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Evyaprotieg

Apycd Bo Bela vo vyaploTHo® amd Kopdldsg tov emPAémovta kabnynt pov, ko I.
HAMémovAo yio v kabodnynon tov, tnv moAdTiun fonfeld Tov Kot TV VTOUOVH TOV KATA TN
OlapKeLn TNG EKTOVNONG TNG LETATTUYLOKNG LoV daTping. Méca amd avtiv TV cuvepyacioa,
HE EVEMVELGE KOL LOV TTPOGEPEPE TOAAES evkalpieg Kol GLUPOVAES, KOOOPIGTIKES Yo TNV
GLYYPOPN OVTNG NG epyaciog aAAd Kol yevikd tng mopeiag pov. Tov uyopiotd yo Tig
YVOGELS TOL HOV HETEPEPE, Yo TOV TPOTO dd0cKaAlaG Tov, Yo v BEAnon kot dpeln mov
£0e1&e Kot ov mioTEYE o€ PEVOL

Eniong, Ba 1Beha va gvyopiotom to PHEAN TG TPYWEAOVG EMTPOMNG, TOV AVOTANP®OTN
Kadnynm «. A. Avtlovrdko kot tov Enikovpo Kabnynt k. M. Mrovtoika yio T GOUHETONN
TOVG oV emTpomn Kabdg kol yioo OAo avtd mov £paba omd ekeitvovg oto mAaiclo TOv
LETOTTTUYLOKOV AVTOV TPOYPEUUATOC.

Agv Qo pumopovca va moapafréyw tov Emikovpo Kabnynm ko X. Mnepoiun, ywo v
oAV TN PonBeld Tov Katd TNV O1EPKELN TOV GTOVAMY LoV KOt TIG EVKOIPIEG TTOV LoV E0MGE.

[Mopdiinio, Oa MBeha va evyopotom Tov @iko kot ocvpportnt) pov NAGo
[ToAorodnpoémovio yio v moAvTIUN Pondetd Tov, T0. ETOIKOSOUNTIKE TOV GYOA OAAG Ko
v otpiEn Tov, 60 aVTd TO OACTN L.

OloxAnpovovtog, Ba fera va avaeepfd Kot vo evyoplotom Beppd v ooyEveld Lov
Y. QUVOUN TTOV HOV £3MGE TPOKEWEVOD VO OAOKANPOG® OVTAV TNV TPOCTAOE0. Kot Tov

o1aOnKke dimha pov amd TV apyn.






IHepiinyn

To poviéda emrtoyuvopevov ypoévov {oNG YPNOUYLOTOOVVINL TPOKEUEVOL Vo
EKTIUNOOVHE KOTAVOUES (NG OCLOTNUATOV GUVIOUOTEPO, YOPIC VO TEPYEVOLUE VO,
TOPOTNPNGOVUE TOVS XPOVOLG (NG Tovg VIO Kavovikég cuvOnkeg Asttovpyioc. Ta poviéda
VT gpeavicOnkay €0 Kol TOAAEG dEKOETIES KOl EQOPUOLOVTAL GLYVOTEPO GTOVG KAASOLG
™G ProotaTiotikng Kot g unyavoroyiag. O oxomdg avthg ™S SUTAOUATIKNG epyaciog elvarl
VO ELGAYAYOVLLE TOV OVOLYVAOGTY] GE TETO0 LOVTEAN KOl VO EPUPUOCOVE VOV MLUTOPAUETPIKO
TPOTO EKTIUNONG TS KOTAVOUNG TOL YpOVov LmNG.

210 TPOTO KEPAAOMO EEKWVAUE HE TNV TEPLYPOUPN TOV HOVIEAWDV ETITOUYVVOUEVOV
rpoévev Cofg oyoAdlovtag v ¥pNoLoTNTd Toug Kot cuveyilovpe pe tov opiopd Pocikdv
EVVOLOV TTOV (PN GLULOTOLOVVTAL GTNV EPYAGTLOL.

270 3eVTEPO KEPAANLO TOPOVGLALOVIE TO HOVTEAD AOYOV TTLKVOTHTMOV TOV EIGTYOYOV
ot Fokianos et al. (2001) Bacilopevor otig 10éec Twv Qin and Lawless (1994) ko e€nyodue
AemTOUEPOG MG YiveTol M EKTIUMON TOV TOPAUETPOV TOL HECEH KatdTunong g (un
TAPOUETPIKNG) mhavoedvelas. Bacilopevol 6e auTég EKTILOVUE TNV AYVEOGTH GLVAPTNON
katavounc. H pnébodog epappudletor oe Eva mapaoetyplo e TPy HoTiKE 0E00UEVA.

210 TpiT0 KEPAAOLO YPNGUYLOTOLOVUE TO LOVTEAD AGYOL TUKVOTHTMOV LOVTEAOTOUDVTOG
TEPOULTEP® TIC TTAPAUETPOVS TOV. To amhovotepo HOVTELO cuyKpiveTal pe TO0 Pacikd PECH
AGLUTTOTIKOD EAEYYOL Kot EAEYYov oL Paciletal ot puébodo bootstrap.

210 T€T0pTO KEPAANLO OE®POVE TO HOVTEAO AOYOV TLKVOTTMV GTNV TEPITTMGT| TOV
T dedopéva vokewtal o€ (mbavr)) toyaio Aoyokpioio. o v extipnon Tov TapapéTpmv
ce autv TV nepintoon Paclopacte oe évav aiydpidpo EM mov mpodtevav mpodceata ot
Wei and Zhou (2016).

o v extipgnon tOv HOVIEA®V Kol YEVIKOTEPO Yl OAOVS TOVLG LTOAOYIGHOVG
ypnoonomdnke to pdypappo R kot o cvykekpipéva  cuvaptnon optim. Ot cuvaptioelg
mov divouv Tov AoydapiBpo g mOAVOPAVELNS KOl TOV TOPAYDY®Y TG TOPOLGLAlovTal GTO
TETAPTO KEPAALO.

H dimhopatikn epyocio OAOKANPOVETAL LE KATAYPOPT) TOV EPOTNUATOV Kol CKEYEMV
mov yevvnOnkav kotd TV ekmoévnon g KoBDC Kol 10EDV Yo HEALOVTIKN] €PEVVNTIKN

gpyacia.






Abstract

Accelerated life time models are used in order to faster estimate life distributions of
systems without waiting to observe their lifetimes under normal operating conditions. These
models appeared many decades ago and are applied mainly in the areas of biostatistics and
mechanical engineering. The purpose of this dissertation is to introduce the reader to this kind
of models and to apply a semiparametric method of estimating the life time distribution.

In the first chapter we start with a description of accelerated life test models by
commenting on their usefulness and we continue with basic definitions of notions which are
used in the dissertation.

In the second chapter we present the density ratio model introduced by Fokianos et al.
(2001) based on ideas of Qin and Lawless (1994) and we explain in detail the estimation
process of its parameters via profiling the (nonparametric) likelihood. Based on the estimates
of the parameters we estimate the unknown distribution function. The method is applied to a
real data example.

In the third chapter we discuss the density ratio model by further modeling its
parameters. The simpler model is compared to the basic one asymptotically and using the
bootstrap method.

In the fourth chapter we consider the density ratio model in the case where the data are
subject to (possible) random censoring. In this case our estimation procedures are based on a
particular EM algorithm recently proposed by Wei and Zhou (2016).

For the estimation of the models and all other calculations we used R and more
specifically the function optim. The procedures which return the loglikelihood and its
derivatives are presented in the fourth chapter.

We conclude by discussing some questions and thoughts as well some ideas for future

work.
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Chapter 1

Introduction

1.1 Accelerated life test models

The revolution of technology and mechanism demands the acostate and precise estima-
tion of reliability of a product or a system. The classicalthogls of estimation emphasize
in the analysis of lifetime data under normal operation @ors, something that in most of
the times is very difficult or even unreachable. This probieastly relies on the long life of
the products so, in order to obtain an estimation of theififetdistribution of a product in
a timely manner, we use Accelerated Life Tests (ALT). The Ahddels have been studied

for many decades and one of the first researchers in this ag&lelson (1980, 2004).

1.1.1 How an ALT model works

The experimenter applies severe stresses on the pararogtieslifetime distributions to
obtain information more quickly than would be possible & froducts were under the nor-
mal operating conditions. Our purpose is to induce eariduife because if we depended
on normal operating conditions a very large sample and ofseoa lot of time would be
necessary and most of the times this is not feasible. Engiries/e used accelerated tests
for diverse products as well as this type of stress has besshfos material testing (metals,

plastic, ceramics, food and drugs, cement, nuclear reacdterials). We will give only one
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example just to clarify how such a model works. Imagine thath&ve metal in our dis-
posal. Accelerating stresses include mechanical stessgpdrature, specimen geometry and

surface finish. Chemical acceleration factors include balnidity, corrosives and acids.

As mentioned above, an ALT is a method for estimating thaldlty of products at nor-
mal operating conditions from the failure data obtainedhatgevere conditions. Nowadays,
such approach is used in many science fields such as biolegygtraphy, gerontology, dy-
namic of population, genetics, reliability, survival aysib, radio-biology, biophysics and so
many other fields where scientists study the longevity,@gimd degradation using stochas-
tic models. In order to obtain information about all thesdiability theory seems to be a
great method combined with parametric, non parametric emd garametric accelerated life

models used in accelerating life testing.

1.1.2 Types of ALT models

There are different types of ALT models as there are diffetgpes of stresses that are
applied in many ways. ALT methods can be either qualitativguantitative. Qualitative
methods are used when we have a small sample and we are tedeiresinding possible
failure mode in the product. If there is one, managers andnergs try to improve the
product design. Nevertheless, a failure mode does not icapyyhing about the reliability

status of the product. Some well known and relatively newitpiave methods are:

e Highly Accelerated Life Testing (HALT)

Highly Accelerated Stress Screen (HASS)

Elephant and Torture Tests

Shake and Bake Tests

Reliability Demonstration Test (RDT)
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¢ Reliability Acceptance Test
e Burn-In Test

e Reliability Growth Test (RGT)

From the above we will say a few words for the most common afeéhreethods starting
with the “Elephant tests”. In the bibliography one could e this specific method has a
lot of names such as torture test, killer test, design limargin test. Such a test steps on the
product with an elephant, figuratively speaking. If the iteraduct survives, it passes the
test otherwise the engineer must redesign or improve trauptoThe test generally involves
one specimen which will be subject to a single (or more) seil@rel of stress. Most of the
time, different elephant tests may be used to reveal diftef@lure modes. Apart from
“Elephant tests”, we have the “Burn-In” test. As Nelson n@mg, such a test consists of
running units under design or accelerated conditions faiitalsle length of time. Burn-in is
a manufacturing operation that is intended to fail shartdi units (freaks) so if the burn-in
test works, the surviving units that go into service havevadarly failures. These are the

units that have manufacturing defects.

On the other hand, quantitative methods focus in the arsabfsivhat we cited above,
namely, test units are exposed to a greater pressure thametiefined in order to increase
the likelihood of observing failures. A Quantitative Acerdted Life Test model (QALT)
actually tries to quantify the life of the product and pravidumerical estimations of reli-
ability characteristics and the statistical inferencetfag functioning of the product under
normal use conditions. Generally an ALT model is used duttiregdesign phase and before
the release of a product. If we consider the industrial sextd if we think that ALT models

were introduced in order to ensure the reliability of elesic products that have been used
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in the military, aerospace, automotive and mobile appbost we can see that the model
tries to improve product reliability efficiently and to detene whether safety and reliability

goals are being met in order to assess warranty risk.

At QALT we can distinguish different stress strategies:like

Parallel Constant-Stress ALT (PC-SALT)

Step-Stress ALT (SSALT)

Accelerated Failure Time Model (AFT)

Cumulative Exposure Model (CEM)

In PC-SALT test units are divided into groups and each greugsted under different
stress level. At SSALT all test units are exposed in a preifipd stress level. For those
test units that survive up to a pre-specified time, the stese$is changed and held constant
until all units fail (uncensored test) or until a pre-spexiftest termination time is attained
(censored test). The most widely used class of ALT model i$ Atodels. The stress levels
applied at the accelerated conditions are within a rangeuef &cceleration and the AFT
models assume that the applied stresses act multiplibatimehe failure time or linearly on
the log failure time, rather than multiplicatively on thezhed rate. Finally, the CEM relates
the lifetime distribution of the test units at one stressldwe the distributions at previous
levels assuming that the remaining lifetime depends onlthercurrent stress level and on

the current cumulative fraction of the units that failur&tbfkov property).

1.1.3 Types of Accelerated Test Data

Accelerated test data can be divided into two big categofibs first one is when the prod-

uct characteristic of interest is "life” and the second orfeew the measure of interest is
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"performance”. A measure of performance could be tensitength or ductility. In such a
case we are interested in how product performance degratteage. Namely, specimens
are aged under high stress and their performances, i.egttaneasured at different ages.
A very well known example of this method occurs temperatgiagof electrical insulation
and pharmaceuticals. For life data the analysis relies em#ta that we have. First of all,
we might have complete data (failure age) of each sample doivever, it is very common
to have censored data, namely some units are unfailed ainddihee times are known only
to be beyond their present running times (censored on theé eigtruncated). The analysis
could be made with data when a failure time known only to beteeé certain time (cen-
sored on the left). It is known from literature that speakaigput censored data we have
Type | and Type Il censored data, multiply censored data, Regarding accelerated data
we have also competing modes when sample units fail frorerifft causes. Also, one may
know whether the failure time of a unit is before or after aa@ertime so we have to deal
with quantal-response data. Finally, when a failure is@a$ed more than once and a unit
failed in an interval between inspections we have intera#hdOf course, in an analysis one

could notice a mixture of all the above cases and so we coelaksabout mixture data.

1.2 Empirical likelihood

First of all we have to define the empirical cumulative digition function and show that it
is a nonparametric maximum likelihood estimator (NPMLE}ld underlying CDF. LeX
be a real- (or integer-) valued random variable andflet) = P(X < z), z € R, denote its

CDF. ThenF(z—) = limy, F'(y) = P(X < z)andF(z) — F(z—) = P(X = z).

Definition 1. Let X, X,,..., X, X F. The empirical cumulative distribution function
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(ECDF) of X1, X5, ..., X,, is the function
F(x) 1§n:1(x< ), zeR
r)=— i <x), T .

n i=1

It is well-known that, given the observed values. . ., z,,, the ECDF is the CDF of the
(discrete) distribution which assigns mdgs to each of ther;’s,i = 1,..., n.

Definition 2. Let X1, X5, ..., X, $F. Then, the empirical likelihood of is

L(F) = [{F(z;) - F(zi-)}, FeZ, (1.2)
=1
where.% is the set of all CDFs.

The empirical likelihood (see Owen, 2001) can be considasdithe nonparametric like-
lihood of a CDF. It is immediately seen thatF') = 0 when F' is continuous. This implies
that in order to maximizé.(F') with respect taF, i.e., to find the nonparametric maximum
likelihood estimator (NPMLE) off’, we must restrict the parameter space to the set of dis-
crete distributions and, furthermore, to the set of digcdkstributions that assign positive

mass to the observed values. It turns out that

Theorem 1. The NPMLE of F isthe ECDF F.

Proof. Clearly, if ' is continuous at some observed vatyethenF'(z;) — F(x;—) = 0 and
so, L(F') = 0. Hence, the distribution maximizind..1) must assign positive probabilities
p1, ...,y to the observed values, . . ., z,,. These probabilities must satis}y;_, p, = 1

because if their sum is smaller thamve have

& . & Pi
le <H2pk

and thus, distribution which assigns mags= p;/ > px to x;, ¢ = 1,...,n, has larger

likelihood. By symmetry we musthayge = - - - = p,, thereforep; = 1/n,i=1,...,n. O
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Kiefer and Wolfowitz (1956) were the first who noticed tha¢ tiCDF is an NPMLE.
In the same year, Grenarder (1956) constructed a NPMLE fagtakaition known to have
a monotone decreasing density o\@&ro). Kaplan and Meier (1958) used the idea of the
NPMLE and introduced the product-limit estimator of the CdSed on censored data. Jo-
hansen (1978) showed that product-limit estimators are NPdfor transition probabilities
of continuous time Markov chains. Finally, Hartley and R4868) introduced the construc-
tion of the NPMLE in the context of random sampling from a #ngopulation. It is also
worth mentioning that Brunk, Franck, Hanson, and Hogg ()} @68 sidered nonparametric

maximum likelihood estimation of the CDFs of two stocheaaticordered distributions.

1.3 Biased (or weighted) distributions

There are situations where the researcher wants to estan@d- but the data are sampled

from a biased, or weighted, version of the distribution @érast. As Patil (2002) notes,

“weighted distributions adjust the probabilities of adtoecurrence of events at

a specification of the probabilities of those events haveaaly been observed”.

The basic idea of weighted distributions is based on Fistlie€ory (1934) and an extension

of this idea was given by Rao (1965).

Suppose that a distribution has CIPF and letw be a nonnegative function. Then the

distribution with CDF

(1.2)

whereEp {w(X)} = [w(y)dFy(y) € (0,00), is called a biased (or weighted) version/f

with biasing (or weighting) functiow. If £, admits a probability density (or mass) function
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(PDF) fo, the corresponding PDF of its biased version is

(@) fole)
1) = By

When the support of}, is a subset of the nonnegative reals, the eca&e) = = corre-

sponds to its so-called length biased version. In this case,

F(r) = ﬁ/x ydFy(y),

providedEr, (X) < co. The functiomu(x) = 22 gives rise to the size biased versionff

while w(x) = I(z € A) truncatesFj at the setA.

In general, weighted distributions may serve as a usefliféothe selection of appropri-
ate models for observed data drawn without a proper frame. stédtistical problem which
rise underneath is to determine a suitable weight funaticr). Below are some of the most

common weighted functions used in the literature (Lian@35)0

o wiz)=u
o w(z)=xz-(x—1)-... (x—r), wherer is an integer
o w(z) = eatir

e wx)=a+p -z

o w(z)=1—(1-0)"

a+ Bx
¢ wiz) = v+ 0x

o w(x) = P(Z < z), for some RVZ

o w(z)=1—Fy(x)

Nonparametric maximum likelihood estimation of a CDF base@ length biased sam-

ple from it has been first considered by Cox (1969):lf. . . , z,, denote the observed values
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of Xq,..., X, %S F, then the NPMLE of the baseline COFis given in closed form, namely,

Z?:l .’L’;ll(l'z < l‘) o Zmiﬁz xi_l

F(l‘): Zn l‘_l - Zn l‘_l .
i=1"1 i=1"1

In general, when the biasing functionuis it can be shown that the NPMLE éf is

Yl (<) Y w@)
D i w(x) ! S w(r) Tt

The problem of estimating a CDF based on samples from two oe robits weighted
versions has been considered by Vardi (1982), Vardi (198&)i et al. (1988). In these
papers, conditions for the existence and uniqueness of iMLES are discussed as well as
the asymptotic distributions of the NPMLEs of the expectadi of the weighting functions
and of the baseline CDF. More specifically, under reasorabiditions, the NPMLESs of the
expectations are asymptotically normal while the NPMLEe# baseline CDF converges

weakly to a pinned Gaussian process.

1.4 Semiparametric extensions

The procedures mentioned at the end of the previous secigunree the function(s) to
be completely known. A first semiparametric approach inicedi by Sun and Woodroofe
(1997) who estimated the weight functiannonparametrically and the CDF parametri-
cally. Gilbert et al. (1999) introduced another semiparaimenodel, leavingF' nonpara-
metric but assuming that the weight function of title sample isw(-, 5), whereg is some
finite dimensional parameter and the sampling density ofitth@mple is proportional to

w(-, 8)f(+). In more detalil,
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or, in terms of densities,

_ w(z; B) fo()
Eo{w(X;0)}

Note that for fixeds, (1.3) is a particular case df..2). Equation1.4) defines a semiparamet-

f(z; 5) (1.4

ric model: the finite dimensional parameteis its parametric while the infinite dimensional

parameterry is its nonparametric part.

Notice that(1.4) defines adensity ratio modegince it actually models the ratio of two

densities:

In this dissertation we will follow Fokianos et al. (2001 )hbset
w(w; f) = ™,

whereh(z) is an arbitrary yet known function.



Chapter 2

The density ratio model: A tool for semiparametric
comparison of distributions

2.1 Intoduction to the density ratio model

In order to avoid the normality assumption in the one-wayldy Fokianos et al. (2001)
considered and studied in detail a semiparametric modalwiow is known ashe density
ratio model. Suppose that we obseie- 1 independent random samples from distributions

with densitiesfy, f1, ..., fx, wheref, is completely unspecified and

fi(x) = exp{ay + Bih(x)} fo(x), i=1,... K, (2.1

for some unknown parameters and 5, and given functionh. The term “density ratio

model” is justified by the fact thd®.1) models the ratio of the densiti¢s/ f; as

J{OEZ; = exp{a; + Gih(2)}, € supp(fo),
or, equivalently,
log JJ::)((?) = a; + Bih(z), x € supp(fo).
Clearly, under this model the distributiofisi = 1, .. ., K, are biased (or weighted) versions

of fo. Itis a semiparametric model since it consists of a nonpatampart, the baseline

distribution with PDFf,, and the real-valued parameters. .., ax, 51, ..., Ok.
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The fact thatf; is a PDF implies that modé€P.1) is overparametrized sinceg is com-

pletely determined by; and f, through the equation
a; = —log { [ ePr@dF,(z)}.

This implies that whers; = 0 we havea; = 0 as well and thug; = f,. Based on this,

Fokianos et al. (2001) were able to express the hypothesiguadlity of distributions

fo=fi=r= fx

as

Therefore, under the density ratio mod&l1), the problem of testing equality of + 1

distributions simplifies to testing thaf real-valued parameters equal zero.

The DR model fits nicely in the context of one-parameter egptial families (see Table
2.1). In fact, by definition, the DR model assumes thatihe 1 distributions belong to the

same exponential family with canonical parametemd sufficient statistié (X ); see(2.1).

2.2 Empirical likelihood and its maximization

Assume that we observ€ + 1 independent groups

iid
X017 s 7X0n0 ~ fO(x)a

Xll; e 7X1n1 1fl\(j fo(l’) exp{a1 + ﬁlh(l‘)}, (22)

XKty Xknge s fo(x) exp{ax + Brh(z)}.



2.2. Empirical likelihood and its maximization 27

Distribution h(x) o]
Binomial B(n, p) x log{p/(1 —p)}
PoissorP(\) x log A
Negative Binomia\'B(a, p) (a known) x log(1 — p)
Exponential€(\) x —A
Gammag(a, \) (a known) x -
Gammag(a, A) (A known) log x a
Normal N (u, o%) (¢ known) x w/o?
NormalA (1, %) (1 known) (x — p)? —1/(20%?)
Lognormal LA (1, 02) log x w/o?
Lognormal LA (1, 02) (logx — p)? —1/(202)
Inverse Gaussiahg (1, A) (A known) T -/ (2u?)
Inverse Gaussiahg (u, \) (1 known) 1/x —A/2
BetaBeta(a,b) (b known) log x a
BetaBeta(a,b) (a known) log(1 — ) b

Table 2.1: Functiorh and parametes for several one-parameter exponential families.

For convenience, hereafter we set = 5, = 0 so that we will able to writef;(z) =
exp{a; + Bih(x)} fo(x) foralli = 0,1,..., K. Moreover, we definé, = B = 0in order

to be able to write more elegant formulas containing estinsatfa’s andg’s.

The empirical likelihood oy, o = (g, ..., k), 8= (f1, ..., Bk) IS

K n;
o, 8, F) = [[]]dF ()

i=0 j=1

K n;

= H H dFy(zij) exp{a; + Bih(xij) }

- K K ng K n;
= exp { Z n;oy + Z Bi Z h(szg)} H H dFo(zij),
i=1 i=1  j=1

i=0 j=1

and the parameters satisfy the constrafmgﬁﬁih(x)dFo(:p) =1,i=0,1,..., K. Asusual,
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in the context of empirical likelihood, the maximization biwith respect taF is achieved
within the set of discrete CDFs with jumps at the observedesl LetN = 3% n, and
z1,...,2zy be the combined (or pooled) sample. Then, the maximizatiah with respect

to a, 8 and Fy under the aforementioned constraints is equivalent to twammzation of

K K n; N
Llasip) = e { Smai+ 353 e | Lo
i=1 i=1  j=1 k=1

where

pk:dFO(Zk):FO(Zk)_FO(Zk_), k?: 1,...,N,
andp = (p1, ..., pn~), under the constraints
N
D ppettIE) =1 i =0,1,... K, (2.3

or, equivalently, of its logarithm

U, B,p) =log L™ (« Z n;oy + Zﬁz Z h(x;;) + Z log py. (2.4)
Such maximization tasks are typically done with the use ajraage multipliers. Here

we will denote them byA = (A, A1, ..., Ag) (Since there aréd + 1 constraints). The

corresponding Lagrangian is

5]97 Zlogpk—l_znaz_}_Zﬁthxm
K
)\0<Zpk - 1) + Z )\Z-(Zpkea”rﬁih(z’“) - 1).
k=1 k=1

k=1

The first partial derivatives of with respect tay;’s are

a N
) E(auﬁapa )‘) :ni+)\izpkeai+ﬁih(zk), 1= ]_,...,K.
Q;
k=1
By equating them to zero and using the constraﬁﬁzlpkeaﬁﬁih(m =1i=1,...,K,

we get explicitly the Lagrange multipliers, ..., Ak as
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Furthermore, the first partial derivative Gfwith respect tq; is
0 1 K
— L(a,B,p,\) = — + Xg + AeitBinr). 96
( v ) Pk 0 Z ( )

Opi i=1

By multiplying by p, and equating it to zero we get the equations

K
L+ Xopr + D ApreHORED — 0,k =1,...,N.
i=1
Summation with respect tband use of the constraint®.3) gives
K
N+X+Y A=0
1=1
which together with(2.5) implies
/\0 = —Nyo. (27)

If we replace the values of all Lagrange multipliers give(@rb) and(2.7) into the derivative

in (2.6) and set it equal to zero we get

K —1
1 { +Bih >}
Pk = = niea’ i\ 2k (28)
no + Zfil nieaiJrﬁih(Zk) ;

(recall that we have sety = 3, = 0). By replacing further these values int®.4) we obtain

the profile loglikelihood otv, 3,

K K ni N K
g(&, B) = Z n;oy + Z O Z h(xz;j) — Z log Z ne®i P ), (2.9
i=1 =1 =1 k=1 i—0

The last function can be easily maximized with respect,td since it is essentially the log-
likelihood of the parameters in a multinomial logistic regsion model. More specifically,
suppose that with havR + 1 categories labeled, 1, ..., K, and the probabilityr;(z) of

observing théth category given the covariate valusatisfies

log{mi(2)/mo(2)} = a; + Bih(2),
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wherea = «; + log(n;/ng). Then, the loglikelihood of this model's parameters is ¢yac
(2.9).

The well-known condition of “nonseparation” for the existe of the MLEs in the lo-
gistic regression models (Albert and Anderson, 1984) apph the case of DR model as
well. Hence, in order the MLEs to exist and be unique, the slag®nsz;;,« = 0,1, ..., K,

Jj =1,...,n;, must satisfy the condition

foralli € {0,1,..., K} there exists’ € {0,1,..., K}, # 1,

such that{ min A(z;;), max h(x;;)) ﬂ (min h(zy;), max h(zy;)) # 2.
j j j

J

In simple words, this condition means that there must be mpacompletely separated of

the others.

The (profile) likelihood equations far and are

o ~ N n,eitBih(zk)
7 — n— i —0, i=1,... K, 2.10
80(1‘ (O[’ ﬁ> " ; Zfio nieaiJrﬁih(Zk) ! ( )
9 - n; N nih(zk)eai+ﬁih(2k)
la, B) = h(x;;) — =0, i=1,... K. 2.11
3@ ( ﬁ> ; ( J> ; Zfio nieai‘f'ﬁih(zk) ( )

Once we obtain their solutions,, . .. ,&Kﬁl, o ,BK we plug them into(2.8) to get the

MLE of py,

Thus, the MLE offj is

N R 1
F0<£L') = Z Pk = Z ZK &iJrEih(zk)’ €T € R.

2p<z zp<a 2ai=0T4C€
Furthermore, the MLEs of}, . . ., Fix are given by

o Gi+Bih(z) htiih() ;
Fi(x):Zel i ’“pk:ZZK T reR, +1=1,... K.

zp<x zp<x i=0 T4i€




2.3. The DR model as an ALT model 31

Fokianos et al. (2001) showed th%,tﬁ are asymptotically normal estimators @f 3,
ie.,

\/N(%: g) 4 Nag(0,%) (2.12

asN — oo in such a way that;/N — p; € (0,1),7 = 0,1,..., K. (The last condition
means that all sample sizes must tend to infinity at the satag fEhe covariance matrix of

the asymptotic normal distribution is given By= U~V U ! where
U=N"1'E{V%a,p)} and V = N'E{Vi(a,B)VI(a,B)"}.

Here, V/(«, 3) denotes thé2K)-dimensional column vector of the derivatives(ih10),
(2.11) (i.e., the gradient of) while V2{(a, 5) the (2K) x (2K) matrix with entries the
second partial derivatives df(i.e., its Hessian). This follows from the general theory of
M-estimators. It is important to note that if sorfies coincide then the correspondiag's
coincide as well and then the asymptotic normal distributio(2.12) is singular. On the
other hand, the general theory of semiparametric modelpeofde likelihood implies that

Fy converges to a pinned Gaussian process with mean funggion

2.3 The DR model as an ALT model

Assume that we want to put on a lifetestitems in order to estimate a baseline distribution
function Fy, where the term “baseline” means that it is the distribufigrction of the items’
lifes under standard conditions. In order to deal with timathtions, we may split thev
items intoK + 1 groups ofng, nq, . . ., ng items, respectively, and run the experiment under
different stress levels for each group. Grdus put on the standard stress level, hence the

distribution function generating the corresponding sampF,. The remaining groups are
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put on highter stress levels and it is assumed that the $tmegsoup: is higher than that of
groupj for alli < j. Denote byF;,7 =1, ..., K, the distribution functions of the remaining
groups and letf'; = 1 — F;, i = 0,1,..., K. Since the stress level increases witlone
expects that the distributions are ordered, ii¢.i-; F; for i < j. Recall that this means
that F;(z) > Fj(x), for all z, which means that lifetimes under a higher stress level are

expected to take lower values than lifetimes under a lowesstlievel.

The DR model in(2.2) it is a plausible model to describe such data. Assume that the
lifetime distribution of interest has densify while the distributions under higher stress lev-
els belong to the same family with densities satify{@dl). The parameters; are assumed
to depend on théh stress level and they are easily estimated using the guoeelescribed

in the previous section.

Although ordering of the distributions is expected to haldmetimes the estimated pa-
rameters don’t completely agree with this assumption. sesavhere we strongly believe to
the ordering, we could apply order restricted inferencé/gpulle and Sen, 2005) to force
the estimates to satisfy this assumption. Davidov, Folsamal lliopoulos (2010) considered
order restricted inference for the power biased mode|,the.DR model withh(z) = log .
However their procedure can be easily applied with anytstriccreasing function instead

of the logarithm.

2.4 lllustrative example

In order to illustrate the DR model we consider a datasetirmalty presented in Kalka-
nis and Rosso (1989) and discussed as an example in Meekdfsmothar (1998, Ex-

ample 18.5). The data represent times of dielectric breakdao minutes of units tested
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Figure 2.1: Log(times to dielectric breakdown) of unitstéelsat100.3, 122.4, 157.1, 219.0,
and361.4 kV/mm.

at 100.3,122.4,157.1,219.0, and361.4 £V /mm, i.e., under five different voltage stresses.
Meeker and Escobar (1998) explain that voltage stress aeraielectric is measured in

units of volts/thickness. The data are depicted in Figute 2.

Let us use the DR model in order to estimate the CDF of the tinieemkdown under
100.3 £V /mm. Figure 2.1 shows some linearity of the data logarithms seéms natural to

takeh(z) = log x and assume that

filz) = fo(x)eo‘i+ﬁi logz xﬁifo(x), 1=0,1,...,4.

However, as we can clearly see from the graph, the last groupsponding to the highest
stress is separated from the other four groups. This meahshn MLESs of the parameters

do not exist. Therefore, we will use only the first four grotipgstimate the model.
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Figure 2.2: Estimated CDFs of time to dielectric breakdowta.3, 122.4, 157.1 and219.0
kEV /mm.

The maximization of has been done iR using the functioropt i m (Details on the im-

plementation are given in the next chapter.) After runnivggrocedure we get the estimates
a = (11.72,16.31,21.28), [ = (—1.59,—2.33,-3.30)

and thus that the estimates of the underlying CDFs are

1

Fo(.l’) - Z 8 + Qel1.72—1.59 log zj, + 10e16-31-2.331og 2, + 10621.28—3.3010gzk’
2 <X

8611'72_1'591()%2]“

Fl (.’L’) - Z 8 + Qel1.72—1.59log zj, + 10e16-31-2.331og 2, + 10621.28—3.3010gzk’
2 <X

R 616'31_2'33 log zp

FQ(x) - Z 8 + Qel1.72—1.59log zj, + 10e16-31-2.331og 2, + 10621.28—3.3010gzk’

2 <X
21.28—3.30log z,

F\ e
3(.%’) o Z 8 + 8611.72—1.5910gz;C + 10616.31—2.331og;z;C + 10621.28—3.301ogzk'

2 <X
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Figure 2.2 shows the four estimated CDFs. The lowest lineesponds tak;, while the
highest line t(ﬁg,. This follows from the fact tha@ decreases withand thus, the CDFs are

stochastically decreasing in






Chapter 3

A density ratio model with proportional g’s

As mentioned in the previous section, the parameters. ., 35 depend on the particular
stress level under which we observe the “biased” lifetiligs: = 1,..., K, j =1,...,n;.

In this section we consider a linear model for these parameie particular, we assume that
ﬁi:(bwh izla"wKu

wherewr, ..., wg are known values related to tli€ stress levels. For instance, if the dif-
ferent stress levels are formed by changing the operatimgeeaturew; could be either

the temperature or some simple transformation of it. Everpkar, if the different stresses
could be assumed “equidistance”, we couldsgt= i. For convenience, in the sequel we

setwy = 0.

3.1 Empirical likelihood and its maximization

Under this model and with data as in Section 2.2, the emplikedihood of & = («y, . . ., ak),
¢ andFy is
K n;
L(o, ¢, Fo) = [ ] dFi(ws)
i=0 j=1
K n;

= [IT]dFo(xi) exp{o + wih(ai;)}

i=0 j=1

37
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K K n; K n;
= exp { D niai+ ¢y wiy h(%)} [T dFoG).
i=1 i=1 j=1 =0 j=1

with the parameters satisfying the constraifits* **wih@dF,(z) = 1,47 = 0,1,..., K.

Similarly to the Section 2.2, the maximization bfis equivalent to the maximization of

K K n; N
Do) =ew{ Somart oY w Y ) I
=1 =1 J=1 k=1
under the constrains.;_, ppe®t@wih() = 1,5 =0,1,..., K. By taking the logarithm and

employing Lagrange multipliers we can again profile withpesd top since the maximizer

satisfies

K -1
P = { Znieaﬁd’wm(m} , k=1,...,N,
=0

i.e., formula(2.8) with the ¢w;’s in the place ofg;’s. By replacing these,’s, the profile

loglikelihood ofa’s and¢ becomes

K K T N K
E(Oéa ¢) = Z nio; + ¢ Z w; Z h(x;;) — Z log Z ne®iTowih(z),
=1 =1 j=1 k=1 i=0

The likelihood equations are

n; eitowih(zy)

o - - -
o U, @) = ni—ZZK p—— =0, i=1,...,K,

k=1 2wi=0 14i€

K N

0 - n niw;h(z)editowit(z)
a—(bﬁ(oz,gb) = > wiy hlwy) =Y () =0.
i=1 j=1

— SO niecitowih(z)

Their solution corresponds to the MLEs under the DR modéi wibportionald’s.

3.2 Testing the proportionality assumption

The adequacy of the proportiongk model must be tested, given that the original DR model

holds. There are two basic procedures which can be appliediar to test the hypothesis

Hy:8,=0¢w;, i=1,....K VS H,: H,does not hold (3.1
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First, there is the asymptotic approach. Clearly, the prog@al 5’s model is nested to the
free 5's DR model. Since the profile likelihood of the DR model betsmessentially as a
standard parametric likelihood, we havergs— oo, i = 0,1,..., K, such that;/N —
pi € (0,1) for all 4,

T =2{{(@p) — @ 9)} = X1
This means that the asymptotic approach tests the null hgps based on a standard chi-

squared test: The asymptotic p-value is

Pa = P(X%(—l > TobS)v (3'2>

whereT,,, is the observed value af.

The second method one can use is bootstrap. In general,entorgerform a bootstrap
test for a null hypothesis based on some statiStione has to draws bootstrap samples by
resampling with replacement from the observed sample uhgeassumption that the null
hypothesis holds. If7,..., T} are the values of the statistic based on these bootstrap

samples, the bootstrap p-value is
B
ps =B Y I(Ty > Tue). (3.3
b=1
In general, in the nonparametric or semiparametric conte&texact distribution which
generates the data is unknown even under the null hypoth@sisrefore, the bootstrap

samples are formed from the corresponding estimated nsiflilalition. In our case, this

means that we will sample from the (discrete) distributiaitt CDFs

R &i+¢w¢h(zk)
) =Y —p— —— =01, K
Jap Zi:O eaz+¢wz (Zk)

At the bth bootstrap iteration we sampig z’s from ﬁo, ny 2's from ﬁ and so on in order to

form the bootstrap samplg;, : = 0,1,..., K, j = 1,...,n;, from which the bootstrapped
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Asymptotic Bootstrap
K+1=3|Truew; | 10% 5% 1% |10% 5% 1%
n; = 20 1 108 .062 .014 | .103 .055 .012

Y2 | 212 142 .036 | .200 .131 .032
32 | 204 120 .040 | .193 .110 .039
i2 447 346 160 | 437 325 437
n; = 50 i 093 .049 .013 | .087 .046 .012
Y21 307 213 .078 | .305 209 .081
321 319 216 .091 | .321 .209 .098
i 793 715 473 | .793 .695 .474
n; = 100 i 112 .059 .016 | .116 .058 .017
iY/? | 517 403 .194 | 517 .400 .199
32| 542 412 203 | 537 414 212
i2 983 949 842 | 981 .950 .840

Table 3.1: Estimated size and power of asymptotic and baptsésts of nominal levels),
5% and10% for testing proportionality of’s when K + 1 = 3 groups are observed based
on 1000 Monte Carlo iterations. The first row for each sample sizeasponds to the actual
size of the tests.

valueT; of the (log)likelihood ratio statisti& = 2{/(a, B) —{(a, ngS)} is calculated. Finally,

the corresponding p-value is calculated ag3r8).

In order to evaluate the performance of the two tests, a ssmalllation study is con-

ducted. As baseline distribution is taken the standard respial, i.e.,
Fo(r)=1—¢" x>0.

The distributions under the other stresses were taken asmnentials which means that

h(z) = . Their rates are set equal to+ ¢w;, i = 1,..., K, so that
filx) = fo(z)elosttewi—owiz 1 9

i.e., 3 = —¢w;. In our simulations we took = 2 andw,; = 7,i'/?,%2 i*>. However, in
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Asymptotic Bootstrap
K+1=4|Truew; | 10% 5% 1% | 10% 5% 1%
n; = 20 i 098 .044 .010 | .083 .038 .009

iY2 | 252 151 .045| 225 .142 .045
32 | 265 181 .072 | .246 .160 .063
i2 722 613 .356 | .705 .586 .342
n; = 50 i 105 .052 .009 | .098 .046 .007
it/2 | 488 348 155 | 473 342 163
32 | 517 393 187 | 512 .387 .196
i 976 958 .866 | .977 .963 .867
n; = 100 i 098 048 .012].099 .044 .011
it/2 | 724 588 331 | 716 .584 .347
32| 788 694 467 | 789 .689 .460
i2 1 1 999 1 1 .999

Table 3.2: Estimated size and power of asymptotic and bapisésts of nominal levels),
5% and10% for testing proportionality of’s when K + 1 = 4 groups are observed based
on 1000 Monte Carlo iterations. The first row for each sample sizeasponds to the actual
size of the tests.

fitting the model, we considan, = i in all cases. Hence, when the trug is i the null
hypothesis holds while for the othes’s it does not. We considered = 2 and K = 3, i.e.,

the cases where we have in total three and four groups anddealdamples of size$, 50
and 100. For each configuration ab;’'s, K andn;'s we ran1000 Monte Carlo iterations
and in every iteration we took = 500 bootstrap samples. The power of the two tests for
nominal levela (= 10%, 5% or 1%) was estimated as follows: In theth Monte Carlo
iteration we calculated the two p-valueglband pgm) using (3.2) and (3.3), respectively.

We then set

1000 1000

power, = Y I(py” < @)/1000 and poweg = > I(py" < a)/1000,

m=1 m=1
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Figure 3.1: Estimates df, under the original DR model (solid line) and under the prepor
tional 5's DR model (dashed line).

that is, the percentages of rejectionsHy by the two tests at level. The results are dis-
played in Tables 3.1 and 3.2. We can see that the size of sithiseclose to the nominal level
of significance while they have the power to reject the nulewlt is not true. Moreover,
the asymptotic test seems to be slightly more powerful tharbbotstrap one. However, it

is unknown howB affects the power of the latter. This subject needs furtinezstigation.

3.3 lllustrative example

In order to illustrate the proportina’s DR model we use again the dataset analyzed previ-

ously. We consider agait(z) = log = and set

(wy, wa, w3) = (122.4 — 100.3, 157.1 — 100.3,219.0 — 100.3) = (22.1,56.8, 118.7),
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i.e., the differences between th&/mm of the three higher stess levels to that of the “base-

line” one.

After running the procedure with the proportionté DR model, we got
a = (3.51,8.47,15.42), & = —0.02194

so that

& x (wy, wa, w3) = (—0.48, —1.24, —2.60)

The estimated, under this model is shown in Figure 3.1 together with thenestied £

under the first DR model.

The adequacy of proportiondis model under the assumption that the original DR model
holds has been tested using both the asymptotic approdbbygh the sample size is rather
small) and the bootstrap procedure. The correspondindyesavere).169 and0.264, re-
spectively. This means that the proportiona model can describe the underlying distribu-

tions almost as well as the original DR model.






Chapter 4

A density ratio model with randomly censored data

4.1 Random censoring

Censoring is very common in life testing experiments andazar either by design or acci-
dentally. Here we will consider the second case and, morafggadly, independent random
censoring. LetX° denote the original lifetime of an item aridbe an independent random
variable with some unknown distributidi,;. Then,X° is subject to random censoring if we
observeX = min{X° U} rather thanX® itself. This kind of situation may occur if items

can fail due to an independent cause which is irrelevantd@iperiment.

4.2 Empirical likelihood and its maximization

Let X2

oi=0,1,...,K,j=1,...,n; belifetimes following mode(2.2) andU;; are corre-

sponding independent random variables. Assume that wewejse;;, 6,;),¢ = 0,1,..., K,

Jj=1,...,n; whereX;; = min{X?,

Uij} andél-j = [(XZO] S Uzg) = [<Xz] = Xzoj) The

empirical likelihood based on the data described above is

K n;

a,8,Fp) = [[]]dF () Fi(ay)'
1=0 j=1
K n;

H H dFo(x ue Sij{ai+Bih (m”)}F (x”)l bij.

=0 j=1
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As in the previous chapter, let, ..., zy be the combined sample apgd = dFy(z;). Then,

maximization ofL is equivalent to the maximization of

N

L*(a, B,p) = (Hm) exp { iaii% + iﬁii%h(%)}x

ng

HH( Z pkeaﬂrﬁih(%))l_é“’

1=0 j=1 2>
under the constrainfs ,_, pre® 9 = 1,i =0,1,... K.

Unfortunately, the above maximization problem is much movelved than the one we
described in the previous chapter due to the presence oagtedrm. However, recently
Wei and Zhou (2016) presented an EM algorithm for maximizsaogh likelihoods. More
specifically, they considered a two-sample density ratiod@hwhere the data are subject to
independent random censoring. Here we will slightly extdredr approach to the case of

more than two samples.

Recall that the EM algorithm (Dempster et al., 1977) is arattee procedure which can
be applied in models with missing data. The algorithm atites repeatedly between the
E-step (E for “expectation”) and the M-step (M for “maximiiza”) until the sequence of
maximizers to converge. In the special case where the wmdgwdlistribution belongs to an
exponential family, the algorithm simplifies a lot: The Eystonsists of imputing as missing
values their expectations by considering as true valueseoparameters the maximizer of
the previous step. After the imputation, the data are “ceteiland the maximization is

carried out as usually.

Since the underlying distributions are assumed to be cootis, each of the values
z1,...,2zy has been observed only once. By the discrete nature of themzax with re-

spect toFy, the only values supported hyare the observed values, ... ., zy. Since the
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data are censored, some of these values could have beenvetismore than one time.

In the sequel assume that thevalues have been sorted, i.e., that< --- < zy. Let b
denote the multiplicity ot;, in theith sample. Note that when the underlying distributions
are continuous we havg, = 1 or 0 according to whether,, comes from théth sample or
not a\ndef:1 b;x = mn;. Wei and Zhou (2016) gave the expected number of obsergtion
which are equal ta,, in the groupi explicitly. In our case where the underlying distributions

are assumed continuous, it reads

E(bix) = I(2 is an uncensored value from groilg-

k . )
aitpin(z) N (25 is a censored value from group
Pre 2 N eoitBih(z0)
j=1 Zezj Pe€™r T

In order to understand this, notice that, given the datagipectation of the original (i.e.,

(4.1)

before possible censoring) lifetin¥e;; under the discrete DR model which assigns positive

probabilitiesp, ..., py onlytozy, ..., zy is

E{I(X}; =z)|datg = E{I(X}; = 2, 0;j = 1)|Xij, 055} + E{I(X]; = 21, 65 = 0)] X5, 045}

P(XZC; = Zk, Uij = XZ])
Z P(XZO] = 2y, Uij == XZ])

Xij<z
P(XZOJ = Zk;)dHU(XU)
Z P(XZC; = Zg)dHU(Xij>

Xij<zg
(by the independence assumptiongf andU;;)
P(XZOJ = Zk;)dHU(XU)
Z P(XZ = Zg)dHU(Xij>

Xij<zp

= I(X; = 2,055 = 1) + I[(X;; < 2,0, = 0)

= I(Xij = 2,05 = 1) + 1(X;; < 2,0, = 0)

= I(Xy; = 2,055 = 1) + [(X;; < 2,0, = 0)

[e%) +/31h(zk)

B Pre
= I(Xij = 2,0, =1) + Z = Zm, 03j = )sz geai‘f'ﬁih(zf).

Therefore, the expected value of the number of observaimogoup: which are equal to,

k a;+Bih(zx)
_ _ pre
Z {I(X Zk‘) - + Z I Zm) Z] - 0) Zf:m péeai«hﬂih(Zz) }
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ng

k  n;
a;+Bih(z : !
Z I iy Zka ij = 1) + pre O Z Z ](XZJ = Zm; 5ij = O) ZK D ecit+Bih(ze)
—m 7 7 7

j=1 m=1 j=1

which is equal tq4.1) since
> I(Xi; = 2,6, = 1) = I (2 is an uncensored value from grojp

and
> I(Xij = zm, 0 = 0) = I(z, is a censored value from group
j=1

When possible multiplicities of observations are congdehe likelihood based on un-

censored data is

L(a, 8, Fy) = HHdF z,) ik

k=1 1=0
N K

= H H dFO<Zk>bik ebin{aitBih(zi)}

k=1 1i=0

=

N

= (ﬂdFO(zk )eXp{ azzbzk‘l‘ZﬁZszkh Zk:}

1=1 k=1 =1

— (ﬁdFO(Zk >eXp{Zn&z+Zﬁzzbzkh 2k }

(recall thatZk:1 ik = 10;).

N

As before, its maximization with respectdo 5 and Fy is equivalent to the maximization of
N K K n;
(e, B,p) = (TLok) exp { D mics + 305> buh(z) |
k=1 =1 i=1 j=1
with respect tavy, 3 andp, under the constraintgflepkeaﬁﬁih(%) =1,i=0,1,..., K.
By using again Lagrange multipliers and repeating the mhoof the previous chapter we

get that
K

-1
b= b S e} g,

=0
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By replacingp;, into L* and taking the logarithm we get the profile loglikelihoodof3,

N K
Zn o + Zﬁz szkh 2k) Zbk loanieaiJrﬂih(z’“). (4.2
i=1 k=1 i=0

In this case the likelihood equations become

N
0 -~ it Bih(zy)
E(Oz)B)_ n; Zbk i = U, 2217 7K7
30@ 1 Z 0 nieaﬂrﬁzh(zk)
o - N n:h Zk: az+ﬁih(zk)
—l(a,3) = bixh(z1) by, — =0, i=1,...,K.
8ﬁz ( 75) ; k k Z k Z Onearf‘ﬂ? (1)

Following Wei and Zhou (2016), we run the following EM algbrn for maximizingL*:

0. Initialization

Setbﬁg) = I(z is an uncensored value from grotlp: = 0,1,..., K +1,k=1,..., N.

1. Atiterationm =1,2,...:

M-step
Maximize /(cv, 3) in (4.2) with 5" in the place o
Denote bya™, 50 the maximizers and set

K
m m -1
Pl — bl(gmfl){ Znieag )14 )h(Z}c)} . k=1,...,N.
i=0

E-step

Set

'™ = I(z, is an uncensored value from groiip-

k . .
(m)_al™ 180 (2 Z I(z; is a censored value from group
P et N (), 5m)

=1 D imj P eed™ 48 hze)

2. Repeat until some convergence criterion is met.

Natural convergence criteria could BEX {|a\™ — o™ V| 4+ 8™ — g™ V)} < &,
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SV P = pY| < e, (o™, gm) — ((amD) 3mD)) < ¢ wheree > 0 is some

tolerance as well as combinations of them.

Once the EM algorithm converges, we take as MLEs 0f andp their current values.

4.3 Implementation inR

The maximization of the likelihood iR is done with the help of functioapt i m Given the

data(x;;,d;;),i=0,1,...,K,j=1,...,n; we first define the vectors

Z = (Zlu"'azN) = (x017"'7l‘0n07$117"'7x1n17"'7:L‘K17-"7xKnK)7

(5: ((501,...,5()”0,511,...,517“,...,(5](1,...,5[(7”()
as well as theV x (K + 1) “membership” matrixB, with (k, i)-entry
boxi = I(2, comes fromsamplg, k=1,....N, i=0,1,..., K.

Moreover, letz°" be the sorted version af and§°™¢, Bs™ be §, B, but permuted to much

the ordering of:. In particular, inR we set
z.ord = sort(z), del.ord = delforder(z)] and BO.ord = BO[order(z),],

respectively el andB0 ared and B,). We also define the vectolx = h(z), hz.ord =
h(z.ord). We finally set = Bo: this will be the matrix ofs["’s in the implementation of

the EM algorithm.

TheR function giving the (profile) loglikelihood of = («, ) is

| ogli kel i hood = function(theta){

alf = c(0,theta[1:K]); bet = c(0,theta] (K+1):(2*K)])
sum(n*al f) +sun( bet *col Suns(B*hz)) -

sum( rowSuns( B) *1 og( col Suns(exp(al f+l og(n)+outer(bet,hz)))))
}
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while its gradient (the score function),

score = function(theta){
alf = c(0,theta[1:K]); bet = c(0,theta[ (K+1):(2*K)])
a.plus.beta. h = t(al f+l og(n)+outer(bet, hz))
c( (n-col Suns(rowSuns(B)*exp(a. plus. beta. h)/
rowSuns(exp(a. plus.beta.h))))[-1],
(col Suns(B*hz) - col Suns(rowSuns(B) *hz*exp(a. pl us. beta. h)/
rowSuns(exp(a. plus.beta.h))))[-1] )

}

The EM algorithm is implemented by repeated calls of the tiomc

estimate = function(){
ahat .ol d <<- ahat; bhat.old <<- bhat
res = opti m(p=c(ahat, bhat),
fn=l ogl i kel i hood, g=score, nethod="BFGS"
control =li st (abstol =1e-16,reltol =1le- 16, fnscal e=-1))
ahat <<- res$par[1:K]; bhat <<- res$par[(K+1): (2*K)]
ahat0 = c(0, ahat); bhat0 = c(0, bhat)
phat <<- rowSuns(B)*exp(t(ahatO+outer(bhatO, hz)))/
rowSuns(exp(t (ahat 0O+l og(n)+outer(bhatO, hz))));
phat = t(t(phat)/col Suns(phat))
phat.ord = phat[order(z),]
Phat bar.ord = apply(phat.ord[N:1,], 2, cunsum[N: 1, ]
B.ord = BO.ord*del.ord+
phat . or d*appl y(BO. ord*( 1-del . ord)/ Phat bar . ord, 2, cunsum
B <<- B.ord[rank(z),]

}

as follows:

whi | e(sunm( abs(ahat - ahat . ol d) +abs( bhat - bhat . ol d)) >1e-8)

estimate()
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Before running the abowehi | e command, we assign initial values
ahat.old = bhat.old = rep(1,K) and ahat = bhat = rep(0,K)

This ensures th& will proceed to the call oést i nmat e at least once.

As we can see, the functiogst i mat e returns the maximizerg™, 3™ (variables
ahat , bhat ) together withp™ (variablephat ) as well as the updated matrB(which
containsbﬁ,’g”)’s as mentioned above), making them global variables viassgnment<<- ",
Note finally that ifé contains only ones (i.e., there is no censoring in our da&) the func-

tionest i mat e returns the MLEs ofr and in just one step.

4.4 lllustrative example

In order to get an idea how censoring can affect the estimfate @ and F;, we consider
again the dielectric breakdowns dataset analyzed in thequ&chapter. There is no censor-
ing in these data therefore we introduced artificial cemgprandom times as follows. We
simulated exponential random variatés, : = 0,1,2,3, j = 1,...,n,, such that the mean
of U;; to be equal to a particular quantile of the correspondingigraf observations. We

then setr;; the minimum of the(ij)th observation and’;;.

We censored artificially the dataset using the third questind the medians of the groups
of the observations. This implies that we introduced at¥tt and50% censoring to the
data, respectively. Here we report the results of a singleWhen we used the third quartiles

we got the MLEs

a = (7.46,14.47,25.59), B3 = (—1.00, —2.09, —4.46)
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Figure 4.1: Estimates df, based on the complete data (black line) and uader and50%
censoring rate (red and blue lines, respectively).

while when we used the median we got

a = (6.43,10.91,19.24), 3 = (—0.86, —1.57, —3.29).

o~

(Recall that the MLEs based on the complete data were (11.72,16.31,21.28), § =
(—1.59, —2.33,—3.30).)

The estimates of|, are shown in Figure 4.1 using red and blue color, respegtiwe
can see that the red line is much closer to the black than tlee bhis is expected since the
less censored values the closer the estimate should be tméhwe get from the complete

data.
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Final comments and thoughts for future work

As already mentioned, accelerated life test models covenaiderable amount of the liter-

ature on reliability and they are used in many scientific elbh this dissertation we fitted

the density ratio model to estimate a baseline distributimiction using either complete or
censored data. Howerver, many questions arise from thisedwoe. For instance, there is
the problem of choice of the functign This is a well-known problem in the DR model liter-
ature with no “correct” answer. Several suggestions haea beade, including preliminary

estimation of the densities and plotting their ratios. Amotissue is the choice af;’s in the

proportionals’s DR model.

There are other interesting types of reliability data whieeeDR model can be applied. In
particular, we are interested in using it on accelerateddéta in the presence of competing
risks. To be more specific, assume that within each offthe 1 stresses there exist up to
m > 2 different risk factors that may cause failure. Then, evextagdoint contributes to the
likelihood the density of the distribution related to a partar factor (the one that causes its
failure) and the survival functions of the distributiontated to the rest of the factors. We
believe that if we model the data via a DR model then the EMrélyn described in the last

chapter can be adapted in order to estimate its parameters.
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