

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Π.Μ.Σ «Τεχνοοικονομική Διοίκηση & Ασφάλεια Ψηφιακών Συστημάτων»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΘΕΜΑ

¨ TRUSTED EXECUTION ENVIRONMENT ¨

Σπουδαστής:

ΣΟΦΙΟΣ ΙΩΑΝΝΗΣ ΜΤΕ 1535

Επιβλέπων Καθηγητής:

Δρ. ΞΕΝΑΚΗΣ ΧΡΗΣΤΟΣ

ΙΟΥΝΙΟΣ 2017

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 2

ABSTRACT
As Mc Gillion, Dettenborn, & Nyman described[1], hardware-based Trusted

Execution Environments (TEEs) are widely deployed in mobile devices. Yet their

use has been limited primarily to applications developed by the device vendors.

Recent standardization of TEE interfaces by GlobalPlatform (GP) promises to

partially address this problem by enabling GP-compliant trusted applications to

run on TEEs from different vendors. Nevertheless ordinary developers wishing

to develop trusted applications face significant challenges. Access to hardware

TEE interfaces are difficult to obtain without support from vendors. Tools and

software needed to develop and debug trusted applications may be expensive or

non-existent. Open-TEE conforms to GP specifications. It allows developers to

develop and debug trusted applications with the same tools they use for

developing software in general. Once a trusted application is fully debugged, it

can be compiled for any actual hardware TEE. Through performance

measurements and a user study we demonstrate that Open-TEE is efficient and

easy to use. We have made OpenTEE freely available as open source

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 3

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα διπλωματική εργασία διενεργείθηκε στα πλαίσια του προγράμματος
παρακολούθησης του ΠΜΣ Τεχνοικοινομικής Διοίκησης και Ασφάλειας
Ψηφιακών Συστημάτων(2015-16) του Πανεπιστημίου Πειραιά.

Αισθάνομαι την υποχρέωση να ευχαριστήσω όλους τους καθηγητές του
μεταπτυχιακού προγράμματος οι οποίοι, χάριν στα πλούσια πνευματικά τους
προσόντα και τις πολύτιμες γνώσεις τους, συνέβαλαν στην ολοκλήρωση των
μεταπτυχιακών μου σπουδών.

Ιδιαίτερα αισθάνομαι την ανάγκη να ευχαριστήσω τον επιβλέπωντα καθήγητή
μου Δρ. Ξενάκη Χρήστο που με την καθοδήγηση του, τον επαγγελματισμό του,
την εμπιστοσύνη που έδειξε στο πρόσωπο μου αλλά και το ήθος του, κατάφερε
να διεγείρει το ενδιαφέρον μου για περαιτέρω έρευνα και γνώση στις επιστήμες
της πληροφορικής συμβάλλοντας ουσιαστικά στην βελτίωση της
επαγγελματικής μου πορείας.

Τέλος θα ήθελα να ευχαριστήσω τους γονείς μου που για ακόμη μια φορά με
στήριξαν και στάθηκαν αρωγοί δίπλα μου, σε αυτήν μου την επιλογή για
περαιτέρω γνώση και επιμόρφωση.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 4

Table of Contents

ABSTRACT ... 2

LIST OF ABBREVIATIONS ... 7

1. Introduction.. 9

1.1 TEE ... 9

1.1.1 Rich Execution Environment (REE) ... 10

1.1.2 Trusted Execution Environment (TEE) ... 10

1.1.3 Trusted Application (TA) .. 10

1.1.4 Client Application (CA) ... 11

1.2 TEE definition ... 11

1.3 Creation of TEE ... 11

1.4 Use of TEE ... 12

1.5 Benefits of TEE .. 15

1.6 TEE & Smartphone infrastructure ... 16

1.7 TEE Standardization ... 18

1.7.1 GlobalPlatform .. 19

1.7.2 Benefits of TEE Standardization ... 20

1.7.3 GlobalPlatform achievements ... 20

2. TEE Architecture ... 22

2.1 View of TEE ... 22

2.1.1 Co-Processor .. 22

2.1.2 Processor Secure Environment .. 23

2.1.3 Virtualization ... 24

2.2 TEE Device Architecture Overview.. 25

2.2.1 Typical Chipset Architecture .. 26

2.2.2 Hardware Architecture .. 26

2.2.3 TEE High Level Security Requirements ... 27

2.3 TEE Resources .. 28

2.3.1 REE and TEE Resource Sharing ... 29

2.4 INTERFACES OF TEE .. 31

2.4.1 TEE Software Interfaces ... 31

2.4.2 The TEE Software Architecture .. 31

2.5 Components of a GPD TEE.. 32

2.5.1 REE Interfaces to the TEE ... 32

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 5

2.5.2 Trusted OS Components .. 33

2.5.3 Trusted Applications (TAs) ... 33

2.5.4 Shared Memory ... 34

2.5.5 TA to TA Communication .. 34

2.5.6 Relationship between TEE APIs.. 34

2.6 The TEE Client API Architecture .. 35

2.6.1 The TEE Internal API Architecture .. 36

2.6.2 The TEE Internal Core API .. 36

2.6.3 The TEE Sockets API ... 37

2.6.4 The TEE TA Debug API Architecture ... 38

2.6.5 The TEE Secure Element API Architecture ... 38

2.7 The TEE Trusted User Interface API Architecture .. 39

2.8 Variations of TEE Architecture Found on Real Devices.. 40

2.8.1 A GlobalPlatform Compliant TEE May Have Proprietary Extensions...................... 41

2.8.2 A Device May Have Many TEEs .. 42

2.8.3 Not All TEEs on a Device Need To Be GlobalPlatform Compliant 44

3. TEE Management ... 45

3.1 TEE Management .. 45

3.2 TEE Implementation Considerations... 48

3.3 Device States ... 48

3.4 Boot Time Environment ... 49

3.4.1 Typical Boot Sequence ... 49

3.5 Run-Time Environment .. 52

3.5.1 TEE Functionality Availability ... 53

4. OPEN-TEE ... 53

4.1 OPEN-TEE.. 53

4.2 Motivation ... 53

4.2.1 Enable developer access to TEE functionality .. 54

4.2.2 Provide a fast and efficient prototyping environment ... 54

4.2.3 Promote research into TEE services ... 54

4.2.4 Promote community involvement ... 54

4.3 Requirements .. 55

4.4 Architecture .. 56

4.4.1 Base ... 56

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 6

4.4.2 Manager .. 57

4.4.3 Launcher .. 58

4.4.4 TA Processes .. 58

4.4.5 GP TEE APIs .. 59

4.4.6 IPC .. 59

4.5 Implementation and Tooling .. 59

4.5.1 Utilizing existing functionality .. 59

4.5.2 Development process .. 60

4.5.2 Open-TEE in use ... 60

4.5.3 Android and Open-TEE .. 60

4.5.4 SGX and Open-TEE ... 61

4.5.5 Fall back TEE .. 61

4.5.6 GlobalPlatform call for review ... 62

4.5.7 GP Trusted User Interface (TUI) ... 63

4.6 EVALUATION .. 63

4.6.1 Compliance .. 63

4.6.2 Hardware-Independence ... 64

4.7 Open TEE Documentation .. 65

4.7.1 Quick Setup Guide ... 65

4.7.2QBS ... 68

4.7.3 Autotools ... 68

4.7.4 Building with Autotools ... 68

4.7.5 Configure Runtime Environment ... 69

4.7.6 Running from the command line ... 70

4.7.7 Debugging with GDB .. 71

4.7.8 Pre-setup of GDB ... 71

4.7.9 Debugging CA process ... 71

4.7.10 Debugging TA process.. 72

4.7.11 Debugging from the beginnings ... 72

4.7.12 Debugging keep alive TA .. 73

4.8 Android Build .. 73

4.8.1 Quick Setup Guide .. 73

4.8.2 Troubleshooting .. 76

5. Conclusions... 76

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 7

References .. 77

LIST OF ABBREVIATIONS

AMD-V AMD Virtualization
API Application Programming Interface
CA Client Application
CI Continuous Integration
COW Copy-On-Write
CPU Central Processing Unit
DRM Digital Rights Management
eMMC embedded Multi Media Card
GP Global Platform
GPL General Public License
HMAC keyed-Hash Message Authentication Code
HSM Hardware Security Module
HW Hardware
ICRI-SC Intel Collaborative Research Institute for Secure Computing
IDE Integrated Development Environment
Intel VT-(x,d) Intel Virtualization
IOMMU Input/ Output Memory Management Unit
iOS iPhone OS
IPC Inter-Process Communication
JNI Java Native Interface
JTAG Joint Test Action Group
LoC Lines of Code
NVM Non-Volatile Memory
OS Operating System
ObC On-board Credentials
ODM Original Design Manufacturer
OEM Original Equipment Manufacturer
Open-TEE Open Virtual Trusted Execution Environment
OS X Mac OS X
PC Personal Computers
PKCS Public-Key Cryptography Standards
PSS Proportional Set Size
RAM Random Access Memory
REE Rich Execution Environment
ROM Read Only Memory
RPC Remote Procedure Call
RPMB Replay Protected Media Block
RSS Resident Set Size
SDK Software Development Kit
SGX Intel Software Guard Extensions

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 8

SMC Secure Monitor Call
SoC System on Chip
SUS System Usability Scale
TA Trusted Application
TCPA Trusted Computing Platform Alliance
TEE Trusted Execution Environment
TLK Trusted Little Kernel
TLS Transport Layer Security
TPM Trusted Platform Module
TUI Trusted User Interface
USB Universal Serial Bus
UUID Universally Unique Identifier
VMM Virtual Machine Manager

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 9

1. Introduction

1.1 TEE

Devices, from smartphones to servers, offer a Rich Execution Environment
(REE), providing a hugely extensive and versatile operating environment. This
brings flexibility and capability, but leaves the device vulnerable to a wide range
of security threats. The Trusted Execution Environment (TEE) is designed to
reside alongside the REE and provide a safe area of the device to protect assets
and execute trusted code.
This document explains the hardware and software architectures behind the
TEE. It introduces TEE management and explains concepts relevant to TEE
functional availability in a device.
At the highest level, a Trusted Execution Environment (TEE) is an environment
where the following are true:

 Any code executing inside the TEE is trusted in authenticity and integrity.

 Other assets inside the TEE are trusted in authenticity and integrity and
protected in confidentiality.

 The TEE resists known remote and software attacks, and a set of external
hardware attacks.

 Both code and other assets are protected from unauthorized tracing and
control through debug and test features.

The architectural concepts and principles in this document do not and should not
dictate any particular hardware or software implementation and are broad
enough to cover many possible implementations as long as the security
principles are adhered to. Hence, any hardware or software architectural
diagram in this document should be taken as an example and for reference only.
This version of the TEE System Architecture has been extended to include the
second phase of TEE standardization which introduced new APIs for supporting
tasks such as Trusted User interface, SE and Sockets communications, and
remote management for Trusted Applications. Further extensions of the TEE
System Architecture are expected in subsequent phases, as described in the TEE
White Paper [TEE White Paper]; e.g. a more flexible Trusted User Interface API,
biometrics fingerprint API, secure video content.

Smart connected devices, such as smartphones, are intrinsic to daily life: they are
used for business, social interactions, making purchases and enjoying media
content. All of this data, however, is susceptible to attacks from hackers and the
millions of downloadable applications represent an even larger opportunity for
fraudsters.

Similarly, automotive and home devices are increasingly becoming connected
and offering more functionality. On top of this, consumers are increasingly using

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 10

their devices in new ways: organizing a trip from a smart TV, streaming music
while driving or using a smartphone to pay for shopping. These expanded
practices create new security vulnerabilities, which highlight the need for
mechanisms that allow trusted parties to have access to applications without
granting hackers the same opportunity.

Service providers and original equipment manufacturers (OEMs) now need to
protect applications on many levels: from attacks originating in a device’s
operating system, authenticating the correct user to the correct service, offering
increased privacy, protecting valuable content, allowing secure access to
corporate and personal data and mitigating financial risks. One solution to these
security challenges is to provide a small, isolated execution environment that
allows service providers and OEMs to improve the user experience while
reducing fraud. The GlobalPlatform Trusted Execution Environment (TEE)
effectively addresses these concerns.

A TEE is a secure, integrity-protected processing environment, consisting of

processing, memory and storage capabilities. Figure 2.1 shows how a device can

be visualized as a series of distinct environments with their own set of features

and services. What follows, using the terminology introduced by GlobalPlatform

[18], describes the concepts illustrated in Figure 2.11.

1.1.1 Rich Execution Environment (REE)

The word “rich” here refers to an operating environment that is feature rich, as

one would expect from modern platforms such as Android, iOS, Windows, Linux

or OS X. In some literature this environment may be referred to as the “Normal

World” in reference to the fact that it is where the majority of applications are

being developed for and deployed to.

1.1.2 Trusted Execution Environment (TEE)

The TEE is a combination of features, both software and hardware, that isolate

the execution of tasks from the REE. These environments have a limited set of

features and services as they are intended to only address the security critical

subset of an application’s functionality such as offloading some cryptographic

operations or key management.

1.1.3 Trusted Application (TA)

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 11

An application encapsulating the security-critical functionality to be run within

the TEE. This may be a service style application that provides a general feature,

such as a generic cryptographic keystore, or it could be designed to offload a very

specific part of an application that is running in the REE, such as a portion of the

client state machine in a security protocol like TLS.

1.1.4 Client Application (CA)

CAs are ordinary applications (e.g. browser or e-mail client) running in the

REE.CAs are responsible for providing the majority of an application’s

functionality but can invoke TAs to offload sensitive operations.

Examining a typical TEE application workflow sequence, using GP terminology,

let’s consider a common use case for TEEs: the offloading of DRM protected

content. The CA would be responsible for the majority of the tasks associated

with viewing the content i.e. opening the media file, providing a region in the

display into which it can be rendered (the window) and providing a mechanism

by which to start, stop and rewind the media. A TA would be used to decrypt the

protected media stream and make the decrypted content available directly to the

graphics hardware that is responsible for rendering and displaying the stream.

1.2 TEE definition

The TEE is a secure area of the main processor in a smart phone (or any
connected device). It ensures that sensitive data is stored, processed and
protected in an isolated, trusted environment. The TEE's ability to offer isolated
safe execution of authorized security software, known as 'trusted applications',
enables it to provide end-to-end security by enforcing protected execution of
authenticated code, confidentiality, authenticity, privacy, system integrity and
data access rights. Comparative to other security environments on the device,
the TEE also offers high processing speeds and a large amount of accessible
memory.

The TEE offers a level of protection against attacks that have been generated in
the Rich OS environment. It assists in the control of access rights and houses
sensitive applications, which need to be isolated from the Rich OS. For example,
the TEE is the ideal environment for content providers offering a video for a
limited period of time, as premium content (e.g. HD video) must be secured so
that it cannot be shared for free.

1.3 Creation of TEE

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 12

Multiple handset and chip manufacturers have already developed and deployed
proprietary versions of this technology. The resulting lack of standardization has
presented application developers with a significant challenge to overcome; each
proprietary TEE solution requires a different version of the same application to
ensure that the application conforms to unique versions of the technology. In
addition, if the application provider wishes to deploy to multiple TEE solution
environments and have assurance that each environment will provide a common
level of security, then a security evaluation will need to be performed on each
TEE solution. This leads to a resource intensive development process.

There are two central reasons why the TEE exists:

 An increasing number of mobile services, which require a greater
level of security, are emerging.

 With a growing number of users, there is a greater need for
protection against software attacks. Applications with higher security
requirements, and therefore heightened ramifications if compromised,
require more protection than can be offered by rich OS solutions alone.

Enterprise IT environments, delivery of premium multimedia content, mobile
payments, the Internet of Things, government identification programs and more
seek to balance a consumer’s desire for a rich experience with the security
concerns shared by consumers and service providers. The TEE isolates trusted
applications and keeps them away from any malware which might be
downloaded inadvertently. Because of this, the TEE will become an essential
environment within all devices as the secure services market evolves.

Since GlobalPlatform is handset and Rich OS agnostic, it is well placed to bring
forward specifications for the TEE that can be embraced by all suppliers and
reside comfortably alongside each of their rich OS environments.
Interoperability in both functionality and security will be enhanced by the
standardization of the TEE. This will simplify application development and
deployment for all concerned, saving costs and time to market.

1.4 Use of TEE

Utilizing a TEE is not a silver bullet for securing a device. It provides defense in

depth and helps narrow down the attack vectors that an attacker can leverageto

compromise a device or user. Properly offloading tasks to TEE can efficiently

protect sensitive data from leaking, however, if we assume the following

scenario: a user has downloaded a new update for their device which contains

malicious code. If that malicious application can masquerade as a legitimate CA,

then the attacker could have free use of the sensitive data stored in the TEE. That

is they would be able to e.g. decrypt data or sign messages as a legitimate user,

however, the TEE would still ensure that the key was not revealed. Even with

this limitation the benefits of using a TEE far outweigh the risks of not using it

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 13

and a TEE is critical to the proper functioning of certain use cases that have

become commonly available in mobile devices, such as:

Keystore: Used for storing cryptographic tokens, keys or certificates, into a TEE

to make it more difficult to extract them from the device. When tokens are

deployed to a TEE, a CA can make use of them through a keystore Application

Programming Interface (API) and these tokens are thus not exposed to user

space or Random Access Memory (RAM).

Secure storage: This can serve as a multi-purpose facility which could allow an

application to store everyday information such as user identity, pictures or

documents. Most implementations provide both confidentiality and integrity

protections. In fact modern storage media such as embedded MultiMediaCard

(eMMC) may contain a special partition, called the Replay Protected Media Block

(RPMB), to assist with integrity protection. It relies on a keyed-Hash Message

Authentication Code (HMAC) for its operation and this key is protected by the

TEE. Mobile phone vendors have used secure storage for calibration data and

firmware configurations for many years to protect their assets and the safety of

end users. For example an attacker, in this case the legitimate owner of a device,

may wish to alter the modem configuration to allow them to have a greater share

of the bandwidth or a higher priority on the network. This can lead to poor

service for other users or be potentially harmful to the user as the new settings

may pose a health risk. In order to mitigate this risk the manufacturer would

store these critical configurations in secure storage and would potentially

disallow the device to boot if the calibration data has been tampered with.

Secure boot: is an extension to what has just been discussed, it provides the

ability to measure the integrity of certain code and data during the boot and can

be designed to disallow boot if any of the components have been altered. It does

this by storing a list of known good configurations, i.e. the signatures of firmware

and software components and comparing these to the components as they are

prepared for loading. Modern implementations of secure boot extend from the

hardware all the way to the user space. Non-Volatile Memory (NVM) such as the

Read Only Memory (ROM) code or key hashes stored in physical write once fuses

can be used to provide the basis of security. The systems can be thus designed

that each verified component can be relied upon to provide the verification of the

layer(s) above it. A simplified example would be that the ROM code verifies the

bootloader, which in turn verifies the main OS, which in turn verifies the overall

REE before launching the first user space application e.g. init. Secure boot does

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 14

not guarantee that the device is free of security issues; rather it can certify that

the components that have booted are the best known configuration as provided

by a trusted source, e.g. the OEM.

Digital Rights Managements (DRM): One of the driving forces behind the

wider adoption of TEEs has been the media industry. DRM content is becoming

ubiquitous, common examples are music files from iTunes2 or a video stream

from HBO3. In order to protect the media stream from piracy the data is

encrypted with a key that is generally device or session specific. The TEE is used

to protect this key, perform the decryption of the session and make the data

available to other parts of the system so it can be securely displayed.

Although the previous use cases are more prevalent on mobile devices they are

now seeing widespread deployment on a variety of devices ranging from

desktops to smart watches. This thesis hopes to outline that although these are

some of the most common uses of a TEE, it is by no means an exhaustive list and

in fact TEE technology is underutilized [14].

Figure 1.1

There are three main use cases for the TEE. It can be used to protect:

1. Digital content such as films, television, music and other multimedia
formats,

2. mCommerce and mPayments credentials and transactions,

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 15

3. Enterprise and government data.

The protection of premium content, such as a 4K resolution film or a TV series
which has just been aired, is a key driver for the adoption of TEE technology. TEE
technology can be used to ensure that content cannot be stolen once it is
decrypted on a device. It does this by offering a trusted environment in which to
perform the decryption and store the file, in addition to offering trusted video
playback to protect the content while it is being displayed on screen. The
technology is therefore of great value for smartphones and tablets, in addition to
4K televisions and set top boxes.

In mCommerce and mPayments, TEE technology is already being used to protect
payment credentials such as cryptographic keys while a transaction is being
authorized. Another benefit of the TEE is the ability to offer a trusted user
interface (UI) which ensures that the correct information is displayed to the
user and that the information displayed on screen and entered by the user is
secure. These capabilities reduce the risk of passcode logging and allow
transaction, logs and statement information to be securely displayed.

In an enterprise or government environment, the protection of corporate or
otherwise sensitive data is essential. Bring your own device (BYOD) is becoming
ever more prevalent as more employees use their own handsets and tablets to
perform work- based tasks like email and document editing. The TEE enables the
secure handling of confidential data, protection against software attacks from the
Rich OS and assistance with access rights control and user authentication.

1.5 Benefits of TEE

From a business and commercial perspective, the TEE meets the requirements of
all of the key players. At a high level:

 Mobile manufacturers’ security concerns are tied to several factors, not
the least of which being the sheer number of stakeholders involved in
device and application delivery. A framework (such as GlobalPlatform-
certified TEE) that guarantees a minimum baseline for platform security
would allow all stakeholders to make updates to devices and applications
while minimizing threats to consumers.

 For MNOs the TEE delivers a higher level of security than what the Rich
OS offers and higher performance than what a Secure Element (SE)
typically offers. In essence, the TEE ensures a high level of trust between
the device, the network, the edge and the cloud, thereby improving the
ability of a MNO to enhance services for root detection, SIM-lock, anti-
tethering, mobile wallet, mobile as PoS, data protection, mobile device
management, application security, content protection, device wipes, and
anti-malware protection.

 Content and service providers want the TEE to ensure that their
product remains secure and can be deployed to numerous platforms in a
common manner and is easily accessible to the end user.

http://www.globalplatform.org/mediaguidetrustedui.asp
http://www.globalplatform.org/mediaguidetrustedui.asp

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 16

 Payment service providers do not want to have to develop different
versions of the same application in order to satisfy the needs of different
proprietary TEE environments. E.g. if the ecosystem is not standardized,
payment service providers will have to be certified and support different
applications and processes. This is time consuming, costly and
counterintuitive to the goal of creating a mass market for application
deployment.

Focusing specifically on security, the TEE is a unique environment that is capable
of increasing the security and assurance level of services and applications, in the
following ways:

 User Authentication: Using the trusted UI, the TEE makes it possible to
securely collect a user’s password or PIN. This trusted user authentication
can be used to verify a cardholder for payment, confirm a user’s
identification to a corporate server, attest to a user’s rights with a content
server, and more.

 Trusted Processing and Isolation: Application processing can be
isolated from software attacks by running in the TEE. Examples include
processing a payment, decrypting premium content, reviewing corporate
data, and more.

 Transaction Validation: Using the trusted UI, the TEE ensures that the
information displayed on-screen is accurate. This is useful for a variety of
functions, including payment validation or protection of a corporate
document.

 Usage of Secure Resources: By using the TEE APIs, application
developers can easily make use of the complex security functions made
available by a device’s hardware, instead of using less safe software
functions. This includes hardware cryptography accelerators, SEs,
biometric equipment and the secure clock.

 Certification: Trusted certification is best achieved through
standardization of the TEE, which in turn improves stakeholder
confidence that the security-dependent applications are running on a
trusted platform.

1.6 TEE & Smartphone infrastructure

It is useful to put the TEE in the context of the overall security infrastructure of a
mobile device. There are three environments which make up the framework.
Each has a different task:

 Rich OS: An environment created for versatility and richness where
device applications, such as Android, Symbian OS, and Windows Phone
for example, are executed. It is open to third party download after the
device is manufactured. Security is a concern here but is secondary to
other issues.

 TEE: The TEE is a secure area of the main processor in a smartphone (or
any connected device) and ensures that sensitive data is stored,

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 17

processed and protected in an isolated, trusted environment. The TEE's
ability to offer isolated safe execution of authorized security software,
known as 'trusted applications', enables it to provide end-to-end security
by enforcing protection, confidentiality, integrity and data access rights.
The TEE offers a level of protection against software attacks, generated in
the Rich OS environment. It assists in the control of access rights and
houses sensitive applications, which need to be isolated from the Rich OS.
For example, the TEE is the ideal environment for content providers
offering a video for a limited period of time that need to keep their
premium content (e.g. HD video) secure so that it cannot be shared for
free.

 SE: The SE is a secure component which comprises autonomous, tamper-
resistant hardware within which secure applications and their
confidential cryptographic data (e.g. key management) are stored and
executed. It allows high levels of security, but limited functionality, and
can work in tandem with the TEE. The SE is used for hosting proximity
payment applications or official electronic signatures where the highest
level of security is required. The TEE can be used to filter access to
applications stored directly on the SE to act as a buffer for Malware
attacks.

Figure 1.2

The Rich OS is therefore a rich environment that is vulnerable to both software
and physical attacks. The SE, on the other hand, is resilient to physical attacks
but somewhat constrained in execution processing capabilities. The TEE,
however, serves as an ideal balance between Rich OS performance and SE
security, and a companion to both. The security offered by the TEE, in general, is
sufficient for most applications. Moreover, the TEE provides a more powerful
processing speed capability and greater accessible memory space than an SE
(these are, in fact, quite similar to that of a Rich OS).

http://www.globalplatform.org/mediaguideSE.asp

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 18

Figure 1.3

1.7 TEE Standardization

TEE standardization is essential to avoid fragmentation. The proliferation of
proprietary TEE solutions would lead to the following:

 Higher costs to develop or change applications/solutions when creating
or adapting to proprietary platforms

 The need for very specialized skills
 Extended time-to-market due to longer development times and potential

integration issues.

Standardization, by contrast, enables simplified and unified implementation and
improves interoperability between stakeholders. Furthermore, standardization
allows a large ecosystem to thrive and blossom, allowing for multiple business
partners and, because it ensures long-term stability and survivability, protects
investment in a way that proprietary solutions cannot. It also defines a basis for
evaluating and comparing different solutions. Lastly, standardization creates a
foundation for a uniform certification process.

The landscape for TEEs has been very diverse, with a variety of different

architectural options from multiple manufacturers. Even platforms using the

same type of TEE are often not interoperable. For example, an application

written for one TrustZone-based platform will generally not run on a different

TrustZone-based platform. They may be using different TEE OSs or different REE

OS drivers. On the other hand, developers and others who are higher up in the

software ecosystem are less concerned with intricacies of low-level software or

hardware but more concerned with their ability to use the capabilities of TEEs

easily and across different platforms. This calls for standardization.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 19

1.7.1 GlobalPlatform

One initiative in TEE standardization has been undertaken by GlobalPlatform

[17], which “is a cross industry, non-profit association which identifies, develops

and publishes specifications that promote the secure and inter-operable

deployment and management of multiple applications on secure chip

technology” [15]. GP offers specifications in three areas: smartcards, back-end

support systems and devices. This thesis is concerned with specifications from

the device working group related to the APIs for TAs. Figure 2.3 shows the

primary interfaces standardized by GP. The GP TEE Core API provides an

extensive set of features such as a crypto API and secure storage that can be used

to implement a TA, for example a DRM decoder. The GP TEE Client API is a very

generic and thin layer consisting of a small number of functions and definitions

that allow the transfer of data back and forth from the REE to a TA. A CA, for

example a DRM player, will implement all complex but non-critical functionality

by itself, but use the GP TEE Client API to invoke the corresponding TA, such as

the DRM decoder. Between the “GP TEE Client API” running on the REE and “GP

TEE core API” running on the TEE we have an effective Remote Procedure Call

(RPC) mechanism where a process running in the REE can invoke tasks in the

TEE.

Figure 1.4

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 20

1.7.2 Benefits of TEE Standardization

These standardization efforts in GlobalPlatform could resolve the issue of

interoperable TEEs. In other words, TEE application developers could re-use the

same application across different TEEs rather than developing for a specific TEE.

For example, a keystore service is already provided by Intel SEP and ARM

TrustZone, but unfortunately both define their own APIs, which forces the

implementation of tailored solutions on each platform.

If the TEE vendors were to agree on requirements and standards, in addition to

committing to deploy and use them in their products it may provide an incentive

for the developer community to utilize these features. A wider research and

developer community could be a valuable resource as they will help to drive the

next revolution in TEE use cases. It is already abundantly clear that there is a

consumer need for more security, privacy and identity protection being among

their top concerns so we can expect more demand for TEE functionality to come.

Even taking existing standards and enabling them, such as implementing the

Public-Key Cryptography Standard #11 (PKCS#11), in a readily accessible way

can have a large immediate impact. PKCS#11 defines a generic interface to

cryptographic tokens e.g. how to sign data. It is a well-known and used standard

though it generally relies on 3rd party hardware, such as smartcards, smartcard

readers, Universal Serial Bus (USB) dongles etc. Numerous languages provide

wrappers for the API, many more applications are PKCS#11 aware 5 and can be

configured to offload cryptographic operations to a PKCS#11 implementation.

Providing this, integrated, as part of an existing device will free the end user

from having to know which hardware to carry around with them and will enable

application developers to tailor their applications knowing that this feature is

readily available.

However, given all the benefits that standardization brings it does not remove

the obstacle of gaining access to the requisite hardware nor does it simplify the

task of developing and testing TAs. The remainder of this thesis focuses on how

to overcome this lack of access and enable developers and researchers to gain

valuable experience with TEE technology and especially its concepts.

1.7.3 GlobalPlatform achievements

GlobalPlatform’s 120+ members recognize the need for standards to be
developed in parallel with the evolution of a new ecosystem. This mutual

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 21

development will provide greater certainty and lower the cost of progress for the
industry by removing barriers caused by a lack of interoperability.

Specifications : With 17 years of experience in the mobile space and the
expertise of a global membership which represents the full ecosystem,
GlobalPlatform’s work is leading the market. GlobalPlatform Card Specifications
are now embedded in more than 17.7 billion SEs. Since the TEE Client API v1.0
was published in July 2010, GlobalPlatform has been responsible for driving TEE
standardization on behalf of the industry. Since that time, the following
specifications have been developed / delivered by GlobalPlatform:

1. TEE Client API Specification v1.0 – enables communication between
applications running in a Rich OS and trusted applications residing in the
TEE.

2. TEE Internal Core API Specification v1.1.1 – enables trusted applications
within a TEE to perform the general operations of a security application,
such as cryptography, secure storage, communication and general tasks,
such as timekeeping and memory management.

3. TEE Secure Element API Specification v1.1 – allows trusted applications
to directly communicate with a SE, rather than through a client
application.

4. TEE Sockets API Specification v1.0 – is a suite of specifications that
provide standards to enables trusted applications to directly make use of
internet protocol interfaces, rather than send packets to a client
application for internet transfer.

5. Trusted User Interface API Specification v1.0 – allows a trusted
application to securely display text and graphics, and ask the user to
perform an action ranging from navigation to entry of an associated PIN-
or Password-backed ID.

6. TEE Systems Architecture v1.0 – explains the hardware and software
architectures behind the TEE.

7. TEE Internal API Specification v1.0 – specifies how to develop trusted
applications.

8. TEE Protection Profile v1.2 – facilitates the Common Criteria evaluation of
TEEs.

9. TEE TA Debug Specification v1.0.1 – enables the debugging of
GlobalPlatform compliant TEEs.

10. TEE Compliance Profile - combines the functional testing of the TEE Client
API and the TEE internal core API.

11. Secure Element Remote Application Management v1.0.1 – defines a single
administration protocol to perform remote management of applications
residing on any type of SE.

12. Secure Element Access Control v1.1 – specifies how the access policy is
stored in the SE and how it can be accessed and applied by the device.

All specifications can be downloaded from the GlobalPlatform Device
Specifications webpage.

http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 22

The GlobalPlatform Compliance Program : To promote confidence within this
advancing ecosystem, GlobalPlatform has launched a TEE compliance program.
This offers assurances to application and software developers and hardware
manufacturers that a TEE product will perform in line with the GlobalPlatform
specifications and as intended. It also promotes market stability by providing a
long-term, interoperable and industry agreed framework that will evolve with
technical requirements over time. Visit the GlobalPlatform Compliance
Program webpages for further information.

Security certification : To complete this infrastructure, in February
2015, GlobalPlatform’s TEE Protection Profile was officially certified by Common
Criteria. Product vendors are now able to undertake a formal security evaluation
of their TEE products, using laboratories licensed by supporting certification
bodies to evaluate and certify that they meet the security requirements in the
document.

GlobalPlatform has also launched a TEE Certification Scheme that evaluates the
security level of a given TEE implementation. To drive this initiative,
GlobalPlatform has also launched a TEE Security Evaluation Secretariat to
manage the scheme. Under the scheme, providers of TEE products will be able to
submit their products to the new GlobalPlatform secretariat for independent
evaluation of their conformance to the organization's TEE Protection Profile.

In the mid-term, GlobalPlatform is working to accelerate the deployment of

certified TEEs and to create an ecosystem where GlobalPlatform certification is a

prerequisite amongst service providers and handset manufacturers. This is a

stepping stone on the way to achieving full market adoption, with the long-term

goal of the specifications becoming a de facto standard for the industry.

2. TEE Architecture

2.1 View of TEE

 A TEE can be realized in different ways, but the overall concept stays the same.

Figure 2.2 shows a number of ways in which these TEEs can be realized:

2.1.1 Co-Processor

http://www.globalplatform.org/compliance.asp
http://www.globalplatform.org/compliance.asp
http://www.globalplatform.org/mediapressview.asp?id=1123
http://www.globalplatform.org/mediapressview.asp?id=1123
http://www.globalplatform.org/teecertification.asp

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 23

A separate core, generally with its own peripherals, is used to offload the

security critical tasks from the main operating environment. The benefits of such

a configuration are that the operation can generally be completely isolated and it

can run simultaneously with the main core. The drawback is that there is an

overhead associated with transferring the data to and from the core. Also, the co-

processor is generally less powerful than the main core. The co-processor design

can be further separated into two alternatives:

External security co-processor is a discrete hardware module outside the

physical chip (commonly referred to as “System on Chip” or SoC) containing the

main core, and is thus completely isolated from it, not sharing any resources with

it.

Embedded security co-processor is embedded into the main SoC and thus has

the capability to share some of the resources of the main system. It is still

isolated from the main processor.

2.1.2 Processor Secure Environment

Many popular mobile TEE architectures follow a configuration where a single

core supports multiple virtual cores that are mutually exclusive of one another

i.e. when one is running the other is suspended. Generally there is some form of

trigger to allow the core to switch from one state to the other. This configuration

is sometimes referred to as the “processor secure environment” [12].

ARM TrustZone is an example of this configuration. In TrustZone, the processor

core can be in one of two “worlds”: a “secure world” (for the TEE) and a “normal

world” (for the REE). A special instruction called Secure Monitor Call (SMC) can

be executed to trigger the processor running in normal world to enter “monitor

mode” that marshals the transition to secure world [4]. The advantage of this

configuration is that there is no need to offload the data to and from the secure

world. However, there is a cost associated with having to store and restore the

device state on entry and exit from a given mode. On single core devices there is

also an added security benefit from having only one world running at a given

time in that it ensures that the normal world OS cannot interfere with the secure

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 24

world directly or indirectly (e.g., software side-channel attacks). However, this

also has the disadvantage that when one world is active the other world must be

completely halted, thus complicating interrupt handling and potentially causing

a transition back to handle the interrupt before the task is complete.

Intel Software Guard Extensions (SGX) [29, 21] is another example of such

a variant, the core does not perform a full transition to and from a secure world.

Instead parts of a standard application, both code and data, are protected by

mechanisms in the core. Parts of the application, called an Enclave, are encrypted

by a key that is only accessible to the Central Processing Unit (CPU). When an

“enter enclave (EENTER)” [23] instruction is received the code and data are

decrypted and operated upon in the core. They never leave the CPU package

unencrypted, thus protecting them against external access. The benefits are that

there is no need to transfer data back and forth between cores or to setup

complicated transitions to and from a secure world, and there is no additional

need for a separate operating environment as is required in other styles of TEE

configuration. Most security use cases related to normal world applications

running can be supported in this fashion by allowing small select parts of the

application to be secured, thus enabling developers to move away from the

paradigm of “Splitting Trust” [6] towards a model that developers are more

familiar with, where the application can be self-contained. Obviously this does

not remove the need for the developer to know which parts of an application

need to be secured and thus which parts to run in an enclave, however, it does

remove the need to develop a separate application that will run within a

different environment; which in the case of a co-processor may have a

completely different set of tools and requirements for the developer to learn in

order to utilize the facility.

2.1.3 Virtualization

Virtualization based on hardware features such as AMD Virtualization (AMD-V)

and Intel Virtualization (Intel VT-[x,d]) have existed for many years and are used

extensively to provide separation of resources between different operating

environments especially in high density server configurations. They rely on

processor support to allow virtualization of instructions and access to resources

e.g. through the use of an IOMMU (Input/Output Memory Management Unit)

access to and from peripheral devices can be restricted. Though in and of

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 25

themselves they are not designed solely to provide a TEE, there is recent

research [9, 28] to see how these can be used as an alternative to dedicated

hardware based TEEs. When deployed as TEE environments they generally rely

on a Virtual Machine Manager (VMM) to provide the marshaling of access to the

resources. There has been extensive research and security auditing of VMM

technology in recent years 4, to the point where it is now uncommon to hear of

exploits against the VMM itself. Vulnerabilities such as venom [10] highlight that

there is still always the possibility of vulnerabilities in any sufficiently large code

base, however, in contrast to traditional hardware based TEEs there is generally

an open disclosure of the vulnerabilities and a software patch is, in many cases, a

sufficient remedy.

2.2 TEE Device Architecture Overview

A TEE is an execution environment which provides security features such as
isolated execution, integrity of Trusted Applications (TAs), and integrity and
confidentiality of TA assets.
A GlobalPlatform TEE is defined as one that meets both the following criteria:

 GlobalPlatform security certification, that it must meet the security
standard defined by the GlobalPlatform TEE Protection Profile [TEE PP].

 If the TEE is claimed to fully support other GlobalPlatform TEE
specifications, it must do so in a security certified manner.

 It should be noted that this means the TEE must provide
separation from other environments in the device (including other
TEEs)

 GlobalPlatform functional qualification, that the TEE must support at least
the initial TEE configuration, which currently consists of being compliant
with:

 GlobalPlatform TEE Client API Specification [TEE Client API]
 GlobalPlatform TEE Internal Core API Specification [TEE Core API]
 If the TEE is claimed to fully support other GlobalPlatform TEE

specifications, it must do so in a functionally compliant manner.

For a particular device, proof of meeting the above criteria must be obtained
from relevant and approved certification and compliance laboratories. More
information can be found on the GlobalPlatform website.
Note:

 The presence of a GlobalPlatform TEE on a device does not restrict the
presence of other Trusted Execution Environments that are not
GlobalPlatform compliant.

 A GlobalPlatform TEE may have better security and/or more capabilities
than those required by GlobalPlatform.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 26

The remainder of this chapter describes the general device architecture
associated with the TEE along with a high level overview of the security
requirements of a TEE.
There is no mandated implementation architecture for these components and

they are used here only as logical constructions within this document.

2.2.1 Typical Chipset Architecture

The board level chipset architecture of a typical mobile device is depicted in

Figure 2-1. The chipset hardware consists of a Printed Circuit Board (PCB) that

connects a number of components such as SoC processing units, RAM, flash, etc.

Figure 2.1

2.2.2 Hardware Architecture

Both the REE and the TEE utilize a number of dedicated resources such as
processing core(s), RAM, ROM, cryptographic accelerators, etc. Figure 2-1
provides a simplified example of the resources that may be found at a device

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 27

level. Figure 2-2 provides an example of the resources that may be associated
with a TEE hosting package such as the System-on-Chip (SoC) in Figure 2-1.
Some resources accessible by the REE may also be accessible by the TEE whereas
the opposite must not hold unless explicitly authorized by the TEE. The trusted
resources are only accessible by other trusted resources and thereby make up a
closed system that is protected from the REE.
In general terms, the TEE offers an execution space that provides a higher level

of security than a Rich OS; although the TEE is not as secure as an SE, the security

it offers is sufficient for most applications.

2.2.3 TEE High Level Security Requirements

The high level security requirements of a TEE can be stated as follows:

 The primary purpose of a TEE is to protect its assets from the REE and
other environments.

 This is achieved through hardware mechanisms that those other
environments cannot control.

 This protection must include protection against other execution
environments whose software or location is deemed untrustworthy.

 The TEE must be protected against a range of physical attacks, see
Protection Profile [TEE PP].

 Typically this protection will be a level less than that provided to
dedicated tamper resistant technology such as Secure Elements.

 Intrusive attacks that physically break the IC package boundary
are outside of the scope of TEE protection.

 The debug facilities of a production TEE (or system components capable
of accessing assets in the TEE) must be disabled or must be controlled by
an element that itself meets or exceeds the security requirements of the
TEE.

 This requirement places no restrictions on debug capabilities for
system components (including the REE) that cannot access assets
of the TEE.

 The TEE must be instantiated through a secure boot process using assets
bound to the SoC or the Off-SoC Security Processor and isolated from the
REE.

 The integrity and authenticity gained through secure boot:
 Must extend throughout the lifetime of the TEE.

 Must be retained through any state transitions in the
system such as power transitions or core migration.

 Trusted Storage of data and keys is provided by the TEE.
 The Trusted Storage must be bound to a particular TEE on a

particular device, such that no unauthorized internal or external
attacker may access, copy, or modify the data contained.
 The strength of this protection must be at least equal to that

of the TEE environment.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 28

 The Trusted Storage must provide a minimum level of protection
against rollback attacks.
 It is accepted that the actual physical storage may be in an

unsecure area and so is vulnerable to actions from outside
of the TEE.

 General software outside the TEE must not be able to call directly to

functionality exposed by the TEE Internal APIs or the Trusted Core
Framework.

 The non-TEE software must go through protocols such that the
Trusted OS or Trusted Application performs the verification of the
acceptability of the TEE operation that the REE software has
requested.

Detailed definition of the security requirements for a TEE can be found in [TEE

PP].

2.3 TEE Resources

A TEE uses three classes of resources.

In-package resource

This type of resource must be implemented in-package, which means that they
will be protected from a range of physical attacks. In-package communication
channels between these resources do not need to be encrypted as they are
considered physically secure.

Off-package, cryptographically protected resource

An exception to the in-package resource can be trusted replay-protected external
non-volatile, and trusted volatile memory areas. For these memory areas, the
security must be fulfilled by using proven cryptographic methods. Only the TEE
will be able to decrypt the plaintext content stored in these locations.

Exposed or partially exposed resources

A further exception is that TEE controlled trusted areas of external components
may contain data not guarded by a proven cryptographic method. This is needed
to:

 Enable trusted DRAM-based buffers where the data is in the clear but is
protected from attack by unauthorized software while being manipulated
(e.g., TLS or DRM stream buffers).

 Provide space for a trusted screen frame store.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 29

 Neither of the above use cases necessarily requires encrypted RAM
 storage, just isolation from the REE and other environments.

 Use keyboards and other I/O that are not accessible to the REE but are
not guarded from physical attack.

2.3.1 REE and TEE Resource Sharing

The following discussion is simplified to only consider the presence of one TEE
and the REE. A TEE is similarly isolated in component ownership and resource
sharing from other environments such as SEs and other TEEs.
The REE has access to the untrusted resources, which may be implemented on-

chip or off-chip in other components on the PCB. The REE cannot access the

trusted resources. This access control must be enforced and can potentially be

implemented by physical isolation of trusted resources from untrusted

resources. The only way for the REE to get access to trusted resources is via any

API entry points or services exposed by the TEE and accessed through, for

example, the TEE Client API. This does not preclude the capability of the REE

passing buffers to the TEE in a controlled and protected manner and vice versa.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 30

Figure 2.2

Hardware Architectural View of REE and TEE

Note that the architectural view of TEE and REE as illustrated in Figure 2.2 does

not dictate any specific physical implementation. Possible implementations

include and are not limited to those illustrated in Figure 2.3. Some capabilities

may not be supportable by all implementations. For example, PCB A in Figure 2.3

cannot support the Trusted User Interface.

Figure 2.3

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 31

Example Hardware Realizations of TEE

2.4 INTERFACES OF TEE

2.4.1 TEE Software Interfaces

The TEE is a separate execution environment that runs alongside the REE and
other environments and provides security services to those other environments
and applications running inside those environments. The TEE exposes sets of
APIs to enable communication from the REE and others to enable Trusted
Application software functionality within the TEE.
This chapter describes the general software architecture associated with the
TEE, the interfaces defined by GlobalPlatform, and the relationship between the
critical components found in the software system.
There is no mandated implementation architecture for these components and

they are used here only as logical constructions within this document.

2.4.2 The TEE Software Architecture

The relationship between the major software systems components is outlined in
Figure 2.4

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 32

Figure 2.4

TEE Software Architecture

The goal of the TEE Software Architecture is to enable Trusted Applications (TA)

to provide isolated and trustworthy capabilities, which can then be used through

intermediary Client Applications (CA).

Please note:
 Just as there are many hardware solutions to implementing a TEE (see

Figure 2.3: Example Hardware Realizations of TEE) there can also be
many software configurations of a TEE (or even TEEs) in a device. The
following sections discuss some possible configurations.

 For simplicity, subsequent graphics show only the fixed isolation
boundary discussed in Figure 3.1. However, shared trusted peripherals
(as illustrated and described in Figure 3.1) are possible in all
configurations.

2.5 Components of a GPD TEE

2.5.1 REE Interfaces to the TEE

Within the REE, the architecture identifies an optional protocol specification
layer, an API, and a supporting communication agent.

 The REE Communication Agent provides REE support for messaging
between the Client Application and the Trusted Application.

 The TEE Client API is a low level communication interface designed to
enable a Client Application running in the Rich OS to access and exchange
data with a Trusted Application running inside a Trusted Execution
Environment.

 The TEE Protocol Specifications in the REE layer offers Client Applications
a set of higher level APIs to access some TEE services. TEE TA Debug API
[TEE TA Debug] and TEE Management Framework Specification [TEE
Mgmt] currently use this stack layer. Additional proprietary TEE APIs

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 33

may be developed at the TEE Protocol Specifications layer by TA
developers.

2.5.2 Trusted OS Components

Within the TEE, the architecture identifies two distinct classes of software: the
hosting code provided by the Trusted OS Components, and the Trusted
Applications, which run on top of that code.
Trusted OS Components consist of:

 The Trusted Core Framework which provides OS functionality to Trusted
Applications.

 The Trusted Core Framework is part of the TEE Internal Core API,
discussed in section 3.5.

 The Trusted Device Drivers which provide a communications interface to
trusted peripherals which are dedicated to the TEE.

Both the Trusted Applications and Trusted Core Framework make use of
scheduling and other OS management functions provided by the Trusted Kernel.
The Trusted Device Drivers may be an integral part of the Trusted Kernel or may
be modular components, depending on the architecture of the Trusted Kernel.

 The TEE Communication Agent is a special case of a Trusted OS
component. It works with its peer, the REE Communication Agent, to
safely transfer messages between CA and TA.

2.5.3 Trusted Applications (TAs)

The Trusted Applications interface to the rest of the system via APIs exposed by
Trusted OS components.

 The TEE Internal APIs define the fundamental software capabilities of a
TEE.

 Other non-GlobalPlatform internal APIs may be defined to support
interfacing to further proprietary functionality.

When a Client Application creates a session with a Trusted Application, it
connects to an instance of that Trusted Application. A Trusted Application
instance has physical memory address space which is separated from the
physical memory address space of all other Trusted Application instances.
A session is used to logically connect multiple commands invoked in a Trusted
Application. Each session has its own state, which typically contains the session
context and the context(s) of the Task(s) executing the session.
It is up to the Trusted Application to define the combinations of commands and
their parameters that are valid to execute.
TAs may only start execution in response to an external command. They make
their own choice as to when to return from that command. Typical TAs follow a
short command response life cycle but complex TAs may iterate for long periods
while processing input and output events such as TUI.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 34

2.5.4 Shared Memory

One feature of a TEE is its ability to enable the CA and TA to communicate large
amounts of data quickly and efficiently via access to a memory area accessible to
both the TEE and REE. The API design allows this feature to be implemented by
the Trusted OS as either memory copies, or by directly shared memory. The
protocols for how to make use of this ability are defined by the TA designer, and
enabled by the TEE Client API and TEE Internal Core API.
Care should be taken with the security aspects of using shared memory, as there
is a potential for a Client Application or Trusted Application to modify the
memory contents asynchronously with the other parties acting on that memory.

2.5.5 TA to TA Communication

A TA may also communicate to another TA. This uses the same process as used

by the CA to communicate to the TA, however there is a trustworthy indicator

that allows the receiving TA to be assured that communication has not been

exposed outside the TEE. This not only simplifies the trust in the communication

content but also in the metadata associated with the content, for example

providing the identity of the calling TA. Because of this trust relationship, a TA in

another TEE in the same device should be treated as though it is an REE based

CA, because the receiving TA’s TEE has no reason to trust the calling TA’s TEE.

2.5.6 Relationship between TEE APIs

To assist the reader in understanding the relationships between the various APIs

and released specification documents, the following graphic is provided.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 35

Figure 2.5

TEE APIs

2.6 The TEE Client API Architecture

GlobalPlatform specifies the TEE Client API in the GlobalPlatform TEE Client API
Specification [TEE Client API]. The TEE Client API concentrates on the interface
to enable efficient communications between a Client Application and a Trusted
Application.
Higher level standards and protocol layers (known as TEE Protocol
Specifications and functional APIs) may be built on top of the foundation
provided by the TEE Client API – for example, to cover common tasks such as
trusted storage, cryptography, and run-time installation of new Trusted
Applications.
Within the REE this architecture identifies three distinct classes of component:

 The Client Applications, which make use of the TEE Client API

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 36

 The TEE Client API library implementation

 The REE Communication Agent, which is shared amongst all Client
Applications, and whose role is to handle the communications between
the REE and the TEE

2.6.1 The TEE Internal API Architecture

GlobalPlatform specifies a series of APIs to provide a common implementation
for functionality typically required by many Trusted Applications. The TEE
Internal Core API is specified in the GlobalPlatform TEE Internal Core API
Specification [TEE Core API]. The TEE Internal Core API concentrates on the
various interfaces to enable a Trusted Application to make best use of the
standard TEE capabilities. Additional low level functionality is provided by TEE
Internal APIs such as the TEE Secure Element API, TEE Sockets API, and TEE TA
Debug API.
Higher level standards and protocol layers may be built on top of the foundation
provided by the TEE Internal APIs – for example, to cover common tasks such as
creating a trusted password entry screen for the user, confidential data
management, financial services, and Digital Rights Management.
Within the TEE, this architecture currently identifies three distinct classes of
component:

 The Trusted Applications, which make use of TEE Internal APIs

 The TEE Internal API library implementations

 The Trusted OS Components, which are shared amongst all Trusted
Applications, and whose role is to provide the system level functionality
required by the Trusted Applications

2.6.2 The TEE Internal Core API

The TEE Internal Core API provides a number of different subsets of

functionality to the Trusted Application.

API Name Description

Trusted Core Framework API

This API provides integration,
scheduling, communication, memory
management, and system information

retrieval interfaces.

Trusted Storage API for Data and Keys
This API provides Trusted Storage for

keys and general data

Cryptographic Operations API
This API provides cryptographic

capabilities

Time API
This API provides support for various

time-based funcionality to support
tasks such as token expiry and

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 37

authentication attemp throtting

TEE Arithmetical API

This API provides arithmetical
primitives to create cryptographic

functions not found in the
Cryptographic API

Table 2.1

APIs within TEE Internal Core API

2.6.3 The TEE Sockets API

The TEE Sockets API provides a common modular interface for the TA to
communicate to other network nodes, acting as a network client. The TEE
Sockets API is the general API for accessing and handling client sockets of
various kinds.

 TEE Sockets API Annex A specifies the TEE_iSocket interface for
Transmission Control Protocol (TCP).

 TEE Sockets API Annex B specifies the TEE_iSocket interface for User
Datagram Protocol (UDP).

 TEE Sockets API Annex C specifies the TEE_iSocket interface for
Transport Layer Security (TLS).

Figure 2.6

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 38

The above diagram shows two routing options (A) and (B) inside the TEE. These
options are shown because only the security layer MUST reside inside the TEE. In
a real implementation it would be expected that only one of these options (A) or
(B) would be needed and typically functionality such as UDP/IP and TCP/IP
brings no security risks by placing in the REE.
More information on the TEE Sockets API can be found in the GlobalPlatform

TEE Sockets API Specification [TEE Sockets].

2.6.4 The TEE TA Debug API Architecture

The TEE TA Debug API provides services that are designed to support TA
development and/or compliance testing of the TEE Internal APIs.
The Post Mortem Reporting (PMR) service supports compliance testing and TA
debug. This service provides a method for a TEE to report to clients the
termination status of TAs which enter the Panic state. Without this capability it is
not possible to certify correct functionality of the TEE internal APIs, as the Panic
state is used to report various error conditions that need to be tested.
The Debug Log Message (DLM) service is useful in a TA debug scenario. This
service provides a method for a TA to report simple debug information on
authorized systems. It may report to client applications or off-device hardware
or both. Compliant implementations should implement the DLM interface but it
is not mandatory to do so.
More information of the TEE TA Debug API Architecture can be found in the

GlobalPlatform TEE TA Debug Specification [TEE TA Debug].

2.6.5 The TEE Secure Element API Architecture

The TEE Secure Element API is an enabling thin layer to support communication
to Secure Elements (SEs) connected to the device within which the TEE is
implemented. This API defines a transport interface based on the SIMalliance
Open Mobile API specification [Open Mobile].
SEs may be connected to the REE or exclusively to the TEE.

 An SE connected exclusively to the TEE is accessible by a TA without
using any resources from the REE. Thus the communication is considered
trusted.

 An SE connected to the REE is accessible by a TA using resources lying in
the REE. It is recommended to use a secure channel (i.e. by using the
Secure Channel API) to protect the communication between the TA and
the SE against attacks in the REE.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 39

Figure 2.7
Typical Device with Multiple SE Readers

More information about the TEE Secure Element API can be found in the

GlobalPlatform TEE Secure Element API Specification [TEE SE API].

2.7 The TEE Trusted User Interface API Architecture

The Trusted User Interface API permits the display of screens to the user and
achieves three objectives:

 Secure display – Information displayed to the user cannot be accessed,
modified, or obscured by any software within the REE or by an
unauthorized application in the TEE.

 Secure input – Information entered by the user cannot be derived or
modified by any software within the REE or by an unauthorized
application in the TEE.

 Security indicator – The user can be confident that the screen displayed is
actually a screen displayed by a TA.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 40

2

Figure 2.8
TEE with TUI Architecture

While it cannot be assured that the user will not enter his identifying secret into
an REE UI session, it can be assured that such an REE UI session will not have
access to the secrets of the TEE. As such it is not the user’s identification that
should be treated by remote parties as a trustworthy identification, but that
identification in combination with a factor only known to the TA in the TEE (such
as a key).
Another assurance that a third party gains from using the TEE TUI is the
guarantees of non-interference. This allows remote party confidence that what
the user signs is what they actually saw, and not some information spoofed into
the UI, replacing the desired display information.
More information about the TEE Trusted User Interface can be found in the
GlobalPlatform TEE Trusted User Interface API Specification [TEE TUI API].

2.8 Variations of TEE Architecture Found on Real Devices

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 41

Real devices will contain extensions to the basic TEE architecture, and may
potentially house multiple TEEs. The GlobalPlatform TEE Protection Profile [TEE
PP] requires that a TEE, including its proprietary extensions, is isolated from
other environments including other TEEs.

2.8.1 A GlobalPlatform Compliant TEE May Have Proprietary Extensions

A compliant GPD TEE may offer additional APIs to Trusted Applications, and may

offer other access methods to REE applications. This allows flexibility in

implementation in special markets, and provides a route for growth of the

GlobalPlatform TEE specifications as new APIs are found to be useful and hence

taken up by GlobalPlatform as new TEE specifications.

Figure 2.9

Please note:
 This is one example configuration of a proprietary extension of a

compliant GPD TEE, and other configurations may exist.

 There is no specified limitation on the number of OSes in an REE or the
number of TEEs in one device.

 Shared trusted peripherals (as illustrated and described in Figure 3.1) are
possible in the configuration shown in Figure 3.6.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 42

2.8.2 A Device May Have Many TEEs

There is no specified limitation on the number of TEEs in a device. The TEE
Client API provides a methodology for an REE application to communicate to a
specified GPD TEE.
For example, a device may have hardware such as shown in Figure 3-7. The

illustrated device has three TEEs, each created using a different example method.

Each must have an independent set of innately trusted components, and will be

isolated from the other TEEs and the REE, at least at the level of the

GlobalPlatform TEE Protection Profile ([TEE PP]).

Figure 2.10

Note that inside one GlobalPlatform TEE Protection Profile boundary there can
only be one Trusted OS and hence one set of TEE resources.

This does not prevent the GPD TEE sharing resources with other TEEs in much
the same way as it may do with the REE. For example, a Trusted User Interface is
typically owned in an untrusted mode by the REE and only taken over by the TEE
and put in a trusted state when needed. With multiple TEEs, such a Trusted UI
would potentially be shared between all TEEs and the REE with only one having
active ownership at one time.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 43

Communications between TEEs must be treated by a Trusted Application on the

initial supposition that the endpoint is untrusted (in the same way as the TA

should treat anything outside its local TEE).

Figure 3.8 shows an example with two GPD TEEs (i.e. two TEEs that are
compliant with a GPD TEE functionality configuration and certified according to
the GlobalPlatform TEE Protection Profile). Each GPD TEE exists within its own
isolation boundary and does not trust components outside of the boundary.
Therefore, from the viewpoint of GPD TEE (a), GPD TEE (b) must be assumed to
be untrustworthy as it is not part of GPD TEE (a). Likewise, GPD TEE (b) trusts
neither the REE nor GPD TEE (a).
If any OS in the device wishes to use a GPD TEE based set of innately trusted

components to secure its boot, then it is up to the boot structure of that Rich OS

(i.e. its BIOS, UEFI, etc.) to choose which GPD TEE it uses. Potentially in a system

with more than one Rich OS, each may choose to use a different TEE.

Figure 2.11

Please note:
 This is one example configuration of a system with two GPD TEEs, and

other configurations may exist.

 There is no specified limitation on the number of TEEs and OSes in the
REE in one device.

 Shared trusted peripherals (as illustrated and described in Figure 3-1) are
possible in the configuration shown in Figure 3.8.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 44

2.8.3 Not All TEEs on a Device Need To Be GlobalPlatform Compliant

A device may even have environments that claim to be TEEs but are not
GlobalPlatform compliant TEEs.
Clearly if such an environment does not meet GlobalPlatform specifications then
GlobalPlatform cannot make any assertions about that environment; however
the environment does not raise an issue because a compliant GPD TEE will still
be isolated from it as specified in the GlobalPlatform TEE Protection Profile [TEE
PP].

Figure 2.12

GPD TEE alongside Unknown TEE

Please note:
 This is one example configuration of an unknown TEE alongside a GPD

TEE, and other configurations may exist.

 There is no specified limitation on the number of GPD TEEs, non-
GlobalPlatform TEEs, and OSes in the REE in one device.

 Shared trusted peripherals (as illustrated and described in Figure 3.1) are
possible in the configuration shown in Figure 3.9.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 45

3. TEE Management

3.1 TEE Management

Management of the TEE and Trusted Applications running in the TEE is
described in the TEE Management Framework specification [TEE Mgmt]. The
remote management life cycle of Trusted Applications, GlobalPlatform style
management Security Domains, and the TEE itself are detailed in that
specification as well.
Each GlobalPlatform style Security Domain (SD) has a nominal off-device
“owner” with rights to control those SDs and TAs directly and indirectly below
the given SD. The exception to this is when the child SD is a root SD (rSD)
because root SDs form a management isolation boundary which limits parental
interference.
The TEE Management Framework provides means to securely manage Trusted
Applications in a TEE. The following three layers are described.
Administration operations

 Defines the set of supported operations to manage Trusted Applications,
the conditions of use, and the detailed behavior of each operation.

Security model

 Defines who the actors are and how the different business relationships
and responsibilities can be mapped on the concept of Security Domains
with privileges and associations.

 Defines the security mechanisms used to authenticate the entities
establishing a communication channel, to secure the communication, and
to authorize the administration operations to be performed by Security
Domains.

 Defines schemes for key and data provisioning and describes the
associated key management.

Protocols

 Defines the command set (over the TEE Client API) to be used to perform
the administration operations.

 Defines the command set to be used to establish a secure session with a
Security Domain.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 46

Figure 3.1

TEE Management Framework Structure

The following diagram shows an example of possible management relationships

between Security Domains and between Security Domains and Trusted

Applications enabled by the TEE Management Framework specification ([TEE

Mgmt]).

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 47

Figure 3.2

Security Domain Management Relationships

The above diagram is just an example of how a management structure may be
developed on a platform.
In Figure 4.2:

 rSD-1 is the direct parent of TA-11

 rSD-1 is the indirect parent of TA-111

 The owner of rSD-1 can potentially control any SD-1* or TA-1* but has no
control of any of the other current SDs on the example platform, due to
rSD-2.

 The owner of rSD-1 can install rSD-2 but may not interact with any of
rSD-2’s direct or indirect children and is strictly limited in the operations
it can perform on rSD-2

There are some exceptions to the above rules, such as with regard to factory
reset. For more detail see [TEE Mgmt].

The draft [TEE Mgmt] places no restriction on the number of SDs or TAs that

may be installed in the factory, or in the field. Particular platform

implementations will have limits on available storage resources and these limits

will affect the numbers of TAs and SDs that might be deployed on that platform.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 48

updating, blocking, and personalization. Particular platforms may choose to
restrict the availability of certain TEE Management Framework management
operations on that platform and similarly particular Security Domains may
choose to limit the operations available to their child Security Domains.
Future specifications from GlobalPlatform are expected to provide defined

configurations for particular sorts of devices (e.g. IoT and smartphone), enabling

those interested in developing and managing TAs to understand the minimum

expectations on the sort of TA and SD management structures that might be

created on those devices.

3.2 TEE Implementation Considerations

The TEE and its capabilities will be closely coupled to the capabilities of the REE
and the state of the device it resides in. It is therefore important for the
developer of those REE Client Applications, and even the Rich OS itself, to
understand the availability of the TEE capabilities, along with the general
security states (and hence vulnerabilities) that may be found in typical devices.
Toward that end, this chapter lists some of the possible device states and
discusses the notions of Boot Time Environment and Run Time Environment.
Some clarifications are given regarding dependencies and the availability of TEE
functionalities with respect to the Rich OS.

3.3 Device States

Devices implementing a TEE can be found in a number of states that are not
defined in GlobalPlatform specifications, but that are still useful for the
developer to understand.
Devices implementing the TEE must provide trusted mechanisms control the
corresponding security environments and transitions.
The specific implementations and characteristics of these and other similar
states are up to the device manufacturers and the OEMs.
Examples of some such states:

 Devices in manufacturing, which may offer neither security nor functional
compliance at various stages of their creation.

 Development devices, which may or may not have reduced security but
should provide TEE compliant functionality.

 Production devices, which must provide TEE compliant functionality and
security.

 And finally, devices that have somehow failed, and which must block
access to TEE held user data, while enabling various levels of debug
access through secure mechanisms.

Life cycle state changes must not lower the security of the TEE.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 49

3.4 Boot Time Environment

The term “boot time” refers to the time frame from the reset/power-up of the
underlying hardware to the time an operating system has completed its
initialization and loading. Based on this definition, boot time software also
includes any firmware/ROM code that takes over the control of execution after
the device is reset.
The integrity of the initial trusted boot code is intrinsically guaranteed.
Furthermore, flexible trusted boot requirements and OEM-dependent boot
operations require that, during boot time, some services or operations need to be
performed in a trusted execution environment. Hence a minimal set of the TEE
capabilities must exist during the device boot time and to enable some of these
services a Trusted OS (or some simplified version thereof) may also exist.
A typical TEE secure boot is based on three key components:

 A fixed set of innately trusted components, which typically is the smallest
distinguishable set of hardware and/or software that must be inherently
trusted and tied to the logic/environment where trusted actions are
performed.

 Immutable boot software that is stored, for example, in in-chip TEE ROM

 and the isolated TEE where this security critical boot software is
executed.

It is not the current intention of GlobalPlatform to define the boot time
capabilities of a TEE, however if a TEE Trusted OS is required to function during
boot then it is recommended for compatibility and ease of development that it
implements as much of a subset of the TEE Internal APIs as it is capable of
providing.

3.4.1 Typical Boot Sequence

Figure 5.1 illustrates three simplified examples of using secure boot of a TEE.
Common to all solution examples, the device boots from the TEE boot ROM code
inside the SoC containing the TEE (which may not always be the SOC containing
the REE). The TEE boot ROM may then load further firmware components and
verify them before execution. To verify them, code in the boot ROM will use the
information found in the fixed set of innately trusted hardware components (for
example, based on information stored in the TEE boot ROM or one-time
programmable (OTP) fuses). The firmware components are typically stored in
rewriteable non-volatile memories such as flash storage but may also be part of
the TEE ROM code.
Before exiting the secure boot process, the firmware or the TEE platform code
loads and may verify REE boot loader(s) before their execution. Typically, if any
loaded software component verification fails up to this point, the boot process
halts and the device reboots with a possible error report/indication. In a
successful case, the REE boot loader starts the process of loading the Rich OS or
further boot loader components.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 50

OEMs may differentiate by implementing trusted firmware to be run early in the

boot sequence. This gives the OEM the flexibility to bring in its own keys,

certificate format, signature schemes, etc. Figure 5.1 through Figure 5.3 illustrate

example boot sequences, and others may exist.

Figure 3.3

Boot Sequence : Trusted OS Early Boot

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 51

Figure 3.4

Boot Sequence: ROM based Trusted OS

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 52

Figure 3.5

Boot Sequence: Trusted OS On-demand Boot

3.5 Run-Time Environment

The term “run-time” refers to a property of the overall execution environment
where an operating system has fully completed its initialization/boot operations
and is fully operational, as opposed to the duration where the operating system
is not fully operational as explained in section 5.2.
The dependencies between the Trusted OS and the Rich OS are implementation
dependent. Current GlobalPlatform specifications standardize the behavior of

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 53

the system once the Rich OS is operational. This does not mean that there are no
capabilities when the Rich OS is not operational, see section 5.2.

3.5.1 TEE Functionality Availability

While the TEE as a protected environment will always meet its protection
requirements, its functionality and availability may have dependencies on the
REE.
The TEE functionality (i.e. providing GlobalPlatform compliant response to Client
API or Internal API commands) is guaranteed to be available whenever the REE
is available for REE Client Applications.
The above guarantee of availability to client applications means that effects such

as power state changes, where the Client Applications are not aware of such a

change, must not be noticeable via their connection to Trusted Applications

unless the Trusted Applications chooses to expose such information.

4. OPEN-TEE

4.1 OPEN-TEE

Hardware-assisted TEEs have been available in mobile devices for almost a

decade, but access to this technology has been granted only to privileged

developers. For example, developers working for chip vendors, OEMs and

Original Design Manufacturers (ODMs). Limited access for third-party

developers can be accounted for by a variety of reasons, the technology is

proprietary, lack of trust of the third party, lack of an easily deployed Software

Development Kit (SDK). In addition, there is no unified means to access the

resources and functionality of the TEEs.

In order to pave the way for the widespread use of TEE functionality by

developers and researchers this thesis defines an architecture and SDK. It is

implemented as a framework atop a set of tools that are familiar to the

developer, thus removing the need for specialized hardware and the overheads

that it incurs.

4.2 Motivation

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 54

4.2.1 Enable developer access to TEE functionality

For a variety of reasons, access to TEEs is generally restricted to developers

working for chip manufacturers and for the OEMs that make devices based on

these chips. Usually, the technology is proprietary and easily deployable SDKs

are not available. Furthermore, TEEs may not have a security architecture within

them to safely allow complete outsiders access to the them without impairing

overall security. However, there have been attempts to address this problem

[24].

4.2.2 Provide a fast and efficient prototyping environment

The most common methods of debugging TAs are to either use expensive Joint

Test Action Group (JTAG1) debugging or resort to primitive “print tracing” by

inserting diagnostic output in the source code. The former generally allows for

detailed instruction level debugging. However, the costs associated with these

debuggers can be prohibitively expensive, and the setup complex. Print tracing

as a debugging technique is cumbersome and clutters up the source code even to

locate the source of a problem. Another concern encountered by TEE developers

is that if a TA running on actual device hardware crashes, a hard reset of the

device maybe required to recover, thereby significantly increasing the time and

effort of debugging.

4.2.3 Promote research into TEE services

Ways to isolate TEEs from REEs are reasonably well understood as we saw in

Section 2. What is less well understood are the types of services that could

benefit from using TEEs. As the app store model2 has proven, given an

opportunity, the developer community at large is capable of pushing the

boundaries and exploring new and novel ways to use technology. Making it

possible for researchers to easily develop TAs could trigger the development of

novel and innovative applications.

4.2.4 Promote community involvement

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 55

The prerequisite for involving the developer community and researchers at large

is to allow them access to a freely and easily available development environment,

SDK and a platform with which to experiment. The financial and technical

aspects of making hardware TEEs available for development on a large scale

motivates the need for a software framework for TA development which is not

bound to any particular hardware or vendor.

To get the community involved, application developers need development

environments, SDKs and a platform with which to experiment. Although the GP

standard simplifies conceptualizing a TEE and the functionality that can be

offered by it, there are a number of obstacles that the developer must first

overcome. The hardware is complex and expensive to design and manufacture,

by its nature it is complicated to deploy, test with and there are no standard tools

with which to work.

Safely exposing TEE functionality to application developers will enable them to

innovate these novel approaches to improve the security and privacy of their

applications. Exposing TEE technology to a wider audience in no way guarantees

that all security threats will disappear, however, a community can provide more

varied research and ideas than a small group ever could. This is one of the few

ways that we can start to realize the potential of a TEE. The financial and

technical aspects of accessing a hardware TEE make this infeasible so we

propose the creation of a TEE framework, that is not bound to any hardware or

any particular vendor, yet tries to conform to one standardization effort, for

which we have chosen GP.

4.3 Requirements

Motivated by the above discussion, our aim is to develop an SDK and framework

that allows for the development and testing of standard-compliant TEE

applications. The framework should allow development of GP-compliant CA and

TA functionality without having to rely on any particular hardware support.

Open-TEE is intended to be a fast prototyping and development environment

that also provides a platform from which to conduct further research into TEE

functionality. Our fundamental design principle is that it should require as little

configuration and maintenance as possible, allowing the developer to focus on

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 56

the task at hand. We identify the following criteria by which we can measure our

TEE framework’s usefulness and hence its potential success in addressing the

issues that motivated it.

 Compliance: Our framework should comply with GP’s main interfaces,
the GP TEE Client and GP TEE Core APIs.

 Hardware-independence: As a software based solution our framework
should not be dependent on a particular TEE hardware environment. It
should also not be dependent on any particular hardware for the
development system itself.

 Reasonable performance: To be readily deployed, our framework must
not suffer from code bloat that adds to the on-disk footprint nor to the
memory consumption required to run it. In addition the start-up and
restart times of the environment, especially that of the CAs and TAs
should not be excessive. One of the perceived benefits of our framework
is its ability to support fast prototyping and as such, any time penalty that
is incurred will diminish its usability and the satisfaction of using it.

 Ease-of-use: The solution should be easily deployed and configured. It
should use tools that are widely available making it more attractive (e.g.,
there should be no need for extra package/tool configuration on the
development system

4.4 Architecture

The following section describes our design and implementation of such a

software framework which we call Open-TEE. It will begin with an overview of

the structure of the Open-TEE environment. Figure 3.1 identifies the main

components and their relationships. The color code used in Figure 3.1 is the

same as that used for Figure 2.3 to make the correspondence between the Open-

TEE implementation architecture and the GP conceptual architecture is clear.

Each component is described in detail below.

4.4.1 Base

Open-TEE is designed to function as a daemon process in user space. It starts

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 57

executing Base, a process that encapsulates the TEE functionality as a whole.

Base is responsible for loading the configuration and preparing the common

parts of the system. Once initialized Base will fork and create two independent

but related processes. One process becomes Manager and the other, Launcher

which serves as a prototype for TAs.

Figure 4.1

Open-TEE architecture

4.4.2 Manager

Manager can be visualized as Open-TEE’s “operating system”. Its main

responsibilities are: managing connections between applications, monitoring TA

state, providing secure storage for a TA and controlling shared memory regions

for the connected applications. Centralizing this functionality into a control

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 58

process can also be seen as a wrapper abstracting the running environment (e.g.

GNU/Linux) and reconciling it with the requirements imposed by the GP TEE

standards. GP requirements and the host environment’s functionality are not

always aligned. For example, GP requirements stipulate that if a TA/CA process

crashes unexpectedly, all shared resources of the connected processes must be

released. In a typical running environment, this requires additional steps beyond

just terminating the process. For example all shared memory must be

unregistered – this needs to be a distinct action from normal process

termination.

4.4.3 Launcher

The sole purpose of Launcher is to create new TA processes efficiently. When it is

first created, Launcher will load a shared library implementing the GP TEE Core

API and will wait for further commands from Manager. Manager will signal

Launcher when there is a need to launch a new TA (for example, when there is a

request from a CA). Upon receiving the signal, Launcher will clone itself. The

clone will then load the shared library corresponding to the requested TA. The

design of Launcher follows the “zygote” design pattern (such as that used in

Android [1]) of preloading common components. This is intended to improve the

perceived performance of starting a new TA in Open-TEE: because shared

libraries and configurations common to all TAs are pre-loaded into Launcher, the

time required to start and configure the new process is minimal. A newly created

TA process is then re-parented onto Manager so that it is possible for it to

control the TA (so that, for example, it can enforce the type of GP requirements

discussed in the paragraph above).

4.4.4 TA Processes

The architecture of the TA processes is inspired by the multi-process

architecture utilized in the Chromium Project [38]. Each process has been

divided into two threads3. The first handles Inter-Process Communication (IPC)

and the second is the working thread, referred to respectively as the I/O and TA

Logic threads. This architectural model enables the process to be interrupted

without halting it, as occurs when changing status flags and adding new tasks to

the task queue. Additional benefits of this model are that it allows greater

separation and abstraction of the TA functionality from the Open-TEE

framework.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 59

4.4.5 GP TEE APIs

The GP TEE Client API and GP TEE Core API are implemented as shared libraries

in order to reduce code and memory consumption. In addition loading the GP

TEE Core API into Launcher when it is created will help to reduce the startup

times of the TA process removing the need to load it for every TA; this is one of

the key benefits of the “zygote” design.

4.4.6 IPC

Open-TEE implements a communication protocol on top of Unix domain sockets

and inter-process signals as the means to both control the system and transfer

the messages between the CA and TA.

4.5 Implementation and Tooling

This section highlights interesting points and background of the design,

implementation and tooling choices.

4.5.1 Utilizing existing functionality

To meet the hardware-independence requirement, we do not emulate specific

TEE hardware with software based emulators, such as QEMU [35]. Instead we

rely on existing technologies and the services offered by the mainstream OS in

which Open- TEE is running rather than developing a new TEE OS to deploy the

GP APIsin. In addition we reuse software from existing open source projects,

such as the OpenSSL4 crypto library and the GNU tool suite, thereby reducing the

amount of time required to develop and test the Open-TEE framework.

This also contributes towards meeting the ease of use requirement in that

developers can easily set up Open-TEE and start developing TAs using a set of

familiar tools, editors, Integrated Development Environments (IDEs), compilers

and debuggers. For example, a developer utilizing Open-TEE can connect to a TA

process with a cheap reliable software debugger such as GDB [19] for detailed

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 60

debugging tasks like stepping through the code, inspecting variables and

registers etc.

4.5.2 Development process

The intended user base for Open-TEE consists of seasoned developers. To ensure

viability in such a demanding user base, we adopted a rigorous development

process for Open-TEE so that the end result will be perceived as robust and

usable. Open- TEE is developed as an open source project and as such there are a

number of powerful tools that are freely available for this type of project. GitHub

is used for hosting the code and GerritHub is used for performing peer-review of

all code before it is submitted to the code base. In addition to the manual review

process we leverage the power of Coverity to perform in depth static analysis

scans. This enforces secure coding practices and helps to find potential

functional bugs that may have been missed during the manual code review. In

addition, we have deployed a Continuous Integration (CI) server running

Jenkins8, which we have connected to GerritHub. Its main task is to perform a

number of “smoke tests”9 on the new patches. These tests ensure that the

patches conform to the coding guidelines, build successfully and that the basic

system is usable after the patches are applied.

4.5.2 Open-TEE in use

Being designed as an open source framework upon which to build and test

features that will utilize a TEE, Open-TEE has been implemented to be as

inconspicuous as possible. The complexity of the system is hidden from the users

of Open-TEE. They are presented with an SDK that exposes the GP TEE Client and

GP TEE Core APIs without being required to have a deep understanding of how

the overall framework works, thereby allowing them to focus on the

development of their own TAs. However, Open-TEE is already being extended by

the community. The ongoing implementation of the GP TEE Trusted User

Interface (TUI) [16] 10 specification is an example.

4.5.3 Android and Open-TEE

During the Open-TEE specification phase it was recognized that there may be a

demand for Open-TEE on a mobile device, because in general, most of the TEE

use cases are associated with mobile devices and therefore it can be expected

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 61

that most of the developed TAs are designed for this domain. From a developer’s

perspective it would be valuable to test the application in the context of the

device where it will be deployed, to ensure that e.g. communication from upper

level through CA to TA is working correctly before deploying it to real hardware.

Android was a natural target on mobile platforms for many reasons: it is widely

deployed, open source and closely resembles GNU/Linux environment. Although

Android was not the primary target, the Android aspect greatly affected the

design of Open-TEE and implementation decisions, because the delta between

the two environments should stay as minimal as possible in order to reduce the

porting effort. To expand the example in the first paragraph, developers can test

out their Java Native Interface (JNI) implementation with Open-TEE.

4.5.4 SGX and Open-TEE

SGX provides a TEE service through a set of CPU instructions which can be used

for constructing an “enclav” to protect sensitive code and data. This has a

number of subtle side-effects, e.g. the “enclavised” code cannot make any system

calls or invoke services provided by the OS directly. In other words, the

protected code cannot rely on any service framework. The code must be self-

contained. But as discussed in Chapter 2, one of the benefits of having a

standards compliant TEE is the possibility of using existing services. Developers

could rely on the service framework provided by a TEE for e.g. accessing a

keystore rather than maintaining the keystore by itself. Using SGX within Open-

TEE has been a consideration from the beginning of the Open-TEE project.

Utilizing SGX it should be possible to expand Open-TEE from a development aid

into a fully functional TEE. In the course of writing this thesis, the efforts of

hardening Open-TEE has been an ongoing effort, which has greatly affected

Open-TEE design and implementation decisions.

For example, one of the reasons for separating the TA processes into an I/O and

a logic thread is to enable the logic thread to be “enclavised” within SGX and

offload the OS interaction to the I/O thread.

4.5.5 Fall back TEE

In general, securing Open-TEE is an intriguing topic, because modern OSs are

equipped with various security mechanisms like Seccomp11 and LXC Containers.

The future research work question might be formulated as: Could it be possible

to combine various OS security mechanisms into one product and what level of

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 62

trust could be achieved by using these existing techniques and technologies? The

edge of this approach is that the enabler technology is in place and it only needs

to be utilized. In addition experiments could be conducted to see if these

mechanisms are deployable in existing platforms and devices.

4.5.6 GlobalPlatform call for review

During our implementation of Open-TEE, GlobalPlatform announced an updated

version of the GP TEE Core API. The implementation started with GP TEE Core

version 1.0 and was nearly complete when GP announced a public review of the

subsequent version. Under review was a working draft 1.0.26 and it received

comments from all interested parties. This opportunity was utilized and the

review of the working draft C was created in GP format and submitted to GP for

public review.

The review is based on the experience of implementing Open-TEE:

 It raised the issue of some of the function descriptions. They may be
difficult to understand or are ambiguous. For example the working draft
function TEE_PopulateTransientObject description was ambiguous of
how the function parameters should be handled e.g. should they be deep
or shallow copied.

 Pointing out some of the unrealistic functional requirements. Some of the
functionality might be questionable after evaluating the feasibility of
implementing these requirements from the TEE vendor’s point-of-view.
An example of this is a static allocation of a cryptographic operation. The
cryptographic operation is allocated with TEE_AllocateOperation
function, which is the only function the cryptographic API subsection of
the GP TEE Core API that can return the out of memory return code.
Therefore if our implementation needs to be fully GP compliant, it must
ensure that cryptographic operations are not failing due to allocation
operations.

 Proposing new functionality. For example related to operation state; a
new constant was proposed for improving the TEE Core API readibility
and usability.

 Pointing out possible flaws in the working draft. For example
Authenticated encryption state was incorrect after TEE_AEinit function,
which would block subsequent calls e.g. TEE_AEUpdate.

 Suggested re-ordering the document layout with an aim to improve
readability of the document.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 63

GP reviewed the proposals and provided feedback of the submitted review. They

made multiple changes on the suggestions in the review. For example the

TEE_PopulateTransientObject function description wording was improved.

Because the subsequent version of GP TEE Core API was a minor release, they

did not accept any major changes. They were strict about not breaking the

backward compatibility and therefore a couple of points from review are

considered for the next major version.

4.5.7 GP Trusted User Interface (TUI)

TAs without the possibility to interact with the user severely limit the possible

TEE/TA use cases. For example exchanging sensitive information with the user,

i.e. when the user is entering authorization credentials (username, password) or

the TA may want to display a calculated One-Time code to the user to allow them

to log into a service. In such cases there is a need to interact with the TEE

without the possibility of the REE intercepting the sensitive content. GP

recognized this need and they have extended TEE specisification with TUI API

[16]. The project builds on top of Open-TEE by implementing an extension,

which provides the TUI functionality for TAs. One benefit of having a TUI

framework with Open-TEE is that the developers are able to develop and test

their TUI based TAs on the different platforms where Open-TEE is supported.

4.6 EVALUATION

The requirements are being continually evaluated, even as this thesis is being

written, due to the ever evolving nature of Open-TEE. It is an active open source

project to which more features are being added and existing features refined

based upon the feedback that is received.

4.6.1 Compliance

Every effort has been made to comply with the GP standard. Whenever this has

not been feasible, due to time constraints or in the interest of providing a

platform upon which to build, the deviation has been documented and a debug

message is logged to inform the user of the non-compliance. The GP TEE Client

API is fully implemented. The GP TEE Core API implementation has 100%

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 64

function coverage, however, the algorithm coverage is currently 80% due to the

use of existing libraries that do not support the remaining algorithms.

Information related to other implementations of the GP specification are scarce

and most of the information related to it is proprietary and therefore it is not

known if some of the commercial TEE implementations are fully GP compliant. If

this were known, an idealistic validation of our implementation would be

executing CAs and TAs we have created in an independently implemented TEE to

compare the results.

A compliance test suite is commercially available from GP, however it is not

freely available and needs to be purchased by non-affiliated members. Because

Open-TEE is an open source project, it lacks the funds to purchase the use of this

tool.

4.6.2 Hardware-Independence

By following the GP standard and not emulating any specific TEE hardware,

Open-TEE is independent of TEE hardware. TAs developed with Open-TEE can

be compiled to any target TEE hardware architecture. We have verified [13] that

a non-trivial TA developed using Open-TEE (284 Lines of Code (LoC), 19 GP TEE

Core API invocations (9 unique functions), 6 invokable TA commands) has been

successfully compiled and run on a hardware TEE based on ARM TrustZone

running the Trustonic <t-base environment [41].

Open-TEE can provide coverage reports to help highlight hot-spots in the code,

generate call graphs etc. The GP TEE Core API includes memory management

primitives and allows configuration parameters (such as gpd.ta.dataSize and

gpd.ta.stackSize) to indicate how much heap and stack memory is available to a

TA. A developer can use these parameters to configure Open-TEE to reflect the

memory restrictions of a target hardware TEE environment.

However, as the actual TEE is potentially running a different environment than

that offered by Open-TEE– possibly utilizing hardware based cryptographic

accelerators, potentially having a different CPU, with different clock speed and

throughput characteristics it will result in different timing characteristics. In this

sense, as with all virtual environments, Open-TEE cannot fully replace the actual

hardware environment for the final stages of the development cycle. Instead

developers using Open-TEE can gain confidence that the hardware-independent

parts of their trusted applications have been optimally implemented by making

judicious use of coverage reports and other generic analysis techniques. Any

hardware-specific optimization, such as performance tuning, naturally needs to

be done on the target hardware environment.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 65

Open-TEE has been deployed and used on various development environments

ranging from servers to desktops and laptops1. It has been tested on both ARM

and x86 architectures. Open-TEE requires Linux but has been run successfully on

virtual machines hosted on other OSs. Having chosen not to emulate existing

hardware to create the framework helps to ensure that the TAs created using it

are portable as it is harder to create machine dependent code.

4.7 Open TEE Documentation

The goal of the Open-TEE open source project is to implement a “virtual TEE”
compliant with the recent Global Platform TEE specifications .

Our primary motivation for the virtual TEE is to use it as a tool for developers of
Trusted Applications and researchers interested in using TEEs or building new
protocols and systems on top of it. Although hardware-based TEEs are
ubiquitous in smartphones and tablets ordinary developers and researchers do
not have access to it. While the emerging Global Platform specifications may
change this situation in the future, a fully functional virtual TEE can help
developers and researchers right away.

We intend that Trusted Applications developed using our virtual TEE can be
compiled and run for any target that complies with the specifications.

The Open-TEE project is being led by the Secure Systems group as part of our
activities at the Intel Collaborative Research Institute for Secure Computing

All activities of the project are public and all results are in the public domain. We
welcome anyone interested to join us in contributing to the project.

4.7.1 Quick Setup Guide

Open-TEE requires qbs 1.4.2 or above. For Ubuntu 14.04 up-to-date packages
of qbs are available from the qutIM PPA.

If requred start by installing the PPA for the qbs build system.

$ sudo add-apt-repository ppa:qutim/qutim

$ sudo apt-get update -y

For Ubuntu 15.04 and above qbs is available in universal repositories. So no

additional steps are required:

http://globalplatform.org/specificationsdevice.asp
http://se-sy.org/
http://www.icri-sc.org/
https://launchpad.net/~qutim/+archive/ubuntu/qutim

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 66

$ sudo apt-get install autoconf automake libtool uuid-dev libssl-dev libglu1-
mesa-dev libelfg0-dev mesa-common-dev build-essential git curl htop pkg-config
qbs gdb libfuse-dev

Introduce yourself to git .

$ git config --global user.name "FIRST SECOND"

$ git config --global user.email "name@email.com

Now configure qbs :

$ qbs setup-toolchains --detect

$ qbs config defaultProfile gcc

Fetch the repo repository management tool:

$ mkdir -p ~/bin

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo >
~/bin/repo

$ chmod +x ~/bin/repo

Create a directory where to checkout the Open-TEE repositories:

$ mkdir Open-TEE

$ cd Open-TEE

Have repo fetch the manifest for the Open-TEE project:

$ ~/bin/repo init -u https://github.com/Open-TEE/manifest.git

$ ~/bin/repo sync -j10

Open the configuration file with your preferred editor:

$ sudo $EDITOR /etc/opentee.conf

Add the sample configuration given below to the configuration file (IMPORTANT
DO NOT REMOVE [PATHS] section header):

[PATHS]

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 67

ta_dir_path = <PATHNAME>/Open-TEE/gcc-debug/TAs

core_lib_path = <PATHNAME>/Open-TEE/gcc-debug

opentee_bin = <PATHNAME>/Open-TEE/gcc-debug/opentee-engine

subprocess_manager = libManagerApi.so

subprocess_launcher = libLauncherApi.so

where <PATHNAME> with the absolute path to the parent directory of the

Open-TEE directory you created earlier. The pathname must not include special

variables such as ~ or $HOME .

Finally change working directory to where you cloned the sources, build Open-

TEE and launch the opentee-engine :

$ qbs debug

$./opentee start

Verify that Open-TEE is running with ps :

$ ps waux | grep tee

You should see output similar to the example below:

gcc-debug$ ps waux |grep tee
brian 5738 0.0 0.0 97176 852 ? Sl 10:40 0:00 tee_manager
brian 5739 0.0 0.0 25216 1144 ? S 10:40 0:00 tee_launcher
If you do not see the 2 tee_ processes, open syslog in another terminal to see any
errors:

$ tail -f /var/log/syslog

In the main terminal run a client test application:

$ gcc-debug/conn_test_app

You should now expect to see output similar to the following:

Open-TEE$ gcc-debug/conn_test_app
START: conn test app
Initializing context: initialized
… END: conn test app

!!! SUCCESS !!! Connection test app did not found any errors. ̂ ^ ̂SUCCESS ̂ ^ ̂

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 68

4.7.2QBS

For QBS installation instructions see the Quick Setup Guide.

Configure qbs for your toolchain:

$ qbs detect-toolchains

$ qbs config --list profiles

Optionally you may select one of the profiles to be the default one e.g. to set

the gcc profile as default

$ qbs config defaultProfile gcc

Finally, build Open-TEE:

$ qbs debug

The result of the compilation will be found under <profile>-debug , e.g.

executables and libraries under gcc-debug and trusted application objects

under gcc-debug/TAs .

4.7.3 Autotools

The Autotools build has been tested with Autoconfig 2.69 and above. To perform

an Autotools build you need to install autoconf , automake and libtool :

$ sudo apt-get install autoconf automake libtool

4.7.4 Building with Autotools

We recommend using a parallel build tree (a.k.a. VPATH build):

$ mkdir build

The provided autogen.sh script will generate and run the configure script.

$ cd build

$../autogen.sh

To build and install Open-TEE run:

$ make

https://open-tee.github.io/documentation/#quick-setup-guide
https://www.gnu.org/software/autoconf/autoconf.html

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 69

$ sudo make install

By default Open-TEE will be installed under /opt/Open-TEE . The directory will

contain the following subdirectories:

 /opt/Open-TEE/bin - executables

 /opt/Open-TEE/include - public header files

 /opt/Open-TEE/lib - shared library objects (libdir)

 /opt/Open-TEE/lib/TAs - trusted application objects (tadir)

4.7.5 Configure Runtime Environment

Open the configuration file with your preferred editor:

$ sudo $EDITOR /etc/opentee.conf

Add the sample configuration given below to the configuration file:

[PATHS]

ta_dir_path = <PATH_TO_TA_DIR>

core_lib_path = <PATH_TO_LIB_DIR>

opentee_bin = <PATH_TO_BINARY>

subprocess_manager = libManagerApi.so

subprocess_launcher = libLauncherApi.so

where <PATH_*> is the absolute path to the directory of the directory created

earlier. The pathname must not include special variables such as ~ or $HOME .

For a qbs build you can use:

[PATHS]

ta_dir_path = <PATHNAME>/Open-TEE/gcc-debug/TAs

core_lib_path = <PATHNAME>/Open-TEE/gcc-debug

opentee_bin = <PATHNAME>/Open-TEE/gcc-debug/opentee-engine

subprocess_manager = libManagerApi.so

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 70

subprocess_launcher = libLauncherApi.so

Where <PATHNAME> is replaced with the absolute path to the parent directory

of the Open-TEE directory you created earlier. Yet again the pathname

must not include special variables such as ~ or $HOME .

For an autotools build you can use

[PATHS]

ta_dir_path = /opt/Open-TEE/lib/TAs

core_lib_path = /opt/Open-TEE/lib

opentee_bin = /opt/Open-TEE/bin/opentee-engine

subprocess_manager = libManagerApi.so

subprocess_launcher = libLauncherApi.so

4.7.6 Running from the command line

We recommend adding the opentee script to your $PATH

$ cd ~/bin

$ ln -s <PATH_OPEN_TEE_REPO>/project/opentee opentee

Now you can start, stop, restart opentee more freely

$ opentee start

$ opentee stop

$ opentee restart

If you see either of the following errors, make sure you have

configured /etc/opentee.conf as described in Configure Runtime Environment,

paying particular attention to where the opentee binary is being built:

No conf file exists

Could not find binary name for opentee
To run the sample CA binaries navigate to the build directory for your choosen
make tool e.g.

$ cd <PATH_TO_OPENTEE>/gcc-debug

https://open-tee.github.io/documentation/#configure-runtime-environment

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 71

$./conn_test_app

If the corresponding TA is not running then the Open-TEE framework will ensure
that it is loaded as part of the TEEC_OpenSession() command from the CA.

4.7.7 Debugging with GDB

This is a quick start guide on how to debug our CA and TA applications. If you are
similar with GDB debugger, the interesting part is how attach to TA process. This
guide uses our connection test application (CA: conn_test_app ; TA:
ta_conn_test_app) as an example.

4.7.8 Pre-setup of GDB

Ptracing of non-child process by non-root user is disabled by default in Ubuntu.
In other words only root can ptrace every process and non-root can only ptrace
its own child process. You might bump into this problem when you are trying to
attach to running process and you might get following error:

Could not attach to process. If your uid matches the uid of the target

process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or

try again as the root user. For more details,

see /etc/sysctl.d/10-ptrace.conf ptrace: Operation not permitted.

You can solve error temporarily by disabling the restriction:

$ echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope

or you can disable it permanently by editing /etc/sysctl.d/10-ptrace.conf

kernel.yama.ptrace_scope = 0

4.7.9 Debugging CA process

Navigate into our CA application binary folder and launch GDB with our CA name
as a command line parameter:

 $ gdb conn_test_app

Set as many breakpoints as you require eg.:

$ break <OUR FUNCTION NAME>

$ break <SOURCE FILE NAME:LINENUMBER>

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 72

(for connection test application)

$ break full_treatment_test

$ break ta_conn_test_app.c:339

Run our CA process in GDB by hitting “r”

4.7.10 Debugging TA process

Debugging TA processes are generally done in the same way as debuggin our CA
processes. You will be setting eg. break points and inspecting memory locations
same way as in CA process.

TA processes are managed by Open-TEE framework and one of its many
responsibilities are launching new TA processes. The inner workflow of
launching new TA process is that it is beginning from Open-TEE manager
process, which will be noticing that new TA process is need and therefore it will
be communicating to Open-TEE laucnher process. Launcher will launch new TA
process by forking it self. One process stays a launcher process and another one
becomes a new TA process.

4.7.11 Debugging from the beginnings

This method is working for all TAs regardless of TA type. With this debugging
method you can debug TA_CreateEntryPoint and TA_OpenSessionEntryPoint
functions. The setup for this method is that our TA is not yet launched by Open-
TEE framework. Our TA is launched by tee_launcher -process and therefore we
need attach GDB to tee_launcher process. Attach to launcher process:

$ gdb gcc-debug/opentee-engine `pgrep tee_launcher`

Set GDB to follow child, because the new TA will be a child process of launcher

$ set follow-fork-mode child

Before hitting “c” for continuing GDB executing, you may set our TA process
break points eg.:

$ break TA_CreateEntryPoint

If GDB is prompting following messaga, just select “y”

Function "TA_CreateEntryPoint" not defined.

Make breakpoint pending on future shared library load? (y or [n])

Run our corresponding CA application to get our TA running.

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 73

4.7.12 Debugging keep alive TA

This method of debugging is only working if our TA is set to be “keep alive”,
which means that the TA is not getting destroyed, if there are no active
connections to that TA. This method requires less steps and therefore could be a
bit faster (do not have to set follow fork mode). This method only needs our TA
PID:

$ gdb 'pgrep -f lib<OUR_TA_NAME>.so'

(for connection test application)

$ gdb 'pgrep -f libta_conn_test_app.so'

or find out our TA process PID manually and then attach GDB:

$ ps waux | grep lib<OUR_TA_NAME>.so

$ gdb attach <PID>

Now you are debugging a TA process. You may set a break point and when you
are finished with the break points, continue GDB execution by hitting “c”

4.8 Android Build

This page has instructions on how to build Open-TEE for android devices.
Currently tested only on android 5.1+ .

4.8.1 Quick Setup Guide

Start by following the instructions here to setup your android build environment
and download the android source code (e.g. to $HOME/android_source).

Add the following to your .bashrc file or to a file you will source on each shell.

export ANDROID_ROOT="$HOME/android_source"

export USE_CCACHE=1

export CCACHE_DIR="$HOME/android_source/.ccache"

$ANDROID_ROOT/prebuilts/misc/linux-x86/ccache/ccache -M 50G

http://source.android.com/source/initializing.html

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 74

source "$HOME/android_source/build/envsetup.sh"

Inside $ANDROID_ROOT create a link to the directory you have downloaded
Open-TEE to (e.g. $HOME/Open-TEE) like so:

ln -s $HOME/Open-TEE $ANDROID_ROOT/Open-TEE

Now to build just run

lunch

to choose the target and then

make clean && make opentee-engine libManagerApi libInternalApi
libLauncherApi libCommonApi libta_conn_test_app conn_test_app libtee

to build all the Open-TEE modules. You can find all the available modules by

doing grep -ir "LOCAL_MODULE " Open-TEE/ where Open-TEE/ is the directory

containing the Open-TEE source code.

The output files will by default be located

in $ANDROID_ROOT/out/target/product/generic*/ (depending on the

architecture). You should also be able to see the output directory path if you

do echo $OUT .

To deploy those binary files to an Android device you can choose one of two
methods:

###ADB (needs root on device)

To copy those files to an android device you can use the script located in Open-

TEE/project/install_android.sh . The script assumes the adb binary is in your

$PATH and that $OUT contains the directory where the binaries were outputted.

Note: root access on the device is needed for this.

The files should now be installed on /system/lib/{ta,tee} and /system/bin on the

device. Do adb root to start adb with root privileges and then adb shell to get a

shell on the device.

From the adb shell :

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 75

In case the files do not have an execution permission add it with something like:

chmod +x /system/bin/opentee-engine

chmod +x /system/bin/conn_test_app

And run Open-TEE with

/system/bin/opentee-engine

Verify that Open-TEE is running with ps :

ps | grep tee

####Importing and testing a TA via adb

Modify Open-TEE/project/install_android.sh to also copy your TA .so file to
the /system/lib/ta/ directory and your CA to /system/bin/ Run your CA to test
the TA directly via adb shell with /system/bin/ and check logcat or gdb on
android for debugging output.

###Android Studio

This method uses an Android Studio project that packages Open-TEE inside an
application and installs/runs it to the home directory of the app.

Start by cloning the repo with

git clone https://github.com/Open-TEE/opentee-android

cd opentee-android/

Then import all the binaries built to the opentee_mainapp module (that packages
Open-TEE) by using the opentee_mainapp/install_opentee_files.sh. For each
architecture compiled (armeabi, armeabi-v7a, x86) you should re-run the
install_opentee_files.sh with the appropriate argument

(do ./install_opentee_files.sh -h for help).

After the import and assumming you have downloaded and installed Android
Studio use it to open the opentee-android project (File/Open…). You might need
to specify the Android NDK or Android SDK directory in local.properties but the
IDE should in most cases detect those by itself.

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 76

You can then build and run the testapp module that is a reference usage
implementation and demonstrates how to install/run Open-TEE and other
binaries. For more information on how to use opentee-android check the
README.md included in the project.

4.8.2 Troubleshooting

If you get errors similar to:

D/tee_manager(32036): opentee/emulator/opentee-main/main.c:load_lib:166
Failed to load library, /system/lib/libManagerApi.so : dlopen failed: cannot
locate symbol "mempcpy" referenced by "libCommonApi.so"...

D/tee_launcher(32037): opentee/emulator/opentee-main/main.c:load_lib:166
Failed to load library, /system/lib/libLauncherApi.so : dlopen failed: cannot
locate symbol "mempcpy" referenced by "libCommonApi.so"...

Then most probably the android tree that you are building with does not match
the tree on the device and thus you might also have to push the generated libc.so
(or other lib*.so files) to the device.

Note: that this is unsafe and might result in your device malfunctioning. It is a good
idea to take a backup of the /system/lib/lib*.so files or even a complete ROM
backup if you have a custom recovery.

If you get errors similar to

error: unknown target 'opentee-engine'

or for another Open-TEE module then consider copying the $HOME/Open-TEE
directory directly under the $HOME/Open-TEE $ANDROID_ROOT/ tree instead
of symlinking since that might be causing the issues.

5. Conclusions
Open-TEE was initially intended to be a developer tool. Although use of TEEs can
improve the security and usability of their service, not all their clients may have

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 77

TEE-equipped devices. Yet the service provider would like to present a
consistent user experience for their entire client base. A possible approach for
them is to ship their application (CA and TA) with Open-TEE and arrange for the
CA to use Open-TEE if it cannot detect a real hardware TEE on the device. This
would allow the service provider to have a common provisioning mechanism
and offer a consistent user experience for all their clients. However, once Open-
TEE has been cast as a potential fall-back TEE in this manner, there emerges the
need to address the question of how it would be best to isolate it from the REE in
the absence of any hardware support. Reiterating that Open-TEE is not intended
to emulate any specific TEE hardware. Open-TEE meets its goal of guaranteeing
that trusted applications developed using it will compile and run on any GP-
compliant TEE hardware. Hardware-specific aspects, such as performance tuning
are outside the scope of Open-TEE. It is believed that organizations and
developers who already develop TA applications will benefit from incorporating
Open-TEE into their development process.

References

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 78

[1] Open-TEE - An Open Virtual Trusted Execution Environment, Brian McGillion∗
, Tanel Dettenborn† , Thomas Nyman‡ Intel Collaborative Research Institute for Secure
Computing (ICRI-SC), N. Asokan§ at Aalto University, Finland

[2]Apple, “iOS security,” https://www.apple.com/ca/iphone/business/docs/iOS_
Security_Feb14.pdf.

[3] ARM, “Technical reference manual: ARM 1176jzf-s (trustzone-enabled
processor),”
http://www.arm.com/pdfs/DDI0301D_arm1176jzfs_r0p2_trm.pdf.

[4] ARM, “ARM security technology — Building a secure system using Trust-
Zone technology,” http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.prd29-genc-009492c/index.html, April 2009.

[5] J. Azema and G. Fayad, “M-Shield mobile security technology,” 2008, TI White
paper. http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf.

[6] D. Balfanz and E. W. Felten, “Hand-held computers can be better
smart cards,” in Proceedings of the 8th USENIX Security Symposium,
Washington, D.C., August 23-26, 1999, 1999. [Online]. Available:
https://www.usenix.org/conference/8th-usenix-security-symposium/
hand-held-computers-can-be-better-smart-cards

[7] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the
system usability,” International Journal of Human-Computer Interaction, pp.
574–594, 2008, http://dx.doi.org/10.1080%2F10447310802205776.
[8] J. Brooke, Usability evaluation in industry. Taylor & Francis, London, 1996,
ch. SUS: A "quick and dirty" usability scale, pp. 189–194.

[9] Y. Cheng, X. Ding, and R. Deng, “Appshield: Protecting applications against
untrusted operating system,” Singaport Management University Technical
Report, SMU-SIS-13, vol. 101, 2013.

[10] Common Vulnerabilities and Exposures (CVE), “Cve-2015-3456,”
https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456.

[11] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W.
Smith, and S. Weingart, “Building the IBM 4758 secure coprocessor,”

[12] J.-E. Ekberg, “Securing software architectures for trusted processor
environments,”
Doctoral dissertation, Aalto University, May 2013, http://urn.fi/URN:
ISBN:978-952-60-3632-8.

[13] J.-E. Ekberg, “Personal communication,” 2015, Trustonic.

[14] J. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 79

of trusted execution environments on mobile devices,” IEEE Security
& Privacy, vol. 12, no. 4, pp. 29–37, 2014. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2014.38

[15] GlobalPlatform, “About.” http://www.globalplatform.org/aboutus.

[16] GlobalPlatform, “Device specifications for trusted execution environment.”
http://www.globalplatform.org/specificationsdevice.asp.

[17] GlobalPlatform, “Home page.” http://www.globalplatform.org.

[18] GlobalPlatform, “TEE System Architecture,”
http://www.globalplatform.org/
specificationsdevice.asp.

[19] GNU, “GDB: The GNU project debugger,” http://www.gnu.org/software/
gdb/.

[20] GNU, “General public license,” https://gnu.org/licenses/gpl.html.

[21] Intel, “Intel software guard extensions (intel sgx),”
https://software.intel.com/en-us/intel-isa-extensions#pid-19539-1495.

[22] Intel, “SEP driver,” https://git.kernel.org/cgit/linux/kernel/git/stable/
linux-stable.git/tree/drivers/staging/sep?id=refs/tags/v3.14.32.

[23] Intel, “Software guard extensions programming reference,”
https://software.intel.com/sites/default/files/329298-001.pdf.

[24] K. Kostiainen, J. Ekberg, N. Asokan, and A. Rantala, “On-board credentials
with open provisioning,” in Proceedings of the 2009 ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2009,
Sydney, Australia, March 10-12, 2009, 2009, pp. 104–115. [Online]. Available:
http://doi.acm.org/10.1145/1533057.1533074

[25] K. Kostiainen, E. Reshetova, J.-E. Ekberg, and N. Asokan, “Old, new,
borrowed,blue–: a perspective on the evolution of mobile platform security
architectures,”in Proceedings of the first ACM conference on Data and
applicationsecurity and privacy. ACM, 2011, pp. 13–24.

[26] M. Leno, “Senate bill 962, leno. smartphones.”
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140S9
62.

[27] Linaro, “OP-TEE,” https://wiki.linaro.org/WorkingGroups/Security/
OP-TEE.

[28] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki, “Flicker:
an execution infrastructure for TCB minimization,” in Proceedings of the

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 80

2008 EuroSys Conference, Glasgow, Scotland, UK, April 1-4, 2008, 2008, pp.
315–328. [Online]. Available: http://doi.acm.org/10.1145/1352592.1352625

[29] F. McKeen et al., “Innovative instructions and software model for isolated
execution,” in Proceedings of the 2Nd International Workshop on Hardware
and Architectural Support for Security and Privacy, ser. HASP ’13.
New York, NY, USA: ACM, 2013, pp. 10:1–10:1. [Online]. Available:
http://doi.acm.org/10.1145/2487726.2488368

[30] A. Muthu, “Emulating trust zone feature in android emulator by extending
qemu,” Master’s thesis, KTH Royal Institute of Technology, 2013.

[31] A. Muthu, R. Rahmani, and D. Rajaram, “Emulating trust zone in android
emulator with secure channeling,” International Journal of Computer Science
Issues, vol. 10, no. 5, pp. 40–51, 2013.

[32] R. Needham and A. Herbert, “The cambridge cap computer and its operating
system,” 1982.

[33] NVIDIA, “Trusted little kernel (tlk),” http://nv-tegra.nvidia.com/gitweb/?p=
3rdparty/ote_partner/tlk.git;a=summary.

[34] Official California Legislative Information, “Senate bill no. 962,”
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB
962.

[35] QEMU, “Open source processor emulator,”http://wiki.qemu.org/Main_Page.

[36] Sierraware, “Open virtualization’s SierraVisor and SierraTEE,” http://www.
openvirtualization.org/.

[37] The Apache Software Foundation, “Apache license, version 2.0,”
http://www.apache.org/licenses/LICENSE-2.0.

[38] The Chromium Projects, “Multi-process architecture,”
http://www.chromium.org/developers/design-documents/multi-process-
architecture.

[39] “Trusted Platform Module (TPM) Specifications,” https://www.
trustedcomputinggroup.org/specs/TPM/.

[40] TrustKernel, “T6,” http://trustkernel.org/.

[41] Trustonic, “<t-dev developer program,” https://www.trustonic.com/
products-services/developer-program/.

[42] J. Winter, P. Wiegele, M. Pirker, and R. Tögl, “A flexible software
development and emulation framework for ARM TrustZone,” in Trusted
Systems - Third International Conference, INTRUST 2011, Beijing, China,

Tμήμα Ψηφιακών Συστημάτων Πανεπιστημίου Πειραιώς
ΠΜΣ Τεχνοοκονομικής Διοίκησης & Ασφάλειας Ψηφιακών Συστημάτων Page 81

November 27-29, 2011, Revised Selected Papers, 2011, pp. 1–15.

