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Abstract 
 

The objective of this study is to determine the best Value-at-Risk (VaR) model for the 

biggest stock exchange indexes in the U.S. and Europe. We use the Historic Simulation 

and Variance-Covariance approach with estimated volatility from Moving Average, 

Exponentially Weighted Moving Average, GARCH (1,1) with Normal Distribution, 

GARCH (1,1) with Student-t Distribution, EGARCH (1,1) with Normal Distribution 

and EGARCH (1,1) with Student-t Distribution. We use these methods in order to 

obtain the VaR forecasts for the period 01/01/2007 to 26/09/2016 for the following 

indices: S&P500, NASDAQ, EUROSTOXX, FTSE100, DAX, CAC and ATHEX. For 

the backtesting we apply the three tests proposed by Christoffersen (2012). Our results 

show that the most accurate results are achieved when using the Student t distribution 

together with a volatility forecasting model that takes into account the leverage effect, 

as the EGARCH (1,1). 
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1. Introduction 
 

                Over the past years, there has been a significant change in the way that 

financial institutions assess their risks. Risk is the likelihood of losses resulting from 

events such as changes in market prices. In current times of financial uncertainty, where 

every day there are new financial products, more complex than ever, the need for 

measuring and controlling risk is essential (Crouhy et al., 2006). Moreover, because of 

the increased volatility in markets around the globe, and the financial crisis in 2008, the 

focus has been on market risk analysis and measurement. The crisis has shown that the 

risk assessment that was put in use by various financial institutions failed and that risk 

was essentially underestimated. 

The Bank for International Settlement (BIS) defines market risk as “the risk of losses 

in on and off – balance sheet positions arising from movements in market prices” (BIS, 

1996). It includes interest rate risk, equity risk, foreign exchange risk, commodity risk 

etc. The main source of market risk in stock indices is equity risk since they are linear 

assets and the only risk factor is the price of the indices. In other words, the market risk 

is the risk that the value of the security or the portfolio will decline. 

There are many different methodologies for risk management today that were created 

several decades ago. Since then they have evolved and adjusted accordingly for 

different securities.  

The first risk management regulation was provided by the Basel Committee. The Basel 

Committee is an international committee of banking supervisory authorities. The main 

issue that this committee deals with is capital adequacy. The first important agreement 

of the committee was the 1988 Basel accord which set the principles for capital 

requirement in all international banks. Within the next years, a standard measuring 

method of market risk was added to these principles. This method was used to compute 

the potential loss that a portfolio would suffer from the changes of each risk factor. In 

1995, the Basel Committee replaced the standardized method with the internal model 

approach (BIS 1995). This approach gave the financial institutions the opportunity to 

develop their own measuring method of market risk and capital requirement, adjusting 

it to their needs. However, in order to use this kind of approach, the institutions had to 

be regularly reviewed and regulated by the management and other external officials. 

These principles were not exclusively for the financial institutions, with the result of 

expanding to other companies as well. 

These developments, facilitated by the growing technological resources, brought on 

some more sophisticated risk management systems, one of which is the Value at Risk 

(VaR). 



2 
 

According to Christoffersen (2012), VaR is a simple risk measure that answers the 

following question: What loss is such that it will only be exceeded 𝑝 × 100% of the 

time in the next K trading days?  

One incentive for the development of VaR is the mark to market approach in the 

evaluation of profits and losses. The daily revaluation of a position that the company 

holds has also brought the need for a more frequent estimation of the market risk on 

this position. (Gallati, 2003) 

The popularity of VaR skyrocketed after the development of a VaR system by JP 

Morgan. In 1994, they published a technical document that provided a detailed 

description of RiskMetrics, a set of techniques and data to measure market risks in 

portfolios of fixed income instruments, equities, foreign exchange, commodities, and 

their derivatives issued in over 30 countries. They presented the framework and how to 

calculate VaR, the necessary statistical measures needed, existing models for 

calculation, data structure and how to model the exposures to different risk factors. An 

important advantage of the RiskMetrics methodology is the presentation of the 

measurement of the market risk as a single number which has been very useful and easy 

to understand by investors. Since then, the Basel II accord has chosen it as a 

recommended measure for market risk. 

Despite the popularity that has gained among professionals in the risk management 

area, VaR has faced a lot of criticism for its lack of forecasting accuracy. (Danielsson 

et al., 2001 Zikovic and Filer, 2009). The main reasons behind this are two: firstly, in 

the computing of VaR, one needs to use the historic data of the security under question, 

and historic data does not always correspond to the present data. Another reason why 

VaR does not always give the most reliable results is that there are many choices 

involved in the process of calculating it. For example, one has to decide on confidence 

interval, estimate horizon, forecast horizon etc., making VaR subjective to some extent. 

As a result, the backtesting was developed with the purpose of verifying the results 

from the VaR calculations.  

The threats of market risk became primary concern even more so with the financial 

crisis in 2008. Following the failure of many financial institutions, such as Lehman 

Brothers, one of the largest investment bank in the US, the measurement of market risk 

was once again put to the test. Now more than ever, methods such as VaR have to prove 

their value so that excess risk taken by individuals can be stopped and another crisis 

prevented from happening. These are the reasons behind the continuing research in the 

hope of finding more efficient tools and less disruption in the global economy and 

consequently in people’s lives. 

The purpose of this thesis is to find the Value-at-Risk (VaR) model for different 

U.S. and European stock indices that can forecast the market risk most accurately. We 

compare the performance of these models and evaluate which of them is the best fit for 

each index.  We use different estimation windows and confidence intervals for a one-

day forecast horizon VaR. 
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The U.S. stock indices taken under consideration are S&P 500 and Nasdaq 

Composite. The European stock indices are Euro Stoxx 50, FTSE 100, DAX 30, CAC 

40 and Athens Stock Exchange (ATHEX) Composite Index. For each of these we 

compute the daily logarithmic returns and apply the VaR methods.  

A total of five models are tested, one is parametric with 4 different ways of estimated 

volatility and one non-parametric. The non-parametric method is the Historical 

Simulation (HS). The parametric model used is the Variance/Covariance matrix. In 

order to compute the Variance/Covariance Matrix we need to estimate the volatility, 

and do this by using the Simple Moving Average and Exponentially Moving Average 

as well as GARCH and EGARCH (using both normal and Student’s t-distribution). 

Finally, we use the three criteria suggested by Christoffersen in order to backtest VaR 

statistically and find the best model for each stock index. 

The rest of the thesis is structured as follows: Section 1 gives the background of 

VaR as a risk measure. Section 2 gives an overview of the existing papers that are 

published in this area in order to differentiate this thesis from the rest of the studies. 

Section 3, 4 and 5 introduce the theoretical framework, methodology and empirical tests 

for the models used in this thesis. Section 6 describes the selection of the data sample 

used in this thesis. Section 7 presents the empirical findings and their interpretation. 

Section 8 concludes. 
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2. Literature Review 
 

There has been an extensive research in the field of VaR. We chose to review the 

papers that are focused in the implementation of VaR methods to the specific stock 

indices that we included in this thesis. 

Danielsson (2002) used 4 estimation methods: GARCH with normal distribution, 

GARCH with Student’s t-distribution, Historical simulation and Extreme value theory. 

The data used was a representative foreign exchange, commodity, and equity datasets 

containing daily observations from the first recorded observation until the end of 1999 

(S&P 500 Index, Hang Seng Index, Microsoft Stock Prices, Amazon Stock Prices, 

Ringgit pound exchange rates, Pound dollar exchange rates, Clean US government 

bond price index, Gold Prices and Oil prices). He estimated each model and dataset 

with a moving 300, 1.000, and 2.000 day estimation window, and forecasted risk one 

day ahead.  

For the stock index that Danielsson used (S&P 500 Index), and for 300 and 1.000 days 

estimation window, GARCH with normal distribution showed the biggest 

underestimation of risk, whereas for the 2.000 day estimation window, the Historical 

Simulation and the Extreme Value Theory showed the highest underestimation. On the 

contrary, for 300 days estimation window, Historical Simulation and the Extreme Value 

Theory showed the highest overestimation of risk, whereas for the 1.000 and 2.000 day 

estimation window, the GARCH with Student’s t-distribution showed the highest 

overestimation. The closest to the expected value was the Extreme Value Theory for 

1.000 day estimation window (having a value of 0.99 when the expected value is 1). 

All the other models either underestimated the risk (causing exposure to the risk), or 

overestimated the risk (causing the allocation of capital where it is not necessary). All 

of these reported results correspond to the 99% confidence level. 

He also showed that longer horizons provide us with more accurate forecasts, as well 

as lower risk volatility and therefore should be preferred when computing VaR. The 

reason for this could be the long cycles in volatility.  

Using the same index (S&P 500 Index), 20 Year U.S. Treasury Bond Yield, 3 

Month U.S. Treasury Bill Yield and Deutschemark Exchange Rate (DM per $) 

Figlewski (1997) compared the historical volatility (with moving average) and GARCH 

(1, 1) for forecasting volatility. He used monthly and daily prices for the stock index 

S&P500 for the period July 02, 1962 to December 29, 1995. The mean returns had an 

assumed value of zero. For the daily prices, the estimation horizon used was 1, 3, 12, 

24 and 60 months (where one month was assumed to be 20 days), and the forecasting 

horizon 1, 3, 6, 12, and 24 months. The results showed that the size of the estimation 

horizon should be adequate to the forecasting horizon. The best volatility forecast for 1 

month forecasting horizon is achieved with 1 month estimation horizon, for a 3 month 

horizon 12 months of historical sample give the best results and for 12 and 24 forecast 

horizon, the last 60 months of data have to be used for the best result.  
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The GARCH (1, 1) on the other hand is estimated using 5 years of historical data. As a 

result, it performs much better than the historic forecasts for every forecast period. The 

RMSE is smaller than the historic forecasts for every horizon. This result is exclusively 

for the equity market data, since GARCH (1, 1) did not have the best forecasts for the 

other type of markets (3 Month Treasury Bill Yield, 10 Year Treasury Bond Yield and 

Deutschemark Exchange Rate). This model also does not perform well with the 

monthly prices since it is very hard for the parameters to be estimated using data with 

such small frequency.  

Alexander and Leigh (1997) used five major equity indices (DEM, FRF, GBP, 

JPY, USD) with data from 01/01/1993 to 06/10/1996. They analyzed the accuracy of 

different models such as moving average, exponentially weighted moving average 

(EWMA), and GARCH for forecasting volatility. Statistical and operational evaluation 

of these models showed that the moving average and the GARCH gave the best results 

for all the equity indices except for the US index. For this index the results were 

inversed, the best predictive performance was the one of the EWMA. 

Angelidis et al. (2004) used five index portfolios: S&P 500, Nikkei 225, FTSE 100, 

CAC 40 and DAX 30 and implemented a number of volatility models with Normal, 

Student’s t and Generalized Error Distribution. They estimated the models with four 

sample sizes:  500, 1000, 1500 and 2000 observations. The general conclusion is that 

the Student’s t-distribution is more accurate than the other two distributions and that 

for every index there is a different type of mean model, volatility model and sample 

size that works best. There is not a specific rule that could be applied to all the indices 

and that would result in the best forecast. 

Using the NASDAQ Composite Index, Kuester, Mittnik and Paolella (2006) 

examine different models, including existing models as well as some extensions.  The 

data that they used comprised of daily closing prices of the index from 08/02/1971 (the 

date that the index was launched) to 22/07/2001. Their in-sample data was 1000 

observations (approximately 4 years) and 6681 out of sample VaR forecasts.  Serving 

as a benchmark was the three-zone framework suggested by the Basle Committee 

(1996) in which a VaR model is considered to be acceptable (green zone) if the number 

of violations of 1% VaR remains below the binomial (0.01) 95% quantile. A model is 

disputable (yellow zone) up to the 99.99% quantile and is flawed (red zone) whenever 

more violations occur. The historical simulation was rated as disputable (yellow 

category). However, using the GARCH volatility estimation, the results were improved, 

especially under the assumption of a Student-t distribution.  

Angelidis and Benos (2004) implemented several volatility models (parametric and 

non-parametric) in order to estimate the 97.5% and 99% one-day VaR for long and 

short trading positions in the Greek Stock Market. They used daily prices from four 

equities (Alpha Bank, Commercial Bank, National Bank, Titan) and the ATHEX 

Composite Index for the period of January 2, 1991 to December 18, 2003. The models 

that they used were: parametric (Variance Covariance, RiskMetrics, GARCH, 

EGARCH, TARCH under Normal, Student-t and Skewed Student-t distribution), 

nonparametric (Historical), semi-parametric (Filtered Historical Simulation) and 
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Extreme Value Theory. The results show that for the 97.5% confidence level most of 

the models indicate good outcomes, with GARCH (1, 1), EGARCH (1, 1) and TARCH 

(1, 1) performing better for the long positions. For the 99% confidence level, the 

Filtered Historical Simulation method showed the best results and Extreme Value 

Theory acceptable results. 

Another study from the Greek stock market is the one by Lambadiaris, 

Papadopoulou, Skiadopoulos and Zoulis (2003). They assessed the performance of 

historical and Monte Carlo simulation in calculating VAR, by using data from the 

Greek stock and bond market for the period July 17, 2000 to July 18, 2002. For both 

approaches, the one-day VAR was calculated for two separate portfolios: one consisting 

of stocks and one consisting of bonds. VAR was calculated separately for a 99% and 

95% confidence level. The historical simulation VAR was calculated by using one-day 

rolling window of 100 and 252 observations (HS-100 and HS-252). In the stock 

portfolio case, the stock is assumed to follow a geometric Brownian motion with drift 

equal to zero. The volatility was estimated by using the moving average (MA-MC), the 

exponentially weighted moving average (EWMA-MC) and diagonal BEKK volatility 

estimators (BEKK-MC). 

The results from the stock portfolio analysis for the HS and MC simulations show that 

for the 99% confidence level, all of the methods are acceptable and can be included in 

the ‘green’ BIS zone. For the 95% confidence level, the results are slightly different 

from the 99%. The expected exceptions (number of violations) are again not exceeded, 

so the methods are once again acceptable. However, the HS-252 was the most 

conservative and as a result the use of MC simulation as opposed to the HS is 

recommended for the computing of VAR for a stock portfolio.  

Danielsson et al. (2001) argue that the regulations that were proposed by the 

Basel Committee in the Basel II “has failed to address many of the key deficiencies of 

the global financial regulatory system and even created the potential for new sources of 

instability”. Specifically, they claim that having a unique measure of risk such as VaR 

can disrupt the economic and financial system and make it less rather than more stable.  

Similar to the opinion of Danielsson are the findings by Zikovic and Filer 

(2009). They investigate the relative performance of VaR and ES models using daily 

returns for sixteen stock market indices (eight from developed and eight from emerging 

markets) prior to and during the 2008 financial crisis. They introduced a new hybrid 

approach to joint estimation of Value at Risk (VaR) and Expected Shortfall (ES) for 

high quantiles of return distributions. The results from this research showed that only 

their proposed new hybrid and Extreme Value (EV) based VaR models provide 

adequate protection in both developed and emerging markets. The other models did not 

provide the anticipated results by way of underestimating the risk. The parametric 

models: normal simple moving average, RiskMetrics and GARCH provided the worst 

results for both developed and emerging markets. The authors believe that the wide use 

of these very popular models was the reason for the underestimation of risk in the 

financial institutions in the recent crisis. 
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From this overview of the existing literature, we can conclude that there is not 

a unique VaR model that would be ideal for different kind of data. The results rely on 

a very subjective choice of the parameters such as confidence level, forecast horizon, 

data, method, assumptions about the distribution etc. (Beder, 1995). 

The more advanced models of the VaR are performing better than the original models, 

however the best model has not yet been found. A general conclusion is that the 

parametric methods work better than the non-parametric ones. This is especially true 

for the GARCH (1,1) models that address the heteroscedasticity problem, even more 

when a Student’s t-distribution is assumed, given the fat-tail property of stock indices. 

The purpose of this thesis is twofold. First, we implement several VaR models 

in order to estimate a one-day VaR forecast for 95% and 99% confidence level. Then, 

we evaluate these model as to their forecast accuracy using the three backtesting criteria 

(unconditional, independent and conditional coverage tests). The difference of this 

theses from the rest of the existing literature is that we use data from stock indices in 

US as well as Europe and compare the two categories.  

The empirical research that we conduct has shown that the normal distribution tends 

to underestimate the risk, while the Student’s t-distribution captures more accurately 

the extreme returns, resulting in more accurate results. This is emphasized even more 

when the leverage effect is taken into account. Because of this the EGARCH (1,1) 

yields the best results for most of the indices.  
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3. Theoretical Framework 
 

Market risk is defined as the risk to a financial portfolio due to changes in market 

prices such as equity prices, foreign exchange rates, interest rates etc. 

Value-at-Risk (VaR) is a simple risk measure that answers the following question: 

What loss is such that it will only be exceeded 𝑝 × 100% of the time in the next K 

trading days? (Christoffersen, 2012) 

Mathematically:  

 𝑃𝑟⁡($𝐿𝑜𝑠𝑠 > −$𝑉𝑎𝑅) = 𝑝, (1) 
 

where 𝑝 is the probability that the loss incurred will be larger than the VaR.  𝑝 is usually 

𝑝 = 5% or 𝑝 = 1%  and K is one or ten trading days. These are the basic parameters of 

VaR. 

The BIS has selected 𝑝 to be 1% and K to be 10 days for the purpose of measuring the 

adequacy of capital in banks, but many companies choose a one day VaR with 

probability of 5% or 1%, for internal purposes (Duffie and Pan, 1997). The choice of 

the confidence level depends on the risk attitude of the user, the more risk averse he 

is, the lower the probability of loss 𝑝 (Alexander, 2008). 

Since we are going to be using logarithmic daily returns,  

 𝑃𝑟⁡(𝑅 < −𝑉𝑎𝑅) = 𝑝 (2) 
 

In this case 𝑝 is the probability that we will have a lower return than –VaR. 

 

Figure 1 VaR for a confidence level a and normal distribution 
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The Basel’s Committee recommends this measure for determining the capital adequacy 

of the banks. More specifically: “banks must hold capital equal to the potential loss on 

the institution’s equity holdings as derived using internal value-at-risk models subject 

to the 99th percentile, one-tailed confidence interval of the difference between quarterly 

returns and an appropriate risk-free rate computed over a long-term sample period”. As 

far as the method that should be used there is no specific recommendation, every 

financial institution can use its internal method, but backtesting is required, as well as 

regulatory audit. 

The fact that Basil’s Committee recommends the use of the 99th percentiles means that 

the confidence level should be set at 99% or that the loss would exceed the VaR in only 

1% of the cases.   

Value-at-Risk is a number that represents the potential change in a portfolio’s future 

value. How this change is defined depends on the horizon over which the portfolio’s 

change in value is measured and the “degree of confidence” chosen by the risk manager 

(RiskMetrics, 1996). 

 

3.1. Advantages and disadvantages of VaR 
 

There are many advantages to VaR, making it one of the most popular risk 

measure used worldwide. One main advantage is that it can aggregate different types 

of risk in one single measure. As we have stated earlier, this is especially convenient 

for investors, as it makes it easier to understand and interpret.  Another important 

advantage of VaR is that it is comparable. We can use it to compare the market risk for 

different types of securities or portfolios.  

However, there are a few shortcomings to the VaR as a risk measure. Some of these are 

examined in detail by the existing literature. Such disadvantages are: 

VaR only gives a forecast to a specific point in the distribution. If a loss is realized and 

it is beyond what the VaR forecasted, we have no information about how big this loss 

can be. Hence, VaR does not capture the extra risk in the tail of the distribution and 

does not provide us with any clue as to what to expect in this case (Taylor, 2008). 

Another weakness of the VaR is that it is not coherent. This is shown by the non-

additivity property of VaR, i.e. the VaR of a portfolio is greater than the sum of VaR 

of its components. This is a very important property for a risk measure because if VaR 

is non-additive, it could mean that a well-diversified portfolio shows signs of higher 

risk, which we know is not the case.  
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These disadvantages are presented by Artzner et al. (1999). They showed that VaR 

failed to satisfy the subadditivity and convexity property and is therefore a non-coherent 

risk measure.  

According to them, a risk measure 𝜌(∙) is coherent if it satisfies the four axioms: 

1. Translation invariance: 𝜌(𝑋 + 𝑎 ∗ 𝑟) = 𝜌(𝑋) − 𝑎, for all real numbers 𝑎. 

2. Subadditivity: 𝜌(𝑋1 + 𝑋2) ≤ 𝜌(𝑋1) + 𝜌(𝑋2), 

3. Homogeneity: for all 𝜆 ≥ 0, 𝜌(𝜆𝑋) = 𝜆𝜌(𝑋), 

4. Monotonicity: 𝑋 ≤ 𝑌, we have 𝜌(𝑌) ≤ 𝜌(𝑋), 

Another concern with the VaR is that: if a loss is bigger than the VaR forecast, there is 

no way to compute the expected magnitude of the loss; VaR does not give give us any 

information about losses outside of the bound, which is an important information to 

have in a moment of crisis. They proposed a new alternative measure of risk that 

resolves these problems, called Conditional Value-at-Risk (CVar), also called Expected 

Shortfall (ES). It quantifies the losses and at the same time it is a coherent measure of 

risk. 

 

3.2. Stylized facts 
 

The daily logarithmic return of the stock indices is defined as: 

 𝑅𝑡+1 = 𝑙𝑛⁡(𝑆𝑡+1) − 𝑙𝑛⁡(𝑆𝑡), (3) 

where St is the price of the index at time 𝑡 and St+1 the price at time 𝑡 + 1. 

All financial returns have three stylized facts (Danielsson, 2011):  

1. Volatility clusters  

Volatility of the returns usually cluster together, periods of high volatility are 

followed by periods of high volatility and periods of low volatility are followed by 

periods of low volatility. 

2. Fat tails  

The returns are usually not normally distributed because of the outliers, either positive 

or negative that require fatter tails of the distribution in order to be correctly observed.  

3. Nonlinear dependence 

It explains the correlation of the returns. 

The daily returns should have very little autocorrelation  

 𝐶𝑜𝑟𝑟(𝑅𝑡+1, 𝑅𝑡+1−𝜏) ≈ 0 (4) 
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If the variance is measured by squared returns, it should present positive correlation 

with its own past. This should be even more obvious because of the short horizon that 

we will use (daily). 

 𝐶𝑜𝑟𝑟(𝑅𝑡+1
2 , 𝑅𝑡+1−𝜏

2 ) > 0, (5) 
              

for small 𝜏. 

 

3.3. Normal Distribution 
 

The normal distribution is a continuous probability distribution. It is usually used 

as a first approach for describing random variables that tend to cluster around an 

average. The shape of the normal distribution is a bell curve and it is one of the most 

significant distributions in statistics. This distribution often applies in cases where it is 

less likely to occur extreme values than it is to occur average values. 

Α normal distribution can be determined by two moments: the mean and the variance 

(standard deviation). The average lies in the distribution peak. The standard deviation 

determines the shape of the distribution, if it is spread out, or if the majority of the 

surface will be concentrated near the top.  

If 𝑥 is a normal random variable, the probability density function (pdf) is 

 
𝑓(𝑥) =

1

√2𝜋𝜎
𝑒−(

1

2
)[(𝑥−𝜇)/𝜎]2

, 
(6) 

 

where: 

𝜇 – mean or expectation of the distribution,  

𝜎 – standard deviation. 

In most cases when we want to find the surface area under a normal distribution we will 

use the standard normal distribution. The standard normal distribution is a normal 

distribution with a mean of 0 and variance of 1.   

To find the surface we need the cumulative distribution function (Φ(𝑧)). This 

distribution gives the probability that a standard normal random variable 𝑍 has a lower 

value than a specified value 𝑧: 

 𝛷(𝑧) = 𝑃𝑟⁡(𝑍 < 𝑧) (7) 



12 
 

 

It also provides the surface area under the density function of the standard normal 

random variable, which is to the left of the specified value 𝑧. 

 

Figure 2 Cumulative Density Function – probability of being below the number z 

 

 

Two additional moments of the normal distributions are known as skewness and 

kurtosis. Skewness characterizes the asymmetry of a distribution around its mean. The 

expression for skewness is given by: 

 𝑠3 = 𝐸[(𝑟𝑡 − 𝜇)3] (8) 
 

For the normal distribution, skewness is zero. In practice, it is more convenient to work 

with the skewness coefficient, which is defined as: 

 
𝛾 =

𝐸[(𝑟𝑡 − 𝜇)3]

𝜎3
 

(9) 

 

Kurtosis measures the relative peakedness or flatness of a given distribution. The 

expression for kurtosis is given by: 

 𝑠4 = 𝐸[(𝑟𝑡 − 𝜇)4] (10) 
 

For the normal distribution, kurtosis is 3. As in the case of skewness, in practice, the 

kurtosis coefficient is more frequently used: 

 
𝑘 =

𝐸[(𝑟𝑡 − 𝜇)4]

𝜎4
 

(11) 
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3.4. Student-t Distribution 
 

The Student-t is a continuous probability distribution which is very similar to the 

Normal Distribution. The shape of this distribution is also a bell curve which depends 

on the degrees of freedom. As they increase, the distribution takes the shape of the 

Normal Distribution. As they decrease, it diverges from the shape of the Normal 

Distribution by way of demonstrating lower peak and fatter tails. 
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4. Methodology for calculating VaR 
 

For calculating VaR we will use 2 methods: the first is a non-parametric method – 

The Historical Simulation, the second is a parametric method – the Variance / 

Covariance Matrix.  

 

4.1. Historical Simulation 
 

The Historical Simulation method uses historical data in order to construct the 

distribution for future Profit/Loss. It does not assume normal distribution but allows the 

historic data to shape its distribution. In addition, it assumes that the changes in the past 

will continue to be the same in the future as well. The securities are valued under 

different window lengths that are defined by the person doing the calculation. 

Typically, the lengths vary from three months to two years.  

Once the distribution is defined, we rank the results from the highest profit to the lowest 

loss. If we use a confidence level of 99%, then we select the loss which is exceeded 1% 

of the time. This loss is the VaR.  

Christoffersen (2012) explains the Historical Simulation in terms of portfolios where:  

We consider a hypothetical portfolio consistent of 𝑛 assets. If today, at time 𝑡, we own 

𝑁𝑖,𝑡 shares of asset 𝑖 then the portfolio would be worth: 

 
𝑉𝑃𝐹,𝑡 = ∑𝑁𝑖,𝑡𝑆𝑖,𝑡

𝑛

𝑖=1

 
(12) 

 

To find the pseudo value of the portfolio, we use historical asset prices of the existing 

shares but we do not change the number of each share that we own. This is exactly why 

the “pseudo” part occurs, since normally we would change the number of each shares 

owned as time passes. 

For instance, yesterday’s pseudo portfolio value would be:  

 
𝑉𝑃𝐹,𝑡−1 = ∑𝑁𝑖,𝑡𝑆𝑖,𝑡−1

𝑛

𝑖=1

 
(13) 

 

The pseudo logarithmic daily return is: 
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𝑅𝑃𝐹,𝑡 = ln⁡(

𝑆𝑃𝐹,𝑡

𝑆𝑃𝐹,𝑡−1
) 

(14) 

 

Using these statements, we consider a sequence of pseudo logarithmic daily returns, 

using historical asset prices but keeping the number of shares unchanged: 

 {𝑅𝑃𝐹,𝑡+1−𝜏}𝜏=1

𝑚
, (15) 

 

where 𝑚 – past sequence of the returns. The VaR with probability 𝑝 (𝑝 = 1 −

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒⁡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) is then calculated as 100th percentile of the sequence of past 

portfolio returns: 

 𝑉𝑎𝑅𝑡+1
𝑝 = −𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ({𝑅𝑃𝐹,𝑡+1−𝜏}𝜏=1

𝑚
) (16) 

 

We apply the same method with the difference being that we do not deal with portfolios 

but a single asset each time. 

Historical Simulation uses the concept of rolling windows. First, we need to choose a 

window size that generally ranges from 3 months to two years. Then, the returns within 

this window are sorted in ascending order and the value that leaves 𝑝% of the 

observations on its left side and (1 − 𝑝)% on its right side is the VaR. To compute the 

VaR the following day, the whole window is moved forward by one day and the entire 

procedure is repeated. 

The Historical Simulation is easy to implement but has been criticized mostly because 

of its use of past data when predicting the future. The best predictor of future behavior 

is not the past behavior when it comes to financial instruments.  

 

4.2. Parametric method – Variance / Covariance Matrix 
 

Contrary to the Historic Simulation, the Variance/Covariance Matrix method 

assumes that the market factors have a certain type of distribution. (Jackson et al. 1997) 

It uses historical time series analysis to estimate the variance, covariance and 

correlation coefficients for each item separately. Afterward, the risk of the portfolio is 

determined by the linear combination of all the factors. 

Our portfolio consists of one index each time we compute VaR so we will not be using 

the covariance and correlation coefficients, but we will focus on the estimation of the 

variance.  
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The most commonly type of distribution assumed is the normal distribution. A standard 

property of the normal distribution is that outcomes less than or equal to 2.33 standard 

deviations below the mean occur only 1% of the time. The number 2.33 is the 

cumulative density function (CDF) of the standard normal distribution 𝛷(∙). 𝛷−1(𝑝) 

calculates the number such that 𝑝% of the probability mass is below 𝛷−1(𝑝). 

For a 95% confidence level, the CDF is -1.65: 

 𝑉𝑎𝑅 = −1.65 ∗ (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑐ℎ𝑎𝑛𝑔𝑒⁡𝑖𝑛⁡𝑎𝑠𝑠𝑒𝑡⁡𝑣𝑎𝑙𝑢𝑒) (17) 
 

Respectively, for a 99% confidence level, the VaR is equal to -2.33 times the standard 

deviation of changes in asset value. 

 𝑉𝑎𝑅 = −2.33 ∗ (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑐ℎ𝑎𝑛𝑔𝑒⁡𝑖𝑛⁡𝑎𝑠𝑠𝑒𝑡⁡𝑣𝑎𝑙𝑢𝑒) (18) 
 

One of the biggest flaws of this method is that it assumes that all risk factors are 

normally distributed. This causes the fat-tails problem, i.e. the risk is underestimated 

under the assumption of normality, and does not take into consideration the fat-tails 

distribution.  

If the Student’s t-distribution is assumed, we use the CDF of this distribution and we 

multiply that number by the standard deviation that is estimated. 

 

4.2.1. Markov Process 

 

A Markov process is a specific type of stochastic process where only the present 

value of a variable is significant for predicting the future. The historical data of the 

variable is irrelevant. (Hull, 2006) 

A particular type of Markov stochastic process is the Wiener process. This process has 

a mean change of 0 and a variance rate of 1 per year.  

A variable 𝑧 follows the Wiener process if it has the following two properties: 

1. The change ∆𝑧 during a small period of time ∆𝑡 is: 

 ∆𝑧 = 𝜖√∆𝑡, (19) 

               

where 𝜖 has a standard normal distribution⁡𝜙(0,1).  

2. The values of ∆𝑧 for any two different short intervals of time, ∆𝑡, are 

independent.  
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The mean change per unit time for a stochastic process is known as the drift rate and 

the variance per unit time is known as the variance rate. The basic Wiener process, 𝑑𝑧, 

has a drift rate of 0 and a variance rate of 1. The drift rate of 0 means that the expected 

value of 𝑧 at any future time is equal to its current value. The variance rate of 1 means 

that the variance of the change in 𝑧 in a time interval of length 𝑇equals 𝑇.  A generalized 

Wiener process for a variable 𝑥 can be defined in terms of 𝑑𝑧 as: 

 𝑑𝑥 = 𝑎𝑑𝑡 + 𝑏𝑑𝑧, (20) 
 

where 𝑎 and 𝑏 are constant.  

Using this we can derive the stochastic process of an individual asset. The most widely 

used model of stock price behavior is: 

 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 (21) 
 

The variable 𝜇 is the stock’s expected rate of return. The variable 𝜎 is the volatility of 

the stock price. This model is known as geometric Brownian motion. 

Since we use the daily returns, the model will be: 

 𝑅𝑡+1 = 𝜇𝑡+1 + 𝜎𝑡+1𝑧𝑡+1 (22) 
 

In addition, we assume that the mean of return 𝜇𝑡+1 is zero. Removing this term, we 

have: 

 𝑅𝑡+1 = 𝜎𝑡+1𝑧𝑡+1 (23) 
  

What this tells us is that the distribution of the asset’s returns will depend entirely on 

the volatility of the asset. We need to determine a model in order to estimate this 

parameter. Hence the name of this method, parametric method.  

One property of volatility is that it is not directly observable, therefore it has to be 

estimated. (Tsay, 2005) 

 

4.2.2. Ways for estimating volatility 

 

There are a number of ways to estimate volatility: 

 Moving Average 
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Moving average is the simplest approach. It simply calculates volatility as the 

unweighted standard deviation of a window of 𝑋 trading days. Subsequently, this 

becomes the volatility forecast for all future periods. 

 
𝜎𝑡+1

2 =
1

𝑚
∑(𝑅𝑡+1 − 𝑅̅)2

𝑚

𝑖=1

 
(24) 

 

We assume that the mean of return is zero and that the volaitlity of the returns 

should present positive autocorrelation. Practically, this means that the future period 

will have the same type of volatility as did the recent period (high/low).  We represent 

this relationship by computing the next day’s volatility as the average of the most recent 

𝑚 observations, as in: 

 
𝜎𝑡+1

2 =
1

𝑚
∑(𝑅𝑡+1−𝜏)

2

𝑚

𝜏=1

 
(25) 

 

This equation gives equal weight to 𝑅𝑡+1−1
2 , 𝑅𝑡+1−2

2 ,….., 𝑅𝑡+1−𝑚
2 . 

According to Figlewski (1997), the estimation for volatility is more accurate when 

longer samples of past returns are used. For example, if we are using daily returns from 

the past 5 years, the estimated volatility will be more accurate that if we use the returns 

from the last year only. However, there is a trade off when it comes to the estimation 

window, since a very large window size gives equal weight to the most recent returns, 

as well as to the returns that are at the beginning of the window. This causes the method 

to be less accurate in the event of extreme losses or profits. 

Additionally, the longer time horizon that we want to apply the volatility to, the more 

accurate it is. If the time horizon that we choose is 5 years from now, the volatility 

calculated with this method will be more accurate than if we choose a time horizon of 

1 year.  

 

 Exponentially Weighted Moving Average (EWMA)  

Another way of estimating the volatility is by using an exponential weighted 

moving average (EWMA) of historic data. This model was created by JP Morgan’s 

RiskMetrics system for market risk management.  

The difference between this approach and the simple moving average approach is that 

this time the observations don’t have the same weight. The most recent observations 

bring the highest weight and as we move back in time, the weight of every observation 

is reduced. This is an important change in the way that volatility is estimated because 

of two reasons. First, the events in the recent past can be translated to the estimated 
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volatility much faster if they carry higher weights. Second, in the case of a momentary 

shock in the market, the influence it has on the volatility will degrade slowly over time 

as the weight is reduced. In the case where all observations carry the same weight, it 

can lead to relatively sudden changes in the volatility once the shock falls out of the 

measurement sample, which sometimes can be several months after it occurs. 

The EWMA, sometimes called exponential smoother model, is computed as: 

 𝑅𝑡
2 + 𝜆𝑅𝑡−1

2 + 𝜆2𝑅𝑡−2
2 + ⋯+ 𝜆𝑛𝑅𝑡−𝑛

2

1 + 𝜆 + 𝜆2 + ⋯+ 𝜆𝑛
 

(26) 

 

The denominator converges to 
1

1−𝜆
 as⁡n⁡ → ∞ , so an infinite EWMA may be written as: 

 
𝜎𝑡+1

2 = (1 − 𝜆)∑(𝜆𝜏−1𝑅𝑡+1−𝜏
2 )

∞

𝜏=1

 
(27) 

 

The future volatility can also be written as: 

 𝜎𝑡+1
2 = 𝜆𝜎𝑡

2 + (1 − 𝜆)𝑅𝑡
2 (28) 

 

The model depends on the “smoothing” parameter λ (0 < 𝜆 < 1), which is often 

referred to as the decay factor. This parameter determines the relative weights that are 

applied to the observations. 

When estimating 𝜆 on a 480 time series, RiskMetrics found that the estimates were quite 

similar across the time series, using one optimal decay factor. Consequently, this 

optimal decay factor turned out to be 𝜆 = 0.94 for daily returns and 𝜆 = 0.97 for 

monthly returns. In this case, there is no need for an estimation of the parameter when 

computing volatility. We simply apply the EWMA equation (JP Morgan, 1996). 

For our daily return, the volatility would be: 

 𝜎𝑡+1
2 = 0.94𝜎𝑡

2 + 0.06𝑅𝑡
2 (29) 

 

 ARCH 

Engle (1982) was the first to propose a new class of stochastic processes called 

autoregressive conditional heteroscedasticity (ARCH) processes. These are mean zero, 

serially uncorrelated processes with non-constant volatility conditional on the past and 

constant unconditional volatility. It means that the conditional volatility of the financial 

series evolves according to an autoregressive type process. Specifically, the ARCH 

models assume the volatility of the current error term to be a function of the previous 
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time periods' error terms. If the volatility of the error terms is constant, then we have 

homoscedasticity. If the error terms do not have constant volatility, they are said to be 

heteroskedastic. Since the discovery that the volatility can be time-varying there have 

been conducted many studies about its properties. (Glosten et al. 1993) 

According to Engle (1982), if a random variable 𝑦𝑡 is drawn from the conditional 

density function 𝑓(𝑦𝑡|𝑦𝑡−1), the forecast of today’s value based upon past information, 

under standard assumptions, is simply 𝐸(𝑦𝑡|𝑦𝑡−1), which depends upon the value of 

the conditioning variable 𝑦𝑡−1. The volatility of this one period forecast is given by 

𝑉⁡(𝑦𝑡|𝑦𝑡−1). Such an expression recognizes that the conditional forecast volatility 

depends upon past information and may therefore be a random variable.  

We initially consider the first-order autoregression: 

 𝑦𝑡+1 = 𝛾𝑦𝑡 + 𝜖𝑡+1, (30) 
  

where 𝜖 is white noise with 𝑉(𝜖) = 𝜎2. The conditional mean of 𝑦𝑡 is 𝛾𝑦𝑡 while the 

unconditional mean is zero. The conditional volatility of 𝑦𝑡+1 is 𝜎2 while the 

unconditional volatility of 𝑦𝑡+1 is 𝜎2/(1 − 𝛾2).  

The distinction between the conditional and unconditional volatility of a random 

variable is exactly the same as that of the conditional and unconditional mean. The 

conditional volatility of  𝑦𝑡+1 may be denoted 𝜎2, which is written as: 

 𝜎𝑡+1
2 = 𝑉(𝑦𝑡+1|𝑦𝑡, 𝑦𝑡−1, … ) = 𝐸[(𝑦𝑡+1 − 𝐸(𝑦𝑡+1))

2|𝑦𝑡, 𝑦𝑡−1, … ] (31) 
 

It is usually assumed that 𝐸(𝑦𝑡+1) = 0, so 

 𝜎𝑡+1
2 = 𝑉(𝑦𝑡+1|𝑦𝑡, 𝑦𝑡−1, … ) = 𝐸[𝑦𝑡+1

2|𝑦𝑡, 𝑦𝑡−1, … ] (32) 
  

This equation states that the conditional volatility of a zero mean normally distributed 

random variable 𝑦𝑡+1 is equal to the conditional expected value of the square of 𝑦𝑡+1. 

A model that allows the conditional volatility to depend on the past realizations of the 

series is the bilinear model:  

 𝑦𝑡+1 = 𝜖𝑡+1𝑦𝑡 (33) 
 

Under the ARCH model, the ‘autocorrelation in volatility’ is modelled by allowing the 

conditional volatility of the error term, 𝜎𝑡
2 to depend on the immediately previous value 

of the squared error (Brooks, 2008) 

 𝜎𝑡+1
2 = 𝑎0 + 𝑎1𝑦𝑡

2 (34) 
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This is an ARCH (1) model as it contains only a single lag on the squared error term, 

however it is possible to extend this to any number of lags, if there are 𝑞 lags it is termed 

an ARCH (𝑞) model: 

 𝜎𝑡+1
2 = 𝑎0 + 𝑎1𝑦𝑡

2 + 𝑎2𝑦𝑡−1
2 + ⋯+ 𝑎𝑞𝑦𝑡−𝑞

2  (35) 

 

 GARCH 

Bollerslev (1986) and Taylor (2008) independently generalized Engle’s model to 

make it more realistic; the generalization was called GARCH (General Autoregressive 

Conditional Heteroscedasticity). 

According to Bollerslev, let 𝜀𝑡+1 denote a real-valued discrete-time stochastic process, 

and 𝜓𝑡, the information set (𝜎-field) of all information through time 𝑡. The 

GARCH(𝑝, 𝑞) process is then given by: 

 𝜀𝑡+1|𝜓𝑡~𝑁(0, ℎ𝑡+1), (36) 
 

 
ℎ𝑡+1

2 = 𝑎0 + ∑𝑎1𝜀𝑡
2 + ∑𝛽𝑖ℎ𝑡

2

𝑝

𝑖=1

𝑞

𝑖=1

 

= 𝑎0 + 𝐴(𝐿)𝜀𝑡
2 + 𝐵(𝐿)ℎ𝑡, 

(37) 

 

where,  

𝑝 ≥ 0,   𝑞 > 0 

𝑎0 > 0  𝑎𝑖 ≥ 0,  𝑖 = 1, … , 𝑞, 

𝛽𝑖 ≥ 0    𝑖 = 1, … , 𝑝 

 

𝑝 is the number of estimates of volatility rates (ℎ𝑡) and 𝑞 is the number of observations 

of the error terms (𝜀𝑡
2). From the previous relation (37), we can see that for 𝑝 = 0, 

GARCH is equal to ARCH. Moreover, for 𝑝 = 𝑞 = 0, there is no correlation between 

the values of 𝜀𝑡 at different times. In this case, we would characterize this process as 

white noise. 

The main difference from the ARCH process is that GARCH allows the use of not only 

the sample volatility, but the conditional volatility as well. 
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 GARCH (1,1) 

One of the most used GARCH process is GARCH (1, 1), where: 

 ℎ𝑡+1
2 = 𝑎0 + 𝑎1𝜀𝑡

2 + 𝛽1ℎ𝑡
2, (38) 

 

𝑎0 > 0, 𝑎1 ≥ 0, 𝛽1 ≥ 0 

In this case ℎ𝑡+1 is calculated from the first recent estimate of the volatility rate and the 

first recent observation on 𝜀2.  

We can see that the EWMA discussed earlier is a particular case of GARCH (1,1) where 

𝑎0 = 1, 𝑎1 = 1 − 𝜆,⁡and 𝛽1 = 𝜆. 

Since we deal with one index at a time we use the univariate GARCH model. In the 

case of a portfolio consisting of more than one asset, the multivariate GARCH model 

could be used for estimating the correlation between assets (Bollerslev, 1990). 

We applied this method to our data in the form of: 

 𝜎𝑡+1
2 = 𝑎0 + 𝑎1𝑅𝑡

2 + 𝛽1𝜎𝑡
2, (39) 

 

where 𝜎𝑡+1 is the volatility forecast for the period 𝑡 + 1, 𝜎𝑡 is the volatility forecast for 

the period 𝑡, 𝑅𝑡
2 is the squared return for the period 𝑡 and 𝑎0, 𝑎1,⁡and 𝛽1 are the 

estimated parameters using the information up to period 𝑡. 

 

 EGARCH 

Nelson (1991) published the Exponential GARCH model (non-linear). It enables to 

capture the asymmetric effects (leverage effects), the different effects of positive and 

negative shocks on conditional volatility, i.e. an unexpected price drop increases 

volatility more than an equivalent unexpected price increase. The EGARCH model 

takes into consideration these effects by defining the conditional volatility not only by 

its size but also by its sign (positive/negative). 

The EGARCH (𝑝, 𝑞) model is described by: 

 
log(ℎ𝑡+1

2 ) = 𝑎0 + ∑(𝑎1 |
𝜀𝑡

ℎ𝑡
| + 𝛾1

𝜀𝑡

ℎ𝑡
) + ∑(𝛽1log⁡(ℎ𝑡

2))

𝑝

𝑖=1

𝑞

𝑖=1

 
(40) 
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The most common type of this model is the EGARCH (1,1): 

 log(ℎ𝑡+1
2 ) = 𝑎0 + 𝑎1 |

𝜀𝑡

ℎ𝑡
| + 𝛾1

𝜀𝑡

ℎ𝑡
+ 𝛽1log⁡(ℎ𝑡

2) (41) 

 

Again, when we applied this model to our data it took the form of: 

 
log(𝜎𝑡+1

2 ) = 𝑎0 + 𝑎1 |
𝑅𝑡

𝜎𝑡
| + 𝛾1

𝑅𝑡

𝜎𝑡
+ 𝛽1log⁡(𝜎𝑡

2) 
(42) 

 

where 𝜎𝑡+1 is the volatility forecast for the period 𝑡 + 1, 𝜎𝑡 is the volatility forecast for 

the period 𝑡, 𝑅𝑡 is the return for the period 𝑡 and 𝑎0, 𝑎1, 𝛽1 and 𝛾1 are the estimated 

parameters using the information up to period 𝑡. 𝛾1 is the leverage parameter. 

 

  



24 
 

5. Backtesting 
 

Regardless of the methods used for calculating VaR, one of the most important 

procedure is the backtesting. The objective of this procedure is to consider the ex-ante 

risk measure forecasts from the model and compare them with the ex post realized 

returns. In other words, examining to what extent was the data given by the VaR 

process, in fact consistent with the reality.  

We use the three criteria suggested by Christoffersen (2012), in order to backtest VaR 

statistically: unconditional coverage test, independence test and conditional coverage 

test. 

If we compare the VaR forecasts and the actual returns, we can describe the results as: 

 
𝐼𝑡+1 = {

1, 𝑖𝑓⁡𝑅𝑡+1 < −𝑉𝑎𝑅𝑡+1
𝑝

0, 𝑖𝑓⁡𝑅𝑡+1 ≥ −𝑉𝑎𝑅𝑡+1
𝑝  

(43) 

 

where 𝑉𝑎𝑅𝑡+1
𝑝  denotes the loss that it will only be exceeded 𝑝 × 100% of the time. 

If the loss on day 𝑡 + 1 exceeds the VaR forecast for that day, 𝐼𝑡+1 returns 1, otherwise 

it returns a value of 0. When backtesting the VaR model, we construct a sequence of 
{𝐼𝑡+1}𝑡=1

𝑇  for 𝑇 number of days when the loss exceeded the Var forecast.  

Since we cannot predict the probability of VaR violations, the hit sequence 𝐼𝑡+1 should 

be unpredictable and distributed independently over time, taking the form of a Bernoulli 

variable that takes the value 1 with probability 𝑝 and the value 0 with probability 1 −

𝑝: 

 𝐻0: 𝐼𝑡+1~ i.i.d. Bernoulli (𝑝) (44) 
 

This is the null hypothesis.  

When conducting the backtesting, 𝑝 will be 0.01 or 0.05, depending on the confidence 

level chosen for the VaR. 

The probability mass function (pmf) 𝑓 of this distribution, over the possible outcome 

𝑝, is: 

 𝑓(𝐼𝑡+1; 𝑝) = (1 − 𝑝)1−𝐼𝑡+1𝑝𝐼𝑡+1  (45) 
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5.1. Unconditional coverage testing 

We first want to test if the violations obtained from a particular risk model is 

considerably different from the coverage rate 𝑝. Christoffersen called this the 

unconditional coverage hypothesis. This test is concerned with whether or not the 

forecasted VaR is violated more (or less) than 𝑝 ∗ 100% of the time. 

To test it, we start with the likelihood of an i.i.d. Bernoulli hit sequence (𝜋). Since the 

Bernoulli distribution defines a discrete probability function instead of continuous, the 

likelihood equals the probability mass function (for continuous functions, we used the 

probability density function): 

 
𝐿(𝜋) = ∏(1 − 𝜋)1−𝐼𝑡+1𝜋𝐼𝑡+1 = (1 − 𝜋)𝑇0𝜋𝑇1

𝑇

𝑡=1

 
(46) 

 

where 𝑇0 and 𝑇1 are the values of 0 and 1 that the hit sequence 𝐼𝑡+1 take in the sample. 

We can estimate 𝜋 as 𝜋̂ = 𝑇1/𝑇. This is the maximum likelihood estimate of 𝜋. 

Substituting this in the likelihood function we have: 

 
𝐿(𝜋) = (1 −

𝑇1

𝑇
)𝑇0(

𝑇1

𝑇
)𝑇1 

(47) 

 

Under the unconditional coverage null hypothesis, 𝜋 = 𝑝 where 𝑝 is the known VaR 

coverage rate, the likelihood function of which is: 

 
𝐿(𝑝) = ∏(1 − 𝑝)1−𝐼𝑡+1𝑝𝐼𝑡+1 = (1 − 𝑝)𝑇0𝑝𝑇1

𝑇

𝑡=1

 
(48) 

 

Lastly, we can check the unconditional coverage hypothesis using a likelihood ratio 

test: 

 
𝐿𝑅𝑢𝑐 = −2𝑙𝑛 [

𝐿(𝑝)

𝐿(𝜋̂)
] 

(49) 

 

As the number of observations 𝑇 goes to infinity, the test is distributed as a 𝜒2 with one 

degree of freedom. This likelihood ratio, or equivalently its logarithm, can then be used 

to compute a 𝑝-value, or using a significance level compare it to the critical value to 

decide whether to accept or reject the null hypothesis.  

When running this statistical test, we are faced with two types of errors. Type 1 error 
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refers to the possibility of rejecting a correct model and type 2 error to the possibility 

of not rejecting (accepting) an incorrect model. Best case scenario would be to eliminate 

the two types of errors.  

If we reject the null hypothesis 𝜋 = 𝑝, then in this case 𝜋 ≠ 𝑝. This can be interpreted 

in one of two ways: If 𝜋 > 𝑝, losses in excess of the forecasted VaR occur more 

frequently than 𝑝 ∗ 100% of the time. This would suggest that the forecasted VaR 

measure understates the portfolio’s actual level of risk. The opposite, 𝜋 < 𝑝, would 

mean that the VaR measure is conservative and overestimates the risk. 

 

5.2. Independence testing 

Another problem occurs when the VaR violations are happening around the 

same time. Even if the models “pass” the unconditional coverage test, the violations 

also need to be tested for their clustering in time.  

Cristoffersen (2012) uses the Markov test in order to reject a VaR with clustered 

violations. 

The Markov test examines the likelihood of a VaR violation depending on a VaR 

violation that occurred on the previous day. If the VaR measure accurately reflects the 

underlying risk, then the probability of a violation today should be independent of 

whether or not there was a violation yesterday. Hence the name of this test, 

independence test. 

We assume the hit sequence is dependent over time and that it can be described as a so-

called first-order Markov sequence with transition probability matrix: 

 
Π1 = [

1 − 𝜋01 𝜋01

1 − 𝜋11 𝜋11
] 

(50) 

 

where,  

𝜋01, the probability of tomorrow being a violation given that today is not a violation: 

 𝜋01 = Pr⁡(𝐼𝑡+1 = 1|𝐼𝑡 = 0) (51) 
 

𝜋11, the probability of tomorrow being a violation given that today is also a violation: 

 𝜋11 = Pr⁡(𝐼𝑡+1 = 1|𝐼𝑡 = 1) (52) 
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1 − 𝜋01, the probability of tomorrow not being a violation, given that today is also not 

a violation 

 1 − 𝜋01 = Pr⁡(𝐼𝑡+1 = 0|𝐼𝑡 = 0) (53) 
 

1 − 𝜋11, the probability of tomorrow not being a violation given that today is a violation 

 1 − 𝜋11 = Pr⁡(𝐼𝑡+1 = 0|𝐼𝑡 = 1) (54) 
 

The likelihood function in this case would be: 

 𝐿(Π1) = (1 − 𝜋01)
𝑇00𝜋01

𝑇01(1 − 𝜋11)
𝑇10𝜋11

𝑇11, (55) 

 

where 𝑇𝑖𝑗, 𝑖, 𝑗 = 0,1 is the number of observations with a 𝑗 following an 𝑖. 

 

The maximum likelihood estimates for 𝜋01̂ and 𝜋11̂ are: 

 
𝜋01̂ =

𝑇01

𝑇00 + 𝑇01
 

𝜋11̂ =
𝑇11

𝑇10 + 𝑇11
 

(56) 

 

Since the probabilities have to sum to one, we have 

 𝜋00̂ = 1 − 𝜋01̂ 

𝜋10̂ = 1 − 𝜋11̂ 

(57) 

 

The estimated transition probability matrix is: 

 

Π1̂ ≡ [
𝜋00̂ 𝜋01̂

𝜋10̂ 𝜋11̂
] = [

1 − 𝜋01̂ 𝜋01̂

1 − 𝜋11̂ 𝜋11̂
] =

[
 
 
 

𝑇00

𝑇00 + 𝑇01

𝑇01

𝑇00 + 𝑇01

𝑇10

𝑇10 + 𝑇11

𝑇11

𝑇10 + 𝑇11]
 
 
 

 

 

(58) 
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If the probabilities are independent over time, then the probability of a violation 

tomorrow does not depend on today being a violation or not, and so 𝜋01 = 𝜋11 = 𝜋.  In 

this case the estimated transition probability matrix is: 

 Π1̂ = [
1 − 𝜋̂ 𝜋̂
1 − 𝜋̂ 𝜋̂

] (59) 

 

Again, we can check the independence hypothesis using a likelihood ratio test: 

 
𝐿𝑅𝑖𝑛𝑑 = −2𝑙𝑛 [

𝐿(Π̂)

𝐿(Π1̂)
] 

(60) 

  

In large samples, the 𝐿𝑅𝑖𝑛𝑑 test is also distributed as a  𝜒2 with one degree of freedom. 

We use the 𝑝-value or the critical value to determine if we will accept or decline the 

hypothesis.  

 

5.3. Conditional Coverage Testing  

In order for the VaR to be measured accurately, it needs to satisfy both the 

unconditional coverage and the independence property. Therefore, we need to consider 

a test that examines these properties at the same time.  

This kind of test is the conditional coverage test by Christoffersen (2012). 

The likelihood ratio test that we are going to use for this test is: 

 𝐿𝑅𝑐𝑐 = −2𝑙𝑛 [
𝐿(𝑝)

𝐿(Π1̂)
], (61) 

 

which also follows the 𝜒2 distribution with one degrees of freedom. 

As we can see, the 𝐿𝑅𝑐𝑐 test takes the likelihood from the null hypothesis in the 𝐿𝑅𝑢𝑐 

test and combines it with the likelihood from the hypothesis in the 𝐿𝑅𝑖𝑛𝑑 test. Hence: 

 𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑 (62) 
 

In deciding on the significance level with which we are going to reject or accept each 

null hypothesis, there is a trade-off between rejecting a correct model, also known as 

Type I error and accepting an incorrect model, or Type II error. We decided to use a 

significance level of 10% for the 𝑝-value in order to avoid these errors. 
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6. Data 
 

For the purpose of this thesis, we used Bloomberg for the gathering of the time 

series data for equity indices. Daily prices are collected for the 15 year period from 

September 26, 2001 to September 27, 2016. Non-trading days were excluded from the 

data set. 

The data used in this thesis consists of the major US and European stock indices. More 

specifically,  

1. For U.S. market:  

 

 S&P 500 Composite: The S&P 500 was the first U.S. market-cap-weighted 

stock market index. Today, it’s the basis of many listed and over-the-counter 

investment instruments. This world-renowned index includes 500 of the top 

companies in leading industries of the U.S. economy and captures 

approximately 80% coverage of available market capitalization. (Standard and 

Poor’s, 2004) 

 

 Nasdaq Composite: Launched in 1971, the NASDAQ Composite Index is a 

broad based Index. Today, the Index includes over 3,000 securities, more than 

most other stock market indices. The NASDAQ Composite is calculated under 

a market capitalization weighted methodology index. (Nasdaq, 2016) 

 

 

2. For European market:  

 

 Euro Stoxx:  The EURO STOXX 50 Index, Europe's leading blue-chip index 

for the Eurozone, provides a blue-chip representation of supersector leaders in 

the Eurozone. The index covers 50 stocks from 12 Eurozone countries. The 

Index is licensed to financial institutions to serve as underlying for a wide range 

of investment products such as Exchange Traded Funds (ETF), Futures and 

Options and structured products. (Bloomberg, 2016) 

 

 FTSE 100: The FTSE 100 is a market-capitalization weighted index of UK-

listed blue chip companies. The index is part of the FTSE UK Series and is 

designed to measure the performance of the 100 largest companies traded on 

the London Stock Exchange that pass screening for size and liquidity. (FTSE 

Group, 2012) 

 

 DAX 30 Performance: The DAX Index tracks the segment of the largest and 

most important companies – known as blue chips – on the German equities 

market. It contains the shares of the 30 largest and most liquid companies 

admitted to the FWB Frankfurt Stock Exchange in the Prime Standard segment. 

The DAX represents about 80% of the aggregated prime standard’s market cap. 

(Deutsche Börse Group, 2012) 
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 France CAC 40: The CAC 40 is a free float market capitalization weighted 

index that reflects the performance of the 40 largest and most actively traded 

shares listed on Euronext Paris, and is the most widely used indicator of the 

Paris stock market. The index serves as an underlying for structured products, 

funds, exchange traded funds, options and futures. Stocks are screened to ensure 

liquidity and selected and free float weighted to ensure that the index is 

investable. (Euronext, 2016) 

 

 ATHEX Composite: The Athens Stock Exchange (ATHEX) General Index is 

a capitalization-weighted index of Greek stocks listed on the Athens Stock 

Exchange. It comprises a reliable measure, on a real time basis, of the 

performance of the shares of the companies that trade in the Big Cap segment 

of the Athens Exchange. (Athens Exchange Group, 2016) 

 

The analysis is limited to a simple portfolio that consists of one index each time we 

compute VaR.  

Our data set is split into two sections: 

1. In-sample period, which we will use in order to compute the VaR forecasts for 

the out of sample period. This period includes the data from September 26, 2001 

to December 29, 2006. 

2. Out of sample period, which we will use in the backtesting to compare the 

forecasts to the realized returns, and determine the accuracy of the methods 

used. This period includes the data from January 03, 2007 to September 27, 

2016. 

The reason that we chose the out of sample period to be 2007-2016 is because we 

wanted to test the various VaR methods in much more volatile times than usual. Having 

chosen the 2007 as a starting point in our study, it coincides with the start of the most 

recent financial crisis that also started in the summer of 2007. 

The in-sample period was chosen proportionally to the out of sample period, having 

enough historic data for the estimation of the methods, but not too much so as to contain 

redundant information.  

Descriptive statistics for the time series are provided in the table below: 
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Table 1 Descriptive Statistics for logarithmic returns: Sample 26/09/2001 – 27/09/2016 
The probability in the Jarque-Bera Test indicates the p-value for the null hypothesis Ho: the data 

comes from normal distribution. 

Parameters S&P500 NASDAQ EURO 
STOXX 

FTSE 100 DAX CAC ATHEX 

N of 
observations 

3777 3777 3847 3791 3813 3840 3710 

Mean 0.02% 0.03% -0.00% 0.00% 0.02% 0.00% -0.03% 
Median 0.06% 0.09% 0.01% 0.04% 0.08% 0.03% 0.02% 

Maximum 10.95% 11.15% 10.43% 9.38% 10.79% 10.59% 13.43% 
Minimum -9.46% -9.58% -9.01% -9.26% -7.43% -9.47% -17.71% 
Std. Dev. 1.23% 1.40% 1.51% 1.21% 1.53% 1.49% 1.92% 
Skewness -0.22 -0.09 -0.02 -0.12 0.00 0.00 -0.35 
Kurtosis 12.27 8.07 7.57 9.55 7.36 8.01 9.74 

Jarque-Bera 
Probability 

13567.77 
(0.00) 

4056.98 
(0.00) 

3354.31 
(0.00) 

6801.20 
(0.00) 

3024.79 
(0.00) 

4029.71 
(0.00) 

7110.24 
(0.00) 

 

From these statistics we can draw a few conclusions: 

1. With a few exceptions, the indices are quite similar. 

2. The mean in most cases is 0 and in the case where it is not, we can see that it is 

much smaller than the volatility, so we can assume that it is 0 as we did in most 

of the models. 

3. The most volatile index is the ATHEX (std. dev. = 1.92%), and the least volatile 

is the FTSE 100 (std. dev. = 1.21%), making it the safest market in our sample.  

4. All of the indices with the exception of DAX and CAC have negative skewness, 

which means that the left tail of the distribution is longer than the right one. This 

could mean that in these markets there is a greater chance of negative outcomes. 

In the case of DAX and CAC, the skewness is very close to 0, meaning that their 

distribution is symmetric.  

5. The kurtosis is more than 3 for all of the indices, indicating a leptokurtic 

distribution, which is characterized by fatter tails. This could affect the 

estimation of VaR when normal distribution is assumed and instead a 

distribution with fatter tails should be preferred (as the Student’s t-distribution). 

6. The above observation is confirmed by the Jarque-Bera test for normality. The 

probability measure is 0.00 for all the indices, causing the rejection of the 

hypothesis for normality.  

7. The lowest return for all indices was recorded in the fall of 2008, as a result of 

the financial crisis, with the exception of ATHEX which had its lowest return 

in the summer of 2015 with the imposed capital controls.  

 

We conducted the ADF-GLS unit root test for determining the stationarity of the 

time series. As we can see from the tables 11-24 in Appendix A most of the time series 

show the presence of unit root in the level. On the other hand, when using the 1st 

difference of the time series in the test, the unit root does not exist, and instead the time 
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series show stationarity. This fact validates the use of the logarithmic differences 

instead of the price levels in all of the models.  

We also conducted a Ljung-Box Q-test in order to determine whether the returns 

are autocorrelated. The null hypothesis is that the data are independently distributed, 

i.e. the returns are not autocorrelated. A logical value (ℎ) of 1 indicates the rejection of 

the null hypothesis for no autocorrelation, ℎ = 0 indicates the non-rejection of the null 

hypothesis. The 𝑝-value indicates the strength at which the test rejects or does not reject 

the null hypothesis for 5, 10 and 20 lags.  

In the appendix section B1, the sample ACF and PACF are presented (Figures 3-9). 

 

Table 2 Ljung-Box Q-Test for logarithmic returns: Sample 26/09/2001 – 27/09/2016  

Parameters S&P500 NASDAQ EURO 
STOXX 

FTSE 
100 

DAX CAC ATHEX 

ℎ 1 1 1 1 1 1 1 

𝑝-value 

5 lags 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
10 lags 0.00% 0.46% 0.00% 0.00% 0.17% 0.00% 0.00% 
20 lags 0.00% 0.00% 0.00% 0.00% 0.18% 0.00% 0.00% 

 

For all of the indices the test indicates the rejection of the null hypothesis H0: no 

autocorrelation. All of the logical values indicate the rejection decision and all of the 𝑝-

values are less than 10% for all the lags reported. 

We used the Engle's ARCH test which assesses the null hypothesis that the 

returns exhibit no conditional heteroscedasticity (ARCH effects), against the alternative 

that an ARCH model describes the series. Again we use the logical value and the 𝑝 -

value to determine the presence of heteroscedasticity. 

We de-meaned the returns and squared them. We used two lags for the ARCH test. We 

did this because an ARCH (2) is locally equivalent to a GARCH (1,1) model. 

In the appendix section B2, the sample ACF and PACF of the squared returns are 

presented (Figures 10-16). 

 

Table 3 Engle's ARCH test for logarithmic returns: Sample 26/09/2001 – 27/09/2016 

Parameters S&P500 NASDAQ EURO 
STOXX 

FTSE 
100 

DAX CAC ATHEX 

h 1 1 1 1 1 1 1 
p-value 0 0 0 0 0 0 0 
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As we can see from the logical value  

ℎ and the 𝑝 -value, in all of the cases there is heteroscedasticity. This indicates that a 

GARCH model would be a fitting model for the variance.  

 

7. Empirical Findings 
 

We apply the aforementioned methods to all the stock indices and produce one-day 

ahead VaR forecasts for 95% and 99% confidence level for the period 03/01/2007 to 

27/09/2016. The in-sample period 26/09/2001 – 29/12/2006 is used to estimate the 

parameters and then with the use of rolling window the out of sample VaR is forecasted. 

The concept of the rolling analysis is used because the environment surrounding the 

time series changes constantly and so the parameters of the models should change 

accordingly (Zivot and Wang, 2003). We estimate the parameters by using all of the 

information available up until the moment of estimation. 

For the Historic Simulation and Moving Average we use a rolling window of 100 and 

250 trading days. 

For the GARCH (1, 1) and EGARCH (1, 1) we use the AR (1) as our conditional mean 

model. We also use the normal and Student’s t-distribution.  

The forecasting horizon is chosen to be one day, which is also the most widely used 

horizon in the literature. In some circumstances, a horizon of 10 days is also used, which 

is derived from the one-day horizon with a simple calculation, multiplying the daily 

VaR by the square root of 10. Nevertheless, this is not always the right way for deriving 

the 10 days VaR, according to Danielsson (2002), since it violates some of the 

distribution assumptions such as: returns are normally distributed, volatility is 

independent over time and the volatility is identical across all time periods. 

Subsequently, the models are tested using Christoffersen’s criteria: the unconditional 

coverage test, the independence test and the conditional coverage test. Using the 𝑝-

value we decide to accept or reject the hypothesis of each test. The significance level is 

10%. 

The main empirical results are presented in Tables 4-10.  

In the appendix C, figures 17-51 show the plot of the returns of every index, along with 

the VaR methods applied.   

 

 

7.1. S&P500 
 

Table 4 contains the VaR results and the backtesting results for S&P 500. The 

estimation period is 26/09/2001 to 29/12/2006 and the forecast period 03/01/2007 to 

27/09/2016. The number of observations for the backtesting is therefore 2452. The 
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expected number of violations for 95% confidence level is 123 and for 99% the 

expected violations are 25. 

As we can see from table 4: 

At 95% confidence level the highest number of violations is made using EGARCH 

(1,1) with normal distribution (170) and the lowest number with GARCH (1,1) with 

Student’s t-distribution (103). Although low, this method is not the closest to the 

expected number of violations, which is provided by EGARCH (1,1) with Student’s t-

distribution (130 when expecting 123). When using different estimation horizons, 

Historical Simulation performs better with longer horizon (250 observations). 

However, this is not the case with Moving Average since it is more accurate with shorter 

horizons (100 horizons). When compared, Moving Average and Exponentially 

Weighted Moving Average perform quite worse than GARCH (1,1) and EGARCH 

(1,1). There is substantial difference between normal and Student’s t-distribution. In all 

of the cases, the normal distribution underestimates the risk, providing more violations 

than expected, and in some of the cases the Student t distribution overestimates risk, 

providing less violations than expected. The independence criterion is passed by almost 

all methods. The only methods that pass the conditional coverage criterion are 

Historical Simulation with 100 observations, GARCH (1,1) with Student’s t-

distribution and EGARCH (1,1) with Student’s t-distribution. The Historical 

Simulation however does not pass the unconditional coverage criterion at 10%, but it 

does at 5%. Out of these three methods, EGARCH (1,1) scores the highest 𝑝-value 

(36.16%). 

At 99% confidence level the highest number of violations is made using Moving 

Average with 250 observations (76) and the lowest with GARCH (1,1) with Student’s 

t-distribution (17). The closest to the expected number of violations is EGARCH (1,1) 

with Student’s t-distribution (30 when expecting 25). The estimation horizon provides 

the same results as in 95%, longer horizons are more accurate for Historical Simulation 

and shorter for Moving Average. GARCH (1,1) and EGARCH (1,1) outperform the 

Moving Average and the Exponentially Weighted Moving Average again. The normal 

distribution again has very poor results, passing only the independence criterion in both 

cases and having very low p-value for the unconditional criterion (0.00%). The 

independence criterion is passed by all the models, except for Moving Average with 

250 observations. The GARCH (1,1) with Student’s t-distribution overestimates risk 

with lower than expected violations. Regardless of this fact, it passes the unconditional 

criterion along with EGARCH (1,1) with Student’s t-distribution. EGARCH (1,1) with 

Student’s t-distribution had the highest 𝑝-value (38.71%). 

 

7.2. NASDAQ 
 

Table 5 contains the VaR results and the backtesting results for NASDAQ. The 

estimation period is 26/09/2001 to 29/12/2006 and the forecast period 03/01/2007 to 

27/09/2016. The number of observations for the backtesting is therefore 2452. The 



35 
 

expected number of violations for 95% confidence level is 123 and for 99% the 

expected violations are 25. 

As we can see from table 5: 

At 95% confidence level the highest number of violations is made using EGARCH 

(1,1) with normal distribution (159) and the lowest number was with GARCH (1,1) 

with Student’s t-distribution (112). The closest to the expected number of violations is 

provided by EGARCH (1,1) with Student’s t-distribution (131 when expecting 123), 

although slightly underestimated. The better estimation horizon depends on the method 

used, with Historical Simulation performing better with shorter horizon (100 

observations) and Moving Average with longer horizons (250 observations). The 

Moving Average and Exponentially Weighted Moving Average perform worse than 

GARCH (1,1) with both distributions, but not than EGARCH (1,1) with normal 

distribution. There is a significant difference between normal and Student’s t-

distribution. The normal distribution has shown that it does not perform well, 

underestimating the risk with GARCH (1,1) and EGARCH (1,1), whereas the Student’s 

t-distribution overestimates risk in the case of GARCH (1,1). The independence 

criterion is passed by some of the methods. The methods that pass the conditional 

coverage criterion are Historical Simulation with 100 observations and GARCH (1,1) 

with Student’s t-distribution, with the Historical Simulation having the highest 𝑝-value 

(25.11%). 

At 99% confidence level the highest number of violations is made using Moving 

Average with 250 observations (70) and the lowest with GARCH (1,1) with Student’s 

t-distribution, which is also the closest to the expected number of violations (22 when 

expecting 25). Interestingly, the better estimation horizon is the opposite of the one 

using the 95% confidence level. In this case, the Historical Simulation using 250 

observations is slightly more accurate than the Historical Simulation using 100 

observations. The Moving Average has a somewhat better performance when estimated 

using 100 observations. As far as the violations frequency in the sample, the Moving 

Average and the Exponentially Weighted Moving Average are less accurate than the 

GARCH (1,1) and EGARCH (1,1) methods, but in terms of statistical backtesting, they 

don’t differ much from these methods when the normal distribution is assumed. The 

results are different when the Student’s t-distribution is applied. In this case the 

GARCH (1,1) and EGARCH (1,1) are the only methods that pass the unconditional and 

conditional criteria. Although the GARCH (1,1) with Student’s t-distribution 

overestimates risk, it does pass all of the criteria and has the highest 𝑝-value for the 

conditional coverage criterion (71.55%). 

 

7.3. EURO STOXX 
 

Table 6 contains the VaR results and the backtesting results for EURO STOXX. 

The estimation period is 26/09/2001 to 29/12/2006 and the forecast period 02/01/2007 

to 27/09/2016. The number of observations for the backtesting is therefore 2501. The 
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expected number of violations for 95% confidence level is 125 and for 99% the 

expected violations are 25. 

As we can see from table 6: 

At 95% confidence level the highest number of violations is made using EWMA (157) 

and the lowest number with GARCH (1,1) with Student’s t-distribution (107). Again, 

closest to the expected number of violations is EGARCH (1,1) with Student’s t-

distribution (128 when expecting 123). When deriving VaR from Historical Simulation 

and Moving Average the longer estimation horizon gives better results than the shorter, 

both in terms of violations and in statistical backtesting, with Historical Simulation 

using 250 observations even passing the unconditional coverage test. The GARCH 

(1,1) and EGARCH (1,1) with normal distribution don’t perform much better than 

Moving Average and Exponentially Weighted Moving Average. The Student’s t-

distribution fixes this problem in the case of EGARCH (1,1), where it estimates the 

frequency of violations very close to the expected one. This is not the case of GARCH 

(1,1) where it causes overestimation of the risk, so that it provides less violations than 

expected, and in that way failing the unconditional coverage test at 10%. This only 

leaves the EGARCH (1,1) passing all the tests with highest 𝑝-value for the conditional 

coverage test (51.18%). 

At 99% confidence level the highest number of violations is made using Moving 

Average with 250 observations (63). The lowest and also closest to the expected 

number is EGARCH (1,1) with Student’s t-distribution (31 when expecting 25). The 

estimation horizon gives different results according to the method used, in Historical 

Simulation we would prefer the longer horizon and in Moving Average, the shorter, 

although neither of them passes the unconditional and conditional coverage criteria. 

The same goes for the GARCH (1,1) and EGARCH (1,1) using the normal distribution. 

The 𝑝-value for these methods, as well as Moving Average and Exponentially 

Weighted Moving Average is 0.00%. However, using the Student’s t-distribution, the 

accuracy of the forecasts is very improved. Both GARCH (1,1) and EGARCH (1,1) 

pass all the tests, with EGARCH (1,1) having a slightly higher 𝑝-value (34.56%). 

 

7.4. FTSE100 
 

Table 7 contains the VaR results and the backtesting results for FTSE 100. The 

estimation period is 26/09/2001 to 29/12/2006 and the forecast period 02/01/2007 to 

27/09/2016. The number of observations for the backtesting is therefore 2462. The 

expected number of violations for 95% confidence level is 123 and for 99% the 

expected violations are 25. 

As we can see from table 7: 

At 95% confidence level the highest number of violations is made using EWMA (166) 

and the lowest number with GARCH (1,1) with Student’s t-distribution (114). Once 

again the closest to the expected number of violations is EGARCH (1,1) with Student’s 

t-distribution (131 when expecting 123). Longer forecasting horizons seem to be 
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yielding better results, with Historical Simulation using 250 observations again passing 

the unconditional coverage criterion. The normal distribution has disappointing results, 

diverging largely from the expected number of violations. Although GARCH (1,1) with 

Student’s t-distribution overestimates the risk, it still manages to pass all of the three 

tests along with the EGARCH (1,1) with Student’s t-distribution, which has the highest 

𝑝-value for the conditional coverage test (71.00%). 

At 99% confidence level the highest number of violations is made using both Moving 

Average with 250 observations and EWMA (63). The lowest number and closest to the 

expected number is GARCH (1,1) with Student’s t-distribution (25, the same number 

as expected). The best estimation horizon is not the same for the two methods that 

differentiate the estimation horizon. Specifically, the Historical Simulation gives us 

better results when using longer horizon, and Moving Average when using shorter. The 

difference is very slight since none of these models along with the EWMA and GARCH 

(1,1) and EGARCH (1,1) with normal distribution pass any of the tests. Once again, the 

Student’s t-distribution proves to be the best both for the number of violations recorded, 

as well as backtesting statistically. Although GARCH (1,1) predicts the same number 

of violations as expected and has a 𝑝-value of almost 100% for the unconditional 

coverage test, EGARCH (1,1) has the highest 𝑝-value (72.91%) for the total conditional 

coverage criterion.  

 

7.5. DAX 
 

Table 8 contains the VaR results and the backtesting results for DAX. The 

estimation period is 26/09/2001 to 29/12/2006 and the forecast period 02/01/2007 to 

27/09/2016. The number of observations for the backtesting is therefore 2474. The 

expected number of violations for 95% confidence level is 124 and for 99% the 

expected violations are 25. 

As we can see from table 7: 

At 95% confidence level the highest number of violations is made with Moving 

Average using 250 observations (156) and the lowest number with GARCH (1,1) with 

Student’s t-distribution (108). EGARCH (1,1) with Student’s t-distribution again 

comes very close to predicting the number of violations (124, the same as expected). 

The estimation horizon this time is universally better when it is smaller for both 

methods. However, this is not enough for them to pass any of the tests. The normal 

distribution has a very low score for the unconditional coverage, once again proving 

that it underestimates risk. On the other hand, the Student’s t-distribution when used 

with GARCH (1,1) it slightly overestimates risk, but comes close enough to pass the 

tests, and when used with EGARCH (1,1) it perfectly estimates the risk, locating the 

correct number of violations as expected and a high 𝑝-value for the conditional 

coverage test (60.88%). 

At 99% confidence level the highest number of violations is made with the Moving 

Average with 100 observations (59) and the lowest number with GARCH (1,1) with 
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Student’s t-distribution (15). Again, very close to the expected number of violations is 

EGARCH (1,1) with Student’s t-distribution (26 when expecting 25). The better 

estimation horizon in both Historical Simulation and Moving Average is the opposite 

than what it is for 95%. This time the longer horizon gives us better results by a very 

small difference. In all of the models there is a big underestimation of risk, including 

the models that assume normal distribution. In the case of GARCH (1,1) using a 

Student’s t-distribution there is a significant overestimation of risk. Again, the optimal 

combination is that of EGARCH (1,1) with Student’s t-distribution, since it is very close 

to finding the right amount of violations according to the sample, but it also passes all 

of the three tests (𝑝-value for the conditional coverage test 73.48%). 

 

7.6. CAC 
 

Table 9 contains the VaR results and the backtesting results for CAC. The 

estimation period is 26/09/2001 to 29/12/2006 and the forecast period 02/01/2007 to 

27/09/2016. The number of observations for the backtesting is therefore 2494. The 

expected number of violations for 95% confidence level is 125 and for 99% the 

expected violations are 25. 

As we can see from table 8: 

At 95% confidence level the highest number of violations is made using Exponentially 

Weighted Moving Average (160) and the lowest using GARCH (1,1) with Student’s t-

distribution (112). The closest to the expected number of violations is the EGARCH 

(1,1) with Student’s t-distribution (134 when expecting 125). The shorter estimation 

window is slightly better when using Historical Simulation and Moving Average. In 

the case of the Historical Simulation it is good enough to pass the unconditional 

coverage criterion at 10%. It does not however pass the other 2 tests. The methods that 

do pass all of the tests are again GARCH (1,1) and EGARCH (1,1) both when Student’s 

t-distribution is assumed. In the case of GARCH (1,1) we detect a small overestimation, 

which causes it to have a smaller 𝑝-value for the conditional coverage test than the 

EGARCH (1,1) (55.39%). 

At 99% confidence level the highest number of violations is with the Moving Average 

with 250 observations (60) and the lowest number with GARCH (1,1) with Student’s 

t-distribution (16). EGARCH (1,1) with Student’s t-distribution is fairly close to the 

expected number (32 when expecting 25). The estimation horizon is different for the 

Historical Simulation and Moving Average. In the case of the Historical Simulation the 

number of violations is slightly more accurate when using longer horizons, and in the 

case of Moving Average when using shorter. Still none of these passes the 

unconditional and conditional criteria. GARCH (1,1) passes the independence and 

conditional coverage test, but because of the overestimation that it presents it does not 

pass the conditional coverage at 10%. This is succeeded only by the EGARCH (1,1) 

((𝑝-value for the conditional coverage test 26.12%).     
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7.7. ATHEX 
 

Table 9 contains the VaR results and the backtesting results for ATHEX. The 

estimation period is 26/09/2001 to 29/12/2006 and the forecast period 02/01/2007 to 

27/09/2016. The number of observations for the backtesting is therefore 2399. The 

expected number of violations for 95% confidence level is 120 and for 99% the 

expected violations are 24. 

As we can see from table 9: 

At 95% confidence level the highest number of violations is made using Historical 

Simulation with 100 observations (153) and the lowest using GARCH (1,1) with 

Student’s t-distribution (103). The closest to the expected number of violations is for 

one more time the EGARCH (1,1) with Student’s t-distribution (110 when expecting 

120). The better length of the estimation period is different for the two methods that we 

are testing, for Historical Simulation the more accurate is the estimation window of 250 

days and for Moving Average the one with 100 days. In this index the normality 

assumption with the GARCH (1,1) is one that offered us good results, along with the 

Student’s t-distribution, which caused overestimation of the risk. These methods pass 

all of the tests, with EGARCH (1,1) with Student’s t-distribution having once again the 

highest  𝑝-value for the conditional coverage (63.99%), since it comes very close to 

predicting the violations, regardless that it overestimates the risk.   

At 99% confidence level the highest number of violations is made using the Moving 

Average with 250 observations (57) and the lowest using GARCH (1,1) with Student’s 

t-distribution (20). EGARCH (1,1) with Student’s t-distribution comes very close to the 

expected number, having missed only by one (25 when expecting 24). For this 

confidence level the length of the estimation window is consistent for both methods, 

showing us more accurate results for the shorter window, i.e. 100 observations. The 

normality assumption causes an underestimation of the risk, passing only the 

independence criterion. The Student’s t-distribution overestimates risk when used with 

GARCH (1,1), although it still passes the three criteria. The EGARCH (1,1) with the 

Student’s t-distribution estimates risk just as expected, and passes all three of the 

criteria with flying colors (𝑝-value for the conditional coverage test 75.23%).     
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Table 4 VaR results for S&P500 Index. VaR is computed by: Historical Simulation based on the 100 and 

250 past observations (HS-100, HS-250), Moving Average based on the 100 and 250 past observations 

(MA-100, MA-250), Exponentially Weighted Moving Average (EWMA), GARCH (1,1) with normal and 

Student-t distribution (GARCH – normal, GARCH – t) and EGARCH (1,1) with normal and Student-t 

distribution (EGARCH – normal, EGARCH – t). The table presents the average VaR, the number of 

violations (number of times that the actual realized losses exceeded the VaR), along with the frequency 

of the violations in the out of sample data, the p-value of each backtest criterion: unconditional coverage 

LRUC, independence LRIND and conditional coverage LRCC. The p-values in bold indicate that the method 

satisfies the criterion with 10% confidence level.  

Model 
Average 

VaR 
No of violations 

(Frequency) 
LRUC LRIND LRCC 

VaR Results for 95% 

HS-100 
-1.96% 144 (5.87%) 5.33% 58.33% 13.31% 

HS-250 
-2.02% 141 (5.81%) 9.55% 1.99% 1.66% 

MA-100 
-1.89% 146 (5.95%) 3.50% 42.28% 7.87% 

MA-250 
-1.95% 152 (6.19%) 0.85% 7.16% 0.62% 

EWMA 
-1.84% 155 (6.32%) 0.39% 16.60% 0.59% 

GARCH - normal 
-1.85% 144 (5.87%) 5.34% 7.24% 3.08% 

GARCH - t 
-2.20% 103 (4.20%) 6.21% 48.23% 13.71% 

EGARCH - normal 
-1.75% 170 (6.93%) 0.00% 21.13% 0.00% 

EGARCH - t 
-1.99% 130 (5.30%) 49.69% 20.98% 36.16% 

VaR Results for 99% 

HS-100 
-3.05% 40 (1.63%) 0.39% 17.05% 0.62% 

HS-250 
-3.45% 39 (1.60%) 0.68% 15.48% 0.93% 

MA-100 
-2.68% 68 (2.77%) 0.00% 93.29% 0.00% 

MA-250 
-2.75% 76 (3.09%) 0.00% 3.81% 0.00% 

EWMA 
-2.61% 66 (2.69%) 0.00% 38.86% 0.00% 

GARCH - normal 
-2.62% 62 (2.52%) 0.00% 73.40% 0.00% 

GARCH - t 
-3.53% 17 (0.69%) 10.62% 62.20% 24.08% 

EGARCH - normal 
-2.47% 65 (2.65%) 0.00% 54.02% 0.00% 

EGARCH - t 
-3.16% 30 (1.22%) 28.25% 38.85% 38.71% 
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Table 5 VaR results for NASDAQ Index. VaR is computed by: Historical Simulation based on the 100 and 
250 past observations (HS-100, HS-250), Moving Average based on the 100 and 250 past observations 
(MA-100, MA-250), Exponentially Weighted Moving Average (EWMA), GARCH (1,1) with normal and 
Student-t distribution (GARCH – normal, GARCH – t) and EGARCH (1,1) with normal and Student-t 
distribution (EGARCH – normal, EGARCH – t). The table presents the average VaR, number of violations 
(number of times that the actual realized losses exceeded the VaR), along with the frequency of the 
violations in the out of sample data., and the p-value of each backtest criterion: unconditional coverage 
LRUC, independence LRIND and conditional coverage LRCC. The p-values in bold indicate that the method 
satisfies the criterion with 10% confidence level.  

Model 
Average 

VaR 
No of violations 

(Frequency) 
LRUC LRIND LRCC 

VaR Results for 95% 
HS-100 -2.13% 139 (5.66%) 13.64% 45.99% 25.11% 

HS-250 -2.19% 143 (5.83%) 6.52% 1.11% 0.73% 

MA-100 -2.08% 154 (6.28%) 0.50% 65.58% 1.78% 

MA-250 -2.13% 152 (6.19%) 0.85% 0.71% 0.00% 

EWMA -2.03% 151 (6.15%) 1.09% 3.91% 0.47% 

GARCH - normal -2.05% 149 (6.07%) 1.78% 4.69% 0.84% 

GARCH - t -2.29% 112 (4.56%) 31.92% 10.28% 16.09% 

EGARCH - normal -1.98% 159 (6.48%) 0.12% 12.26% 0.16% 

EGARCH - t -2.14% 131 (5.34%) 44.12% 0.32% 0.96% 

VaR Results for 99% 
HS-100 -3.38% 44 (1.79%) 0.00% 5.06% 0.00% 

HS-250 -3.70% 43 (1.75%) 0.00% 22.32% 0.15% 

MA-100 -2.94% 68 (2.77%) 0.00% 16.54% 0.00% 

MA-250 -3.01% 70 (2.85%) 0.00% 19.65% 0.00% 

EWMA -2.87% 60 (2.44%) 0.00% 66.95% 0.00% 

GARCH - normal -2.89% 56 (2.28%) 0.00% 54.57% 0.00% 

GARCH - t -3.52% 22 (0.89%) 60.27% 52.79% 71.55% 

EGARCH - normal -2.80% 57 (2.32%) 0.00% 57.59% 0.00% 

EGARCH - t -3.27% 33 (1.34%) 10.21% 34.26% 16.75% 
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Table 6 VaR results for EUROSTOXX Index. VaR is computed by: Historical Simulation based on the 100 
and 250 past observations (HS-100, HS-250), Moving Average based on the 100 and 250 past 
observations (MA-100, MA-250), Exponentially Weighted Moving Average (EWMA), GARCH (1,1) with 
normal and Student-t distribution (GARCH – normal, GARCH – t) and EGARCH (1,1) with normal and 
Student-t distribution (EGARCH – normal, EGARCH – t). The table presents the average VaR, number of 
violations (number of times that the actual realized losses exceeded the VaR), along with the frequency 
of the violations in the out of sample data., and the p-value of each backtest criterion: unconditional 
coverage LRUC, independence LRIND and conditional coverage LRCC. The p-values in bold indicate that the 
method satisfies the criterion with 10% confidence level.  

Model 
Average 

VaR 
No of violations 

(Frequency) 
LRUC LRIND LRCC 

VaR Results for 95% 
HS-100 -2.43% 144 (5.75%) 8.92% 5.28% 3.62% 

HS-250 -2.45% 141 (5.63%) 15.11% 0.68% 0.93% 

MA-100 -2.36% 149 (5.95%) 3.26% 0.36% 0.15% 

MA-250 -2.39% 148 (5.91%) 4.04% 0.00% 0.00% 

EWMA -2.32% 157 (6.27%) 0.47% 48.00% 1.44% 

GARCH - normal -2.33% 154 (6.15%) 1.02% 60.84% 3.25% 

GARCH - t -2.66% 107 (4.27%) 8.98% 41.28% 16.96% 

EGARCH - normal -2.26% 148 (5.91%) 4.05% 93.20% 12.21% 

EGARCH - t -2.45% 128 (5.11%) 78.74% 26.03% 51.18% 

VaR Results for 99% 
HS-100 -3.80% 42 (1.67%) 0.18% 23.08% 0.39% 

HS-250 -3.95% 37 (1.47%) 2.44% 29.17% 4.57% 

MA-100 -3.34% 56 (2.23%) 0.00% 52.94% 0.00% 

MA-250 -3.38% 63 (2.51%) 0.00% 0.52% 0.00% 

EWMA -3.28% 51 (2.03%) 0.00% 14.50% 0.00% 

GARCH - normal -3.29% 48 (1.91%) 0.00% 17.04% 0.00% 

GARCH - t -3.72% 33 (1.31%) 12.58% 34.74% 19.93% 

EGARCH - normal -3.20% 52 (2.07%) 0.00% 13.72% 0.00% 

EGARCH - t -3.73% 31 (1.23%) 24.59% 37.76% 34.56% 
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Table 7 VaR results for FTSE100 Index. VaR is computed by: Historical Simulation based on the 100 and 

250 past observations (HS-100, HS-250), Moving Average based on the 100 and 250 past observations 

(MA-100, MA-250), Exponentially Weighted Moving Average (EWMA), GARCH (1,1) with normal and 

Student-t distribution (GARCH – normal, GARCH – t) and EGARCH (1,1) with normal and Student-t 

distribution (EGARCH – normal, EGARCH – t). The table presents the average VaR, number of violations 

(number of times that the actual realized losses exceeded the VaR), along with the frequency of the 

violations in the out of sample data, and the p-value of each backtest criterion: unconditional coverage 

LRUC, independence LRIND and conditional coverage LRCC. The p-values in bold indicate that the method 

satisfies the criterion with 10% confidence level. 

Model 
Average 

VaR 
No of violations 

(Frequency) 
LRUC LRIND LRCC 

VaR Results for 95% 
HS-100 -1.99% 142 (5.76%) 8.76% 0.00% 0.00% 

HS-250 -2.01% 136 (5.52%) 24.04% 0.97% 1.78% 

MA-100 -1.90% 157 (6.37%) 0.25% 0.00% 0.00% 

MA-250 -1.93% 147 (5.97%) 3.17% 0.79% 0.29% 

EWMA -1.86% 166 (6.74%) 0.00% 0.99% 0.00% 

GARCH - normal -1.88% 148 (6.01%) 2.54% 69.99% 7.64% 

GARCH - t -2.08% 114 (4.63%) 39.44% 45.30% 52.20% 

EGARCH - normal -1.80% 155 (6.29%) 0.45% 67.79% 1.62% 

EGARCH - t -1.93% 131 (5.32%) 46.95% 68.75% 71.00% 

VaR Results for 99% 
HS-100 -3.08% 44 (1.78%) 0.00% 0.00% 0.00% 

HS-250 -3.28% 40 (1.62%) 0.42% 0.36% 0.00% 

MA-100 -2.69% 61 (2.47%) 0.00% 0.00% 0.00% 

MA-250 -2.74% 63 (2.55%) 0.00% 0.00% 0.00% 

EWMA -2.63% 63 (2.55%) 0.00% 2.65% 0.00% 

GARCH - normal -2.66% 49 (1.99%) 0.00% 35.18% 0.00% 

GARCH - t -3.18% 25 (1.01%) 93.88% 25.52% 52.19% 

EGARCH - normal -2.55% 52 (2.11%) 0.00% 92.22% 0.00% 

EGARCH - t -2.89% 26 (1.05%) 78.18% 45.62% 72.91% 
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Table 8 VaR results for DAX Index. VaR is computed by: Historical Simulation based on the 100 and 250 

past observations (HS-100, HS-250), Moving Average based on the 100 and 250 past observations (MA-

100, MA-250), Exponentially Weighted Moving Average (EWMA), GARCH (1,1) with normal and 

Student-t distribution (GARCH – normal, GARCH – t) and EGARCH (1,1) with normal and Student-t 

distribution (EGARCH – normal, EGARCH – t). The table presents the average VaR, number of violations 

(number of times that the actual realized losses exceeded the VaR), along with the frequency of the 

violations in the out of sample data., and the p-value of each backtest criterion: unconditional coverage 

LRUC, independence LRIND and conditional coverage LRCC. The p-values in bold indicate that the method 

satisfies the criterion with 10% confidence level. 

Model 
Average 

VaR 
No of violations 

(Frequency) 
LRUC LRIND LRCC 

VaR Results for 95% 
HS-100 -2.34% 144 (5.82%) 6.76% 0.00% 0.00% 

HS-250 -2.39% 148 (5.98%) 2.94% 0.00% 0.00% 

MA-100 -2.26% 153 (6.18%) 0.90% 0.75% 0.00% 

MA-250 -2.29% 156 (6.30%) 0.41% 0.00% 0.00% 

EWMA -2.22% 154 (6.22%) 0.70% 8.20% 0.58% 

GARCH - normal -2.23% 148 (5.98%) 2.95% 75.59% 8.90% 

GARCH - t -2.56% 108 (4.36%) 13.91% 72.37% 31.47% 

EGARCH - normal -2.30% 153 (6.18%) 0.90% 37.30% 2.23% 

EGARCH - t -2.57% 124 (5.01%) 97.79% 31.93% 60.88% 

VaR Results for 99% 
HS-100 -3.58% 43 (1.73%) 0.00% 77.73% 0.36% 

HS-250 -3.79% 37 (1.49%) 2.10% 58.33% 6.00% 

MA-100 -3.19% 59 (2.38%) 0.00% 22.92% 0.00% 

MA-250 -3.23% 55 (2.22%) 0.00% 0.78% 0.00% 

EWMA -3.14% 55 (2.22%) 0.00% 11.37% 0.00% 

GARCH - normal -3.15% 47 (1.89%) 0.00% 91.00% 0.00% 

GARCH - t -4.01% 15 (0.60%) 3.37% 66.87% 9.58% 

EGARCH - normal -3.20% 50 (2.02%) 0.00% 99.11% 0.00% 

EGARCH - t -3.83% 26 (1.05%) 80.07% 45.73% 73.48% 
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Table 9 VaR results for CAC Index. VaR is computed by: Historical Simulation based on the 100 and 250 

past observations (HS-100, HS-250), Moving Average based on the 100 and 250 past observations (MA-

100, MA-250), Exponentially Weighted Moving Average (EWMA), GARCH (1,1) with normal and 

Student-t distribution (GARCH – normal, GARCH – t) and EGARCH (1,1) with normal and Student-t 

distribution (EGARCH – normal, EGARCH – t). The table presents the average VaR, number of violations 

(number of times that the actual realized losses exceeded the VaR) along with the frequency of the 

violations in the out of sample data, and the p-value of each backtest criterion: unconditional coverage 

LRUC, independence LRIND  and conditional coverage LRCC. The p-values in bold indicate that the method 

satisfies the criterion with 10% confidence level.  

Model 
Average 

VaR 
No of violations 

(Frequency) 
LRUC LRIND LRCC 

VaR Results for 95% 
HS-100 -2.40% 143 (5.73%) 10.00% 0.94% 0.89% 

HS-250 -2.42% 146 (5.85%) 5.64% 0.00% 0.00% 

MA-100 -2.35% 150 (6.01%) 2.40% 2.39% 0.61% 

MA-250 -2.38% 153 (6.13%) 1.19% 0.00% 0.00% 

EWMA -2.30% 160 (6.41%) 0.19% 37.93% 0.53% 

GARCH - normal -2.34% 155 (6.21%) 0.72% 90.13% 2.69% 

GARCH - t -2.60% 112 (4.49%) 23.54% 30.80% 29.42% 

EGARCH - normal -2.25% 152 (6.09%) 1.52% 80.00% 5.07% 

EGARCH - t -2.39% 134 (5.37%) 39.83% 49.39% 55.39% 

VaR Results for 99% 
HS-100 -3.77% 41 (1.64%) 0.31% 24.16% 0.64% 

HS-250 -3.93% 39 (1.56%) 0.89% 26.55% 1.77% 

MA-100 -3.32% 53 (2.12%) 0.00% 90.10% 0.00% 

MA-250 -3.36% 60 (2.40%) 0.00% 0.31% 0.00% 

EWMA -3.26% 49 (1.96%) 0.00% 96.96% 0.00% 

GARCH - normal -3.30% 48 (1.92%) 0.00% 93.67% 0.00% 

GARCH - t -4.02% 16 (0.64%) 5.42% 64.94% 14.12% 

EGARCH - normal -3.18% 43 (1.72%) 0.00% 21.92% 0.21% 

EGARCH - t -3.61% 32 (1.28%) 17.34% 36.16% 26.12% 
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Table 10 VaR results for ATHEX Index. VaR is computed by: Historical Simulation based on the 100 and 

250 past observations (HS-100, HS-250), Moving Average based on the 100 and 250 past observations 

(MA-100, MA-250), Exponentially Weighted Moving Average (EWMA), GARCH (1,1) with normal and 

Student-t distribution (GARCH – normal, GARCH – t) and EGARCH (1,1) with normal and Student-t 

distribution (EGARCH – normal, EGARCH – t). The table presents the average VaR, number of violations 

(number of times that the actual realized losses exceeded the VaR), along with the frequency of the 

violations in the out of sample data, and the p-value of each backtest criterion: unconditional coverage 

LRUC, independence LRIND and conditional coverage LRCC. The p-values in bold indicate that the method 

satisfies the criterion with 10% confidence level. 

  

Model 
Average 

VaR 
No of violations 

(Frequency) 
LRUC LRIND LRCC 

VaR Results for 95% 
HS-100 -3.51% 153 (6.37%) 0.29% 0.00% 0.00% 

HS-250 -3.60% 143 (5.96%) 3.58% 0.00% 0.00% 

MA-100 -3.52% 138 (5.75%) 9.83% 0.00% 0.00% 

MA-250 -3.53% 144 (6.00%) 2.87% 0.00% 0.00% 

EWMA -3.48% 143 (5.96%) 3.59% 0.57% 0.24% 

GARCH - normal -3.47% 131 (5.46%) 30.74% 28.57% 33.60% 

GARCH - t -3.86% 103 (4.29%) 10.40% 77.89% 25.65% 

EGARCH - normal -3.35% 143 (5.96%) 3.59% 60.06% 9.64% 

EGARCH - t -3.70% 110 (4.58%) 34.48% 98.29% 63.99% 

VaR Results for 99% 
HS-100 -6.06% 36 (1.50%) 2.17% 56.94% 6.12% 

HS-250 -5.95% 39 (1.62%) 0.47% 16.13% 0.69% 

MA-100 -4.99% 52 (2.16%) 0.00% 44.71% 0.00% 

MA-250 -4.99% 57 (2.37%) 0.00% 0.22% 0.00% 

EWMA -4.92% 48 (2.00%) 0.00% 34.25% 0.00% 

GARCH - normal -4.91% 46 (1.91%) 0.00% 90.05% 0.00% 

GARCH - t -5.96% 20 (0.83%) 39.93% 56.19% 59.25% 

EGARCH - normal -4.74% 46 (1.91%) 0.00% 90.05% 0.00% 

EGARCH - t -5.68% 25 (1.04%) 83.69% 46.80% 75.23% 
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8. Conclusion 
 

We estimated the VaR for seven stock indices from U.S. and European markets: 

S&P 500, Nasdaq, Euro Stoxx, FTSE 100, DAX, CAC and ATHEX. The methods that 

we chose were Historical Simulation and Variance-Covariance with volatility estimated 

by: Moving Average, Exponentially Weighted Moving Average, GARCH (1,1) and 

EGARCH (1,1). We computed one day forecasts for VaR for 95% and 99% confidence 

level. For Historical Simulation and Moving Average we used two different estimation 

windows of 100 and 250 observations. GARCH (1,1) and EGARCH (1,1) were 

estimated using the normal and the Student’s t-distribution.   

The Historical Simulation was not very precise in the accuracy of the forecasts. There 

was only one case where it passed all of the three criteria. This was in the case of the 

NASDAQ index, as it is also suggested by Kuester et al (2006). The estimation sample 

size has proved quite inconsistent across indices as well as confidence levels, many 

times giving different preference for different confidence level in the same index. There 

is not one particular pattern for us to reach a conclusion as to what sample size is better, 

although the empirical results seem to give more preference to the longer sample size 

(250 observations). 

The Variance-Covariance method with volatility estimated by Moving Average did not 

pass the conditional or unconditional criterion for any index. In facts, in most of the 

indices it provided the least accurate forecasts, largely underestimating the risk. This is 

especially true for the 99% confidence level and Moving Average using 250 

observations, which provided the highest number of violations across all indices with 

the exception of DAX. In that case, the Moving Average using 100 observations 

performed the worse. This is also an indication about the sample size of the estimation 

window, concluding that perhaps a smaller size would not yield as inaccurate results as 

the bigger sample size. The bad forecasting ability of this method may be the reason 

why it is not that often tested in the existing literature.   

The Variance-Covariance method with volatility estimated by Exponentially Weighted 

Moving Average was also one of the worst performing methods. It only passed the 

independence test in some of the cases, and it did not pass the conditional or 

unconditional criterion. In the case of FTSE 100 it resulted with the highest number of 

violations for both confidence levels. For EUROSTOXX and CAC it was the worst 

performing model only for the 95% confidence level, for 99% confidence level it was 

the Moving Average with 250 observations as mentioned before. For the U.S. stock 

indices, it did not have the worst performance as it did in the aforementioned European 

ones. This is consistent with the findings of Alexander & Leigh (1997). 

When comparing the normal and the Student’s t-distribution we can clearly see that for 

all indices and all confidence levels the normal distribution performed better than the 

previous methods analyzed but it still underestimated risk, causing it not to be the best 

choice for a VaR model. The Student’s t-distribution on the other hand performed much 

better than the normal, although in some cases it overestimated the risk (as confirmed 

by Billio and Pelizzon (2000) and Guermat and Harris (2002)), causing the unnecessary 
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allocation of capital for the purpose of risk management. This is consistent with the 

descriptive statistics of the data which rejected the hypothesis of normality, and the 

kurtosis which also pointed towards the need for a leptokurtic distribution. 

The Variance-Covariance method with volatility estimated by GARCH (1,1) with 

normal distribution passed all the tests only in the case of ATHEX, giving a good 

estimate of the number of violations. The Variance-Covariance method with volatility 

estimated by EGARCH (1,1) with normal distribution did not pass the unconditional or 

conditional coverage criterion in any of the indices for any of the confidence level. 

The Variance-Covariance method with volatility estimated by GARCH (1,1) with 

Student’s t-distribution painted a totally different picture. It passed all of the three 

criteria in almost all of the indices. In the cases where it did not pass the unconditional 

coverage test is because we chose the 10% level of 𝑝-value as a point for accepting or 

rejecting the null hypothesis. Had we been less conservative and had chosen a 5% level 

for the 𝑝-value it would have passed all the tests in all of the indices. These problems 

are resolved when using an EGARCH (1,1) with Student’s t-distribution for the 

estimation of volatility. In almost all of the cases it forecasted the exact number of 

violations as expected. This fact, along with the statistical backtesting results made it 

the most accurate method in all of the indices and for all of the confidence levels. 

Clearly this points out to the significance of the leverage effect, as most of the leverage 

parameters that were estimated had a negative sign. This points out to the fact that 

negative returns have bigger impact to the volatility than positive impact. These results 

are not consistent with the study by Angelidis and Benos (2015).   

The general conclusion is that the biggest difference comes from the distribution 

assumed. For data that stray from the normal distribution different distributions have to 

be assumed. The sample size does not play a part in the accuracy of the models, since 

the inaccurate ones continued to be inaccurate even when the sample size was changed. 

The leverage effect exists and it is very important in estimating the volatility.   

These conclusions are shared by all of the indices, regardless of the financial market in 

which they are traded, whether it’s in the U.S. or Europe. The U.S. indices share a few 

characteristics, as well as Euro Stoxx and FTSE 100. Aside from this, the results in 

general are the same for every index. 
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Appendix A: ADF-GLS unit root tests 
 

Table 11 ADF-GLS unit root test for S&P 500 prices. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it.  

 

 

Table 12 ADF-GLS unit root test for S&P 500 returns. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it.  

 

 

Table 13 ADF-GLS unit root test for NASDAQ prices. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

Null Hypothesis: S_PCOMP has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic  0.700444

Test critical values: 1% level -2.565575

5% level -1.940908

10% level -1.616643

Null Hypothesis: D(S_PCOMP) has a unit root

Exogenous: Constant

Lag Length: 23 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -2.678501

Test critical values: 1% level -2.565578

5% level -1.940908

10% level -1.616643

Null Hypothesis: NASCOMP has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic  1.493368

Test critical values: 1% level -2.565574

5% level -1.940908

10% level -1.616643
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Table 14 ADF-GLS unit root test for NASDAQ returns. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

Table 15 ADF-GLS unit root test for EUROSTOXX prices. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

Table 16 ADF-GLS unit root test for EUROSTOXX returns. The null hypothesis is H0: there is unit root. 
We compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. 
When the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

 

 

Null Hypothesis: D(NASCOMP) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -61.89388

Test critical values: 1% level -2.565575

5% level -1.940908

10% level -1.616643

Null Hypothesis: DJEURST has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -2.276021

Test critical values: 1% level -2.565563

5% level -1.940906

10% level -1.616644

Null Hypothesis: D(DJEURST) has a unit root

Exogenous: Constant

Lag Length: 29 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -1.552763

Test critical values: 1% level -2.565568

5% level -1.940907

10% level -1.616644
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Table 17 ADF-GLS unit root test for FTSE100 prices. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

Table 18 ADF-GLS unit root test for FTSE100 returns. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

Table 19 ADF-GLS unit root test for DAX prices. The null hypothesis is H0: there is unit root. We compare 
the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When the t-
Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

Null Hypothesis: FTSE100 has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -1.109256

Test critical values: 1% level -2.565572

5% level -1.940908

10% level -1.616643

Null Hypothesis: D(FTSE100) has a unit root

Exogenous: Constant

Lag Length: 25 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -1.841163

Test critical values: 1% level -2.565576

5% level -1.940908

10% level -1.616643

Null Hypothesis: DAXINDX has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic  0.163522

Test critical values: 1% level -2.565569

5% level -1.940907

10% level -1.616644
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Table 20 ADF-GLS unit root test for DAX returns. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

Table 21 ADF-GLS unit root test for CAC prices. The null hypothesis is H0: there is unit root. We compare 
the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When the t-
Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

 

Table 22 ADF-GLS unit root test for CAC returns. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it.  

 

Null Hypothesis: D(DAXINDX) has a unit root

Exogenous: Constant

Lag Length: 21 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -2.487480

Test critical values: 1% level -2.565572

5% level -1.940908

10% level -1.616643

Null Hypothesis: FRCAC40 has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -2.241200

Test critical values: 1% level -2.565564

5% level -1.940906

10% level -1.616644

Null Hypothesis: D(FRCAC40) has a unit root

Exogenous: Constant

Lag Length: 25 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -2.771353

Test critical values: 1% level -2.565568

5% level -1.940907

10% level -1.616644
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Table 23 ADF-GLS unit root test for ATHEX prices. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

Table 24 ADF-GLS unit root test for ATHEX returns. The null hypothesis is H0: there is unit root. We 
compare the absolute value of the t-Statistic with the Test critical values at 1%, 5% and 10% level. When 
the t-Statistic is higher than the critical values, we reject the hypothesis, otherwise we accept it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Null Hypothesis: GRAGENL has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -0.480849

Test critical values: 1% level -2.565586

5% level -1.940909

10% level -1.616642

Null Hypothesis: D(GRAGENL) has a unit root

Exogenous: Constant

Lag Length: 17 (Automatic - based on SIC, maxlag=29)

t-Statistic

Elliott-Rothenberg-Stock DF-GLS test statistic -6.616319

Test critical values: 1% level -2.565589

5% level -1.940910

10% level -1.616642
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Appendix B.1: Sample autocorrelation function (ACF) and 

partial autocorrelation function (PACF) of returns 
 

              Figure 3 ACF & PACF of S&P500 returns                       Figure 4 ACF & PACF of NASDAQ returns 

 

 

         Figure 5 ACF & PACF of EUROSTOXX returns                        Figure 6 ACF & PACF of FTSE 100 returns 

 

 

                  Figure 7 ACF & PACF of DAX returns                             Figure 8 ACF & PACF of CAC returns 
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           Figure 9 ACF & PACF of ATHEX returns 
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Appendix B.2: Sample autocorrelation function (ACF) and 

partial autocorrelation function (PACF) of squared returns 
 

        Figure 10 ACF & PACF of S&P500 squared returns                 Figure 11 ACF & PACF of NASDAQ squared returns 

 

        

        Figure 12 ACF & PACF of EUROSTOXX squared returns    Figure 13 ACF & PACF of FTSE100 squared returns 

 

         

               Figure 14 ACF & PACF of DAX squared returns              Figure 15 ACF & PACF of CAC squared returns 
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Figure 16 ACF & PACF of ATHEX squared returns 
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Appendix C: PLOTS 
 

C.1. S&P 500 
 

Figure 17 VaR Estimation for S&P using the Historical Simulation 

 

Figure 18 VaR Estimation for S&P using the Moving Average 
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Figure 19 VaR Estimation for S&P using the Exponentially Weighted Moving Average 

 

Figure 20 VaR Estimation for S&P using the GARCH (1,1) 

 

Figure 21 VaR Estimation for S&P using the EGARCH (1,1) 
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C.2. NASDAQ 
 

Figure 22 VaR Estimation for NASDAQ using the Historical Simulation 

 

Figure 23 VaR Estimation for NASDAQ using the Moving Average 
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Figure 24 VaR Estimation for NASDAQ using the Exponentially Weighted Moving Average 

Figure 25 VaR Estimation for NASDAQ using the GARCH (1,1) 

 

Figure 26 VaR Estimation for NASDAQ using the EGARCH (1,1) 
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C.3. EUROSTOXX 
 

Figure 27 VaR Estimation for EUROSTOXX using the Historical Simulation 

 

Figure 28 VaR Estimation for EUROSTOXX using the Moving Average 
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Figure 29 VaR Estimation for EUROSTOXX using the Exponentially Weighted Moving Average 

 

Figure 30 VaR Estimation for EUROSTOXX using the GARCH (1,1) 

 

Figure 31 VaR Estimation for EUROSTOXX using the EGARCH (1,1) 
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C.4. FTSE 
 

Figure 32 VaR Estimation for FTSE 100 using Historical Simulation 

 

Figure 33 VaR Estimation for FTSE 100 using Moving Average 
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Figure 34 VaR Estimation for FTSE 100 using Exponentially Weighted Moving Average 

 

Figure 35 VaR Estimation for FTSE 100 using GARCH (1,1) 

 

Figure 36 VaR Estimation for FTSE 100 using EGARCH (1,1) 
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C.5. DAX 
 

Figure 37 VaR Estimation for DAX using Historical Simulation 

 

Figure 38 VaR Estimation for DAX using Moving Average 
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Figure 39 VaR Estimation for DAX using Exponentially Weighted Moving Average 

 

Figure 40 VaR Estimation for DAX using GARCH (1,1) 

 

Figure 41 VaR Estimation for DAX using EGARCH (1,1) 
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C.6. CAC 
 

Figure 42 VaR Estimation for CAC using Historical SImulation 

 

Figure 43 VaR Estimation for CAC using Moving Average 
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Figure 44 VaR Estimation for CAC using Exponentially Weighted Moving Average 

 

Figure 45 VaR Estimation for CAC using GARCH (1,1) 

 

Figure 46 VaR Estimation for CAC using EGARCH (1,1) 
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C.7. ATHEX 
 

Figure 47 VaR Estimation for ATHEX using Historical Simulation 

 

Figure 48 VaR Estimation for ATHEX using Moving Average 
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Figure 49 VaR Estimation for ATHEX using Exponentially Weighted Moving Average 

 

Figure 50 VaR Estimation for ATHEX using GARCH (1,1) 

 

Figure 51 VaR Estimation for ATHEX using EGARCH (1,1) 

 


