MSc Thesis Konstantinos Vlachos

University of Piraeus — Department of Informatics
Master Program in
«Informatics»

Postgraduate Thesis

Thesis Title (i0S application Security Analysis)

Student First and Last Name | Konstantinos Vlachos

Father’'s Name Georgios
Registration Number MPSP15011
Supervisor Konstantinos Patsakis, Assistant Professor

Delivery Date November 20, 2017

iOS Application security analysis

MSc Thesis

Konstantinos Vlachos

(signature)

Constantinos Patsakis
Assistant Professor

iOS Application security analysis

Three-member Examination Board

(signature) (signature)
Efthimios Alepis Panagiotis Kotzanikolaou
Assistant Professor Assistant Professor

MSc Thesis

TABLE OF CONTENTS

Konstantinos Vlachos

Abstract page 5
1. Introduction page 6
2. Prerequisites page 9
2.1 Install Xcode page 9
2.2 i0S Simulator page 11
3. Run-Load an application into Xcode page 14
4, Decompiling an iOS application page 15
4.1 otool page 15
4.2 class-dump page 17
4.3 Clutch (decrypt device binaries) page 18
4.4 Dumpdecrypted (Running app decryption) page 19
5. Static Code Analysis page 23
5.1 Xcode Analyzer page 23
5.2 iNalyzer (Static analysis) page 26
6. Dynamic Analysis page 28
6.1 Instruments page 28
6.2 iNalyzer (dynamic) page 30
6.3 Dtrace page 30
6.4 GDB (Runtime analysis) page 31
6.5 FLEX page 34
6.6 InspectiveC page 41
6.7 Cycript (runtime analysis) page 42
7. Data Protection page 48
7.1 Keyboard cache page 48
7.2 Snapshots page 49
7.3 UlPasteBoard page 49
7.4 SQlite Database page 50
8. Technical Terms page 51
8.1 .ipa files page 51
8.2 tweak page 52
iOS Application security analysis 3

MSc Thesis Konstantinos Vlachos

8.3 MobileSubstrate page 53
8.4 jailbroken device page 53
8.5 Nsobjects page 54
8.6 obj_Msg page 54
8.7 Cydia page 54
8.8 Theos page 54
9. Conclusion page 56
Resources page 58

iOS Application security analysis 4

MSc Thesis Konstantinos Vlachos

ABSTRACT

The purpose of this research is to explain the nature of the Apple iOS applications and provide all the
available Open Source tools for analyzing them, starting from decrypting any application’s binary
downloaded from the AppStore to reverse engineering it and even altering the flow of its running
process on the actual device.

We start introducing the basic theory of the iOS operating system and its applications including the
security mechanisms incorporated by Apple that are also the main targets of every iOS exploit or
jailbreak developer. The next step is to describe the process of setting up the testing environment with a
Macintosh OS and the Xcode IDE and/or an actual jailbroken iOS device (iPhone, iPad, iPod). The rest of
the chapters describe the installation and usage of tools to implement the whole application security
analysis procedure, starting from static to dynamic analysis, after having decrypted and reverse
engineered the application’s binary and even interacting in an unplanned manner with the running
process to change its method calls or arguments.

A walk through on Data Protection on iOS follows, describing possible ways of data leakage on such
devices. Finally, a chapter is dedicated to further in-depth explanation of important technical terms used
throughout the whole document. The dissertation concludes, in the last phase. In this chapter, it is being
assumed that for every step in application security analysis on the iOS platform the appropriate tools
have been provided in this document. Further suggestions for research are being provided for those
interested too.

DISCLAIMER: All the tools, software and commands used throughout this dissertation are
strictly restricted to the scope of this research and have not been used, in any case,
against Apple's commercial products like devices or software. lllegal use of any of the
reported tools is not allowed and is your own responsibility!

iOS application security analysis 5

MSc Thesis Konstantinos Vlachos

CHAPTER 1

INTRODUCTION

The default programming language used for developing iPhone / iPad applications is Objective C, which
brings back the dreaded buffer overflows that were a non-issue for J2ME and mobile .NET environments.
There have been several buffer overflow vulnerabilities already published against the iPhone operating
system, as will be discussed below. These applications can also be a combination of native and web
applications opening the possibility of both Cross-Site Scripting (XSS) and Cross Site Request Forgery
(XSRF) on top of the buffer overflows. However, Apple iOS devices (iPhone, iPad, iPod) also have their
own vulnerabilities that are known to have been exploited like Kernel exploits (heap overflow, APl Kext
misuse), Sandbox misconfiguration, entitlements leverage and many more [1].

Sometimes the vulnerabilities are found in the actual operating system and other times they are found
in the installed software. To fully compromise such a device, the first entry point of interaction has to be
exploited which is going to be most of the times a third party installed application or a system
application or a combination of them through their entitlements interaction. Therefore, our main focus
in this document is to create a baseline tutorial which provides the knowledge and tools to find any
possible security flaw in iOS applications.

As commonly known, Apple puts a great amount of effort to provide its systems and end users with
security and privacy. This leads to few detailed resources available online about the current topic
regarding step by step guides on iOS application security analysis and potential exploitation. An effort to
provide such a walk-through guide is also the current document’s purpose.

Firstly, the context in which applications run within the iOS must be broken down and understood. The
iOS uses a very similar to the OSX kernel the XNU based on Darwin, that functions underneath almost
the same way as Unix like Operating System. This leads to file and folder permissions of two types:

® read-write: everyone reads or writes this file or directory.

® Read-only: only the user of the application (owner) writes to it.

The users available on the iOS are mobile (user running the application with restricted permissions “501”
uid) and root (super user can be used by others and not the actual system only on jailbroken devices). [5]

Every application is running in a sandbox, an environment where code is deemed untrusted and is iso-
lated from other resources and processes of the operating system. Apple also allows access to the device
resources through classes to specific interfaces like Camera, microphone, GPS but prevents the applica-
tion from directly accessing those components providing only an API that interacts with the Kernel ex-
tensions known as kexts [2]. APIs are categorized as Private and Public ones. Public APIs are used from
every developer and can be included in the source code of every third-party application. The Private
ones are only used from system applications and are not allowed to be used from any third party as they
would pose a security issue. They are commonly used with Theos on tweaks and Cydia though, for jail-
broken device application development (these terms will be discussed later). [3]

iOS application security analysis 6

MSc Thesis Konstantinos Vlachos

Applications use entitlements for special capabilities that are like Android permissions and are included
in the binary. It is a single right granted to a particular application or other executable that gives addi-
tional permissions beyond what it would ordinarily have. The term entitlement is most commonly used
in the context of a sandbox. It is actually a piece of configuration information included in your app’s code
signature (in xml format as shown on the figure below) telling the system to allow your app to access
certain resources or perform certain operations. In effect, an entitlement extends the sandbox and capa-
bilities of your app to allow a particular operation to occur [6]. They are set during application develop-
ment using Xcode and the final result can be viewed using the command:

An example of insecure entitlements is demonstrated below, that was leveraged to achieve an iOS Wi-Fi
exploit (Marco Grassi CVE-2016-7630) [7]

_ C\/E—2016—7630 - WebSheet entitlements

WebSheet entitlements — Marco Grassi — CVE-2016-7630

Apple also uses a code signing mechanism. Once the iOS kernel has started, it controls which user pro-
cesses and apps can be run. To ensure that all apps come from a known and approved source and
haven’t been tampered with, iOS requires that all executable code must be signed using an Apple-issued
certificate. Apps provided with the device, like Mail and Safari, are signed by Apple. Third-party apps
must also be validated and signed using an Apple-issued certificate making it difficult to run arbitrary un-
signed code [4]. On top of that, Apple introduced the DEP (Data Execution Prevention) mechanism on
i0S 2.0 and after iOS 4.3 the ASLR (Address Space Layout Randomization) was introduced which fully ran-
domizes the position of an application’s executable parts loaded in RAM if it is compiled as a PIE (posi-
tion-independent-executable) [8].

All the aforementioned information needs to be taken into consideration in order to achieve a full
exploitation of an iOS system. Our focus in this document though; is mainly the applications of the
Apple’s mobile operating system as stated before and the ways of analyzing them from a security
perspective using only Open Source tools. So, this is going to be a walk-through guide on how to decrypt,
reverse engineer (to the best possible level for lateral analysis), statically and dynamically analyze and
even hook into an application’s process. The part of exploitation will not be covered as it is considered
beyond the scope of this thesis.

Commercial iOS applications available on the AppStore are compressed (.ipa files described on
Chapter 8 “Technical Terms”) and encrypted files containing the application binaries and resources. On
the other hand, applications from Apple’s IDE “Xcode”, provide us with the full source code and project
directory. The first case scenario is the most common in terms of analysis and the second one comes up
iOS application security analysis 7

MSc Thesis Konstantinos Vlachos

in case the application owner or developers ask us for code auditing on their own application or we
somehow manage to get our hands on the original application’s Xcode project. Both options are going to
be discussed, providing you with the available options and tools, whatever the case is.

As already stated Apple’s IDE for iOS application development is Xcode. We will cover the steps of
installing it on a MAC OSX system and how to interact with it using its built in iOS simulator or a directly
connected iOS device (iPhone or iPad) to run-debug an application. The IDE is useful in case we have to
deal with the original application project (second option stated above). In any other case you need to
interact with a jail broken (refer to “Technical Terms”) iPhone device over ssh protocol using the
described tools.

In most cases, we will have to deal with commercial applications downloaded from the AppStore. So,
decryption and decompilation are key factors in a successful iOS application analysis and several tools
and options are going to be described on that, before we are able to go through a static or dynamic
analysis. Static analysis is more useful on Xcode projects, because on third party applications the initial
source code level could never be reached but only to a point of assembly language and Objective-C
message or NSobject calls and system interaction.

Finally, the most important part is dynamic analysis and here is where the most effort is applied in
order to be able to analyze every commercial application available online. Options like heap inspection,
message calls and even process hooking will be described providing you with interaction level of even
changing the application’s process behavior, calls and functionality.

iOS application security analysis 8

MSc Thesis Konstantinos Vlachos

CHAPTER 2

PREREQUISITES

The required testing environment for iOS application analysis can be set up with minimum cost using an
OSX environment and the XCode’s iPhone simulator. An iOS device is always needed to interact with
third party applications that run only on ARM architecture. To begin with, the basic equipment needed
consists of the following:

® Mac Book running Snow Leopard 10.6.2 OS or above.

® Xcode 6.1 or greater (Apple’s iOS IDE).

® jOS SDK and/or iOS actual device to run/debug the applications against (a jail broken device).
® Preferably an apple ID — Account, to download application binaries.

The steps to get into an OSX Desktop are not covered as this is a trivial task.

2.1 Install Xcode

Initially, the Xcode iOS IDE has to be installed on MAC OSX environment. After the file (xcode****.dmg)
is downloaded, we install it and then we type XCode into the quick search to launch the IDE (shown on
figure below) by selecting one of the already opened projects, same as Android Studio’s start up process.

@ Finder File Edit View Go Window Help 9 Lo ~ Tue5:30PM

Charles Proxy Hackintosh.Zon
e

Q_ xcode !

(DRI, VMware Tools*
¥ Xcode 5

APPLICATIONS g Xcode

;ﬂ Xcode '

PDF DOGUMENTS
= builtins.pdf @ yalu102.xcodeproj 4
& 3/28/17, 7:05 P % - il one
"% Ethemn...n.mpkg

BOOKMARKS & HISTORY 3/21
DEVELOPER 'E demoapp.xcodeproj s
] 52m/17, 5:25 Am o :
$\.

s xcodeé - How to download Xcode. ..

yalu102.xcodeproj

demoapp.xcodeproj

Main.storyboard 10S Simulator

g
yalu102-master

LaunchScreen.storyboard

Show all in Finder...

(launching Xcode from OSX El Capitan)

iOS Application security analysis 9

MSc Thesis Konstantinos Vlachos
@ Xcode File Edit View Find Navigate Editor Product Debug Source Contral Window Help -~ Tue533PM Q =
] @ » o1l 1 demoapp | Build demoapp: Succeeded | Yesterday at 12:31 PM = @ <O =
B 2 a A & = o @ |3 [demoapp » [| demoapp > h MasterViewControlierh » No Selection 0O ®
7, demoapp i Identity and Type
vE 2 targets, i0S SDK 6.1 /{ MasterViewController.h
// demoapp Hame MasterViewCentroller.h
¥ [| demoapp v —
h AppDelegate.h // Created by somecne on 3/28/17. Type | Default - C Header | <]
/4 Copyright (c) 2017 someone. All rights reserved. ot
m| AppDeiegats.m 7 Location | Relative to Group <]
h MasterViewController.h =
~ 5 i i #import <UTKit/UTKit.hs MasterViewControllerh &8
Iy ™ ontrolierm Ty Full Path /Users/someone/
L nbipanb i @class DetailViewController; Dlcica; reer i/ demonpip
m DetailViewController.m demoapp/
Main.storyboard @interface MasterViewController : UITableViewController MasterViewController.h ©
|55 Images.xcassets @property (strong, rona:Ior.Lc} DetailViewController *
LaunchScreen.xib detallViewController; Target Membership
» | Supporting Files 7 demoapp
sl i (] demospprests
» | | Products
Text Settings
Text Encoding = Default - Unicode (UT.. E
Line Endings | Default - OS X / Unix (LFJE
Indent Using = Spaces B
Wirlths. Al A"
OO @
=71 Cocoa Touch Class - A Gocoa
Touch class
-
T Test Case Class - Aclass
ren | Implementing a unit test
Playground - A Playground
0
+ICH|® BE | €
| . 4 e
0 o Ak A W =T it = A o Wl AW - By S .

(Xcode home screen — demoapp chosen)

Regarding the iOS environment on which XCode applications can be debugged and executed, Apple

does not allow the use of a packed simulator version as a standalone download. Although, Xcode

includes a built-in simulator as already stated, that can be used after successfully installing the whole

package (SDK).

An important note here is that only registered Apple developers can download and use Xcode for
signed projects (legitimate Apple applications). An iOS device can also be used (similar to Android studio
with usb debugging mode on), while being connected over the wire (usb as shown in picture below). Both
options are used in this document.

Connecting iPhone to Xcode with Apple developer ID for production purposes

For ios7 and Xcode 5 and for testing it, follow the below steps:

1. You need to request a certificate (if this is your first time)

2. Connect you iPhone to your Mac and then click on "Development in Xcode's Organizer window"

a oo Organizer - Devices
|ﬁ| |
Devices | Projbcis Aschives
LIBRARY
Device Logs cpul00’s iPhone

B sereenshots

Capacity 14.27 GB
DEVICES
My Mac Model iPhone 5 (Model Al425)
B 1951 (13842) Serial Hurmbe: (G

FOID ———

3. Sign in with the Apple ID associated with your i0S Developer Program membership and Xcode

will automatically generate your certificates.

4. in Xcode, Click on "Product” -->"Destination” --> you should see the name of your iPhone list

there so click on it :)

5. in Xcode ,Click "Product” --> "Build for Running” --> "Allow"

6. in Xcode ,Click "Product --> "Run” --> "Allow™

iOS Application security analysis

10

MSc Thesis Konstantinos Vlachos

2.2 i0S Simulator

The iOS Simulator included in the SDK (example of an iOS 6) can be accessed directly from Xcode under

Xcode -> Open Developer Tool - i0OS Simulator menu entry, as shown in the figures below:

File Edit View Find Navigate Editor Product Debug Source Control Window

[No| About Xcode moapp | Build demoapp: Succeeded | Yesterday at 12:31 PM

Preferences... ® :
: | R [demoapp demoapp » h MasterviewCentrollerh » No Selection 0O e
Behaviors >

o

7 Identity and Type

d
8,
Open Developer Tool » B Instruments Name | MasterViewController.h

| i »
Services i0S Simulator 17 Type | Default - G Header | <]
Hida Xcode sH @ Accessibility Inspdctor e. A1l rights reserved. 9

. e Location | Relative to Group
Hide Others 3H 4 FileMerge o
© Application Loader

MasterViewControllerh
Full Path /Users/someone/

. Documents/demoapp/
Quit Xcode #Q More Developer Tools... demoapp/
" WMain storyboard T @interface MasterviewCantroller : UlTableViewController MasterViewControllerh
il inagescassats @property (strong, nenatemic) DetailViewController =
LaunchScreen.xib detailViewController; Target Membership
» |1 Supporting Files A demoapp
» [demoappTests @end "7 demoappTests

» [Products
Text Sattings

Text Encading | Default - Unicode (UT... [
Line Endings |_Default - 05 X/ Unix (LF)

Indent Using

Widths

Cocoa Touch Class - A Gocoa
Touch class

Test Case Class - A class
implementing a unit test

Playground - A Playground

[ORE|

L20RBCE | mele0Cal

(Iaunchihg iOS simulator — Xcode built in iOS 6 simulator)

TS

@ (0OSSimulator File Edit Hardware Debug Window Help O L - TueB27TPM Q
A [] i0S Simulator - iPhone 6 - iPhone 6 / iOS 8.1 (12B411)

_ demoapp
2 5 targets, i0S SDK 8.1
¥ [demoapp

h AppDelegate.h

m AppDelegate.m
MasterViewControllar.h
MasterViewController.m
DetailViewContralier.n

EZ

ERIEAF]

DetailViewController.m
Maln.storyboard
Images.xcassets
LaunchScreen.xib

@

» [Supporting Files
» | | demoappTests
» [Products

i iTTT

(actual simulator screen — virtual iPhone with iOS 6)

iOS Application security analysis

1

MSc Thesis Konstantinos Vlachos

Additionally, in modern versions of the OS X including the El Capitan, it can be immediately accessed
from the finder by typing: /Applications/Xcode.app/Contents/Developer/Applications/Simulator.app
This is automatically done when building/running a project/application in Xcode as the default output is
the iOS simulator.

Later versions of iOS can be also downloaded for use as simulators from the menu entry:

Xcode -> Preferences - Downloads

@ Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help A Sat1:58PM Q=
i i demoapp | Build demoapp: Succeeded | Today at 10:46 AM =] 1
iall | Y = L.
— ' — I—— I
| Downloads
— E| demoapp
2 targets, I0S SDK 8 @ / n U ﬂ
¥ | | demoay e Y A”‘ legate.n
— - PP General Accounts Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source Control Downloads Locations | o~
h AppDehgalui Jt - C Header <
m AppDele.gals. ;IE_IU Group &
h MasterViewGe ¥ Components legate.h]
m MasterViewCy
— fsomeone’
h DetailviewCaol W i0S 7.1 Simulater @ |ents/demoapp/
m DetailViewCol ppfAppDelegate.n ©

Main.storybog 4
| Images.xcass
LaunchScreet

v

| Supporting Fi
¥ | |demoappTests

v i E
» || Products Documentation

g ioss

R It Unicode (UT... %
g iosaa Jt- 0 X/ Unix {LF) &
g osx10.10 @ =,
¥ 5 o
i§ ¥codes.1 @® : a2 4l
|
|
th Class - A Cocoa
Check for and install updates automatically Check and Install Now |
Class - A class
Implsmantlng a unit test
Playground - A Playground
d
+I0HE®)

Leolin | ~eCeoodaly = [|7

(various iOS simulator versions in Xcode)

A full in-depth analysis of an iOS application requires the complete Xcode project to be delivered by
the application owners. In most of the cases, this resource is not available so the use of alternative
solutions based only on the application binaries are incorporated. These binary files can be downloaded
from Apple’s AppStore, either in an actual iPhone device or in a Macintosh OSX so that the binary can be
reverse engineered. In any way, the steps covered in this chapter about the Xcode, constitute important
knowledge for several situations. Some examples are the examination of a jail brake .ipa file or exporting
a malicious application as a benign signed iOS application.

Important note: AppStore applications cannot run on iOS simulator because it was built on x86
architecture instead of the application binaries in AppStore, which were compiled against ARM
architecture to run on iOS devices equipped with ARM processors. This leaves only two real case
scenarios of iOS applications analysis during runtime:

iOS Application security analysis 12

MSc Thesis Konstantinos Vlachos
a) Either analyze the application while running on an actual iPhone device through the connected
Mac OSX using ssh.
b) Or obtain the application's source code or .xcodeproj file and load it into Xcode for analysis.

The second option requires the whole project to be loaded into Xcode and this will be explained on the
next chapter. The rest of the analysis is dedicated to the former and most used option that requires to
reverse engineer the application and dynamically analyze it during runtime. Similar to any reverse
engineering process of a binary file on other platforms.

iOS Application security analysis 13

MSc Thesis Konstantinos Vlachos

CHAPTER 3

RUN-LOAD AN APPLICATION INTO XCODE

Based on the latter option, obtaining the application's source code or .xcodeproj file and loading it into
Xcode , the analysis will be conducted in this case using Xcode. The application can be loaded into Xcode
by pasting its whole folder (see the figure below of the root directory of Xcode project and its contents)
under the following directory:

This action will also make the specific project tree available on Xcode’s home screen as a
recent/opened project. Once again, this option will probably only be used if the application owners
request a source code auditing service.

Solutions for other cases that the Xcode project will not be available are:

® Decompile any application from the AppStore (this process will never reach the initial source
code). Then work with the product assembly code for a static code analysis investigating on
possible issues such as buffer overflows (iOS applications are written in objective C), method
calls, data access and more using static code analyzers.

® Analyze Memory dumps, system-kernel calls, logs and method calls like obj_MsgSend() by
dynamically analyzing the application during runtime.

These options will be discussed later. Keep in mind that application packages downloaded from the
AppStore as .ipa files (refer to Technical Terms section for further details on this) are encrypted. There
are ways of bypassing this obstacle like the Clutch tool discussed in the Decompilation section. The
general application structure as an Xcode project is listed below (this will not be further explained as it is
considered beyond the scope of this dissertation):

L Halal ™ Untitled —

Simulator - 3.... v| | = ‘& g @

Overview freakpoints Buildand Run Taz<s Info
(Cfiles | Targets _ omer

Groups & Files “~ L] a

v B Untitled

v Classes
¥| | AppDelegate

1| UntitledAppDelegate.h
|l UntitledAppDelegate.m
v Controllers
{u] UntitledViewController.h
:_{._._' UntitledViewController.m
» Helpers
| PMmodes | | | |
¥ | Resources
_|Images
v Nigs
+| MainWindow.xib
~| UntitledViewController.xib
g Sounds
Other Sources
4] Untitled_Prefix.pch
| main.m
g Frameworks
» Products

Build succeeded @ Succeeded

iOS application structure as an Xcode project

iOS Application security analysis 14

MSc Thesis Konstantinos Vlachos

CHAPTER 4

DECOMPILING iOS APPLICATION

Working with applications installed on an iOS device, which are already compiled and no Xcode project is
available, locating the installation directory is required to begin the decompilation process. Based on the
fact that they are either pre-installed or downloaded from the AppStore on the iOS device, the binaries
will be located in two different directories respectively:

The demo application project “demoapp” of Xcode is going to be used as an example for the reverse
engineering process. After being built in Xcode, its binary file is available. The main application file
demoapp.app (every application contains its main file on a name convention of application_name.app)
will be required for the tools used and it resides under:

This directory indicates that Xcode built the project to run against the iPhone simulator. Now that the
application's binary is available too, the reversing process can begin to identify what kind of information
can be gained from the initial source code of demoapp, pretending that the initial source code was not
available in the first place. Due to the fact that this process is extensive and crucial enough, several tools
are going to be presented.

The basic tools for the decompilation process are presented below and both demoapp.app and third-
party applications are going to be used as examples. Third party applications are used for the decryption
process because, as already stated, AppStore .ipa files are encrypted.

4.1 otool

Otool comes with Xcode and is directly available on OSX console too (like other Xcode console features).
It is a powerful disassembling tool that provides information of object files or libraries. It can also
provide a compiled application’s assembly code [9]. All the options can be found with the command
otool —help. In order to acquire an application’s assembly dump file, the following terminal command is
used:

appname is used for the basic class of the application.

Regarding the demoapp, the command is going to be:

The expected output is then available under the root directory and some parts of the extracted
assembly of the demoapp (beginning and end of the whole assembly code using head and tail
commands) are listed below:

iOS Application security analysis 15

MSc Thesis

(assembly product of otool 1)

® Terminal Shell Edit View Window Help

0@

(assembly product of otool 2)

iOS Application security analysis

someone — sh — 166x47

Konstantinos Vlachos

16

MSc Thesis Konstantinos Vlachos
4.2 class-dump

This tool provides easily readable information of class declarations and structs. It is similar to the strings
command output providing human readable strings, or to the output of “otool -ov” command except
that the information is presented as Objective-C declarations with this tool [10].

It can be downloaded from “http://stevenygard.com/projects/class-dump/”. Then using the bash in a
terminal, the archive must be extracted and finally be used against the demoapp with the commands:

>macbhookS bash
>bash-3.25 tar -xvf ~/Downloads/class-dump-3.5.tar

>bash-3.25 ./class-dump “/Users/username/Library/Developer/Xcode/DerivedData/demoapp-
fwrm......... /Build/Products/Debug-iphonesimulator/demoapp.app” >> demoapp.classdump

(general command is ./class-dump “dir to the .app file” >> output.file)

Valuable information can be gathered by using this tool like the use of a method and its arguments (it
may be a vulnerable one) or the private Frameworks that the application may uses. The class-dumb
output file of the demoapp is shown in the picture below:

® [] someone — bash — 166x46

double _f
double _f

ma mark -

iOS Application security analysis 17

http://stevenygard.com/projects/class-dump/

MSc Thesis Konstantinos Vlachos

O] [] someone — bash —

: UITab i trol ler

trol ler;

(first and last lines of classdump output for demoapp)

4.3 Clutch

Most of the time, the analyzed application is going to be installed on an actual iOS device. These
applications are either pre-installed on the device or downloaded from the AppStore. Two main things
need to be clear now:

1. iOS applications are located either under /Applications/ (preinstalled) or under
/var/mobile/Applications/ (downloaded) directories on the actual iOS devices.

2. Unlike pre-installed applications, the downloaded ones are encrypted, meaning that
decryption is required before analyzing them.

The decryption process can be done using this specific tool called Clucth. It was once offered by
Hackulous but now is only available online here:

https://qithub.com/KJCracks/Clutch

After the tool is downloaded, it has to be uploaded to the device, using sftp, with the put command to
the /usr/bin/ directory. Then, while connecting to the device using ssh, the tool could be used on any
installed application. The following pictures show the tool options listed from an iPhone device and the
process of decryption:

iOS Application security analysis 18

https://github.com/KJCracks/Clutch

MSc Thesis Konstantinos Vlachos

Prateeks-MacBook-Pro:1 prateekgianchandani$ ssh root@l92.168.2.3

root@l92.168.2.3's password:

Prateeks-iPhone:~ root# clutch

usage: clutch [application name] [...]

Applications available: 50@px 9GAG Adobe Reader Air Hockey Gold Altimeter AngryBirdsBlack-iPhone Asphalt? Auto Europe BookMyShow BuildALot3 Bump
Camera! CameraPlus CharityMiles CityGuide Devstant DiscoveryNews Discovr Apps Domines Dropbox eBay Engadget ESPNCricinfoiPheone Europe Travel Euro
pe Travel 2 Evernote ExpediaBookings Facebook FindMyFriends FindMyiPhone fing Flashlight Flipbeard GmailHybrid Geodreads Google Google Maps GoPro
GoToMeeting Ha t HERE HikeMate HSW iBooks igo_mini_osx Images IMDb imo iMovie IndianRail Instagram iPhone4Flashlight iPheto isslive iTheme iT
unesU ilploader Kindle Latitude Local MakeMyTrip Mashable Messenger mkfeed_hair_univ MobileGarageBand MobiPay MoviePlayer my airtel NASA NASA TV
NikePlus NineIron Pandora Paris Path Photobucket PivotalTracker Podcasts PS Express Puffin Free Quora Redlaser Reeder Remote Ringtones5000808 Saav
n Shazam Skype SlePro Snapchat Snapseed SoundCloud SpeedTest Spotify stable SwordGame TeamViewer TechCrunch TED templerun2 TeonCamera Translate T
ravelEuroped TrekMagazine TripAdviser TripIt TrueCallerOther Twitter Viber Vimeo VISUPAY Vtok WhatsApp Whiteboard WinZip WolframAlpha Worldcities
WSCSnooker Yelp YouTube Zomato BR i It i X B

clutch options (within iPhone over ssh [11])

Prateeks—-iPhone:~ root# clutch Facebook

Cracking Facebook...
Svar/root/Documents/Cracked/Facebook-vBOlB2. ipa

Prateeks-iPhaone:~ root# I

decrypting Facebook application with clutch

After the tool completes the cracking process, it creates an .ipa file of the whole application bundle and
normally saves it under /var/root/Documents/Cracked/ directory. After decompressing the .ipa file
using the untar command, the application files are available. This extracted directory contains used
images, the plist file (property listing) and everything else that an unencrypted .ipa file contains. The
class-dump tool can also be used now against the Facebook main application file with:

class-dump dir-to-extracted-ipa-file/Payload/Facebook.app/Facebook > Facebook-class

All the class information is accessible as if the application was not encrypted in the first place. This
process demonstrates that even when dealing with an encrypted application from the AppStore,
information can still be extracted using the aforementioned and the rest of the tools described in the
document.

4.4 Dumpdecrypted (running application decryption)

This specific tool is used for application binaries installed on a device (that are of course encrypted) to
generate a decrypted version of them for lateral analysis using for example the class-dump tool. It is
available on the following link:

https.//aithub.com/stefanesser/dumpdecrypted/archive/master.zip

The installation and usage of the tool to decrypt a third-party application starts by downloading the
archive and decompressing it as usual and then using the “make” command to build it. Based on the iOS
version of the device, the specific option in the “Makefile” must be adjusted before building the project:

Now a specific file generated under the current project’s directory called “dumpdecrypted.dylib” (on
the MAC 0OSX) is required along with the application’s executable directory on the iOS device and the
application’s Document directory in which it must also be saved (on the iOS device). To make things clear
here, the generated file is a dynamic library file (.dylib) that will be used in the sandbox directory of the
analyzed application.

In order to locate the two directories, the analyzed application must be running on the iPhone device
(kill all other instances from background) and then by using the “ps” command the following output is
shown:

iOS Application security analysis 19

https://github.com/stefanesser/dumpdecrypted/archive/master.zip

MSc Thesis Konstantinos Vlachos

Since only the TargetApp is running on the device, the directory to TargetApp’s executable is the one
listed below:

Now in order to locate TargetApp’s Documents directory too, Cycript must be used as follows from the
ssh shell to the iPhone device:

and this is where the “dumpdecrypted.dylib” file must be copied to using the “scp” command:

The reason why dumpdecrypted.dylib file must be copied under the analyzed application’s Documents
directory is because a running iOS application does not have the right to write outside of the Sandbox
(all applications run Sand boxed within the iOS, acting only in their own context for security purposes).
Additionally, dumpdecrypted runs with the same privileges as the running analyzed application and in
order to write the final decrypted file, the only directory it could write to would be the application’s
Documents directory. This is why it is placed in the Documents directory.

The decryption process can start by using two commands on the iPhone device. The first one is
“DYLD_INSERT_LIBRARIES” and it sets the settings of where is the analyzed application’s Documents
directory containing the .dylib file and where its executable file resides. The second one simply runs the
tool against the application:

iOS Application security analysis 20

MSc Thesis Konstantinos Vlachos

DISCLAIMER: This tool is only meant for security research purposes, not for application crackers.

[+] detected 32bit ARM binary in memory.
[+] offset to cryptid found: @0x81a78(from 0x81000) = a78
[+] Found encrypted data at address 00004000 of length 6569984 bytes - type 1.

[+] Opening /private/var/mobile/Containers/Bundle/Application/03B61840-2349-4559-B28E-
OE2C6541F879/TargetApp.app/TargetApp for reading.

[+] Reading header
[+] Detecting header type
[+] Executable is a plain MACH-O image
[+] Opening TargetApp.decrypted for writing.
[+] Copying the not encrypted start of the file
[+] Dumping the decrypted data into the file
[+] Copying the not encrypted remainder of the file
[+] Setting the LC_ENCRYPTION_INFO->cryptid to O at offset a78
[+] Closing original file
[+] Closing dump file
The “Is” command reveals the final decrypted product file:

iphone-5:/var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents root# Is

TargetApp.decrypted dumpdecrypted.dylib OtherFiles

All standard operations of security analysis can be implemented now on the decrypted product file, like
on any other not encrypted .app file. For example, the class-dump tool can be used against the
decrypted TargetApp’s file without issues:

Class-dump --arch armv7s Target.decrypted

Finally, the reason why the dumpdecrypted.dylib file must be under application’s Documents directory
is the Sandbox permissions. In case it is not placed in application’s Documents directory but under the
tmp directory for instance, by running the tool (in the figure below), an erno=1 occurs, meaning that this
operation is not permitted (expected outcome due to Sandbox permissions).

iphone-5: /var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents root# mv dumpdecrypted.dylib /var/tmp/

iphone-5: /var/mobile/Containers/Data/Application/D41C4343-63AA-4BFF-904B-
2146128611EE/Documents root# cd /var/tmp

iphone-5:/var/tmp root# DYLD INSERT _LIBRARIES=dumpdecrypted.dylib
/private/var/mobile/Containers/Bundle/Application/03B61840-2349-4559-B28E-
OE2C6541F879/TargetApp.app/TargetApp

dyld: could not load inserted library 'dumpdecrypted.dylib' because no suitable image found. Did find:
dumpdecrypted.dylib: stat() failed with errno=1

Trace/BPT trap: 5

iOS Application security analysis 21

MSc Thesis Konstantinos Vlachos

Taking all the above under consideration, dumpdecrypted is the tool that makes every iOS application
available for analysis as if it was pre-installed and unencrypted or its Xcode project was available in the
first place. The next chapter refers to the code analysis process (static or dynamic), that can now be
easily done as far as the application binary can be decrypted and used for this purpose. More details on
the described process and general usage of the dumpdecrypted tool can be found on the “Mobile
Application Penetration Testing” [12] book.

iOS Application security analysis

22

MSc Thesis Konstantinos Vlachos

Chapter 5

STATIC CODE ANALYSIS

Static code analysis is performed in most cases on the source code or the object code of an application.
In the previous chapter, the way of decompiling an application and having the object or assembly code
for static analysis was introduced. If the initial source code is available too then this type of analysis
brings the best possible results.

Static analysis can be leveraged to uncover issues such as memory leaks, uninitialized variables, dead
code, type mismatch and buffer overflows among others. Should the source code for the application is
available, this can be done by using Xcode. The static analyzer travels down each possible code path
identifying logical errors such as memory leaks. Within the IDE this is performed by using Project >
Analyze that brings up the Xcode Analyzer.

5.1 Xcode Analyzer

iOS applications may usually include/use native C language libraries such as strcpy. This gives the option
to use the free tool “Flawfinder” as soon as the application uses the aforementioned C libraries. If it
does not use them and depends on Cocoa objects such as nsstring, the use of Clang free tool is also an
option, which is already located under /Applications/Xcode.app/Contents/Developer/usr/bin/clang.

The static analyzer used by Xcode can be changed with another one from command line tools of the
IDE by the following procedure:

https://clang-analyzer.llvm.org/xcode.html [17]

https.//lowlevelbits.org/getting-started-with-llvm/clang-on-os-x/ [18]

#pragma mark - View lifecycle
// Implement viewDidLoad to do additional setup after loading the view, typically from a nib.
- (void)viewDidLoad

[super viewDidLoad];

char *thisString = "This is a test";

char *myPointer = NULL;

inty = 9;

A} myPointer = thisString[3]; (D Value stored to 'myPointer’ is never reai

y = [self getValuel;
P Yy = y+l; D Value stored to 'y' is never real

NSMutableString *myString = [[[NSMutableString alloc] initWithString:@'This is a string"]retain];
[myString stringByAppendingString: @'Another String"];
D Potential leak of an object aliocated on line 44 and stored into ‘myString
-(int)getValue
{

int tempVal;

int x = 0;

tempVal = 1;
else if (x < @)
tempVal = 2;

B return tempVal; (3 Undefined or garbage value returned to calle

}
(Product — Analyze, Using XCode’s built in Clang static analyzer on source code)

iOS Application security analysis 23

https://lowlevelbits.org/getting-started-with-llvm/clang-on-os-x/
https://clang-analyzer.llvm.org/xcode.html

MSc Thesis Konstantinos Vlachos

There is also some other important information available to the “Analyze” option from the IDE and
these are listed below (from the left side of the project tree, the master application’s node must be
selected to see the following tabs):

e what the application requires/uses from the OS (Capabilities)
e Configuration and architecture options (Build settings)

e and the most important linked libraries, compile sources, bundle resources (Build resources)

Check the figures below for every option’s information:

ode File Edit View Find MNavigate Editor Product Debug Source Control Window Help 4~ Mon12:38PM Q
» ES: B .. vawioz | Analyze yalu102Z: Failed | Today at 12:22 PM 3@z =@ @il =
NS == 3 B|L [yalut102.xcodepro) < > 0D ®
By Type 0 Ey.z22c General Capabilities Info Build Settings Build Phases Identity and Type
2 o = Add the "Keychain Sharing" entitlement to your entitiements file Mame | yalu102
i + Add the "Keychain Sharing” entitlement to your App ID
Location | Absolute
102 .xcodeproj

yalu102.xcodeproj

Full Path /Users/someona/
Desktop/yalu102-mas!
yalu102.xcodeproj

get Integrity

3 Deployment Target '1
1" Is newer than SDK '...
Signing Error

yde signing identities fo
No valid signing ident...
ndency Analysis Warnin
lepleyment target '10.0"

» | I}, Background Modes

> -7—?-' Associated Domains
g Project Document

Project Format | Xcode 3.2-compatibl

chitecture ‘armv7' an...
ndency Analysis Warnin

¥ (4] App Groups

Organization

kimjongcracks

S : Allows access to group containers that are shared among multiple related apps, and allows certain Class Prefix
g aldppice fle; Masr additional interprocess communication between the apps
1ecne/Desktopiyalut... h UL . h . Pps.
Text Settings
m:!ency G TEL Erm.r Turning on App Groups will... d
S'Qf‘ error: code signin = Add the "App Groups" entitlement to your entitlements file Indent Using | Spaces
squired for product ty... » Add tha "App Groups® entitiement to your App ID : =
» Add the "App Groups containers” entitiement to your App ID Widths 4|v
Tab Inder
Wrap lines
» /= HomeKit [o
O e
» [Data Protection [o
-

Cocoa Touch Class - A Co
— Touch class
» | | HealthKit

Test Case Class - Aclass
v Wireless Accessory Configuration implementing a unit test

Enabling Wireless Accessory Configuration allows your app to configure MFi Wi-Fi accessories.

Turning on Wireless Accessory Configuration will... Playground - A Playground
= Link ExternalAccessory.framework

= Add the "Wireless Accessory Configuration” entitlement to your App 1D =
= Add the "Wireless Accessory Configuration" entitlement to your entitlements file EE &

e SR W D s &g (Rl |

(capabilities — Xcode — Analyze)

T

=

iOS Application security analysis

24

MSc Thesis

Konstantinos Vlachos

Xcode FHie Edit View Fing Navigate kaitor Froguct Uebug Source LUontrol VWindow Help = Mon 12:40 FM

& »> H R yalu102 | Analyze yalu102: Failed | Today at 12:22 PM 3 @2 @ @ (|
a MO = 3 |BB|< [yalu102.xcoedeproj < > 0O ®

B By Tpe O Ey.232 General Capabilities Info Build Settings Build Phases Identity and Type

Name | yalu102

ut02 = ,

i °o X3 ~ Levels a

ralu102) j == Location Absolute
u102.xcodepro) " o
Target Integrity it Bl yau0z yalu102.xcodeproj
i0S Deployment Target '1 Architectures armv? & Full Path /Users/someone/
0.0" is newer than SDK "... Valid Architectures armv? Desktop/yalu102-n

‘ode Signing Ermor

o code signing identities fo
nd: Mo valid signing ident.
ependency Analysis Warnin
IS deployment target *10.0'
¥ architecture 'armv?' an.
ependency Analysis Warni
J/arning: skipping file 'YUser
fsomeone/Desktop/yalut...
ependency Analysis Error
‘odeSign error: code signin
is required for product ty...

=

L e

(Build Settings —

¥ Deployment
Setting
Installation Directory
Strip Linked Product
Targeted Device Family

¥ Linking
Setting
¥ Runpath Search Paths
Debug
Release

¥ Packaging
Setting

Info.plist File
Product Name

¥ Search Paths
Setting
Library Search Paths

¥ Apple LLVM 6.0 - Language - Objective C
Setting

o ol

Xcode — Analyze)

B a0z
ihpplications
Yes &
iPhone/iPad &

L

oz

tabl

- yalu1
@

path

path

@executable path/Frameworks

2102

yalu102/Info.plist

yalu102

B vaui02

fu

Deski

W a0z

10

LU R

yalu102.xcodeproj

Project Document
Project Format
Organization

Class Prefix

Text Settings
Indent Using | Spaces
Widths 42
Tab

Wrap lines

t’lﬂ@

Touch class

B8 (@&

Xcode 3.2-compa

kimjongcracks

Cocoa Touch Class - A

Test Case Class - A cla:
implementing a unit test

Playground - A Playgrou

code File Edit View Find MNavigate Editor Product Debug Source Control Window Help & Mon 12:41 F
» = E R yalul02 | Analyze yalu102: Failed | Today at 12:22 PM a2 @ @
1M e = 3@ (BB« B yalu102.xcodeproj < > 0O &

By Type] Eyv.2¢ Geneal Capabilities Info Build Settings Build Phases Adantityand Tvpa
02 o A a MName yalu102
as

Location | Absolute

ul02. xcodeproj k- Target Dependencies [0 items)
arget Integrity yalu102.xcot
0S Deployment Target '1 Full Path /Users/some
10" rover than SOK."-.. ¥ Compile Sources (6 items) Jesktopdyall
de Signing Error Name Compiler Flags raudi=coc
code signing identities fo
|: Mo wvalid signing ident... «| offsets.c ...in yalu102 Project Document
rendency Analysis Warnin m devicesupport.m ...in yalu102 Project Format | Xcode 3.2-¢
i deployment target “10.0" . .
architecture 'armv7' an. m ViewController.m ..in yaluioz Organization | kimjongerac
)e!-ldenq.r Al:lﬁlsfs_is Warnin m AppDelegate.m ...in yalul02 Class Prefix
ming: skipping file '/User T £
>meone/Desktop/yalul... m jailbreak.m ...in yalu102 i :
rendency Analysis Error m| main.m ...in yalu102 Text Settings

ieSign error: code signin
required for product ty...

Pt IE

+

¥ Link Binary With Libraries (3 items)
Name
ickitmig6d.c
patchfinderé4.o
IOKit.tbd
—+

¥ Copy Bundle Resources (9 items)

B tar ...in yalu102
M launchctl ...in yalui02

b bootstrap.tar ._.in yalu102

Drag to reorder frameworks

O.reload.plist ...in yalu102
- dropbear.plist ...in yalu102
. —
\: \ Ll “ L

(Build Phases — Xcode — Analyze)

iOS Application security analysis

Required
Required 2

Required £

Indent Using J Bpaces

Widths
Tab

E{}

Cocoa Touch
Touch class

oo
oo

©

4

Wrap lines

@

Cla

Test Case Class
implementing a unif

Playground - A Pl

25

MSc Thesis Konstantinos Vlachos

All those information, collected by static code analysis on the actual Xcode project, will not be available
for the public applications from the AppStore due to the lack of project binaries or source code files. In
such cases, different techniques and tools are used to find their dependencies, permissions, OS/kernel
requests and interactions. A great static code analysis tool for third party applications is presented next.

5.2 iNalyzer for static analysis

The iNalyzer tool can be used for black box assessment of 10S applications. It shows class information,
does runtime analysis and other things that will be presented below. Basically, it automates the tasks of
decrypting the application, dumping class information and presents it in a more readable way. It can also
hook into a running process and invoke methods during runtime. iNalyzer is developed and maintained
by Appsec Labs and is also available open source [13].

On the MAC OSX, Graphviz and_Doxygen also need to be installed for iNalyzer to work. A jail broken

iPhone device is also required in order to ssh to it as usual and retrieve the application data when they
are exported by iNalyzer for further investigation in our MAC.

The installation and usage process consists of the following steps:
e Install iNalyzer on your jail broken iPhone device.

e ssh to the device and navigate to the iNalyzer application directory. iNalyzer is installed in the
/Applications directory because it needs to run as a root.

This is done by using the terminal commands:

e Runthe iNalyzer

e Visit the url iphonelP:port from your browser (e.g. http://10.0.100.12:5443). After iNalyzer runs
on the device, the port number is shown on the iPhone’s screen on iNalyzer application’s logo.
Now a web interface is presented as shown in the figure below from where an application can
be selected and iNalyzer will create a zip file and download it on your MAC for analysis.

D APPRSeC

iNalyzer Packager = #ppicationsecurity (=115
How to use:

1. Install GraphViz-Dot on PC/Laptop
2. Install DoxyGen on PC/Laptop
3. Choose Application from the list and click Package

Choose application to Pack: | SelfSignedApp

Be patient as package creation can take a while

4. Save .zip to disk and extract
5. Run Setup.bat(Win) or Setup.sh(Other)

(iNalyzer web interface access from MAC)

iOS Application security analysis 26

http://www.stack.nl/~dimitri/doxygen/download.html
http://www.graphviz.org/download..php
https://appsec-labs.com/

MSc Thesis Konstantinos Vlachos

In case this option does not work, iNalyzer can still be used from the command line by using ssh access

on the iPhone device, and run it with the desired application for analysis as argument (while being in
/Application/iNalyzer.app/ iPhone directory as root):

This outputs an .ipa file in the same directory that can easily be transferred to the MAC (using sftp)
and then renaming it to .zip for extraction. The extracted folder contains a script under the directory
appname/Payload/Doxygen/doxMe.sh which generates and finally opens an index.html file to

represent all the gathered information using Graphviz. After running this script, the expected results are
presented in the figure below [14]:

M iTunesArtwork | ClientFiles I " dox.template
Ll > D iTunesMetadara.plist . Defcon - doxMe.sh
.1.zip (] Payload BT ¢ footer.htm|
|| ReversingFiles = logo.gif

(.zip contents of iNalyzer containing doxME.sh script)

iNalyzer Dashboard | ApDS
(3 e ot
Related Pages Classes Files o

Strings analysis

Analysis of Strings lownd in the execulable

SQL Strings
URI strings

1 1004 <!DOCTYPE plist PUBLIC "-//P

td”>

€ 2330 httpi//ed/sta

7 2331 httpa// 48 /status
B 2332 hetp:/ /e /usera/ohow/e. Jeon
9 2333 hetpe//eR:WE0N8 fotatuscs /update. Json

10 2334 hetp:ffapi-s

ing. khanfu.con/
11 2335 http://search.twitter.com/search. json

12 2336 hitp://scarch.twitter.com/search. jacnig=ig

13 2337 hetpi//ewe.g
14 2338 heep://vww. khandu.con
15 2339 httpss/ v apple. con/appleca/l

(index.html file containing all the analyzed data of the chosen application, app name is hidden for
security purposes)

Another way to analyze an iOS application is a dynamic analysis when it is actually running and
interacting with the iOS and this is discussed on the next chapter.

iOS Application security analysis 27

MSc Thesis Konstantinos Vlachos

Chapter 6

DYNAMIC ANALYSIS

Dynamic Analysis is the technique of assessing applications during execution. There are several tools
provided by Apple for this purpose. Two of the main tools are the “Instruments” and “Shark”, but Shark
is left aside right now and its operations are all included within the Instruments tool. iNalyzer for black
box dynamic analysis, Dtrace with Instruments and other tools will be presented in this chapter too.

6.1 Instruments

The dynamic analysis starts with this tool that was introduced with Mac OS X v10.5. It provides a set of
powerful options to assess the runtime behavior of the application [15]. It can be compared to several
SyslInternals tools used for application testing on the Microsoft Windows platform such as procmon and
netmon. It can be launched from the directory /Developer/Applications/Instruments. Once launched,
select the “Blank” template under the iPhone simulator section and then the instruments needed to use
from the library. To inject this tool into a process select Choose Target > Attach to Process > iPhone
Simulator (<pid>). Finally, click record and start using the application in the simulator to generate the
activity data [16]. The type of data being captured by the tool includes:

1. File Activity Monitoring: This is similar to filemon in that it lets you identify the files
generated and processed by the application. It is useful for identification of files that may
be cached, or hidden files used by the application to store data on the client side.

Memory Monitoring: Helps to identify potential memory leaks.

Process Monitoring: This is similar to “Process Monitor” and shows real time process /
thread activity.

4. Network Monitoring: Records network activity like “netmon”.

Here are some figures showing the usage of Instruments with the iPhone-simulator while running an
Xcode project compiled from the IDE.

First step is choosing the Profile option from the run button in Xcode:

00 »_ © Lister (OS X)) EH My Mac

B = Q‘ »Run gg No Si
fTest ‘

v [Lister | " m

- Pt Profile
e Analyze
Lister Wal = Y

Shared Lister WatchKit Code
Lister Watch App

lictar NQ Y Ann

{ vvewy

iOS Application security analysis 28

MSc Thesis Konstantinos Vlachos

Then the monitoring options are chosen, for instance the “Activity Monitor” option:

nstruments File Edit View Instrument Window Help Lo -~ F

10app
‘gets, i0S SDK]

emoapp
| AppDelegat
AppDelegat:

MasterView Ch Fili t late for: iPh " g S)\
Mastonny oose a profiling template for: [y iPhone 6 (8.1 Simulator) ; demoapp.app

DetailViewd Standard Custom RAecent Q

DretailViewd
D i
Ve = »

m main.m Blank Ar.ﬁvlty Morﬂtor Allocations Automation Cocoa Layout Core Animation
emoappTests

Main.storyk

|| Images.xca
LaunchScrg
Supporting

Info.plist

roducts
¥ demoapp.a

] demoappTa | B = X
Core Data Counters Dispatch Energy File Activity GPU Driver
Diagnostics

Activity Monitor
Monitors processes' CPU, memory, disk, and network usage statistics.

Cancel

>

Finally, by hitting the record button, the application runs into the simulator and data are
simultaneously being gathered in the instruments console Graphs. In the end, all data can be saved
when the Stop button is clicked:

(Instruments — Choosing profile of Analysis)

Edit Master -+

@ Instruments
B\ Il G Phono & (8.1 Simulator}) |, demoapp.app Run 1 of 1 00:00:20 & =
Inatruments R TR I lobdg! Tobdn T Tobdns lobp’ + 1T g T e

Activity Menitor
% User Load

% jlotal Load

o~

{rm} =}
B Trace Highlights Q- @ = 5
% CPU CPU Time Hiohlloht By
Type of Target
kernel_task Xcode
com.apple.dt.ins - loginwindow _
WindowServer nsurisessiond
launchservicesd kernel la_f.kI
Instruments WindowServer
0.00% 12.00% 24.00% 36.00% 00.00 2:01.121 4:02.242
Real Memory Usage Real Memory Usage

(Instruments recording “Activity Monitor” of demoapp at runtime)

iOS Application security analysis 29

MSc Thesis Konstantinos Vlachos
6.2 iNalyzer

This tool was also introduced during static code analysis. It can be used for dynamic analysis too.
Dynamic analysis with iNalyzer on |0S applications consists of invoking methods on runtime, finding the
value of a particular instance variable at a particular time in the application and several other features.

Launching the tool’s runtime interpreter, requires the index.html file generated by Doxygen to be
opened (see iNalyzer for static analysis section above). Firefox is the recommended browser to work
with for the runtime analysis, as suggested by the iNalyzer developer.

First of all, enter the IP address of your device (e.g. 10.0.1.23) on the box in the middle and then press
enter.

IP is set10:10.0.1.23

S—

(IP of iPhone on index.html of iNalyzer)

Then any type of command can be typed on the left box and get the specific response on the right box.
Important: The analyzed application must be running on the iPhone preferably on the foreground.

In order to hide the status bar of the app for example the command [[UIApplication sharedApplication]
setStatusBarHidden:YES animated:YES]; is used on the left box. No response is received due to the
nature of this method (void) but actually the status bar is hidden in the iPhone application’s Ul.

IApplication sharedApplication] setStatusBarHidden:YES animated:YES]: *dci—ll
W lear
10.0.1.23 A

It is obvious now that any function (Cycript) can be called on the running application by using either
Objective C or JavaScript. There is a separate section dedicated to Cycript usage on iOS application later
on this document under Cycript (runtime analysis).

This is one of the best ways for black box dynamic analysis of an iOS application used so far, because
the rest of the methods depend on the Xcode projects or run with the iPhone simulator. More methods
of dynamically analyzing any iOS application from the AppStore like this one, are going to be presented
on the next chapters.

6.3 Dtrace

DTrace is a dynamic tracing framework built by San Microsystems 10 years ago that provides zero
disable cost, i.e. probes in code have no overhead when disabled. It is only available for OS X systems.
Apple also uses DTrace on iOS in order to power tools such as Instruments. Although for third-party
developers, it is only available on MAC OS X applications or the i0S simulator and that is the only way it
can be used (Apple already ported it to the iOS though but only internally for the company’s labs and not
for third party developers).

DTrace is dynamic, meaning that attaching to an already running program and detaching from it again
is possible without interrupting the program itself. There is also no need to recompile or restart the
application. It is also a system wide tool that it can monitor with a single script what allocations where
made by all processes on a system.

iOS Application security analysis 30

MSc Thesis Konstantinos Vlachos

From the menu entry Xcode - Open Developer Tools - Instruments and then Instruments (menu on
the upper left) - Preferences the Dtrace options for iPhone Simulator of the IDE can be adjusted. The
rest of the functionality is built into the Instruments tool so it is actually being used transparently when
Instruments is running leaving only the part of configuration tab available for editing purposes on the
IDE. It can otherwise be used from a terminal as a command line tool [19] but this is out of the scope of
this research.

6 LSV File Edit View Instrument Window Help L+ W
About Instruments demoapp | Build clang: Succeeded | Today at 9:41 AM
Preferences). &, , et & demoapp demoapp ¢ h AppDelegate.h » No Selection
'] L |
= d Services > ‘ =
=] 2 | Instruments Preferences
v[| Hide Instruments 38H S
| Hide Others T 98H General Display m Background Profiing CPUs dSYMs and Paths
Quit Instruments ~ 38Q Buffer size: |25 M
il ﬁ Max backtrace depth: 128
m Detailvisw(1
Main.storyk . | DTrace probe options: £ Permit zero match probes
|7 Images.xca : Preserve intermediate files
LaunchScre Flag runtime messages
¥ | | Supporting -
Info.plist
m main.m Bla
k| |demoappTest:
¥ | | Products

.,;é,; demoapp.a
s I -
(Dtrace within Instruments for XCode’s iPhone Simulator)

6.4 GDB (runtime analysis)

iOS applications mostly use the Objective-C language, meaning that they are runtime oriented and
decisions for function calls are made during runtime and not during compilation of the source code or
linking to libraries.

This behavior gives the opportunity to hook into a process of a running application using GDB for
runtime analysis. First of all, a proper version of gdb needs to be installed on the device. The Cydia
version of GDB does not work properly so another source like the following should be used:

https://github.com/swigger/gdb-ios

Then using sftp, the GDB must be uploaded to the device under the fusr/bin/ directory as shown in the
figure below:

ssh 2 : .':-"s_s.'ﬁ'

Prateeks-MacBook-Pro:Tools prateekgianchandani$ sftp root@l1@.8.1.180
root@l@.@.1.18's password:

Connected to 10.8.1.18.

sftp» cd fusr/bin

sftps put gdb

Uploading gdb to fusr/bin/gdb

gdb 100% 2458KB 2.4MB/s ee: 00

uploading gdb to iPhone [20]

iOS Application security analysis 31

https://github.com/swigger/gdb-ios

MSc Thesis Konstantinos Vlachos

Now the file permissions have to be changed in order to be able to run the GDB tool (chmod a+x
/usr/bin/gdb). The important information about the analyzed application is to locate its pid while it is
running on the device, to hook into it (Google Maps will be used here). So, by using #ps -aux | grep
AppName the process id can be located and finally run gdb against it with the command: #gdb -p PID.

Please note that the application should be running in the foreground.
Demonstrated below are the commands used for this step:

Prateeks-MacBook-Pro:Tools prateekgianchandani$ ssh root@l®.@.1.18
root@Ele.n.1.10's password:

cPrateeks-iPhone:~ root# cd fusr/bin

Prateeks-iPhone: /usr/bin root# chmod a+x gdb

Prateeks-iPhone: fusr/bin root# [|

changing permissions of gdb tool on iPhone [20]

Prateeks-iPhone:~ root#

Prateeks-iPhone:~ root# ps aux | grep "Google Maps"

mobile B61 22.4 3.3 472732 34152 77 Ss 4:31AM 0:04.53 /var/mobile/Applications/E@3FE915-3658-4183-A72C-14353BD64456/Google Maps.app/Google Maps
root 66B 0.8 0.8 263696 132 000 R+ 4:31AM 9:00.00 grep Google Maps

Prateeks-iPhone:~ root# I

finding the application PID

Prateeks-iPhone:~ root# gdb -p 661

GNU gdb 6.3.50-20050815 (Apple version gdb-1708) (Mon Oct 17 16:55:57 UTC 2011)
Copyright 2084 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "arm-apple-darwin".

/private/var/root/661: No such file or directory

Attaching to process B61.

Reading symbols for shared libraries . done

Reading symbols Tor shared Labraries ooousosommonuoo oo sa o s sn s oo sosns o ssnesososessosssssesonosseesisiosssssniosisississesebisbiobioistessssbssitbitetsiorbssssiie
warning: Could not find object file "/Users/Tamal/Library/Developer/Xcode/DerivedData/CameraTweak-envwjnerkfvnsefovjqatirjacoq/Build/Intermediates/CameraTweak.build/Debu
g-iphoneos/CaneraTweak.build/Objects—-normal/army7/CaneraTweak.0" - no debug information available for "/Users/Tamal/Dropbox/[Development]/0bj-C/CameraTweak/Classes/Camer
aTweak.mm".

warning: Could not find object file "/Users/Tamal/Library/Developer/Xcode/DerivedData/CameraTweak-envwinerkfvnsefovjqatirjaceq/Build/Intermediates/CameraTweak.build/Debu
g-iphoneos/CaneraTweak.build/Objects-normal/armv7/ExposureView.o" - no debug information available for "/Users/Tamal/Dropbox/[Development]/0bj-C/CameraTweak/classes/Expo
sureView.m".

warning: Could not find object file "/Users/Tamal/Library/Developer/Xcode/DerivedData/CameraTweak-envwjnerkfvnsefovjqatirjacoq/Build/Intermediates/CameraTweak. build/Debu
g-iphoneos/CameraTweak.build/Objects-normal/armv7/FocusView.0" - no debug information available for “/Users/Tamal/Dropbox/[Development]/0bj-C/CameraTweak/Classes/FocusVi

o mt

hook into application process with gdb [20]

Several warnings might come up during the hooking process, but they can be ignored right now. After
the successful hooking, the known gdb command line prompt is presented.

sisassasasses s OOMNE

Reading symbols for shared libraries + done
@x3acdae3d in mach_msg_trap ()

{gdb) i

Gdb hooked into application process [20]

From now on, the running process can be treated as in any other case of runtime analysis using gdb.
For example, the messaging mechanism of Objective-C that uses the obj_msgSend() method can be
leveraged by adding a breakpoint whenever the specific method is called to show us the application flaw
based on messaging and the actual selector/method that sent the message with the gdb command
shown below:

iOS Application security analysis 32

MSc Thesis Konstantinos Vlachos

(gdb) break objc_msgSend

Mote: breakpoint 1 also set at pc Bx3Bc3eSca.
Breakpolnt 2 at Bx3Bc3eSca

{gdb) commands

Type commands for when breakpoint 2 is hit, one per Line.
End with a line saying just "end".

=xSa r@

=x/5 5rl

=C

=end

{gdb)

breakpoint on obj_msgSend() to print class and selector sending the message ($r0 for class, $r1
for class selector) [20]

Then typing the c command, reveals the values of each message sent with the help of the previous
defined gdb variables.

Breakpoint 1, ®x38c3eS5ca in objc_msoSend ()

Bxlfddffea: Bx3ad29d9c =0BIC_METACLASS_%_UIBookViewController+l@@=
Bx33B8bT450: "eurrentOverlap"

Breakpoint 1, ®x38c3eS5ca in objc_msogSend ()

BxlfddTfob: Bx3ad29d8c <0BJC_METACLASS % UIBookViewController+l8@:=
Bx33B8bT4c3: "shadowPadding"

Breakpoint 1, ®x38c3eS5ca in objc_msogSend ()

BxlfddTfoa: Bx3ad29d8c <0BJC_METACLASS_$_UIBookViewController+1l88:=
Bx33BbTlla: "foregroundStyle"

output of obj_msgSend() (class/selector) within gdb [20]
The capabilities of gdb-ios are as extensive as the ones of the common gdb. This chapter covers the

fundamental steps of installation and hooking into a process with this debugger. Further analysis cannot

be included as it reaches out of this document’s purpose which is not to teach debugging skills rather
than familiarize the reader with the available tools and procedure of iOS application security analysis.
Following up, a more interactive tool is presented that includes a Ul version of listing options and is
called FLEX.

iOS Application security analysis

33

MSc Thesis Konstantinos Vlachos
6.5 FLEX

FLEX (Flipboard Explorer) is a set of in-app d