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Abstract 
 
 
 
Multiobjective optimization (MO) is the problem of simultaneously optimizing two or 

more conflicting objectives subject to certain constraints. Many real-world problems 

involve simultaneous optimization of several often conflicting objectives. The 

portfolio optimization problem belongs to this category of problems. According to 

Markowitz’s Mean - Variance model (MV) an investor attempts to maximize 

portfolio expected return for a given amount of portfolio risk or minimize portfolio 

risk for a given level of expected return.  

     The portfolio optimization problem involves two conflicting objectives (i.e. 

expected return and portfolio risk) and thus belongs to the family of multiobjective 

problems. With the assistance of scalarization techniques a multiple objective 

problem can be converted into a single objective problem. However, the drawbacks to 

these conventional approaches lead to the development of alternative techniques that 

yield a set of Pareto optimal solutions rather than only a single solution.  

       The problem becomes much more complicated when we incorporate to the 

portfolio model some real world constraints. These additional constraints made the 

portfolio optimization problem difficult to be solved with exact methods. In the last 

decade several metaheuristic optimization techniques have been developed to address 

the challenges imposed by complex multiobjective optimization problems. Due to the 

intrinsic multiobjective nature of the portfolio optimization problem, multiobjective 

approaches, particularly multiobjective evolutionary algorithms (MOEAs) are suitable 

in handling the difficulties imposed by this type of problems. 

       Especially in the presence of multiple constraints the portfolio optimization 

problem becomes very complicate and efficient solution needs to be found. 

Furthermore, the existing multiobjective evolutionary algorithms (MOEAs) 

techniques cannot be used directly to solve the constrained portfolio optimization 

problem as a number of configuration issues related to the application of MOEAs for 

solving the constrained portfolio optimization problem must be addressed. The 

successful implementation of the constrained portfolio optimization problem by the 

MOEAs requires the development of novel algorithmic and technical approaches. In 

particular new multiobjective evolutionary approaches are needed to efficiently solve 

the constrained portfolio optimization problem.   
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    In this thesis we address these issues by examining a number of configuration 

issues related to the application of MOEAs for solving the constrained portfolio 

optimization problem. Furthermore we introduce a new multiobjective evolutionary 

algorithm (MOEA) that incorporates a novel representation scheme and specially 

designed genetic operators for the solution of the constrained portfolio optimization 

problem. These issues have been addressed in this thesis and a set of efficient 

solutions is found for each of the examined test problems. 

       In this thesis we develop a methodological framework for conducting a 

comprehensive literature study based on the papers published in MOEAs for the 

Portfolio Management over a long time span across various disciplines. This 

framework is being used to gain an understanding of the current state of the MOEAs 

for the Portfolio Management research field. Based on the literature study, we identify 

potential areas of concern in regard to MOEAs for the Portfolio Management. Based 

on the examination of the state-of-the art we present the best practices from a 

technical and algorithmic point of view for dealing with the complexities of the 

constrained portfolio optimization problem. We introduce new genetic operators to 

enhance algorithms’ performance. We propose a novel representation scheme for the 

solution of the constrained portfolio optimization problem. Finally, we introduce a 

novel MOEA for the solution of the constrained portfolio optimization problem. The 

experimental results applied to the constrained portfolio optimization problem, 

indicate that the proposed approach generates solutions that lie on the true efficient 

frontier (TEF) for all of the examined cases for a fraction of time required by exact 

approaches. 

 
Keywords:  Multiobjective optimization, evolutionary algorithms, genetic 

operators, portfolio optimization, efficient frontier, cardinality 
constraint, encoding scheme. 
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Chapter 1 
 
 

Introduction 
 

 

Multiobjective optimization (MO) is the problem of simultaneously optimizing two or 

more conflicting objectives subject to certain constraints. Many real-world problems 

involve simultaneous optimization of several often conflicting objectives. The 

portfolio optimization problem is a characteristic example of this category of 

problems. According to Markowitz’s [151] Mean - Variance theory (MV) an investor 

attempts to maximize portfolio expected return for a given amount of portfolio risk or 

minimize portfolio risk for a given level of expected return. The MV theory was 

criticized for unrealistic assumptions. Responding to the critics, researchers 

incorporated to the portfolio model some real world constraints like bounds on 

holdings, cardinality, minimum transaction lots and sector capitalization constraints.  

      The turn toward evolutionary approaches for handling the difficulties introduced 

by the constrained portfolio optimization problem can be easily justified by a number 

of reasons. Among them, distinguished place possesses the ability of evolutionary 

algorithms (EAs) to solve difficult multiobjective optimization problems (MOP) that 

are too complex to be solved using deterministic techniques [7], [33], [43], [95], [96], 

[109], [153], [177], [190], [194], [207], [214]. The introduction of realistic constraints 

into the portfolio optimization problem converts the problem from a classical 

quadratic optimization problem to a quadratic mixed-integer problem (QMIP) that is 

NP-hard [159].  

       Thanks to Multiobjective Evolutionary Algorithms (MOEAs) techniques the 

classical portfolio model can be extended to handle two or more conflicting objectives 

subject to various realistic constraints. 

    Because the various objectives functions in the portfolio selection problem are 

usually in conflict with each other, each time that we attempt to optimize further an 

objective other objectives suffer as a result. Therefore, the objective in MOEAs is to 

find the Pareto front of efficient solutions that provide a tradeoff between the various 

objectives.  
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1.1 Motivation and Objectives of this Research 
 
 

     The portfolio optimization problem belongs to the family of multiobjective 

problems. Especially in the presence of multiple constraints the portfolio optimization 

problem becomes very complicate and efficient solution needs to be found. 

Furthermore, the existing multiobjective evolutionary algorithms (MOEAs) 

techniques cannot be used directly to solve the constrained portfolio optimization 

problem as a number of configuration issues related to the application of MOEAs for 

solving the constrained portfolio optimization problem must be addressed. The 

successful implementation of the constrained portfolio optimization problem by the 

MOEAs requires the development of novel algorithmic and technical approaches. In 

particular new multiobjective evolutionary approaches are needed to efficiently solve 

the constrained portfolio optimization problem.   

     

 

The purpose of this PhD dissertation is fivefold, namely: 

 

 To present the current state of research in portfolio optimization with the support 

of MOEAs.  

 To address a number of configuration issues related to the application of MOEAs 

for solving the constrained portfolio optimization problem 

 To introduce new genetic operators to enhance algorithms’ performance.  

 To introduce a novel representation scheme for the solution of the constrained 

portfolio optimization problem. 

 To introduce a novel MOEA for the solution of the constrained portfolio 

optimization problem. 
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1.2 Contributions of this Research 
 
 
 
The contributions of this research are summarized in the following: 

 

 

 
 
 
 
 
 

                      
 
 
 

•We develop a methodologi -
cal framework for conducting
a comprehensive literature
study based on the papers
published in MOEAs for the
Portfolio Management over a
long time span across various
disciplines.

•This framework is being used
to gain an understanding of
the current state of the
MOEAs for the Portfolio
Management research field.

•Based on the literature
study, we identify
potential areas of concern
in regard to MOEAs for
the Portfolio Manage-
ment.

•Based on the examination
of the state-of-the art we
present the best practices
from a technical and
algorithmic point of view
for dealing with the
complexities of the
constrained portfolio
optimization problem

•A new probe guided version
of the well-known
polynomial mutation
operator is being proposed
that enhance considerably
algorithms’ performance.

•We propose a new Two
Stage Crossover (TSX)
operator for more efficient
exploration of the search
space.

This research introduces a new multiobjective
evolutionary algorithm (MOEA), called Efficiently
Encoded Multiobjective Portfolio Optimization Solver
(EEMPOS) that incorporates an efficient encoding
scheme and specially designed genetic operators for the
solution of the constrained portfolio optimization.
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1.3 Organization of this Dissertation 
 
 
The remainder of this dissertation is organized as follows: 

 

Chapter 2 Briefly reviews the most well-known MOEAs alongside with their 

strengths and weaknesses.  

Chapter 3 Briefly reviews the existing literature in the area of portfolio optimization 

with the support of MOEAs.  

Chapter 4 Presents a methodological framework for conducting a comprehensive 

literature study based on the papers published in MOEAs for the Portfolio 

Management over a long time span. This framework is being used to gain 

an understanding of the current state of the MOEAs for the Portfolio 

Management research field.  

Chapter 5 Based on the examination of the state-of-the art, presents the best 

practices from a technical and algorithmic point of view for dealing with 

the complexities of the constrained portfolio optimization problem. 

Chapter 6 Proposes a new probe guided version of the polynomial mutation (PLM) 

operator. The experimental results reveal that the proposed Probe Guided 

Mutation (PGM) operator outperforms with confidence the performance 

of the classical PLM operator for all performance metrics when applied to 

the solution of the cardinality constrained portfolio optimization problem 

(CCPOP), but also to Zitzler-Deb-Theile (ZDT) [229] and Deb-Theile-

Laumanns- Zitzler (DTLZ) [60] families of test functions. 

Chapter 7 Proposes a new Two Stage Crossover (TSX) operator for more efficient 

exploration of the search space. The performance of the proposed TSX 

operator is assessed in comparison with the Simulated Binary Crossover 

(SBX) operator with the assistance of three well-known MOEAs, namely 

the NSGAII, the SPEA2 and the MOCELL, for the solution of the 

DTLZ1-7 set of test functions [60]. We also compare the proposed TSX 

operator with other popular reproduction operators like the Differential 

Evolution (DE) and the Particle Swarm Optimization (PSO). It is shown 

with the assistance of the DTLZ set of test functions that the TSX 
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operator can substantially improve the results generated by three popular 

performance metrics for most of the cases.  

Chapter 8 Introduces a new multiobjective evolutionary algorithm (MOEA), called 

Efficiently Encoded Multiobjective Portfolio Optimization Solver 

(EEMPOS) that incorporates an efficient encoding scheme and specially 

designed genetic operators for the solution of the constrained portfolio 

optimization problem. In order to evaluate the performance of the 

proposed EEMPOS, we calculate the True Efficient Frontier (TEF) by 

formulating the constrained portfolio optimization problem as a Mixed 

Integer Quadratic Program (MIQP) and we compare the relevant results 

with the approximate efficient frontiers that are derived by the proposed 

EEMPOS. The relevant results verify that the EEMPOS generates 

solutions that lie on the TEF for a fraction of the time required by the 

MIQP.  

Chapter 9 This dissertation is concluded with a summary of the research and 

proposed directions for future study.  
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1.4 Publications based on this Thesis 
 
 
 
The research undergone during the preparation of this thesis resulted in the following 

list of publications.  

 

 

International journal papers  
 

1. Metaxiotis, K. & Liagkouras, K. (2012) Multiobjective Evolutionary 

Algorithms for Portfolio Management: A comprehensive literature review. 

Expert Systems with Applications, Elsevier, 39 (14): 11685-1169. 

 

2. Liagkouras K. & Metaxiotis K. (2014) A new Probe Guided Mutation 

Operator and its application for solving the Cardinality Constrained Portfolio 

Optimization Problem. Expert Systems with Applications, Elsevier, 41 (14), 

6274-6290. 

 

3. Liagkouras K. & Metaxiotis K. (2015) Efficient Portfolio Construction with 

the Use of Multiobjective Evolutionary Algorithms: Best Practices and 

Performance Metrics, International Journal of Information Technology & 

Decision Making, 14 (03), 535-564, World Scientific. 

 

4. Liagkouras K. & Metaxiotis K. (2015) An experimental analysis of a new two-

stage crossover operator for multiobjective optimization, Soft Computing, pp. 

1-31, Springer DOI: 10.1007/s00500-015-1810-6. 

 

5. Liagkouras K. & Metaxiotis K. (2015) An Experimental Analysis of a New 

Interval-Based Mutation Operator, International Journal of Computational 

Intelligence and Applications 14 (3) 1550018, World Scientific. 
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6. Liagkouras K. & Metaxiotis K. (2015) A new Probe Guided Mutation 

Operator for more Efficient Exploration of the search space: An Experimental 

Analysis, International Journal of Operational Research, vol. 25, No. 2, 2016, 

Inderscience. 

 

7. Liagkouras K. & Metaxiotis K. (2015) Enhancing the performance of 

MOEAs: An experimental presentation of a new Fitness Guided Mutation 

Operator, Journal of Experimental & Theoretical Artificial Intelligence, Taylor 

& Francis, DOI: 10.1080/0952813X.2015.1132260. 

 

8. Liagkouras K. & Metaxiotis K. (2015) Examining the Effect of different 

Configuration Issues of the Multiobjective Evolutionary Algorithms on the 

Efficient Frontier Formulation for the Constrained Portfolio Optimization 

Problem, Journal of the Operational Research Society, Palgrave, Accepted 

publication pending. 

 

9. Liagkouras K. & Metaxiotis K. (2015) A new Efficiently Encoded 

Multiobjective Algorithm for the Solution of the Constrained Portfolio 

Optimization Problem, Under review, European Journal of Operational 

Research. 

 

 

 

 

Book chapters 
 

1. Liagkouras K. & Metaxiotis K. (2015)  A new Two Stage Crossover Operator 

and its application for solving the Cardinality Constrained Portfolio Selection 

Problem, “Multiple Criteria Decision Making in Finance, Insurance and 

Investment”, Springer, edited by Minwir Al-Shammari and  Hatem Masri 

DOI 10.1007/978-3-319-21158-9_8. 
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2. Liagkouras K. & Metaxiotis K.  (2015) A Probe Guided Crossover operator 

for more Efficient Exploration of the Search Space, Studies in Computational 

Intelligence, Vol. 627, George A. Tsihrintzis et al. (Eds): Intelligent 

Computing Systems, Springer. 

 

 

 

 

International conference papers   
 

 

1. Metaxiotis, K., Liagkouras, K. (2015) The solution of the 0-1 multi-objective 

knapsack problem with the assistance of multi-objective evolutionary 

algorithms based on decomposition: A comparative study, 2015 5th 

International Workshop on Computer Science and Engineering: Information 

Processing and Control Engineering, WCSE 2015-IPCE. 

 

2.  Liagkouras, K. & Metaxiotis, K. (2015) Advanced Technologies and 

Algorithms for Efficient  Portfolio Selection, International Journal of Social, 

Behavioral, Educational, Economic and Management Engineering Vol:9, 

No:7, 2015, World Academy of Science, Engineering and Technology 

 

3. Metaxiotis, K. & Liagkouras, K. (2014) An exploratory crossover operator for 

improving the performance of MOEAs, Advances in Applied and Pure 

Mathematics, pp. 158-162, ISBN: 978-1-61804-240-8.  

 

4. Liagkouras, K. & Metaxiotis, K. (2014) Application of Customer Relationship 

Management Systems in Business: Challenges and Opportunities, 

International Journal of Social, Education, Economics and Management 

Engineering Vol:8, No:6, 2014, World Academy of  Science, Engineering and 

Technology.  
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Used with MOEAs for Efficient Portfolio Selection, International  Journal of 

Computer, Information Science and Engineering Vol:8  No:2,  2014, World 

Academy of Science, Engineering and Technology.  

 

6. Metaxiotis, K & Liagkouras, K., (2013) A fitness guided mutation operator 

for improved performance of MOEAs Electronics, Circuits, and Systems 

(ICECS), 2013 IEEE 20th International Conference on, pp. 751-754, DOI: 

10.1109/ICECS.2013.6815523.  

 

7. Liagkouras, K. & Metaxiotis, K. (2013) The Constrained  Mean-Semivariance 

Portfolio Optimization Problem with the Support of  a Novel Multiobjective 

Evolutionary Algorithm, Journal of Software Engineering and Applications, 

2013, 6, 22-29 doi:10.4236/jsea.2013.67B005.  

 

8. Liagkouras, K. & Metaxiotis, K. (2013) An Elitist Polynomial Mutation  

Operator for Improved Performance of MOEAs in Computer Networks, pp. 1-

5, Computer Communications and Networks (ICCCN), 2013 22nd 

International Conference on, DOI: 10.1109/ICCCN.2013.6614105.  

 

9. Liagkouras, K. & Metaxiotis, K. (2012) Modern Portfolio Management with 

the Support of Multiobjective Evolutionary Algorithms: An Analysis of 

Problem Formulation Issues, World Academy of Science,  Engineering and 

Technology 69 2012, Paris, France 27 – 28 June  2012.  

 

 

 

In total, eleven (11) papers published in international journals and books and nine (9) 

papers in international conferences with more than 35 citations in scopus. 
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Chapter 2 
 
 
 

Multiobjective Evolutionary Algorithms 
(MOEAs): A brief review 
 
 
The idea of using techniques based on the emulation of the mechanism of natural 

selection to solve problems can be traced as long back as the 1930s (Cannon [25]). 

Since 1930s, this research field did not see major developments for almost three 

decades. However, in 1960s three studies (Holland [115]; Schwefel [185]; Fogel [91]) 

set the foundations of what is nowadays denominated “Evolutionary Algorithms” 

(EAs).  

      EAs are population based stochastic optimization heuristics inspired by Darwin’s 

Evolution Theory. An EA searches through a solution space in parallel by evaluating 

a set (population) of possible solutions (individuals). An EA starts with a random 

initial population. Then the ‘fitness’ of each individual is determined by evaluating 

the objective function. After the best individuals are selected, new individuals for the 

next generation are created. The new individuals are generated by altering the 

individuals through random mutation and by mixing the decision variables of multiple 

parents through crossover. Then the generational cycle repeats until a breaking 

criterion is fulfilled. EAs have been applied successfully to a wide range of problems 

such as engineering, biology, genetics, finance etc. According to the literature EAs 

have been proved very effective for single–optimization (Goldberg [100]; Schwefel 

[186]; Fogel [92]).  

     The last years there has been an increasing interest to explore the application of 

evolutionary algorithms for the solution of multiobjective optimization problems 

(MOPs).  

Multiobjective optimization (MO) is the problem of maximizing / minimizing a set of 

conflicting objectives functions subject to a set of constraints. In Multiobjective 

optimization there is not a single solution that maximizes / minimizes each objective 

to its fullest. This happens because the various objectives functions in the problem are 

usually in conflict with each other. Therefore, the objective in MO is to find the 

Pareto front of efficient solutions that provide a tradeoff between the various 
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objectives. EAs are naturally suited for extension into the multiobjective optimization 

problems domain, thanks to the population based search strategy and the simple 

selection strategy. The ability of EAs to deal simultaneously with a set of possible 

solutions (population) allows to find several members of the Pareto optimal set in a 

single run of the algorithm, instead of having to perform a series of separate runs as in 

the case of the traditional mathematical programming techniques. Moreover, EAs are 

less susceptible to the shape or continuity of the Pareto front (they can easily deal 

with discontinuous and concave Pareto fronts), whereas these two issues are known 

problems with mathematical programming techniques. During multiobjective 

optimization two goals are to be reached. On the one hand the solutions should be as 

close to the global Pareto-optimal front as possible and on the other hand the solutions 

should also cover the whole Pareto-front. The first goal is often achieved through 

elitism by replacing random individuals with individuals on the Pareto front. The 

second goal can be achieved by punishing individuals that are too close together 

(Fitness Sharing).  

 

 

According to Coello Coello et al. [40], [41], [42], the traditional evolutionary 

algorithms cannot efficiently deal with multi-objective optimization problems for two 

(2) reasons: 

1. Due to stochastic noise, evolutionary algorithms tend to converge to a single 

solution if run for a sufficiently large number of iterations. Thus, it is 

necessary to block the selection mechanism so that different solutions (non-

dominated) are preserved in the population of an evolutionary algorithm. 

2. All non-dominated solutions should be sampled at the same rate during the 

selection stage, since all non-dominated solutions are equally good among 

themselves. 

Over the past years researchers developed several approaches for the solution of 

multi-objective optimization problems with the use of EAs. The first implementation 

of a multi-objective evolutionary algorithm (MOEA) dates back to the mid-1980s 

(Schaffer [179], [180]). Since then, a considerable amount of research has been done 

in this area, now known as evolutionary multiobjective optimization. A brief review 

of the most well-known MOEAs is presented below: 
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 2.1 Vector Evaluation Genetic Algorithm (VEGA) 
Schaffer [179], [180] and Schaffer & Grefenstette [181] introduce the Vector 

Evaluation Genetic Algorithm (VEGA) in the mid 1980s, which was the first 

implementation of a multi-objective evolutionary algorithm (MOEA). In reality 

VEGA was not nothing more than a simple genetic algorithm with a modified 

selection mechanism. A weakness of VEGA approach according to Schaffer is that 

the generated solutions are non-dominated in a local sense, because their non-

dominance is limited to the current population. Schaffer highlighted another problem 

that in genetics is known as “speciation” which is the evolution of “species” within 

the population which excel in one dimension of performance, without considering at 

the other dimensions. Thus VEGA approach tend to reject individuals with acceptable 

performance, perhaps above average, but not outstanding for any of the objective 

functions. Schaffer called this tendency of VEGA to reject individuals with acceptable 

performance for any objective function as “middling”, and it is the most serious 

shortcoming of VEGA method.  

 
 
2.2 Niched Pareto Genetic Algorithm (NPGA) 
NPGA developed by Horn et al. [116]. NPGA extends the traditional GA to multiple 

objectives through the use of Pareto domination ranking and fitness sharing (or 

niching). The main advantages of this method is its adaptability to a wide range of 

multiobjective optimization problems and its ability to search non-linear and 

discontinuous search spaces without relying on the need for continuous first and 

second derivatives. 

 
 
 
2.3 Niched Pareto Genetic Algorithm II (NPGA-II) 
Erickson et al. [83] proposed the NPGA-II. This algorithm relies on the traditional 

Pareto ranking approach, but it keeps its tournament selection scheme. Ties are solved 

through fitness sharing as in its predecessor. However, the niche count of the NPGA-

II is computed using individuals from the next partially filled generation using a 

technique called “continuously updated fitness sharing”. 
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2.4 Nondominated Sorting Genetic Algorithm (NSGA) 
Nondominated Sorting Genetic Algorithm (NSGA) proposed by Srinivas and Deb 

[196] is based on Goldberg [100]. Goldberg suggested a nondominated sorting 

procedure to overcome the weakness of VEGA to bias towards some Pareto-optimal 

solutions. Schaffer himself the creator of VEGA had realized VEGA’s bias towards 

some Pareto-optimal solutions. NSGA eliminates the bias in VEGA and thereby 

distributes the population over the entire Pareto-optimal regions.  

 
 
 
2.5 Nondominated Sorting Genetic Algorithm II 
(NSGA-II) 
Deb et al. [57] propose the NSGA-II, a fast non-dominated sorting based multi-

objective evolutionary algorithm with O(MN2) computational complexity. NSGA-II 

implements a selection operator that creates a mating pool by combining the parent 

and offspring populations and selecting the best, with respect to fitness and spread, N 

solutions.  

 
 
 
2.6 Multi-Objective Genetic Algorithm (MOGA) 
Fonseca and Fleming [93] proposed a multiobjective genetic algorithm (MOGA) in 

which the rank of a certain individual corresponds to the number of individuals in the 

current population by which it is dominated. Based on this scheme, all the 

nondominated individuals are assigned rank 1, whereas dominated ones are penalized 

according to the population density of the corresponding region of the tradeoff 

surface.  

 
 
 

2.7 Strength Pareto Evolutionary Algorithm (SPEA) 
Zitzler and Thiele [233] introduced this algorithm. SPEA integrates different MOEAs. 

SPEA uses an archive containing nondominated solutions previously found (the so-

called external nondominated set). At each generation, nondominated individuals are 

copied to the external nondominated set. For each individual in this external set a 

strength value is computed. In SPEA the fitness of each member of the current 

population is computed according to the strengths of all external nondominated 
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solutions that dominate it. The fitness assignment process of SPEA considers both 

closeness to the true Pareto front and even distribution of solutions at the same time. 

Thus, instead of using niches based on distance, Pareto dominance is used to ensure 

that the solutions are properly distributed along the Pareto front.   

 
 
 
2.8 Strength Pareto Evolutionary Algorithm II (SPEA-
II) 
SPEA-II was introduced by Zitzler, Laumanns and Thiele [231]. The authors tried to 

develop a MOEA that eliminates the weaknesses of its predecessor (SPEA) and to 

incorporate most recent developments. The main differences of SPEA2 in comparison 

to SPEA are: 1. An improved fitness assignment scheme is used, which takes for each 

individual into account how many individuals it dominates and it is dominated by, 2. 

A nearest neighbor estimation technique is incorporated which allows a more precise 

guidance of the search process, 3. A new archive truncation method guarantees the 

preservation of boundary solutions. 

 
 
 
2.9 Pareto Archived Evolution Strategy (PAES) 
Knowles and Corne [125] introduced the PAES. The authors argue that PAES may 

represent the simplest possible non-trivial algorithm capable of generating diverse 

solutions in the Pareto optimal set. The algorithm in its simplest form, is a (1 + 1) 

evolution strategy (i.e. a single parent that generates a single offspring), employing 

local search but using a reference archive of previously found solutions in order to 

identify the approximate dominance ranking of the current and candidate solution 

vectors. PAES (1 + 1) is intended as a good baseline approach, against which more 

involved methods may be compared, and may also serve well in some real-world 

application when local search seems superior to or competitive with population-based 

methods. Moreover, they introduced (1 + λ) and (μ + λ) variants of PAES as 

extensions to the basic algorithm. 
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2.10 Pareto Envelope - based Selection Algorithm 
(PESA) 
Corne et al. [45] introduce a new multiobjective evolutionary algorithm called PESA, 

in which selection and diversity maintenance are controlled via a simple hyper - grid 

based scheme. PESA integrates the selection and diversity maintenance. They 

compare PESA with two other MOEAs (SPEA and PAES) on some multiobjective 

test problems proposed by Deb K. [51]. According to their study the PESA 

outperforms the other two MOEAs (SPEA and PAES) overall on these problems.  

 
 
 
 
 
2.11 Pareto Envelope - based Selection Algorithm II 
(PESA-II) 
Corne et al. [44] introduce PESA-II algorithm. PESA-II employs a new selection 

method. Specifically in the selection technique used by PESA-II, instead of assigning 

a selective fitness to an individual, selective fitness is assigned to the hyperboxes in 

objective space which are currently occupied by at least one individual in the current 

approximation to the Pareto frontier. A hyperbox is thereby selected, and the resulting 

selected individual is randomly chosen from this hyperbox. According to the authors 

this selection method is shown to be more sensitive to ensuring a good spread of 

development along the Pareto frontier than individual – based selection. The method 

is implemented in PESA-II (a version of PESA which uses region-based selection) 

and performance is tested by using Deb’s test suite [51]. According to their study, the 

PESA-II using the new selection technique is found to give significantly superior 

results to the other methods compared namely PAES, PESA and SPEA.  

 
 
 
2.12 Archive-Based Hybrid Scatter Search (AbYSS)  
Nebro et al. [166] proposed the use of a new algorithm called AbYSS to solve 

multiobjective optimization problems. The authors adapt the well-known scatter 

search template for single-objective optimization to the multiobjective domain. The 

result is a hybrid metaheuristic algorithm, which follows the scatter search structure 

but uses mutation and crossover operators from evolutionary algorithms. AbYSS 
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incorporates typical concepts from the multiobjective field, such as Pareto dominance, 

density estimation, and an external archive to store the non-dominated solutions. 

AbYSS is evaluated with a standard benchmark including both unconstrained and 

constrained problems, and it is compared with NSGA-II and SPEA2. According to the 

authors, the results obtained indicate that AbYSS outperforms the other two 

algorithms as regards the diversity of the solutions, and it obtains very competitive 

results according to the convergence to the true Pareto fronts and the hypervolume 

metric.  

 
 
 
2.13 Generalized Differential Evolution 3 (GDE3) 
Kukkonen and Lampinen [132] developed a version of generalized differential 

evolution, called GDE3. GDE3 is an extension of differential evolution (DE) for 

global optimization with an arbitrary number of objectives and constraints. In the case 

of a problem with a single objective and without constraints GDE3 falls back to the 

original DE. According to the authors, GDE3 improves earlier GDE versions in the 

case of multi-objective problems by giving a better distributed solution. Performance 

of GDE3 is demonstrated with a set of test problems and the results are compared 

with other methods. 

 
 
 
 
 
2.14 Indicator-Based Evolutionary Algorithm (IBEA) 
Zitzler and Kunzli [230] examine how preference information of the decision maker 

can in general be integrated into multiobjective search. The main idea is to first define 

the optimization goal in terms of a binary performance measure (indicator) and then 

to directly use this measure in the selection process. IBEA can be combined with 

arbitrary indicators and in contrast to existing algorithms, can be adapted to the 

preferences of the user. Moreover, does not require any additional diversity 

preservation mechanism such as fitness sharing to be used.  According to the authors 

IBEA outperforms NSGA-II and SPEA2, on several continuous and discrete 

benchmark problems with respect to different performance measures. 
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2.15 Cellular Genetic Algorithm for Multiobjective 
Optimization (MOCell) 
Nebro et al. [164] introduced a new cellular genetic algorithm for solving 

multiobjective continuous optimization problems.  MOCell uses an external archive to 

store non-dominated solutions and a feedback mechanism in which solutions from 

this archive randomly replaces existing individuals in the population after each 

iteration. The result is a simple and elitist algorithm called MOCell. The proposed 

algorithm has been evaluated with both constrained and unconstrained problems and 

compared against NSGA-II and SPEA2. The relevant experimental results indicate 

that MOCell obtains competitive results in terms of convergence, and outperforms the 

other two compared algorithms concerning the diversity of solutions along the Pareto 

front. 
 
 
 

2.16 The Multiobjective Evolutionary Algorithm based 
on Decomposition (MOEA/D) 
Zhang and Li [222] propose a multiobjective evolutionary algorithm based on 

decomposition (MOEA/D). It decomposes a multiobjective optimization problem into 

a number of scalar optimization subproblems and optimizes them simultaneously. 

Each subproblem is optimized by only using information from its several neighboring 

subproblems, which makes MOEA/D have lower computational complexity at each 

generation than MOGLS and nondominated sorting genetic algorithm II (NSGA-II). 

Experimental results have demonstrated that MOEA/D with simple decomposition 

methods outperforms or performs similarly to MOGLS and NSGA-II on 

multiobjective 0–1 knapsack problems and continuous multiobjective optimization 

problems. According to the authors the MOEA/D using objective normalization can 

deal with disparately-scaled objectives, and MOEA/D with an advanced 

decomposition method can generate a set of very evenly distributed solutions for 3-

objective test instances.  
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2.17 The Multiobjective Evolutionary Algorithm based 
on Decomposition with Dynamical Resource 
Allocation (MOEA/DDRA) 
In MOEA/D as introduced by [222], [223] all the sub problems are treated equally 

and receive about the same amount of computational effort. However, a more recent 

study by Zhang et al. [223] assigns different levels of computational effort in each sub 

problem based on the different level of difficulty in obtaining the solution. In 

particular, the new version of MOEA/D with a dynamical resource allocation 

(MOEA/D-DRA) computes a utility parameter πi for each of the sub problems i, 

allowing computational effort to be distributed based on their utilities. 

 
 
 
2.18 Speed-constrained Multiobjective particle swarm 
optimization (SMPSO). 
Nebro et al. [165] presented a new multiobjective particle swarm optimization 

algorithm (PSO), called Speed-constrained Multiobjective PSO (SMPSO). The 

proposed algorithm uses of a strategy to limit the velocity of the particles by allowing 

to produce new effective particle positions in those cases in which the velocity 

becomes too high. The SMPSO uses polynomial mutation as a turbulence factor and 

an external archive to store the non-dominated solutions found during the search. The 

proposed algorithm is compared with respect to five multi-objective metaheuristics 

representative of the state-of-the-art in the area. The experimental results indicate that 

SMPSO obtains remarkable results in terms of the resulting approximation sets and 

the convergence speed. 

 
 
 
2.19 S Metric Selection evolutionary multiobjective 
optimization algorithm (EMOA) 
Beume et al. [18] proposed a steady-state EMOA that features a selection operator 

based on the hypervolume measure combined with the concept of non-dominated 

sorting. The proposed algorithm aims to maximize the dominated hypervolume within 

the optimisation process. According to the authors, the algorithm’s population evolves 

to a well-distributed set of solutions, thereby focussing on interesting regions of the 

Pareto front. The performance of the proposed algorithm is compared to state-of-the-
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art methods on two- and three-objective benchmark suites as well as on aeronautical 

real-world applications. 

 
 
 

2.20 SMS-EMOA with the Prospect Indicator (SMSP-
EMOA) 
Phan et al. [172] proposed an indicator-based EMOA, called SMSP-EMOA, as an 

extension of the SMS-EMOA. SMSP-EMOA uses the prospect indicator in its parent 

selection and the hypervolume indicator in its environmental selection. The prospect 

indicator measures the potential of each individual to reproduce offspring that 

dominate itself and spread out in the objective space. Thus, the proposed algorithm 

allows the parent selection operator to maintain sufficient selection pressure, even in 

high dimensional MOPs, thereby improving convergence velocity toward the Pareto-

optimal front, and to diversify individuals, even in high dimensional MOPs, thereby 

spreading out individuals in the objective space. Experimental results show that 

SMSP-EMOA's parent selection operator complement its environmental selection 

operator. Experimental results indicate that SMSP-EMOA outperforms SMS-EMOA 

and other well-known traditional EMOAs in optimality and convergence velocity 

without sacrificing the diversity of individuals. 
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Chapter 3 
 
 

Modern Portfolio Selection with the support of 
MOEAs: A Literature Review 
 

 
3.1  Introduction 
 
MOEAs can be useful in the solution of complex problems for which no efficient 

deterministic algorithm exists. In finance there are several NP-hard problems for 

which the use of a heuristic is clearly justified. Below, we provide a brief review of 

the most well known papers that deal with the implementation of MOEAs for the 

solution of the portfolio optimization problem. 

 
 
 
 
3.2 Multiobjective Evolutionary Algorithms with 
Application in Portfolio Optimization: A Literature 
Review  
 
 
     Arnone et al. [9] were the first to use MOEAs for optimizing investment portfolios. 

The authors adopt the Markowitz model (i.e. maximize return while minimizing risk) 

however they do not adopt the variance of the distribution of portfolio returns as their 

measure of risk. Instead, they use lower partial moments, which refer to the down-side 

part of the distribution of returns. The use of downside risk makes the problem more 

difficult, because the shape of the objective surface is generally non-convex. 

Therefore, quadratic programming can no longer be used to find exact solutions. The 

authors adopt GA with a weighted linear aggregating function [152], [218] to solve 

this problem. The weights are called trade-off coefficients. 

 

      Shoaf and Foster [188], [189] use a GA with linear combination of weights for 

portfolio selection based on the Markowitz model. They minimize portfolio variance 

and maximize the expected return of the portfolio. The authors highlight an important 



Chapter 3  PhD Thesis – K. Liagkouras 

[21] 
 

issue: the encoding. The portfolio selection problem is an allocation problem. Thus, a 

direct representation (i.e. using decision variables as usually done with GAs for 

representing the weights of each stock) does not work well. The reason is that this 

type of representation will frequently produce infeasible solutions in which the values 

allocated do not sum to 1.0 which is a constraint imposed on the problem. They 

propose an alternative representation that solve this problem, but with the side-effect 

of higher sensitivity to the mutation and crossover rates. 

 

     Vedarajan, et al. [210] also adopt the two objectives from Markowitz’s model: 

maximize the expected return of the portfolio and minimize risk. The authors use a 

GA with a linear aggregating function that combines the two objectives into a single 

scalar value, and in which the weights are varied in order to generate different 

nondominated solutions.  

 

   Chang et al. [28] consider the problem of finding the efficient frontier associated 

with the standard mean – variance portfolio optimization model. They extend the 

standard model by imposing cardinality constraints. They use three heuristic 

algorithms based upon genetic algorithms, tabu search and simulated annealing for 

finding the cardinality constrained efficient frontier and they present the 

computational results. 

 

     Lin et al. [145] consider a variation of the mean-variance model with fixed 

transaction costs and minimum transaction lots. The portfolio selection problem is 

modeled as a non-smooth nonlinear integer programming problem with multiple 

objective functions. They develop a genetic algorithm based on NSGA-II and 

Geconop for the solution of the proposed model and provide a numerical example to 

test the efficiency of the algorithm. 

 

      Schaerf A. [178] examines the mean – variance model but applies additional 

constraints on the cardinality of the portfolio and on the quantity of individual shares. 

He uses local search techniques, mainly tabu search. He also compares the previous 

work on portfolio selection that makes use of the local search approach and proposes 

new algorithms that combine different neighborhood relations. 
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       Crama and Schyns [46] consider the classical mean – variance model enriched 

with additional realistic constraints. Their model is a mixed integer quadratic 

programming problem. They apply heuristic techniques (Simulated Annealing) as the 

exact optimization algorithms run into difficulty with their enriched mean-variance 

model.  

 

      Maringer and Kellerer [150] suggest a hybrid local search algorithm which 

combines principles of Simulated Annealing and evolutionary strategies. They applied 

the algorithm to the problem of portfolio selection when there are constraints on the 

number of different assets in the portfolio and non-negativity of the assets’ weights, 

and they found the algorithm efficient and reliable. 

 

      Ehrgott et al [78] propose a model for portfolio optimization extending the 

Markowitz mean-variance model. Based on cooperation with Standard and Poor’s 

they use five specific objectives related to risk and return and allow consideration of 

individual preferences through the construction of decision-maker specific utility 

function. Numerical results using customized local search, simulated annealing, tabu 

search and genetic algorithm heuristics show that problems of practically relevant size 

can be solved quickly. 

 

      Doerner et al [70] support that one of the most important management issues lies 

in determining the “best” portfolio out of a given set of investment proposals. They 

propose a two-phase procedure that first identifies the solution space of all efficient 

portfolios and then allows an interactive exploration of that space. However, 

determining the solution space is a challenging issue, because of the NP-hard nature 

of the problem. They propose meta-heuristics (Pareto Ant Colony Optimization) as a 

good approximate solution space.  

 

      Streichert et al. [201] investigate the impact of different crossover operators for a 

real-valued Evolutionary Algorithm on the constrained portfolio selection problem 

based on the Markowitz mean-variance model. They also introduce an extension of a 

real-valued genotype, which increases the performance of the Evolutionary Algorithm 

significantly, independent of the crossover operator used.  
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      Subbu et al. [203] propose a hybrid multiobjective optimization approach that 

combines evolutionary algorithms with linear programming for investment portfolio 

optimization. The authors maximize the portfolio expected return, while minimizing 

both the surplus variance and the portfolio value at risk. They also consider duration 

and convexity mismatch constraints, as well as linear portfolio investment constraints. 

The authors use the Pareto Sorting Evolutionary Algorithm (PSEA), which uses a 

small population size and an archive that retains the nondominated solutions found 

along the search. 

 

       Armananzas and Lozano [8] apply three well-known optimization techniques: 

greedy search, simulated annealing and ant colony optimization for the solution of the 

portfolio optimization problem. They test the behaviors of the different algorithms by 

formulating Pareto fronts for five stock indexes. 

 

      Hochreiter [114] propose the use of heuristic algorithms for the financial decision 

optimization problems due to the complexity and non-convexity of financial 

engineering problems. The author examines the risk - return portfolio optimization 

problem and solve it with an evolutionary computation approach. Finally, the author 

conduct a comparison and provides numerical results of the Evolutionary Algorithm 

for three (Standard Deviation, Value at Risk and Conditional Value at Risk) risk 

measures. 

 

        Skolpadungket et al. [193] apply various techniques of multiobjective genetic 

algorithms to solve portfolio optimization with some realistic constraints, such as 

cardinality constraints and round-lot constraints. The authors experiment with VEGA, 

Fuzzy VEGA, MOGA, SPEA-II, NSGA-II. The results show that using fuzzy logic to 

combine optimization objectives of VEGA improves performances measured by 

Generation Distance (GD) defined by average distances of the last generation of 

population to the nearest members of the true Pareto front but its solutions tend to 

cluster around a few points. MOGA and SPEA-II use some diversification algorithms 

and they perform better in terms of finding diverse solutions around Pareto front.  

 

     Chiam et al. [34] consider an order-based representation for evolutionary 

multiobjective portfolio optimization, which can be extended to handle various 
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realistic constraints like floor and ceiling constraint and cardinality constraint. The 

authors provide a comprehensive experimental study in evolutionary multiobjective 

portfolio optimization, which includes the evaluation of the algorithmic performance 

based on a set of benchmark problems with proper performance metrics and statistical 

tests. 

 

     Cesarone et al [27] present a Limited Asset Markowitz (LAM) model as they call 

it, with the introduction of quantity and cardinality constraints. The model is a Mixed 

Integer Quadratic Programming problem. The authors test their model using real-

world capital market indices and they report that the LAM model outperforms the 

classical Markowitz portfolio.   

 

      Branke et al. [24] propose to integrate an active set algorithm optimized for 

portfolio selection into a multi-objective evolutionary algorithm (MOEA). According 

to the authors, the idea is to let the MOEA come up with some convex subsets of the 

set of all feasible portfolios, solve a critical line algorithm for each subset, and then 

merge the partial solutions to form the solution of the original non-convex problem. 

They show that the proposed envelope-based MOEA outperforms existing MOEAs. 

 

      Anagnostopoulos and Mamanis [4] investigate the ability of Multiobjective 

Evolutionary Algorithms namely the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II), Pareto Envelope-based Selection Algorithm (PESA) and Strength Pareto 

Evolutionary Algorithm II (SPEA-II), for solving complex portfolio optimization 

problems. The authors evaluated the aforementioned MOEAs techniques with results 

provided by exact methods. They conclude that the PESA performs the best in terms 

of the closeness to the Pareto optimal front, while NSGA-II and SPEA-II have the 

best average performance in terms of hypervolume indicator. According to the authors 

another advantage of the methods is their flexibility to adapt in any addition of new 

constraint and / or replacement of the risk function.  

 

      Chang et al [30] introduce a heuristic approach to portfolio optimization problems 

in different risk measures by employing genetic algorithm (GA) and compare its 

performance to mean-variance model in cardinality constrained efficient frontier. 

They show that complex portfolio optimization problems can be solved by GA if 
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mean-variance, semivariance, mean absolute deviation and variance with skewness 

are used as the measures of risk. They provide empirical result in order to prove the 

robustness of their heuristic method. 

 

      Soleimani et al. [195] consider a portfolio selection model which is based on 

Markowitz’s portfolio selection problem including three constraints: minimum 

transaction lots, cardinality constraints and market capitalization. They solve this 

mixed-integer nonlinear programming problem (NP-Hard) using a Genetic Algorithm  

 

     Anagnostopoulos and Mamanis [5] consider the portfolio selection as a tri-

objective optimization problem so as to find tradeoffs between risk, return and the 

number of securities in the portfolio. The authors apply quantity and class constraints 

into the model in order to limit the proportion of the portfolio invested in assets with 

common characteristics and to avoid very small holdings. The resulting model is a 

mixed-integer multiobjective optimization problem and the authors apply 

multiobjective optimization techniques, namely the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II), Pareto Envelope-based Selection Algorithm (PESA), and 

Strength Pareto Evolutionary Algorithm II (SPEA-II), for its solution. 

 

      Thomaidis N. [206] considers the problem of structuring a portfolio that 

outperforms a benchmark index, assuming restrictions on the total number of tradable 

assets. The author experiments with non-standard formulations of active portfolio 

management, outside the mean-variance framework, incorporating approximate 

(fuzzy) investment targets and portfolio constraints. He applies three nature-inspired 

optimization procedures namely simulated annealing, genetic algorithms and particle 

swarm optimization. Finally, optimal portfolios derived from these methods are 

benchmarked against the Dow Jones Industrial Average index.    

 

     Deng and Lin [63] consider the Particle Swarm Optimization (PSO) for solving the 

cardinality constrained portfolio optimization problem. The authors propose an 

improved PSO that increases exploration in the initial search steps and improves 

convergence speed in the final search steps. They test the algorithm using five stock 

indexes. The computational test results indicate that the proposed PSO outperforms 
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basic PSO algorithm, genetic algorithm (GA), simulated annealing (SA), and tabu 

search (TS) in most cases. 

 

       Deng and Lin [64] in another paper apply Ant Colony Optimization (ACO) for 

solving the cardinality constrained Markowitz mean-variance portfolio model, which 

is a nonlinear mixed quadratic programming problem. The authors obtain numerical 

solutions for five stock indexes. The test results indicate that the ACO is much more 

robust and effective than Particle Swarm Optimization (PSO), especially for low risk 

investment portfolios. 

 

      Anagnostopoulos and Mamanis [6] compare the effectiveness of five 

multiobjective evolutionary algorithms (MOEAs) together with a steady state 

evolutionary algorithm on the mean-variance cardinality constrained portfolio 

optimization problem . The MOEAs considered are the Niched Pareto Genetic 

Algorithm II (NPGA-II), Nondominated Sorting Genetic Algorithm II (NSGA-II), 

Pareto envelope-based selection algorithm (PESA), Strength Pareto Evolutionary 

Algorithm II (SPEA-II), and e-Multiobjective Evolutionary Algorithm (e-MOEA). 

 

     Woodside et al. [216] consider the application of genetic algoritihm, tabu search 

and simulated annealing metaheuristic approaches to finding the cardinality 

constrained efficient frontier that arises in portfolio optimization. The authors 

consider the mean-variance model as extended to include the discrete restrictions of 

buy-in thresholds and cardinality constraints. 

 

      Chen et al [32] apply a Genetic Relation Algorithm (GRA) with an operator, 

called guided mutation for solving large scale portfolio optimization problems. 

According to the authors, in order to pick up the most efficient portfolio, GRA 

considers the correlation coefficient between stock brands. Guided mutation generates 

offspring according to the average value of correlation coefficient in each individual.  

 

     Zhu et al. [226] suggest a meta-heuristic approach to portfolio optimization 

problem using Particle Swarm Optimization (PSO) technique. The authors test the 

model on various restricted and unrestricted risky investment portfolios and a 

comparative study with Genetic Algorithms is implemented.  
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      Golmakani and Fazel [102] propose a heuristic method for solving an extended 

mean – variance portfolio selection model. Their model includes four sets of 

constraints namely: bounds on holding, cardinality, minimum transaction lots and 

sector capitalization constraints. Their model is a quadratic mixed-integer 

programming model and they propose a heuristic based on Particle Swarm 

Optimization (PSO) method. The authors compare their model with the Genetic 

Algorithm (GA) and the computational results show that the proposed PSO 

effectively outperforms GA especially in large-scale problems.  

 

     Deb et al. [59] examine a Bi-objective portfolio optimization for minimizing risk 

and maximizing expected return. The authors modify a bi-objective evolutionary 

algorithm (NSGA-II) in order to develop a customized hybrid NSGA-II procedure for 

handling situations that are non-conventional for classical quadratic programming 

approaches. Finally, the authors demonstrate how the evolutionary algorithms, for 

large-scale problems succeed to find fronts that can be difficult for other methods to 

obtain. 

 

M. Woodside-Oriakhi et al. [217] consider the problem of rebalancing an existing 

financial portfolio, where transaction costs have to be paid if we change the amount 

held of any asset. These transaction costs can be fixed or variable (related to the 

amount traded). The authors indicate the importance of the investment horizon when 

rebalancing such a portfolio and illustrate the nature of the efficient frontier that 

results when in the presence of transaction costs. They model the problem as a mixed-

integer quadratic programme with an explicit constraint on the amount that can be 

paid in transaction cost. Their model incorporates the interplay between optimal 

portfolio allocation, transaction costs and investment horizon. Experimental results 

are presented for the solution of publicly available test problems involving up to 1317 

assets. 

 

Andriosopoulos and Nomikos [7] make use of two evolutionary algorithms – the 

differential evolution algorithm and the genetic algorithm for addressing the index-

tracking problem for passive investment. The performance of the suggested 
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investment strategy is tested under three different scenarios: buy-and-hold, quarterly 

and monthly rebalancing, accounting for transaction costs where necessary. 

 

Chen and Wang [33] proposed a hybrid stock trading system based on Genetic 

Network Programming (GNP) and Mean Conditional Value-at-Risk Model (GNP–

CVaR). According to the authors proposed approach, combines the advantages of 

evolutionary algorithms and statistical model and provides a useful tool to construct 

portfolios and generate effective stock trading strategies for investors with different 

risk-attitudes. Simulation results on five stock indices show that model based on GNP 

and maximum Sharpe Ratio portfolio performs the best in bull market, and that based 

on GNP and the global minimum risk portfolio performs the best in bear market. The 

portfolios constructed by Markowitz’s mean–variance model perform the same as 

mean-CVaR model [124]. According to the authors, the proposed system significantly 

improves the function and efficiency of original GNP, which can help investors make 

profitable decisions. 

 

Corazza et al. [43] consider a nonlinear mixed-integer portfolio selection model which 

takes into account several constraints used in fund management practice. The problem 

is NP-hard and exact algorithms for its minimization, which are both effective and 

efficient, are still sought at present. Thus, to approximately solve this model the 

authors make use of the heuristics Particle Swarm Optimization (PSO). Since PSO 

was originally conceived for unconstrained global optimization problems, the authors 

apply it to a novel reformulation of our mixed-integer model, where a standard exact 

penalty function is introduced. 

 

 Fu et al. [95] examine the application of the Genetic Algorithms (GA) and the 

Hierarchical GA in portfolio management. The authors examine different algorithms 

and the usage of different numbers of technical indicators to determine the optimized 

parameters setting of different technical indicators and portfolio weighting in different 

economic situations.  

 

Gupta et al. [105] proposed a multiobjective credibilistic model with fuzzy chance 

constraints of the portfolio selection problem. The key financial criteria used are 

short-term return, long-term return, risk and liquidity. The model generates portfolios 
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which are optimal to the extent of achieving the highest credibility values for the 

objective functions. The problem is solved using a hybrid intelligent algorithm that 

integrates fuzzy simulation with a real-coded genetic algorithm. The authors provide 

numerical examples to demonstrate effectiveness of the solution approach and 

efficiency of the model. 

 

 

Li and Xu [137] address the multi-objective portfolio selection model with fuzzy 

random returns for investors by studying three criteria: return, risk and liquidity. In 

addition, securities historical data, experts’ opinions and judgements and investors’ 

different attitudes are considered in the portfolio selection process, such that the 

investor’s individual preference is reflected by an optimistic–pessimistic parameter λ. 

To avoid the difficulty of evaluating a large set of efficient solutions and to ensure the 

selection of the best solution, a compromise approach-based genetic algorithm has 

been designed to solve the proposed model. Finally, the authors provide a numerical 

example to illustrate the proposed algorithm. 

 

 

Lwin et al. [147] studied the extended Markowitz’s mean-variance portfolio 

optimization model. They considered the cardinality, quantity, pre-assignment and 

round lot constraints in the extended model. These four real-world constraints limit 

the number of assets in a portfolio, restrict the minimum and maximum proportions of 

assets held in the portfolio, require some specific assets to be included in the portfolio 

and require to invest the assets in units of a certain size respectively. The authors 

propose an efficient learning-guided hybrid multiobjective evolutionary algorithm to 

solve the constrained portfolio optimization problem in the extended mean-variance 

framework. A learning-guided solution generation strategy is incorporated into the 

multiobjective optimization process to promote the efficient convergence by guiding 

the evolutionary search towards the promising regions of the search space. The 

proposed algorithm is compared against four existing state-of-the-art multi-objective 

evolutionary algorithms, namely Non-dominated Sorting Genetic Algorithm (NSGA-

II), Strength Pareto Evolutionary Algorithm (SPEA-2), Pareto Envelope-based 

Selection Algorithm(PESA-II) and Pareto Archived Evolution Strategy (PAES). 

Computational results are reported for publicly available OR-library datasets from 
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seven market indices involving up to 1318 assets. Experimental results on the 

constrained portfolio optimization problem demonstrate that the proposed algorithm 

significantly outperforms the four well-known multi-objective evolutionary 

algorithms with respect to the quality of obtained efficient frontier in the conducted 

experiments. 

 

 

Mishra et al. [158] consider the portfolio assets selection problem as a multiobjective 

optimization one, considering the budget, floor, ceiling and cardinality as constraints. 

A novel multiobjective optimization algorithm, namely the non-dominated sorting 

multiobjective particle swarm optimization (NS-MOPSO), has been proposed and 

employed to solve the portfolio selection problem. The performance of the proposed 

algorithm is compared with four multiobjective evolution algorithms (MOEAs), based 

on non-dominated sorting, and one MOEA algorithm based on decomposition 

(MOEA/D). The performance results obtained from the study are also compared with 

those of single objective evolutionary algorithms, such as the genetic algorithm (GA), 

tabu search (TS), simulated annealing (SA) and particle swarm optimization (PSO). 

The comparisons of the performance include three error measures, four performance 

metrics, the Pareto front and computational time. A nonparametric statistical analysis, 

using the Sign test and Wilcoxon signed rank test, is also performed, to demonstrate 

the superiority of the NS-MOPSO algorithm. On examining the performance metrics, 

it is observed that the proposed NS-MOPSO approach is capable of identifying good 

Pareto solutions, maintaining adequate diversity. The proposed algorithm is also 

applied to different cardinality constraint conditions, for six different market indices, 

such as the Hang-Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 

100 in USA, Nikkei 225 in Japan, and BSE-500 in India. 

 

Suksonghong et al. [204] experiments the use of multi-objective genetic algorithms 

(MOGAs), namely, the nondominated sorting genetic algorithm II (NSGA-II), 

strength Pareto evolutionary algorithm II (SPEA-II) and newly proposed compressed 

objective genetic algorithm II (COGA-II) for solving the portfolio optimization 

problem for a power generation company (GenCo) faced with different trading 

choices.  The authors introduce an additional objective to enhance the diversification 

benefit alongside with the three original objectives of the mean–variance–skewness 
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(MVS) portfolio framework. Experimental results show that the inclusion of the 

fourth objective within the MOGAs produces Pareto fronts that also cover those based 

on the traditional MVS framework, thereby offering better trade-off solutions while 

promoting investment diversification benefits for power generation companies. 

 

Babaei et al. [12] attempt to shed some light on the dependence structure among the 

financial returns along with the fat-tailed distribution associated with them for the 

Portfolio optimization problem. The authors try to find a remedy for this shortcoming 

by exploiting stable distributions as the marginal distributions together with the 

dependence structure based on copula function.  

 

The portfolio optimization problem is formulated as a multi-objective mixed integer 

programming. Value-at-Risk (VaR) is specified as the risk measure due to its intuitive 

appeal and importance in financial regulations. In order to enhance the model’s 

applicability, the authors examine cardinality and quantity constraints in the model. 

Imposing such practical constraints has resulted in a non-continuous feasible region. 

The authors propose two variants of multi-objective particle swarm optimization 

(MOPSO) algorithms to tackle this issue. Finally, a comparative study among the 

proposed MOPSOs, NSGAII and SPEA2 algorithms is made to demonstrate which 

algorithm is outperformed. The empirical results reveal that one of the proposed 

MOPSOs is superior over the other salient algorithms in terms of performance 

metrics. 
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Chapter 4 
 
 
 

A methodological framework for conducting a 
comprehensive literature study based on the 
papers published in MOEAs for the Portfolio 
Management 
 
 
In this section we present a methodological framework for analyzing the available 

literature on the Multi-objective Evolutionary Algorithms for Portfolio Selection. 

Specifically 91 papers have been analyzed according to a number of different 

parameters such as which authors, journals or countries’ institutions have contributed 

to the research in the field and which are the most popular objectives, constraints and 

risk measures applied in formulation of portfolio management models with the 

support of MOEAs. The purpose of such analysis is to provide an insight into the 

current state of research in Multi-Objective Evolutionary Algorithms and to identify 

potential areas of concern with regard to MOEAs for the Portfolio Management.    

 
 
 
 
4.1 The Methodological Approach 
 

In the first stage of our study we had to determine which type of publications to 

include in the review e.g. journal publications, book series, conference papers, books. 

We decided to include journal publications and book series. The main reasons for 

concentrating on journal and book series papers are: 1. Journal and book series papers 

are easily accessed through online databases, 2. Books are usually focused on 

explaining a research field, their purpose is to make a field of study approachable to a 

wide audience. However, our study is focused on presenting the latest advances in 

MOEA for the Portfolio Management which in most of the cases is beyond the 

purpose of a book. 3. Conference papers are not easily accessible. The journals and 
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book series that included in our study, accessed through two online bibliographical 

databases: ScienceDirect – Elsevier and Springer as the Table 4.1 indicates. 
Table 4.1 Bibliographical databases 
 
Bibliographical databases 
  
ScienceDirect – 
Elsevier 

ScienceDirect is an electronic full text database of 
scientific journals. It includes more than 2,500 journals and 
more than nine million full-text articles. 

  
Springer Springer is a scientific publisher with about 2,000 journals, 

focusing mainly in science, technology, medicine, 
business, transport and architecture. 

 
 
Furthermore, we had to decide which period to include in the literature study. We find 

only two publications in Multi-objective Evolutionary Algorithms for the Portfolio 

Management prior to 1994 (Dueck and Winker [75], Arnone et al. [9]). For that 

reason, we decided that it was reasonable to include publications from 1994 and 

onwards. Thus, the period we decided to include in the literature review is from 1994 

to 2011. 

 

      Figure 4.1 displays the relationship between MOEAs papers (field independent) 

and MOEAs papers focusing on Portfolio Management, for the period of time from 

1994 to 2011.  

 

 
 

Figure 4.1 Papers published in MOEAs (all fields of study included) compared with 
paper in MOEAs related to portfolio management 
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Figure 4.1, indicates clearly that the undergoing research in the MOEAs focusing on 

Portfolio Management is in its early stages. On the other hand, we notice an 

impressive growth in the number of published papers related to MOEAs in general, 

from 2003 and onwards.  

     After choosing the type of publication (journals and book series papers) and the 

period of time (from 1994 to 2011), the next important question we had to answer was 

to decide which papers to include and which keywords we want to use in the search 

and where the keywords should appear namely: the title, abstract or keywords of the 

paper. As we mentioned earlier we chose two electronic bibliographic databases and 

we searched for the keywords “MOEAs” and “Multi-objective Evolutionary 

Algorithms” within titles, abstracts or keywords. In order to exclude editorial 

comments or book review the length of papers had to be at least four pages. From this 

search we ended up with a total pool of 6,620 journal and book series papers. From 

this pool of 6,620 papers to our database 692 papers were excluded as it was obvious 

from their titles that the specific papers did not deal with MOEAs or they were 

prefaces of books or contents of journals volumes or editorial notes. Finally 

publications excluded because only mentioned MOEAs or Multi- objective 

Evolutionary Algorithms as an example of one technique among other techniques 

without focusing on MOEAs. Thus, we ended up with a final pool of 5,928 papers. 

From this pool of 5,928 papers in MOEAs, 91 of them focus on MOEAs for Portfolio 

Management.  
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4.2 Findings about the MOEAs for the Portfolio 
Management 
 
As we mentioned earlier, the purpose of our study is to provide an insight into the 

current state of research in Multi-Objective Evolutionary Algorithms and to identify 

potential areas of concern with regard to MOEAs for the Portfolio Management. In 

the following pages we will answer questions such as which journals, authors and 

which countries’ institutions have contributed the most in the development of the field 

and which are the most popular objectives, constraints and risk measures applied in 

the formulation of portfolio management models with the support of MOEAs 

We start by presenting the contribution of each individual journal to the study of the 

field. 

 

 
Figure 4.2 Papers in MOEAs focusing on Portfolio Management per Journal  

 
 
From Figure 4.2 and Table 4.2 it is evident that the first three journals: 1. Lecture 

Notes in Computer Science (it is actually a book series), 2. Expert Systems with 

Applications and 3. European Journal of Operational Research, concentrate the 

majority of the publications in MOEAs focusing on Portfolio Management.  
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Table 4.2 Contribution of various Journals to the study of MOEAs for the Portfolio 
Management 
 
Contribution of Journals to the study of MOEAs for Portfolio Management 
                                                                                                          Papers    Percentage 
1. Lecture Notes in Computer Science     20 21.97% 
2. Expert Systems with Applications 15 16.47% 
3. European Journal of Operational Research 12 13.18% 
4. Computers & Operations Research 7 7.68% 
5. IEEE Transactions on Evolutionary Computation 4 4.40% 
6. Computational Statistics & Data Analysis 3 3.30% 
7. Applied Soft Computing 2 2.20% 
8. Information Sciences 2 2.20% 
9. Annals of Operations Research 2 2.20% 
10. OR Spectrum 2 2.20% 
11. International Transactions in Operational Research 2 2.20% 
12. Applied Mathematics and Computation 1 1.10% 
13. Electric Power Systems Research 1 1.10% 
14. Mathematical Programming 1 1.10% 
15. Computational Economics 1 1.10% 
16. Computational Management Science 1 1.10% 
17. Computational Optimization and  Applications 1 1.10% 
18. International Journal of Automation and Computing 1 1.10% 
19. Quantitative Finance 1 1.10% 
20. Nonlinear Analysis: Real World Applications 1 1.10% 
21. International Journal of Operations Research 1 1.10% 
22. Journal of Risk 1 1.10% 
23. Mathematical Finance 1 1.10% 
24. Optimization Methods and Software 1 1.10% 
25. Advanced Modeling and Optimization 1 1.10% 
26. ORSA Journal on Computing 1 1.10% 
27. Evolutionary Computation 1 1.10% 
28. Complex Systems 1 1.10% 
29. Automation in Construction 1 1.10% 
30. Journal of Mathematical Economics 1 1.10% 
31. Journal of Economic Behavior & Organization 1 1.10% 
   

 
 
 
Below, we will attempt to identify which authors have contributed the most to the 

field. According to Table 4.3, a total of 199 different authors, either as single authors 

or as co-authors have contributed to the total pool of papers. The 79.90% have 

contributed to a single paper and only 14.57% have contributed to two papers. The 

most contributing author was Deb, K. with 6 publications [24], [54], [57], [59], [161], 

[196]. 
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Table 4.3 Papers in MOEAs focusing on Portfolio Management per author  

Publications   
                                                                      Number of authors Percentage 
1 159 79.90% 
2 29 14.57% 
3 9 4.53% 
4 1 0.50% 
5 0 0.00% 
6 1 0.50% 
   

Note: 199 different authors 

 
                Figure 4.3 Papers in MOEAs focusing on Portfolio Management per author 
 
 
 
Table 4.4 displays the most prolific authors in MOEAs focusing on the problem of 

Portfolio Management. 
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Table 4.4 The most prolific authors in MOEAs focusing on the problem of Portfolio          
Management. 

Author  
Number of publications  

in MOEAs for Portfolio Management 
Deb, K. 6 
Steuer, R.E. 4 
Al Mamun, A. 3 
Anagnostopoulos, K. P. 3 
Beasley, J.E. 3 
Chang, T.J. 3 
Chiam, S. C. 3 
Qi, Y. 3 
Hirschberger, M. 3 
Mamanis G. 3 
Tan, K. C. 3 
Agarwal, S. 2 
Brabazon, A. 2 
Chen, Y. 2 
Deng, G.F. 2 
Di Tollo, G. 2 
Diosan, L. 2 
Doerner, K.F.  2 
Ehrgott, M. 2 
Drezewski, R. 2 
Fieldsend, J.E. 2 
Gilli, M. 2 
Golmakani, H. R. 2 
Gutjahr, W.J.  2 
Hartl, R.F. 2 
Lin, W.T. 2 
Lucas, C. 2 
Meade, N. 2 
Molina, J. 2 
O’Neill, M. 2 
Oltean, M. 2 
Schaerf, A. 2 
Schlottmann, F. 2 
Schmeck, H. 2 
Seese, D. 2 
Siwik, L. 2 
Stein, M. 2 
Strauss, C. 2 
Stummer, C. 2 
Tewari, R. 2 
  

 
 

Another issue of concern in our analysis is the nationality of the institutions that 

contributed to the study of the MOEAs for Portfolio Management. In order to obtain 
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the necessary data we kept a record of the nationality of authors and co-authors’ 

institutions at the time the articles were published. Table 4.5 presents the relevant 

results. 

 
 
Table 4.5 Contribution of various countries institutions to the study of MOEAs for Portfolio 
Management 
Contribution of various countries institutions to the study of MOEAs for 
Portfolio Management 
 Institutions   Percentage 
USA 32 12.60% 
UK 30 11.81% 
Germany 30 11.81% 
China 17 6.69% 
India 17 6.69% 
Taiwan 12 4.72% 
Spain 11 4.33% 
Austria 11 4.33% 
Italy 10 3.94% 
Singapore 9 3.54% 
Iran 8 3.15% 
Ireland 8 3.15% 
Greece 7 2.76% 
Switzerland 6 2.36% 
Poland 6 2.36% 
Portugal 5 1.97% 
South Korea 4 1.58% 
Romania 4 1.58% 
Japan 4 1.58% 
France 4 1.58% 
Canada 3 1.18% 
Saudi Arabia 2 0.79% 
Netherland 2 0.79% 
Norway 2 0.79% 
Denmark 2 0.79% 
Belgium 2 0.79% 
Australia 1 0.39% 
New Zealand 1 0.39% 
Turkey 1 0.39% 
Colombia 1 0.39% 
Monaco 1 0.39% 
Brazil 1 0.39% 
   

 
 
The Table 4.5 is dominated by US, UK and German institutions that count together 

for about 36% of the total publications in MOEAs focusing on Portfolio Management. 

Chinese and Indian institutions are next with about 6.7% of the total publications 
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produced to each one of these two countries. Significant contribution to the study of 

the field display institutions of smaller countries like Austria, Greece, Ireland and 

Switzerland. 
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Figure 4.4 Contribution of various countries institutions to the study of MOEAs for Portfolio 

Management 
 
 
Figure 4.5 displays the number of objectives used by the scholars in MOEAs for the 

Portfolio Management. 

 
 

Figure 4.5 Number of objectives in the formulation of MOEAs for Portfolio Management models 
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From Figure 4.5 it is evident that the majority of the scholars select to use only two 

objectives in their Multiobjective Evolutionary Algorithms for the Portfolio 

Management Models. 

 
 

Table 4.6 Number of objectives in the formulation of MOEAs for Portfolio Management models 
Number of Objectives 
 Percentage 
Two Objectives 82.50% 
Three Objectives 10.00% 
Four Objectives 2.50% 
Five Objectives 5.00% 
  

 
 
 

Table 4.7 displays which are the most popular objectives in MOEAs for Portfolio 

Management models among the authors. 

 

 
Figure 4.6 The most commonly used Objectives in MOEAs for Portfolio Management models 
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Table 4.7 The most popular Objectives in MOEAs for Portfolio Management models 
The most popular Objectives in the formulation of MOEAs for Portfolio 
Management Models 
 Percentage 
1. Mean 39.38% 
2. Variance 36.18% 
3. VaR 4.27% 
4. Annual Dividends 2.13% 
5. Expected Shortfall 2.13% 
6. 12-months performance 1.06% 
7. Probability that the portfolio delivers positive returns relatively to a   
    benchmark  

1.06% 

8. 3-year performance 1.06% 
9. Standard and Poor’s star ranking 1.06% 
10. Cardinality Constraints 1.06% 
11. Social responsibility 1.06% 
12. Research & Development 1.06% 
13. 12-month volatility 1.06% 
14. Skewness 2.13% 
15. Sharpe Ratio 1.06% 
16. CVaR 1.06% 
17. Lower Partial Moments (LPM) 1.06% 
18. Semi-variance 1.06% 
19. Mean Absolute Deviation (MAD) 1.06% 
  

 
 
As we can see from Table 4.7, the most popular objectives among authors in the study 

of MOEAs for Portfolio Management are the Mean (Portfolio’s Expected Return) and 

Variance [13]. It is surprising that sixty years after the seminal work of Markowitz 

[79] that the majority of the authors still consider these two objectives introduced by 

Markowitz as the two dominants objectives in the study of the Portfolio Selection 

problem  [17], [28], [30], [35], [46], [47], [57], [59], [63], [64], [65], [67], [85], [88], 

[102], [114], [119], [136], [144], [150], [169], [173], [178], [187], [195], [197], [216]. 

Others objectives that seem to attract the attention of scholars are: VaR [4], [99], 

Annual Dividends [78], [198], Expected Shortfall [4] , [99] and Skewness.  

     The next question we had to answer is which are the most commonly used Risk 

Measures [13] in the study of MOEAs for Portfolio Management models. Table 4.8 

displays our findings about the most popular Risk Measures. 
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Figure 4.7 The most commonly used Risk Measures in MOEAs for Portfolio Management 
 
 
Table 4.8 The most popular Risk Measures in MOEAs for Portfolio Management models 
The most popular Risk Measures in the formulation of MOEAs for Portfolio 
Management 
 Percentage 
1. Variance 72.4% 
2. VaR 8.52% 
3. Expected Shortfall 4.26% 
4. 12-month volatility 2.13% 
5. Skewness 4.26% 
6. CVaR 2.13% 
7. Lower Partial Moments (LPM) 2.13% 
8. Semi-variance 2.13% 
9. Mean Absolute Deviation (MAD) 2.13% 
  

 
We notice that the most popular risk measure is the Variance [6], [17], [24], [28], 

[30], [46], [65], [67], [88], [114], [119], [178], [199], followed by the VaR [4], [65], 

[114], the Expected Shortfall [4], [114] and the Skewness [30]. It causes surprise the 

wide use of Variance as a risk measure although its well known shortcomings such as 

its lack of coherence [11] and penalization of both returns above and below expected 

return. A possible explanation is the easiness of variance’s calculation.  

Another issue of concern is how many constraints are used by the authors in the 

formulation of MOEAs for Portfolio Management Models. According to Figure 4.8 

the majority of the scholars prefer to apply two constraints in the formulation of their 

models [5], [6], [17], [24], [26], [47], [59], [63], [64], [67], [78], [85], [136], [144], 

[150], [178], [203], [216]. 
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Figure 4.8 Number of constraints used in MOEAs for Portfolio Management models 
 
 
Table 4.9 Number of constraints used in MOEAs for Portfolio Management models 
Number of Constraints 
 Percentage 
One constraint 6.90% 
Two constraints 62.07% 
Three constraints 20.69% 
Four constraints 6.90% 
Five constraints 3.44% 
  

 
 
Knowing the number of constraints applied to the problem the next question that 

come naturally to the reader’s mind is which are these constraints? Table 4.10 

provides an answer to that question by displaying the most popular constraints among 

the authors of papers in MOEAs for Portfolio Management models. 

 

 
Figure 4.9 The most commonly used constraints in MOEAs for Portfolio Management models 
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Cardinality constraints [4], [6], [17], [24], [28], [30], [35], [46], [47], [65], [67], [78], 

[85], [88], [99], [114], [119], [136], [150], [178], [187], [195], [201] and Lower and 

Upper bounds [4], [5],  [6], [17], [35], [46], [47], [65], [67], [78], [85], [99], [178] 

seem to dominate as the constraints of preference among the authors. Table 4.10 

reveals the relevant figures. 

 
 
 
Table 4.10 The most commonly used constraints in MOEAs for Portfolio Management models 
The most popular Constraints in the formulation of MOEAs for Portfolio 
Management models 
 Percentage 
1. Cardinality constraints 44.93% 
2. Lower and Upper bounds 30.43% 
3. Transaction costs 4.35% 
4. The 5-10-40 constraint 1.45% 
5. Transaction Roundlots 11.59% 
6. Nonnegativity constraints 2.90% 
7. Sector capitalization constraints 4.35% 
  

 
 
The next question we had to answer is which disciplines have contributed the most to 

the development of MOEAs focusing on the Portfolio Management. In order to 

answer this question, first we had to determine the disciplines. For that purpose we 

used the discipline that the journal itself refers to on its web page under the title: “aim 

and goal” or “aim and scope”. Table 4.11 displays the emerged disciplines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PhD Thesis – K. Liagkouras   Chapter 4   

[46] 
 

Table 4.11 Contribution of various disciplines to the development of MOEAs focusing on the Portfolio 
Management 
Discipline 
 Definition 
Computer Science Journals focusing on technical aspects of Information 

Technology 
  
Artificial Intelligence Journals focusing on studying and designing intelligent 

systems 
  
Operations Research Journals focusing on the effective use of technology by 

organizations 
  
Finance- Economics Journals focusing on the management of money, 

banking, investment, credit and Journals dealing with 
production, distribution and consumption of goods and 
services 

  
Mathematics - Statistics Journals dealing with the logic of quantity, shape, 

arrangement and Journals focusing on the collection, 
organization and interpretation of data.  

  
Other Journals focusing on aspects not included in the above-

mentioned five disciplines  
  

 
 
 
Table 4.12 displays the classification of journals, publishing articles on the MOEAs 

for the Portfolio Management, in various Disciplines. The two dominant disciplines 

are those of Operations Research and Computer Science.  

 
 

 
Figure 4.10 Disciplines of journals publishing papers in MOEAs for the Portfolio Management 
 
 
 
 

 



Chapter 4  PhD Thesis – K. Liagkouras 

[47] 
 

Table 4.12 Disciplines of journals publishing papers in MOEAs for the Portfolio Management 
Disciplines of Journals publishing papers in MOEAs for Portfolio Management 
 Percentage 
1. Computer Science 25.80% 
2. Artificial Intelligence 9.68% 
3. Operations Research 29.03% 
4. Finance – Economics 16.13% 
5. Mathematics – Statistics 9.68% 
6. Other 9.68% 
  

 
 
 
A final issue that we will address is the classification of the papers according to the 

methodological approach followed by the authors. In order to be able to carry out this 

classification we went through the titles and abstracts of the papers. When the results 

from this preliminary study were inconclusive we went through the body of the 

article. Going through the papers we distinguished the following Methodological 

Categories that appear in the Table 4.13. 

 
 
 
Table 4.13 Classification of the papers according to the methodological approach 

Methodological Category 
 Definition 
Empirical – 
Experiment 

Papers focusing on gaining knowledge by means of quantitative 
or qualitative analysis of data and papers focusing on verifying, 
falsifying or establishing the accuracy of a hypothesis in order to 
explain a phenomenon or predict the results of an action. 

  
Theoretical Papers focusing on providing a synthesis of research on a topic 

for a specified period of time. 
  
Model Design Papers focusing on developing a new algorithm or mathematical 

model in order to explain a phenomenon or predict the results of 
an action. 

  
Combined Papers using a combination of the above – mentioned categories 

fall into this category. 
  
Not mentioned  Papers that do not mention any methods either explicitly or 

implicitly. 
  

 
The results of the methodological classification of the papers in MOEAs focusing on 

Portfolio Management appear in Table 4.14 and 4.15. Table 4.14 displays the various 

categories emerged after the classification and the corresponding numbers of papers. 
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The Combined methodological classification is the dominant approach adopted by the 

majority of the authors counting for the 81.31% of all cases. 

 

 
 
 
Table 4.14 Methodological classification of the papers in MOEAs focusing on Portfolio Management 

Methodological Categories 
                                                         Papers         Percentage 

Combined 74 81.31% 
Model Design 9 9.89% 
Review 2 2.20% 
Theoretical 2 2.20% 
Empirical – Experiment 4 4.40% 
  

 
 

  
Figure 4.11 Methodological classification of the papers in MOEAs focusing on Portfolio Management 
 
Table 4.15 indicates how the Combined methodological classification is even further 

analyzed into the various subcategories. As expected a mix of Model Design and 

Empirical or Experimental research is the way to go for most of the authors [24], 

[26], [27], [28], [29], [31], [36], [37], [38], [39], [44], [45], [49], [51], [54], [57], [69], 

[70], [71], [73], [74], [75], [79], [83], [100], [104], [106], [110], [113], [114], [115], 
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[118], [120], [135], [146], [148], [154], [161], [169], [171], [173], [183], [201], [210], 

[215], [226]. 

 
 
 
Table 4.15 Analysis of the Combined methodological classification into the various subcategories 
Combined methodological approach is analyzed 

                                                                   Papers Percentage 
Model design and Empirical - Experiment 71 95.95% 
Review and Empirical - Experiment 2 2.70% 
Theoretical and Empirical - Experiment  1 1.35% 
  

 
 
 
 

 
Figure 4.12 Analysis of the Combined methodological classification into the various subcategories 
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4.3 Conclusions 
 
The purpose of this chapter is to provide an insight into the current state of research in 

Multi-objective Evolutionary Algorithms focusing on the Portfolio Management. To 

serve this purpose we analyzed 91 papers according to journal, author and nationality 

of authors’ institution. Moreover, we addressed issues related to the problem’s 

formulation such as which are the most popular objectives, constraints and risk 

measures that are applied in the portfolio management models with the support of 

MOEAs. On top of that we presented the various disciplines and the research 

methodologies of the available literature in the field.  

     We started by presenting the methodological framework for the analysis of the 

available literature on the Multi-objective Evolutionary Algorithms focusing on the 

Portfolio Management. Then, we presented graphically the sharp increase in the 

number of papers published in MOEAs field independent, to name some of them: 

engineering, science, finance, biology, medicine, genetics, robotics, physics and 

chemistry over the period 1994 – 2011. For the same period of time we presented the 

number of papers published in MOEAs focusing on the Portfolio Management and we 

noticed a relatively small increase compared with the impressive increase in the 

volume of papers published in MOEAs as a total. This indicates clearly that the 

undergoing research for the implementation of MOEAs to the Portfolio Selection 

problem is in its early stages and there is a lot of room for further research. 

     Furthermore, our analysis revealed that almost 80% of the authors in portfolio 

management with the support of MOEAs have contributed a single paper and only 

14.57% have contributed in two papers. Moreover, we found out that US, UK and 

German institutions have contributed the most to the study of the MOEAs focusing on 

Portfolio Management. Chinese and Indian institutions are next with about 6.7% of 

the total publications produced to each one of these two countries. Significant 

contribution to the study of the field display institutions of smaller countries like 

Austria, Greece, Ireland and Switzerland. 

    The analysis revealed that 82.50% of the MOEAs for Portfolio Management 

models make use of only two objectives and that the portfolio’s expected return and 

variance  are the most popular among them, followed by VaR, Annual Dividends, 

Expected Shortfall and Skewness. Moreover, we found that the most widely used risk 

measure in the relevant literature is the Variance, followed by VaR, Expected 
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Shortfall and Skewness. Another issue of concern in our study was how many 

constraints are used by the authors in the formulation of MOEAs for Portfolio 

Management models. We found that the majority of the scholars used two constraints. 

Additionally, we found that the most widely used constraints are the Cardinality 

constraints followed by the Lower and Upper bounds, Transaction Roundlots and 

Sector or Class capitalization constraints. The next question we had to answer was 

which disciplines have contributed the most to the development of MOEAs focusing 

on the Portfolio Management. We found out that the two dominant disciplines are 

those of Operations Research and Computer Science. A final issue of concern in our 

analysis was to identify the methodological classification of choice for the authors of 

papers in MOEAs for the Portfolio Management. About 81.31% of the authors chose 

the Combined methodological approach, and a huge majority, about 95.95% of the 

authors who chose the Combined methodological approach selected a combination of 

Model design and Empirical–Experiment methodological approach.  

 
 
 
 
 
4.4 Future Research 
 
The use of Multiobjective Evolutionary Algorithms (MOEAs) for the portfolio 

selection is still in its early stages. The analysis of the problem’s formulation revealed 

areas of concern with regard to MOEAs for the Portfolio Management. Specifically, it 

seems that the majority of the authors focus on the computational aspects of the 

problem and overlook its financial aspects. This become evident from the wide use of 

variance as the quantification risk measure of preference among the authors, although 

its well known undesirable properties such as  the lack of coherence [10] and 

penalization of both returns above and below expected return. Thus, a potential path 

of future research would be the incorporation in the problem formulation of risk 

quantification measures with better mathematical properties. Another issue of concern 

that arises from our analysis is the number of constraints used by the authors in the 

problem formulation. We found out that the majority of the studies adopt only two 

constraints in the problem formulation. However, it is well known that the real world 

portfolio managers deal with multiple constraints. That way the models loose in 
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interpretive power and their usefulness restricted only for academic purposes. The 

incorporation of additional real world constraints is a challenge that remains to be 

answered by the authors of papers in MOEAs for the portfolio management. Above 

we identified several areas of concern with regard to the formulation of the MOEAs 

for the portfolio management problem. In order to be able to address these issues 

further research is required towards the creation of new algorithmic frameworks. 

Currently the Pareto–dominance based framework is the most widely accepted. 

However, some studies (Purshouse [176]) indicate that traditional Pareto ranking 

schemes do not behave well in the presence of many objectives (where, “many” they 

mean more than 3-4). Moreover further research is required towards the incorporation 

of preferences in the portfolio selection problem. The decision making process 

involved in portfolio selection is very complex and difficult to automate. 

Incorporation of preferences in use with MOEAs remains a major challenge. Finally 

the creation of interactive MOEAs with the decision maker for the portfolio selection 

problem consists another potential area for future research. Above, we identified some 

possible paths for future research in Multiobjective Evolutionary Algorithms 

(MOEAs) for the Portfolio Selection. It is evident that the field presents significant 

research opportunities both for academics and practitioners interested in those 

innovative technologies. 
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Chapter 5 
 
 

Best Practices and Performance Metrics in the 
construction of Efficient Portfolios with the Use 
of Multiobjective Evolutionary Algorithms 
 

 

5.1 Introduction 
The usefulness of the Multiobjective Evolutionary Algorithms (MOEAs) for the 

solution of the constrained portfolio optimization problem is indisputable and can be 

testified by a considerable number of studies in the field [87]. Numerous techniques 

have been devised for handling the difficulties arisen by the complexities of the 

constrained portfolio optimization problem. Most of the authors in the field attempt to 

provide evidence about the efficacy of the proposed algorithms and techniques with 

the assistance of experimental comparative analysis. However, the vast majority of 

the studies examines only some aspects of the constrained portfolio optimization 

problem and does not seem to capture the entire picture of the field. Our aspiration is 

to cover this gap in the relevant literature, by examining the state-of-the-art in order to 

provide the best practices in the field with respect to the constrained portfolio 

optimization problem with the support of MOEAs from a technical and algorithmic 

point of view. 

    The remainder of the chapter is organized as follows. Section 5.2 provides an 

introduction to the constrained portfolio optimization problem with the support of 

MOEAs. Section 5.3 examines a wide range of real world constraints imposed to the 

solution of the constrained portfolio optimization problem and presents their 

corresponding algorithmic and technical treatment. Section 5.4 presents the best 

practices in the field with regard to a number of configuration issues related to the 

application of MOEAs for solving the constrained portfolio optimization problem. 

Section 5.5 present the most popular performance metrics along with their 

corresponding strengths and weaknesses for the evaluation of the derived solutions. 
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Based on our findings, section 5.6 identifies some potential paths for future research.  

Finally, section 5.7, concludes the chapter. 

 
 
 
 
5.2 The Portfolio Optimization problem with the 
support of MOEAs 
 
The application of MOEAs techniques for solving the portfolio optimization problem 

has witnesses a considerable increase over the past years [19], [86], [123], [137], 

[143], [147], [160], [204], [209], [213], [224]. The turn toward evolutionary 

approaches for handling the difficulties introduced by the constrained portfolio 

optimization problem can be easily justified by a number of reasons. Among them, 

distinguished place possesses the ability of evolutionary algorithms (EAs) to solve 

difficult multiobjective optimization problems (MOP) that are too complex to be 

solved using deterministic techniques [7], [10], [33], [43], [95], [96], [97], [109], 

[177], [190], [194], [214]. The introduction of realistic constraints into the portfolio 

optimization problem convert the problem from a classical quadratic optimization 

problem to a quadratic mixed-integer problem (QMIP) that is NP-hard [159].  

     Despite, the obvious benefits from the application of evolutionary techniques for 

the solution of the portfolio optimization problem, there are a number of configuration 

issues that cause controversy in the field. In particular, there is not always unanimity 

about the best practices in the field. The purpose of this study is to cover this gap in 

the relevant literature and provide the best practices in the field by examining the 

state-of-the-art. For that purpose 220 journal and conference papers in the field have 

been analyzed and useful information about a number of configuration issues has been 

extracted.  

    Below, we provide in the form of graphs and tables the extracted intelligence by 

examining the state-of-the-art in the field. We start with Table 5.1 that presents which 

are the most popular MOEAs when it comes to the application of evolutionary 

techniques to the solution of the portfolio optimization problem. 
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Figure 5.1 The most commonly used MOEAs for solving the portfolio optimization problem (%) 

 
 

Table 5.1: The most commonly used MOEAs for solving the portfolio optimization problem (%) 
MOEA type NSGAII SPEA2 PESA SPEA PAES MOGA NPGA2 IBEA 
Percentage (%) 29.17 25.00 16.67 8.33 8.33 4.17 4.17 4.17 

 
 

 

As shown from Table 5.1, NSGAII and SPEA2 are two most popular MOEAs with 

29.17% and 25% respectively, when it comes to the application of evolutionary 

algorithm techniques for multiobjective optimization to the solution of the portfolio 

optimization problem. The purpose of the present study in not to provide a analytical 

account of each individual MOEA. For this purpose, the interested reader can advise 

the corrresponding papers: NSGAII [57],  SPEA2 [231], PESA [45], SPEA [233], 

PAES [125],  MOGA [93], NPGA2 [83], IBEA [230].    

      Please, notice that the aforementioned MOEAs cannot be used directly in their 

standard format for the solution of the constrainted portfolio optimization problem 

(CPOP), as special treatment is required for handling the various objectives and 

constraints imposed to the problem. In the following pages we will present the 

corresponding algorithmic and technical treatment for the efficient incorporation of 

the constraints into the MOEAs. 
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      The CPOP in its standard format is a bi-objective problem (return and risk) and 

can be formulated as follows. Let Ω be the search space. Consider 2 objective 

functions f , f  where f : Ω → R  and  

 
 

 
 
 
 
 
 
 

 
where: 
 

 Decision variables ),..,( 1 mwww   subject to w  and m equal to the number 

of stocks.   

 Rate of return of assets:  mrrr ..,, 21 . 

 ρ   is the correlation between asset i and j and 11  ij . 

 σ , σ  represent the standard deviation of stocks returns i and j 

 
 
 
     From the formal presentation of the portfolio optimization problem it becomes 

clear that it is a bi-objective problem where the first objective corresponds to the 

return of assets and the second objective corresponds to the portfolio’s risk which is a 

function of stocks’ standard deviation and correlation alike. The higher the 

portfolio’s return the better and the lower the portfolio’s risk the better. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Optimize f(w) = (f (w), f (w))               (2.1) 

Maximize portfolio return 
f (w) =  ∑ w r                    (2.2) 

Minimize portfolio risk f (w) =  ∑ ∑ w w σ σ ρ     (2.3) 
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5.3 Algorithmic and technical treatment of the 
constraints imposed to the Portfolio Optimization 
problem in the context of MOEAs 
 
A number of constraints can be imposed to the aforementioned bi-objective problem 

[139]. By examining the available literature in the field we found out that the 

following real world constraints have been considered by the studies in the field.  

 

1. Budget or summation constraint 

2. Floor and ceiling constraint 

3. Cardinality constraint 

4. Class constraints 

5. Roundlots constraints 

6. Transaction costs 

7. Pre-assignment constraint 

8. Trading constraints 

9. Turnover constraint 

10. The 5-10-40 constraint 

 

 

According to a study by Metaxiotis K. and Liagkouras K. [155] the 62.07% of the 

studies in the field make use of only two constraints. Also, according to the same 

study the 20.69% of the studies in the field make use of three constraints and only the 

6.90% of the studies in the field make use of four constraints.        

The successful implementation of the aforementioned constraints by the MOEAs 

requires special algorithmic and technical configurations. The scholars in the field 

realized the need of introducing a number of repair mechanisms for the efficient 

implementation of the CPOP by the MOEAs. Table 5.2 summarizes the most 

commonly used repair mechanisms by the studies in the field.   
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Figure 5.2. The most commonly used repair mechanisms by the studies in the field (%) 

 
 
 
 

Table 5.2: The most commonly used repair mechanisms by the studies in the field (%). 
Repair mechanism Percentage(%) 
Repair mutation 6.25 
 Repair infeasible solutions 12.5 
Repair upper bound constraint 6.25 
Repair lower proportion 20.5 
Repair budget constraint 6.25 
Repair round lots 6.25 
Repair crossover 4.5 
Repair Cardinality constraints 25 
Repair class constraint 12.5 

 
 
Below, by examining the state-of-the-art we provide rigorous algorithmic and 

technical treatment for the correct implementation of the various constraints imposed 

to the CPOP.  

 
 

Solution representation 
A solution to the portfolio optimization problem can be represented by an array of m 

variables w1, w2, ..., wm where wi represents the fraction of the amount invested in 

asset i. Thus the 퐰 = (푤 , 푤 , … , 푤 )  could be a hypothetical solution vector of 

the CPOP.   
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5.3.1 Budget constraint 
Budget constraint or summation constraint ∑ 푤 = 1 requires all portfolios to have 

non-negative weights ( 10  iw  mi ,..,2,1 ) that sum to 1. We should highlight that the 

Budget constraint is also included in the Modern Portfolio Theory (MPT) as presented 

by Markowitz [151]. Non-negative weights means that short sales are not allowed. 

    In case that we had to take into account only the budget constraint it would be 

enough to generate random decision variables in the range 푤 ∈ {0, 1}. Then we could 

easily proceed with the normalization as follows: 푤 ′ =
∑

  , where 푤  represents 

the actual weight of asset i and 푤 ′ the normalized weight.  

 
 
 
 
 
 
 

5.3.2 Floor and ceiling constraint 
Floor and ceiling constraint mbwa iii ,...,2,1,  , where αi is the minimum 

weighting that can be held of asset i (i = 1, …, m ),  bi = the maximum weighting that 

can be held of asset i (i = 1, …,m ) and mba ii ,...,2,1,10  . Ceiling constraints 

are used in order to avoid excessive exposure to a specific asset and in many cases are 

imposed by law. Floor constraints on the other hand are used to avoid the cost of 

administrating very small portions of assets. 

      Schaerf [178] introduced an improved version of the normalization mechanism 

capable of satisfying the floor and ceiling constraints too, as shown by the following 

formula: 푤 ′ = 휀 +  
∑

  , where 휀  is the floor constraint.  

    Chiam et al. [34] proposed a different methodology for handling the floor and 

ceiling constraints. Specifically, the weight vector is adjusted to the floor and ceiling 

constraint as follows: 푤 ′ = 푎 + (푏 − 푎 ) × 푤  , where  푎  and 푏  denotes 

respectively the minimum and maximum weighting that can be held of asset i. 

According to  [34], assets will be added to the portfolio until the total weight of the 

portfolio exceeds one. At this point three (3) different cases have been identified: 
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1. After removing the last added asset, the remaining weight is between the floor and 

ceiling limits. In that case the weight of the last added asset is adjusted to be 

equivelant to the remainder needed to attain the portfolio  total weight of one. 

2. After removing the last added asset, the remaining weight is less than the floor 

limit. In this case there are two (2) different scenarios: 

2.a After removing the second last added asset, the remaining weight is between 

the floor and ceiling limits. In that case the weight of the second last added 

asset is adjusted to be equivelant to the remainder needed to attain the 

portfolio  total weight of one. Obviously, to the last asset is assigned a weight 

of zero.  

2.b After removing the second last added asset, the remaining weight is outside 

the floor and ceiling limits. In that case, all the weight vectors will be 

readjusted by either increasing or decreasing them by a predefined percentage. 

 

According to Mishra et al. [158] the normalization of the weights is performed as 

follows: 푤 ′ =
∑

 . 

In case that we take into account the floor and ceiling constraints the formula is 

modified as follows: 푤 ′ = 푎 푧 +
∑

(푏 푧 − ∑ 푎 푧 ),   where 푧 =  {0, 1} and 

푎 ≤ 푤 ≤ 푏 , ∀ 푖 = 1,2, … , 푚.   

However, If we take into consideration only the floor constraint and there is no 

restriction on the upper limit the formula is modified as follows:   

푤 ′ = 푎 푧 +
∑

(1 − ∑ 푎 푧 ),  푖 = 1, … , 푚. 

Finally, if we take into consideration only the ceiling constraint and there is no 

restriction on the lower limit the formula is modified as follows: 푤 ′ = 푏 푧 −

∑
(푏 푧 ),  푖 = 1, … , 푚 
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5.3.3 Cardinality constraint 
 Cardinality constraint max

1
min CqC

m

i
i 


, where  Cmin is the minimum number of assets 

that a portfolio can hold, Cmax is the maximum number of assets that a portfolio can 

hold,  qi = 1 , for  wi > 0 and qi = 0 , for  wi = 0.  In the relevant literature and in 

business practice the cardinality constraint is expressed in various forms. For instance, 

in certain cases the number of assets in the portfolio is set to a given value and in 

some other cases is bounded between a lower and upper value. The cardinality 

constraint is used to facilitate the portfolio management and to reduce its management 

costs [69].  

     Streichert et al. [200] proposed a repair mechanism capable of handling cardinality 

constraints. A real-valued genotype is applied to represent the solution vector. In case 

that cardinality constraints are considered in the model, only the K largest values of 

푤  are kept before applying the normalization. To the rest of the decision variables 푤  

is assigned a zero value. 

      A number of papers examine the cardinality constraint (CC) but in a simplified 

form where the inequality restriction is replaced by an equality restriction instead [8], 

[202], [159]. However Chiam et al. [34] proposed a repair mechanism for the 

cardinality constraint (CC) in its generic format as it is expressed with the assistance 

of inequality restrictions by the following relation max
1

min CqC
m

i
i 


, where Cmin is the 

minimum number of assets that a portfolio can hold, Cmax is the maximum number of 

assets that a portfolio can hold,  qi = 1 , for  wi > 0 and qi = 0 , for  wi = 0.  The repair 

operator for the CC is described in Fig.3 

 
 

IF number of asset > maximum 
cardinal 
 Increase all weights by k% 
else IF number of asset < minimum 
cardinal 
 Decrease all weights by k% 
end IF 

 
Figure 5.3. Pseudo code for the repair operator 
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The CC repair mechanism as described in Fig. 5.3 increases the weights in the 

solution vector when its associated portfolio size exceeds the maximum cardinality 

and respectively decreases the weight in the solution vector when its associated 

portfolio size is smaller than the minimum cardinality. According to the authors [34] 

this repair mechanism is able to adjust the portfolio sizes of infeasible vector solutions 

back to the feasible range. 

       Budget, floor and ceiling constraints and cardinality constraints are the most 

commonly used constraints by the studies in the field. These constraints are 

considered hard constraints [201] that means that they must not violated. On top of 

the aforementioned constraints there is a number of additional real world constraints 

like the class or sector constraints, roundlots constraints, transaction costs constraints, 

pre-assignment constraints,  trading constraints, turnover constraints and the 5-10-40 

constraint that are less often addressed by the studies in the field [155].  Below we 

provide a presentation of these constraints: 

 
 
 

5.3.4 Class constraints 
Class constraints [28] limit the exposure of the portfolio to assets with common 

characteristic. Let Γm , m = 1, ... , M, be M sets of assets that are mutually exclusive 

i.e. 훤 ∩ 훤 =  ∅, ∀ 푖 ≠ 푗. Class constraints limit the proportion of the portfolio that 

can be invested in assets in each class. Let 퐿 be the lower proportion limit and 푈  be 

the upper proportion limit for class m then the class constraints are: m
mi

im UwL 


  

, m = 1, ... , M. 

Anagnostopoulos K. and Mamanis G. [5] proposed a method for handling the class 

constraint. Specifically, they introduced a vector of real values that represents the 

proportion of the initial budget that should be invested in each class. 

 

C = (푐 , 푐 , … , 푐 ), 0 ≤ 푐 ≤ 1,    푡 = 1, … , 푇   

 

The class weights c are associated with each group of assets t and they are normalized 

to find the proportion invested in assets belonging to the particular class by using the 

formula:  
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푟푐푝(푡) = 퐿 +
∑

1 − ∑ 퐿 ,   푡 = 1, … , 푇 

 

Where rcp(t) is the real class proportion invested in class t. Next, the real proportion 

of each class is shared in the corresponding assets of the particular class. Also, 퐿  is 

the lower proportion limit and 푈  be the upper proportion limit for class t. The 

proportion associated with each asset in the portfolio is estimated as follows: 

푥 = 푙 훿 +
∑ ∈ ( )

푟푐푝(푐푙푎푠푠(푖)) − ∑ 푙∈ ( ) 훿 , 푖 = 1, … , 푛          (5.1) 

 

where class(i) returns the group that the asset i belongs. 

 

      According to the authors [5] the aforementioned methodology for handling the 

class constraint occasionally can lead to infeasible portfolios. In particular, in certain 

cases the portfolio does not contain an asset from a specific class, which must have a 

positive proportion weight in the portfolio. In this case the rcp of the particular class 

does not share and the resulting solution violates budget as well as one class 

constraint.  They propose a repair mechanism for the infeasible solution, where a 

random asset is inserted from a specific class into the portfolio, simply by changing a 

zero value to 1 in the Δ string. 

      There is another case where the class constraint can lead to infeasible portfolios. 

Specifically, in certain cases the parenthesis in Eq.(5.1) is negative. This can occur 

when the rcp for a particular class is not enough to be shared in the corresponding 

assets, so that to satisfy lower quantity constraints for these assets. The proposed 

repair mechanism deletes surplus assets that belong to the particular class, by 

changing the value from 1 to 0 in the Δ string starting from the one with the smallest 

weight.  

      The aforementioned repair mechanism is able to satisfy the lower class bound. For 

the upper class bound is applied the following repair mechanism proposed by Chang 

et al. [28]. In particular, if a real class proportion rcp(t) violates its upper limit 푈 , 

then the real class proportion for the particular class t takes the 푈  value and the 

remaining class values are normalized as shown above. The same process is followed 

for the real asset weights. 
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5.3.5 Roundlots 
Roundlots [201] give the smallest volumes 푐  that can be purchased for each asset, 

푤 =  푦 ∙ 푐   , 푖 = 1, … , 푁 and 푦 ∈ ℤ. In certain markers the securities are negotiated 

as multiples of minimum lots. The Roundlots constraint is used in order to represent 

the fact that each stock in certain markets is negotiated as multiple of a minimum 

tradable lot. 

    Streichert et al. [200] proposed a repair mechanism capable of handling cardinality, 

floor constraint and minimum roundlots. According to [200], the algorithm rounds 푤  

to the next roundlot level: 푤 ′ = 푤 − (푤  푚표푑 푐 ). The remainder of the rounding 

process ∑ (푤  푚표푑 푐 ) is spend in quantities of 푐  on those 푤 ′ which had the biggest 

values for 푤  푚표푑 푐  until all of the remainder is spent. 

      Chiam et al. [35] provides a practical way of handling the roundlot constraint. 

According to [35] the roundlot constraint is expressed by the following relationship: 

푤 =   , where C is the total capital budget,  푐  is the purchasing price for the 

minimum lot of asset i and 푦 ∈ ℤ denotes the number of lots purchased for asset i. 

The inclusion of roundlot constraint into the CPOP may require relaxation of the 

budget constraint, as the total capital is very likely not to be exact multiples of the 

minimum lot prices for the various assets [35].  

     According to [35] every asset that is added into the portfolio will first be adjusted 

based on the floor and ceiling constraints, as shown above. Then, they can be rounded 

down to the largest weight available according to the: 푤 ′′ = 푤 ′ − 푤 ′ ∙ 푚표푑( ). The 

remainder of the budget will be allocated to the assets in the existing portfolio 

provided that the ceiling constraint is not violated and also to assets outside the 

portfolio with the condition  that the floor constraint will be satisfied. 

 
 
 
5.3.6 Transaction costs 
Transaction cost can be classified into two types: fixed and variable costs. Fixed costs 

are paid on all transactions irrespective of the volume of the transaction. While the 

variable costs are dependent on the transaction volume.   

     According to Woodside-Oriakhi et al. [217] the transaction cost can be represented 

with the assistance of equation ∑ ( 푣 푦 + 푣 푦 + 푓 푎 + 푓 푎 )  ≤ 퐷 which 

limits the total transaction cost incurred. 
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where: 

 푣  is the variable transaction cost (≥ 0) for each unit of asset i that is bought.  

 푣  is the variable transaction cost (≥ 0) for each unit of asset i that is sold. 

푦  the number of units (≥ 0) of asset i bought. 

푦  the number of units (≥ 0) of asset i sold. 

푓  is the fixed transaction cost (≥ 0) paid if we carry out any buying of asset 

i.  

푓  is the fixed transaction cost (≥ 0) paid if we carry out any selling of asset i.  

푎  1 if we buy any of asset i, 0 otherwise. 

푎  1 if we sell any of asset i, 0 otherwise. 

The 푣 푦 + 푣 푦  is the variable cost associated with trading asset i and 푓 푎 + 푓 푎  

is the fixed cost associated with trading asset i. Please note that the variable cost 

correspond to a V-shaped function. The transaction costs constraint is usually 

considered when we want to incorporate into the CPOP the re-optimization of the 

portfolio of stocks successively over time. The purpose of the transaction costs 

constraint is to limit the cost associated with buying and selling stocks during the re-

optimization process. 

 
 
 

5.3.7 Pre-assignment constraint    
In certain cases, usually after investor’s request some specific assets should be 

included in the portfolio in predetermined proportions. This constraint can be imposed 

by setting predetermined value for the minimum and maximum weighting, αi and bi 

values for those particular assets.  

      According to Di Gaspero et al. [68] given a set of assets S = {푠 , … , 푠 } and a set 

of binary decision variables Z such that 푧 = 1 if and only if asset i is in the solution 

(i.e. 푤 > 0),  the pre-assignment constraint can be expressed by a binary vector P 

such that 푝 = 1 if and only if 푠  is pre-assigned in the portfolio. Where 푧 ≥ 푝  ,    푖 =

1, 2, … , 푛  Please notice that if the number of pre-assigned assets ∑ 푝  is greater 

than the minimum cardinality (Cmin), then Cmin is implicitly set to it. 
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5.3.8 Trading constraints 
In the multi-period formulation of the CPOP the Trading constraints can be useful for 

imposing minimum limits on buying and selling of very small quantities of assets as 

fixed costs can be disproportional high compared to the value of the transaction [69].  

According to Chiam S.C. et al. [35] the trading constraints can be expressed as 

follows: 

 

푤 = 0 표푟 푤  ≥ 푤 + 퐵  

푤 = 0 표푟 푤  ≤ 푤 − 푆  

Where 푤  represents the holding proportion of asset i at zero period and 퐵   and 푆  

denotes respectively the minimum purchase and sale of asset i at period 1. 

 
 
 
 
5.3.9  Turnover constraint 
According to Scherer et al. [182] the turnover constraints are trading limits designed 

to protect from executing a market order at a worse rate than originally set in the 

order. Moreover, according to Chiam S.C. et al. [35] the main difference between the 

trading constraints and the turnover constraints is that the first impose minimum limits 

on buying and selling assets while the second impose upper bounds for assets 

variation between trading periods. According to Chiam S.C. et al. [35] the turnover 

constraints can be expressed as follows: 

푚푎푥(푤 − 푤 , 0) ≤ 퐵  

푚푎푥(푤 − 푤 , 0) ≤ 푆  

 Where 푤  represents the holding proportion of asset i at zero period and 퐵   and 푆  

denotes respectively the maximum purchase and sale of asset i at period 1. 
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5.3.10 The 5-10-40 constraint 
The 5-10-40 constraint is based on the German investment law. This law impose that 

a fund may invest no more than 5% of its value in securities of the same issuer. 

However, this limit can be increased to 10% provided that the total value of any 

holdings between 5% and 10% does not exceed 40% of the fund.  

      Branke et al. [24] proposed a repair mechanism for the 5-10-40 constraint that is 

analysed in seven (7) steps as follows: 

1. For all i with 푧 = 0, set 푤 = 0. 

2. The vector 풘 is normalized 푤 ′ =
∑

 

3. The surplus amount exceeding the 10% threshold is calculated,  Ω = ∑ (푤 −.

0.1). All 푤 > 0.1 are set to 0.1. 

4. The surplus S has to be redistributed to the weights below 10%. Each weight below 

10% is increased by the amount (0.1 − 푤 ) ∙   , where 훹 = ∑ (0.1 − 푤 ). . 

Since 훹 < 훺, no weight will have a value above 10% after the first step. 

5. In the group with more than 5% we only accept the assets with the largest weights 

such that the sum is still less than or equal to 40%. All others are capped to 5% and 

the excess weight is distributed to the other assets analogously to the above step. 

6. In case that there is not enough room for all the excess weight to be redistributed 

among the assets with less than 5%, the remaining is used to fill up the assets between 

5% and 10% up to 10% in order of decreasing weight. 

7. The previous step may lead to a violation of the 5-10-40 constraint. In this case, 

assets are removed from the 5-10% group in order of increasing weights, and the 

weight in excess of 5% is distributed to the other assets in the 5-10% group as shown 

to the previous step. The 5-10-40 rule implicitly signifies that any feasible portfolio 

for the CPOP with 5-10-40 constraint will contain at least 16 different assets, 4 times 

10% plus 12 times 5%.   
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5.4 Analysis of various MOEAs’ configuration issues 
for efficient solution of the constrained portfolio 
optimization problem 
 
As we have already highlighted the MOEAs cannot be used directly in their standard 

format for the solution of the constrainted portfolio optimization problem (CPOP), as 

special treatment is required with regard to a number of issues like the encoding type, 

the genetic operators and the objectives’ handling. Below, we provide an analytical 

account of the best practices in the field as they emerge by examining the state-of-the-

art. 

 
 
5.4.1 Encoding types 
The choice of the most suitable technique for the solution representation is of upmost 

importance as has serious impact on the performance and functionality of the entire 

MOEA. Table 3 presents the types of encoding for the representation of the solution 

vector and their corresponding popularity as it is indicated by the studies in the field. 

 

 
Figure 5.4. The most commonly used types of encoding for representing the solution vectors by the 

studies in the field (%) 
 
 

Table 5.3: The most commonly used types of encoding for representing the solution vectors by the 
studies in the field (%) 

Encoding Type Percentage (%) 
Real 15 
Hybrid binary-real valued encoding 85 
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Among them, the hybrid representation proposed by Streichert et al. [200] is the most 

popular type of encoding for solution vector representation, as 85% of the studies in 

the field make use of this encoding type [24], [28], [35], [36], [78], [121], [140], 

[158], [200]. In the hybrid representation two vectors are used for defining a portfolio:  

A binary vector that specifies whether a particular asset participates in the portfolio 

and a real-valued vector used to compute the proportions of the budget invested in the 

assets. 

 

훥 =  {푧 , … , 푧 },    푧 =  {0, 1},    푖 = 1, … , 푛 

푊 =  {푤 , … , 푤 },    0 ≤ 푤 ≤ 1,    푖 = 1, … , 푛 

 

Moreover through the hybrid encoding a number of constraints like for example the 

cardinality constraint can be satisfied. For instance, if the number of 1’s in 훥 

overcomes the maximum cardinality, then those assets that have the minimum weight 

in 푊are deleted, by changing its value from 1 to 0 in 훥. 

    According to Streichert et al. [200] the usage of hybrid encoding for the solution 

representation facilitates the process of adding or removing an asset to the portfolio 

by simply mutating the bit-string 훥. Finally, the hybrid encoding is altered by 

mutating and crossing each genotype 푊 and 훥 separately from each other. 

     The 15% of the studies in the field use real encoding for the solution vector 

representation. In the real encoding solution representation, the binary vector (훥) is 

replaced by a mechanism that ensures if an asset is selected to be included in portfolio 

is assigned a value of 1 otherwise 0.   

      Analytically, according to Gupta et al. [105] the real coded genetic algorithm 

(RCGA) is applied as follows: If the 푖푡ℎ asset has been selected to be included in the 

portfolio then assign 푦 = 1 and randomly generate 푤 ∈ [푙 푦 , 푢 푦 ], i.e.  푤 ∈ [푙 ,

푢 ]; otherwise assign 푦 = 0 and thus 푤 = 0.  
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5.4.2 Mutation operators 
The mutation operator is being used by the MOEAs to maintain the diversity in the 

population and thereby avoid stagnation at a local optimum [15]. Table 5.4 presents 

various types of mutation operators that have been applied for solving the CPOP and 

their corresponding popularity as it is indicated by the studies in the field. As shown 

in Table 4 the most popular mutation operators when it comes to the solution of the 

CPOP are the Bit-flip mutation with 46.67% and the Gaussian random mutation with 

33.33% respectively.  
 
 
 
 

 
Figure 5.5. The most commonly used mutation operators by the studies in the field. 

 
 
 

 
Table 5.4: The most commonly used mutation operators by the studies in the field. 

Mutation Operator 
Percentage 

(%) 
Gaussian random mutation 33.33 
Bit flip mutation 46.67 
PLM 7.67 
Bit-swap mutation 8.33 
PGM 4.00 

       
 There is an interrelation between the encoding type and the selection of the 

appropriate mutation operator. For instance, we found out that a considerable 

percentage of the studies that use Hybrid encoding for the solution representation, 

apply Gaussian random mutation [5], [6], [24], [36] for the real-valued vectors and 
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Bit-flip mutation [5], [6], [24], [36], [76], [200], [201] for the binary-valued vectors. 

Below, we provide a short description of the mutation operators as appeared in Table 

4.  

       We start with the Gaussian Mutation operator (푀 ).  Let 푥 ∈ [푎, 푏] be a real 

variable. Then, the Gaussian mutation operator changes 푥 to: 

푀 (푥) ∶= min(max(푁(푥, 휎), 훼) , 푏). 

Where 휎 may depend on the length of the interval  푙: = 푏 − 푎. The 푀  is applied with 

probability 푝  to each variable. The value of 휎 also depends on the number of the 

current generation. In particular, 휎 decreases with time, as at the beginning a stronger 

mutation supports the sampling of the search space and smaller displacements 

towards the end aid in fine tuning extreme values. Gaussian mutation considered 

suitable for local search.  

       The flip-bit mutation is being used for binary-valued vectors and reverses the 

value of a randomly selected gene as shown below: 

 
 
 
 
 

1 1 0 1 1 0 0 1       1 1 0 1 1 1 0 1 

 
 

Figure 5.6. The Flip-bit mutation 
 
 

The bit-swap mutation operator [35] is mainly used for order-based representation and 

allows the swapping between the assets and weights of two randomly selected alleles 

in a single solution vector as shown below:   

 
 

5 3 7 1 2 4 8 6       5 4 7 1 2 3 8 6 

 
Figure 5.7. The Bit-swap mutation 

 
 
The position of randomly chosen genes (assets in this case) is swapped. According to 

Chiam et al. [35] in bit-swap mutation in order to prevent neutral variation, it should 

be taken care that at least one of the selected assets should be within the portfolio (i.e. 

푤 > 0 ).  
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      In polynomial mutation (PLM) [61] each decision variable xi, can take values in 

the interval: 푥( )  ≤ 푥 ≤ 푥( ), 푖 = 1, 2, … , 푛. Where 푥( ) and 푥( ) stand 

respectively for the lower and upper bounds for the decision variable i. Moreover, 

each decision variable has a probability Pm to be perturbed. For each decision 

variable, a random value rand is drawn. If rand ≤ Pm then, a mutated variable obtains 

its new value. If random value is r ≤ 0.5 it samples to the region between XLow and Xi, 

otherwise if r > 0.5 it samples to the region between Xi and XUpper. The algorithm also 

calculates the δq value to be used in getting the variable its new value. According to 

Deb & Tiwari [61] one of the main advantages of polynomial mutation is that it 

allows us to sample the entire search space of the decision variable even though the 

value to be mutated is close to one of the boundaries (XLow  - XUpper). 

        Liagkouras and Metaxiotis [140] presented the probe guided mutation (PGM) 

operator and its application for solving the CPOP. The proposed mutation operator 

incorporates a fitness functions evaluation mechanism that allows the evaluation of 

the corresponding fitness for the left hand side region and the right hand side region 

of the parent solution. The selection between the two alternative child solutions is 

done with the assistance of the Pareto optimality conditions. According to the authors, 

thanks to the PGM operator the algorithm is able to move fast towards the higher 

fitness regions of the search landscape and discover near optimal solutions.  
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5.4.3 Recombination operators 
The recombination operator is responsible for the efficient exploration of the available 

search space. Table 5.5 presents a number of recombination operators and their 

corresponding popularity for solving the CPOP as it is indicated by the relevant 

studies in the field. As shown in Table 5, the most popular crossover operators when 

it comes to the solution of the CPOP are the Uniform crossover with 40.91% and the 

Single point crossover with 22.73% respectively. 

 
 

 
Figure 5.8. The most commonly used crossover operators by the studies in the field. 

 
 
 
 

Table 5.5: The most commonly used crossover operators by the studies in the field. 
Crossover Operator Percentage (%) 
Uniform crossover 40.91 
Single point crossover 22.73 
Two point crossover 9.09 
Multi point crossover 13.64 
SBX 13.64 

 
 
 
In Uniform crossover [4], [5], [28], [30], [34], [45], [158], [169] two parents generate 

a single child. According to Chang et al. [28] if an asset is present in both parents it is 

present in the child. If an asset is present in only one parent it has probability 0.5 of 

being present in the child. Figure 5.9 provides an example of the uniform crossover. 
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Parent 1 1 1 0 1 1 0 0 1 

 
Parent 2 1 1 0 0 1 0 0 0 

 
Offspring 1 1 0  1 0 0  

   
  
                   0 or 1       0 or 1 with 0.5 probability 

 
Figure 5.9. The Uniform crossover 

 
 

 
 
In Single-point crossover [36], [184] randomly is selected one crossover point and 

then is copied everything before this point from Parent 1 and then everything after the 

crossover point is copied from Parent 2. Figure 5.10 provides an example of Single-

point crossover. 

 
 

Parent 1 1 1 0 0 1 1 1 0 

 
Parent 2 1 0 0 0 1 0 0 0 

 
 

Offspring 1 1 1 0 0 1 0 0 0 

 
Offspring 2 1 0 0 0 1 1 1 0 

 
Figure 5.10. Single-point crossover 

 
 
 
 
The Two-point crossover [76] is similar to single-point crossover except that two cut-

points are randomly generated instead of one. Figure 5.11 provides an example of 

Two-point crossover. 

 
 

Parent 1 0.2 0.05 0.15 0.35 0.1 0.07 0.03 0.05 
 

Parent 2 0.07 0.05 0.05 0.03 0.2 0.1 0.35 0.15 
 
 

Offspring 1 0.2 0.05 0.15 0.03 0.2 0.1 0.03 0.05 
 

Offspring 2 0.07 0.05 0.05 0.35 0.1 0.07 0.35 0.15 
 

Figure 5.11. Two-point crossover 
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As expected after compliting the crossover process a repair mechanism is applied to 

the offspring solutions to satisfy the budget constraint as follows 푤 ′ =
∑

  . 

Similarly to the Two-point crossover is applied the Multi-point crossover with only 

difference that instead of two crossover points in this case we have three or more 

crossover points.  

       The simulated binary crossover (SBX) operator [54] uses a probability 

distribution around two parents to create two children solutions. Each decision 

variable xi, can take values in the interval: 푥( )  ≤ 푥 ≤ 푥( ), 푖 = 1, 2, … , 푛. Where 

푥( ) and 푥( ) stand respectively for the lower and upper bounds for the decision 

variable i. In SBX, two parent solutions  푦( ) and 푦( ) generate two children solutions 

푐( ) and 푐( ) as follows: 

 

푐( ) = 0.5 푦( ) + 푦( ) − 훽 |푦( ) −  푦( )|  

푐( ) = 0.5 푦( ) + 푦( ) + 훽 |푦( ) −  푦( )|  

 
 
 
Create a random number u between 0 and 1.   u               [0, 1]; 
 
 

where  훽  =  

   
 ( ) ( )⁄                   ,   

( )⁄
 표푡ℎ푒푟푤푖푠푒 

�   

 
 
 
 
훼 = 2 − 훽 ( )  and  
 
 
  훽 = 1 +  ( ) ( )  푚푖푛 (푦( ) − 푦( )), (푦( ) − 푦( ))  
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5.4.4 Selection operators 
The selection operator is responsible of choosing the fittest chromosomes to evolve to 

the next generation. As shown from table 6 Tournament selection is by far the most 

popular selection operator as 95% of the studies in the field make use of this selection 

operator. 

 

 
Figure 5.12. The most commonly used selection operators by the studies in the field (%). 

 
 
 
 

Table 5.6: The most commonly used selection operators by the studies in the field (%). 
Selection Operator Percentage (%) 
Tournament selection 95.00 
Rank based selection 5.00 

 
 
 
 
In tournament selection, k individuals are selected randomly from the population and 

compete against each other. The individual with the highest fitness is selected to be 

included to the next generation’s population. The number of individuals competing in 

each tournament is referred to as tournament size. Binary (or pairwise) tournament 

selection (i.e. k=2) is the most popular tournament size among the studies in the field. 

We found out that about 85% of the total studies in the field make use of the binary 

tournament selection [4], [5], [24], [34], [36], [37], [140], [169]. As the tournament 

size increases (k >2) the selection pressure increases too. The selection pressure can 

be defined as the ratio between the population size and the number of individuals 

selected as parents of the next generation [157].  Thus, the selection pressure can be 
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calculated as follows: 푆푃 = 1 −  , where 푁  stands for the number of 

different selected parents and 푁  represents the population size. As selection 

pressure increases, the probability of making the wrong decision increases 

exponentially and the lack of diversity in the population may lead to premature 

convergence in local optima solutions [108]. 

      Deb K. [52] suggested the use of binary tournament selection for efficient 

constraint handling. In particular he proposed the following criteria: 

1. Any feasible solution is preferred to any infeasible solution. 

2. Among two feasible solutions, the one having better objective function value is 

preferred. 

3. Among two infeasible solutions, the one having smaller violation is preferred. 

     In another study, Chiam et al. [37] propose the binary tournament selection to be 

based on the Pareto ranking for the selection of the fittest and in the event of a tie the 

niche count to be employed.    

      The rank based selection is used by the 5% of the studies in the field. In the rank 

based selection the individuals are sorted from best to worst according to their fitness 

values. Thus, based on its rank, each individual i has a probability  푝(푖) of being 

selected. The 푝(푖) depends on a ranking function that can be of different types like for 

instance linear, exponential, power or geometric.    

      According to Goldberg and Deb [101] the tournament selection is superior to rank 

based selection because the tournament selection is faster than sorting the population 

to assign rank based probabilities. Although, both selection operators generate 

comparable results in terms of rate of convergence towards the optimum solution, the 

time complexity associated with the rank based selection deters many researchers in 

the field from employing this selection operator in their studies.  
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5.5 Performance Metrics 
In this section the focus is concentrated on the evaluation of the relevant results from 

the MOEAs’ implementation to the solution of the CPOP. In particular, the evaluation 

of the relevant results is not straightforward due to the multiobjective nature of the 

portfolio optimization problem. However, according to Zitzler et al. [229] there are a 

number of indicators that assist us to evaluate the quality of the derived solutions: 

a. The smaller the distance of the resulting non-dominated set from the Pareto 

optimal front the better. 

b. The more uniform the distribution of the solutions found across the non-

dominated front the better. 

c. The greater the extension of the obtained non-dominated front the better.  

 

Based on the aforementioned principles, a number of performance metrics for 

multiobjective problems have been proposed. Below, we provide a concise 

presentation of the most popular performance metrics [232] as these emerged by the 

studies in the field. 
 
 

 
 

Figure 5.13. The most commonly used performance metrics by the studies in the field (%). 
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f2 

Table 5.7: The most commonly used performance metrics by the studies in the field (%). 
Performance Metrics Percentage (%) 
Hypervolume (HV) 37.50 
Epsilon indicator 16.67 
Generational distance (GD)  12.50 
Spread (Δ) 8.33 
Maximum spread (MS) 8.33 
R2 indicator 4.17 
Spacing (S) 4.17 
Coverage of two sets (C) metric 8.34 

 
 
 
 

5.5.1 Hypervolume 
As shown in Table 7 the most popular performance metric in the field is the 

Hypervolume (HV) [73], [76], [140], [200], [201]. Hypervolume, also known as 

Lebesgue measure [134], S metric [227] or ‘hyperarea metric’ [211] is an indicator of 

both the convergence and diversity of an approximation set. Thus, given a set S 

containing m points in n objectives, the hypervolume of S is the size of the portion of 

objective space that is dominated by at least one point in S. 

 
 

                                      
 

Figure 5.14  Hypervolume of a bi-objective minimization problem 
 
 
 

The hypervolume of S is calculated relative to a reference point which is worse than 

(or equal to) every point in S in every objective.  The greater the hypervolume of a 

solution the better considered the solution. One of the main advantages of 

hypervolume [233] is that it is able to capture in a single number both the closeness of 

the solutions to the optimal set and, to some extent, the spread of the solutions across 

objective space. According to a number of studies Hypervolume, also has nicer 

mathematical properties than many other metrics. In particular, Zitzler et al. [234] 
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state that hypervolume is the only unary metric of which they are aware that is 

capable of detecting that a set of solutions X is not worse than another set X’.  

 
 
 

5.5.2 Epsilon indicator 
Epsilon indicator is the second most popular performance metric as it is indicated by 

the studies in the field [4], [5], [6], [140]. Zitzler et al. [234] introduced the epsilon 

indicator.  There are two versions of epsilon indicator the multiplicative (퐼 ) and the 

additive (퐼 ). The basic usefulness of epsilon indicator of an approximation set A is 

that it provides the minimum factor ε or respectively the minimum term ε by which 

each point in the real front R can be multiplied or respectively added, such that the 

resulting transformed approximation set is dominated by A. The epsilon indicator is a 

good measure of diversity, since it focuses on the worst case distance and reveals 

whether or not the approximation set has gaps in its trade-off solution set. The smaller 

the epsilon indicator, the better is the approximation set. The Pareto-optimal solutions 

set has 퐼 = 1 and 퐼 = 0. 

        The epsilon indicator Iε is defined for two Pareto sets A and B as  퐼 (퐴, 퐵) =

푖푛푓 ∈ℝ{∀ 푧 ∈ 퐵 ∃  푧 ∈ 퐴: 푧  ≼  푧 }. Where in the case of a minimization problem 

the multiplicative ε-dominance relation is defined as: 푧  ≼  푧 ⟺ ∀ 푖 ∈

1, … , 푛: 푧  ≼  휀 ∙ 푧 . The additive epsilon indicator 퐼  is defined by using the 

additive ε-dominance: 푧  ≼  푧 ⟺ ∀ 푖 ∈ 1, … , 푛: 푧  ≼  휀 + 푧 .     

      Many studies in the field use both HV and Epsilon indicator for the evaluation of 

the relevant results. According to Knowles et al.  [126] when two algorithms generate 

conflicting preferences between these two metrics they are incomparable.  
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5.5.3 Generational distance 
Generational distance (GD) [212] is the third most popular performance metric as it is 

indicated by the studies in the field. The GD is used to measure the proximity of the 

approximate efficient frontier (EFknown) found from the actual efficient frontier and is 

given by the following relationship: 

퐺퐷 =  
1
푚 푑  

Where 푚 is the number of solutions found, 푑  is the Euclidean distance in objective 

space, between the member i in EFknown and its nearest member of the actual efficient 

frontier (EFtrue). A low value of GD indicates that the EFknown is very close to the true 

efficient frontier. A value of GD = 0 indicates that all the elements generated are in 

the Pareto optimal set.     

 
 
 

5.5.4 Spread metric 
Spread metric (Δ) [57] examines how evenly the solutions are distributed among the 

approximation sets in objective space. First, it calculates the Euclidean distance 

between the consecutive solutions in the obtained non-dominated set of solutions. 

Then it calculates the average of these distances. After that, from the obtained set of 

non-dominated solutions the extreme solutions are calculated. Finally, using the 

following metric it calculates the nonuniformity in the distribution. 

 

훥 =
푑 +  푑 +   ∑ |푑 −  푑̅|

푑 +  푑 +  (푁 − 1)푑̅
   

Where df  and dl are the Euclidean distances between the extreme solutions and the 

boundary solutions of the obtained nondominated set.  The parameter 푑̅ is the average 

of all distances di, i = 1, 2, ... , (N - 1), where N is the number of solutions on the best 

nondominated front. A low value of Δ metric indicates wide and uniform spread out 

of the solutions across the Pareto front. Δ takes the value of zero for the optimum 

spread out of the solutions across the Efficient frontier. 
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5.5.5 Maximum spread 
Maximum spread (MS) metric [35], [229] measures how well the true efficient 

frontier (EFtrue) is covered by EFknown through the hyper-boxes formed by the extreme 

function values observed in both fronts. Deb [53] suggested that MS metric can be 

misleading if the objective functions have different ranges. For that reason a 

normalized version of the MS metric has been proposed:    

푀푆 =  
1
퐿

푓 − 푓
(퐹 − 퐹 )

 

 Where 푚 is the size of the obtained approximate efficient frontier (EFknown),   푓  is 

the function value of the 푙-th objective of solution i, 퐹  and 퐹  are the maximum 

and minimum of the 푙-th objective in the true efficient frontier (EFtrue). The greater 

the value of MS metric is, the more the area of the EFtrue is covered by EFknown.  

 
 
 
5.5.6 R2 metric 
R2 metric [107] uses the 퐶(퐴, 퐵, 푢) function to decide which of two approximations is 

better on utility function u, without measuring by how much. Where A and B are two 

approximation sets, U is a set of utility functions, 푢: 푅 → 푅 which maps each point 

in the objective space into a measure of utility. Let 푢∗ be the function defined as: 

푢∗(퐴) =  푚푎푥 ∈  {푢(푧)} and 

 

퐶(퐴, 퐵, 푢) =  

1 푖푓 푢∗(퐴) > 푢∗(퐵)
1
2  푖푓 푢∗(퐴) = 푢∗(퐵)

0 푖푓 푢∗(퐴) < 푢∗(퐵)

� 

 

and  푝 is an intensity function expressing the probability density of each utility 

function 푢 ∈ 푈. R2 takes into account the expected values of the utility. In particular, 

R2 calculates the expected difference in the utility of an approximation set A with 

another one B.  The R2 metric is given by the following relationship: 

 

푅2(퐴, 퐵, 푈, 푝) =  퐸(푢∗(퐴)) − 퐸(푢∗(퐵)) = ∫ 푢∗(퐴)푝(푢)푑푢 −∈ ∫ 푢∗(퐵)푝(푢)푑푢∈    
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5.5.7 The spacing metric 
The spacing metric (S) [227] measures how evenly the solutions are distributed in the 

approximate efficient frontier (EFknown) and it is given by the following relationship: 

 

푆 =  

1
푚 ∑ (푑 − 푑̅)

푑̅  

 

Where 푑  is the Euclidean distance in objective space, between the solution i and its 

nearest solution in the approximate efficient frontier. A value of zero for this metric 

indicates that the solutions in the approximate efficient frontier are equidistantly 

spaced.  

 
 
 

5.5.8 Coverage of two sets metric 
Coverage of two sets (C) metric [227] compares the quality of two non-dominated 

sets. Let A and B be two different sets of non-dominated solutions, then the C metric 

maps the ordered pair (A, B) into the interval [0, 1]: 

 

퐶(퐴, 퐵) =  
|{푏 ∈ 퐵/  ∃푎 ∈ 퐴: 푎 ≽ 푏}|

|퐵|  

 

Where α and b are candidate solutions of sets A and B respectively. If C(A, B) = 1, all 

the candidate solutions in B are dominated by at least one solution in A. Likewise, if 

C(A, B) = 0, no candidate solutions in B is dominated by any solution in A. Finally, 

C(A, B) is not necessarily equal to 1 - C(B, A).  
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5.6 Recommendations for Future Research 
The examination of the best practices in the field of the solution of the constrained 

portfolio optimization problem with the support of MOEAs resulted in some 

interesting findings.  

      For instance it appears to exist unanimity among the researchers about the best 

practices in the field for certain aspects of the problem's configuration. A striking 

example of the above statement is the adoption of the tournament selection operator 

by the 95% of the studies in the field. Moreover, 85% of the studies in the field make 

use of the hybrid representation scheme proposed by Streichert et al. [200].  

      However, the situation is more perplexed when we examine the best practices in 

the field with regard to some other important aspects of the problem's configuration. 

For example, it does not seem to exist a mutation operator that dominates the field. 

      Even more perplexed is the situation about the most appropriate crossover 

operator, as 40.91% of the studies in the field make use of the uniform crossover, 

while the 22.73% of the studies in the field make use of the single point crossover, 

13.64% make use of the multi point crossover, also another 13.64% make use of the 

SBX and 9.09% make use of the two point crossover. We believe that whenever the 

situation is unclear, like the one we just described above, comparative experimental 

research can be of great value in the process of identifying the best practices in the 

field. Moreover we believe the development and adoption of more efficient genetic 

operators is very important for the performance of the entire algorithm. 

      More experimental work is also required on the interrelation of the various 

constraints imposed to the problem as this area of research is in its early stages. In 

particular, it should be studied how the extracted solutions are affected in the presence 

of multiple constraints. For serving better that purpose, different combinations of 

constraints should be examined. The resulting violations should be highlighted and 

whenever possible the outline of potential repair mechanisms for efficient constraints' 

handling should be proposed. Moreover the development and adoption of more 

efficient representation schemes is very important for the performance of the entire 

algorithm. 

      Another area of concern is the adoption of commonly acceptable performance 

metrics for the evaluation of the experimental results. A major issue that is related 

with the various performance metrics is the different focus of each particular metric. It 
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is not unusual an algorithm to perform well in a particular metric and badly in 

another. All around Performance metrics such as the HV and Epsilon indicator are 

favoured by the researchers in the field as it is revealed by the relevant figures 

(37.50% and 16.67% respectively) as they are able to catch different aspects of the 

performance of a multiobjective algorithm. Moreover, due to their generic nature, 

they can facilitate the comparison of the experimental results between the various 

studies. 

       We believe that is important to be intensified the ongoing research towards the 

development of generic performance metrics that are able to capture the performance 

of an algorithm as a whole instead of focusing on certain aspects of the algorithms' 

performance. 

      Finally, we also believe that should be examined the incorporation of preferences 

in the solution of the constrained portfolio optimization problem with the support of 

MOEAs. Successful methodologies from the domain of the multiple criteria decision 

making (MCDM) such as [115], [116], [114], [113] with the appropriate adaptation 

for the solution of the portfolio optimization problem can be of great value toward the 

incorporation of preferences.   

 
 
 
5.7 Conclusions 
This chapter through the systematic study of the state-of-the-art presents the best 

practices in the field of the constrained portfolio optimization problem with the 

support of multiobjective evolutionary algorithms (MOEAs) from an algorithmic and 

technical point of view. In particular, we start with a concise presentation of the 

constrained portfolio optimization problem (CPOP) with the support of MOEAs. We 

proceed by identifying the most popular MOEAs for solving the CPOP as they 

emerge by the relevant studies in the field.    

      The MOEAs is their standard format cannot be used for solving the constrained 

portfolio optimization problem. Special algorithmic and technical treatment is 

required for the efficient incorporation of the constraints into the MOEAs. By 

examining the state-of-the-art we provide the best practices for efficient constraints 

handling.  
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     Moreover we examine a number of configuration issues related to the application 

of MOEAs for solving the constrained portfolio optimization problem. In particular 

we analyse a number of technical issues like the selection of the most appropriate 

encoding type, mutation, recombination and selection operator for solving the CPOP 

with the support of MOEAs. 

      Then our focus is concentrated on the evaluation of the relevant results from the 

implementation of the MOEAs to the solution of the constrained portfolio 

optimization problem. The evaluation of the relevant results is not straightforward due 

to the multiobjective nature of the portfolio problem. Once again through the 

systematic study of the state-of-the-art we identify the most popular performance 

metrics in the field along with their corresponding strengths and weaknesses.  

        Finally, based on our findings we identify some potential paths for future 

research. Our aspiration is that the collection and analysis of the best practices in the 

field of the constrained portfolio optimization problem with the support of MOEAs 

will contribute to the ongoing research in the field and will encourage the interested 

researchers to use some of our findings in their corresponding studies.  
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Chapter 6 
 

A new Probe Guided Mutation Operator and its 
application for solving the Cardinality 
Constrained Portfolio Optimization Problem 
 
 
 

6.1 Introduction 
Evolutionary Algorithms (EAs) have been increasingly applied over the past years for 

the solution of optimization problems with multiple objectives. The typical 

Multiobjective Evolutionary Algorithm (MOEA) utilizes three basic operators: 

selection, crossover and mutation [1]. However, the available literature regarding the 

variation operators for evolutionary multiobjective optimization remains relatively 

small. In particular, the mutation operator has received little attention and the majority 

of MOEAs make use of the Polynomial mutation (PLM) operator proposed by Deb & 

Goyal [56]. Later, Deb & Tiwari [61] proposed a highly disruptive version of the 

polynomial mutation that has been utilized in the latest version of NSGA-II [57] and 

SPEA2 [231]. This chapter proposes a new version of the highly disruptive 

polynomial mutation (PLM) named Probe Guided Mutation (PGM) operator that 

produces better results. More recently, Da Ronco & Benini [48] presented a Shrink-

Mutation operator for MOEAs that belongs to the Gaussian mutations category. 

However, as the authors admit the PLM operator when applied to IBEA algorithm 

gives better results than the Shrink-Mutation operator in terms of convergence 

towards the True Pareto Front [48]. Das et al. [50] presented a p-best mutation 

strategy for Evolutionary Programming (EP). EP relies mainly on its mutation 

operator for function optimization. Shortly the p-best mutation operator entails that 

any one of the p top-ranked population members according to fitness value is selected 

randomly for mutation.  Tang & Tseng [205] presented a new mutation operator 

called ADM for real coded Genetic Algorithms (GAs). According to the authors, the 

ADM mutation operator enhances the abilities of GAs in searching global optima as 

well as in speeding convergence by integrating a local directional search and adaptive 

random search strategies.  
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    The majority of the most recent mutation operators have been developed for 

differential evolutions (DE) algorithms [174]. Thus, Zhou et al. [225] proposed a new 

mutation operator called intersect mutation differential evolution (IMDE) algorithm. 

Alguliev et al. [2] proposed a new DE algorithm based on self-adaptive mutation and 

crossover (DESAMC). The proposed method dynamically adapts scale factor and 

crossover rate. Gong et al. [103] present a ranking-based mutation operator that makes 

the DE algorithm to converge faster.  

   Although the considerable amount of the ongoing work related to mutation 

operators and their importance for the performance of the entire algorithm, we noticed 

that the study of mutation operators in the context of MOEAs remains relatively rare. 

The PLM operator remains undoubtedly the mutation operator of choice when it 

comes to MOEAs. The motivation of this study is to build on the existing PLM and 

present a mechanism (the PGM) that allows the better exploration of solution space 

and is able to generate near optimal solutions that lies very close to the True Efficient 

Frontier (TEF). 

    The remainder of the chapter is organized as follows. In section 6.2, a description 

of the highly disruptive Polynomial Mutation (PLM) is given and in section 6.3 the 

proposed Probe Guided Mutation (PGM) and the formulation of the cardinality 

constrained portfolio optimization problem (CCPOP) are presented. In section 6.4 the 

implementation of the cardinality constraint and lower and upper bound to the MOEA 

are presented. The parameters setup is presented in section 6.5.1 and in section 6.5.2 

we formulate the CCPOP as a Mixed Integer Quadratic Program (MIQP) and we 

extract the True Efficient Frontier for each one of the examined problems with the 

assistance of CPLEX 12.5. Section 6.6 presents the performance metrics. In section 

6.7 we test the performance of the proposed PGM by using data sets from six different 

stock markets for the solution of the CCPOP. In section 6.8 the results from the 

implementation of the cardinality constrained portfolio optimization problem 

(CCPOP) are analyzed. In section 6.9 we provide an experimental presentation of the 

PGM operator with the assistance of the ZDT1-4, 6 and DTLZ1-7 families of test 

functions and the relevant results are analyzed. Finally, section 6.10 concludes the 

chapter. 
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6.2 Polynomial Mutation 
Mutation operators are being used as variation mechanisms to change the offspring 

genes. They assist to the better exploration of the search space. For MOEAs solving 

Multiobjective Problems (MOPs), Deb & Goyal [56] proposed a variation mechanism 

called polynomial mutation (PLM). This operator was later improved by Deb & 

Tiwari [61]. 

      In polynomial mutation as introduced by [61] each decision variable xi, can take 

values in the interval: 푥( )  ≤ 푥 ≤ 푥( ), 푖 = 1, 2, … , 푛. Where 푥( ) and 푥( ) stand 

respectively for the lower and upper bounds for the decision variable i. Moreover, 

each decision variable has a probability Pm to be perturbed. For each decision 

variable, a random value rand is drawn. If rand ≤ Pm then using the algorithm 

described in Fig 6.1, a mutated variable obtains its new value. If random value is r ≤ 

0.5 it samples to the left hand side (region between XLow and Xi), otherwise if r > 0.5 it 

samples to the right hand side (region between Xi and XUpper). The algorithm also 

calculates the δq value to be used in getting the variable its new value. According to 

Deb & Tiwari [61] one of the main advantages of polynomial mutation is that it 

allows us to sample the entire search space of the decision variable even though the 

value to be mutated is close to one of the boundaries (XLow  - XUpper). 

     Moreover, because PLM allows big jumps in the search space of the decision 

variable, the optimization process has better chances of escaping from local optima 

and can modify a solution when on the boundary. However, high disruption levels 

might not be good for achieving smooth approximation of the Pareto front. For 

instance, if a solution is near an optimal solution then large jumps in the decision 

space might not be an efficient way of discovering other optimal solutions too. The 

highly disruptive PLM has been applied in the latest version of NSGAII [57], SPEA2 

[231] and a java implementation of PLM algorithm provided by the jMetal framework 

[77]. 
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Begin 
mutation_probability = 1/n; (where n is the number of decision variables)  
ηm = distribution index; 
 
  for i=0 to N; (where N is the population size) 
             for z=0 to n;  
                     Xp = getValue(z);           
        Xl = getLowerBound(z); 
        Xu = getUpperBound(z);  
                             
                   rand          [0, 1];  
         if (rand <= mutation_probability) then 
 
                         훿 =          훿 =                 
 
                        r        [0, 1];            
 
                              if (r<= 0.5) then 

                        훿 =  [2푟 + (1 − 2푟)(1 − 훿 ) ]   
     else  

           훿 =  1 − [2(1 − 푟) + 2(푟 − 0.5)(1 − 훿 ) ]   
    end if   
 

    푋 = 푋  + 훿 ( 푋 −  푋 )  
                               if ( Xc < Xl ) then 
                      Xc = Xl ; 
                  endif  
               if ( Xc > Xu ) then 
                     Xc = Xu ; 
                             endif 
          
                        Child_Solution =  Parent_Solution.setValue(z ,  Xc);  
                      endif 
         endfor 
endfor 
 
       Figure 6.1 Polynomial Mutation (PLM) Pseudo code 
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6.3 Probe Guided Mutation (PGM) 
 
The Probe Guided Mutation (PGM) operator, as its name reveals has been developed 

in order to facilitate the more efficient exploration of the search space. We will start 

analyzing PGM mechanism by recalling Fig.6.1, as the first step is common for both 

methods. In particular, if rand ≤ Pm then a decision variable is selected to be mutated.  

Suppose a hypothetical solution vector 퐱 = (푥 , 푥 , … , 푥 ) which satisfies the 

variables bounds 푥( ) ≤ 푥 ≤ 푥( ), 푖 = 1, 2, … , 10 .  Also suppose that a random 

number rand ≤ Pm occurs for the 6th decision variable. That means that the 6th decision 

variable of the parent solution should be mutated. 

  
                                                                           Selected variable for mutation 
 

Parent solution               x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 
 
 
 As shown in Fig.6.1 that illustrates the Polynomial Mutation (PLM) operator, if 

random value is r ≤ 0.5 it samples to the left hand side (region between XLow and Xi), 

otherwise if r > 0.5 it samples to the right hand side (region between Xi and XUpper). In 

PGM at this particular point, as shown in Fig.6.2 we follow a different methodology. 

Specifically, instead of generating a random number r ∈ [0, 1], we generate two 

random numbers, r ∈ [0, 0.5] to sample the left hand side and a random number 

r ∈ (0.5, 1] to sample the right hand side. Then, we calculate parameter 훿  and 훿  as 

shown in Fig. 2 and their values make possible the calculation of the 푋  and 푋 , 

where 푋  stands for the child decision variable that samples the region between XLow 

and Xp. Similarly 푋  stands for the child decision variable that samples the region 

between  Xp  and XUpper. Please notice that Xp is the parent decision variable.   

     So far by implementing the PGM we obtained two child decision variables, one 

that samples in the left hand side of the parent variable and one that samples in the 

right hand side of the parent variable. But, how we decide which is the most prolific 

way to follow? In order to answer that question we create two new child solution 

vectors (Child_SolutionL and Child_SolutionR) by reinserting into the parent solution 

vector at the position of the selected variable to be mutated, the 푋  and 푋  

respectively. Thanks to the generated child solution vectors we are able to evaluate 

the corresponding fitness for each one of the cases.  
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                                                                          Child decision variable 푋  is reinserted 
 

Child_solutionL               x1 x2 x3 x4 x5 x  x7 x8 x9 x10 

 
 
                                                                          Child decision variable 푋  is reinserted 
 

Child_solutionR               x1 x2 x3 x4 x5 x  x7 x8 x9 x10 

 
 
The fitness evaluation process is exactly similar to the one implemented by the 

selection operator so this step does not require further clarification. After completing 

the fitness evaluation process depending on the examined problem we obtain fitness 

evaluations for each one of the objective functions. In our case, we decided to 

implement the proposed methodology to the solution of the cardinality constrained 

portfolio optimization problem (CCPOP). For that reason we used data sets from the 

publicly available OR-Library retained by Beasley [28]. In this study we examine the 

portfolio optimization problem as a bi-objective problem, where the expected return is 

maximized (objective 1) and the risk is minimized (objective 2). Below, we provide a 

formal introduction to our problem. In its bi-objective form, the CCPOP can be 

formulated as follows. Let   be the search space. Consider 2 objective functions 

21, ff   where   푓 : 훺 → 푅 . and 훺 ⊂ 푅 . 

 
 

 
 
 
 
 
 

 
s.t.  

-Budget constraint or summation constraint



m

i
iw

1
1, requires all portfolios to have 

non-negative weights ( 10  iw  mi ,..,2,1 ) that sum to 1. 

 

Optimize f(w) = (f (w), f (w))               Eq.1 

Maximize portfolio return f (w) =  ∑ w r                    Eq.2 

Minimize portfolio risk f (w) =  ∑ ∑ w w σ σ ρ     Eq.3 
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- Floor and ceiling constraint mbwa iii ,...,2,1,  . Where ai is the minimum 

weighting that can be held of asset i (i = 1, …, m ),  bi = the maximum weighting that 

can be held of asset i (i = 1, …,m ) and mba ii ,...,2,1,10  . 

- Cardinality constraint max
1

min CC
m

i
iq 



, where  Cmin is the minimum number of 

assets that a portfolio can hold, Cmax is the maximum number of assets that a portfolio 

can hold,  qi = 1 , for  wi > 0 and qi = 0 , for  wi = 0.   

 

 

where: 

- Decision variables ),..,( 1 mwww   subject to w  and m equal to the number of 

stocks.   

-Rate of return of assets:  mrrr ..,, 21 . 

- ij  is the correlation between asset i and j and 11  ij . 

- ji  ,  represent the standard deviation of stocks returns i and j 

 

     From the formal presentation of the portfolio optimization problem it becomes 

clear that it is a bi-objective problem where the first objective corresponds to the 

Return of assets and the second objective corresponds to the portfolio risk which is a 

function of stocks’ Standard deviation and Correlation alike. The higher the 

portfolio’s return the better and the lower the portfolio’s risk the better. 

     As soon as we obtain, the fitness value evaluations for both child solution vectors, 

we use the Pareto optimality conditions, as shown in Fig.6.2 in order to choose 

between the 푋  and 푋 , the child decision variable that generates the best results. In 

particular, we use the following definition. 

 

Definition: Pareto dominance 

Consider a maximization problem. Let x, y be two decision vectors (solutions) from 

Ω. Solution x dominates y (also written as 퐱 ≻ 퐲) if and only if the following 

conditions are fulfilled:  

(i) The solution x is no worse than y in all objectives 푓 (퐱) ≥ 푓 (퐲), ∀ 푖 = 1, 2,.., n.   
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(ii) The solution x is strictly better than y in at least one objective, 

∃ 푗 ∈ {1,2, … , 푛}: 푓 (퐱) > 푓 (퐲). If any of the above conditions is violated the solution 

x does not dominate the solution y. 

 

 

     Referring to Fig. 2, 퐹 and 퐹  stand for the fitness evaluations for the return and 

risk objective respectively of the Child_solutionL vector. Similarly, 퐹 and 퐹  stand 

for the fitness evaluations for the return and risk objective respectively of the 

Child_solutionR vector. Thus, for example, if 퐹 > 퐹  and 퐹 < 퐹 , then 

Child_solutionL strongly dominates Child_solutionR and the 푋  is selected. Similarly, 

if 퐹 > 퐹  and 퐹 = 퐹  or, if 퐹 = 퐹  and 퐹 < 퐹 , then Child_solutionL weakly 

dominates Child_solutionR and  again the 푋  is selected. However, if 퐹 > 퐹  and 

퐹 > 퐹  or, if 퐹 < 퐹  and 퐹 < 퐹 , then Child_solutionL and Child_solutionR are 

non-dominated.  In that case a random number r ∈ [0, 1] is generated, if r ≤ 0.5 the 

푋  is selected, otherwise the 푋  is selected. The next step is similar for PGM and 

PLM alike. Specifically, if the resulting 푋  is below the lower bound or above the 

upper bound then the 푋 is set equal to 푋  or 푋  respectively. Where 푋   and 푋  

stand respectively for the lower and upper bounds for the decision variable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PhD Thesis – K. Liagkouras   Chapter 6  

[95] 
 

Begin 
mutation_probability = 1/n;  //where n is the number of decision variables  
ηm = distribution index; 
  for i=0 to N; (where N is the population size)     
             for z=0 to n;  
    rand            [0, 1];  
       if (rand <= mutation_probability) then   
                 
  Xp  = getValue(z);           
  Xl    = getLowerBound(z); 
  Xu    = getUpperBound(z);  
                             

 훿 =          훿 =                  
                              

  푟 → [0, 0.5]; 

  훿 =  [2푟 + (1 − 2푟 )(1 − 훿 ) ]     
푋 = 푋  + 훿 ( 푋 −  푋 )                                                                                         

Child_SolutionL =  Parent_Solution.setValue(z ,  푋 );                           
  퐹 =  Evaluate Fitness (Child_SolutionL); //where i=1, 2 for bi-objective problem 
    

  푟 → (0.5, 1]; 

   훿 =  1 − [2(1 − 푟 ) + 2(푟 − 0.5)(1 − 훿 ) ]    
푋 = 푋  + 훿 ( 푋 − 푋 )                                                                                         

  Child_SolutionR =  Parent_Solution.setValue(z ,  푋 ); 
퐹  =  Evaluate Fitness (Child_SolutionR); 

 
  //We examine the portfolio optimization problem as a bi-objective problem, 
  //where the return is maximized (objective 1) and the risk minimized (objective 2) 
 

if (퐹  > 퐹  && 퐹  < 퐹 || 퐹  > 퐹  && 퐹  = 퐹 || 퐹  = 퐹  && 퐹  < 퐹 ) then 
   푋 = 푋  

else if (퐹  < 퐹  && 퐹  > 퐹 || 퐹  < 퐹  && 퐹  = 퐹 || 퐹  = 퐹  && 퐹  > 퐹 ) then 
               푋 = 푋  
else 
               푟 → [0, 1]; 

                              if (r<= 0.5) then 
                                      푋 = 푋  
                 else if (r > 0.5) then  
                          푋 = 푋  
                 end if   

 endif   
 
 

                          if ( Xc < Xl ) then 
                     Xc = Xl ; 
          endif  
          if ( Xc > Xu ) then 
                     Xc = Xu ; 
          endif 
                      Child_Solution =  Parent_Solution.setValue(z ,  Xc);  
                      endif 
         endfor 
endfor 

Figure 6.2 Probe Guided Mutation (PGM) operator Pseudo code 
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The motivation behind this study is to present a mechanism (the PGM) that allows the 

better exploration of solution space. The logic is simple, as soon as a parent decision 

variable (푋 ) is selected to be mutated, two random numbers are generated, one in 

the range r ∈ [0, 0.5] and the other in the range r ∈ (0.5, 1]. These two random 

numbers are being used in order to generate two different child decision variables, the 

푋  that samples the region between XLow and Xp and 푋  that samples the region 

between Xp and XUpper. These two child decision variables are reinserted into the 

parent solution vector, at the position of the selected variable to be mutated and 

subsequently we perform fitness evaluation for both alternative child solutions 

vectors. Next, based on, the Pareto optimality framework we decide which child 

decision variable between the 푋  and 푋  will be selected. The PGM allows us to 

probe the search space and move progressively towards higher fitness solutions. 

Whenever, there is not a clear winner i.e. strong or weak dominance, between the  푋  

and 푋 , the generation of a random number allows the random choice of one of the 

two alternative solutions.  

      Naturally, there is a computational cost associated with the fitness evaluation 

process of PGM. Table 6.1 provides the total CPU time, in seconds, needed for each 

one of the presented tests problems (port1-5) under the classical configuration with 

the PLM operator and under the proposed PGM. All algorithms have been 

implemented in Java and run on a 2.1GHz Windows Server 2012 machine with 6GB 

RAM. On average, the proposed PGM has an overhead of 32% in CPU time when 

applied to the NSGAII and 35% when applied to SPEA2.     

 
Table 6.1 Average runtime (in seconds) required by each algorithm  
 
Constrained NSGAII  SPEA2  

Problem* PGM PLM Overhead PGM PLM Overhead 
port1 296 247 20% 314 256 23% 
port2 4556 3478 31% 4923 3674 34% 
port3 5118 3878 32% 5610 4095 37% 
port4 6450 4778 35% 6931 5023 38% 
port5 20997 14892 41% 23268 16047 45% 

 Average: 32% Average: 35% 
 
*Minimum cardinality of the portfolio Kmin = 2 and maximum cardinality Kmax = 10 for all test problems. Lower bound li = 0.01 
and the upper bound ui = 0.99, for each asset i, where i = 1, . . . , n. 
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    Finally, we investigate how efficient is to solve the CCPOP by using exact 

methods. For that purpose, we formulated the CCPOP as a Mixed Integer Quadratic 

Program (MIQP) (see section 6.2) and we solved the problem by using CPLEX 

version 12.5. In case that the CPLEX were able to solve the CCPOP MIQP in 

reasonable time, there may be no need for using evolutionary algorithms. For reasons 

of comparison we tested CPLEX version 12.5 for the same instances (port1-5). We 

found out that for all test instances the CPLEX required considerably more time than 

the MOEAs. Table 6.2 indicates the average running time per approximate efficient 

point in the case of MOEAs and exact efficient point in the case of CCPOP MIQP for 

all test instances (port1-5). 

 
 
Table 6.2 Average runtime (in seconds) required per efficient point 
 

 Running Time (in seconds) per 
 Approximate Efficient Point Exact Efficient Point 

Constrained NSGAII SPEA2 MIQP 
Problem* PGM PLM PGM PLM CPLEX 

port1 1.48 1.24 1.57 1.28 15 
port2 23 17 25 18 125 
port3 26 19 28 20 148 
port4 32 24 35 25 213 
port5 105 74 116 80 521 

 
*Minimum cardinality of the portfolio Kmin = 2 and maximum cardinality Kmax = 10 for all test problems. Lower bound li = 0.01 
and the upper bound ui = 0.99, for each asset i, where i = 1, . . . , n. 
 
 
According to the results of Table 6.2 we conclude that solving the CCPOP MIQP 

using CPLEX is not a computationally effective approach. As such we are justified in 

adopting multiobjective evolutionary approaches to the solution of the CCPOP. 

Regarding the quality of the approximate efficient frontier, this issue is examined in 

section 6.7.  
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6.4 MOEAs implementation 
The implementation of evolutionary algorithms for the solution of the cardinality 

constrained portfolio optimization problem (CCPOP) involves a number of potential 

challenges like the selection of the most appropriate solution representation type or 

the correct implementation of the problem’s constraints.    

  For the solution representation we chose the chromosomal data structure, as 

implemented by the Streichert et al. [c6.a.17]. In particular Streichert et al. proposed a 

hubrid representation, where an additional binary string is included to reflect the 

existence of the assets in the portfolio. Thus, two vectors are used for defining a 

portfolio, a real-valued vector used to compute the proportions of the budget invested 

in the various securities and a binary vector specifies whether a particular security 

participates in the portfolio. 

 

푊 = {푤 , … , 푤 },   0.01 ≤  푤 ≤ 0.99, 푖 = 1, … , 푛  

 

  

훥 = {훿 , … , 훿 },   훿 ∈ {0, 1}, 푖 = 1, … , 푛 

 

In order to generate portfolios that satisfy the imposed minimum and maximum 

cardinality and lower and upper bound constraints and the budget constraint, we 

proceed as follows:  

 

1. The real-valued vector is populated with randomly generated weights within 

the specified lower and upper bounds [0.01, 0.99]. 

2. A random number rcard that satisfy the minimum and maximum cardinality 

constraint is generated. For instance, if we set the minimum cardinality of the 

portfolio to two (Kmin = 2) and the maximum cardinality of the portfolio to ten 

(Kmax = 10) then the rcard can be any integer number within the rcard ∈ [2, 10] 

range. 

3. The binary vector by default is populated with zeroes and only to rcard ∈ [2, 10] 

randomly selected securities, is assigned value of 1. 

4. Next, we disregard the securities that are not elements of the portfolio (i.e. 

푖푓 푤 ≠ 0 푎푛푑 훿 = 0 ). 
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5. The weights of the remaining (i.e. 푖푓 푤 ≠ 0 푎푛푑 훿 = 1) securities are 

normalized in order to satisfy the budget constraint. Thus, the actual weight 

푤  is calculated as follows. 

푤 =
푤

∑ 푤   

 

 

    So far the proposed encoding mechanism accounts only for budget, non-negativity 

constraint and cardinality constraint. The normalization process is possible to lead to 

violations of the lower and upper bounds constraints.  

     For the requirements of this study we have set the lower bound li = 0.01 and the 

upper bound ui = 0.99, for each asset i, where i = 1, . . . , n. That implicitly suggests a 

minimum cardinality of two (2) stocks per portfolio. We also explicitly have set the 

minimum cardinality of the portfolio to two (Kmin = 2) and the maximum cardinality 

of the portfolio to ten (Kmax = 10) for all test problems. Obviously, the upper bound 

constraint will always be satisfied, as the worst case scenario for the upper bound 

constraint is K = 2, with 푤 = 0.99 푎푛푑 푤 = 0.01. Thus, there is no need to 

introduce a repair mechanism regarding the upper bound constraint.  

Regarding the lower bound constraint, a repair mechanism is necessary as during the 

normalization process can be generated weights that violate the lower bound 

constraint. In order to deal with this issue we introduce the following repair 

mechanism: 

  

1. After the completion of the normalization process we check if there is any 

violation of the lower bound constraint, for the portfolio’s securities.  

2. We determine which particular securities violate the lower bound constraint (li 

= 0.01) and the magnitude of the violation for each one of them, as follows 

푚 = 푙 − 푤 ,   푖 = 1, . . , 푞. 

3. We sum up all violations in the portfolio:  푣 =  ∑ 푚  

4. Finally, we subtract the 푣  from the highest weight security (푤 ) in 

the portfolio (i.e. 푤 =  푤   - 푣 ). Thus, the highest weight 

security in the portfolio obtains a new weight (푤 ) and we set the weights 

of the securities that violated the lower bound constraint equal to the 푙 . 
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6.5 Experimental Environment 

 
 
6.5.1 Parameter Setup 
    All algorithms have been implemented in Java and run on a 2.1GHz Windows 

Server 2012 machine with 6GB RAM. The jMetal [77] framework has been used to 

compare the performance of the proposed, Probe Guided mutation operator against 

the classical polynomial mutation operator with the assistance of two state-of-the-art 

MOEAs, namely NSGAII and SPEA2. We set the minimum cardinality of the 

portfolio to two (Kmin = 2) and the maximum cardinality of the portfolio to ten (Kmax 

= 10) for all test problems. The participation of each stock in the portfolio is 

determined by the lower and upper bounds. We set the lower bound li = 0.01 and the 

upper bound ui = 0.99, for each asset i, where i = 1, . . . , n. 

      In all tests we use binary tournament and simulated binary crossover (SBX) [54] 

as selection and crossover operator, respectively.  The crossover probability is Pc = 

0.9 and mutation probability is Pm = 1/n, where n is the number of decision variables. 

The distribution indices for the crossover and mutation operators are ηc = 20 and ηm = 

20, respectively. We decided to use the aforementioned values for the crossover and 

mutation probability as they are the most commonly used with MOEAs in the relevant 

literature.  For identifying the best population size and function evaluations, the 

following configurations were tested for each algorithm: Npop = Narc = 100, 200, 300, 

400, for 100, 250, 500 and 1000 generations respectively. After testing the 

aforementioned configurations we reach the conclusion that the algorithms approach 

their top performance for Npop = Narc = 200 and 500 generations or 100,000 function 

evaluations. Beyond, these values the gains in performance are marginal if any. Thus, 

the Population size is set to 200, using 100,000 function evaluations with 20 

independent runs. 
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6.5.2  Extracting the True Pareto Front of the 
CCPOP 
The purpose of this study is to highlight the benefits from the implementation of the 

proposed Probe Guided Mutation (PGM) operator to the solution of the cardinality 

constrained portfolio optimization problem (CCPOP) when compared with the results 

derived by classical Polynomial Mutation (PLM) for the same test instances.  

However, it would be interesting to find out how well the PGM operator performs 

when compared to the True Pareto front of the CCPOP. For that purpose, we 

formulated the CCPOP as a Mixed Integer Quadratic Program (MIQP) as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Eq. (4) minimizes the total variance that represents the portfolio’s risk. The return 

constraint that is represented by the Eq. (5) ensures that the portfolio has an expected 

return of R*. Eq. (6) represents the budget constraint. Eq. (7) ensures that the portfolio 

lies between the Kmin and Kmax. In this particular case we set Kmin = 2 and Kmax = 10 

for all test instances.  Eq. (8) ensures that if any of security i is held (zi = 1) its weight 

must lie between the lower bound ai and the upper bound bi. In this particular case we 

set ai = 0.01 and bi = 0.99 for all test instances. Please, notice that the objective 
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function Eq. (4), involves the covariance matrix (σij), which is positive semidefinite 

and thus we are minimizing a convex function.   

  The calculation of the true constrained efficient frontier for port1-5 [28] problems is 

straightforward. We minimize portfolio risk as it is expressed by Eq. (4), subject to 

Eq. (5)-(9), for different levels of the R* of Eq. (5). By varying R* and solving the 

Mixed Integer Quadratic Program (MIQP) we obtain different levels of minimum 

portfolio risk. For solving the aforementioned MIQP we used the CPLEX version 

12.5. 

 

Analytically, we utilized the following strategy [216], [217] in order to plot the True 

Efficient Frontiers for port1-5 problems: 

 

1. For each one of the port1-5 problems we know the range of return values that 

should be examined, as the securities’ returns are known. 

2. Let’s say that we examine the port1 problem and 푅  represents the 

security with the lowest return among all securities of port1 problem. 

Respectively 푅  represents the security with the maximum return among 

all securities of port1 problem. 

3. Given the return range [푅 , 푅 ] let M be the number of points that we 

wish to plot on the frontier. With the assistance of the 푟  equation we 

divide the  푅  - 푅  interval into M equally distant points: 

푟 =
푅  −  푅

푀    

 

4. Then, we calculate the minimum portfolio risk for each of the following 

returns levels: [푅  + 푟 ,  푅  + 2푟 , ..., 푅  + 푀푟 ]. Please 

notice that we start from 푅  + 푟  return level and not from  푅  

because we have set Kmin = 2.  Solving the MIQP for  푅  return level and 

Kmin = 2 would lead to an infeasible solution. 

5. Finally, for port1-3 problems we used M = 100, and for port4-5 problems we 

used M = 50. 
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f1 

f2 

6.6 Performance Metrics 
 

Hypervolume 

Hypervolume [117], [176], is an indicator of both the convergence and diversity of an 

approximation set. Thus, given a set S containing m points in n objectives, the 

hypervolume of S is the size of the portion of objective space that is dominated by at 

least one point in S. The hypervolume of S is calculated relative to a reference point 

which is worse than (or equal to) every point in S in every objective.  The greater the 

hypervolume of a solution the better considered the solution. One of the main 

advantages of hypervolume [233] is that it is able to capture in a single number both 

the closeness of the solutions to the optimal set and, to some extent, the spread of the 

solutions across objective space. 

 

           
           
            Figure 6.3 Hypervolume of a bi-objective minimization problem 
 
 

According to a number of studies Hypervolume, also has nicer mathematical 

properties than many other metrics. In particular, Zitzler et al. [234] state that 

hypervolume is the only unary metric of which they are aware that is capable of 

detecting that a set of solutions X is not worse than another set X’. Also Fleischer [90] 

has proved that hypervolume is maximized if and only if the set of solutions contains 

only Pareto optima. 

 
 
 
 
 

Ref. point f2 
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Spread 
Deb et al. [57] introduced the spread of solutions (Δ) as another indicator of the 

quality of the derived set of solutions. Spread indicator examines whether or not the 

solutions span the entire Pareto optimal region. First, it calculates the Euclidean 

distance between the consecutive solutions in the obtained non-dominated set of 

solutions. Then it calculates the average of these distances. After that, from the 

obtained set of non-dominated solutions the extreme solutions are calculated. Finally, 

using the following metric it calculates the nonuniformity in the distribution. 

 

훥 =
푑 +  푑 +   ∑ |푑 −  푑̅|

푑 +  푑 +  (푁 − 1)푑̅
   

 

Where df and dl are the Euclidean distances between the extreme solutions and the 

boundary solutions of the obtained nondominated set.  The parameter 푑̅ is the average 

of all distances di, i = 1, 2, ... , (N - 1), where N is the number of solutions on the best 

nondominated front. The smaller the value of Spread indicator, the better the 

distribution of the solutions. Spread indicator takes a zero value for an ideal 

distribution of the solutions in the Pareto front. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
     Figure 6.4 Spread (Δ) indicator of a bi-objective minimization problem 
 
 

dl 
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Epsilon Indicator Iε 
Zitzler et al. [234] introduced the epsilon indicator (Iε).  There are two versions of 

epsilon indicator the multiplicative and the additive. In this study we use the unary 

additive epsilon indicator as it has been implemented in the jMetal framework. The 

basic usefulness of epsilon indicator of an approximation set A (Iε+) is that it provides 

the minimum factor ε by which each point in the real front R can be added such that 

the resulting transformed approximation set is dominated by A. The additive epsilon 

indicator is a good measure of diversity, since it focuses on the worst case distance 

and reveals whether or not the approximation set has gaps in its trade-off solution set.  

       Suppose a minimization problem with n positive objectives i.e. 푍 ⊆  ℝ . An 

objective vector  풛ퟏ = (푧 , 푧 , … , 푧 ) ∈ 푍 is said to ε-dominate another objective 

vector 풛ퟐ = (푧 , 푧 , … , 푧 ) ∈ 푍 written as 풛ퟏ  ≽ 휀 +  풛ퟐ if and only if  ∀ 1 ≤ 푖 ≤

푛:  푧  ≤  휀 + 푧  , where 휀 > 0. The binary additive epsilon indicator Iε+ which is 

defined for two Pareto sets A and B as  퐼 (퐴, 퐵) = 푖푛푓 ∈ℝ{∀ 풛ퟐ ∈ 퐵 ∃  풛ퟏ ∈ 퐴: 풛ퟏ  ≽

휀 +  풛ퟐ}  . For a reference Pareto set R, the unary additive epsilon indicator 퐼   can be 

now defined as 퐼 (퐴) = 퐼 (퐴, 푅). The smaller an epsilon indicator, the better is the 

approximation set. The Pareto-optimal solutions set has 퐼 = 0. 

 
 
 
 
6.7 Experimental Results 
A number of computational experiments were performed to test the performance of 

the proposed Probe Guided mutation operator for the solution of the Cardinality 

constrained Portfolio Optimization Problem (CCPOP). The performance of the 

proposed PGM operator is assessed in comparison with the classical Polynomial 

Mutation operator with the assistance of two well-known MOEAs, namely the Non-

dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary 

Algorithm 2 (SPEA2). The evaluation of the performance is based on a variety of 

metrics that assess both the proximity of the solutions to the Pareto front and their 

dispersion on it. For carrying out the experiments, we used data sets from the publicly 

available OR-Library retained by Beasley. These data sets correspond to six portfolio 

optimization problems from six different capital markets as shown in Table 6.3. More 
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specifically, we used weekly price data for the period March 1992 to September 1997, 

from Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 

100 in USA, Nikkei 225 in Japan and S&P 500 in USA.  

 
 
Table 6.3 The OR-library portfolio optimization problems 
 

Problem 
Name 

Stock Market 
Index 

Assets 

port1 Hang Seng 31 
port2 DAX100 85 
port3 FTSE100 89 
port4 S&P100 98 
port5 Nikkei225 225 
port6 S&P500 457 

 
 
 
 
 
 
 
 
 
6.7.1 Hang Seng (31 stocks) port1 in OR-Library 
 
Table 6.4 Port1 – Mean, std, median and iqr for HV, Spread and Epsilon 
 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

PORT1 

HV. Mean and Std 9.94e-012.6e-03 9.85e-014.3e-03 9.91e-012.6e-03 9.84e-014.3e-03 
HV. Median and IQR 9.94e-014.0e-03 9.86e-016.2e-03 9.92e-013.5e-03 9.83e-015.3e-03 
SPREAD. Mean and Std 8.82e-016.7e-03 9.87e-012.6e-02 8.67e-011.3e-02 1.01e+002.5e-02 
SPREAD. Median and IQR 8.83e-016.9e-03 9.83e-014.5e-02 8.63e-012.5e-02 1.01e+003.7e-02 
EPSILON. Mean and Std 2.61e-051.1e-05 6.00e-051.8e-05 3.61e-051.1e-05 6.79e-051.8e-05 
EPSILON. Median and IQR 2.38e-051.6e-05 5.94e-052.6e-05 3.44e-051.5e-05 7.00e-052.2e-05 

 
 
 
 
 
Table 6.5 Port1 – Boxplots for HV, Spread and Epsilon 
 

Problem 
NSGAII SPEA2 

HV SPREAD EPSILON HV SPREAD EPSILON 
PGM PLM PGM PLM PGM PLM PGM PLM PGM PLM PGM PLM 
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The results in the Tables 6.4 – 6.21 have been produced by using JMetal [77] 

framework, a java implementation of many popular MOEAs that has been used in a 

considerable number of studies in the field. Tables 6.4-6.6, present the results 

regarding the port1 problem (Hang Seng index) in OR-Library. In particular, Table 

6.4 presents the results of PGM and PLM alike for a number of performance metrics. 

Specifically, it presents the mean, standard deviation (STD), median and interquartile 

range (IQR) of all the independent runs carried out for Hypervolume (HV), Spread 

(Δ) and Epsilon indicator respectively.  

     Clearly, regarding the HV [233] indicator the higher the value (i.e. the greater the 

hypervolume) the better the computed front.  HV is considered by many researchers 

in the field [82], [117], [176],  [234], [228] the most important indicator as it captures 

in a single number both the closeness of the solutions to the optimal set and to a 

certain degree, the spread of the solutions across objective space. The second 

indicator the Spread (Δ) [57] examines the spread of solutions across the pareto front. 

The smaller the value of this indicator, the better the distribution of the solutions. This 

indicator takes a zero value for an ideal distribution of the solutions in the Pareto 

front. The third indicator, the Epsilon [126] is a measure of the smaller distance that a 

solution set A, needs to be changed in such a way that it dominates the optimal Pareto 

front of this problem. Obviously the smaller the value of this indicator, the better the 

derived solution set. 

    Table 6.5 use boxplots to present graphically the performance of NSGAII and 

SPEA2 under two different configurations, PGM and PLM respectively, for the three 

performance indicators, namely: HV, Spread and Epsilon. Boxplot is a convenient 

way of graphically depicting groups of numerical data through their quartiles. 

Boxplots provide a 5-number summary of the data (min, max, Q1, Q3, median) and 

information about outliers. 

      Table 6.6, presents if the results of NSGAII and SPEA2 derived under the two 

different configurations (PGM and PLM) are statistically significant or not. For that 

reason, we use the Wilcoxon rank-sum test as it is implemented by the jMetal 

framework [77]. In Table 6.6, three different symbols are used. In particular “  ” 

indicates that there is not statistical significance between the algorithms. “  ” means 

that the algorithm in the row has yielded better results than the algorithm in the 

column with confidence and  “  “ is used when the algorithm in the column is 
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statistically better than the algorithm in the row. The same interpretation holds for the 

rest of the Tables of section 6.7. Analysis of the relevant results provided in section 

6.8.   

 
 
 
Table 6.6 Wilcoxon test in Port1 for HV, Spread and Epsilon                                
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Figure 6.5 NSGAII: Mean-Variance Efficient Frontier for the port1 problem, with n = 31 securities 
under different configurations. 
 
 
Fig. 6.5 illustrates the approximate efficient frontier under two different 

configurations: the NSGAII + PGM and the NSGAII + PLM for the port1 test 

instance together with the exact efficient points generated by using CPLEX version 

12.5 software. The approximate frontiers that are illustrated in Fig.5, have been 

formulated by merging the approximate sets for the 20 independent runs of the 

algorithm without removing the dominated solutions. We selected to illustrate the 

approximate efficient frontiers for the two different configurations of the algorithm 

(NSGAII + PGM and the NSGAII + PLM) without removing the dominated 

solutions, because that way we are able to see not only which method generates the 

best results in term of the Pareto domination conditions, but also to extract useful 
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information about the concentration of the search effort toward the higher fitness 

regions of the search space for the one and the other configuration of the algorithm. 

From Fig. 5 it becomes clear that the proposed configuration of the algorithm with the 

PGM clearly outperforms the typical configuration of the NSGAII with the PLM, as 

the approximate frontier that is generated by the PLM is dominated by the 

corresponding approximate frontier of the proposed methodology (PGM). We also 

notice that the classical PLM operator generates a considerable number of points far 

away from the efficient frontier. On the other hand the PGM operator demonstrates a 

remarkable concentration of the search effort very close to the true efficient frontier.  

    To conclude, the port1 problem results indicate that the proposed PGM operator 

outperforms the classical PLM in HV, Spread and Epsilon performance metrics with 

confidence, according to the relevant results as revealed by the Tables 6.4-6.6. 

 
 
 
 
6.7.2 DAX100 (85 stocks) port2 in OR-Library 
 
Table 6.7 Port2 – Mean, std, median and iqr for HV, Spread and Epsilon 
 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

PORT2 

HV. Mean and Std 9.84e-014.1e-03 9.68e-016.9e-03 9.79e-014.4e-03 9.67e-014.6e-03 
HV. Median and IQR 9.84e-015.3e-03 9.67e-011.0e-02 9.78e-017.0e-03 9.69e-017.0e-03 
SPREAD. Mean and Std 9.78e-011.9e-02 1.11e+003.2e-02 1.01e+001.9e-02 1.14e+003.7e-02 
SPREAD. Median and IQR 9.78e-012.1e-02 1.11e+004.1e-02 1.01e+002.8e-02 1.14e+004.3e-02 
EPSILON. Mean and Std 4.41e-051.1e-05 8.66e-051.8e-05 5.65e-051.2e-05 8.85e-051.2e-05 
EPSILON. Median and IQR 4.20e-051.4e-05 8.83e-052.7e-05 5.93e-051.9e-05 8.38e-051.9e-05 

 
 
 
Table 6.8 Port2 – Boxplots for HV, Spread and Epsilon 
 

Problem 
NSGAII SPEA2 

HV SPREAD EPSILON HV SPREAD EPSILON 
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Table 6.9 Wilcoxon test in Port2 for HV, Spread and Epsilon 
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Figure 6.6 NSGAII: Mean-Variance Efficient Frontier for the port2 problem, with n = 85 securities 
under different configurations 
 
 
The port2 problem uses data from DAX100 index in Germany. Fig. 6.6 illustrates the 

approximate efficient frontier under two different configurations: the NSGAII + PGM 

and the NSGAII + PLM for the port2 test problem together with the exact efficient 

points generated by using CPLEX 12.5. The approximate frontiers that are illustrated 

in Fig.6.6, 6.7, 6.8 and 6.9, have been emerged by joining the approximate sets for the 

20 independent runs of the algorithm without removing the dominated solutions. 

From Fig. 6 we can see that the proposed configuration of the NSGAII with the PGM 

clearly outperforms the typical configuration of the algorithm with the PLM, as the 

approximate frontier that is generated by the PLM is dominated by the corresponding 

approximate frontier that is produced by using the PGM. Fig.6.7 and 6.8 illustrate 

separately the approximate frontiers for the two different configurations of the 

NSGAII. Fig. 6.6 and 6.7 show us that the NSGAII coupled with the PGM achieves a 

remarkable concentration of the search effort very close to the true efficient frontier.  
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Figure 6.7 NSGAII + PGM: Mean-Variance Efficient Frontier for the port2 problem, with n = 85 
securities 
 
 
On the other hand, as shown in Fig. 6.8, the NSGAII combined with the classical 

PLM operator does not demonstrates the exploratory strength of PGM. A considerable 

part of the computational effort has been wasted in discovering suboptimal solutions 

and on top of that the approximate frontier presents substantial gaps, especially for 

higher levels of return and risk combinations. 
    

 
 
 
Figure 6.8 NSGAII + PLM: Mean-Variance Efficient Frontier for the port2 problem, with n = 85 
securities  
 
Finally, Fig. 6.9 illustrates the approximate efficient frontier under the SPEA2 + PGM 

and the SPEA2 + PLM configuration for the port2 test problem together with the 

exact efficient points generated by using CPLEX 12.5. Fig. 6.9 confirms all previous 

findings. 
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Figure 6.9 SPEA2: Mean-Variance Efficient Frontier for the port2 problem, with n = 85 securities 
under different configurations 
 
 
To conclude, as shown in Tables 6.7-6.9 the proposed PGM operator outperforms 

with confidence the performance of classical PLM when applied to NSGAII and 

SPEA2 respectively for HV, Spread and Epsilon performance metrics regarding the 

port2, cardinality constrained portfolio optimization problem (CCPOP).  

 

 

6.7.3 FTSE100 (89 stocks) port3 in OR-Library 
 
Table 6.10 Port3 – Mean, std, median and iqr for HV, Spread and Epsilon 
 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

PORT3 

HV. Mean and Std 9.72e-014.6e-03 9.45e-011.2e-02 9.64e-015.9e-03 9.42e-018.8e-03 
HV. Median and IQR 9.71e-014.9e-03 9.46e-011.9e-02 9.66e-017.7e-03 9.44e-011.3e-02 
SPREAD. Mean and Std 9.07e-019.3e-03 1.05e+003.5e-02 9.20e-011.6e-02 1.07e+002.5e-02 
SPREAD. Median and IQR 9.05e-011.2e-02 1.05e+006.3e-02 9.20e-012.3e-02 1.07e+003.8e-02 
EPSILON. Mean and Std 3.72e-056.0e-06 7.28e-051.6e-05 4.70e-057.8e-06 7.69e-051.2e-05 
EPSILON. Median and IQR 3.78e-056.5e-06 7.15e-052.5e-05 4.54e-051.0e-05 7.40e-051.7e-05 

 
 
Table 6.11 Port3 – Boxplots for HV, Spread and Epsilon 
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NSGAII SPEA2 

HV SPREAD EPSILON HV SPREAD EPSILON 
PGM PLM PGM PLM PGM PLM PGM PLM PGM PLM PGM PLM 

PORT3 

   
   

   
0.

94
   

   
0.

96
 

  0
.9

   
   

   
1.

0 
   

   
   

 1
.1

   
 

 

   4
e-

05
   

   
   

  8
e-

05
   

   
 

0.
01

8 

   
   

  0
.9

4 
   

   
  0

.9
6 

   
 

0.
9 

   
   

   
 1

.0
   

   
   

 1
.1

   

   
 5

e-
05

   
7e

-0
5 

  

 

Re
tu

rn
 

Variance 

____  SPEA2 + PGM 

____  SPEA2 + PLM 

____  True Pareto Front 



PhD Thesis – K. Liagkouras   Chapter 6  

[113] 
 

 
Table 6.12 Wilcoxon test in Port3 for HV, Spread and Epsilon 
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Figure 6.10 NSGA-II: Mean-Variance Efficient Frontier for the port3 problem, with n = 89 securities 
under different configurations. 
 
The port3 problem uses data from FTSE100 index in the UK. Fig. 6.10 illustrates the 

approximate efficient frontier under two different configurations: the NSGAII + PGM 

and the NSGAII + PLM for the port3 test problem together with the exact efficient 

points generated by using CPLEX version 12.5. The approximate frontiers that are 

illustrated in Fig.6.10, 6.11, 6.12 and 6.13, have been created by joining the 

approximate sets for the 20 independent runs of the algorithm without removing the 

dominated solutions. From Fig. 6.10 we can see that the proposed configuration of the 

NSGAII with the PGM clearly outperforms the typical configuration of the algorithm 

with the PLM, as the approximate frontier that is generated by the PLM is dominated 

by the corresponding approximate frontier that is produced by using the PGM. Fig. 

6.10 clearly illustrates that the NSGAII combined with the PGM achieves a 

remarkable concentration of the search effort very close to the true efficient frontier. 

Fig.6.11 and 6.12 illustrate separately the approximate frontiers for the two different 

configurations of the NSGAII.  
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Figure 6.11 NSGAII + PGM: Mean-Variance Efficient Frontier for the port3 problem, with n = 89 
securities 
 
 

 
 
Figure 6.12 NSGAII + PLM: Mean-Variance Efficient Frontier for the port3 problem, with n = 89 
securities 
 
 
Fig.6.12, reveals that the configuration of the NSGAII with the classical PLM 

operator lacks focus and does not demonstrates the same exploratory strength as when 

the NSGAII combined with the proposed PGM operator. As shown by Fig.6.12, a 

considerable part of the computational effort has been wasted in discovering 

suboptimal solutions and on top of that the approximate frontier presents 

discontinuities, especially for higher levels of return and risk combinations. 

    Finally, Fig. 6.13 illustrates the approximate efficient frontier under the SPEA2 + 

PGM and the SPEA2 + PLM configuration for the port3 test problem together with 

the exact efficient points generated by using CPLEX 12.5. Fig. 6.13 confirms all 

previous findings. 

 

Re
tu

rn
 

Re
tu

rn
 

Variance 

Variance 



PhD Thesis – K. Liagkouras   Chapter 6  

[115] 
 

 

 
 
Figure 6.13 SPEA2: Mean-Variance Efficient Frontier for the port3 problem, with n = 89 securities 
under different configurations 
 
 
To conclude, the port3 problem uses data from FTSE100 index in the UK. As shown 

in Tables 6.10-6.12 the proposed PGM operator outperforms with confidence the 

performance of classical PLM when applied to NSGAII and SPEA2 respectively for 

all three performance metrics.  

 
 
 
 
 
 
 
 
 
 
 
6.7.4 S&P100 (98 stocks) port4 in OR-Library 
 
Table 6.13 Port4 – Mean, std, median and iqr for HV, Spread and Epsilon 
 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

PORT4 

HV. Mean and Std 9.83e-014.5e-03 9.70e-013.5e-03 9.80e-013.1e-03 9.69e-013.5e-03 
HV. Median and IQR 9.84e-015.0e-03 9.70e-014.6e-03 9.81e-015.1e-03 9.69e-014.3e-03 
SPREAD. Mean and Std 9.24e-011.8e-02 1.04e+002.8e-02 9.46e-012.0e-02 1.06e+002.9e-02 
SPREAD. Median and IQR 9.26e-012.1e-02 1.04e+003.6e-02 9.46e-012.9e-02 1.06e+004.1e-02 
EPSILON. Mean and Std 4.71e-051.3e-05 8.47e-059.9e-06 5.53e-058.8e-06 8.73e-059.7e-06 
EPSILON. Median and IQR 4.56e-051.4e-05 8.34e-051.3e-05 5.42e-051.4e-05 8.84e-051.2e-05 
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Table 6.14 Port4 – Boxplots for HV, Spread and Epsilon 
 

Problem 
NSGAII SPEA2 

HV SPREAD EPSILON HV SPREAD EPSILON 
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Table 6.15 Wilcoxon test in Port4 for HV, Spread and Epsilon 
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Figure 6.14 NSGA-II: Mean-Variance Efficient Frontier for the port4 problem, with n = 98 securities 
under different configurations. 
 
 
 
The port4 problem uses data from S&P100 index in the USA. Fig. 6.14 illustrates the 

approximate efficient frontier under two different configurations: the NSGAII + PGM 

and the NSGAII + PLM for the port4 test problem together with the exact efficient 

points generated by using CPLEX 12.5. The approximate frontier that is illustrated in 

Fig.6.14 has been created by joining the approximate sets for the 20 independent runs 

of the algorithm without removing the dominated solutions. From Fig.6.14 we can see 
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that the proposed configuration of the NSGAII with the PGM clearly outperforms the 

typical configuration of the algorithm with the PLM, as the approximate frontier that 

is generated by the PLM is dominated by the corresponding approximate frontier that 

is produced by using the PGM.  On top of everything else, the points of the 

approximate frontier that are generated with the assistance of PGM overlap with the 

points of the true efficient frontier, indicating that the proposed methodology (PGM) 

is capable of producing solutions for the CCPOP as good as if they were calculated 

with exact methods.  

     To conclude, regarding the solution of the port4 problem as shown in Tables 6.13-

6.15 the proposed PGM outperforms with confidence the performance of the classical 

PLM for all performance metrics when applied to NSGAII and SPEA2. 

 
 
 
 
6.7.5 Nikkei225 (225 stocks) port5 in OR-Library 
 
Table 6.16 Port5 – Mean, std, median and iqr for HV, Spread and Epsilon 
 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

PORT5 

HV. Mean and Std 9.61e-019.9e-03 9.19e-011.9e-02 9.54e-011.6e-02 9.15e-013.1e-02 
HV. Median and IQR 9.63e-011.8e-02 9.22e-013.9e-02 9.60e-012.7e-02 9.16e-015.1e-02 
SPREAD. Mean and Std 1.04e+004.0e-02 1.20e+003.5e-02 1.09e+002.9e-02 1.22e+002.9e-02 
SPREAD. Median and IQR 1.04e+007.9e-02 1.19e+005.9e-02 1.09e+004.5e-02 1.23e+003.4e-02 
EPSILON. Mean and Std 5.24e-051.3e-05 1.11e-042.5e-05 6.29e-052.1e-05 1.15e-044.1e-05 
EPSILON. Median and IQR  5.04e-052.4e-05 1.06e-044.7e-05 5.39e-053.2e-05 1.13e-046.8e-05 

 
 
 
 
Table 6.17 Port5 – Boxplots for HV, Spread and Epsilon 
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Table 6.18 Wilcoxon test in Port5 for HV, Spread and Epsilon 
 

 
 

 
 
Figure 6.15 SPEA2: Mean-Variance Efficient Frontier for the port5 problem, with n = 225 securities 
under different configurations. 
 
 
The port5 problem uses data from Nikkei225 index in Japan. Fig. 6.15 illustrates the 

approximate efficient frontier under two different configurations: the SPEA2 + PGM 

and the SPEA2 + PLM for the port5 test problem together with the exact efficient 

points generated by using CPLEX 12.5. The approximate frontier that is illustrated in 

Fig.15 has been created by joining the approximate sets for the 20 independent runs of 

the algorithm without removing the dominated solutions. From Fig.6.15 we can see 

that the proposed configuration of the SPEA2 with the PGM outperforms the typical 

configuration of the algorithm with the PLM, as the approximate frontier that is 

generated by the PLM is dominated by the corresponding approximate frontier that is 

produced by using the PGM.  Finally, please notice that the points of the approximate 

frontier that are generated with the assistance of PGM are very close to the exact 

points of the true efficient frontier, meaning that the results of the proposed 

methodology (PGM) are comparable to the ones that are generated by using exact 

methods. 
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     Fig.6.16 and 6.17 illustrate separately the approximate frontiers for the two 

different configurations of the SPEA2. Fig. 6.16 illustrates that the SPEA2 when 

combined with the PGM succeed to concentrate the search effort towards the higher 

fitness regions of the search space, as the vast majority of points of the 20 

independent runs lie on the approximate efficient frontier. 

 
 

 
 
Figure 6.16 SPEA2 + PGM: Mean-Variance Efficient Frontier for the port5 problem, with n = 225 
securities. 
 
On the other hand, as shown by Fig.6.17 in the case of the classical PLM, a 

considerable part of the computational effort is wasted in discovering suboptimal 

solutions and on top of that the approximate frontier presents gaps, especially for 

higher levels of return and risk combinations. 

 
 

 
 
Figure 6.17 SPEA2 + PLM: Mean-Variance Efficient Frontier for the port5 problem, with n = 225 
securities 
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    To conclude, the port5 problem uses data from Nikkei225 index in Japan. The 

relevant results in Tables 6.16-6.18 indicate that the proposed methodology generates 

better results with confidence for all performance metrics, when applied to the 

NSGAII and SPEA2.  

 
 
 
 
6.7.6 S&P500 (457 stocks) port6 in OR-Library 
 
 
Table 6.19 Port6 – Mean, std, median and iqr for HV, Spread and Epsilon 
 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

PORT6 

HV. Mean and Std 7.90e-011.6e-03 7.38e-011.4e-02 7.88e-014.1e-03 7.28e-014.0e-02 
HV. Median and IQR 7.89e-013.7e-03 7.39e-013.3e-02  7.87e-019.9e-03 7.48e-019.3e-02 
SPREAD. Mean and Std 7.76e-011.4e-01 1.14e+005.6e-02 8.60e-019.1e-03 1.39e+001.4e-01 
SPREAD. Median and IQR 7.81e-013.5e-01 1.17e+001.3e-01 8.54e-012.0e-02 1.40e+003.4e-01 
EPSILON. Mean and Std 3.66e-048.8e-05 1.28e-031.5e-04 4.65e-041.5e-04 1.90e-031.1e-03 
EPSILON. Median and IQR 3.59e-042.2e-04 1.22e-033.4e-04 3.67e-043.2e-04 1.57e-032.5e-03 

 
 
Table 6.20 Port6 – Boxplots for HV, Spread and Epsilon 
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Table 6.21 Wilcoxon test in Port6 for HV, Spread and Epsilon 

 
 
 
 
 
 
 
 

 
The port6 problem uses data from S&P500 index in the USA. As shown in Tables 

6.19-6.21 the proposed PGM outperforms with confidence the performance of the 

classical PLM for all performance metrics when applied to NSGAII and SPEA2. 
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6.8 Analysis of the Results 
 
In this section, we analyze the results obtained by applying the Probe Guided 

Mutation (PGM) operator and the Polynomial Mutation (PLM) operator respectively 

to the NSGAII and SPEA2. Three well known performance indicators of MOEAs 

namely Hypervolume, Spread and Epsilon have been applied to assess the quality of 

the proposed variation operator. 

     Examining the results (Tables 6.4, 6.7, 6.10, 6.13, 6.16 and 6.19) of the first 

indicator, the HV, which is considered by many in the relevant literature [82], [117], 

[176], [228], [234] as the most representative indicator of the performance of a 

MOEA we notice that both the NSGAII and SPEA2 perform better with the 

application of PGM operator for all test problems examined (port1-6), compared with 

results derived by applying the classical PLM operator. The Wilcoxon rank-sum test 

(see Tables 6.6, 6.9, 6.12, 6.15, 6.18 and 6.21) validates that the observed difference 

in PGM and PLM performance is statistically significant with 95% confidence.  

     Regarding the Spread indicator the same methodology was applied. The Wilcoxon 

rank-sum test helped us to identify that in all cases the PGM yields better results with 

confidence than the conventional configuration of NSGAII and SPEA2 with the PLM 

operator.  

     Finally, regarding the Epsilon indicator, the Wilcoxon rank-sum test helped us to 

identify that in all test instances the PGM yields better results with confidence than 

the conventional configuration of NSGAII and SPEA2 with the PLM operator. We 

should highlight that the PLM in none of the examined test problems (port1-6) 

outperformed the PGM operator in any one of the three examined performance 

metrics, namely HV, Spread and Epsilon indicator. 

    On the downsides of the proposed methodology is the computational cost 

associated with the fitness evaluation process of the PGM operator. Table 6.1 and 6.2 

provide indicative CPU times, in seconds, needed for each one of the presented tests 

problems (port1-5) under the classical configuration with the PLM operator and under 

the proposed PGM. In general, the overhead of the proposed methodology is not 

stable but depends on the objective functions of each particular problem. However, 

the computational cost associated with the PGM operator is well compensated by the 

higher quality results. Indeed, as indicated by the approximate efficient frontiers (see 
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Fig. 6.5-6.17) the proposed methodology (PGM) generates better results than the 

conventional PLM operator both in terms of Pareto domination conditions and in 

terms of the spread of solutions across the frontier. In particular the approximate 

frontiers that are generated by the classical PLM produce a considerable number of 

points far away from the true efficient frontier and on top of that they present 

discontinuities especially for the higher levels of risk and return combinations. On the 

contrary, the approximate efficient frontiers that are generated by the proposed PGM 

operator demonstrate a remarkable concentration of the search effort very close or in 

some cases on top of the true efficient frontier (CPLEX). 

     Below, we provide a last test in order to demonstrate the exploratory capabilities of 

the proposed methodology. In particular, we revisit the port2 test problem, but this 

time we use 40,000 evaluations for the PGM and 200,000 evaluations for the PLM to 

count for the extra fitness functions evaluations introduced by the proposed 

methodology. Any other parameter remains the same as it was described in section 

6.5.1.  
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6.8.1 DAX100 (85 stocks) port2 in OR-Library 
(PGM: 40,000 evaluations / PLM: 200,000 
evaluations) 
 
Table 6.22 Port2 – Mean, std, median and iqr for HV, Spread and Epsilon 
 

Problem 
 NSGAII SPEA2 

PGM  
(Eval: 40,000) 

PLM 
(Eval: 200,000) 

PGM 
(Eval: 40,000) 

PLM 
(Eval: 200,000) 

PORT2 

HV. Mean and Std 9.85e-013.3e-03 9.71e-015.8e-03 9.82e-013.3e-03 9.68e-015.3e-03 
HV. Median and IQR 9.85e-012.9e-03 9.68e-019.2e-03 9.84e-013.2e-03 9.70e-014.5e-03 
SPREAD. Mean and Std 9.76e-011.7e-02 1.05e+004.8e-02 1.00e+001.2e-02 1.09e+003.1e-02 
SPREAD. Median and IQR 9.76e-012.2e-02 1.03e+009.2e-02 1.00e+001.9e-02 1.10e+004.8e-02 
EPSILON. Mean and Std 4.17e-058.9e-06 7.73e-051.6e-05 4.74e-058.9e-06 8.53e-051.4e-05 
EPSILON. Median and IQR 4.04e-057.8e-06 8.56e-052.5e-05 4.44e-058.7e-06 8.17e-051.2e-05 

 
 
Table 6.23 Port2 – Boxplots for HV, Spread and Epsilon 
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Table 6.24 Wilcoxon test in Port2 for HV, Spread and Epsilon 
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Based on the results in Tables 6.22-6.24 the proposed PGM operator outperforms with 

confidence the performance of classical PLM for the port2 problem when applied to 

NSGAII and SPEA2 respectively for all three performance metrics, although we only 

use 40,000 evaluations for the PGM compared to 200,000 evaluations for the PLM. 

This experiment proved that the proposed methodology (PGM) is able to generate 

higher quality results than the classical PLM for only a fraction of the evaluations 

used by the PLM operator.  
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NSGAII flowchart a 

complete generational 

circle implies not only 

equal number of fitness 

functions evaluations 

but also equal number in 

every other aspect/ 

component of the 

NSGAII, like for 

example number of 

crossovers (SBX).Thus 

by comparing 100,000 

evaluations of the 

NSGAII+PGM is not 

equivalent in any case 

with 258,000 

evaluations of the 

NSGAII+PLM.  

     The experimental results in section 6.7 have been produced by assuming 100,000 

function evaluations for both (PGM and PLM) configurations of the algorithm. 

However, due to the the fitness evaluation process introduced in the PGM operator the 

total number of the actual fitness evaluations for the configuration of the algorithm 

with the PGM operator is higher than 100,000. Specifically, for the port2 test 

problem, we have estimated that for every 100 evaluations of the algorithm the PGM 

is executed on average 79 times, given that the mutation probability is Pm = 1/n, 

where n is the number of decision variables. Furthermore, each execution of the PGM 

entails two (2) separate fitness functions evaluations. Thus, for each 100 evaluations 

of the algorithm, the PGM entails on average 2x79 = 158 additional fitness functions 

evaluations. Based on the above, someone might think that for reasons of fairness we 

should allow some extra evaluations for the PLM when compared with the PGM 

operator. For example for each 100,000 evaluations of the PGM we should allow 

258,000 (= 100,000 + 100,000 x 1.58) evaluations of the PLM. Is that so? In order to 

answer that question we will make use of the NSGAII flowchart. As shown from the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Figure 6.18 Flow chart of the NSGAII 
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For that reason we opted to use equal number of evaluations for each configuration of 

the algorithm and we cited separately the additional computational cost that the 

proposed methodology entails. 

       However, because we wanted to shed any doubt regarding the efficacy of the 

proposed PGM operator, we re-examined the port2 problem, but this time by using 

40,000 evaluations for the configuration of NSGAII and SPEA2 with the PGM and 

200,000 evaluations for the configuration of NSGAII and SPEA2 with the PLM. The 

40,000 evaluations for the configuration of the algorithm with the PGM correspond to 

103,200 (=40,000 + 40,000x1.58) actual fitness functions evaluations, which is 

almost half of the evaluations used for the PLM. The relevant results for the above 

configuration of the algorithms, are shown in Tables 6.22-6.24. The PGM clearly 

outperforms with confidence the performance of classical PLM for the port2 problem 

when applied to NSGAII and SPEA2 respectively for all three performance metrics, 

although we only use a fraction of the evaluations that are being used for the PLM. 

We also tested the proposed methodology (PGM) for only 20,000 evaluations (51,600 

actual fitness functions evaluations) against to 200,000 evaluation of the algorithm 

with the PLM operator and we found out that the PGM still outperforms the classical 

PLM operator. 
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6.9  Experimental presentation of the PGM operator 
with the assistance of the ZDT1-4, 6 and DTLZ1-7 
families of test functions 
 
 
6.9.1 Experimental Environment 
All algorithms have been implemented in Java and run on a personal computer Core 2 

Duo at 1.83 GHz. The jMetal [77] framework has been used to compare the 

performance of the proposed, Probe Guided mutation operator against the classical 

polynomial mutation operator with the assistance of two state-of-the-art MOEAs, 

namely NSGAII and SPEA2.  In all tests we use, binary tournament and simulated 

binary crossover (SBX) [54] as, selection and crossover operator, respectively.  The 

crossover probability is Pc = 0.9 and mutation probability is Pm = 1/n, where n is the 

number of decision variables. The distribution indices for the crossover and mutation 

operators are ηc = 20 and ηm = 20, respectively. Population size is set to 100, using 

25,000 function evaluations with 100 independent runs. 

    Obviously, there is a computational cost associated with the fitness evaluation 

process of PGM. Table 6.25 provides the total CPU time, in seconds, needed for each 

one of the presented tests problems (ZDT1-6, DTLZ 1-7) under the typical 

configuration with the polynomial mutation operator and under the proposed PGM. 

The hardware used was a personal computer Core 2 Duo at 1.83 GHz. On average the 

proposed PGM has an overhead of 3.62% in CPU time when applied to the NSGAII 

and 13.94% when applied to SPEA2.  

 
 
 
Table 6.25 Mean and std total cpu times (in seconds) for the test problems for 100 independent tuns 

 
Problem NSGAII  SPEA2  

PGM PLM Overhead PGM PLM Overhead 
ZDT1 1.8020e+004.2426e-02 1.7402e+002.8747e-02 3.55% 9.9715e+001.7607e-01 8.3176e+001.23285e-01 19.88% 
ZDT2 1.7581e+002.8280e-02 1.7164e+001.18905e-01 2.42% 9.5751e+002.3335e-01 7.728e+002.70603e-01 23.90% 
ZDT3 1.7543e+002.1210e-02 1.7390e+004.4716e-02 0.88% 9.7354e+002.3971e-01 8.4512e+001.40685e-01 15.19% 
ZDT4 1.5067e+002.9703e-02 1.4149e+003.6598e-02 6.48% 6.1209e+005.0487e-01 5.3914e+002.98521e-01 13.53% 
ZDT6 1.3728e+002.4041e-02 1.4032e+005.9322e-02 -2.16% 6.6631e+004.5679e-01 5.4370e+001.01872e-01 22.55% 

DTLZ1 1.3721e+002.6870e-02 1.3632e+004.7347e-02 0.65% 8.0720e+009.3904e-01 7.3504e+006.53571e-01 9.81% 
DTLZ2 1.4662e+006.9304e-02 1.4331e+003.1768e-02 2.30% 18.5152e+008.3440e-02 16.1554e+001.80169e-01 14.60% 
DTLZ3 1.5414e+003.8183e-02 1.4683e+006.0019e-02 4.97% 5.2613e+002.5460e-02 5.3094e+002.079e-01 -0.90% 
DTLZ4 1.7137e+004.8083e-02 1.5441e+001.07981e-01 10.98% 17.2105e+001.1102e-01 15.013e+002.1727e+00 14.63% 
DTLZ5 1.4275e+003.1823e-02 1.3638e+001.8984e-02 4.67% 13.9080e+001.6829e-01 11.9748e+003.08771e-01 16.14% 
DTLZ6 1.7225e+008.1324e-02 1.6217e+001.02639e-01 6.21% 9.6712e+001.8526e-01 8.4328e+009.0276e-02 14.68% 
DTLZ7 1.7594e+004.3840e-02 1.7158e+002.14047e-01 2.51% 13.3275e+004.1931e-01 12.8962e+003.72519e-01 3.34% 

  Average:  3.62%  Average: 13.94% 
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6.9.2 Experimental Results 
 
A number of computational experiments [72] were performed to test the performance 

of the proposed Probe Guided mutation operator for the solution of two different sets 

of test functions, namely ZDT1-4, 6 [229] and DTLZ1-7 [60]. The performance of the 

proposed PGM operator is assessed in comparison with the classical Polynomial 

Mutation operator with the assistance of two well-known MOEAs, namely the Non-

dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary 

Algorithm 2 (SPEA2). The evaluation of the performance is based on a variety of 

metrics that assess both the proximity of the solutions to the Pareto front and their 

dispersion on it.  

 
 
 
 
 
 
 

 

6.9.2.1 The Zitzler-Deb-Theile (ZDT) test suite 
The Zitzler-Deb-Theile (ZDT) test suite [229] is widely used for evaluating 

algorithms solving MOPs. The following five bi-objective MOPs named ZDT1, 

ZDT2, ZDT3, ZDT4 and ZDT6 were used for comparing the proposed PGM operator 

against the polynomial mutation (PLM). They have been used extensively for testing 

MOEAs and their Pareto front shapes are convex, nonconvex, disconnected, 

multimodal and non-uniform. ZDT1, ZDT2 and ZDT3 use 30 decision variables and 

ZDT4 and ZDT6 use 10 decision variables respectively.  

 
 
Zitzler-Deb-Thiele’s function N.1 ( ZDT1) problem:  
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪⎪
⎨

⎪⎪
⎧

푓 (푥) =  푥                                            
   푓 (푥) =  푔(푥)ℎ(푓 (푥), 푔(푥))

푔(푥) =  1 +  9
29 ∑ 푥       

             

ℎ 푓 (푥), 푔(푥) = 1 −  
푓 (푥)
푔(푥)          

� 푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 30 
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Table 6.26 ZDT1 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 

Problem  NSGAII SPEA2 
PGM PLM PGM PLM 

ZDT1 

HV. Mean and Std 6.61e-012.4e-04 6.59e-013.4e-04 6.62e-014.1e-05 6.60e-013.3e-04 
HV. Median and IQR 6.61e-013.7e-04 6.59e-014.4e-04 6.62e-015.5e-05 6.60e-014.2e-04 
SPREAD. Mean and Std 3.89e-013.5e-02 3.71e-013.1e-02 1.49e-011.3e-02 1.49e-011.6e-02 
SPREAD. Median and IQR 3.92e-014.9e-02 3.66e-014.1e-02 1.48e-011.8e-02 1.45e-011.9e-02 
EPSILON. Mean and Std 1.26e-022.1e-03 1.34e-022.4e-03 7.61e-035.9e-04 9.01e-037.8e-04 
EPSILON. Median and IQR 1.22e-022.7e-03 1.30e-022.4e-03 7.50e-038.7e-04 8.90e-031.1e-03 

 
 
 
 
 
Table 6.27 ZDT1 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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The results in the Tables 6.25 – 6.61 have been produced by using JMetal [77] 

framework, a java implementation of many popular MOEAs that has been used in a 

considerable number of studies in the field [22], [111], [219], [221]. Table 6.25 

presents the results of ZDT1 test function. Specifically, it presents the mean, standard 

deviation (STD), median and interquartile range (IQR) of all the independent runs 

carried out for Hypervolume (HV), Spread (Δ) and Epsilon indicator respectively.  

     Clearly, regarding the HV [233] indicator the higher the value (i.e. the greater the 

hypervolume) the better the computed front.  HV considered by many researchers in 

the field [82], [117], [176], [228], [234] as the most important indicator, because of its 

ability to capture in a single number both the closeness of the solutions to the optimal 

set and to a certain degree, the spread of the solutions across the objective space. The 

second indicator the Spread (Δ) [57] examines the spread of solutions across the 

pareto front. The smaller the value of this indicator, the better the distribution of the 

solutions. This indicator takes a zero value for an ideal distribution of the solutions in 

the Pareto front. The third indicator, the Epsilon [126] is a measure of the smaller 

distance that a solution set A, needs to be changed in such a way that it dominates the 
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optimal Pareto front of this problem. Obviously the smaller the value of this indicator, 

the better the derived solution set. 

    Table 6.27 use boxplots to present graphically the performance of NSGAII and 

SPEA2 under two different configurations, PGM and PLM respectively, for the three 

performance indicators, namely: HV, Spread and Epsilon. Boxplot is a convenient 

way of graphically depicting groups of numerical data through their quartiles. 

Boxplots provide a 5-number summary of the data (min, max, Q1, Q3, median) and 

information about outliers. 

      Table 6.28, presents if the results of NSGAII and SPEA2 derived under the two 

different configurations (PGM and PLM) are statistically significant or not. For that 

reason, we use the Wilcoxon rank-sum test as it is implemented by the jMetal 

framework [77]. In Table 6.28, three different symbols are used. In particular “  ” 

indicates that there is not statistical significance between the algorithms.   “  ” means 

that the algorithm in the row has yielded better results than the algorithm in the 

column with confidence and “  “ is used when the algorithm in the column is 

statistically better than the algorithm in the row. The same interpretation holds for the 

rest of the Tables of section 6.9.2. Analysis of the relevant results provided in section 

6.9.3.                                   
 

 
 
Table 6.28 Wilcoxon test in ZDT1 for HV, Spread and Epsilon 
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Zitzler-Deb-Thiele’s function N.2 ( ZDT2) problem:  
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪⎪
⎨

⎪⎪
⎧

푓 (푥) =  푥                                            
   푓 (푥) =  푔(푥)ℎ(푓 (푥), 푔(푥))

푔(푥) =  1 +  9
29 ∑ 푥       

             

ℎ 푓 (푥), 푔(푥) = 1 −   
푓 (푥)
푔(푥)         

� 푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 30 

 
 
 
 
 
 
Table 6.29 ZDT2 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

ZDT2 

HV. Mean and Std 3.28e-012.1e-04 3.26e-013.2e-04 3.28e-015.0e-03 3.26e-015.6e-04 
HV. Median and IQR 3.28e-013.0e-04 3.26e-013.7e-04 3.28e-017.3e-05 3.26e-015.9e-04 
SPREAD. Mean and Std 3.99e-013.2e-02 3.81e-013.2e-02 1.49e-011.2e-02 1.55e-011.9e-02 
SPREAD. Median and IQR 4.04e-014.0e-02 3.82e-013.8e-02 1.50e-011.9e-02 1.54e-012.1e-02 
EPSILON. Mean and Std 1.29e-022.3e-03 1.30e-022.1e-03 7.81e-032.6e-03 1.05e-021.3e-02 
EPSILON. Median and IQR 1.23e-022.8e-03 1.28e-022.6e-03 7.53e-039.0e-04 8.83e-039.4e-04 

 
 
 
 
Table 6.30 ZDT2 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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NSGAII SPEA2 

HV SPREAD EPSILON HV SPREAD EPSILON 
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Table 6.31 Wilcoxon test in ZDT2 for HV, Spread and Epsilon 
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Zitzler-Deb-Thiele’s function N.3 ( ZDT3) problem 
 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪⎪
⎨

⎪⎪
⎧

푓 (푥) =  푥                                                                                                                                               
   푓 (푥) =  푔(푥)ℎ(푓 (푥), 푔(푥))

푔(푥) =  1 +  9
29 ∑ 푥       

                   푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 30            

ℎ 푓 (푥), 푔(푥) = 1 −  
푓 (푥)
푔(푥)  −   

푓 (푥)
푔(푥) sin (10휋푓 (푥))                                           

� 

 
 
Table 6.32 ZDT3 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

ZDT3 

HV. Mean and Std 5.16e-018.3e-05 5.15e-013.6e-04 5.16e-014.3e-05 5.14e-016.6e-04 
HV. Median and IQR 5.16e-011.0e-04 5.15e-012.7e-04 5.16e-015.4e-05 5.14e-013.6e-04 
SPREAD. Mean and Std 7.50e-011.5e-02 7.45e-011.4e-02 7.06e-011.0e-02 7.11e-011.6e-02 
SPREAD. Median and IQR 7.49e-012.3e-02 7.45e-011.9e-02 7.04e-013.5e-03 7.09e-017.3e-03 
EPSILON. Mean and Std 8.20e-031.7e-03 1.15e-023.1e-02 8.64e-031.2e-03 1.90e-025.2e-02 
EPSILON. Median and IQR 7.88e-032.2e-03 8.19e-032.0e-03 8.42e-031.5e-03 9.38e-031.9e-03 

 
 
 
Table 6.33 ZDT3 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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Table 6.34 Wilcoxon test in ZDT3 for HV, Spread and Epsilon 
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Zitzler-Deb-Thiele’s function N.4 ( ZDT4) problem 
 
 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪⎪
⎨

⎪⎪
⎧

푓 (푥) =  푥                                                                                                                                                
   푓 (푥) =  푔(푥)ℎ(푓 (푥), 푔(푥))            푓표푟 0 ≤ 푥  ≤ 1, −5 ≤ 푥  ≤ 5,   2 ≤  푖 ≤ 10

푔(푥) =  91 +  ∑  ( 푥 − 10 cos(4휋푥 ))                                                                        

ℎ 푓 (푥), 푔(푥) = 1 −  
푓 (푥)
푔(푥)                                                                                              

� 

 
 
Table 6.35 ZDT4 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

ZDT4 

HV. Mean and Std 6.58e-011.6e-03 6.54e-014.3e-03 6.55e-017.1e-03 6.48e-011.4e-02 
HV. Median and IQR 6.58e-011.7e-03 6.55e-015.6e-03 6.57e-014.9e-03 6.52e-011.0e-02 
SPREAD. Mean and Std 3.95e-013.8e-02 4.00e-013.8e-02 2.14e-018.5e-02 2.90e-011.3e-01 
SPREAD. Median and IQR 3.93e-015.0e-02 4.01e-014.6e-02 1.83e-011.1e-01 2.59e-011.8e-01 
EPSILON. Mean and Std 1.37e-022.1e-03 1.77e-021.3e-02 4.04e-024.7e-02 5.80e-026.7e-02 
EPSILON. Median and IQR 1.36e-022.7e-03 1.54e-023.7e-03 1.27e-024.5e-02 2.10e-026.6e-02 

 
 
 
Table 6.36 ZDT4 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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Table 6.37 Wilcoxon test in ZDT4 for HV, Spread and Epsilon 
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Zitzler-Deb-Thiele’s function N.6 ( ZDT6) problem 
 
 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪⎪
⎨

⎪⎪
⎧   푓 (푥) =  1 − exp (−4푥 )푠푖푛 (6휋푥 )                                                                     

   푓 (푥) =  푔(푥)ℎ(푓 (푥), 푔(푥))     

푔(푥) =  1 +  9
∑ 푥

9

.

   
         푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 10    

ℎ 푓 (푥), 푔(푥) = 1 −   
푓 (푥)
푔(푥)                                                                         

� 

 
 
 
 
Table 6.38 ZDT6 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

ZDT6 

HV. Mean and Std 3.99e-014.5e-04 3.88e-011.6e-03 4.00e-013.1e-04 3.79e-013.0e-03 
HV. Median and IQR 3.99e-015.7e-04 3.89e-012.2e-03 4.00e-013.8e-04 3.79e-014.7e-03 
SPREAD. Mean and Std 5.13e-016.3e-02 3.59e-013.0e-02 1.56e-011.4e-02 2.35e-018.4e-02 
SPREAD. Median and IQR 5.10e-019.2e-02 3.59e-014.7e-02 1.56e-011.6e-02 2.24e-013.0e-02 
EPSILON. Mean and Std 1.15e-022.7e-03 1.43e-022.0e-03 6.26e-035.1e-04 2.52e-024.1e-03 
EPSILON. Median and IQR 1.08e-023.0e-03 1.39e-022.4e-03 6.26e-037.8e-04 2.46e-025.9e-03 

 
 
 
Table 6.39 ZDT6 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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Table 6.40 Wilcoxon test in ZDT6 for HV, Spread and Epsilon 
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6.9.2.2 The Deb-Theile-Laumanns- Zitzler (DTLZ) 
test suite 
 
Above, we used the Zitzler-Deb-Theile (ZDT) test suite [229] in order to demonstrate 

the efficiency of the proposed PGM operator to solve different types of bi-objective 

optimization problems. Below, we will utilize the Deb-Theile-Laumanns-Zitzler 

(DTLZ) [60] test suite to examine the efficacy of the proposed mutation mechanism 

in handling problems having more than two objectives. Specifically, the following 

seven MOPs named DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6 and DTLZ7 

were used for comparing the proposed PGM operator against the polynomial mutation 

(PLM). The DTLZ test functions are a set of scalable problems with the ability to 

control difficulties in converging to the Pareto front and maintain the diversity of 

solutions [60].  

 
 
 
 
Deb-Theile-Laumanns- Zitzler’s function N.1 (DTLZ1) problem: 
 
 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 푓 (푥) =  

1
2 푥 푥 … 푥 1 +  푔(푋 ) ,                                                   

      푓 (푥) =  1
2 푥 푥 …  (1 −  푥 ) 1 +  푔(푋 ) ,  

:    
   푓 (푥) =  1

2 푥  (1 −  푥 ) 1 +  푔(푋 ) ,         

   푓 (푥) =  1
2  (1 −  푥 ) 1 +  푔(푋 ) ,                

 

                                        

   

� 

푤ℎ푒푟푒      푔(푋 ) = 100 |푋 | + (푥 −  0.5) −  cos (20휋 (푥 −  0.5))
∈

 ,  

 
푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛    
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Table 6.41 DTLZ1 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 
 

Problem  NSGAII SPEA2 
PGM PLM PGM PLM 

DTLZ1 

HV. Mean and Std 7.38e-015.4e-02 6.04e-012.5e-01 7.74e-015.5e-03 7.33e-011.3e-01 
HV. Median and IQR 7.47e-011.4e-02 7.29e-017.8e-02 7.74e-017.5e-03 7.67e-012.0e-02 
SPREAD. Mean and Std 8.53e-011.1e-01 9.05e-011.7e-01 8.95e-013.1e-01 9.44e-013.3e-01 
SPREAD. Median and IQR 8.44e-019.3e-02 8.54e-011.1e-01 7.82e-015.0e-01 8.24e-015.6e-01 
EPSILON. Mean and Std 6.51e-022.2e-02 1.16e-018.8e-02 3.95e-023.3e-03 5.76e-024.3e-02 
EPSILON. Median and IQR 6.01e-021.3e-02 7.08e-025.4e-02 3.95e-024.3e-03 4.39e-021.2e-02 

 
 
 
Table 6.42 DTLZ1 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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Table 6.43 Wilcoxon test in DTLZ1 for HV, Spread and Epsilon 
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Deb-Theile-Laumanns- Zitzler’s function N.2 (DTLZ2) problem: 
 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧  푓 (푥) =  1 +  푔(푋 ) cos 푥

휋
2 cos 푥

휋
2 … . cos 푥

휋
2 cos 푥

휋
2 ,          

푓 (푥) =  1 +  푔(푋 ) cos 푥
휋
2 cos 푥

휋
2 … . cos 푥

휋
2 s푖푛 푥

휋
2 ,        

푓 (푥) =  1 +  푔(푋 ) cos 푥
휋
2 cos 푥

휋
2 … . s푖푛 푥

휋
2 ,                                  

:
푓 (푥) =  1 +  푔(푋 ) cos 푥

휋
2 s푖푛 푥

휋
2 ,                                                            

푓 (푥) =  1 +  푔(푋 ) s푖푛 푥
휋
2 ,                                                                                     

� 

 
                            푤ℎ푒푟푒     푔(푋 ) = ∑ (푥 −  0.5)∈  
 
                                           푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛      
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Table 6.44 DTLZ2 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 
 

Problem  NSGAII SPEA2 
PGM PLM PGM PLM 

DTLZ2 

HV. Mean and Std 3.81e-015.4e-03 3.73e-016.9e-03 4.11e-011.1e-03 4.05e-012.0e-03 
HV. Median and IQR 3.80e-017.2e-03 3.74e-011.0e-02 4.11e-011.7e-03 4.05e-012.3e-03 
SPREAD. Mean and Std 7.11e-015.3e-02 6.99e-015.2e-02 5.28e-013.3e-02 5.28e-012.8e-02 
SPREAD. Median and IQR 7.14e-017.8e-02 7.03e-016.9e-02 5.26e-015.1e-02 5.31e-013.9e-02 
EPSILON. Mean and Std 1.29e-011.9e-02 1.29e-011.9e-02 7.94e-028.0e-03 8.40e-028.6e-03 
EPSILON. Median and IQR 1.27e-012.8e-02 1.27e-012.9e-02 7.79e-028.5e-03 8.26e-021.1e-02 

 
 
 
 
Table 6.45 DTLZ2 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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Table 6.46 Wilcoxon test in DTLZ2 for HV, Spread and Epsilon 
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Deb-Theile-Laumanns- Zitzler’s function N.3 (DTLZ3) problem: 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧  푓 (푥) =  1 +  푔(푋 ) cos 푥

휋
2 cos 푥

휋
2 … . cos 푥

휋
2 cos 푥

휋
2 ,          

푓 (푥) =  1 +  푔(푋 ) cos 푥
휋
2 cos 푥

휋
2 … . cos 푥

휋
2 s푖푛 푥

휋
2 ,        

푓 (푥) =  1 +  푔(푋 ) cos 푥
휋
2 cos 푥

휋
2 … . s푖푛 푥

휋
2 ,                                  

:
푓 (푥) =  1 +  푔(푋 ) cos 푥

휋
2 s푖푛 푥

휋
2 ,                                                            

푓 (푥) =  1 +  푔(푋 ) s푖푛 푥
휋
2 ,                                                                                     

� 

 
                           푤ℎ푒푟푒      푔(푋 ) = 100 |푋 | +  ∑ (푥 −  0.5) −  cos (20휋 (푥 −  0.5))∈  
 

푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛    
 
 
 
 
Table 6.47 DTLZ3 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

DTLZ3 

HV. Mean and Std 2.67e-031.2e-02 0.00e+000.0e+00 1.24e-031.2e-02 5.63e-045.6e-03 
HV. Median and IQR 0.00e+000.0e+00 0.00e+000.0e+00 0.00e+000.0e+00 0.00e+000.0e+00 
SPREAD. Mean and Std 1.04e+001.1e-01 1.03e+001.3e-01 1.20e+001.1e-01 1.25e+001.5e-01 
SPREAD. Median and IQR 1.02e+001.5e-01 1.04e+001.8e-01 1.19e+001.6e-01 1.24e+001.9e-01 
EPSILON. Mean and Std 2.38e+001.3e+00 5.00e+002.4e+00 3.16e+001.8e+00 5.94e+002.4e+00 
EPSILON. Median and IQR 2.24e+001.4e+00 4.59e+002.6e+00 2.87e+002.1e+00 5.73e+003.6e+00 

 
 
 
Table 6.48 DTLZ3 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2   
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Table 6.49 Wilcoxon test in DTLZ3 for HV, Spread and Epsilon 
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Deb-Theile-Laumanns- Zitzler’s function N.4 (DTLZ4) problem: 
 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧  푓 (푥) =  1 +  푔(푋 ) cos 푥

휋
2 cos 푥
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2 … . cos 푥
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2 cos 푥
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2 … . cos 푥
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2 s푖푛 푥
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휋
2 s푖푛 푥

휋
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푓 (푥) =  1 +  푔(푋 ) s푖푛 푥
휋
2 ,                                                                                     

� 

  
                           푤ℎ푒푟푒     푔(푋 ) = ∑ (푥 −  0.5)∈  
 
                                                 푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛  
 
 
 
Table 6.50 DTLZ4 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

DTLZ4 

HV. Mean and Std 3.80e-014.9e-03 3.74e-015.2e-03 3.28e-011.1e-01 3.17e-011.2e-01 
HV. Median and IQR 3.81e-016.9e-03 3.75e-017.0e-03 4.05e-012.0e-01 3.98e-011.9e-01 
SPREAD. Mean and Std  6.83e-014.8e-02 6.72e-014.6e-02 4.69e-011.5e-01 5.21e-011.7e-01 
SPREAD. Median and IQR 6.82e-017.4e-02 6.72e-017.5e-02 5.23e-015.5e-02 5.27e-015.2e-02 
EPSILON. Mean and Std 1.10e-011.7e-02 1.11e-011.8e-02 2.86e-012.8e-01 2.94e-013.1e-01 
EPSILON. Median and IQR 1.09e-012.2e-02 1.09e-012.5e-02 7.76e-025.6e-01 7.97e-025.6e-01 

 
 
 
Table 6.51 DTLZ4 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2   
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Table 6.52 Wilcoxon test in DTLZ4 for HV, Spread and Epsilon 
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Deb-Theile-Laumanns- Zitzler’s function N.5 (DTLZ5) problem: 
 
 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
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⎪
⎧  푓 (푥) =  1 +  푔(푋 ) cos 휃

휋
2 cos 휃

휋
2 … . cos 휃
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2 cos 휃
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2 ,          

푓 (푥) =  1 +  푔(푋 ) cos 휃
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2 cos 휃
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2 … . cos 휃

휋
2 s푖푛 휃

휋
2 ,        

푓 (푥) =  1 +  푔(푋 ) cos 휃
휋
2 cos 휃

휋
2 … . s푖푛 휃

휋
2 ,                                  

:
푓 (푥) =  1 +  푔(푋 ) cos 휃

휋
2 s푖푛 휃

휋
2 ,                                                            

푓 (푥) =  1 +  푔(푋 ) s푖푛 휃
휋
2 ,                                                                                    

                                                                    

� 

 
                               푤ℎ푒푟푒     휃 = ( ) (1 + 2푔(푋 )푥 )    푓표푟 푖 = 2, 3, … , (푀 − 1), 
 
                                                 푔(푋 ) = ∑ (푥 −  0.5)∈    푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛     
 
 
 
 
Table 6.53 DTLZ5 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

DTLZ5 

HV. Mean and Std 9.29e-021.7e-04 9.28e-022.1e-04 9.33e-021.2e-04 9.32e-021.4e-04 
HV. Median and IQR 9.29e-021.9e-04 9.28e-023.0e-04  9.33e-021.5e-04 9.32e-022.0e-04 
SPREAD. Mean and Std 4.42e-013.9e-02 4.42e-014.7e-02 2.07e-013.0e-02 2.34e-013.9e-02 
SPREAD. Median and IQR 4.37e-015.3e-02 4.32e-015.9e-02 2.03e-013.3e-02 2.24e-014.5e-02 
EPSILON. Mean and Std 1.06e-021.6e-03 1.10e-021.9e-03 7.16e-039.5e-04 7.69e-039.3e-04 
EPSILON. Median and IQR 1.04e-022.0e-03 1.08e-022.5e-03 7.03e-031.3e-03 7.62e-031.3e-03 

 
 
 
Table 6.54 DTLZ5 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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Table 6.55 Wilcoxon test in DTLZ5 for HV, Spread and Epsilon 
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Deb-Theile-Laumanns- Zitzler’s function N.6 (DTLZ6) problem: 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧  푓 (푥) =  1 +  푔(푋 ) cos 휃

휋
2 cos 휃

휋
2 … . cos 휃

휋
2 cos 휃

휋
2 ,          

푓 (푥) =  1 +  푔(푋 ) cos 휃
휋
2 cos 휃

휋
2 … . cos 휃

휋
2 s푖푛 휃

휋
2 ,        

푓 (푥) =  1 +  푔(푋 ) cos 휃
휋
2 cos 휃

휋
2 … . s푖푛 휃

휋
2 ,                                  

:
푓 (푥) =  1 +  푔(푋 ) cos 휃

휋
2 s푖푛 휃

휋
2 ,                                                            

푓 (푥) =  1 +  푔(푋 ) s푖푛 휃
휋
2 ,                                                                                    

                                                                    

� 

 
                               푤ℎ푒푟푒     휃 = ( ) (1 + 2푔(푋 )푥 )    푓표푟 푖 = 2, 3, … , (푀 − 1), 
 
                                                 푔(푋 ) = ∑ 푥 .

∈    푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛     
 
 
 
 
Table 6.56 DTLZ6 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

DTLZ6 

HV. Mean and Std 8.73e-029.8e-03 0.00e+000.0e+00 4.32e-021.9e-02 0.00e+000.0e+00 
HV. Median and IQR 9.36e-021.6e-02 0.00e+000.0e+00 3.86e-022.7e-02 0.00e+000.0e+00 
SPREAD. Mean and Std 6.21e-019.1e-02 8.16e-014.9e-02 6.71e-019.5e-02 5.79e-013.8e-02 
SPREAD. Median and IQR 5.97e-011.3e-01 8.15e-015.6e-02 6.54e-011.2e-01 5.78e-014.6e-02 
EPSILON. Mean and Std 1.86e-021.2e-02 8.73e-018.1e-02 1.11e-014.6e-02 7.82e-016.0e-02 
EPSILON. Median and IQR 1.27e-021.7e-02 8.59e-011.1e-01 1.11e-016.5e-02 7.90e-017.4e-02 
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Table 6.57 DTLZ6 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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Table 6.58 Wilcoxon test in DTLZ6 for HV, Spread and Epsilon 

 

 
 
 
 
 

 
Deb-Theile-Laumanns- Zitzler’s function N.7 (DTLZ7) problem: 
 

푀푖푛푖푚푖푧푒 =  

⎩
⎪
⎨

⎪
⎧   푓 (푋 ) =  푥 ,                                                               

푓 (푋 ) =  푥 ,                                                            
     ∶                                               

푓 (푋 ) =  푥 ,                                             
  푓 (푋) =  1 +  푔(푋 )  ℎ(푓 ,  푓 , … , 푓 , 푔),      

                                                                    

� 

    푤ℎ푒푟푒    푔(푋 ) = 1 +  
9

|푋 | 푥
∈

 

                                                                         ℎ(푓 ,  푓 , … , 푓 , 푔) = 푀 − ∑  (1 + sin(3휋푓 ))    
                                  푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛     

 
 
 
 
Table 6.59 DTLZ7 – Mean, std, median and iqr for HV, Spread and Epsilon – NSGAII and SPEA2 

 
Problem  NSGAII SPEA2 

PGM PLM PGM PLM 

DTLZ7 

HV. Mean and Std 2.80e-014.4e-03 2.80e-013.4e-03 2.91e-014.0e-03 2.89e-016.9e-03 
HV. Median and IQR 2.80e-016.4e-03 2.81e-013.9e-03 2.91e-013.7e-03 2.90e-013.6e-03 
SPREAD. Mean and Std 7.37e-015.0e-02 7.50e-014.9e-02 5.98e-013.8e-02 6.09e-014.4e-02 
SPREAD. Median and IQR 7.37e-015.8e-02 7.44e-017.7e-02 5.96e-014.3e-02 6.10e-015.2e-02 
EPSILON. Mean and Std 1.43e-014.5e-02 1.39e-014.1e-02 1.11e-011.2e-01 1.47e-012.3e-01 
EPSILON. Median and IQR 1.34e-013.2e-02 1.30e-013.7e-02 9.84e-021.2e-02 9.88e-021.1e-02 
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Table 6.60 DTLZ7 – Boxplots for HV, Spread and Epsilon – NSGAII and SPEA2 
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Table 6.61 Wilcoxon test in DTLZ7 for HV, Spread and Epsilon 
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6.9.2.3  Analysis of the Results 
 

In this section, we analyze the results obtained by applying the Probe Guided 

Mutation (PGM) operator and the Polynomial Mutation (PLM) operator respectively 

to the NSGAII and SPEA2 for solving two sets of benchmark problems namely 

ZDT1-4, 6 and DTLZ 1-7. The assessment of the performance of the proposed 

mutation operator is done with the assistance of three well known performance 

indicators, namely Hypervolume, Spread and Epsilon indicator. 

     Examining the results of the first indicator, the HV, we notice that the PGM 

operator performs better under both different configurations i.e. NSGAII and SPEA2 

for the majority of the test functions examined, compared with results derived by 

applying the classical PLM operator. Please notice that according to a number of 

studies [82], [117], [138], [176], [228], [234] HV has nicer mathematical properties 

than many other metrics and is able to capture in a single number both the closeness 

of the solutions to the optimal set and, to some extent, the spread of the solutions 

across objective space. Figure 6.19. 

 
 

 
 
 

Figure 6.19 Hypervolume: PGM performance is compared with PLM 
 
 
reveals the relevant figures for the performance of PGM regarding the HV indicator. 

The Wilcoxon rank-sum test (see Tables 6.27, 6.30, 6.33, 6.36, 6.39, 6.42, 6.45, 6.48, 

6.51, 6.54, 6.57 and 6.60) validates that the observed difference in PGM and PLM 
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performance is statistically significant with 95% confidence. Analytically, in 87.50% 

of the cases the PGM yields better results with confidence than the conventional 

configuration of NSGAII and SPEA2 with the PLM operator. Also, in 12.50% of the 

cases there was not statistical significance between the PGM and PLM. We should 

highlight that in none of the examined test functions PLM outperformed the PGM 

operator regarding the HV metric. Regarding the Spread indicator (see Fig. 6.20) the 

same methodology applied. 

 
 

 
Figure 6.20 Spread: PGM performance is compared with PLM 

 
 
In particular the Wilcoxon rank-sum test helped us to identify that in 37.50% of the 

cases the PGM yields better results with confidence than the conventional 

configuration of NSGAII and SPEA2 with the PLM operator. In 41.50% of the cases 

there was not statistical significance between the PGM and PLM regarding the Spread 

metric and in 21% of the examined cases the classical PLM operator generated better 

results with confidence than the proposed methodology. The relevant results 

regarding the Spread indicator, suggest that in certain cases the exploration of the 

most promising regions of the search space can occur at the expense of the spread of 

solutions. Figure 6.21 reveals the relevant numbers for the performance of PGM 

regarding the Epsilon indicator. In particular the Wilcoxon rank-sum test helped us to 

identify that in 66.67% of the cases 
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Figure 6.21 Epsilon: PGM performance is compared with PLM 

 
 
the PGM yields better results with confidence than the conventional configuration of 

NSGAII and SPEA2 with the PLM operator. Also, in 33.33% of the cases there was 

not statistical significance between the PGM and PLM regarding the Epsilon metric. 

We should highlight that the PLM in none of the examined test functions 

outperformed the PGM operator regarding the Epsilon metric. Please note that the 

boxplots (Tables 6.27, 6.30, 6.33, 6.36, 6.39, 6.42, 6.45, 6.48, 6.51, 6.54, 6.57 and 

6.60) provide graphical representation of the relevant results for the three metrics 

examined, namely HV, Spread and Epsilon. Fig. 6.22 presents the results regarding 

the application of PGM to NSGAII, for all performance indicators collectively (HV, 

Spread, Epsilon). 

 
 

Figure 6.22 NSGAII: PGM performance is compared with PLM 
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     Thus, for the 52.78% of the examined cases the NSGAII with the PGM operator 

yields better results with confidence than the conventional configuration of NSGAII 

with the PLM operator. Also, in 36.11% of the cases there was not statistical 

significance in the results from the application of PGM to the NSGAII. Finally, in 

11.11% of the cases the NSGAII with its typical configuration generated better results 

with confidence than the proposed methodology. Figure 6.23 presents the results 

regarding the application of PGM to SPEA2, for all three performance indicators 

collectively (HV, Spread, Epsilon). Thus, for the 75% of the examined cases the 

SPEA2 with the PGM operator yields better results with confidence than the 

conventional configuration of SPEA2 with the PLM operator. Also, in 22.22% of the 

cases there was not statistical significance in the results from the application of PGM 

to the SPEA2. 

 
Figure 6.23 SPEA2: PGM performance is compared with PLM 

 
 
     Finally, in 2.78% of the cases the SPEA2 with its typical configuration generated 

better results with confidence than the proposed methodology.  Taking into 

consideration that the implementation of PGM to SPEA2 generates better results with 

confidence for the 75% of the examined cases, as shown in Fig. 6.23, it seems 

reasonable to accept an average computational overhead of 13.94% that involves the 

proposed methodology as shown in Table 6.25. 
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6.10 Conclusions 
This chapter presents a new Probe Guided Mutation (PGM) operator and its 

application for solving the cardinality constrained portfolio optimization problem 

(CCPOP) and two well-known families of test functions (i.e. ZDT1-4, 6 and DTLZ1-

7) alike. The proposed mutation operator incorporates a fitness functions evaluation 

mechanism that allows the evaluation of the corresponding fitness for the left hand 

side region and the right hand side region of the parent solution. The selection 

between the two alternative child solutions is done with the assistance of the Pareto 

optimality conditions. Thanks to the PGM operator the algorithm is able to move fast 

towards the higher fitness regions of the search landscape and discover near optimal 

solutions.  

    The evaluation of the proposed mutation operator is done with the assistance of six 

portfolio optimization problems (port1-6) that correspond to six different capital 

markets. The size of these problems varies from 31 stocks for the smallest and up to 

457 stocks for the largest problem. The performance of the proposed PGM operator is 

assessed in comparison with the classical Polynomial Mutation operator (PLM) with 

the assistance of two well-known MOEAs, namely the Non-dominated Sorting 

Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm 2 

(SPEA2) for the solution of the CCPOP. The evaluation of the performance is based 

on a variety of metrics that assess both the proximity of the solutions to the Pareto 

front and their dispersion on it. 

    The relevant results indicate that the proposed mutation operator outperforms with 

confidence the PLM operator for all performance metrics, when applied to the 

NSGAII and SPEA2. We also wanted to find out how well the PGM operator 

performs when compared to the True Pareto Efficient frontier of the CCPOP. For that 

purpose, we formulated the CCPOP as a Mixed Integer Quadratic Program (MIQP) 

and we calculated a number of exact points for each one of the port1-5 portfolio 

optimization problems with the assistance of CPLEX version 12.5. We found out that 

the approximate efficient frontiers that are generated by the proposed PGM operator 

demonstrate a remarkable concentration of the search effort very close or in some 

cases on top of the true efficient frontier (CPLEX). On the contrary, the approximate 

efficient frontiers that are generated by the classical PLM produce a considerable 

number of points far away from the true efficient frontier and on top of that they 
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demonstrate discontinuities especially for the higher levels of risk and return 

combinations. 

     We also carried out a final test in order to demonstrate the exploratory capabilities 

of the proposed methodology. In particular, we revisited the port2 test problem, but 

this time we used only 40,000 evaluations for the PGM and 200,000 evaluations for 

the PLM to compensate for the extra fitness functions evaluations introduced by the 

PGM. We found out that the PGM operator still outperforms with confidence the 

PLM operator for all performance metrics, when applied to the NSGAII and SPEA2, 

although we only used a fraction of the evaluations that are being used for the PLM.  

 

      Finally, we tested the efficiency of PGM operator with the assistance of the 

ZDT1-4, 6 and DTLZ1-7 families of test functions. Compared with the conventional 

PLM operator the proposed methodology (PGM) generates better results with 

confidence for the 87.50% of the test functions examined regarding the HV indicator. 

It also produces better results for the 66.67% of the test functions examined regarding 

the Epsilon indicator and not worse results than the classical PLM operator for the 

rest of the cases. Regarding the Spread metric, the proposed methodology generates 

better results with confidence for the 37.50% of the test functions examined and 

worse results for the 21% of the examined problems.   

  When we examine the effect by the implementation of PGM to NSGAII and SPEA2 

individually, we notice that the proposed methodology proved efficient regarding the 

SPEA2 as for a computational overhead of 13.94% generates better results with 

confidence for the 75% of the examined cases. Finally, very efficient appears to be the 

implementation of the proposed mutation operator to the NSGAII, as for a 

computational overhead of 3.62% compared with the typical configuration of the 

NSGAII with the polynomial mutation operator, generates better results with 

confidence for the 52.78% of the examined cases. 

    We are interested in comparing the PGM with other mutation techniques. In our 

future work, we will attempt to develop a technique that will update the mutation 

probability (Pm) at run-time according to the performance of the algorithm in a 

number of metrics such as the hypervolume or epsilon indicator. 
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Chapter 7 

 

An Experimental Analysis of a new Two Stage 
Crossover operator for Multiobjective Optimization 

 
 

7.1 Introduction 
In recent years multiobjective problems (MOPs) have received growing attention. 

The increasing attention can be attributed to the development of intelligent techniques 

that are capable of handling such difficult problems. In particular, Evolutionary 

Algorithms for MOPs have been proved very efficient in finding near optimal 

solutions in hard, real world optimization problems with multiple objectives and 

constraints. The Multiobjective Evolutionary Algorithms (MOEAs) are population 

based and they work by evolving a population of candidate solutions to satisfy the 

objectives and constraints of a particular problem [140], [155]. The recombination 

operator plays a very important role in MOEAs as exploitation force. One of the most 

popular real coded crossover operators that has been applied to a considerable number 

of MOEAs, is the Simulated Binary Crossover (SBX) [54]. In this chapter, we revisit 

the classical SBX and we propose a new strategy that demonstrates enhanced 

exploratory properties.  

Over the past years a number of studies proposed different recombination operators 

that each one of them has its own strength and weaknesses. Tsutsui, Yamamura and 

Higuchi (1999) [208] proposed a Simplex Crossover (SPX) operator for real coded 

GAs. They found that the SPX works well on functions having multimodality. 

However, the authors did not test the SPX operator to multiobjective problems. Da 

Ronco and Benini (2013) [48] proposed the Genetic Diversity Evolutionary 

Algorithm II (GeDEA-II) which features a modified Simplex-Crossover operator 

(SPX). Unlike the SPX presented in [208], the SPX exploited in GeDEA-II requires 

only two parents to form a new child. The performance of the GeDEA-II was tested 

against other different state-of-the-art MOEAs 

A novel hybrid harmony search HS [98] with arithmetic crossover operator (AC) 

[3] called ACHS is proposed by Niu et al. [167]. The proposed ACHS enhances the 



Chapter 7  PhD Thesis – K. Liagkouras    

[150] 
 

performance and applicability of the conventional HS. In HS, the global best 

information, which can improve the quality of the new harmony and speed up the 

convergence rate, is not fully utilized. According to the Niu et al. [167] the ACHS 

overcome this shortcome of the HS by using the global best information to update the 

new generated harmony through crossover operation.  

Yoon et al. [220] proposed a new crossover operator for real-coded genetic 

algorithms employing a novel methodology to remove the inherent bias of pre-

existing crossover operators. According to the authors this is done by transforming the 

topology of the hyper-rectangular real space by gluing opposite boundaries and 

designing a boundary extension method for making the fitness function smooth at the 

glued boundary. 

Qi et al [168] proposed an immune multi-objective optimization algorithm with 

differential evolution inspired recombination (IMADE). In the proposed IMADE, the 

novel crossover provides two types of candidate searching directions by taking three 

parents which distribute along the current Pareto set (PS) within a local area. 

According to the authors [168] the new recombination operator utilizes the regularity 

of continuous MOPs and the distributions of current population, which helps IMADE 

maintain a more uniformly distributed Pareto front (PF) and converge much faster. 

Hervas-Martinez et al. [112] proposed a confidence interval based crossover for 

real-coded GAs. This crossover is based on defining a confidence interval for a 

localization estimator. According to the authors the operator will converge to fittest 

individuals of the population if the parameters are correctly chosen. As the authors 

report the major disadvantage of the operator is the assumption of the normality and 

independence of the genes.  

Amit Banerjee [14] proposed a new context-sensitive crossover operator for 

clustering that uses domain specific information about cluster quality to drive the 

crossover process. According to the author this crossover operator ensures that high 

quality genetic information is inherited by the child. This operator also achieves quick 

convergence to a local optimal solution however at the cost of diversity of the 

population and the higher computational cost.  

     Deb et al. (2002) [55] proposed a parent-centric recombination (PCX) operator that 

favours solutions close to parents. The authors found that the PCX operator is a 

meaningful and efficient way of solving real-parameter optimization problems.  



PhD Thesis – K. Liagkouras   Chapter 7  

[151] 
 

    Ono and Kobayashi (1997) [170] proposed the unimodal normal distribution 

crossover (UNDX) operator. The UNDX operator uses multiple parents and creates 

offspring solutions with the assistance of a normal probability distribution around the 

center of mass of these parents.  

    In another study, Eshelman and Schaffer (1993) [81] proposed a blend crossover 

(BLX-α) operator for real coded GAs. The authors introduced the notion of interval 

schemata. Specifically, for two parent solutions 푥( ,   ) and 푥( ,   ), assuming 푥( ,   )< 

푥( ,   ) the BLX-α randomly picks a solution in the range [푥( ,   ) - α(푥( ,   ) - 푥( ,   )),  

푥( ,   ) + α(푥( ,   ) - 푥( ,   ))]. The BLX-α for α = 0.5 obtains a balanced relationship 

between the convergence (exploitation) and divergence (exploration), since the 

probability that an offspring shall lie outside its parents becomes equal to the 

probability that it shall lie between its parents. 

   The BLX-α operator belongs to the family of the neighborhood based real-

parameter crossover operators that use probability distributions for creating the genes 

of the offspring in restricted search spaces around the regions marked by the genes of 

the parents.  

   Deep and Thakur [62] introduced a crossover operator that uses the Laplace 

distribution. They named the new operator Laplace crossover (LX) and belongs to the 

family of parent-centric crossover operators. The LX operator generates two offspring 

symmetrically placed with respect to the position of the parents. Depending on the 

value of a parameter b, the offspring can be produced near or far from the parents. 

     Relatively recently, Differential Evolution (DE) [175] has emerged as one of the 

most popular reproduction operators for real coded evolutionary multiobjective 

optimization. DE demonstrates a special ability to deal with non-differentiable and 

multimodal optimization problems. In DE is maintained a population of candidate 

solutions. These solutions are updated according to their fitness value. In DE new 

individuals are generated with the assistance of differential mutation (or perturbation) 

and crossover. 

    Another popular evolutionary algorithm technique is the Particle swarm 

optimization (PSO) [122]. In PSO each candidate solution is associated with a 

velocity. The candidate solutions are called particles and the position of each particle 

is changed according to its own experience and that of its neighbors. Through this 

process the particles move towards better solutions of the search space. 
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   Estimation of Distribution Algorithm (EDA) [23][133] is an optimization algorithm 

that extracts statistical information from the population of solutions. In EDA the 

algorithm starts by generating a population of solutions. A set of solutions is selected 

from the population according to their fitness value. The algorithm then constructs a 

probabilistic model which attempts to estimate the probability distribution of the 

selected solutions. Once the model is constructed, new solutions are generated by 

sampling the distribution encoded by this model. The new solutions are then 

incorporated back into the old population by replacing some of the old solutions.    

   Although the sizeable amount of work on the recombination operators, one 

particular recombination operation appears to dominate the relevant field. Indeed, the 

SBX is the recombination operator of choice by many popular contemporary MOEAs 

as indicated by numerous studies in the field. In this chapter we revisit the SBX 

operator and we propose a Two Stage Crossover (TSX) operator for more efficient 

exploration of the search space.  

The rest of the chapter is structure as follows. In section 2, a description of the 

Simulated Binary Crossover (SBX) is given and in section 3 the proposed Two Stage 

Crossover (TSX) operator is presented. The experimental environment is presented in 

section 4. Section 5 presents the performance metrics. In section 6 we test the 

performance of the proposed TSX by using the Deb, Thiele, Laumanns and Zitzler 

(DTLZ) set of test functions and we analyze the relevant results. Finally, section 7 

concludes the chapter. 
 
 
 
 
 
 

7.2 Simulated Binary Crossover (SBX) 
    The simulated binary crossover (SBX) operator was introduced by Deb and 

Agrawal [54] in 1995. It uses a probability distribution around two parents to create 

two child solutions. In essence the use of a probability distribution by the SBX 

simulates the working principle of creating child solutions in crossover operators used 

in binary-coded algorithms. In SBX as introduced by [54] each decision variable xi, 

can take values in the interval: 푥( )  ≤ 푥 ≤ 푥( ), 푖 = 1, 2, … , 푛. Where 푥( ) and 

푥( ) stand respectively for the lower and upper bounds for the decision variable i. In 
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SBX, two parent solutions  푦( ) and 푦( ) generate two child solutions 푐( ) and 푐( ) as 

follows: 
 
 

1. Calculate the spread factor β: 
 

훽 = 1 +  
2

푦( ) − 푦( )  푚푖푛 (푦( ) − 푦( )), (푦( ) − 푦( ))  

 
2. Calculate parameter a :   

 
훼 = 2 − 훽 ( ) 

3. Create a random number u between 0 and 1. 
 
u          [0, 1]; 

 
4. Find a parameter  훽  with the assistance of the following polynomial 

probability distribution: 

훽  =  

⎩
⎪
⎨

⎪
⎧

   
 (푎푢) ( )⁄                  푖푓 푢 ≤ 1

푎 ,
   

1
2 − 푎푢

( )⁄

 표푡ℎ푒푟푤푖푠푒 

�  

 
The above procedure allows a zero probability of creating any child solutions 

outside the prescribed range 푥( ), 푥( ) . Where ηc is the distribution index for 

SBX and can take any nonnegative value. In particular, small values of ηc 

allow child solutions to be created far away from parents and large values of 

ηc allow child solutions to be created near the parent solutions.    

 
5. The child solutions are then calculated as follows: 

 
푐( ) = 0.5 푦( ) + 푦( ) − 훽 |푦( ) −  푦( )|  

 
푐( ) = 0.5 푦( ) + 푦( ) + 훽 |푦( ) −  푦( )|  

The probability distributions as shown in step 4, do not create any solution outside the 

given bounds 푥( ), 푥( )   instead they scale up the probability of solutions inside the 

bounds, as shown by the solid line in Fig. 7.1. 
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            Fig. 7.1. Probabilities distributions for bounded and unbounded cases of SBX operator 
 
 
 
SBX is one of the most popular recombination operators and has been utilized by a 

considerable number of studies in the field. Specifically, SBX has been tested and 

found to work well in many problems that have continuous search space when 

compared to other real-coded recombination operators. Also the SBX operator can 

restrict child solutions to any arbitrary closeness to the parent solutions and thus does 

not require any separate mating restriction scheme [80]. SBX has been proved to work 

well with problems where the bounds of the optimum point are not known and where 

there are multiple optima [54]. Finally, SBX has been successfully applied to solving 

many constrained optimization problems [16], [192].  

    The purpose of this study is to use all the good properties of the SBX operator and 

on top of that to reinforce them by incorporating an efficient exploratory mechanism 

that increases considerably the performance of the SBX operator. 
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7.3 Two Stage Crossover (TSX) operator 
        
      In this section, we propose a new Two Stage Crossover (TSX) operator for more 

efficient exploration of the search space. The new operator uses all good properties of 

the well-known simulated binary crossover (SBX) operator and on top of that we 

reinforce them by incorporating an efficient exploratory mechanism that increases 

considerably the performance of the MOEAs. The TSX algorithm starts by calculating 

the spread factor β and then the parameter α in the same manner as the SBX. 

However, in step 3 we follow a different strategy. In particular, a random 푟  boolean 

value of true or false is generated with equal probability. If 푟  is false the SBX 

operator performed, otherwise if  푟  is true we proceed to step 4. We have already 

explained the SBX operator’s basic functionally in section 2, thus below we are 

focusing our attention in the case that the 푟  take a true value.  

     As shown in step 4 two random numbers are generated. A random number 

u ∈ [0, 1/푎] to sample the left hand side and a random number u ∈ (1/푎, 1] to 

sample the right hand side of the probability distribution. Please, notice that the SBX, 

at this particular point as shown in section 2, follows a different methodology. In 

particular in SBX operator, a random number u ∈ [0, 1] is generated. If u ≤ 1/a, it 

samples to the left hand side (region between 푦( )
 and 푦( )), otherwise if u > 1/a it 

samples to the right hand side (region between 푦( )
 and 푦( )), where 푦( )is the ith 

parent solution. 

     As shown in step 5, emerge two values of 훽 . The 훽  that samples the left hand 

side of the polynomial probability distribution and the 훽  that samples the right hand 

side of the polynomial probability distribution. Next, as shown below in step 6 with 

the assistance of 훽  and 훽  are formulated two variants for each child solution. 

Specifically, c( ) and c( )  are the two variants that emerge by substituting the  β  and 

β  to c( ). Respectively c( ) and c( )  are the two variants that emerge by substituting 

the  훽  and 훽  to c( ). 

    Then, by substituting to the parent solution vector at the position of the selected 

variable to be crossovered, respectively the c( )and c( ) we create two different child 

solution vectors (csv), the csv( )and csv( ). Thanks to the generated csv( )and csv( ) 
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we are able to perform fitness evaluation for each one of the corresponding cases. As 

soon as we complete the fitness evaluation process, we select the best child solution 

between the two variants c( )and c( ) with the assistance of the Pareto optimality 

framework  The same procedure is followed for c( )and c( ). The proposed 

methodology allows us to explore more efficiently the search space and move 

progressively towards higher fitness solutions. Whenever, there is not a clear winner 

i.e. strong or weak dominance, between the c( )and c( ) , or respectively between the 

c( )and c( ) the generation of a random number allows the random choice of one of 

the two alternative child solutions.  

 

 

The procedure of computing child solutions c( ) and c( ) from two parent solutions 

푦( ) and 푦( ) under the Two Stage Crossover (TSX) operator is as follows: 

 

1. Calculate the spread factor β: 

 

훽 = 1 +  
2

푦( ) − 푦( )  푚푖푛 (푦( ) − 푦( )), (푦( ) − 푦( ))  

 
2. Calculate parameter a :  

 
훼 = 2 − 훽 ( ) 

 
3. Create a random r  boolean value of true or false with equal probability 

 
푖푓 푟 = 푡푟푢푒   
      Go to step 4. Execute steps 4 through 9. 
푖푓 푟 = 푓푎푙푠푒   
     Go to step 10 

 
4. Create 2 random numbers u ∈ [0, 1/푎] and u ∈ (1/푎, 1]. 

 
u            [0, 1/α]; 
 
u            (1/α, 1]; 
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5. Find 2 parameters β  and β  with the assistance of the following polynomial 

probability distribution: 

 

 β  =  푎푢
( )⁄

             ,    u ∈ [0, 1/푎],
 

 

β  =
1

2 − 푎푢

( )⁄

 , u ∈ (1/푎, 1] 

 
 
 

6. Thus, instead of a unique value for 푐( ) and 푐( ), we obtain two evaluations for 

each child solution that correspond to β  and β  respectivelly: 

 

c( ) = 0.5 푦( ) + 푦( ) − β |푦( ) −  푦( )|  

c( ) = 0.5 푦( ) + 푦( ) − β |푦( ) −  푦( )|  

 

c( ) = 0.5 푦( ) + 푦( ) + β |푦( ) −  푦( )|  

c( ) = 0.5 푦( ) + 푦( ) + β |푦( ) −  푦( )|  

 

7. We perform fitness evaluation for each variant child solution, by substituting 

the candidate solutions into the parent solution vectors. 

8. We select the best variant between the c( )and c( ), based on the Pareto 

optimality framework. The same procedure is followed for c( )and c( ). 

9. Whenever, there is not a clear winner i.e. strong or weak dominance, between 

the c( )and c( ) , or respectively between the c( )and c( ) the generation of a 

random number allows the random choice of one of the two alternative child 

solutions. 

 

10. Perform the SBX operator normally as described in section 2. 
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      A typical crossover operator generates offsprings by recombining information 

from two or more parents. Crossover is probably the most important exploratory 

mechanism of a MOEA. This study intends to even further enhance the exploratory 

capabilities of the crossover operator, in particular of the well-known SBX operator 

by incorporating an efficient fitness evaluation mechanism. 

      For the fare comparison of the algorithms we made sure that the total number of 

fitness evaluations is the same for either configuration of the algorithm (i.e. either 

with the TSX operator or the SBX operator). For more details about this issue please 

advise section 4 of the chapter.   

    However, although we keep the total number of fitness evaluations the same, the 

proposed methodology differentiates the allocation of these function evaluations 

within the algorithm.  

      In particular, each generational cycle, for the configuration of the algorithm with 

the proposed methodology requires more fitness function evaluations, due to the 

additional evaluations introduced by the TSX operator, than the configuration of the 

algorithm with the SBX operator. As a result, the configuration of the algorithm with 

the TSX operator requires less generational cycles for the same number of real fitness 

function evaluations than the configuration of the algorithm with the SBX operator. 

This discrepancy in generational cycles between the configuration of the algorithm 

with the TSX operator and the configuration of the algorithm with the SBX operator 

creates a net benefit in terms of computational time for the proposed methodology. 

More details about this matter can be found in section 7.6.1 and Table 7.4. 

      Moreover, given the equal number of real fitness evaluations, any improvement in 

the performance of the algorithm from the implementation of the TSX operator will 

indicate the net benefit of the proposed methodology over the classical SBX operator. 

Figure 7.2 presents the probability of child solutions around the parent solutions for 

the bounded case of the TSX operator. For more details about the performance of the 

proposed TSX operator please advise sections 7.6.1 – 7.6.4 of the chapter.  
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Fig. 7.2. Probabilities distributions for bounded cases of TSX operator 
 
 
 

7.4 Experimental Environment 

    All algorithms have been implemented in Java and run on a 2.1GHz Windows 

Server 2012 machine with 6GB RAM. The jMetal [77] framework has been used to 

compare the performance of the proposed, Two Stage Crossover (TSX) operator 

against the Simulated Binary Crossover (SBX), the Differential Evolution (DE) and 

the Particle Swarm Optimization (PSO) with the assistance of a number of MOEAs. 

In all tests with the NSGAII, SPEA2 and MOCELL we use, binary tournament and 

polynomial mutation (PLM) [54] as, selection and mutation operator, respectively.  

The crossover probability is Pc = 0.9 and mutation probability is Pm = 1/n, where n is 

the number of decision variables. The distribution indices for the crossover and 

mutation operators are ηc = 20 and ηm = 20, respectively. For the MOEA/D we used 

DE with CR: 1.0 and F: 0.5 and PLM with Pm = 1/n and ηm = 20.  Finally, the 

SMPSO uses PLM with Pm = 1/n and ηm = 20.   

    For identifying the best population size and function evaluations, the following 

configurations were tested for each algorithm: Npop = Narc = 100, 200, 300, 400, for 

500, 1,000, 1,500 and 2,000 generations respectively. Accroding to Deb et al. [57] the 

archive size is usually chosen proportional to the population size. Please notice that an 

external archive (Narc) is not applicable in the case of NSGAII. After testing the 

aforementioned configurations we reached the conclusion that the MOEAs 
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approached their top performance for Npop = 100, Narc = 100 (where applicable) and 

2,000 generations or 200,000 function evaluations. Beyond, these values the gains in 

performance are marginal if any. Thus, the Population size is set to 100, using 

200,000 function evaluations with 100 independent runs. 

      At this stage, we should highlight that for reasons of fairness regarding the 

function evaluations for the configuration of the MOEAs with the TSX when is 

compared with the SBX, DE and the PSO respectively, we applied the following 

strategy. In particular, as we explained in section 3, the Two Stage Crossover (TSX) 

operator incorporates a fitness function evaluation mechanism. As a result of this 

fitness function evaluation mechanism if we assign equal numbers of nominal 

function evaluations for the configuration of the MOEAs with the TSX and the 

configuration of the MOEAs with SBX, DE and PSO respectively, in reality we favor 

the configuration of the algorithm with TXS operator. Thus, in order to compensate 

for the additional fitness function evaluations introduced by the TSX operator we 

decided to use different number of function evaluations for the one and other 

configuration of the algorithm.  

    In order to determine the number of function evaluations for the one and the other 

configuration of the algorithm, the first step was to determine the additional burden 

imposed by the TSX operator. Assuming a crossover probability of Pc = 0.9 we found 

out that for every 1,000 evaluations of the algorithm the crossover operator is 

accessed on average 802 times. Please, recall from the presentation of the TSX 

operator in section 3 that a random r  boolean value of true or false with equal 

probability determines if the SBX operator performed as normally or if we proceed 

with the TSX operator. Because the random r  boolean variable assigns true or false 

with equal probability it is reasonable to assume that if the TSX operator is accessed 

on average 802 times half of them will be performed the SBX and the other half will 

be performed the fitness evaluation mechanism introduced by the TSX operator. 

Thus, so far we found out that for every 1,000 evaluations of the algorithm the fitness 

evaluation mechanism of the TSX operator is accessed on average 401 times. 

Moreover, from section 3, we notice that each time that the fitness evaluation 

mechanism of the TSX operator is accessed, 4 separate fitness function evaluations 

are performed. Thus, we reach the conclusion that on average every 1,000 function 

evaluations for the configuration of the MOEAs with SBX, DE or PSO correspond to 
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1,000 + 401x4 = 2,604 function evaluations for the configuration of the MOEAs with 

the TSX operator. 

   Please recall that above we found out that the configuration of the MOEAs reach its 

top performance for Npop = 100, Narc = 100 (where applicable) and 200,000 function 

evaluations. If we take into account the extra fitness function evaluations introduced 

by the TSX operator the 200,000 function evaluations of the configuration of the 

MOEAs with the SBX, DE or PSO correspond to 76,805 nominal function 

evaluations for the configuration of the MOEAs with the TSX operator. Thus, for 

reasons of fairness in the experimental part of this study we set 200,000 function 

evaluations for the configuration of the MOEAs with the SBX, DE or PSO against 

76,805 nominal function evaluations for the configuration of the MOEAs with the 

TSX operator. 
 
 
 

7.5 Performance Metrics 
     According to Liagkouras and Metaxiotis [142] a major issue that is related with the 

various performance metrics is the different focus of each particular metric. It is not 

uncommon an algorithm to perform well in a particular performance metric and not so 

well or even badly in another.  

For that exact reason are favored by the researchers in the field performance 

metrics that are able to catch different aspects of the performance of a multiobjective 

algorithm [57] like Hypervolume (HV) or Epsilon indicator. According to the same 

study [142] 37.50% and 16.67% of the studies in the field make use of HV and 

Epsilon indicator respectively. Based on the above justification we decided to 

evaluate the performance of the examined algorithms with the assistance of 

Hypervolume and Epsilon indicator. Following the same principles we also employed 

the IGD indicator, as it is able to provide a measure for both convergence and 

diversity of the derived Pareto optimal set. Below, we provide a concise presentation 

of the aforementioned performance metrics. 
 

 
Hypervolume 

Hypervolume [228], is an indicator of both the convergence and diversity of an 

approximation set. Thus, given a set S containing m points in n objectives, the 
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hypervolume of S is the size of the portion of objective space that is dominated by at 

least one point in S. The hypervolume of S is calculated relative to a reference point 

which is worse than (or equal to) every point in S in every objective.  The greater the 

hypervolume of a solution the better considered the solution.  

 

 

Inverted Generalization Distance (IGD)  

Zitzler et al. [234] introduced the IGD quality indicator to measure how far the 

elements are in the Pareto optimal set from those in the set of non-dominated vectors 

found. A value of IGD equal to zero indicates that all the generated elements are in 

the Pareto front and they cover all the extension of the Pareto front. The IGD can be 

defined as follows:  

IGD(P, S) =
(∑ 푑 )| | /

|푃|    

where 푑 = 푚푖푛 ⃗∈ ‖퐹(푝⃗ ) −  퐹(푠⃗))‖, 푝⃗ ∈ 푃, 푞 = 2 푎푛푑 푑  is the smallest distance of  

푝⃗ ∈ 푃 to the closest solutions in S. The smaller the IGD value the better is the 

performance of the approach. The IGD metric is able to provide a measure for both 

convergence and diversity. 

 

Epsilon Indicator Iε 

Zitzler et al. [234] introduced the epsilon indicator (Iε).  There are two versions of 

epsilon indicator the multiplicative and the additive. In this study we use the unary 

additive epsilon indicator. The basic usefulness of epsilon indicator of an 

approximation set A (Iε+) is that it provides the minimum factor ε by which each point 

in the real front R can be added such that the resulting transformed approximation set 

is dominated by A. The additive epsilon indicator is a good measure of diversity, since 

it focuses on the worst case distance and reveals whether or not the approximation set 

has gaps in its trade-off solution set.  
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7.6 Experimental Results 

A number of computational experiments were performed to test the performance of 

the proposed Two Stage Crossover (TSX) for the solution of the DTLZ1-7 set of test 

functions [60]. In section 6.1 the performance of the proposed TSX operator is 

assessed in comparison with the Simulated Binary Crossover (SBX) operator with the 

assistance of three well-known MOEAs, namely the NSGAII, the SPEA2 and the 

MOCELL, for the solution of the DTLZ1-7 set of test functions, with 3 objectives. In 

section 6.2 we test the proposed TSX operator against SBX with 5 objectives, as the 

DTLZ test instances are scalable to an arbitrary number of objectives. In section 6.3 

and 6.4 we compare the performance of the proposed TSX operator against other 

popular and well-established reproduction techniques like the Differential Evolution 

(DE) and the Particle Swarm Optimization (PSO) respectively. In all cases the 

evaluation of the performance is based on a variety of metrics that assess both the 

proximity of the solutions to the Pareto front and their dispersion on it. 
 
 
 
 
 

7.6.1 Experimental results of the TSX operator 
against the SBX with the assistance of DTLZ test 
instances with 3 objectives  
 
Below, we utilize the Deb-Theile-Laumanns-Zitzler (DTLZ) [60] test suite to 

examine the efficacy of the proposed crossover operator in handling problems having 

more than two objectives. Specifically, the following seven MOPs named DTLZ1, 

DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6 and DTLZ7 were used for comparing the 

proposed TSX operator against the SBX operator. The DTLZ test functions are a set 

of scalable problems with the ability to control difficulties in converging to the Pareto 

front and maintain the diversity of solutions. Please note that in this section we 

illustrate the DTLZ test functions for three objectives, for easiness of illustration, 

although they are generic and scalable to an arbitrary number of objectives [60].   
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Deb-Theile-Laumanns- Zitzler’s function N.1 (DTLZ1) problem: 
 

푀푖푛 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 푓 (푥) =  

1
2 푥 푥 … 푥 1 +  푔(푋 ) ,                 

      푓 (푥) =  1
2 푥 푥 …  (1 −  푥 ) 1 +  푔(푋 ) ,  

:    
   푓 (푥) =  1

2 푥  (1 −  푥 ) 1 +  푔(푋 ) ,         

   푓 (푥) =  1
2  (1 −  푥 ) 1 +  푔(푋 ) ,                

 

     

   

� 

푤ℎ푒푟푒      푔(푋 ) = 100 |푋 | +  (푥 −  0.5) −  cos (20휋 (푥 −  0.5))
∈

 ,  

                   푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛    
  
 
 
 
Deb-Theile-Laumanns- Zitzler’s function N.2 (DTLZ2) problem: 
 

푀푖푛 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧  푓 (푥) =  1 +  푔(푋 ) cos 푥

휋
2 cos 푥

휋
2 … . cos 푥

휋
2 cos 푥

휋
2 ,     

푓 (푥) =  1 +  푔(푋 ) cos 푥
휋
2 cos 푥

휋
2 … . cos 푥

휋
2 s푖푛 푥

휋
2 ,   

푓 (푥) =  1 +  푔(푋 ) cos 푥
휋
2 cos 푥

휋
2 … . s푖푛 푥

휋
2 ,                             

:
푓 (푥) =  1 +  푔(푋 ) cos 푥

휋
2 s푖푛 푥

휋
2 ,                                                        

푓 (푥) =  1 +  푔(푋 ) s푖푛 푥
휋
2 ,                                                                              

� 

 
                            푤ℎ푒푟푒     푔(푋 ) = ∑ (푥 −  0.5)∈  
 
                                           푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛      
 
 
 
 
 
 
 

 Deb-Theile-Laumanns- Zitzler’s function N.3 (DTLZ3) problem: 
 

푀푖푛 =  

⎩
⎪
⎪
⎪
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⎪
⎪
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⎧  푓 (푥) =  1 +  푔(푋 ) cos 푥

휋
2 cos 푥

휋
2 … . cos 푥

휋
2 cos 푥

휋
2 ,   

푓 (푥) =  1 +  푔(푋 ) cos 푥
휋
2 cos 푥

휋
2 … . cos 푥

휋
2 s푖푛 푥

휋
2 ,   

푓 (푥) =  1 +  푔(푋 ) cos 푥
휋
2 cos 푥

휋
2 … . s푖푛 푥

휋
2 ,                            

:
푓 (푥) =  1 +  푔(푋 ) cos 푥
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휋
2 ,                                                      

푓 (푥) =  1 +  푔(푋 ) s푖푛 푥
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� 

 
                 푤ℎ푒푟푒      푔(푋 ) = 100 |푋 | +  ∑ (푥 −  0.5) −  cos (20휋 (푥 −  0.5))∈  
 
                                           푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛    
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Deb-Theile-Laumanns- Zitzler’s function N.4 (DTLZ4) problem: 
 

푀푖푛 =  
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Deb-Theile-Laumanns- Zitzler’s function N.5 (DTLZ5) problem: 
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Deb-Theile-Laumanns- Zitzler’s function N.6 (DTLZ6) problem: 
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Deb-Theile-Laumanns- Zitzler’s function N.7 (DTLZ7) problem: 
 

푀푖푛 =  

⎩
⎪
⎨

⎪
⎧   푓 (푋 ) =  푥 ,                                                               

푓 (푋 ) =  푥 ,                                                            
     ∶                                               

푓 (푋 ) =  푥 ,                                             
  푓 (푋) =  1 +  푔(푋 )  ℎ(푓 ,  푓 , … , 푓 , 푔),      

                                                                    

� 

    푤ℎ푒푟푒    푔(푋 ) = 1 +  
9

|푋 | 푥
∈

 

  ℎ(푓 ,  푓 , … , 푓 , 푔) = 푀 −  ∑  (1 + sin(3휋푓 ))    
 

  푓표푟 0 ≤ 푥  ≤ 1 푎푛푑 1 ≤  푖 ≤ 푛     
 

        
 
Table 7.1 presents the results of DTLZ1-7 test functions with 3 objectives. 

Specifically, it presents the mean, standard deviation (STD), median and interquartile 

range (IQR) of all the independent runs carried out for Hypervolume (HV), Inverted 

Generalization Distance (IGD)  and Epsilon indicator respectively.  

     Clearly, regarding the HV [94], [228] indicator the higher the value (i.e. the greater 

the hypervolume) the better the computed front.  HV is able of capturing in a single 

number both the closeness of the solutions to the optimal set and to a certain degree, 

the spread of the solutions across the objective space [221]. The second indicator the 

IGD [234] measure how far the elements are in the Pareto optimal set from those in 

the set of non-dominated vectors found. The smaller the value of this indicator, the 

better the distribution of the solutions. A zero value of IGD indicates that all the 

generated elements are in the Pareto front and they cover all the extension of the 

Pareto front. 

 The third indicator, the Epsilon [234] is a measure of the smaller distance that a 

solution set A, needs to be changed in such a way that it dominates the optimal Pareto 

front of this problem. Obviously the smaller the value of this indicator, the better the 

derived solution set. 

    Table 7.2 use boxplots to present graphically the performance of the NSGAII, the 

SPEA2 and the MOCELL under two different configurations, the TSX and the SBX 

respectively, for HV IGD and Epsilon performance indicators. Boxplot is a 

convenient way of graphically depicting groups of numerical data through their 

quartiles.      
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 Table 7.1. Mean, Std, Median and Iqr  for Hv, IGD and Epsilon: TSX vs SBX - DTLZ with 3 
objectives  

Problem: DTLZ1 NSGAII  SPEA2  MOCELL 
 TSX SBX  TSX SBX  TSX SBX 

HV. Mean and Std 7.64e-014.8e-03 7.62e-016.5e-03  7.88e-014.3e-04 7.87e-015.7e-04  7.68e-012.6e-03 7.61e-019.3e-03 
HV. Median and IQR 7.65e-016.4e-03 7.62e-016.8e-03  7.88e-015.4e-04 7.87e-018.6e-04  7.67e-014.2e-03 7.61e-011.2e-02 
IGD. Mean and Std 6.33e-044.2e-05 5.99e-044.8e-05  4.37e-047.3e-06 4.39e-049.7e-06  5.95e-043.6e-05 5.90e-041.0e-04 
IGD. Median and IQR 6.35e-045.6e-05 5.93e-043.7e-05  4.37e-048.5e-06 4.37e-041.2e-05  5.86e-045.0e-05 5.56e-044.8e-05 
EPSILON. Mean and Std 5.38e-025.9e-03 5.37e-026.3e-03  3.38e-021.7e-03 3.37e-022.1e-03  4.86e-024.8e-03 5.60e-029.9e-03 
EPSILON. Median and IQR 5.37e-028.0e-03 5.28e-027.6e-03  3.34e-022.1e-03 3.34e-022.5e-03  4.74e-027.3e-03 5.47e-021.1e-02 

 

 

 

 

 

 
 
 
 
 
 
 

Problem: DTLZ2 NSGAII  SPEA2  MOCELL 
 TSX SBX  TSX SBX  TSX SBX 

HV. Mean and Std 3.83e-015.0e-03 3.75e-016.7e-03  4.11e-011.7e-03 4.05e-011.7e-03  3.86e-014.9e-03 3.82e-013.9e-03 
HV. Median and IQR 3.83e-015.0e-03 3.77e-019.1e-03  4.11e-011.4e-03 4.05e-011.9e-03  3.86e-015.6e-03 3.82e-014.0e-03 
IGD. Mean and Std 7.95e-044.9e-05 7.76e-044.7e-05  5.77e-047.7e-06 5.89e-041.2e-05  7.51e-044.4e-05 7.44e-043.2e-05 
IGD. Median and IQR 7.83e-046.5e-05 7.71e-046.0e-05  5.77e-041.1e-05 5.87e-041.5e-05  7.44e-045.1e-05 7.42e-043.4e-05 
EPSILON. Mean and Std 1.20e-011.7e-02 1.25e-011.4e-02  7.88e-027.6e-03 8.16e-027.9e-03  1.20e-011.4e-02 1.24e-011.2e-02 
EPSILON. Median and IQR 1.21e-012.2e-02 1.25e-011.3e-02  7.67e-028.9e-03 8.05e-021.2e-02  1.20e-011.9e-02 1.26e-011.5e-02 

Problem: DTLZ3 NSGAII  SPEA2  MOCELL 
 TSX SBX  TSX SBX  TSX SBX 

HV. Mean and Std 3.82e-017.7e-03 3.79e-017.4e-03  4.13e-013.1e-03 4.14e-011.3e-03  3.87e-015.0e-03 3.88e-014.7e-03 
HV. Median and IQR 3.84e-018.9e-03 3.79e-018.7e-03  4.14e-013.7e-03 4.14e-011.7e-03  3.86e-016.7e-03 3.89e-016.7e-03 
IGD. Mean and Std 1.28e-037.2e-05 1.23e-035.8e-05  9.14e-041.1e-05 9.11e-041.5e-05  1.19e-036.4e-05 1.18e-035.7e-05 
IGD. Median and IQR 1.27e-038.5e-05 1.23e-036.8e-05  9.14e-041.5e-05 9.09e-042.0e-05  1.18e-038.1e-05 1.18e-038.5e-05 
EPSILON. Mean and Std 1.28e-011.9e-02 1.33e-012.1e-02  7.29e-026.6e-03 7.82e-021.3e-02  1.21e-011.8e-02 1.18e-011.8e-02 
EPSILON. Median and IQR 1.24e-012.4e-02 1.32e-012.7e-02  7.14e-027.5e-03 7.46e-021.1e-02  1.20e-012.5e-02 1.12e-012.5e-02 

Problem: DTLZ4 NSGAII  SPEA2  MOCELL 
 TSX SBX  TSX SBX  TSX SBX 

HV. Mean and Std 3.81e-014.9e-03 3.76e-014.7e-03  3.95e-014.3e-02 3.31e-011.1e-01  2.31e-011.9e-01 2.68e-011.8e-01 
HV. Median and IQR 3.83e-019.1e-03 3.76e-016.3e-03  4.05e-012.7e-03 3.98e-011.9e-01  3.81e-013.9e-01 3.80e-013.8e-01 
IGD. Mean and Std 1.26e-031.1e-03 1.28e-038.2e-04  1.54e-032.3e-03 3.03e-033.0e-03  3.18e-033.6e-03 3.32e-033.6e-03 
IGD. Median and IQR 1.05e-031.5e-04 1.18e-031.6e-04  7.23e-044.7e-05 8.53e-044.6e-03  1.16e-034.3e-03 1.22e-038.2e-03 
EPSILON. Mean and Std 1.08e-011.2e-02 1.11e-011.6e-02  9.69e-021.2e-01 2.58e-012.9e-01  4.54e-014.3e-01 3.65e-014.0e-01 
EPSILON. Median and IQR 1.12e-011.9e-02 1.06e-012.9e-02  6.82e-028.4e-03 7.52e-025.6e-01  1.23e-018.7e-01 1.05e-018.8e-01 

Problem:  DTLZ5 NSGAII  SPEA2  MOCELL 
 TSX SBX  TSX SBX  TSX SBX 

HV. Mean and Std 9.31e-021.7e-04 9.28e-022.0e-04  9.35e-021.2e-04 9.34e-021.0e-04  9.41e-022.2e-05 9.41e-022.0e-05 
HV. Median and IQR 9.31e-022.1e-04 9.28e-023.1e-04  9.35e-021.9e-04 9.34e-021.4e-04  9.41e-023.1e-05 9.41e-022.8e-05 
IGD. Mean and Std 1.94e-051.1e-06 2.03e-051.0e-06  1.48e-053.5e-07 1.55e-054.0e-07  1.42e-053.5e-07 1.42e-053.2e-07 
IGD.Median and IQR 1.93e-051.1e-06 2.04e-051.3e-06  1.48e-054.8e-07 1.54e-054.9e-07  1.42e-054.5e-07 1.41e-054.1e-07 
EPSILON. Mean and Std 9.79e-031.2e-03 1.10e-022.0e-03  7.03e-031.2e-03 7.49e-031.1e-03  4.60e-035.9e-04 4.40e-035.4e-04 
EPSILON. Median and IQR 9.78e-032.1e-03 1.01e-021.8e-03  7.02e-031.5e-03 7.25e-031.2e-03  4.37e-036.2e-04 4.28e-031.6e-04 

Problem:  DTLZ6 NSGAII  SPEA2  MOCELL 
 TSX SBX  TSX SBX  TSX SBX 

HV. Mean and Std 8.05e-021.1e-02 8.35e-021.1e-02  9.16e-025.5e-03 8.96e-027.7e-03  9.40e-023.6e-03 9.01e-028.4e-03 
HV. Median and IQR 7.83e-022.2e-02 8.65e-021.8e-02  9.46e-023.5e-03 9.46e-021.5e-02  9.50e-025.0e-05 9.50e-021.4e-02 
IGD. Mean and Std 1.40e-049.0e-05 1.36e-049.7e-05  1.06e-047.6e-05 7.09e-056.2e-05  3.50e-058.3e-06 6.90e-057.4e-05 
IGD. Median and IQR 1.06e-041.4e-04 1.15e-041.3e-04  8.62e-051.3e-04 3.67e-051.0e-04  3.42e-051.2e-06 3.40e-051.9e-06 
EPSILON. Mean and Std 2.63e-021.3e-02 2.25e-021.3e-02  8.28e-035.7e-03 1.12e-028.7e-03  5.29e-034.0e-03 9.74e-039.9e-03 
EPSILON. Median and IQR 2.72e-022.3e-02 1.98e-021.7e-02  5.30e-033.8e-03 5.77e-031.6e-02  4.24e-033.6e-04 4.16e-031.5e-02 

Problem:  DTLZ7 NSGAII  SPEA2  MOCELL 
 TSX SBX  TSX SBX  TSX SBX 

HV. Mean and Std 2.86e-013.8e-03 2.84e-013.7e-03  3.01e-011.2e-03 2.96e-017.9e-03  2.65e-013.2e-02 2.68e-012.3e-02 
HV. Median and IQR 2.86e-017.2e-03 2.85e-014.2e-03  3.01e-011.4e-03 2.98e-013.6e-03  2.86e-015.2e-02 2.70e-013.0e-02 
IGD. Mean and Std 2.19e-031.5e-04 2.37e-031.4e-03  1.75e-034.9e-05 2.55e-033.1e-03  1.11e-029.0e-03 8.12e-037.6e-03 
IGD. Median and IQR 2.16e-032.0e-04 2.23e-031.9e-04  1.75e-036.2e-05 1.84e-039.7e-05  1.52e-021.4e-02 2.45e-031.3e-02 
EPSILON. Mean and Std 1.36e-014.2e-02 1.29e-013.0e-02  8.91e-029.2e-03 1.51e-012.6e-01  9.02e-011.0e+00 8.22e-017.8e-01 
EPSILON. Median and IQR 1.25e-014.9e-02 1.20e-013.7e-02  8.75e-021.0e-02 9.10e-021.2e-02  1.40e-011.8e+00 7.47e-011.2e+00 
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Table 7.2. Boxplots for Hv, IGD and Epsilon: TSX vs SBX - DTLZ with 3 objectives 
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Table 7.3, makes use of a nonparametric statistical test called Wilcoxon’s rank-sum 

test for independent samples [66] at the 5% significance level in order to judge 

whether the results obtained with the best performing algorithm differ from the final 

results of rest of the competitors in a statistically significant way. In particular in 

Table 7.3 we present if the results of NSGAII, SPEA2 and MOCELL that are derived 

under the two different configurations, namely the TSX and the SBX, are statistically 

significant or not. In Table 7.3, three different symbols are used. In particular            

indicates that there is not statistical significance between the algorithms. “  ” means 

that the algorithm in the row has yielded better results than the algorithm in the 

column with confidence and  “   ” is used when the algorithm in the column is 

statistically better than the algorithm in the row.  
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Table 7.3. Wilcoxon Test for Hv, IGD and Epsilon: TSX vs SBX - DTLZ with 3 objectives 
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Fig. 7.3. Problem: DTLZ1. MOCELL + TSX operator 

 

 

 
 
 
 
 

 
 

Fig. 7.4. Problem: DTLZ1. MOCELL + SBX operator 

 

 

 

 
 

 

Fig. 7.5. Problem: DTLZ3. NSGAII + TSX operator  

 

 
 
 
 
 
 

 
Fig. 7.6. Problem: DTLZ3. NSGAII + SBX operator 

 

 
 
 
 
 
 
 

Fig. 7.7. Problem: DTLZ6. MOCELL + TSX operator 
 

 

 
 
 
 

 
 
 

Fig. 7.8. Problem: DTLZ6. MOCELL + SBX operator 
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Fig. 7.9. DTLZ2: Evolution of HV: NSGAII+TSX and NSGAII+SBX 
 

 
 
Below, we analyze the results obtained by applying the proposed Two Stage 

Crossover (TSX) and the Simulated Binary Crossover (SBX), to the NSGAII, SPEA2 

and MOCELL for solving the DTLZ 1-7 [60] set of test functions with 3 objectives. 

The assessment of the performance of the proposed crossover operator is done with 

the assistance of three well known performance indicators, namely the Hypervolume, 

IGD and Epsilon indicator. 

    Examining the results of the first indicator, the HV, we notice that the TSX operator 

performs better than the classical SBX operator when is applied to the NSGAII, 

SPEA2 and MOCELL. Figure 10 reveals the relevant results for the performance of 

TSX operator regarding the HV indicator. The Wilcoxon rank-sum test (see Table 7.3) 

validates that the observed difference in TSX and SBX performance is statistically 

significant with 95% confidence. Analytically, in 43% of the cases the TSX yields 

better results with confidence than the conventional configuration of the NSGAII, 

SPEA2 and MOCELL with the SBX operator. Also, in 52% of the cases there was not 

statistical significance between the TSX and SBX. Finally, in 5% of the cases the 

SBX outperformed the TSX operator regarding the HV metric. 

      Regarding the IGD indicator (see Fig. 7.11) the same methodology is applied. In 

particular the Wilcoxon rank-sum test helped us to identify that in 24% of the cases 

the TSX yields better results with confidence than the conventional configuration of 

the NSGAII, SPEA2 and MOCELL with the SBX operator. In 67% of the cases there 

was not statistical significance between the TSX and SBX regarding the IGD 
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indicator and in 9% of the examined cases the classical SBX operator generated better 

results with confidence than the proposed methodology.  

    Figure 12 reveals the relevant results for the performance of TSX regarding the 

Epsilon indicator. In particular the Wilcoxon rank-sum test helps us to identify that in 

43% of the cases the TSX yields better results with confidence than the conventional 

configuration of the NSGAII, SPEA2 and MOCELL with the SBX operator. Also, in 

57% of the cases there was not statistical significance between the TSX and the SBX 

regarding the Epsilon metric. We should highlight that the SBX in none of the 

examined test functions outperformed the TSX operator regarding the Epsilon metric. 

Please note that the boxplots (Table 7.2) provide graphical representation of the 

relevant results for the three metrics examined, namely HV, IGD and Epsilon. Fig.7.3-

7.8 provide trade-off fronts over 100 runs for DTLZ1, 3 and 6 test problems using 

MOEAs with the TSX operator and MOEAs with classical SBX operator. Finally Fig. 

7.9 presents the evolutionary process of HV metric for the DTLZ2 test function for 

the configuration of the NSGAII with the TSX operator and the SBX operator 

respectively. 
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Figure 7.10: Hypervolume
TSX performance compared with SBX
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     Based on the analysis of the relevant experimental results for the DTLZ1-7 set of 

test functions, the proposed TSX operator outperforms with confidence the 

performance of classical SBX when applied to NSGAII, SPEA2 and MOCELL 

respectively for all three performance metrics. Please, notice that the comparison of 

the TSX and the SBX operator was carried out on the same terms as we used higher 

number of nominal fitness function evaluations for the configuration of the algorithm 

with the SBX (200,000 nominal evaluations) compared to the configuration of the 

algorithm with the TSX (76,805 nominal evaluations) to count for the extra fitness 

functions evaluations introduced by the proposed methodology. For more details 

please refer to section 4. 
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67%

Worse
9%

Figure 7.11: IGD
TSX performance compared with SBX

Improved 
43%

Similar
57%

Figure 7.12: Epsilon
TSX performance compared with SBX
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     By using different numbers of nominal fitness evaluations for the configuration of 

the algorithm with the TSX operator and the configuration of the algorithm with the 

SBX operator, in reality we secured equal number of real fitness functions evaluations 

(200,000) for the one and the other configuration of the algorithm. However, as 

expected the configuration of the algorithm with the SBX will require a higher 

number of generational cycles in order to execute the same number of evaluations 

compared to the configuration of the algorithm with the TSX operator, as each 

generational cycle of the algorithm with the TSX operator involves the additional 

fitness functions evaluations introduced by the proposed methodology.  

      As a result of the higher number of generational cycles for the configuration of the 

algorithm with the SBX, for the same number of real fitness functions evaluations 

(200,000) we should expect a computational overhead for the configuration of the 

algorithm with the SBX operator compared to the configuration of the algorithm with 

the TSX operator. Indeed, as shown in Table 7.4 that provides the average 

computational times for the configuration of the algorithm with the TSX and SBX 

respectively, there is an average computational overhead for the configuration of the 

algorithm with the SBX of 56.66% compared to the configuration of the algorithm 

with the TSX operator for the same number of real fitness functions evaluations. 

 

 

 

Table 7.4. MEAN TOTAL CPU TIMES (in seconds) FOR THE TEST PROBLEMS FOR 200,000 (REAL) FUNCTIONS 
EVALUATIONS, FOR 100 INDEPENDENT RUNS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 
NSGAII  

TSX SBX Overhead 
of SBX 

DTLZ1 6.365e+00 6.583e+00 3.42% 
DTLZ2 5.507e+00 8.315e+00 50.99% 
DTLZ3 6.162e+00 8.206e+00 33.17% 
DTLZ4 7.816e+00 8.003e+00 2.39% 
DTLZ5 5.678e+00 8.081e+00 42.32% 
DTLZ6 5.398e+00 5.513e+00 2.13% 
DTLZ7 7.410e+00 9.937e+00 34.10% 

  Average:  24.07% 

Problem 
SPEA2  

TSX SBX Overhead  
of SBX 

DTLZ1 28.159e+00 63.914e+00 126.98% 
DTLZ2 36.693e+00 76.550e+00 108.62% 
DTLZ3 31.091e+00 65.785e+00 111.59% 
DTLZ4 40.358e+00 72.135e+00 78.74% 
DTLZ5 28.237e+00 62.759e+00 122.26% 
DTLZ6 36.629e+00 86.909e+00 137.27% 
DTLZ7 41.855e+00 88.531e+00 111.52% 

  Average:  113.85% 



Chapter 7  PhD Thesis – K. Liagkouras    

[176] 
 

 
 
 
 
 
 
 
 
 
 
To recap, the proposed methodology when compared to the conventional SBX 

operator for the same number of real fitness functions evaluations manages to 

generate better results with confidence for all examined performance metrics, namely 

HV, IGD and Epsilon indicator. On top of that the TSX operator requires a lower 

number of generational cycles for executing the same number of real fitness functions 

evaluations compared to the classical SBX operator. As a result of the aforementioned 

discrepancy in generational cycles between the two methodologies, we found out that 

the SBX requires an average computational overhead of 56.66% for executing the 

same number of real fitness function evaluations compared to the TSX operator. Last 

but not least, the proposed TSX operator in reality consist an improvement of the 

already good SBX operator, reinforced with an efficient fitness function evaluation 

mechanism. We believe that the resemblance of the proposed TSX with the well-

known SBX operator will facilitate and encourage other researchers to adopt the 

proposed methodology and experiment with it in their areas of expertise.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 
MOCELL  

TSX SBX Overhead 
of SBX 

DTLZ1 9.890e+00 12.340e+00 24.77% 
DTLZ2 13.182e+00 19.251e+00 46.04% 
DTLZ3 11.669e+00 12.683e+00 8.69% 
DTLZ4 16.583e+00 16.916e+00 2.01% 
DTLZ5 9.875e+00 14.196e+00 43.76% 
DTLZ6 8.502e+00 12.527e+00 47.34% 
DTLZ7 13.338e+00 20.264e+00 51.93% 

  Average:  32.07% 
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7.6.2 Experimental results of the TSX operator 
against the SBX with the assistance of DTLZ test 
instances with 5 objectives  
 
 
     According to the Deb and Saxena [58] the vast majority of the studies in the field 

of MOEAs examine problems having less than 5 objectives. Also, according to the 

same research paper, studies using more than 10 objectives often employed a single-

objective optimization method by converting the multiobjective optimization problem 

into single objective. 

    Below, we examine the efficacy of the proposed crossover operator in handling 

problems having 5 objectives. For that reason, we utilize the DTLZ test functions 

family with 5 objectives. The performance of the proposed TSX operator is assessed 

in comparison with the Simulated Binary Crossover (SBX) operator with the 

assistance of the NSGAII for the solution of the DTLZ1-7 set of test functions, with 5 

objectives.  

 
 

Table 7.5. Mean, Std, Median and Iqr for Hv, IGD and Epsilon: TSX vs SBX - DTLZ with 5 objectives 

 

 
 
 
 
 
 
 

 
 
 

Algorithm: NSGAII Problem: DTLZ1  Problem: DTLZ2  Problem: DTLZ3 
 TSX SBX  TSX SBX  TSX SBX 
HV. Mean and Std 8.97e-011.1e-02 2.94e-013.9e-01  8.19e-015.5e-03 7.34e-011.2e-02  9.99e-016.8e-04 7.09e-011.9e-01 
HV. Median and IQR 8.90e-012.4e-02 3.82e-028.4e-01  8.19e-011.3e-02 7.36e-012.9e-02  9.99e-011.6e-03 8.00e-014.3e-01 
IGD. Mean and Std 6.26e-044.2e-05 1.04e-031.3e-03  7.97e-045.2e-05 7.74e-043.6e-05  1.27e-037.6e-05 4.68e-022.8e-02 
IGD. Median and IQR 6.24e-045.8e-05 6.40e-041.2e-04  7.82e-047.0e-05 7.73e-044.3e-05  1.26e-039.7e-05 3.76e-024.6e-02 
EPSILON. Mean and Std 8.99e-022.8e-03 4.28e-011.8e-01  2.29e-011.1e-02 3.44e-011.2e-02  3.39e-016.7e-02 3.02e+012.3+01 
EPSILON. Median and IQR 8.89e-026.6e-03 4.80e-014.2e-01  2.23e-012.5e-02 3.38e-012.8e-02  3.78e-011.5e-01 2.01e+015.4+01 

Algorithm: NSGAII Problem: DTLZ4  Problem: DTLZ5  Problem: DTLZ6 
 TSX SBX  TSX SBX  TSX SBX 

HV. Mean and Std 7.54e-017.8e-03 7.16e-014.3e-03  8.18e-011.3e-03 8.19e-011.2e-03  9.76e-011.2e-03 8.14e-014.5e-02 
HV. Median and IQR 7.56e-011.9e-02 7.18e-011.0e-02  8.18e-013.1e-03 8.19e-012.7e-03  9.76e-012.9e-03 8.36e-011.0e-01 
IGD. Mean and Std 1.17e-039.2e-04 1.19e-031.1e-04  1.97e-058.5e-07 2.00e-051.1e-06  1.54e-048.5e-05 5.03e-034.6e-04 
IGD. Median and IQR 1.03e-031.6e-04 1.17e-031.6e-04  1.96e-051.1e-06 2.00e-051.3e-06  1.38e-041.2e-04 5.06e-035.7e-04 
EPSILON. Mean and Std 2.31e-013.9e-02 2.83e-013.7e-02  2.01e-019.6e-03 2.06e-017.8e-03  2.99e-012.1e-02 1.80e+003.0e-01 
EPSILON. Median and IQR 2.06e-018.5e-02 2.68e-018.7e-02  2.00e-012.3e-02 2.11e-011.7e-02  3.07e-014.9e-02 1.63e+006.8e-01 

Algorithm: NSGAII Problem: DTLZ7  
 TSX SBX  

HV. Mean and Std 2.87e-016.0e-04 2.85e-013.5e-03  
HV. Median and IQR 2.87e-011.2e-03 2.85e-017.1e-03  
IGD. Mean and Std 2.18e-031.1e-04 2.30e-032.0e-04  
IGD. Median and IQR 2.18e-031.6e-04 2.28e-032.2e-04  
EPSILON. Mean and Std 1.50e-011.4e-03 1.55e-011.9e-02  
EPSILON. Median and IQR 1.50e-012.8e-03 1.55e-013.8e-02  
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Table 7.6. Boxplots for Hv, IGD and Epsilon: TSX vs SBX - DTLZ with 5 objectives 

 
 

 
 
 
 

 
 
 

 
 
     
 

  
 

Table 7.7. Wilcoxon Test for Hv, IGD and Epsilon: TSX vs SBX - DTLZ with 5 objectives 

 
 
 
As we explained in section 3 that we presented the TSX operator, whenever, there is 

not a clear winner i.e. strong or weak dominance, between the 푐( )and 푐( ) , or 

respectively between the 푐( )and 푐( ) the generation of a random number allows the 

random choice of one of the two alternative child solutions. 
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    Someone may argue that as the number of objectives increases the random choice 

of one of the two alternative child solutions will apply more frequently, as it becomes 

more likely the solutions to be non-dominated to each other. Clearly, as the number of 

random choices of one of the two alternative child solutions increases due to the non-

domination between the solutions, the deterministic nature of the selection process of 

the TSX operator becomes partially probabilistic. We define the probabilistic 

indicator of TSX operator as the ratio between the random choices of one of the two 

alternative child solutions and the total evaluations, 

 
 
  푃푟표푏푎푏푖푙푖푠푡푖푐 푖푛푑푖푐푎푡표푟 표푓 푇푆푋 표푝푒푟푎푡표푟 =      ( . .      )

 
 

 
 
 
Below, we provide the probabilistic indicator of the TSX operator for the DTLZ1-7 

set of test functions for 3 and 5 objectives respectively. 

 
  

Table 7.8. Probabilistic Indicator of TSX operator with 3 objectives 
 

DTLZ1-7 set of test functions with 3 objectives DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 
Probabilistic indicator of TSX operator 22.5% 9.30% 10.2% 9.7% 8.2% 6.8% 12.7% 

 
 
Table 7.8 shows the probabilistic indicator of TSX operator for the DTLZ family of 

test functions with 3 objectives. This configuration corresponds to the results of 

section 6.1. Although, a considerable part that varies between 8.2% for the DTLZ5 

and up to 22.5% for the DTLZ1 of the selection process of the TSX operator is 

probabilistic, the remaining deterministic part (i.e. strong or weak domination 

between the child solutions) of the TSX operator is adequate to generate superior 

results than the SBX operator as shown in section 6.1.   

 
Table 7.9. Probabilistic Indicator of TSX operator with 5 objectives 

 
DTLZ1-7 set of test functions with 5 objectives DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 

Probabilistic indicator of TSX operator 28.7% 12.50% 12.4% 11.9% 11.4% 9.7% 17.1% 

 
 
Table 7.9 shows the probabilistic indicator of TSX operator for the DTLZ family of 

test functions with 5 objectives. This configuration corresponds to the results of 

section 7.6.2. As expected the higher number of objectives, leads to an increase of the 

probabilistic indicator of the TSX operator. However, despite the higher level of the 
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probabilistic indicator for the configuration of the DTLZ family of test functions with 

5 objectives, the TSX operator still generates superior quality results than the SBX 

operator as shown by the Tables 7.5, 7.6 and 7.7 respectively. This can be attributed 

to the ability of the TSX operator to locate higher fitness regions in complicated 

search spaces, thanks to its exploratory mechanism.  

 

       Below, we analyze the results obtained by applying the proposed Two Stage 

Crossover (TSX) and the Simulated Binary Crossover (SBX), to the NSGAII for 

solving the DTLZ 1-7 set of test functions with 5 objectives. Please notice that for the 

configuration of the algorithm with the TSX operator and the SBX operator alike, we 

secured equal number of real fitness functions evaluations (200,000). 

     Examining the results of the first indicator, the HV, we notice that the TSX 

operator performs better than the classical SBX operator when is applied to the 

NSGAII for solving the DTLZ 1-7 set of test functions with 5 objectives. Figure 13 

reveals the relevant results for the performance of TSX operator regarding the HV 

indicator. The Wilcoxon rank-sum test (see Table 7.7) validates that the observed 

difference in TSX and SBX performance is statistically significant with 95% 

confidence. In 72% of the cases the TSX yields better results with confidence than the 

conventional configuration of the NSGAII with the SBX operator. Also, in 14% of the 

cases there was not statistical significance between the TSX and SBX. Finally, in 14% 

of the cases the SBX outperformed the TSX operator regarding the HV metric. 

      Regarding the IGD indicator (see Fig. 7.14) in 57% of the cases the TSX yields 

better results with confidence than the conventional configuration of the NSGAII with 

the SBX operator. In 43% of the cases there was not statistical significance between 

the TSX and the SBX regarding the IGD indicator. 

    Figure 15 reveals the relevant results for the performance of TSX regarding the 

Epsilon indicator. The Wilcoxon rank-sum test helps us to identify that in 86% of the 

cases the TSX yields better results with confidence than the conventional 

configuration of the NSGAII with the SBX operator. Also, in 14% of the cases there 

was not statistical significance between the TSX and the SBX regarding the Epsilon 

metric. We should highlight that the SBX in none of the examined test functions 

outperformed the TSX operator regarding the Epsilon metric.  
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Figure 7.13: Hypervolume 
TSX performance compared to SBX

DTLZ with 5 objectives
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Figure 7.14: IGD 
TSX performance compared to SBX

DTLZ with 5 objectives
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7.6.3 Experimental results of the TSX operator 
against the Differential Evolution (DE) with the 
assistance of DTLZ test suite with 3 objectives  
 
Below, we examine the efficacy of the proposed TSX operator when compared to the 

Differential Evolution (DE) [138] with the assistance of the Deb-Theile-Laumanns-

Zitzler (DTLZ) [60] family of test functions with 3 objectives. In particular, the 

performance of the proposed TSX operator is assessed in comparison with the 

Differential Evolution (DE) operator with the assistance of the Multiobjective 

Evolutionary Algorithm based on Decomposition (MOEA/D) for the solution of the 

DTLZ1-7 set of test functions. Table 7.10, 7.11 and 7.12 reveal the relevant results.  

 

Table 7.10. Mean, Std, Median and Iqr  for Hv, IGD and Epsilon – TSX vs DE 

3 objectives Problem: DTLZ1  Problem: DTLZ2  Problem: DTLZ3 
 MOEAD+TSX MOEAD+DE  MOEAD+TSX MOEAD+DE  MOEAD+TSX MOEAD+DE 

HV. Mean and Std 7.66e-015.1e-03 7.54e-013.9e-04  3.89e-014.9e-03 3.72e-015.4e-04  3.92e-015.9e-03 3.71e-011.6e-03 
HV. Median and IQR 7.67e-016.5e-03 7.54e-015.2e-04  3.89e-017.4e-03 3.72e-016.9e-04  3.92e-017.1e-03 3.71e-012.0e-03 
IGD. Mean and Std 6.27e-044.4e-05 5.89e-041.8e-06  7.92e-044.3e-05 7.62e-042.8e-06  1.27e-039.0e-05 1.25e-038.5e-06 
IGD. Median and IQR 6.23e-046.1e-05 5.89e-042.5e-06  7.88e-045.6e-05 7.63e-044.3e-06  1.26e-031.1e-04 1.25e-031.1e-05 
EPSILON. Mean and Std 5.49e-026.4e-03 4.96e-027.2e-04  1.20e-011.5e-02 1.40e-013.1e-03  1.17e-012.0e-02 1.39e-014.6e-03 
EPSILON. Median and IQR 5.41e-027.5e-03 4.97e-021.2e-03  1.19e-012.1e-02 1.42e-013.3e-03  1.12e-012.3e-02 1.40e-016.8e-03 

 
 

3 objectives Problem: DTLZ4  Problem: DTLZ5  Problem: DTLZ6 
 MOEAD+TSX MOEAD+DE  MOEAD+TSX MOEAD+DE  MOEAD+TSX MOEAD+DE 

HV. Mean and Std 3.85e-011.9e-02 3.56e-012.6e-02  9.32e-021.6e-04 9.04e-021.5e-05  8.28e-029.3e-03 9.13e-022.3e-06 
HV. Median and IQR 3.88e-015.7e-03 3.67e-013.3e-03  9.32e-021.8e-04 9.04e-021.7e-05  8.39e-021.7e-02 9.13e-023.2e-06 
IGD. Mean and Std 1.14e-036.6e-04 1.29e-031.8e-04  1.94e-059.5e-07 4.23e-052.3e-07  1.34e-048.3e-05 9.58e-053.9e-08 
IGD. Median and IQR 1.05e-032.0e-04 1.25e-031.3e-04  1.94e-051.2e-06 4.23e-054.2e-07  1.04e-041.2e-04 9.58e-055.8e-08 
EPSILON. Mean and Std 1.05e-015.5e-02 1.44e-014.3e-02  9.53e-031.4e-03 2.57e-029.8e-05  2.24e-021.2e-02 2.66e-027.6e-06 
EPSILON. Median and IQR 9.53e-022.0e-02 1.26e-018.4e-04  9.26e-031.8e-03 2.57e-021.4e-04  1.93e-021.7e-02 2.66e-025.7e-06 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 objectives Problem: DTLZ7  
 MOEAD+TSX MOEAD+DE  

HV. Mean and Std 2.88e-013.3e-03 2.38e-016.7e-03  
HV. Median and IQR 2.88e-015.3e-03 2.39e-011.5e-03  
IGD. Mean and Std 2.18e-031.5e-04 6.50e-035.4e-03  
IGD. Median and IQR 2.16e-031.8e-04 4.44e-033.5e-04  
EPSILON. Mean and Std 1.38e-014.4e-02 3.89e-016.1e-01  
EPSILON. Median and IQR 1.26e-014.7e-02 1.70e-011.1e-03  
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Table 7.11. Boxplots for Hv, IGD and Epsilon: TSX vs DE 

 

 
 

 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Table 7.12. Wilcoxon Test for Hv, Spread and Epsilon: TSX vs DE 
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Below, we analyze the results obtained by applying the proposed Two Stage 

Crossover (TSX) and the Differential Evolution (DE), for solving the DTLZ 1-7 [60] 

set of test functions with 3 objectives. Please notice that for the configuration of the 

algorithm with the TSX operator and the DE alike, we secured equal number of real 

fitness functions evaluations (200,000). 

     Examining the results of the first indicator, the HV, we notice that the 

MOEAD+TSX operator performs better than the MOEAD+DE for solving the DTLZ 

1-7 set of test functions with 3 objectives. Figure 18 reveals the relevant results for the 

performance of TSX operator regarding the HV indicator. The Wilcoxon rank-sum 

test (see Table 7.12) validates that the observed difference in TSX and DE 

performance is statistically significant with 95% confidence. In 86% of the cases the 

MOEAD+TSX yields better results with confidence than the MOEAD with the DE 

operator. Also, in 14% of the cases the DE outperformed the TSX operator regarding 

the HV metric. 

      Regarding the IGD indicator (see Fig. 7.19) in 44% of the cases the 

MOEAD+TSX yields better results with confidence than the MOEAD with the DE 

operator. In 28% of the examined cases the DE operator generated better results with 

confidence than the proposed methodology. Also in 28% of the cases there was not 

statistical significance between the TSX and the DE regarding the IGD indicator. 

    Figure 20 reveals the relevant results for the performance of TSX regarding the 

Epsilon indicator. The Wilcoxon rank-sum test helps us to identify that in 86% of the 

cases the TSX yields better results with confidence than the MOEAD with the DE. 

Also, in 14% of the cases the DE outperformed the TSX operator regarding the 

Epsilon metric.  

    Moreover, Fig.7.21-7.24 provide trade-off fronts for DTLZ1 and 5 test problems 

using the MOEA/D with the TSX operator and the MOEA/D with the DE. Finally, 

Fig. 7.16-7.17 present the evolutionary process of IGD and Epsilon indicator for the 

DTLZ5 test function for the configuration of the MOEA/D with the TSX operator and 

the DE respectively. 
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Fig. 7.16. DTLZ5: Evolution of Epsilon: MOEA/D+TSX and MOEA/D+DE 
 

 
 
 
 

Fig. 7.17. DTLZ5: Evolution of IGD: MOEA/D+TSX and MOEA/D+DE 
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Figure 7.18: Hypervolume 
TSX performance compared to DE
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Figure 7.19: IGD 
TSX performance compared to DE
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Fig. 7.21. Problem: DTLZ1. MOAE/D + TSX operator 

 
 
 

Fig. 7.22. Problem: DTLZ1. MOAE/D + DE operator 

 

 

 

 
 

 

Fig. 7.23. Problem: DTLZ5. MOAE/D + TSX operator 

 
 

Fig. 7.24. Problem: DTLZ5. MOAE/D + DE operator 
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Figure 7.20: Epsilon 
TSX performance compared to DE
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7.6.4 Experimental results of the TSX operator 
against the Particle Swarm Optimization (PSO) with 
the assistance of DTLZ test suite with 3 objectives  
 
Below, we examine the efficacy of the proposed TSX operator when compared to the 

Particle Swarm Optimization (PSO) with the assistance of the Deb-Theile-Laumanns-

Zitzler (DTLZ) [60] family of test functions with 3 objectives. Specifically, the 

performance of the NSGAII+TSX is compared with the performance of the Speed-

constrained Multi-objective PSO (SMPSO) [165] for the DTLZ1-7 set of test 

functions. The SMPSO incorporates a constriction mechanism in order to limit the 

maximum velocity of particles and enhance the search capability of the algorithm.  

      There are numerous studies in the field that provide an experimental comparison 

between the SMPSO and the NSGAII, to refer some of these studies: [163], [165], 

[191] and [162]. According to all aforementioned studies ([163], [165], [191] and 

[162]) the SMPSO clearly outperforms the NSGAII based on a variety of performance 

metrics like the HV, Epsilon and Spread indicator for the DTLZ family of test 

functions. For comparison reasons in our study we make use of the same family of 

test functions (i.e. DTLZ1-7), however in our experiments we use a configuration of 

the NSGAII with the proposed TSX operator instead of the typical configuration of 

the NSGAII with the SBX operator. Potential gain in performance of the NSGAII 

configured with the TSX operator when compared with the SMPSO for the DTLZ1-7 

test problems will be a clear indication of the efficacy of the proposed methodology. 

Table 7.13, 7.14 and 7.15 reveal the relevant results.  

Table 7.13. Mean, Std, Median and Iqr  for Hv, IGD and Epsilon – TSX vs PSO 

3 objectives Problem: DTLZ1  Problem: DTLZ2  Problem: DTLZ3 
 NSGAII+TSX SMPSO  NSGAII+TSX SMPSO  NSGAII+TSX SMPSO 

HV. Mean and Std 7.66e-013.0e-03 7.41e-013.1e-03  3.90e-013.3e-03 3.64e-013.0e-03  3.84e-013.9e-03 3.59e-015.1e-03 
HV. Median and IQR 7.67e-017.0e-03 7.41e-017.7e-03  3.88e-017.1e-03 3.66e-017.1e-03  3.86e-018.8e-03 3.62e-011.1e-02 
IGD. Mean and Std 6.34e-043.0e-05 6.35e-043.1e-05  7.89e-045.3e-05 7.78e-043.8e-05  1.28e-033.7e-05 1.21e-035.5e-05 
IGD. Median and IQR 6.29e-044.9e-05 6.33e-045.7e-05  7.69e-047.0e-05 7.89e-046.5e-05  1.27e-036.7e-05 1.21e-035.2e-05 
EPSILON. Mean and Std 5.26e-023.0e-03 5.77e-021.9e-03  1.19e-011.3e-02 1.27e-015.3e-03  1.27e-012.1e-02 1.36e-017.8e-03 
EPSILON. Median and IQR 5.24e-027.4e-03 5.64e-024.2e-03  1.22e-013.2e-02 1.24e-011.2e-02  1.18e-014.8e-02 1.40e-011.8e-02 

 
 

3 objectives Problem: DTLZ4  Problem: DTLZ5  Problem: DTLZ6 
 NSGAII+TSX SMPSO  NSGAII+TSX SMPSO  NSGAII+TSX SMPSO 

HV. Mean and Std 3.86e-012.9e-03 3.68e-013.1e-03  9.32e-026.1e-05 9.41e-027.3e-06  7.09e-029.3e-03 9.49e-027.0e-06 
HV. Median and IQR 3.88e-016.9e-03 3.67e-017.2e-03  9.32e-021.5e-04 9.41e-021.6e-05  6.88e-022.2e-02 9.49e-021.6e-05 
IGD. Mean and Std 1.14e-031.4e-04 1.31e-037.8e-05  1.95e-057.6e-07 1.38e-053.5e-07  1.46e-047.7e-05 3.46e-051.0e-06 
IGD. Median and IQR 1.09e-032.0e-04 1.29e-031.1e-04  1.97e-055.1e-07 1.38e-053.2e-07  1.40e-041.4e-04 3.48e-051.8e-06 
EPSILON. Mean and Std 1.12e-012.2e-02 1.16e-012.3e-02  9.40e-039.7e-04 4.13e-032.1e-05  3.97e-021.5e-02 4.07e-031.3e-04 
EPSILON. Median and IQR 1.06e-015.3e-02 1.17e-015.5e-02  9.27e-032.4e-03 4.12e-034.6e-05  3.95e-023.7e-02 4.15e-032.7e-04 
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Table 7.14. Boxplots for Hv, IGD and Epsilon: TSX vs PSO 
 

 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

3 objectives Problem: DTLZ7  
 NSGAII+TSX SMPSO  

HV. Mean and Std 2.86e-012.1e-03 2.76e-012.6e-03  
HV. Median and IQR 2.86e-015.1e-03 2.77e-015.9e-03  
IGD. Mean and Std 2.27e-032.0e-04 2.77e-032.0e-04  
IGD. Median and IQR 2.21e-031.7e-04 2.71e-032.5e-04  
EPSILON. Mean and Std 1.33e-013.5e-02 2.00e-012.0e-02  
EPSILON. Median and IQR 1.15e-018.0e-02 2.00e-014.9e-02  

NSGAII+TSX vs  SMPSO   
Problem: DTLZ4 Problem: DTLZ5 Problem: DTLZ6 

HV IGD EPSILON HV IGD EPSILON HV IGD EPSILON 
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Table 7.15. Wilcoxon Test for Hv, IGD and Epsilon: TSX vs PSO 

 
 
Below, we analyze the results obtained by applying the proposed Two Stage 

Crossover (TSX) and the Particle Swarm Optimization (PSO), for solving the DTLZ 

1-7 [60] set of test functions with 3 objectives. Please notice that for the configuration 

of the algorithm with the TSX operator and the PSO alike, we secured equal number 

of real fitness functions evaluations (200,000). 

     Examining the results of the first indicator, the HV, we notice that the 

NSGAII+TSX operator performs better than the SMPSO for solving the DTLZ 1-7 

set of test functions with 3 objectives. Figure 25 reveals the relevant results for the 

performance of TSX operator regarding the HV indicator. The Wilcoxon rank-sum 

test (see Table 7.15) validates that the observed difference in TSX and PSO 

performance is statistically significant with 95% confidence. In 71% of the cases the 

TSX yields better results with confidence than the PSO. Also, in 29% of the cases the 

PSO outperformed the TSX operator regarding the HV metric. 

      Regarding the IGD indicator (see Fig. 7.26) in 43% of the cases the TSX yields 

better results with confidence than the PSO. Also, in 43% of the examined cases the 

PSO operator generated better results with confidence than the proposed 

methodology. Finally, in 14% of the cases there was not statistical significance 

between the TSX and the PSO regarding the IGD indicator. 

    Figure 7.27 reveals the relevant results for the performance of TSX regarding the 

Epsilon indicator. The Wilcoxon rank-sum test helps us to identify that in 57% of the 

cases the TSX yields better results with confidence than the PSO. Also, in 14% of the 

cases there was not statistical significance between the TSX and the PSO regarding 

the Epsilon metric. Finally, in 29% of the examined cases the PSO operator generated 

better results with confidence than the proposed methodology regarding the Epsilon 

metric.  

      From the relevant results we conclude that the NSGAII + TSX outperforms the 

SMPSO in HV and Epsilon indicator, while the two algorithms perform similarly 

Problem  DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 
  SMPSO SMPSO SMPSO SMPSO SMPSO SMPSO SMPSO 

HV. Mean and Std 

N
SG

A
II 

w
ith

  T
SX

        

HV. Median and IQR        

IGD. Mean and Std        

IGD. Median and IQR        

EPSILON. Mean and Std        

EPSILON. Median and IQR        



Chapter 7  PhD Thesis – K. Liagkouras    

[192] 
 

regarding the IGD indicator. Please notice that the relevant results in these two 

performance metrics (i.e. HV and Epsilon indicator) are contrary to the results of the 

aforementioned [163], [165], [191] and [162] studies and can be attributed to the 

efficacy of the proposed TSX operator when compared to the SBX operator, as 

everything else about the configuration of the NSGAII algorithm when compared 

with the SMPSO remains the same.  
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Figure 7.25: Hypervolume 
TSX performance compared to PSO
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Figure 7.26: IGD 
TSX performance compared to PSO
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7.7 Conclusions 
 
   In this chapter, we have developed a new Two Stage Crossover (TSX) operator for 

real coded evolutionary algorithms. The proposed crossover operator incorporates a 

fitness function evaluation mechanism that allows the evaluation of the corresponding 

fitness for the left hand side region and the right hand side region of the parent 

solution. The selection between the two alternative child solutions is done with the 

assistance of the Pareto optimality conditions. Thanks to the TSX operator the 

algorithm is able to move fast towards the higher fitness regions of the search 

landscape and discover near optimal solutions.  

    In the experimental part of the study we analyzed the results obtained by applying 

the proposed Two Stage Crossover (TSX), the Simulated Binary Crossover (SBX), 

the Differential Evolution (DE) and the Particle Swarm Optimization (PSO) to a 

number of algorithms for solving the DTLZ 1-7 set of test functions. The assessment 

of the performance of the proposed crossover operator is done with the assistance of 

three well known performance indicators, namely the Hypervolume, IGD and Epsilon 

indicator for equal number of real function evaluations.  

   In particular in section 6.1 we applied the TSX operator and the SBX operator 

respectively to the NSGAII, SPEA2 and MOCELL for solving the DTLZ 1-7 set of 

Improved 
57%

Similar
14%

Worse
29%

Figure 7.27: Epsilon 
TSX performance compared to PSO
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test functions with 3 objectives. The experimental results showed us that the proposed 

TSX operator yields better results with confidence than the conventional 

configuration of the NSGAII, SPEA2 and MOCELL with the SBX operator for all 

three performance metrics. Also, as shown in Table 7.4 the configuration of the 

algorithm with the SBX requires an average computational overhead 56.66% 

compared to the configuration of the algorithm with the TSX operator for the same 

number of real fitness functions evaluations. 

    In section 7.6.2 we examined the ability of the proposed TSX operator in handling 

problems with more than 3 objectives. For that reason, we applied the TSX operator 

and the SBX operator respectively to the NSGAII for solving the DTLZ 1-7 set of test 

functions with 5 objectives. The proposed TSX operator generated better results with 

confidence than the SBX operator for all three performance metrics for solving the 

DTLZ 1-7 test suite with 5 objectives. 

    In section 7.6.3 and 7.6.4 we compared the performance of the proposed TSX 

operator against other popular and well-established reproduction techniques.  In 

particular in section 6.3 we compared the performance of the proposed TSX operator 

against the Differential Evolution (DE) with the assistance of the MOEA/D for the 

same number of real function evaluations. The proposed TSX operator generated 

better results with confidence than the DE for all three performance metrics for 

solving the DTLZ 1-7 set of test functions with 3 objectives. In section 6.4 we 

compared the performance of the proposed TSX operator against the Particle Swarm 

Optimization (PSO) with the assistance of NSGAII and SMPSO respectively for the 

same number of real function evaluations. The proposed TSX operator generated 

better results with confidence than the PSO for the HV and Epsilon performance 

metrics and not worse results for the IGD indicator, for solving the DTLZ 1-7 set of 

test functions with 3 objectives. 

       Given the efficacy of the proposed TSX operator as it is demonstrated by the 

experimental part of the study, we hope that other researchers will adopt the proposed 

methodology and experiment with it in their areas of expertise.      

     In our future work, we will attempt to develop a technique that will replace the 

random boolean value r  of TSX operator with a variable that will be updated at run-

time according to the performance of the algorithm in a number of metrics such as the 

hypervolume or epsilon indicator. 



PhD Thesis – K. Liagkouras   Chapter 8  

[195] 
 

 

Chapter 8 

 
A new Efficiently Encoded Multiobjective Algorithm 
for the Solution of the Constrained Portfolio 
Optimization Problem 
 

 

8.1 Introduction 
 
The portfolio optimization problem aims to find the optimal allocation of a limited 

capital among a finite set of risky assets by simultaneously maximizing the expected 

return of the portfolio and minimizing its associated risk. The portfolio optimization 

belongs to the category of the combinatorial optimization problems as it has a highly 

complex search space due to the large number of selectable assets available, 

especially for big instances of the problem [46], [142], [158], [155]. The portfolio 

optimization problem as introduced by Markowitz [151] can be solved by quadratic 

programming. However, if we apply some real-world nonlinear constraints such as 

cardinality constraints, which impose a lower and upper limit to the number of assets 

held in the portfolio the problem becomes NP-hard.  

      The additional nonlinear constraints imposed to the problem make it difficult to be 

solved with exact methods [149]. In the last decade several metaheuristic optimization 

techniques have been developed to address the challenges imposed by the constrained 

portfolio optimization problem. Due to the intrinsic multiobjective nature of the 

problem, multiobjective approaches, particularly multiobjective evolutionary 

algorithms (MOEA) have been proved very useful and effective in handling the 

difficulties imposed by the constrained portfolio optimization problem in a reasonable 

time. 

      MOEA techniques are able to generate a set of solutions approximating the 

efficient frontier in a single run, in contrast to the multiple runs needed in the case of 

single objective approaches  [139], [140], [141], [156]. There exist many studies 

which applied MOEAs to solve the constrained portfolio optimization problem.  
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        Liagkouras and Metaxiotis [142] based on the examination of the state-of-the art, 

provide the best practices for dealing with the complexities of the constrained 

portfolio optimization problem (CPOP). In particular, rigorous algorithmic and 

technical treatment is provided for the efficient incorporation of a wide range of real-

world constraints into the MOEAs. The authors also address special configuration 

issues related to the application of MOEAs for solving the CPOP. Finally, by 

examining the state-of-the-art they identify the most appropriate performance metrics 

for the evaluation of the relevant results from the implementation of the MOEAs to 

the solution of the CPOP. 

         Lwin et al. [147] examine the extended Markowitz’s portfolio optimization 

model with cardinality, quantity, pre-assignment and round lot constraints. The 

authors propose learning-guided hybrid multi-objective evolutionary algorithm to 

solve the constrained portfolio optimization problem. The proposed algorithm is 

compared against four well-known MOEAs, namely Non-dominated Sorting Genetic 

Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEAII), Pareto 

Envelope-based Selection Algorithm (PESA-II) and Pareto Archived Evolution 

Strategy (PAES). Experimental results on the constrained portfolio optimization 

problem demonstrate that the proposed algorithm significantly outperforms the four 

algorithms with respect to the quality of obtained efficient frontier. 

         Suksonghong et al. [204] experiment with several MOEAs, namely the 

nondominated sorting genetic algorithm II (NSGA-II), strength Pareto evolutionary 

algorithm II (SPEA-II) and compressed objective genetic algorithm II (COGA-II) for 

solving the portfolio optimization problem for a power generation company (GenCo) 

faced with different trading choices. The authors introduce an additional objective to 

enhance the diversification benefit alongside with the three original objectives of the 

mean–variance–skewness (MVS) portfolio framework. According to the authors the 

configuration of the algorithm with the additional objective offers better trade-off 

solutions while promoting investment diversification benefits for power generation 

companies, compared with the traditional MVS framework. 

       Liagkouras and Metaxiotis [140] propose a new probe guided version of the 

polynomial mutation (PLM) operator designed to be used in conjunction with 

MOEAs. The proposed Probe Guided Mutation (PGM) operator is validated by using 

data sets from six different stock markets. The performance of the proposed PGM 

operator is assessed in comparison with the one of the classical PLM with the 
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assistance of the Non-dominated Sorting Genetic Algorithm II (NSGAII) and the 

Strength Pareto Evolutionary Algorithm 2 (SPEA2). According to the authors, the 

experimental results reveal that the proposed PGM operator outperforms with 

confidence the performance of the classical PLM operator for all performance metrics 

when applied to the solution of the cardinality constrained portfolio optimization 

problem (CCPOP).  

       Li and Xu [137] address the multi-objective portfolio selection model with fuzzy 

random returns. The authors consider three objectives, return, risk and liquidity. They 

also consider securities historical data, experts’ opinions and investors’ different 

attitudes in the portfolio selection process. To ensure the selection of the best solution, 

the authors propose a compromise approach-based genetic algorithm for solving the 

proposed model. 

       Corazza et al. [43] examine a class of measures that uses information contained 

both in lower and in upper tail of the distribution of the returns. They formulate the 

problem as a nonlinear mixed-integer portfolio selection model, which takes into 

account several constraints used in fund management practice. Because the 

aforementioned problem is NP-hard, they apply the heuristics Particle Swarm 

Optimization (PSO) to a reformulation of the mixed-integer model, where a standard 

exact penalty function is introduced. 

        Metaxiotis and Liagkouras [155] provide a review of the current state of research 

on portfolio management with the support of MOEAs. The authors present a 

methodological framework for conducting a comprehensive literature review on the 

(MOEAs) for the portfolio management. According to the authors this framework can 

be efficiently used to gain an understanding of the current state of the MOEAs for the 

portfolio management research field and to identify areas of concern with regard to 

MOEAs for the Portfolio Management research field. 

         Smimou [194] examines whether the home asset bias in a portfolio holding is 

associated with higher political instability risk, and to what extent international 

diversification among stocks, in the presence of such risk, outperforms domestic stock 

portfolios. The author experiments with alternative instability risk proxies under a 

discrete-time version of Markowitz’s mean–variance portfolio selection problem. 

       In this chapter, we propose a multiobjective evolutionary algorithm, which 

incorporate a novel encoding scheme specially designed for dealing with the 

complexities of the CPOP alongside a new mutation and recombination operator 
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tailor-made to work well with the new encoding scheme. The proposed encoding 

scheme has been designed having in mind to satisfy a two-fold objective. First should 

be able to efficiently facilitate the search process by locating optimum or near 

optimum solutions. Second, should be able to do that by making optimum use of the 

available computational resources.   

       The remainder of the chapter is structured as follows. Section 8.2 starts with a 

formal introduction of the portfolio optimization model and the various real-world 

constraints imposed to the model. In section 8.3, we formulate the Constrained 

Portfolio Optimization problem (CPOP) as a Mixed Integer Quadratic Programming 

(MIQP) problem. Section 8.4 provides a description of the proposed encoding scheme 

alongside a comparison with existing encoding schemes and potential benefits from 

its adoption. The new mutation and recombination operator are presented in section 

8.5. Section 8.6 presents the experimental results for both the unconstrained and 

constrained problem and the relevant results are analyzed. Finally in section 8.7 we 

draw conclusions and we propose some potential paths for future research.   
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8.2 Portfolio optimization problem formulation 
 
The Mean-Variance (M-V) portfolio optimization model introduced by Markowitz 

[151] for creating an optimum portfolio assumes that investors choose assets that 

maximize their portfolio returns and respectively minimize their portfolio risk.  

Thus M-V model is a bi-objective problem as two conflicting objectives should be 

satisfied at any time. The M-V portfolio optimization model can be stated 

mathematically as follows: 

 

Let   be the search space. Consider 2 objective functions 21, ff   where   f : Ω → R . 

and Ω ⊂ R . 

 

 

 

 

 

 

 

 

 

subjected to 

   (4) 

 

 

 

All portfolios to have non-negative weights:     0 ≤ 푤 ≤ 1,    i = 1,2,…, N    (5)  

 

where N is the number of assets available, 푤  is the decision variable denoting the 

proportion of asset i in the portfolio, 푟  is the expected return of asset i, 휌  is the 

correlation between asset i and j and -1 ≤ 휌푖푗 ≤ 1, 휎  represent the standard deviation 

of stock returns i. Equation (5) requires all portfolios to have non-negative weights, 

i.e. no short selling is allowed. 

 

Optimize: 푓(푤) = (푓 (푤), 푓 (푤)) (1) 

Maximize portfolio return: 푓 (푤) = 푤 푟̅  (2) 

Minimize portfolio risk: 푓 (푤) = 푤 푤 휎 휎 휌  (3) 

Budget constraint: 푤 = 1 
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The M-V model can be extended to include the following real-world constraints that 

stem from industry regulations and practical concerns: 

 

Cardinality constraint 

Cardinality constraint limits the number of assets held in a portfolio. There are both 

practical and regulatory reasons that justify the imposition of lower and upper limit to 

the number of assets that compose a portfolio. The lower limit to the number of assets 

held in a portfolio is usually imposed to avoid excessive exposure to the 

idiosyncrasies of any particular asset, even though the portfolio’s overall risk may 

appear acceptable. On the other hand the upper limit to the number of assets held in a 

portfolio is imposed to avoid excessive administrative and monitoring costs. 

The cardinality constraint can be expressed as follows:  

 

퐾 ≤ 푞 ≤ 퐾  

 
where Kmin is the minimum number of assets that a portfolio can hold, Kmax is the 

maximum number of assets that a portfolio can hold,  qi = 1 , for  wi > 0 and qi = 0 , 

for  wi = 0.   

 
Floor and ceiling constraints 
The justification of floor constraint stem from the fact that very small weightings of 

any asset will have no real influence on the portfolio’s performance, but will add to 

administrative and monitoring costs. Likewise, ceiling constraint is imposed to avoid 

excessive exposure to the idiosyncrasies of any particular stock.     

 
The Floor and ceiling constraints can be expressed as follows:  

 

푙  ≤ 푤 ≤ 푢 ,   i = 1,2,…, N.  

 

where 푙  is the minimum weighting that can be held of asset i (i = 1, …, N ),  ui is the 

maximum weighting that can be held of asset i (i = 1, …,N ) and 0 ≤ 푙  ≤ 푢 ≤ 1,   i 

= 1,2,…, N.  
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      The incorporation of these constraints in the M-V model transforms the problem 

from a quadratic programming problem into a mixed-integer quadratic programming 

problem which is NP-hard [187]. There have been proposed several exact approaches 

for the cardinality constrained portfolio optimization problem [17], [20], [136], [187] 

however these approaches run into difficulties to generate solutions within reasonable 

time for large instances of the problem. 

     The aforementioned shortcoming of exact methods to generate solutions for the 

constrained case of the portfolio optimization problem within a reasonable frame of 

time led to the development of approximate approaches like the multiobjective 

evolutionary algorithms (MOEAs) that belong to the class of metaheuristics. MOEAs 

like any other metaheuristic technique cannot guarantee that in all cases will find the 

optimal solution, however have been proven to be efficient in finding near optimal 

solutions in a reasonable interval of time. The purpose of this chapter is to introduce 

an efficiently encoded MOEA that through the more efficient utilization of the 

available computational resources, such as processing power and genetic operators, 

manage to achieve good quality solutions within a reasonable frame of time. 

      Despite the inefficiency of exact approaches to deliver solutions within a 

reasonable frame of time, for more details about this matter please refer to Table 1, 

for reasons of comparison we formulate the constrained portfolio optimization 

problem as a mixed integer quadratic program (MIQP) and we solve it for a number 

of instances that range from 31 stocks for the smaller instance to the 225 stocks for 

the bigger instance. We also consider two bigger instances having 457 and 1317 

stocks respectively, however because the required computational time for each exact 

efficient point exceeded considerably the maximum allowed time frame (1,000 

seconds) we only use approximate approaches for these two instances. In the 

following section we formulate the constrained portfolio optimization problem as a 

MIQP and solve it for the port1-port5 instances, for extracting the true efficient 

frontier (TEF). 
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8.3 Formulation of the Constrained Portfolio Opti- 
mization problem (CPOP) as a Mixed Integer 
Quadratic Programming (MIQP) problem 
 
 
Below, we formulate the constrained portfolio optimization problem (CPOP) as a 

mixed integer quadratic programming (MIQP) problem and we extract the true 

efficient frontier for port1-port5 instances. Then, the relevant results are compared 

with the approximate efficient frontiers that are derived by the proposed MOEA and 

we draw useful conclusions about the efficiency of the proposed approach.  

 

The MIQP problem for the CPOP can be expressed as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Portfolio’s risk is expressed by total variance as shown by Eq. (6), which is 

minimized. The objective function Eq. (6), involves the covariance matrix (σij), which 

is positive semidefinite and thus we are minimizing a convex function.  Portfolio’s 

return is treated as a constraint as shown by Eq. (7). The budget constraint is 

represented by Eq. (8). The cardinality constraints are represented by Eq. (9). The 

lower limit to the number of assets held in a portfolio is represented by Kmin. 

Minimize portfolio risk  
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Respectively, the upper limit to the number of assets held in a portfolio is represented 

by Kmax. Eq. (10) represents the floor and ceiling constraints. Eq. (10) ensures that if 

any of asset i is held (i.e. zi = 1) its weight must lie between the lower bound li and the 

upper bound ui.  

    We set the minimum cardinality of the portfolio to two (Kmin = 2) and the 

maximum cardinality of the portfolio to ten (Kmax = 10) for all test problems. The 

participation of each asset in the portfolio is determined by the lower and upper 

bounds. We set the lower bound li = 0.01 and the upper bound ui = 0.99, for each 

asset i, where i = 1, . . . , N. 

       The main advantage of the MIQP approach is that it can find the optimum 

solution with certainty if the algorithm terminates. On the downsides, the running 

times can be prohibitive and the true efficient frontier (TEF) can only be calculated 

pointwise. Also, the representation of complex constraints is not always 

straightforward [24].  

       Having formulated the MIQP problem, the calculation of the true constrained 

efficient frontier for port1-5 problems is straightforward. We minimize portfolio risk 

as it is expressed by Eq. (6), subject to Eq. (7)-(11), for different levels of the R* of 

Eq. (7). By varying R* and solving the Mixed Integer Quadratic Program (MIQP) we 

obtain different levels of minimum portfolio risk. We used CPLEX version 12.5 to 

solve the above MIQP problem. 

We utilized the following strategy [216], [217] to pointwise calculate the True 

Efficient Frontiers for port1-5 problems: 

 

6. For each one of the port1-5 problems we know the range of return values that 

should be examined, as the securities’ returns are known. 

7. Let’s say that we examine the port1 problem and 푟  represents the security 

with the lowest return among all securities of port1 problem. Respectively 

푟  represents the security with the maximum return among all securities of 

port1 problem. 

8. Given the return range [푟 , 푟 ] let M be the number of points that we 

wish to plot on the frontier. With the assistance of the 푟  equation we 

divide the  푟  - 푟  interval into M equally distant points: 
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푟 =
푟  −  푟

푀    

 

9. Then, we calculate the minimum portfolio risk for each of the following 

returns levels: [푟  + 푟 ,  푟  + 2푟 , ..., 푟  + 푀푟 ]. Please 

notice that we start from 푟  + 푟  return level and not from  푟  

because we have set Kmin = 2.  Solving the MIQP for  푟  return level and 

Kmin = 2 would lead to an infeasible solution. 

10. For port1-2 problems we used M = 100, for port3 we used M = 50 and for 

port4-5 problems we used M = 25, due to the excessively time-consuming 

process (i.e. in terms of running time) for calculating optimal points for the 

bigger instances of the problem. 
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8.4 Efficiently Encoded Multiobjective Portfolio 
Optimization Solver (EEMPOS) 
 
The limitations of mixed integer approaches to handle efficiently the complexities 

associated with the solution of the constrained portfolio optimization problem 

especially for the bigger instances of the problem led to the development of 

metaheuristic approaches. In particular, multiobjective evolutionary algorithms 

(MOEAs) are well suited for dealing with the constrained portfolio optimization 

problem due to the multi-objective nature of the problem. 

     In the literature there are a considerable number of studies that utilize MOEAs to 

tackle the CPOP [155]. However, according to Liagkouras and Metaxiotis [142] the 

majority of the studies share a common element: the representation scheme. The 

solution representation is the most important element of a MOEA since it determines 

the search space [5]. An efficient representation scheme can improve significantly the 

performance of a MOEA.  The purpose of this study is to introduce an efficiently 

encoded MOEA named Efficiently Encoded Multiobjective Portfolio Optimization 

Solver (EEMPOS) that through the more efficient utilization of the available 

computational resources, manage to achieve good quality solutions within a 

reasonable frame of time.  

      We start the presentation of the Efficiently Encoded Multiobjective Portfolio 

Optimization Solver (EEMPOS) by explaining the proposed representation scheme. 

According to Liagkouras and Metaxiotis [142] the selection of the most appropriate 

technique for the solution representation is critical for the performance and 

functionality of the entire MOEA. 

     According to the same study [142] the most popular type of encoding for solution 

vector representation in the case of the portfolio optimization problem is the hybrid 

representation introduced by Streichert et al. [200]. In the hybrid representation two 

vectors are used for defining a portfolio:  

A binary vector that specifies whether a particular asset participates in the portfolio 

and a real-valued vector used to compute the proportions of the budget invested in the 

assets. 

 

훥 =  {푧 , … , 푧 },    푧 =  {0, 1},    푖 = 1, … , 푁     

푊 =  {푤 , … , 푤 },    0 ≤ 푤 ≤ 1,    푖 = 1, … , 푁     
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Moreover through the hybrid encoding a number of constraints like for example the 

cardinality constraint can be satisfied. For instance, if the number of 1’s in 훥 

overcomes the maximum cardinality, then those assets that have the minimum weight 

in 푊are deleted, by changing its value from 1 to 0 in 훥. 

    According to Streichert et al. [200] the usage of hybrid encoding for the solution 

representation facilitates the process of adding or removing an asset to the portfolio 

by simply mutating the bit-string 훥. Finally, the hybrid encoding is altered by 

mutating and crossing each genotype 푊 and 훥 separately from each other. 

     In this study we propose a new encoding scheme that makes better use of the 

available computational resources especially for big instances of the cardinality 

constrained portfolio optimization problem.   

       The proposed encoding scheme is composed of a real-valued vector and a binary 

vector. The real-valued vector contains information about the selected assets and the 

corresponding budget invested in each one of these assets. The binary vector specifies 

whether a particular asset participates in the portfolio. Both real-valued and binary 

vectors must be of same size and equal to the upper limit of the cardinality constraint.  

 

Below we provide an analytical description of the proposed encoding scheme. 

 

step 1. The algorithm starts by creating a random parent population p. 

step 2. The parent population is composed of 2p randomly generated solution 

vectors, half of them (i.e. p) are real-valued and the other half (i.e. p) 

binary-valued. 

step 3. Each real-valued and binary-valued vector is populated as follows: 

 

step 3.1. Randomly are generated Kmax weights, within the specified range set 

by the floor and ceiling constraints [0.01, 0.99] to populate the real-

valued vector. Please recall that Kmax is the maximum number of 

assets that a portfolio can hold and corresponds to the upper limit of 

the cardinality constraint. 
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Suppose Kmax = 10, floor constraint = 0.01 and ceiling constraint = 

0.99, a random real-valued solution vector will looks like the 

following:  

         A real-valued vector before being populated:  
 
 

              A real-valued vector after being populated: 
 

 
step 3.2. The binary-valued vector is populated as follows: A random number 

rvalue is generated that must satisfy both the lower (Kmin) and the 

upper (Kmax) bound of the cardinality constraint. The rvalue 

determines the number of 1s in each binary-valued solution vector. 

The allocation of 1s in the binary-valued solution vector is done 

randomly. The remaining Kmax - rvalue positions are filled up with 0s. 

 

Suppose Kmin = 2, Kmax = 10 and rvalue =5. The 1s in the binary-

valued vector are randomly allocated. Thus, the binary-valued 

solution vector will looks like the following: 

 
 

 
step 3.3. At the end of this process we end up with a real-valued vector and 

the binary-valued vector: 

 
                 real-valued vector                       

                                                            
                   binary-valued vector                       

                                                            
                                             

Then, we perform a normalization mechanism to satisfy the budget 

constraint and the floor and ceiling constraints. For the 

normalization of the weights and the satisfaction of the floor and 

ceiling constraints we apply the following formula proposed by 

Mishra et al. [158]:  

 

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 

0.05 0.64 0.73 0.12 0.24 0.89 0.33 0.71 0.54 0.42 

1      0 0 0 0 1 1 0 1 1 

0.05 0.64 0.73 0.12 0.24 0.89 0.33 0.71 0.54 0.42 

1 0 0 0 0 1 1 0 1 1 
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푤 = 푎 푧 +
∑

(푏 푧 − ∑ 푎 푧 ),   where 푧 =  {0, 1} and 

푎 ≤ 푤 ≤ 푏 , ∀ 푖 = 1,2, … , 푚.  Please notice that the 

aforementioned formula takes into account both the real-valued and 

the binary-valued solution vector into the normalization process.  

 

Thus results the following normalized weight vector: 
                           

normalized weight vector 
 

                                          
 

step 3.4. Then from the available pool of assets N, are selected randomly 

with equal probability Kmax assets, where Kmax is the maximum 

number of assets that a portfolio can hold and corresponds to the 

upper limit of the cardinality constraint. Please notice that once a 

stock is selected, automatically is excluded furthermore from the 

selection process. This is done to make sure that the same asset is 

not picked up more than once for the same real-valued solution 

vector. 

 

For explanatory reasons, suppose that we examine the port5 test 

problem which is composed from 225 assets and Kmax = 10. Let’s 

assume that the following assets are randomly being selected. 

 
   
 

step 3.5. So far we have shown that each decision variable of the real-valued 

vector contains information about the budget invested in each asset. 

Now, we add information regarding the selected assets. Thus, each 

decision variable of the real-valued vector will contain information 

about the selected asset and the corresponding budget invested in 

this asset. Below, we provide an example of a typical real-valued 

vector with Kmax = 10. 

 

0.031 0 0 0 0 0.395 0.149 0 0.238 0.187 

23      5 112 42 14 8 211 48 178 73 

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 
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Each decision variable of the real-valued vector 푟 ,   푗 = 1, . . , 퐾  

is composed from two parts, the budget invested in each asset and 

the selected asset.  

                                      normalized weight vector 
 
 
              + 
selected assets 
 
 
 
 
real-valued vector 
 
 

 
 

For the representation of the budget invested in each asset we allow 

three decimal places for better accuracy, followed by the selected 

asset. Thus, the 푟 ,   푗 = 1, . . , 퐾   decision variables of the real-

valued vector are formulated as follows: 

 
r1 = 0.031023 r2 = 0.000005 r3 = 0.000112 r4 = 0.000042 
r5 = 0.000014 r6 = 0.395008 r7 = 0.149211 r8 = 0.000048 
r9 = 0.238178 r10 = 0.187073   

 
 

       Thus, the proposed representation scheme is composed of a real-valued vector 

and a binary vector. The real-valued vector contains information about the selected 

assets and the corresponding budget invested in each one of these assets. The binary-

valued vector specifies whether a particular asset participates in the portfolio. Please 

notice that the information included in real-valued vector regarding the selected assets 

and the corresponding budget invested in each asset can be easily extracted when it is 

being required by the algorithm. 

 

       There are two striking differences between the proposed encoding scheme and the 

one introduced by Streichert et al. [200]:  

(i.) In Streichert et al. [200] approach the real-valued vector contains only 

information about the proportions of the budget invested in the assets, while 

0.031 0 0 0 0 0.395 0.149 0 0.238 0.187 

23      5 112 42 14 8 211 48 178 73 

0.031 
+ 

023 

0.000 
+ 

005 

0.000 
+ 

112 

0.000 
+ 

042 

0.000 
+ 

014 

0.395 
+ 

008 

0.149 
+ 

211 

0.000 
+ 

048 

0.238 
+ 

178 

0.187 
+ 

073 
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in our approach the real-valued vector contains information about the selected 

assets and the corresponding budget invested in each one of these assets. 

(ii.)  In Streichert et al. [200] approach the size of real-valued and binary-valued 

vectors is equal to the available pool of stocks, while in our approach the size 

of real-valued and binary-valued vectors is equal to the upper limit of the 

cardinality constraint (퐾  ). 

 

Below, we will attempt to analyze the benefits from the introduction of the proposed 

representation scheme. Also, in section 6 we provide an experimental analysis of the 

proposed representation scheme when is applied along with the new mutation and 

crossover operators for solving the constrained portfolio optimization problem 

(CPOP).  

      A first obvious benefit from the adoption of the proposed representation scheme 

can be analysed in terms of computational resources. In the proposed representation 

scheme the size of both the real-valued and binary-valued vectors is limited by the 

upper limit of the cardinality constraint (퐾  ) in contrast to the Streichert et al. 

[200] approach where the size of real-valued and binary-valued vectors is equal to the 

available pool of stocks. This benefit of the proposed approach can be very important 

in terms of computational resources especially for big instances of the CPOP. It is not 

hard to imagine that traversing a 10 decision variables vector (assuming 퐾  = 10) is 

way much more cost-efficient than traversing a 1,317 decision variables vector for a 

big instance of the CPOP like the port7.  

     Moreover given the fact that according to a number of empirical studies [21],  [84] 

, [89] the full diversification benefit is realized for portfolios sizes up to twenty 

securities, there is no need to set the upper limit of the cardinality constraint (퐾  ) 

more than 20 or 30 assets in most of the cases independently of the pool of the 

available assets. Thus, it becomes clear that in most of the cases it is sufficient to set 

퐾  = 20 independently of how big is the universe of the examined instances. This 

in turn can be translated into considerable benefits in terms of computational resource 

especially for big instances of the CPOP as in our case the solution vectors are limited 

by the 퐾  up to a size of maximum 20 or 30 assets while in the case of Streichert et 

al. [200] approach the solution vectors increase in accordance to the available pool of 

stocks.    
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       Another benefit of the proposed representation scheme is that it provides more 

efficient utilization of the genetic operators. To explain the above statement just 

assume that we examine the port7 test problem having 1317 assets and the minimum 

and maximum cardinality (i.e. non zero weights) are set equal to 10 (Kmin =Kmax = 10) 

and the mutation probability is Pm = 0.2. In the case of the proposed representation 

scheme the size of the solution vector will be equal to Kmax = 10, however case of the 

Streichert et al. [200] approach both the real-valued and the binary-valued solution 

vectors will be composed of 1,317 decision variables. 

    Now consider the case where the real-valued solution vector undergoes the 

mutation process with 0.2 probability. Given the probability rate of 0.2, on average 

one in every five decision variables will undergo the mutation process. Thus, in the 

case of the Streichert et al. [200] approach on average 264 (=0.2*1,317) decision 

variables will undergo the mutation process in total of 1,317 variables. Likewise, in 

the case of the proposed representation scheme 2 decision variables will be mutated in 

total of 10 variables.  

     Needless to say that a mutation or recombination process that involves 1,317 

decision variables is way much more expensive in terms of computational resources 

(i.e. required processing power and computational time) than a process that involves 

only 10 variables. 

      Besides the proposed representation scheme makes better utilization of the genetic 

operators. To provide an explanation of the aforementioned statement, just consider 

the case where the minimum and maximum cardinality are set equal to 10 (Kmin =Kmax 

= 10) for both examined cases. 

        In the case of the proposed encoding scheme, given a mutation probability rate of 

0.2 it should be expected with certainty that two non-zero (i.e holding weight) 

decision variables will participate in the mutation process from each solution vector. 

However, in the case of Streichert et al. [200] approach it is quite possible that none 

of the non-zero decision variables will participate in the mutation process. Actually, in 

the case of Streichert et al. approach the probability of mutating a single non-zero 

decision variable, given the length of solution vector (1,317) for port7 problem and a 

mutation rate of 0.2 is 20%, while the probability of mutating 2 non-zero decision 

variables from the same solution vector is only 4%.  

        From the aforementioned analysis it becomes easily understood that the proposed 

representation scheme is more cost-efficient in terms of computational resources and 
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furthermore provides better utilization of the genetic operators, as it is designed to 

focus the search effort to the most meaningful areas of the search space. To fully 

benefit from the proposed representation scheme, in section 5 we introduce a new 

mutation and recombination operator specially designed to work well with the 

proposed encoding scheme. 

 
 
 
 
 
 
 
8.5 The proposed Mutation and Recombination 
operator 
 
In this section we introduce a new mutation and recombination operator specially 

designed to work well with the proposed representation scheme. The proposed genetic 

operators have been designed to satisfy the need of improving the already found good 

solutions and simultaneously to be able to explore other promising areas of the search 

landscape. This much asked balance between exploration and exploitation is achieved 

through the introduction of innovative mechanisms that will be analyzed below. 

 
 
 
 
8.5.1 A Two-Phase Mutation Operator for the 
Constrained Portfolio Optimization Problem 
 
Typically, the mutation operator takes responsibility for the preservation of 

population’s diversity. In this chapter, we propose a two-phase mutation operator 

(TPMO) specially designed to work well with the proposed representation scheme for 

solving the constrained portfolio optimization problem (CPOP).  

     We employ a variation of the polynomial mutation (PLM) [61] operator for the 

real-valued solution vector specially adapted to fit the needs of the proposed 

representation scheme and binary mutation for the discrete (i.e. binary-valued) 

solution vector. 

     We start the presentation of the proposed TPMO by analyzing the mutation 

process of the real-valued solution vector. As we already explained is section 8.4, the 
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real-valued solution vector contains information about the selected assets and the 

corresponding budget invested in each one of these assets. Also, the size of both the 

real and binary solution vectors is restricted by the upper limit of the cardinality 

constraint (퐾 ). Given the fact that the available pool of stocks for all examined test 

instances (port1-7) is considerably larger than 퐾  , assuming a 퐾  value equal to 

10,  we should devise an updating mechanism that allows the replacement of some 

assets of the real-valued solution vector with other assets from the available pool of 

securities. At the same time, the mutation operator should be able to probe limited 

areas of the search landscape with the hope of improving a promising solution that has 

already been found. Below, we analyze step-by-step how we incorporate the 

aforementioned principals to the proposed mutation operator. 

        We start our analysis by presenting Fig. 8.1 that provides the flowchart of the 

proposed mutation operator. As can be seen from Fig.1, if rand ≤ Pm then a decision 

variable is selected to be mutated.  Suppose a hypothetical real-valued solution vector 

퐫 = (푟 , 푟 , … , 푟 ).  Each real-valued decision variable 푟 , 푖 = 1, 2, … , 퐾  

contains information about the selected asset 푎 , 푗 = 1, 2, … , 푁, where 푁 is the 

available pool of assets and the corresponding budget 푤 , 푖 = 1, 2, … , 퐾  

invested in this particular asset. The budget 푤  invested in each asset, can take values 

in the interval: 푤( ) ≤ 푤 ≤ 푤( ), 푖 = 1, 2, … , 퐾  where 푤( ) and 푤( ) stand 

respectively for the floor and ceiling constraints. 
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Begin 
ηm = distribution index; 
  for i=0 to P; // where P is the population size    
             for z=0 to 퐾 ;  // where 퐾  is the upper limit of the cardinality constraint 
    rand            [0, 1];  
       if (rand <= mutation_probability) then   
                 
  푟   = getValue(z);   
  푟   = 푤  + 푎  //where wp is the assigned weight and αp the corresponding asset of the parent solution  

  푤   = getLowerBound(z); 
  푤  = getUpperBound(z);  
                            
                            binary rand_mut = generateValue (0 or 1);       
 
                          if (rand_mut = 0)   
 

                              훿 =
푤푝 푤퐿

         훿 =
푤푝                

 
                                 푟        [0, 1];            
 
                              if (r<= 0.5) then 

                        훿 =  [2푟 + (1 − 2푟)(1 − 훿 ) ]   
     else  

           훿 =  1 − [2(1 − 푟) + 2(푟 − 0.5)(1 − 훿 ) ]   
    end if   
 

    푤 = 푤 + 훿 ( 푤 −  푤 )  
    푤 = normalized(푤 )  //푤  satisfies the budget and floor and ceiling constraint 

                                푟   = 푤 + 푎       
                                child_solution_vector =  parent_solution_vector.setValue(z ,  푟 );  
                             
                           else if (rand_mut = 1)    
 
                                   rand_asset       [1, N]; //where N is the available pool of assets, e.g. for port5, N = 225     
 

                              훿 =
푤푝 푤퐿

         훿 =
푤푝                 

 
                                 푟        [0, 1];            
 
                              if (r<= 0.5) then 

                        훿 =  [2푟 + (1 − 2푟)(1 − 훿 ) ]   
     else  

           훿 =  1 − [2(1 − 푟) + 2(푟 − 0.5)(1 − 훿 ) ]   
    end if   
 

    푤 = 푤 + 훿 ( 푤 −  푤 )  
    푤 = normalized(푤 )  //푤  satisfies the budget and floor and ceiling constraint                                                              

                                푟   = 푤 + rand_asset 
                                child_solution_vector =  parent_solution_vector.setValue(z ,  푟 );  
                           endif 
                      endif 
            endfor 
  endfor 
                                   Fig. 8.1. Two-phase mutation operator (TPMO) pseudo code 
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Also suppose that we examine the port5 problem with 225 assets, 퐾  = 10 and a 

random number rand ≤ Pm occurs for the 4th decision variable. That means that the 4th 

decision variable 푟  of the real-valued parent solution vector should be mutated. 

Before being able to proceed with the mutation, we need to decompose the 푟 and 

extract the information about the assigned weight 푤  and the selected asset 푎  

(assuming that the 94th asset is selected). 

 
  
                                                                           Selected variable to be mutated 
 

real-valued parent solution vector              r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 
 

                                = 푤  + 푎  
 
 
 
Then with the assistance of a random binary variable rand_mut taking values either 0 

or 1, the mutation operator is separated into two different phases. As shown in Fig. 1 

in the case that the random binary variable rand_mut = 0 we perform the standard 

polynomial mutation (PLM) operator to the extracted weight 푤 .  

     As soon as the PLM process is completed, a new weight 푤  emerges. A 

constraints correction mechanism is applied to make sure that both the budget 

constraint and the floor and ceiling constraints are satisfied [158]. After completing 

the correction process the  푤  takes its new adjusted value 푤 . Please notice 

that the constraints correction mechanism besides 푤  will adjust all other weights 

푤 , 푖 = {1, 2,3} 푎푛푑  {5, … ,10}  of the parent solution vector. The adjusted weights 

are represented by 푤 , 푖 = {1, 2,3} 푎푛푑  {5, … ,10}. Accordingly, will be updated the 

real-valued decision variables 푟  = 푤 + 푎  푖 = {1, 2,3} 푎푛푑  {5, … ,10}. Step 3.3 of 

section 8.4 provides a description of the constraints correction mechanism. 

        Subsequently, the adjusted weight 푤  will be used to recompose the child 

real-valued decision variable as follows 푟  = 푤 + 푎 . Then, the 푟  decision 

variable is reinserted into the solution vector at the position of the selected variable to 

be mutated (i.e. 4th) and thus is created the child solution vector. 
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                                                                                       Mutated variable 
 

real-valued child solution vector              푟  푟  푟  푟  푟  푟  푟  푟  푟  푟  
 

                              = 푤  + 푎  
 
The aforementioned process allows the algorithm to explore regions of the search 

space close to the already found solutions.  

     However, in the case that the random binary variable rand_mut takes value 1 we 

follow a different approach. In particular, in this case with the assistance of a random 

variable rand_asset a single asset is selected from the available pool of stocks and 

inserted into the position of the selected asset to be mutated. All assets from the 

available pool of assets participate in this random process with equal probability. 

Thus for instance, in the case of the port5 problem, all 225 assets will participate in 

this random selection process with equal probability. Please notice that all available 

securities participate in this process independently of their presence or not in the 

solution vector.  

     We assume that the 4th decision variable (푟 ) is randomly selected to be mutated 

and rand_mut = 1. Again, as in the previous example before being able to proceed 

with the mutation we need to decompose the 푟 and extract the information about the 

assigned weight 푤  and the selected asset 푎  (i.e. assuming that the 94th asset is 

selected). 

 
                                                                           Selected variable to be mutated 
 

real-valued parent solution vector              r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 
 
                                                                            = 푤  + 푎  
 
Then, with the assistance of the random variable rand_asset a single asset is selected 

from the available pool of assets 푎 , 푗 = 1, 2, … , 푁 (225 assets in the case of the 

port5 problem) and replaces the 푎  asset into the selected decision variable (i.e. 푟 ) to 

be mutated. Thus for instance, assuming that with the assistance of the random 

variable rand_asset the  푎  asset is randomly selected to replace 푎  asset. 
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At the same time the polynomial mutation (PLM) operator is applied to the extracted 

weight 푤  and thus is generated a child weight 푤 . Then a constraints correction 

mechanism is applied to make sure that both the budget constraint and the floor and 

ceiling constraints are satisfied [158]. After completing the correction process the  

푤  takes its new adjusted value 푤 .  

         The constraints correction mechanism besides 푤  will adjust all other 

weights 푤 , 푖 = {1, 2,3} 푎푛푑  {5, … ,10}  of the parent solution vector. The adjusted 

weights are represented by 푤 , 푖 = {1, 2,3} 푎푛푑  {5, … ,10}. Accordingly, will be 

updated the real-valued decision variables 푟  = 푤 + 푎  푖 = {1, 2,3} 푎푛푑  {5, … ,10}. 

Step 3.3 of section 4 provides a description of the constraints correction mechanism. 

  

The updated decision variable after the completion of the mutation process will be 

formulated as follows:  푟  = 푤 + 푎  .  

 

At this particular point we identify two cases:  

(i) In the first case that the randomly selected asset 푎  is not already represented in 

the parent solution vector, we simply reinsert the child decision variable 푟  = 푤  

+ 푎  at the position of the parent decision variable 푟  = 푤  + 푎  and thus is 

formulated the child solution vector. 

 
                                                                            Selected variable to be mutated 
 

real-valued child solution vector              푟  푟  푟  푟  푟  푟  푟  푟  푟  푟  

 
                                                                        = 푤  + 푎  
 
(ii) In the second case that the randomly selected asset 푎  is already represented in 

the parent solution vector, we need to calculate the aggregate weight for asset 푎  by 

taking into account both occurrences of  푎  asset into the same solution vector. As 

soon as we calculate the aggregate weight of 푎  we assign it to the decision variable 

to be mutated (푟 ). Obviously to the other decision variable (let’s say 푟 ) that is 

holding weight of the 푎  asset, we assign zero weight and the 푎  asset is replaced 

by a randomly generated asset from the available pool of assets with only restriction 

the exclusion from this process of the already present assets in the solution vector. 
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Finally a constraints correction mechanism is applied to make sure that the floor and 

ceiling constraints are satisfied [158].  

 
 
 
                                                                          Selected variable to be mutated           
 

real-valued parent solution vector              r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 
 
                                                                           = 푤  + 푎        푟  = 푤  + 푎  
 
 
 

real-valued child solution vector            푟  푟  푟  푟  푟  푟  푟  푟  푟  푟  

 
                                                                           = 푤 + 푎              푟  = 푤  + 푎       
 
                                                                                  
                                                                       푤 = 푤 + 푤              set 푤 = 0.0 
 
                                                                                           Randomly generated asset  
        
 
 
 
Mutation operator for the binary solution vector 

For the binary solution vector we apply a bit-flip (BF) mutation operator that is 

applied to each gene with a certain given probability.  
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8.5.2 A Two-Phase Recombination Operator for the 
Constrained Portfolio Optimization Problem 
 
In this section we propose a recombination operator specially designed to work well 

with the proposed representation scheme for solving the constrained portfolio 

optimization problem (CPOP).   

As we explained in section 8.5.1 due to the fact that in the proposed representation 

scheme the size of both the real and binary solution vectors is restricted by the upper 

limit of the cardinality constraint (퐾 ) we need to introduce into the mutation and 

crossover operator an updating mechanism that will allow the replacement of some 

assets of the real-valued solution vector with other assets from the available pool of 

securities. At the same time, the recombination operator should efficiently exploit the 

available search space (i.e. to perform small adjustments in the weight of the already 

selected assets). The proposed two-phase recombination operator (TPRO) efficiently 

satisfies these two requirements.  

     We employ a variation of the simulated binary crossover (SBX) [54] operator for 

the real-valued solution vector specially adapted to fit the needs of the proposed 

representation scheme and single point crossover for the discrete (i.e. binary-valued) 

solution vector. 

 

We start the presentation of the proposed TPRO by analyzing the recombination 

process of the real-valued solution vector. 

 

Figure 8.2 provides the flowchart of the proposed recombination operator. As shown 

from Fig.8.2, if rand ≤ Pc then two decision variables are selected to be crossovered 

one from each parent solution vector.  Suppose a hypothetical real-valued solution 

vector 퐫 = (푟 , 푟 , … , 푟 ).  As we explained in section 8.4 each real-valued 

decision variable 푟 , 푖 = 1, 2, … , 퐾  contains information about the selected asset 

푎 , 푗 = 1, 2, … , 푁, where 푁 is the available pool of assets and the corresponding 

budget 푤 , 푖 = 1, 2, … , 퐾  invested in this particular asset. The budget 푤  

invested in each asset, can take values in the interval: 푤( ) ≤ 푤 ≤ 푤( ), 푖 =

1, 2, … , 퐾  where 푤( ) and 푤( ) stand respectively for the floor and ceiling 

constraints. 
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for z=0 to 퐾 ;  // where 퐾  is the upper limit of the cardinality constraint 
    rand            [0, 1];  
       if (rand <= crossover_probability) then   
                 
  푟( )  = 푝푎푟푒푛푡_푠표푙푢푡푖표푛( ).getValue(z);  
  푟( )  = 푝푎푟푒푛푡_푠표푙푢푡푖표푛( ).getValue(z); 
                             푤   = getLowerBound(z); 
  푤  = getUpperBound(z);  
 
              //where wp is the assigned weight and αp the corresponding asset of the parent solution 1 and 2 respectively 
  푟( )  = 푤( )+ 푎( )  
  푟( )  = 푤( )+ 푎( ) 
                          
                            binary rand_cross = generateValue (0 or 1);       
 
                             if (rand_cross = 0)   
  

                       훽 = 1 + ( ) ( )  푚푖푛 (푤( ) − 푤( )), (푤( ) − 푤( ))  

 
                      훼 = 2 − 훽 ( ) 
 
                      u          [0, 1]; 

                                    if (푢 ≤ ) then 

                            훽푞  =  (푎푢)1 (휂푐+1)  
 

         else if (푢 > )  

              훽푞 =   1
2−푎푢

1 (휂푐+1)  

 
        end if 
 

                               //The updated weights are then calculated as follows: 
푤( ) = 0.5 푤( ) + 푤( ) − 훽 |푤( ) −  푤( )|  
푤( ) = 0.5 푤( ) + 푤( ) + 훽 |푤( ) −  푤( )|  

 
   //The child decision variables are then formulated as follows: 
                                      푐( )  = 푤( )+ 푎( ) 
                                              푐( )  = 푤( )+ 푎( ) 
 
                                              child_solution_vector ( ) = parent_solution_vector( ).setValue(z , 푐( )); 
                                              child_solution_vector ( ) = parent_solution_vector( ).setValue(z , 푐( ));
  
 
 
 
 
 
          Continued on next page… 
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            Continued from the previous page… 
 
 
 
                          else if (rand_cross = 1)   
 
                               푟푎푛푑_푎푠푠푒푡( )         [1, N]; //where N is the available pool of assets, e.g. for port5, N=225     
                               푟푎푛푑_푎푠푠푒푡( )         [1, N]; 
 

                   훽 = 1 +  ( ) ( )  푚푖푛 (푤( ) − 푤( )), (푤( ) − 푤( ))  

 
                      훼 = 2 − 훽 ( ) 
 
                      u          [0, 1]; 

                                    if (푢 ≤ ) then 

                            훽푞  =  (푎푢)1 (휂푐+1)  
 

         else if (푢 > )  

              훽푞 =   1
2−푎푢

1 (휂푐+1)  

 
        end if 
 

                               //The updated weights are then calculated as follows: 
푤( ) = 0.5 푤( ) + 푤( ) − 훽 |푤( ) −  푤( )|  
푤( ) = 0.5 푤( ) + 푤( ) + 훽 |푤( ) −  푤( )|  

 
   //The child decision variables are then formulated as follows: 
                                      푐( )  = 푤( )+ 푟푎푛푑_푎푠푠푒푡( ) 
                                              푐( )  = 푤( )+ 푟푎푛푑_푎푠푠푒푡( ) 
 
                                              child_solution_vector ( ) = parent_solution_vector( ).setValue(z , 푐( )); 
                                              child_solution_vector ( ) = parent_solution_vector( ).setValue(z , 푐( )); 
 
                       
                   endif 
           endfor 
                                    

Fig. 8.2. Two-phase recombination operator (TPRO) pseudo code 
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     In the proposed two-phase recombination operator (TPRO), two parent decision 

variables  푟( ) and 푟( ) generate two child decision variables 푐( ) and 푐( ). For 

explanatory purposes we assume that the 푟( )and 푟( ) decision variables of the 퐫( ) 

and respectively 퐫( ) parent solution vectors are randomly selected to be crossovered. 

Before being able to proceed with the recombination we need to decompose 푟( ) and 

푟( )  decision variables and extract the information about the assigned weight and the 

selected asset. For explanatory purposes we assume 푟( ) = 푤( ) + 푎  and 푟( ) = 푤( ) 

+ 푎  , where 푤( ) and 푎  correspond to the weight and asset of 푟( ) decision 

variable and respectively 푤( ) and 푎  correspond to the weight and asset of 푟( ) 

decision variable. 

 
 
                                                                      Selected variable 푟( )to be crossovered from 퐫( ) 
 

퐫( ) real-valued parent solution            푟( )
 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 

 
                                     푟( ) = 푤( ) + 푎  

 
 
                                                                  Selected variable 푟( ) to be crossovered from 퐫( ) 
 

퐫( ) real-valued parent solution            푟( )
 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 

 
                                        푟( ) = 푤( ) + 푎  

 
 
Then with the assistance of a random binary variable rand_cross taking values either 

0 or 1, the recombination operator is separated into two different phases.  As shown in 

Fig. 2 in the case that the random binary variable rand_cross = 0 we perform the 

standard simulated binary crossover (SBX) operator to the extracted 푤( ) and 푤( ) 

weights. As soon as the SBX process is completed, the updated 푤( ) and 푤( ) weights 

are generated. A constraints correction mechanism is applied to make sure that both 

the budget constraint and the floor and ceiling constraints are satisfied [142]. After 

completing the correction process the 푤( ) and 푤( ) take their new adjusted value 

푤( ) and 푤( ).  
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Please notice that the constraints correction mechanism besides 푤( ) and 푤( ) will 

adjust all other weights of both parent solution vectors (i.e. 퐫( ) and 퐫( )). The 

adjusted weights are represented by 푤( ) and 푤( ), 푖 = {1, 2,3,4} 푎푛푑  {6, … ,10}. 

Step 3.3 of section 4 provides a description of the constraints correction mechanism.  

 

 

Accordingly, will be updated the real-valued decision variables 푟  = 푤 + 푎  푖 =

{1, 2,3,4} 푎푛푑 {6, … ,10}.  

       Subsequently, the adjusted 푤( ) and 푤( ) weights will be used to recompose the 

child decision variables as follows 푟( ) = 푤( ) + 푎  and 푟( ) = 푤( ) + 푎 . Then, the 

푟( )and 푟( )decision variables are reinserted into the solution vectors at the position of 

the selected variable to be crossovered (i.e. 5th) and thus are created the child solution 

vectors. 

 
                                                                      Selected variable to be crossovered from 퐫( ) 
 

퐫( ) real-valued child solution            푟( )
 푟( ) 푟( )  푟( )  푟( )  푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 

 
                                     푟( ) = 푤( ) + 푎   

 
 
                                                                  Selected variable to be crossovered from 퐫( ) 
 

퐫( ) real-valued child solution            푟( )
 푟( ) 푟( )  푟( )  푟( )  푟( ) 푟( ) 푟( ) 푟( ) 푟( ) 

 
                                       푟( ) = 푤( ) + 푎  

 
 
     However, in the case that the random binary variable rand_cross take value 1 we 

follow a different strategy.  

 

In this case with the assistance of a random variable rand_asset two assets from the 

available pool of assets are selected.  
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All assets from the available pool of assets participate in this random process with 

equal probability. Thus for instance, in the case of the port5 problem, all 225 assets 

will participate in this random selection process with equal probability for the election 

of the two random assets (푎  and 푎 ). Please notice that it is possible to be elected 

the same asset in both trials as it is not excluded from the selection process an asset 

that has been already selected in the first election. This is happening because each one 

of the two randomly elected assets will be allocated in a different solution vector.  

 

     Then is performed the simulated binary crossover (SBX) operator to the extracted  

푤( ) and 푤( ) weights, following the typical SBX operator process as illustrated in 

Fig. 8.2. We also apply a constraint correction mechanism to make sure that both the 

budget constraint and the floor and ceiling constraints are satisfied [158]. After the 

completion of the correction process the 푤( ) and 푤( ) take their normalized value of 

푤( ) and 푤( ).  

 

       Finally, the normalized 푤( ) and 푤( ) weights will be used to recompose the 

child decision variables as follows 푟( ) = 푤( ) + 푎  and 푟( ) = 푤( ) + 푎 .  As we can 

see, the originally selected assets have been replaced by the randomly generated 푎  

and 푎  assets. This updating mechanism allows the replacement of some assets of the 

real-valued solution vector with some other assets from the available pool of 

securities. Given the fact that the available pool of assets (e,g, 1317 securities for 

port7 problem) is in most of the cases considerably larger than the 퐾 , this 

updating mechanism is particularly useful as it allows new assets to enter into the 

solution vector contributing to the variety of the solutions. 
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Recombination operator for the binary solution vector 

For the binary solution vector we apply single-point crossover. In the single-point 

crossover one crossover point is randomly selected and then is copied everything 

before this point from parent 1 and then everything after the crossover point is copied 

from parent 2. Figure 3 provides an example of single-point crossover. 

 
 
 

Parent 1 1 1 0 0 1 1 1 0 

 
Parent 2 1 0 0 0 1 0 0 0 

 
 

Offspring 1 1 1 0 0 1 0 0 0 

 
Offspring 2 1 0 0 0 1 1 1 0 

 
Fig.8.3. Single-point crossover 
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8.6. Experimental results for the constrained portfolio 
optimization problem 
 
 
8.6.1 The test problems 
 
      In this section we run a number of computational experiments, as shown in Table 

1, to test the performance of the proposed Efficiently Encoded Multiobjective 

Portfolio Optimization Solver (EEMPOS) for solving the constrained portfolio 

optimization problem (CPOP). The test problems range from 31 assets for the smaller 

instance and up to the 1317 assets for the bigger instance. The performance of the 

proposed algorithm is assessed in comparison with the True Efficient Frontier (TEF). 

 
Table 8.1: The OR-library portfolio optimization problems 

Problem 
Name 

Stock Market 
Index 

Assets 

port1 Hang Seng 31 
port2 DAX100 85 
port3 FTSE100 89 
port4 S&P100 98 
port5 Nikkei225 225 
port6 S&P500 457 
port7 Russell 2000 1317 

 
 
 
In order to calculate the TEF, we formulated the CPOP as a Mixed Integer Quadratic 

Program (MIQP) (see section 8.3) and we solve the problem by using CPLEX version 

12.5. Table 8.2 indicates the average running time per approximate efficient point in 

the case of the EEMPOS and exact efficient point in the case of MIQP for port1-5 test 

instances. Please notice that for port6 and port7 test instances was not possible to 

calculate the TEF as for each exact efficient point the required computational time 

exceeded considerably the maximum allowed time frame (1,000 seconds). Based on 

the above, the use of evolutionary algorithms is clearly justified as the exact 

approaches fail to produce solutions within a reasonable time frame especially for the 

bigger instances of the CPOP. 
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Table 8.2: Average runtime (in seconds) required per efficient point 
 Running Time (in seconds) per 

Constrained 
Problem* 

Approximate 
Efficient Point 

Exact Efficient Point - 
MIQP 

EEMPOS CPLEX 
port1 1.24 15 
port2 15 125 
port3 17 148 
port4 21 213 
port5 45 521 
port6 78 unspecified > 1,000 secs 
port7 128 unspecified > 1,000 secs 

*Minimum cardinality of the portfolio Kmin = 2 and maximum 
cardinality Kmax = 10 for all test problems. Lower bound li = 0.01 
and the upper bound ui = 0.99, for each asset i, where i = 1, . . . , 
n. 

 
 
 
 
8.6.2 Parameter Setup 
      
    All algorithms have been implemented in Java and run on a 2.1GHz Windows 

Server 2012 machine with 6GB RAM. We set the minimum cardinality of the 

portfolio to two (Kmin = 2) and the maximum cardinality of the portfolio to ten (Kmax 

= 10) for all test problems, unless explicitly stated otherwise. The participation of 

each asset in the portfolio is determined by the lower and upper bounds. We set the 

lower bound li = 0.01 and the upper bound ui = 0.99, for each asset i, where i = 1, . . . 

, N. 

      In all tests we use binary tournament, two-phase recombination operator (TPRO) 

and two-phase mutation operator (TPMO) as selection, crossover and mutation 

operator, respectively.  The crossover probability is Pc = 0.2 and respectively the 

mutation probability is Pm = 0.2 for all test problems, for both the real and the binary 

solution vectors, unless explicitly stated otherwise. The distribution indices for the 

crossover and mutation operators are ηc = 20 and ηm = 20, respectively. We decided 

to use the aforementioned values for the crossover and mutation probability as the 

proposed representation scheme makes more efficient utilization of the mutation and 

the crossover operators than the conventional approaches with the Streichert et al. 

[200] encoding scheme. For more details please refer to section 4, where the proposed 

representation scheme is analyzed.  

       In the relevant studies in the field [5] , [6], in order to achieve good approximate 

solutions, the most common values for mutation and crossover probability with the 

Streichert et al. [200] representation scheme are 0.9 (or even 1.0) and 0.9 respectively. 

Clearly, the higher level of mutation and crossover probability required for the 
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configuration of the algorithm with the conventional Streichert et al. [200] encoding 

scheme, involves a computational cost in terms of required processing power and 

computational time. 

      We also tested the following configurations of the algorithm: Npop = 100, 200, 

300, 400, for 100, 250, 500 and 1000 generations respectively, for identifying the best 

population size. After examining the aforementioned configurations we reached the 

conclusion that the proposed algorithm approaches its top performance for Npop = 100 

and 1,000 generations or 100,000 function evaluations. Beyond, these values the gains 

in performance are marginal if any. Thus, the population size is set to 100, using 

100,000 function evaluations with 5 independent runs for all test problems, unless 

explicitly stated otherwise. 

 
 
 
 

8.6.3 Performance Metrics 
 
For the evaluation of the performance of the attained approximation sets the following 

three performance metrics are employed:  

 

Hypervolume indicator (HV) [233]   

According to Zitzler et al. [234] Hypervolume indicator is the only known unary 

indicator that can assess the quality of a solutions set by the single value of its 

hypervolume. According to the same study [234], hypervolume indicator is the only 

known indicator which is compliant with the concept of Pareto dominance. Thus, 

whenever a set of solutions is better than another set, its hypervolume indicator value 

is higher than the latter one. 

 

Inverted Generational Distance (IGD) 

The inverted generational distance (IGD) can be defined as follows: 

IGD(P, S) =
(∑ 푑 )| | /

|푃|    

where 푑 = 푚푖푛 ⃗∈ ‖퐹(푝⃗ ) −  퐹(푠⃗))‖, 푝⃗ ∈ 푃, 푞 = 2 푎푛푑 푑  is the smallest distance of  

푝⃗ ∈ 푃 to the closest solutions in S. The smaller the IGD value the better is the 
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performance of the approach. The IGD metric is able to provide a measure for both 

convergence and diversity.  

 

Epsilon Indicator (Iε) 

There are two versions of epsilon indicator the multiplicative and the additive [229]. 

In this study we use the unary additive epsilon indicator. The epsilon indicator of an 

approximation set A (Iε+) provides the minimum factor ε by which each point in the 

real front R can be added such that the resulting transformed approximation set is 

dominated by A. The additive epsilon indicator is a good measure of diversity, since it 

focuses on the worst case distance and reveals whether or not the approximation set 

has gaps in its trade-off solution set. 

 
 
 
 
8.6.4 Experimental Results 
      
 Below we provide a number of computational experiments to test the performance of 

the proposed Efficiently Encoded Multiobjective Portfolio Optimization Solver 

(EEMPOS) for solving the constrained portfolio optimization problem (CPOP). The 

performance of the proposed algorithm is assessed in comparison with the True 

Efficient Frontier (TEF) for a number of test problems. In particular we use data sets 

from the publicly available OR-Library retained by Beasley. These data sets 

correspond to seven portfolio optimization problems from seven different capital 

markets as shown in Table 1. More specifically, we used weekly price data for the 

period March 1992 to September 1997, from Hang Seng 31 in Hong Kong, DAX 100 

in Germany, FTSE 100 in UK, S&P 100 in USA, Nikkei 225 in Japan, S&P 500 in 

USA and Russell 2000 in USA. 

 

Figure 8.4 presents the evolutionary process of Epsilon metric for the port1 test 

problem obtained by EEMPOS. Epsilon indicator takes its optimal value when zero. 

As shown by Fig. 8.4 as the number of function evaluations increases, the Epsilon 

metric decreases but with lower rate.  The algorithm converges to its minimum 

Epsilon metric value when approximately 30,000 solutions are generated. Fig. 8.5 

presents the evolutionary process of HV metric for the port1 test problem obtained by 
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EEMPOS. The results for HV metric are in consistence with the results for the 

Epsilon metric for the constrained port1 problem. 

 

 
Fig. 8.4 The evolutionary process of Epsilon metric for the constrained port1 test problem obtained by 

EEMPOS 
 
 
 

 
Fig. 8.5 The evolutionary process of HV metric for the constrained port1 test problem obtained by 

EEMPOS 
 
 
Fig.8.6 - 8.10 illustrate the approximate efficient frontier of the EEMPOS along with 

the true efficient frontier (TEF) for the constrained port1-5 problems, after 100,000 

evaluations. The TEF is calculated by formulating the constrained portfolio 

optimization problem (CPOP) as a mixed integer quadratic programming (MIQP) 

problem. As shown by Fig. 8.6 - 8.10 the proposed EEMPOS performs well both in 
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terms of convergence to the TEF and coverage of the efficient frontier for the 

constrained port1-5 problems. 

 

 
Fig. 8.6 The Mean–Variance efficient frontier for the constrained port1 problem under two different 

configurations  
 
 

 
Fig. 8.7 The Mean–Variance efficient frontier for the constrained port2 problem under two different 

configurations  
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Fig. 8.8 The Mean–Variance efficient frontier for the constrained port3 problem under two different 
configurations  

 
 
 
 
 
 
 

 
Fig. 8.9 The Mean–Variance efficient frontier for the constrained port4 problem under two different 
configurations 
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Fig. 8.10 The Mean–Variance efficient frontier for the constrained port5 problem under two different 
configurations 
 
 
Fig.8.11 presents the evolutionary process of IGD metric for the port6 test problem 

obtained by EEMPOS. IGD indicator takes its optimal value when zero. As shown by 

Fig.8.11 as the number of function evaluations increases, the IGD metric decreases 

but with lower rate.  The algorithm converges to its minimum IGM metric value when 

approximately 30,000 solutions are generated 

 

 
Fig. 8.11 The evolutionary process of IGD metric for the constrained port6 test problem obtained by 

EEMPOS 
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Fig. 8.12 illustrates the approximate efficient frontier of the EEMPOS for the 

constrained port6 problem after 30,000 evaluations. It was not possible to calculate 

the true efficient frontier (TEF) for port6 and 7 instances as for each exact efficient 

point the required computational time exceeded considerably the maximum allowed 

time frame (1,000 seconds). As shown by Fig. 8.12 the proposed EEMPOS performs 

well in terms of coverage of the efficient frontier for the constrained port6 problem 

although only 30,000 evaluations were used.  

     Fig. 8.13 illustrates the approximate efficient frontier of the EEMPOS for the 

constrained port7 problem after 50,000 evaluations. As shown by Fig. 8.13 the 

proposed EEMPOS performs well in terms of coverage of the efficient frontier for the 

constrained port7 problem although only 50,000 evaluations were used. 
 

 
Fig. 8.12 The Mean–Variance efficient frontier for the constrained port6 problem obtained by 

EEMPOS 
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Fig. 8.13 Mean–Variance efficient frontier for the constrained port7 problem obtained by EEMPOS 

    
 
 
Fig. 8.6 - 8.10 show that the EEMPOS have generated a large number of portfolios 

that lie on the true constrained efficient frontier or very close to it. Fig. 8.11 illustrates 

the evolutionary process of IGD metric for the constrained port6 test problem 

obtained by EEMPOS. The IGD indicator is used to measure how far the elements are 

in the Pareto optimal set from those in the set of non-dominated vectors found. A 

value of IGD equal zero indicates that all the generated elements are in the Pareto 

front and they cover all the extension of the Pareto front. As is demonstrated by the 

IGD values of Fig. 8.11 for the constrained port6 problem, as the algorithm reaches 

the approximately 30,000 solutions, the generated portfolios are very close to the 

optimal ones and provide a good coverage of the Pareto front. The relevant findings 

of IGD metric are verified by Fig. 8.12 that illustrates the Mean–Variance efficient 

frontier for the constrained port6 problem obtained by EEMPOS.  

      To conclude, experiments indicate that the proposed EEMPOS generates good 

quality approximate efficient frontiers that lie on the true constrained efficient frontier 

or very close to it, with good coverage of the entire range of the efficient frontier. 
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8.7 Conclusions 
 
In this thesis we propose a novel multiobjective evolutionary Algorithm (MOEA) for 

the solution of the constrained portfolio optimization problem (CPOP) named 

efficiently encoded multiobjective portfolio optimization solver (EEMPOS). The 

proposed algorithm introduces an efficient representation scheme specially designed 

for dealing with the complexities of the CPOP. The proposed representation scheme is 

more cost-efficient in terms of computational resources and furthermore provides 

better utilization of the genetic operators, when compared with other approaches, as it 

is designed to focus the search effort to the most meaningful areas of the search space. 

The algorithm also incorporates a new mutation and recombination operator specially 

designed to work well with the proposed encoding scheme.  

       Datasets ranging from 31 assets for the smaller instance and up to 1317 assets for 

the bigger instance from seven different stock markets are utilized for testing the 

efficiency of the proposed approach. In particular, we formulate the constrained 

portfolio optimization problem (CPOP) as a Mixed Integer Quadratic Programming 

(MIQP) problem and we solve it for a number of test instances. Then, we compare the 

extracted true efficient frontiers (TEF) with the approximate efficient frontiers 

obtained by EEMPOS. The experiments indicate that the proposed EEMPOS 

generates good quality approximate efficient frontiers that lie on the true constrained 

efficient frontier or very close to it, with good coverage of the entire range of the 

efficient frontier in a fraction of time required by the exact approaches. 

       In our future work, we will attempt to develop a technique that will replace the 

mutation (Pm) and crossover probability (Pc) with a variable that will be updated at 

run-time according to the performance of the algorithm in a number of metrics such as 

the hypervolume or IGD metric. We also intend to experiment with alternative 

objectives and additional constraints. 
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Chapter 9 

 
Conclusions 
 
 
 

9.1 Summary of the Work Done 
 

In this thesis we have presented novel multiobjective evolutionary algorithms 

(MOEAs) approaches with application in the constrained portfolio optimization 

problem (CPOP). The work done in this thesis can be summarized as follows: 

 

Chapter 1 Provides an introduction to the constrained portfolio optimization 

problem alongside with the motivation and the objectives of this thesis.  

Chapter 2 Briefly reviews the most well-known MOEAs alongside with their 

strengths and weaknesses.  

Chapter 3 Briefly reviews the existing literature in the area of portfolio optimization 

with the support of MOEAs.  

Chapter 4 Presents a methodological framework for conducting a comprehensive 

literature study based on the papers published in MOEAs for the Portfolio 

Management over a long time span. This framework is being used to gain 

an understanding of the current state of the MOEAs for the Portfolio 

Management research field.  

Chapter 5 Based on the examination of the state-of-the art, presents the best 

practices from a technical and algorithmic point of view for dealing with 

the complexities of the constrained portfolio optimization problem. 

Chapter 6 Proposes a new probe guided version of the polynomial mutation (PLM) 

operator. The experimental results reveal that the proposed Probe Guided 

Mutation (PGM) operator outperforms with confidence the performance 

of the classical PLM operator for all performance metrics when applied to 

the solution of the cardinality constrained portfolio optimization problem 

(CCPOP), but also to Zitzler-Deb-Theile (ZDT) [229] and Deb-Theile-

Laumanns- Zitzler (DTLZ) [60] families of test functions. 
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Chapter 7 Proposes a new Two Stage Crossover (TSX) operator for more efficient 

exploration of the search space. The performance of the proposed TSX 

operator is assessed in comparison with the Simulated Binary Crossover 

(SBX) operator with the assistance of three well-known MOEAs, namely 

the NSGAII, the SPEA2 and the MOCELL, for the solution of the 

DTLZ1-7 set of test functions [60]. We also compare the proposed TSX 

operator with other popular reproduction operators like the Differential 

Evolution (DE) and the Particle Swarm Optimization (PSO). It is shown 

with the assistance of the DTLZ set of test functions that the TSX 

operator can substantially improve the results generated by three popular 

performance metrics for most of the cases.  

Chapter 8 Introduces a new multiobjective evolutionary algorithm (MOEA), called 

Efficiently Encoded Multiobjective Portfolio Optimization Solver 

(EEMPOS) that incorporates an efficient encoding scheme and specially 

designed genetic operators for the solution of the constrained portfolio 

optimization problem. In order to evaluate the performance of the 

proposed EEMPOS, we calculate the True Efficient Frontier (TEF) by 

formulating the constrained portfolio optimization problem as a Mixed 

Integer Quadratic Program (MIQP) and we compare the relevant results 

with the approximate efficient frontiers that are derived by the proposed 

EEMPOS. The relevant results verify that the EEMPOS generates 

solutions that lie on the TEF for a fraction of the time required by the 

MIQP.  

Chapter 9 This dissertation is concluded with a summary of the research and 

proposed directions for future study.  
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9.2 Summary of the Contribution 
 
The original contributions of this research are summarized in the following: 

 

 We develop a methodological framework for conducting a comprehensive 

literature study based on the papers published in MOEAs for the Portfolio 

Management over a long time span across various disciplines.  

 This framework is being used to gain an understanding of the current state of the 

MOEAs for the Portfolio Management research field.  

 Based on the literature study, we identify potential areas of concern in regard to 

MOEAs for the Portfolio Management. 

 Based on the examination of the state-of-the art we present the best practices from 

a technical and algorithmic point of view for dealing with the complexities of the 

constrained portfolio optimization problem 

 A new probe guided version of the well-known polynomial mutation operator is 

being proposed that enhance considerably algorithms’ performance.  

 We propose a new Two Stage Crossover (TSX) operator for more efficient 

exploration of the search space. 

 This research introduces a new multiobjective evolutionary algorithm (MOEA), 

called Efficiently Encoded Multiobjective Portfolio Optimization Solver 

(EEMPOS) that incorporates an efficient encoding scheme and specially designed 

genetic operators for the solution of the constrained portfolio optimization. 
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9.3 Future Work 
 
 
The work of this thesis has been concerned with the application of multiobjective 

evolutionary algorithms (MOEAs) to the solution of the constrained portfolio 

optimization problem (CPOP). In this thesis, we decided to tackle the portfolio 

optimization problem as a bi-objective problem. We believe that the examination of 

alternative objectives beyond the mean – variance framework, could lead to 

interesting findings that should be thoroughly studied. Also, it would be interesting to 

be examined the application of more than two objectives on the efficient frontier 

formulation. Finally, it is worthwhile the incorporation of additional real-world 

constraints into the examined model.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PhD Thesis – K. Liagkouras   References  

[241] 
 

 

References 
 
 

[1] Albayrak, M. & Allahverdi, N. (2011). Development a new mutation operator to 
solve the Traveling Salesman Problem by aid of Genetic Algorithms. Expert 
Systems with Applications, Volume 38, Issue 3, March 2011, Pages 1313-1320. 

[2] Alguliev, R.M., Aliguliyev,R.M. & Isazade, N.R. (2012). DESAMC+DocSum: 
Differential evolution with self-adaptive mutation and crossover parameters for 
multi-document summarization, Knowledge-Based Systems 36 (2012) 21–38. 

[3] Amjady N, Nasiri-Rad H.(2009) Nonconvex economic dispatch with AC 
constraints by a new real coded genetic algorithm. IEEE Trans Power Syst 2009; 
24(3):1489–502. 

[4] Anagnostopoulos, K.P. and Mamanis, G. (2011), Multiobjective evolutionary 
algorithms for complex portfolio optimization problems, Comput Manag Sci 
(2011) 8:259–279. 

[5] Anagnostopoulos K. and Mamanis G. (2010) A portfolio optimization model 
with three objectives and discrete variables, Computers & Operations Research 
37 (2010): 1285 – 1297. 

[6] Anagnostopoulos, K.P. and Mamanis, G. (2011), The mean–variance cardinality 
constrained portfolio optimization problem: An  experimental evaluation of five 
multiobjective evolutionary algorithms, Expert Systems with Applications 38 
(2011) 14208–14217. 

[7] Andriosopoulos, K. and Nomikos, N. (2014), Performance replication of the 
Spot Energy Index with optimal equity portfolio selection: Evidence from the 
UK, US and Brazilian markets, European Journal of Operational Research 234 
(2014) 571–582. 

[8] Armananzas R. and Lozano J. A., (2005) A Multiobjective Approach to the 
Portfolio Optimization Problem, in 2005 IEEE Congress on Evolutionary 
Computation (CEC’2005), vol. 2. Edinburgh, Scotland: IEEE Service Center, 
September 2005, pp. 1388–1395. 

[9] Arnone S., Loraschi A., and Tettamanzi A., A genetic approach to portfolio 
selection. Neural Network World – International Journal on Neural and Mass-
Parallel Computing and Information Systems, 3(6):597–604, 1993. 

[10] Arora, S. & Arora, S.R.(2010). Multiobjective capacitated plant location 
problem. Int. J. of Operational Research 2010 - Vol. 7, No.4  pp. 487 – 505. 

[11] Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent Measures of 
Risk. Mathematical Finance, Vol. 9, pp.203-228. 

[12] Babaei, S., Mehdi Sepehri, M. and Babaei, E. (2015) Multi-objective portfolio 
optimization considering the dependence structure of asset returns, European 
Journal of Operational Research 244 (2015) 525–539.  

[13] Balzer, L. A. (1994). Measuring investment risk. The Journal of Investing, 
3(3):47-58. 



References  PhD Thesis – K. Liagkouras    

[242] 
 

[14] Banerjee, A. (2013) A novel probabilistically-guided context-sensitive 
crossover operator for clustering, Swarm and Evolutionary Computation 
13(2013)47–62. 

[15] Banzi, A.S., Nobre, T., Pinheiro, G.B. Arias, J.C., Pozo, A. & Vergilio, S.R. 
(2012). Selecting mutation operators with a multiobjective approach. Expert 
Systems with Applications, Volume 39, Issue 15, 1 November 2012, Pages 
12131-12142. 

[16] Barkat-Ullah ASSM, Sarker R, Cornforth D. (2008) Search space reduction 
technique for constrained optimization with tiny feasible space. In: GECCO’08, 
Atlanta, GA, USA, 2008. p. 881–8. 

[17] Bertsimas, D., Shioda, R. (2009) Algorithm for cardinality-constrained 
quadratic optimization, Computational Optimization and Applications, 43, 1–22. 

[18] Beume, N., Naujoks, B. and Emmerich, M. (2007) SMS-EMOA: 
Multiobjective selection based on dominated hypervolume, European Journal of 
Operational Research, Volume 181, Issue 3, 16 September 2007, Pages 1653–
1669. 

[19] Beyer, H.G., Finck, S. and Breuer, T. (2014) Evolutionon trees:On the design 
of an evolution strategy for scenario-based multi-period portfolio optimization 
under transaction costs, Swarm and Evolutionary Computation 17(2014)74–87. 

[20] Bienstock, D. (1996) Computational study of a family of mixed-integer 
quadratic pro-gramming problems, Math. Program. 74 (2) (1996) 121–140. 

[21] Bloomfield, T., Leftwich, R. And Long, J. (1977) Portfolio Strategies and 
Performance, Journal of Financial Economics, 5, 201-218. 

[22] Boonma, P. & Suzuki, J. A. (2009). Confidence-based Dominance Operator in 
Evolutionary Algorithms for Noisy Multiobjective Optimization Problems. 
Proceedings of the 21st IEEE Conf. on Tools with Artificial Intelligence, pages 
387-394. 

[23] Bosman, P. A. N. and Thierens, D. (2000), Expanding from Discrete to 
Continuous EDAs: The IEDA, Proceedings of Parallel Problem Solving from 
Nature, PPSN-VI, pp. 767-776. 

[24] Branke, J., Scheckenbach, B., Stein, M., Deb, K. and Schmeck, (2009) H. 
Portfolio optimization with an envelope-based multi-objective evolutionary 
algorithm, European Journal of Operational Research 199 (2009) 684–693. 

[25] Cannon, W. D. (1932), The Wisdom of the Body, Norton and Company, New 
York, NY. 

[26] Carazoa, A.F., Gomez, T., Molina, J., Diaz, A.G.H., Guerrero, F.M. and 
Caballero, R. (2010) Solving a comprehensive model for multiobjective project 
portfolio selection, Computers & Operations Research 37 (2010) 630—639. 

[27] Cesarone, F., Scozzari, A. & Tardella, F. (2009) Effficient algorithms for 
mean-variance portfolio optimization with hard real-world constraints, Giornale 
dell’ Istituto Italiano degli Attuari, volume LXXII, Roma, (2009). 37-56. 

[28] Chang, T.J., Meade, N., Beasley, J.E. and Sharaiha, Y.M. (2000) Heuristics 
for cardinality constrained portfolio optimisation. Computers & Operations 
Research, 27(13): (2000) 1271-1302. 



PhD Thesis – K. Liagkouras   References  

[243] 
 

[29] Chang, J.F., Shi, P. (2011) Using investment satisfaction capability index 
based particle swarm optimization to construct a stock portfolio, Information 
Sciences 181 (2011) 2989–2999. 

[30] Chang, T.J., Yang, S.C. and  Chang, K.J. (2009) Portfolio optimization 
problems in different risk measures using genetic algorithm, Expert Systems 
with Applications 36 (2009) 10529–10537. 

[31] Chen C., Kwon, R.H. (2010) Robust portfolio selection for index tracking, 
Computers & Operations Research 2010. 

[32] Chen, Y., Mabu, S. & Hirasawa, K. (2011) General relation algorithm with 
guided mutation for the large-scale portfolio optimization, Expert Systems with 
Applications 38 (2011): 3353-3363. 

[33] Chen, Y. and Wang, X. (2015), A hybrid stock trading system using genetic 
network programming and mean conditional value-at-risk, European Journal of 
Operational Research (2015) 240(3):861–871. DOI: 10.1016/j.ejor.2014.07.034. 

[34] Chiam, S.C., Al Mamun A., & Low, Y.L., (2007) A realistic approach to 
evolutionary multiobjective portfolio optimization, IEEE Congress on 
Evolutionary Cmputation (CEC 2007). 

[35] Chiam, S.C., Tan, K.C. and Al Mamum, A. (2008) Evolutionary Multi-
objective Portfolio Optimization in Practical Context, International Journal of 
Automation and Computing, 05(1), January 2008, 67-80. 

[36] Chiam, S.C., Tan, K.C. and Al. Mamun, A. (2009) A memetic model of 
evolutionary PSO for computational finance applications, Expert Systems with 
Applications 36 (2009) 3695–3711. 

[37] Chiam, S.C., Tan, K.C. and Al Mamun, A. (2009) Investigating technical 
trading strategy via an multi-objective evolutionary platform, Expert Systems 
with Applications 36 (2009) 10408–10423. 

[38] Claro J. and Sousa. J. P.  (2010) A multiobjective metaheuristic for a mean-
risk multistage capacity investment problem with process flexibility, Computers 
& Operations Research 2010. 

[39] Coello Coello, C. A. (1996). An Empirical Study of Evolutionary Techniques 
for Multiobjective Optimization in Engineering Design. Unpublished doctoral 
dissertation, Department of Computer Science, Tulane University, New Orleans, 
Louisiana, USA. 

[40] Coello Coello, C.A. (2006), Evolutionary multi-objective optimization and its 
use in finance. In J.-P. Rennard (Ed.), Evolutionary Computation Group, 
Mexico. 

[41] Coello Coello, C. A., & Toscano Pulido, G. (2001). Multiobjective 
Optimization using a Micro-Genetic Algorithm. In L. Spector et al. (Eds.), 
Proceedings of the genetic and evolutionary computation conference 
(gecco’2001) (pp. 274–282). San Francisco, California: Morgan Kaufmann 
Publishers. 

[42] Coello Coello, C. A., Van Veldhuizen, D. A., & Lamont, G. B. (2002). 
Evolutionary Algorithms for Solving Multi-Objective Problems. New York: 
Kluwer Academic Publishers. (ISBN 0-3064-6762-3). 



References  PhD Thesis – K. Liagkouras    

[244] 
 

[43] Corazza, M., Fasano, G. and Gusso, R. (2013), Particle Swarm Optimization 
with non-smooth penalty reformulation, for a complex portfolio selection 
problem, Applied Mathematics and Computation 224 (2013) 611–624. 

[44] Corne, D. W., Jerram, N. R., Knowles, J. D., & Oates, M. J.(2001). PESA-II: 
Region-based Selection in Evolutionary Multiobjective Optimization. In L. 
Spector et al. (Eds.), Proceedings of the genetic and evolutionary computation 
conference (gecco’2001) (pp. 283–290). San Francisco, California: Morgan 
Kaufmann Publishers. 

[45] Corne, D. W., Knowles, J. D., & Oates, M. J. (2000). The Pareto Envelope-
based Selection Algorithm for Multiobjective Optimization. In M. Schoenauer et 
al. (Eds.), Proceedings of the parallel problem solving from nature vi conference 
(pp. 839–848). Paris, France: Springer. Lecture Notes in Computer Science No. 
1917. 

[46] Crama, Y. & Schyns, M. (2003): Simulated annealing for complex portfolio 
selection problems, European Journal of Operational Research 150: 546-571. 

[47] Cura, T. (2009) Particle swarm optimization approach to portfolio 
optimization, Nonlinear Analysis: Real World Applications, 10, 2396–2406. 

[48] Da Ronco, C.C. & Benini, E., (2013), A Simplex Crossover based 
evolutionary algorithm including the genetic diversity as objective. Applied Soft 
Computing 13 (2013) 2104–2123. 

[49] Dang, J., Brabazon, A., Edelman, D. and O’Neill, M. (2009) An Introduction 
to Natural Computing in Finance, Applications of Evolutionary Computing - 
Lecture Notes in Computer Science, 2009, Volume 5484/2009, 182-192. 

[50] Das, S., Mallipeddi, R., & Maity, D. (2013). Adaptive evolutionary 
programming with p-best mutation strategy Swarm and Evolutionary 
Computation 9 (2013) 58–68. 

[51] Deb, K. (1998). Multiobjective genetic algorithms: Problem difficulties and 
Construction of test problems. Technical report, Indian Institute of Technology, 
Kanpur. 

[52] Deb, K. (2000) An efficient constraint handling method for genetic 
algorithms, Comput. Methods Appl. Mech. Engrg. 186 (2000) 311-338. 

[53] Deb, K. (2001) Multiobjective optimization using evolutionary algorithms. 
(2001) Wiley, Chichester, UK. 

[54] Deb, K. and Agrawal, R.B. (1995) Simulated binary crossover for continuous 
search space, Complex Systems 9 (2), (1995) 115–148.  

[55] Deb, K., Anand, A. and Joshi, D. (2002) A Computationally Efficient 
Evolutionary Algorithm for Real-Parameter Optimization, Evolutionary 
Computation 10(4): 371-395 

[56] Deb, K. & Goyal, M. (1996).  A combined genetic adaptive search (geneas) 
for engineering design, Computer Science and Informatics 26 (4) 30–45. 

[57] Deb, K,  Pratap, A., Agarwal, S. and Meyarivan, T. (2002) A Fast and Elitist 
Multi Objective Genetic Algorithm: NSGA-II, IEEE Transactions on 
Evolutionary Computation, Vol. 6. No. 2, 2002, pp. 182-197. 



PhD Thesis – K. Liagkouras   References  

[245] 
 

[58] Deb, K. &  Saxena, D.K. On Finding Pareto-Optimal Solutions Through 
Dimensionality Reduction for Certain Large-Dimensional Multi-Objective 
Optimization Problems, KanGAL Report Number 2005011. 

[59] Deb, K., Steuer, R.E., Tewari, R. & Tewari, R. (2011) Bi-objective portfolio 
optimization using a customized hybrid NSGA-II procedure, R.H.C. Tekahashi 
et al. (Eds.): EMO 2011, LNCS 6576, pp. 358-373, Springer-Verlag Berlin 
Heidelberg 2011. 

[60] Deb K, Thiele L, Laumanns M, Zitzler E. (2005), Scalable test problems for 
evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R, 
editors. Evolutionary multiobjective optimization. theoretical advances and 
applications. USA: Springer; 2005. p. 105–45. 

[61] Deb, K. and Tiwari, S. (2008) Omni-Optimizer: A Generic Evolutionary 
Algorithm for Single and Multi-Objective Optimization. European Journal of 
Operational Research, Vol. 185. 

[62] Deep, K. and Thakur, M. A new crossover operator for real coded genetic 
algorithms, Applied Mathematics and Computation, vol.188, pp.895-911, 2007. 

[63] Deng, G.F & Lin W.T. (2010) Swarm intelligence for cardinality - constrained 
portfolio problems, J.-S. Pan, S.-M. Chen and N.T. Nguyen (Eds): ICCCI 2010, 
Part III, LNAI 6423, pp. 406-415, Springer – Verlag Berlin Heidelberg 2010. 

[64] Deng, G.F & Lin W.T. (2010) Ant colony optimization for Markowitz mean-
variance portfolio model, B.K. Panigrahi et al. (Eds): SEMCCO 2010, LNCS 
6466, pp.238-245, Springer – Verlag Berlin Heidelberg 2010. 

[65] Derigs, U., Nickel, N.H. (2003) Meta-heuristic based decision support for 
portfolio optimization with a case study on tracking error minimization in 
passive portfolio management, OR Spectrum. 

[66] Derrac, J., García, S., Molina, D. and Herrera, F. “A practical tutorial on the 
use of nonparametric statistical tests as a methodology for comparing 
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput., vol. 1, 
no. 1, pp. 3–18, Mar. 2011. 

[67] Di Gaspero, L., Di Tollo, G., Roli, A. and Schaerf, A. (2007) Hybrid Local 
Search for Constrained Financial Portfolio Selection Problems, Integration of AI 
and OR Techniques in Constraint Programming for Combinatorial Optimization 
Problems - Lecture Notes in Computer Science, 2007, Volume 4510/2007, 44-
58. 

[68] Di Gaspero, L., Di Tollo, G., Roli, A. and Schaerf, A. (2007)  A hybrid solver 
for constrained portfolio selection problems. Proceedings of Learning and 
Intelligent Optimization, LION, 2007. 

[69] Di Tollo, G., Rolli, A.(2008) Metaheuristics for the Portfolio Selection 
Problem, International Journal of Operations Research Vol. 5, No. 1, 13-35 
(2008). 

[70] Doerner K., Gutjahr W., Hartl R., Strauss C., Stummer C., (2004) Pareto Ant 
Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio 
Selection, Annals of Operations Research 131, 79-99, 2004. 



References  PhD Thesis – K. Liagkouras    

[246] 
 

[71] Doerner K., Gutjahr W., Hartl R., Strauss C., Stummer C., (2006) Pareto ant 
colony optimization with ILP preprocessing in multiobjective project portfolio 
selection, European Journal of Operational Research - Volume 171, Issue 3, 16 
June 2006, Pages 830-841. 

[72] Dominguez-Jimenez, J.J., Estero-Botaro, A., Garcia-Dominguez, A. & 
Medina-Bulo, I. (2011) Evolutionary mutation testing. Information and Software 
Technology, Volume 53, Issue 10, October 2011, Pages 1108-1123. 

[73] Drezewski, R., Obrocki, K. and Siwik, L. (2009) Comparison of Multi-agent 
Co-operative Co-evolutionary and Evolutionary Algorithms for Multi-objective 
Portfolio Optimization, M. Giacobini et al. (Eds.): EvoWorkshops 2009, LNCS 
5484, pp. 223–232, 2009.  Springer-Verlag Berlin Heidelberg 2009. 

[74] Drezewski, R., Sepielak, J. and Siwik, L. (2008) Generating Robust 
Investment Strategies with Agent-Based Co-evolutionary System, M. Bubak et 
al. (Eds.): ICCS 2008, Part III, LNCS 5103, pp. 664–673, 2008. Springer-Verlag 
Berlin Heidelberg 2008. 

[75] Dueck & Winker (1992) New concepts and algorithms for portfolio choice, 
Applied Stochastic Models and Data Analysis, 8, 159-178. 

[76] Duran, F.C., Cotta, C. and Fernandez, A.J. (2009) Evolutionary Optimization 
for Multiobjective Portfolio Selection Under Markowitz's Model with 
Application to the Caracas Stock Exchange Nature-Inspired Algorithms for 
Optimisation, Studies in Computational Intelligence Volume 193, 2009, pp 489-
509, Springer Berlin Heidelberg. 

[77] Durillo, J. J. & Nebro, A. J. (2011). jMetal: A Java framework for multi-
objective optimization, Advances in Engineering Software 42,  760–771. 

[78] Ehrgott, M., Klamroth, K. and Schwehm, C. (2004) An MCDM approach to 
portfolio optimization, European Journal of Operational Research 155 (2004) 
752–770. 

[79] Elazouni, A., Abido, M. (2011) Multiobjective evolutionary finance-based 
scheduling: Individual projects within a portfolio, Automation in Construction. 

[80] Elsayed, S.M., Sarker, R.A. & Essam, D.L. (2011) Multi-operator based 
evolutionary algorithms for solving constrained optimization problems, 
Computers & Operations Research 38 (2011) 1877–1896. 

[81] Eshelman L.J. & Schaffer J.D. (1993). Real Coded Genetic Algorithms and 
Interval Schemata. Foundation of Genetic Algorithms 2, L.Darrell Whitley (Ed.) 
Morgan Kaufmann Publishers, San Mateo, 187–202. 

[82] Emmerich, M., Beume, N. & Naujoks,  B.  (2005). An EMO Algorithm Using 
the Hypervolume Measure as Selection Criterion. In Conference on 
Evolutionary Multi-Criterion Optimization (EMO 2005), pages 62–76. Springer. 

[83] Erickson, M., Mayer, A. and  Horn, J. (2001) The Niched Pareto Genetic 
Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 
Lecture Notes in Computer Science, 2001, Volume 1993/2001, 681-695. 

[84] Evans, J. L., and Archer, S.H. (1968) “Diversification and the Reduction of 
Dispersion: An Empirical Analysis.” Journal of Finance, 23, Dec. 1968, 761-
767. 



PhD Thesis – K. Liagkouras   References  

[247] 
 

[85] Fernandez, A., Gomez, S. (2007) Portfolio selection using neural networks, 
Computers & Operations Research 34 (2007) 1177–1191. 

[86] Fernandez, E., Lopez, E., Mazcorro, G.,  Olmedo, R. and Coello Coello, C.A. 
(2013) Application of the non-outranked sorting genetic algorithm to public 
project portfolio selection, Information Sciences 228 (2013) 131–149.  

[87] Fieldsend, J.E., Everson, R.M. and Singh, S. (2003) Using Unconstrained Elite 
Archives for Multiobjective Optimization, IEEE Transactions on Evolutionary 
Computation, vol. 7, no. 3, pp. 305–323, June 2003. 

[88] Fieldsend JE, Matatko J, Peng M. (2004) Cardinality constrained portfolio 
optimisation, 5th International Conference on Intelligent Data Engineering and 
Automated Learning (IDEAL 2004), Execter, England, 25th - 27th Aug 2004, 
Intelligent Data Engineering and Automated Learning Ideal 2004, Proceedings,  
volume 3177, pages 788-793. 

[89] Fisher, L. and Lorie, J.H. (1970) Some studies of Variability of Returns on 
Investments in Common stocks, Journal of Business, 43, 2 April, 99-134. 

[90] Fleischer, M.  (2003). The measure of Pareto optima: Applications to multi-
objective metaheuristics, in Evolutionary Multiobjective Optimization. ser. 
Lecture Notes in Computer Science, C. M. Fonseca et al., Eds. Berlin, Germany: 
Springer-Verlag, vol. 2632, pp. 519–533. 

[91] Fogel, L. J. (1966), Artificial Intelligence through Simulated Evolution, John 
Wiley, New York, NY. 

[92] Fogel, L. J. (1999), Artificial Intelligence through Simulated Evolution. Forty 
Years of Evolutionary Programming, John Wiley & Sons, New York, NY. 

[93] Fonseca, C. and Fleming, P. (1993) Genetic algorithms for multiobjective 
optimization: formulation, discussion and generalization, Proc. 5th Inter. Conf. 
on Genetic Algorithms, (1993) pp. 416–423. 

[94] Fonseca C, Flemming P., Multiobjective optimization and multiple constraint 
handling with evolutionary algorithms - part ii: Application example. IEEE 
Transactions on System, Man, and Cybernetics, 28:38–47, 1998. 

[95] Fu, T.C., Chung, C.P.and Chung, F.L. (2013), Adopting genetic algorithms for 
technical analysis and portfolio management, Computers and Mathematics with 
Applications 66 (2013) 1743–1757. 

[96] Gabrel, V., Murat, C. and Thiele, A. (2014), Recent advances in robust 
optimization: An overview, European Journal of Operational Research 235 
(2014) 471–483. 

[97] [86] Gandibleux, X., Ehrgott, M. (2005) 1984-2004  20 Years of 
Multiobjective Metaheuristics. But What About the Solution of Combinatorial 
Problems with Multiple Objectives? Evolutionary Multi-Criterion Optimization 
- Lecture Notes in Computer Science, 2005, Volume 3410/2005, 33-46. 

[98] Geem Z.W., Kim, JH, Loganathan, G.V. (2001) A new heuristic optimization 
algorithm: harmony search. Simulation 2001;76(2):60–8. 

[99] Gilli, M., Kellezi, E. and Hysi, H. (2006) A data-driven optimization heuristic 
for downside risk minimization, Journal of Risk, 8, 1–18. 



References  PhD Thesis – K. Liagkouras    

[248] 
 

[100]  Goldberg, D. E.(1989), Genetic Algorithms in Search, Optimization and 
Machine Learning. Reading, MA: Addison-Wesley Publishing Company. 

[101]  Goldberg, D.E. and Deb, K. (1991) A Comparative Analysis of Selection 
Schemes Used in Genetic Algorithms. In: G.J.E. Rawlins (Ed), Foundations of 
Genetic Algorithms, Morgan Kaufmann, Los Altos, 1991, 69 – 93. 

[102]  Golmakani, H. R. & Fazel, M. (2011) Constrained portfolio selection using 
particle swarm optimization, Expert Systems with Applications 38 (2011): 
8327-8335. 

[103]  Gong, W., Cai, Z. & Liang, D. (2014) Engineering optimization by means of 
an improved constrained differential evolution. Comput. Methods Appl. Mech. 
Engrg. 268 (2014) 884–904. 

[104]  Gorgulho, A., Neves, R. and Horta, N. (2011) Applying a GA kernel on 
optimizing technical analysis rules for stock picking and portfolio composition, 
Expert Systems with Applications 38 (2011) 14072–14085. 

[105]  Gupta, P., Inuiguchi, M., Mehlawat, M.K. and Mittal, G. (2013) 
Multiobjective credibilistic portfolio selection model with fuzzy chance-
constraints, Information Sciences 229 (2013) 1–17. 

[106]  Hanne, T. (2007) A multiobjective evolutionary algorithm for approximating 
the efficient set, European Journal of Operational Research, 176, 1723–1734. 

[107]   Hansen, M.P. and Jaszkiewicz, A. (1998) Evaluating the quality of 
approximations to the nondominated set, Technical Report IMM-REP-1998-7, 
Institute of Mathematical Modeling, Technical University of Denmark, 1998. 

[108]  Harik, G., Cantu -Paz, E., Goldberg, D.E. and Miller, B.L. (1999) The 
Gambler’s ruin problem, genetic algorithms, and the sizing of populations, Evol. 
Comput., vol. 7, no. 3, pp. 231–253, 1999. 

[109]  Hassanzadeh, F., Nemati, H. and Sun, M. (2014) Robust optimization for 
interactive multiobjective programming with imprecise information applied to 
R&D project portfolio selection, European Journal of Operational Research 238 
(2014) 41–53. 

[110]  Haubelt, C., Mostaghim, S., Teich, J. and Tyagi, A. (2003) Solving 
Hierarchical Optimization Problems Using MOEAs, In Evolutionary Multi-
Criterion Optimization - In Lecture Notes in Computer Science (LNCS), 
Volume 2632. 

[111]  Herbawi, W. & Weber, M. (2011). Evolutionary Multiobjective Route 
Planning in Dynamic Multi-hop Ridesharing.Evolutionary Computation in 
Combinatorial Optimization Lecture Notes in Computer Science, Volume 
6622/2011, 84-95. 

[112]  Hervás-Martínez, C., Ortiz-Boyer, D. and García-Pedrajas, N. Theoretical 
Analysis of the Confidence Interval Based Crossover for Real-Coded Genetic 
Algorithms, J.J. Merelo Guervós et al. (Eds.): PPSN VII, LNCS 2439, pp. 153–
161, 2002.  Springer-Verlag Berlin Heidelberg 2002. 

[113]  Hirschberger, M., Qi, Y., Steuer, R.E. (2010) Large-scale MV efficient 
frontier computation via a procedure of parametric quadratic programming, 
European Journal of Operational Research, 204, 581–588. 



PhD Thesis – K. Liagkouras   References  

[249] 
 

[114]  Hochreiter R. (2007) A evolutionary computation approach to scenario risk-
return portfolio optimization for general risk measures, Dept. of Statistics and 
Decision Support Systems, Univ. of Vienna. 

[115]  Holland, J. H. (1962), Outline for a logical theory of adaptive systems’, 
Journal of the Association for Computing Machinery 9, 297– 314. 

[116]  Horn J., Nafpliotis N., Goldberg D.E. (1994), A niched Pareto genetic 
algorithm for multiobjective optimization. In: Proceedings of the First IEEE 
Conference on Evolutionary Computation (ICEC ‘94), Piscataway, NJ: IEEE 
Service Center; 1994. p. 82–87. 

[117]  Huband, S., Hingston,  P., While, L. & Barone, L. (2003). An evolution 
strategy with probabilistic mutation for multi-objective optimization,  in Proc. 
Congr. Evol. Comput., vol. 4,  pp. 2284–2291. 

[118]  Jiang, Z.Z., Ip, W.H., Lau, H.C.W. and Fan, Z.P. (2011) Multi-objective 
optimization matching for one-shot multi-attribute exchanges with quantity 
discounts in E-brokerage, Expert Systems with Applications 38 (2011) 4169–
4180. 

[119]  Jobst, N.J., Horniman, M.D., Lucas, C.A. and Mitra, G. (2001) Computational 
aspects of alternative portfolio selection models in the presence of discrete asset 
choice constraints, QUANTITATIVE FINANCE VOLUME 1 (2001) 1–13. 

[120]  Kaucic, M. (2010) Investment using evolutionary learning methods and 
technical rules, European Journal of Operational Research 207 (2010) 1717–
1727. 

[121]  Kellerer, H. and Maringer, D. (2001) Optimization of Cardinality Constrained 
Portfolios with an Hybrid Local Search Algorithm, MIC’2001 - 4th 
Metaheuristics International Conference, Porto, Portugal, July 16-20, 2001. 

[122]  Kennedy, J. and Eberhart, R. C. A discrete binary version of the particle 
swarm algorithm. Proceedings of the World Multiconference on 
Systemics,Cybernetics and Informatics 1997, Piscataway, NJ. pp. 4104-4109, 
1997. 

[123]  Khalili-Damghani, K., Sadi-Nezhad, S.,  Lotfi, F.H. and Tavana, M.(2013) A 
hybrid fuzzy rule-based multi-criteria framework for sustainable project 
portfolio selection, Information Sciences 220 (2013) 442–462.  

[124]  Kibzun, A. I. and Kuznetsov, E. A. (2006). Analysis of criteria VaR and 
CVaR. Journal of Banking & Finance, 30(2):779-796. 

[125]  Knowles, J. and Corne, D. (1999)  Approximating the non-dominated front 
using the Pareto Archieved Evolution Strategy, Dept. of Computer Science, 
University of Reading, UK, 1999. 

[126]  Knowles, J., Thiele, L. &  Zitzler. E. (2006). A Tutorial on the Performance 
Assessment of Stochastic Multiobjective Optimizers. Technical Report 214, 
Computer Engineering and Networks Laboratory (TIK), ETH Zurich. 

[127]  Kou, G., Ergu, D. and Shang, J. (2014) Enhancing data consistency in 
decision matrix: Adapting Hadamard model to mitigate judgment contradiction, 
European Journal of Operational Research 236 (2014) 261–271. 



References  PhD Thesis – K. Liagkouras    

[250] 
 

[128]  Kou, G. and Lin, C. (2014) A cosine maximization method for the priority 
vector derivation in AHP, European Journal of Operational Research 235 (2014) 
225–232. 

[129]  Kou, G., Lu, Y., Peng, Y. and Shi, Y. (2012) Evaluation of Classification 
Algorithms Using MCDM and Rank Correlation, International Journal of 
Information Technology & Decision Making, Vol. 11, Issue: 1, (2012)197-225. 

[130]  Kou, G., Peng, Y. and Wang, G. (2014) Evaluation of clustering algorithms 
for financial risk analysis using MCDM methods, Information Sciences 275 
(2014) 1–12. 

[131]  Koza, J.R. Genetic Programming. MIT Press, Cambridge; 1992. 
[132]  Kukkonen, S. and Lampinen, J. (2005) GDE3: the third evolution step of 

generalized differential evolution, Evolutionary Computation, 2005. The 2005 
IEEE Congress on (Volume:1 ) , 443 - 450 Vol.1, 2005, DOI: 
10.1109/CEC.2005.1554717. 

[133]  Larraenaga, P. and Lozano, J. A. (2001), Estimation of Distribution 
Algorithms: A New Tool for Evolutionary Computation, Kluwer Academic 
Publishers. 

[134]  Laumanns, M., Zitzler, E. and Thiele, L. (2000) A unified model for 
multiobjective evolutionary algorithms with elitism, in Proc. Congr. Evol. 
Comput., vol. 1, (2000),  pp. 46–53. 

[135]  Li, Q., Sun, L. and Bao, L. (2011) Enhanced index tracking based on multi-
objective immune algorithm, Expert Systems with Applications 38 (2011) 
6101–6106. 

[136]  Li, D., Sun, X. and Wang, J. (2006) Optimal lot solution to cardinality 
constrained mean-variance formulation for portfolio selection, Math. Finance 16 
(1) (2006)83–101. 

[137]  Li, J. and Xu, J. (2013) Multi-objective portfolio selection model with fuzzy 
random returns and a compromise approach-based genetic algorithm, 
Information Sciences 220 (2013) 507–521.  

[138]  Li, H. & Zhang, Q. (2009). Multiobjective Optimization Problems With 
Complicated Pareto Sets, MOEA/D and NSGA-II, IEEE Transactions on 
Evolutionary Computation, 13(2):284–302. 

[139]  Liagkouras, K. and Metaxiotis, K. (2013) An Elitist Polynomial Mutation 
Operator for Improved Performance of MOEAs in Computer Networks, pp. 1-5, 
Computer Communications and Networks (ICCCN), 2013 22nd International 
Conference on, DOI: 10.1109/ICCCN.2013.6614105. 

[140]  Liagkouras, K. and Metaxiotis, K. (2014) A new Probe Guided Mutation 
operator and its application for solving the cardinality constrained portfolio 
optimization problem, Expert Systems with Applications 41 (2014) 6274–6290. 

[141]  Liagkouras, K. and Metaxiotis, K. (2015) An Experimental Analysis of a New 
Interval-Based Mutation Operator,  International Journal of Computational 
Intelligence and Applications, Vol. 14, No. 3 (2015) 1550018, DOI: 
10.1142/S1469026815500182. 



PhD Thesis – K. Liagkouras   References  

[251] 
 

[142]  Liagkouras, K. and Metaxiotis, K. (2015) Efficient Portfolio Construction 
with the Use of Multiobjective Evolutionary Algorithms: Best Practices and 
Performance Metrics, International Journal of Information Technology & 
Decision Making, Vol. 14, No. 3 (2015) 535–564. 

[143]  Liagkouras, K. and Metaxiotis, K. (2013) The Constrained Mean-
Semivariance Portfolio Optimization Problem with the Support of a Novel 
Multiobjective Evolutionary Algorithm, Journal of Software Engineering and 
Applications, (2013) 6 (07), 22. 

[144]  Lin, D., Wang, S. (2002) A genetic algorithm for portfolio selection 
problems, Advanced Modeling and Optimization 4 (1), 13–27. 

[145]  Lin D., Wang S., and Yan H., “A multiobjective genetic algorithm for 
portfolio selection,” Working Paper, Institute of Systems Science, Academy of 
Mathematics and Systems Science Chinese Academy of Sciences, Beijing, 
China, 2001. 

[146]  Lipinski, P., Korczak, J.J. (2004) Performance Measures in an Evolutionary 
Stock Trading Expert System, M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, 
pp. 835–842, 2004. Springer-Verlag Berlin Heidelberg 2004. 

[147]  Lwin, K., Qu, R. and Kendall, G. (2014) A learning-guided multi-objective 
evolutionary algorithm for constrained portfolio optimization, Applied Soft 
Computing 24 (2014) 757–772.  

[148]  Mardle, S., Pascoe, S. and Tamiz, M. (2000) An investigation of genetic 
algorithms for the optimisation of multi-objective fisheries bioeconomic models, 
International Transactions of Operations Research, vol. 7, no. 1, pp. 33–49, 
2000. 

[149]  Maringer, D., (2005) Portfolio Management with Heuristic Optimization.  
Advanced in Computational Management Science Series Vol. 8, Springer, 2005. 

[150]  Maringer, D. & Kellerer, H., (2003) Optimization of cardinality constrained 
portfolios with a hybrid local search algorithm. OR Spectrum (2003) 25: 481-
495. 

[151]  Markowitz, H. (1952), Portfolio selection. Journal of Finance, 7(1):77-91. 
[152]  Masri, H., Krichen, S. & Guitouni, A. (2012). Generating efficient faces for 

multiobjective linear programming problems. Int. J. of Operational Research 
2012 - Vol. 15, No.1  pp. 1 – 15. 

[153]  Mazza, A., Chicco, G. & Russo, A. (2014) Optimal multi-objective 
distribution system reconfiguration with multi criteria decision making-based 
solution ranking and enhanced genetic operators. International Journal of 
Electrical Power & Energy Systems, Volume 54, January 2014, Pages 255-267. 

[154]  Medaglia, A.L., Graves, S.B. and Ringuest, J.L. (2007) A multiobjective 
evolutionary approach for linearly constrained project selection under 
uncertainty, European Journal of Operational Research 179 (2007) 869–894. 

[155]  Metaxiotis, K. and Liagkouras, K. (2012) Multiobjective evolutionary 
algorithms for portfolio management: a comprehensive literature review, Expert 
Systems with Applications, 39 (14), (2012), 11685-11698. 



References  PhD Thesis – K. Liagkouras    

[252] 
 

[156]  Metaxiotis, K and Liagkouras, K., (2013) A fitness guided mutation operator 
for improved performance of MOEAs Electronics, Circuits, and  Systems 
(ICECS), 2013 IEEE 20th International Conference on, pp. 751-754, DOI: 
10.1109/ICECS.2013.6815523. 

[157]  Mira, J. and Alvarez, J.R. (2005) Artificial Intelligence and Knowledge 
Engineering Applications: A Bioinspired Approach: First International Work-
Conference on the Interplay Between Natural and Artificial Computation, 
IWINAC 2005, Las Palmas, Canary Islands, Spain, June 15-18, 2005, 
Proceedings. 

[158]  Mishra, S.K., Panda, G. and Majhi, R. (2014) A comparative performance 
assessment of a set of multiobjective algorithms for constrained portfolio assets 
selection, Swarm and Evolutionary Computation 16 (2014) 38–51. 

[159]  Moral-Escudero,R., Ruiz-Torrubiano, R. and Suarez, A. (2006), Selection of 
optimal investment portfolios with cardinality constraints. In: Proceedings of the 
2006 IEEE Congress on Evolutionary Computation, 2006, pp. 2382–2388. 

[160]  Mousavi, S.,  Esfahanipour, A. and Fazel Zarandi, M.H. (2014) A novel 
approach to dynamic portfolio trading system using multitree genetic 
programming, Knowledge-Based Systems 66 (2014) 68–81.  

[161]   Mukerjee, A., Biswas, R., Deb, K. and Mathur, A.P. (2002) Multi-objective 
evolutionary algorithms for the risk-return trade-off in bank loan management, 
International Transactions in Operational Research 9 (2002) 583–597. 

[162]  MULTIOBJ-1.3: Speed-constrainedMulti-objective PSO (SMPSO), 
DIRICOM, November 2008. 

[163]  Nebro, A.J. ; Dipt. Lenguajes y Cienc. de la Comput., Univ. of Malaga, 
Malaga, Spain ; Durillo, J.J. ; Coello, C.A.C. (2013)  Analysis of Leader 
Selection Strategies in a Multi-Objective Particle Swarm Optimizer. 
Evolutionary Computation (CEC), 2013 IEEE Congress on, 20-23 June 2013, 
pp. 3153 - 3160, 10.1109/CEC.2013.6557955. 

[164]  Nebro, A. J. ,  Durillo, J. J.,  Luna, F.,  Dorronsoro, B.  and Alba, E. (2007) 
MOCell: A cellular genetic algorithm for multiobjective optimization, 
International Journal of Intelligent Systems, 25-36, 2007. 

[165]  Nebro, A.J.; Durillo, J.J. ; Garcia-Nieto, J. ; Coello Coello, C.A. ; Luna, F. ; 
Alba, E. (2009) SMPSO: A new PSO-based metaheuristic for multi-objective 
optimization, Computational intelligence in multi-criteria decision-making, 
2009. mcdm '09. ieee symposium on, March 30 2009-April 2 2009 , 66 - 73 
,DOI: 10.1109/MCDM.2009.4938830. 

[166]  Nebro, A.J.; Luna, F. ; Alba, E. ; Dorronsoro, B. ; Durillo, J.J. ; Beham, A. 
(2008) AbYSS: Adapting Scatter Search to Multiobjective Optimization, 
Evolutionary Computation, IEEE Transactions on (Volume:12, Issue:4), 439 - 
457, 2008, DOI:  10.1109/TEVC.2007.913109. 

[167]  Niu, Q.,  Zhang, H.,  Wang, X., Li, K. and Irwin, G.W. (2014) A hybrid 
harmony search with arithmetic crossover operation for economic dispatch 
Electrical Power and Energy Systems 62 (2014) 237–257. 



PhD Thesis – K. Liagkouras   References  

[253] 
 

[168]  Qi, Y., Hou, Z., Yin, M. Sun, H. and Huang, J. (2015) An immune multi-
objective optimization algorithm with differential evolution inspired 
recombination, Applied Soft Computing 29 (2015) 395–410. 

[169]   Ong, C.S., Huang, J.J. and Tzeng, G.H. (2005) A novel hybrid model for 
portfolio selection, Applied Mathematics and Computation 169 (2005) 1195–
1210. 

[170]  Ono, I. and Kobayashi, S. (1997). A real-coded genetic algorithm for function 
optimization using unimodal normal distribution crossover. In Back, T., editor, 
Proceedings of the Seventh International Conference on Genetic Algorithms 
(ICGA-7), pages 246–253, Morgan Kaufmann, San Francisco, California. 

[171]   Peng, Y., Wang, G., Kou, G. and Shi, Y. (2011) An empirical study of 
classification algorithm evaluation for financial risk prediction, Applied Soft 
Computing 11 (2011) 2906–2915. 

[172]  Phan, D.H.; Suzuki, J. ; Boonma, P. (2011) SMSP-EMOA: Augmenting 
SMS-EMOA with the Prospect Indicator for Multiobjective Optimization, Tools 
with Artificial Intelligence (ICTAI), 2011 23rd IEEE International Conference 
on , 7-9 Nov. 2011 , 261 - 268 , Conference Location : Boca Raton, FL , DOI: 
10.1109/ICTAI.2011.47. 

[173]   Pindoriya, N.M., Singh, S.N. and Singh, S.K. (2010) Multi-objective mean–
variance–skewness model for generation portfolio allocation in electricity 
markets, Electric Power Systems Research 80 (2010) 1314–1321. 

[174]  Piotrowski, A.P. (2013). Adaptive Memetic Differential Evolution with 
Global and Local neighborhood-based mutation operators. Information 
Sciences, Volume 241, 20 August 2013, Pages 164-194. 

[175]  Price, K.,  Storn, R.M. &  Lampinen, J.A. (2005) Differential Evolution: A 
Practical Approach to Global Optimization, Natural Computing Series, 
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. 

[176]  Purshouse, R.  (2003). On the evolutionary optimization of many objectives,  
Ph.D. dissertation, Univ. Sheffield, Sheffield, U.K. 

[177]  Rebiasz, B. (2013) Selection of efficient portfolios–probabilistic and fuzzy 
approach, comparative study, Computers & Industrial Engineering 64 (2013) 
1019–1032. 

[178]  Schaerf, A. (2002) Local search techniques for constrained portfolio selection 
problems. Computational Economics, 20(3): (2002), 177-190. 

[179]  Schaffer, J. D. (1984) Some Experiments in Machine Learning Using Vector 
Evaluated Genetic Algorithms. Doctoral Dissertation, Department of Electrical 
and Biomedical Engineering, Vanderbilt University, Nashville TN. 

[180]  Schaffer, J.D. (1985), Multiple Objective Optimization with Vector Evaluated 
Genetic Algorithms. In Genetic algorithms and their applications: Proceedings 
of the first international conference on genetic algorithms (pp. 93–100). 
Hillsdale, NJ: Lawrence Erlbaum. 

[181]  Schaffer, J.D. & Grefenstette, J.J. (1985), Multiobjective learning via genetic 
algorithms. In Proceedings of the 9th international joint conference on artificial 
intelligence (ijcai-85) (pp. 593–595). Los Angeles, CA: AAAI. 



References  PhD Thesis – K. Liagkouras    

[254] 
 

[182]   Scherer, B. and Douglas, R. (2005) Introduction to Modern Portfolio 
Optimization with NUOPT and S-Plus, Springer, 2005. 

[183]  Schlottmann, F., & Seese, D. (2004) Financial Applications of Multi-
Objective Evolutionary Algorithms: Recent Developments and Future Research 
Directions. In C. A. Coello Coello & G. B. Lamont (Eds.), Applications of 
multi-objective evolutionary algorithms (pp. 627–652). Singapore: World 
Scientific. 

[184]  Schlottmann, F. and Seese, D. (2004) A hybrid heuristic approach to discrete 
multi-objective optimization of credit portfolios, Computational Statistics & 
Data Analysis 47 (2004) 373 – 399. 

[185]  Schwefel, H. P. (1965), ‘Kybernetische evolution als strategie der 
experimentellen forschung inder stromungstechnik’, Dipl.-Ing. thesis. (in 
German). 

[186]  Schwefel, H.P. (1981), Numerical Optimization of Computer Models, Wiley, 
Chichester, UK. 

[187]  Shaw, D. X., Liu, S. and Kopman, L. (2008) Lagrangian relaxation procedure 
for cardinality-constrained portfolio optimization, Optimization Methods and 
Software, 23, 411–420. 

[188]  Shoaf, J. & Foster J. (1996). The Efficient Set GA for Stock Portfolios, Dept. 
Of Computer Science, University of Idaho, Moscow, Idaho. 

[189]  Shoaf, J. S., & Foster, J. A. (1996). A Genetic Algorithm Solution to the 
Efficient Set Problem: A Technique for Portfolio Selection Based on the 
Markowitz Model. In Proceedings of the decision sciences institute annual 
meeting (pp. 571–573). Orlando, Florida. 

[190]  Shukla, N., Choudhary, A.K., Prakash, P.K.S., Fernandes, K.J. and Tiwari, 
M.K. (2013), Algorithm portfolios for logistics optimization considering 
stochastic demands and mobility allowance, Int. J.Production Economics 
141(2013)146–166. 

[191]   Silva, D. and Bastos-Filho, C. (2013) A Multi-Objective Particle Swarm 
Optimizer Based on Diversity, INTELLI 2013 : The Second International 
Conference on Intelligent Systems and Applications, IARIA, 2013. 

[192]  Singh H.K., Ray T, Smith W. (2010) Performance of infeasibility empowered 
memetic algorithm for CEC 2010 constrained optimization problems. In: 
Proceedings of the IEEE congress on evolutionary computation (CEC2010), 
Barcelona, Spain, 2010. p. 1–8. 

[193]  Skolpadungket, P., Dahal, K. & Harnpornchai, N., (2007), Portfolio 
optimization using multi-objective genetic algorithms, IEEE Congress on 
Evolutionary Computation (CEC 2007). 

[194]  Smimou, K. (2014), International portfolio choice and political instability 
risk: A multi-objective approach, European Journal of Operational Research 234 
(2014) 546–560. 

[195]  Soleimani, H., Golmakani, H.R. & Salimi, M.H. (2009) Markowitz-based 
portfolio selection with minimum transaction lots, cardinality constraints and 



PhD Thesis – K. Liagkouras   References  

[255] 
 

regarding sector capitalization using genetic algorithm, Expert Systems with 
Applications, 36 (2009):5058-5063. 

[196]  Srinivas N., Deb K., (1994), Multi-objective optimization using non-
dominated sorting in genetic algorithms, Evolutionary Computation 2 (3) 221–
248. 

[197]  Stein, M., Branke, J. and Schmeck, H. (2007) Efficient implementation of an 
active set algorithm for large-scale portfolio selection, Computers & Operations 
Research, 35, 3945–3961. 

[198]  Steuer, R.E., Qi, Y. and Hirschberger, M. (2007) Suitable-portfolio investors, 
nondominated frontier sensitivity, and the effect of multiple objectives on 
standard portfolio selection, Annals of Operations Research, 152, 297–317. 

[199]  Streichert F, Ulmer H, Zell A. (2003). Evolutionary algorithms and the 
cardinality constrained portfolio optimization problem. In: Selected papers of 
the international conference on operations research, 2003. pp. 253–60. 

[200]  Streichert, F., Ulmer, H. and Zell, A. (2004) Evaluating a hybrid encoding 
and three crossover operators on the constrained portfolio selection problem. 
Proceedings of the Congress on Evolutionary Computation (CEC 2004), 
Portland, Oregon,  (2004), pp. 932-939. 

[201]  Streichert F., Ulmer H., and Zell A., (2004) Comparing Discrete and 
Continuous Genotypes on the Constrained Portfolio Selection Problem, in 
Genetic and Evolutionary Computation–GECCO 2004. Proceedings of the 
Genetic and Evolutionary Computation Conference. Part II, K. D. et al., Ed. 
Seattle, Washington, USA: Springer-Verlag, Lecture Notes in Computer Science 
Vol. 3103, June 2004, pp. 1239–1250. 

[202]  Streichert, F. and Tanaka-Yamawaki, M. (2006) The Effect of Local Search 
on the Constrained Portfolio Selection Problem. In Proceedings of IEEE 
Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 2368–
2374, 2006. 

[203]  Subbu R., Bonissone P. P., Eklund N., Bollapragada S., and Chalermkraivuth 
K., (2005) “Multiobjective Financial Portfolio Design: A Hybrid Evolutionary 
Approach,” in 2005 IEEE Congress on Evolutionary Computation (CEC’2005), 
vol. 2. Edinburgh, Scotland: IEEE Service Center, September 2005, pp. 1722–
1729. 

[204]  Suksonghong, K., Boonlong, K. and  Goh, K.L. (2014) Multi-objective 
genetic algorithms for solving portfolio optimization problems in the electricity 
market, Electrical Power and Energy Systems 58 (2014) 150–159. 

[205]  Tang, P.H. & Tseng, M.H. (2013). Adaptive directed mutation for real-coded 
genetic algorithms. Applied Soft Computing 13 (2013) 600–614. 

[206]  Thomaidis, N. (2010) Active portfolio management from a fuzzy multi-
objective programming perspective, C Di Chio et al (Eds): EvoApplications 
2010, Part II, LNCS 6025, pp. 222-231, Springer-Verlag Berlin Heidelberg 
2010. 



References  PhD Thesis – K. Liagkouras    

[256] 
 

[207]  Trail, C.D., Schmiedekamp, M.D., Phoha, S., Sustersic, J.P. (2013). 
Multiobjective planning for naval mine counter measures missions. Int. J. of 
Operational Research 2013 - Vol. 16, No.1  pp. 113 – 135. 

[208]  Tsutsui, S. and Yamamura, M. T. Higuchi, (1999) Multi-parent recombination 
with simplex crossover in real coded genetic algorithms, in: Proceedings of the 
GECCO-99, 1999, pp. 644–657. 

[209]  Vazhayil, J.P. and  Balasubramanian, R. (2014) Optimization of India’s 
electricity generation portfolio using intelligent Pareto-search genetic algorithm, 
Electrical Power and Energy Systems 55 (2014) 13–20.   

[210]  Vedarajan, G., Chan, L. C. and Goldberg, D. E. (1997). Investment Portfolio 
Optimization using Genetic Algorithms. In Koza, J. R., editor, Late Breaking 
Papers at the Genetic Programming 1997 Conference, pages 255–263, Stanford 
Bookstore, Stanford University, California. 

[211]   Veldhuizen, D.A.V. (1999) Multiobjective Evolutionary Algorithms: 
Classifications, Analyses, and New Innovations. PhD thesis, Graduate School of 
Engineering, Air Force Institute of Technology, Air University, June 1999. 

[212]  Veldhuizen, D.A.V. and Lamont, G.B. (1998) Multiobjective evolutionary 
algorithm research: A history and analysis. Technical Report TR-98-03, 
Department of Electrical and Computer Engineering, Graduate School of 
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, 
1998. 

[213]  Vijayalakshmi Pai, G.A. and Thierry, M. (2014) Metaheuristic multi-
objective optimization of constrained futures portfolios for effective risk 
management, Swarm and Evolutionary Computation, Article in press,  
http://dx.doi.org/10.1016/j.swevo.2014.08.002. 

[214]  Wang,F., Yu, P.L.H. and Cheung, D.W. (2014), Combining technical trading 
rules using particle swarm optimization, Expert Systems with Applications 41 
(2014) 3016–3026. 

[215]  Winker, P., Gilli, M. (2004) Applications of optimization heuristics to 
estimation and modelling problems, Computational Statistics & Data Analysis 
47 (2004) 211 – 223. 

[216]  Woodside-Oriakhi, M., Lucas, C. & Beasley, J.E. (2011). Heuristic 
algorithms for the cardinality constrained efficient frontier. European Journal of 
Operational Research 213, pp. 538-550. 

[217]  Woodside-Oriakhi, M., Lucas, C. and Beasley, J.E. (2013) Portfolio 
rebalancing with an investment horizon and transaction costs, Omega 
41(2013)406–420. 

[218]  Xidonas, P., Mavrotas, G. & Psarras J. (2010). Portfolio management within 
the frame of multiobjective mathematical programming: a categorised 
bibliographic study. Int. J. of Operational Research 2010 - Vol. 8, No.1  pp. 21 – 
41. 

[219]  Yoo, S. Harman, M. & Shmuel Ur. (2011). Highly Scalable Multi Objective 
Test Suite Minimisation Using Graphics Cards. Search Based Software 
Engineering Lecture Notes in Computer Science, Volume 6956. 



PhD Thesis – K. Liagkouras   References  

[257] 
 

[220]   Yoon, Y.,  Kim, Y.H., Moraglio, A.,  Moon, B.R. (2012) A theoretical and 
empirical study on unbiased boundary-extended crossover for real-valued 
representation, Information Sciences 183 (2012) 48–65. 

[221]  (*38) Zeng, F., Decraene, J., Hean Low, M.Y., Hingston, P., Wentong, C., 
Suiping, Z. & Chandramohan, M. (2010). Autonomous Bee Colony 
Optimization for Multi-objective Function. Proceedings of the IEEE Congress 
on Evolutionary Computation.  

[222]  Zhang, Q. and Li, H. (2007): MOEA/D: A Multiobjective Evolutionary 
Algorithm Based on Decomposition. IEEE Trans. on Evolutionary Computation 
11 (2007) 712-731. 

[223]  Zhang, Q., Liu, W. and Li, H. (2009): The Performance of a New Version of 
MOEA/D on CEC09 Unconstrained MOP Test Instances." IEEE Congress on 
Evolutionary Computation,Trondheim, Norway, (2009). 

[224]  Zhang, P. and Zhang, W.G. (2014) Multiperiod mean absolute deviation 
fuzzy portfolio selection model with risk control and cardinality constraints, 
Fuzzy Sets and Systems 255(2014)74–91.  

[225]  Zhou, Y., Li, X. & Gao, L. (2013). A differential evolution algorithm with 
intersect mutation operator. Applied Soft Computing, Volume 13, Issue 1, 
January 2013, Pages 390-401. 

[226]  Zhu, H., Wang Y., Wang K. & Chen Y. (2011) Particle swarm optimization 
(PSO) for the constrained portfolio optimization problem, Expert Systems with 
Applications 38 (2011): 10161-10169. 

[227]  Zitzler, E. (1999) Evolutionary algorithms for multiobjective optimization: 
Methods and applications,  Ph.D. dissertation, Swiss Federal Inst. Technology 
(ETH) (1999), Zurich, Switzerland. 

[228]  Zitzler, E.,  Brockhoff, D.  & Thiele. L.(2007). The Hypervolume Indicator 
Revisited: On the Design of Pareto-compliant Indicators Via Weighted 
Integration. In Conference on Evolutionary Multi-Criterion Optimization (EMO 
2007), pages 862–876. Springer. 

[229]  Zitzler, E., Deb, K., and Thiele, L. (2000) Comparison of multiobjective 
evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2). 
173-195. 

[230]  Zitzler, E. and Kunzli, S. (2004) Indicator-Based Selection in Multiobjective 
Search. In Conference on Parallel Problem Solving from Nature (PPSN VIII), 
volume 3242 of LNCS, pages 832–842. Springer, 2004. 

[231]  Zitzler E., Laumanns M., and Thiele L., (2001) SPEA2: Improving the 
Strength Pareto Evolutionary Algorithm, Computer Engineering and Networks 
Laboratory (TIK) Department of Electrical Engineering, Swiss Federal Institute 
of Technology (ETH) Zurich, 2001. 

[232]  Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C. M., & Grunert da Fonseca, 
V.(2002). Why Quality Assessment of Multiobjective Optimizers Is Difficult. In 
W. Langdon et al. (Eds.), Proceedings of the genetic and evolutionary 
computation conference (gecco’2002) (pp. 666–673). San Francisco, California: 
Morgan Kaufmann Publishers. 



References  PhD Thesis – K. Liagkouras    

[258] 
 

[233]  Zitzler, E. and Thiele, L. (1999) Multiobjective Evolutionary Algorithms: A 
Comparative Case Study and the Strength Pareto Approach. IEEE Transactions 
on Evolutionary Computation, 3(4):257–271, 1999. 

[234]  Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M. and Da Fonseca, V.G. 
(2003) Performance assessment of multiobjective optimizers: an analysis and 
review. IEEE Transactions on Evolutionary Computation, (2003), 7(2):117–132. 


	Front page 3.pdf
	all together 8.pdf
	PhD Thesis 95 n1.pdf
	n2.pdf
	PhD Thesis 95 n3.pdf
	n4.pdf
	PhD Thesis 95 n5.pdf

