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Περίληυη 

 

Σα κνληέια επηηαρπλόκελσλ ρξόλσλ δσήο ρξεζηκνπνηνύληαη πξνθεηκέλνπ λα 

εθηηκήζνπκε θαηαλνκέο δσήο ζπζηεκάησλ ζπληνκόηεξα, ρσξίο λα πεξηκέλνπκε λα 

παξαηεξήζνπκε ηνπο ρξόλνπο δσήο ηνπο ππό θαλνληθέο ζπλζήθεο ιεηηνπξγίαο. Σα κνληέια 

απηά εκθαλίζζεθαλ εδώ θαη πνιιέο δεθαεηίεο θαη εθαξκόδνληαη ζπρλόηεξα ζηνπο θιάδνπο 

ηεο βηνζηαηηζηηθήο θαη ηεο κεραλνινγίαο. Ο ζθνπόο απηήο ηεο δηπισκαηηθήο εξγαζίαο είλαη 

λα εηζαγάγνπκε ηνλ αλαγλώζηε ζε ηέηνηα κνληέια θαη λα εθαξκόζνπκε έλαλ εκηπαξακεηξηθό 

ηξόπν εθηίκεζεο ηεο θαηαλνκήο ηνπ ρξόλνπ δσήο.  

΢ην πξώην θεθάιαην μεθηλάκε κε ηελ πεξηγξαθή ησλ κνληέισλ επηηαρπλόκελσλ 

ρξόλσλ δσήο ζρνιηάδνληαο ηελ ρξεζηκόηεηά ηνπο θαη ζπλερίδνπκε κε ηνλ νξηζκό βαζηθώλ 

ελλνηώλ πνπ ρξεζηκνπνηνύληαη ζηελ εξγαζία.  

΢ην δεύηεξν θεθάιαην παξνπζηάδνπκε ην κνληέιν ιόγνπ ππθλνηήησλ πνπ εηζήγαγαλ 

νη Fokianos et al. (2001) βαζηδόκελνη ζηηο ηδέεο ησλ Qin and Lawless (1994) θαη εμεγνύκε 

ιεπηνκεξώο πώο γίλεηαη ε εθηίκεζε ησλ παξακέηξσλ ηνπ κέζσ θαηάηκεζεο ηεο (κε 

παξακεηξηθήο) πηζαλνθάλεηαο. Βαζηδόκελνη ζε απηέο εθηηκνύκε ηελ άγλσζηε ζπλάξηεζε 

θαηαλνκήο. Η κέζνδνο εθαξκόδεηαη ζε έλα παξάδεηγκα κε πξαγκαηηθά δεδνκέλα.  

΢ην ηξίην θεθάιαην ρξεζηκνπνηνύκε ην κνληέιν ιόγνπ ππθλνηήησλ κνληεινπνηώληαο 

πεξαηηέξσ ηηο παξακέηξνπο ηνπ. Σν απινύζηεξν κνληέιν ζπγθξίλεηαη κε ην βαζηθό κέζσ 

αζπκπησηηθνύ ειέγρνπ θαη ειέγρνπ πνπ βαζίδεηαη ζηε κέζνδν bootstrap. 

΢ην ηέηαξην θεθάιαην ζεσξνύκε ην κνληέιν ιόγνπ ππθλνηήησλ ζηελ πεξίπησζε πνπ 

ηα δεδνκέλα ππόθεηληαη ζε (πηζαλή) ηπραία ινγνθξηζία. Γηα ηελ εθηίκεζε ησλ παξακέηξσλ 

ζε απηήλ ηελ πεξίπησζε βαζηδόκαζηε ζε έλαλ αιγόξηζκν EM πνπ πξόηεηλαλ πξόζθαηα νη 

Wei and Zhou (2016).  

Γηα ηελ εθηίκεζε ησλ κνληέισλ θαη γεληθόηεξα γηα όινπο ηνπο ππνινγηζκνύο 

ρξεζηκνπνηήζεθε ην πξόγξακκα R θαη πην ζπγθεθξηκέλα ε ζπλάξηεζε optim. Οη ζπλαξηήζεηο 

πνπ δίλνπλ ηνλ ινγάξηζκν ηεο πηζαλνθάλεηαο θαη ησλ παξαγώγσλ ηεο παξνπζηάδνληαη ζην 

ηέηαξην θεθάιαην. 

Η δηπισκαηηθή εξγαζία νινθιεξώλεηαη κε θαηαγξαθή ησλ εξσηεκάησλ θαη ζθέςεσλ 

πνπ γελλήζεθαλ θαηά ηελ εθπόλεζή ηεο θαζώο θαη ηδεώλ γηα κειινληηθή εξεπλεηηθή 

εξγαζία.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

 

Accelerated life time models are used in order to faster estimate life distributions of 

systems without waiting to observe their lifetimes under normal operating conditions. These 

models appeared many decades ago and are applied mainly in the areas of biostatistics and 

mechanical engineering. The purpose of this dissertation is to introduce the reader to this kind 

of models and to apply a semiparametric method of estimating the life time distribution.  

In the first chapter we start with a description of accelerated life test models by 

commenting on their usefulness and we continue with basic definitions of notions which are 

used in the dissertation.  

In the second chapter we present the density ratio model introduced by Fokianos et al. 

(2001) based on ideas of Qin and Lawless (1994) and we explain in detail the estimation 

process of its parameters via profiling the (nonparametric) likelihood. Based on the estimates 

of the parameters we estimate the unknown distribution function. The method is applied to a 

real data example.  

In the third chapter we discuss the density ratio model by further modeling its 

parameters. The simpler model is compared to the basic one asymptotically and using the 

bootstrap method.  

In the fourth chapter we consider the density ratio model in the case where the data are 

subject to (possible) random censoring. In this case our estimation procedures are based on a 

particular EM algorithm recently proposed by Wei and Zhou (2016).  

For the estimation of the models and all other calculations we used R and more 

specifically the function optim. The procedures which return the loglikelihood and its 

derivatives are presented in the fourth chapter.  

We conclude by discussing some questions and thoughts as well some ideas for future 

work.  
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Chapter 1

Introduction

1.1 Accelerated life test models

The revolution of technology and mechanism demands the mostaccurate and precise estima-

tion of reliability of a product or a system. The classical methods of estimation emphasize

in the analysis of lifetime data under normal operation conditions, something that in most of

the times is very difficult or even unreachable. This problemmostly relies on the long life of

the products so, in order to obtain an estimation of the lifetime distribution of a product in

a timely manner, we use Accelerated Life Tests (ALT). The ALTmodels have been studied

for many decades and one of the first researchers in this area was Nelson (1980, 2004).

1.1.1 How an ALT model works

The experimenter applies severe stresses on the parametersof the lifetime distributions to

obtain information more quickly than would be possible if the products were under the nor-

mal operating conditions. Our purpose is to induce earlier failure because if we depended

on normal operating conditions a very large sample and of course a lot of time would be

necessary and most of the times this is not feasible. Engineers have used accelerated tests

for diverse products as well as this type of stress has been used for material testing (metals,

plastic, ceramics, food and drugs, cement, nuclear reactormaterials). We will give only one
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example just to clarify how such a model works. Imagine that we have metal in our dis-

posal. Accelerating stresses include mechanical stress, temperature, specimen geometry and

surface finish. Chemical acceleration factors include salt, humidity, corrosives and acids.

As mentioned above, an ALT is a method for estimating the reliability of products at nor-

mal operating conditions from the failure data obtained at the severe conditions. Nowadays,

such approach is used in many science fields such as biology, demography, gerontology, dy-

namic of population, genetics, reliability, survival analysis, radio-biology, biophysics and so

many other fields where scientists study the longevity, aging and degradation using stochas-

tic models. In order to obtain information about all these, reliability theory seems to be a

great method combined with parametric, non parametric and semi parametric accelerated life

models used in accelerating life testing.

1.1.2 Types of ALT models

There are different types of ALT models as there are different types of stresses that are

applied in many ways. ALT methods can be either qualitative or quantitative. Qualitative

methods are used when we have a small sample and we are interested in finding possible

failure mode in the product. If there is one, managers and engineers try to improve the

product design. Nevertheless, a failure mode does not implyanything about the reliability

status of the product. Some well known and relatively new qualitative methods are:

• Highly Accelerated Life Testing (HALT)

• Highly Accelerated Stress Screen (HASS)

• Elephant and Torture Tests

• Shake and Bake Tests

• Reliability Demonstration Test (RDT)
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• Reliability Acceptance Test

• Burn-In Test

• Reliability Growth Test (RGT)

From the above we will say a few words for the most common of these methods starting

with the “Elephant tests”. In the bibliography one could seethat this specific method has a

lot of names such as torture test, killer test, design limit/margin test. Such a test steps on the

product with an elephant, figuratively speaking. If the item/product survives, it passes the

test otherwise the engineer must redesign or improve the product. The test generally involves

one specimen which will be subject to a single (or more) severe level of stress. Most of the

time, different elephant tests may be used to reveal different failure modes. Apart from

“Elephant tests”, we have the “Burn-In” test. As Nelson mentions, such a test consists of

running units under design or accelerated conditions for a suitable length of time. Burn-in is

a manufacturing operation that is intended to fail short-lived units (freaks) so if the burn-in

test works, the surviving units that go into service have a few early failures. These are the

units that have manufacturing defects.

On the other hand, quantitative methods focus in the analysis of what we cited above,

namely, test units are exposed to a greater pressure than thepredefined in order to increase

the likelihood of observing failures. A Quantitative Accelerated Life Test model (QALT)

actually tries to quantify the life of the product and provide numerical estimations of reli-

ability characteristics and the statistical inference forthe functioning of the product under

normal use conditions. Generally an ALT model is used duringthe design phase and before

the release of a product. If we consider the industrial sector and if we think that ALT models

were introduced in order to ensure the reliability of electronic products that have been used
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in the military, aerospace, automotive and mobile applications, we can see that the model

tries to improve product reliability efficiently and to determine whether safety and reliability

goals are being met in order to assess warranty risk.

At QALT we can distinguish different stress strategies like:

• Parallel Constant-Stress ALT (PC-SALT)

• Step-Stress ALT (SSALT)

• Accelerated Failure Time Model (AFT)

• Cumulative Exposure Model (CEM)

In PC-SALT test units are divided into groups and each group is tested under different

stress level. At SSALT all test units are exposed in a pre-specified stress level. For those

test units that survive up to a pre-specified time, the stresslevel is changed and held constant

until all units fail (uncensored test) or until a pre-specified test termination time is attained

(censored test). The most widely used class of ALT model is AFT models. The stress levels

applied at the accelerated conditions are within a range of true acceleration and the AFT

models assume that the applied stresses act multiplicatively on the failure time or linearly on

the log failure time, rather than multiplicatively on the hazard rate. Finally, the CEM relates

the lifetime distribution of the test units at one stress level to the distributions at previous

levels assuming that the remaining lifetime depends only onthe current stress level and on

the current cumulative fraction of the units that failured (Markov property).

1.1.3 Types of Accelerated Test Data

Accelerated test data can be divided into two big categories. The first one is when the prod-

uct characteristic of interest is ”life” and the second one when the measure of interest is
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”performance”. A measure of performance could be tensile, strength or ductility. In such a

case we are interested in how product performance degrades with age. Namely, specimens

are aged under high stress and their performances, i.e. strength, measured at different ages.

A very well known example of this method occurs temperature aging of electrical insulation

and pharmaceuticals. For life data the analysis relies on the data that we have. First of all,

we might have complete data (failure age) of each sample unit. However, it is very common

to have censored data, namely some units are unfailed and their failure times are known only

to be beyond their present running times (censored on the right or truncated). The analysis

could be made with data when a failure time known only to be before a certain time (cen-

sored on the left). It is known from literature that speakingabout censored data we have

Type I and Type II censored data, multiply censored data, etc. Regarding accelerated data

we have also competing modes when sample units fail from different causes. Also, one may

know whether the failure time of a unit is before or after a certain time so we have to deal

with quantal-response data. Finally, when a failure is inspected more than once and a unit

failed in an interval between inspections we have interval data. Of course, in an analysis one

could notice a mixture of all the above cases and so we could speak about mixture data.

1.2 Empirical likelihood

First of all we have to define the empirical cumulative distribution function and show that it

is a nonparametric maximum likelihood estimator (NPMLE) ofthe underlying CDF. LetX

be a real- (or integer-) valued random variable and letF (x) = P (X ≤ x), x ∈ R, denote its

CDF. Then,F (x−) = limy↑x F (y) = P (X < x) andF (x) − F (x−) = P (X = x).

Definition 1. Let X1, X2, . . . , Xn
iid∼ F . The empirical cumulative distribution function
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(ECDF) ofX1, X2, . . . , Xn is the function

F̂ (x) =
1

n

n∑

i=1

I(Xi ≤ x), x ∈ R.

It is well-known that, given the observed valuesx1, . . . , xn, the ECDF is the CDF of the

(discrete) distribution which assigns mass1/n to each of thexi’s, i = 1, . . . , n.

Definition 2. Let X1, X2, . . . , Xn
iid∼ F . Then, the empirical likelihood ofF is

L(F ) =
n∏

i=1

{F (xi) − F (xi−)}, F ∈ F , (1.1)

whereF is the set of all CDFs.

The empirical likelihood (see Owen, 2001) can be consideredas the nonparametric like-

lihood of a CDF. It is immediately seen thatL(F ) = 0 whenF is continuous. This implies

that in order to maximizeL(F ) with respect toF , i.e., to find the nonparametric maximum

likelihood estimator (NPMLE) ofF , we must restrict the parameter space to the set of dis-

crete distributions and, furthermore, to the set of discrete distributions that assign positive

mass to the observed values. It turns out that

Theorem 1. The NPMLE of F is the ECDF F̂ .

Proof. Clearly, if F is continuous at some observed valuexi, thenF (xi)− F (xi−) = 0 and

so,L(F ) = 0. Hence, the distribution maximizing(1.1) must assign positive probabilities

p1, . . . , pn to the observed valuesx1, . . . , xn. These probabilities must satisfy
∑n

k=1 pk = 1

because if their sum is smaller than1 we have

n∏

i=1

pi <

n∏

i=1

pi∑
pk

and thus, distribution which assigns massp′i = pi/
∑

pk to xi, i = 1, . . . , n, has larger

likelihood. By symmetry we must havep1 = · · · = pn, thereforepi = 1/n, i = 1, . . . , n.
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Kiefer and Wolfowitz (1956) were the first who noticed that the ECDF is an NPMLE.

In the same year, Grenarder (1956) constructed a NPMLE for a distribution known to have

a monotone decreasing density over[0,∞). Kaplan and Meier (1958) used the idea of the

NPMLE and introduced the product-limit estimator of the CDFbased on censored data. Jo-

hansen (1978) showed that product-limit estimators are NPMLE’s for transition probabilities

of continuous time Markov chains. Finally, Hartley and Rao (1968) introduced the construc-

tion of the NPMLE in the context of random sampling from a finite population. It is also

worth mentioning that Brunk, Franck, Hanson, and Hogg (1966) considered nonparametric

maximum likelihood estimation of the CDFs of two stochastically ordered distributions.

1.3 Biased (or weighted) distributions

There are situations where the researcher wants to estimatea CDF but the data are sampled

from a biased, or weighted, version of the distribution of interest. As Patil (2002) notes,

“weighted distributions adjust the probabilities of actual occurrence of events at

a specification of the probabilities of those events have already been observed”.

The basic idea of weighted distributions is based on Fisher’s theory (1934) and an extension

of this idea was given by Rao (1965).

Suppose that a distribution has CDFF0 and letw be a nonnegative function. Then the

distribution with CDF

F (x) =

∫ x

−∞
w(y)dF0(y)

∫ ∞

−∞
w(y)dF0(y)

, (1.2)

whereEF0{w(X)} =
∫

w(y)dF0(y) ∈ (0,∞), is called a biased (or weighted) version ofF0

with biasing (or weighting) functionw. If F0 admits a probability density (or mass) function
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(PDF)f0, the corresponding PDF of its biased version is

f(x) =
w(x)f0(x)

E0{w(X)} .

When the support ofF0 is a subset of the nonnegative reals, the casew(x) = x corre-

sponds to its so-called length biased version. In this case,

F (x) =
1

EF0(X)

∫ x

−∞

y dF0(y),

providedEF0(X) < ∞. The functionw(x) = x2 gives rise to the size biased version ofF0

while w(x) = I(x ∈ A) truncatesF0 at the setA.

In general, weighted distributions may serve as a useful tool for the selection of appropri-

ate models for observed data drawn without a proper frame. The statistical problem which

rise underneath is to determine a suitable weight functionw(x). Below are some of the most

common weighted functions used in the literature (Liang, 2005):

• w(x) = xα

• w(x) = x · (x − 1) · . . . · (x − r), wherer is an integer

• w(x) = eα+βx

• w(x) = α + β · x

• w(x) = 1 − (1 − β)x

• w(x) =
α + βx

γ + δx

• w(x) = P (Z ≤ x), for some RVZ

• w(x) = 1 − F0(x)

Nonparametric maximum likelihood estimation of a CDF basedon a length biased sam-

ple from it has been first considered by Cox (1969). Ifx1, . . . , xn denote the observed values
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of X1, . . . , Xn
iid∼ F , then the NPMLE of the baseline CDFF is given in closed form, namely,

F̂ (x) =

∑n
i=1 x−1

i I(xi ≤ x)∑n
i=1 x−1

i

=

∑
xi≤x x−1

i∑n
i=1 x−1

i

.

In general, when the biasing function isw, it can be shown that the NPMLE ofF is

F̂ (x) =

∑n
i=1 w(xi)

−1I(xi ≤ t)∑n
i=1 w(xi)−1

=

∑
xi≤x w(xi)

−1

∑n
i=1 w(xi)−1

.

The problem of estimating a CDF based on samples from two or more of its weighted

versions has been considered by Vardi (1982), Vardi (1985),Vardi et al. (1988). In these

papers, conditions for the existence and uniqueness of the NPMLEs are discussed as well as

the asymptotic distributions of the NPMLEs of the expectations of the weighting functions

and of the baseline CDF. More specifically, under reasonableconditions, the NPMLEs of the

expectations are asymptotically normal while the NPMLE of the baseline CDF converges

weakly to a pinned Gaussian process.

1.4 Semiparametric extensions

The procedures mentioned at the end of the previous section assume the function(s)w to

be completely known. A first semiparametric approach introduced by Sun and Woodroofe

(1997) who estimated the weight functionw nonparametrically and the CDFF parametri-

cally. Gilbert et al. (1999) introduced another semiparametric model, leavingF nonpara-

metric but assuming that the weight function of theith sample isw(·, β), whereβ is some

finite dimensional parameter and the sampling density of theith ample is proportional to

w(·, β)f(·). In more detail,

F (x; β) =

∫ x

−∞
w(y; β)dF0(y)

∫ ∞

−∞
w(y; β)dF0(y)

(1.3)
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or, in terms of densities,

f(x; β) =
w(x; β)f0(x)

E0{w(X; β)} . (1.4)

Note that for fixedβ, (1.3) is a particular case of(1.2). Equation(1.4) defines a semiparamet-

ric model: the finite dimensional parameterβ is its parametric while the infinite dimensional

parameterF0 is its nonparametric part.

Notice that(1.4) defines adensity ratio modelsince it actually models the ratio of two

densities:

f(x; β)

f0(x)
∝ w(x; β).

In this dissertation we will follow Fokianos et al. (2001) and set

w(x; β) = eβh(x),

whereh(x) is an arbitrary yet known function.



Chapter 2

The density ratio model: A tool for semiparametric
comparison of distributions

2.1 Intoduction to the density ratio model

In order to avoid the normality assumption in the one-way layout, Fokianos et al. (2001)

considered and studied in detail a semiparametric model which now is known asthe density

ratio model. Suppose that we observeK +1 independent random samples from distributions

with densitiesf0, f1, . . . , fK , wheref0 is completely unspecified and

fi(x) = exp{αi + βih(x)}f0(x), i = 1, . . . , K, (2.1)

for some unknown parametersαi and βi and given functionh. The term “density ratio

model” is justified by the fact that(2.1) models the ratio of the densitiesfi/f0 as

fi(x)

f0(x)
= exp{αi + βih(x)}, x ∈ supp(f0),

or, equivalently,

log
fi(x)

f0(x)
= αi + βih(x), x ∈ supp(f0).

Clearly, under this model the distributionsfi, i = 1, . . . , K, are biased (or weighted) versions

of f0. It is a semiparametric model since it consists of a nonparametric part, the baseline

distribution with PDFf0, and the real-valued parametersα1, . . . , αK , β1, . . . , βK .
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The fact thatfi is a PDF implies that model(2.1) is overparametrized sinceαi is com-

pletely determined byβi andf0 through the equation

αi = − log
{ ∫

eβih(x)dF0(x)
}
.

This implies that whenβi = 0 we haveαi = 0 as well and thusfi = f0. Based on this,

Fokianos et al. (2001) were able to express the hypothesis ofequality of distributions

f0 = f1 = · · · = fK

as

0 = β1 = · · · = βK .

Therefore, under the density ratio model(2.1), the problem of testing equality ofK + 1

distributions simplifies to testing thatK real-valued parameters equal zero.

The DR model fits nicely in the context of one-parameter exponential families (see Table

2.1). In fact, by definition, the DR model assumes that theK + 1 distributions belong to the

same exponential family with canonical parameterβ and sufficient statistich(X); see(2.1).

2.2 Empirical likelihood and its maximization

Assume that we observeK + 1 independent groups

X01, . . . , X0n0

iid∼ f0(x),

X11, . . . , X1n1

iid∼ f0(x) exp{α1 + β1h(x)}, (2.2)

...

XK1, . . . , XKnK

iid∼ f0(x) exp{αK + βKh(x)}.
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Distribution h(x) β

BinomialB(n, p) x log{p/(1 − p)}
PoissonP(λ) x log λ

Negative BinomialNB(a, p) (a known) x log(1 − p)

ExponentialE(λ) x −λ

GammaG(a, λ) (a known) x −λ

GammaG(a, λ) (λ known) log x a

NormalN (µ, σ2) (σ2 known) x µ/σ2

NormalN (µ, σ2) (µ known) (x − µ)2 −1/(2σ2)

LognormalLN (µ, σ2) log x µ/σ2

LognormalLN (µ, σ2) (log x − µ)2 −1/(2σ2)

Inverse GaussianIG(µ, λ) (λ known) x −λ/(2µ2)

Inverse GaussianIG(µ, λ) (µ known) 1/x −λ/2

BetaBeta(a, b) (b known) log x a

BetaBeta(a, b) (a known) log(1 − x) b

Table 2.1: Functionh and parameterβ for several one-parameter exponential families.

For convenience, hereafter we setα0 = β0 = 0 so that we will able to writefi(x) =

exp{αi + βih(x)}f0(x) for all i = 0, 1, . . . , K. Moreover, we definêα0 = β̂0 = 0 in order

to be able to write more elegant formulas containing estimators ofα’s andβ’s.

The empirical likelihood ofF0, α = (α1, . . . , αK), β = (β1, . . . , βK) is

L(α, β, F0) =

K∏

i=0

ni∏

j=1

dFi(xij)

=
K∏

i=0

ni∏

j=1

dF0(xij) exp{αi + βih(xij)}

= exp

{ K∑

i=1

niαi +

K∑

i=1

βi

ni∑

j=1

h(xij)

} K∏

i=0

ni∏

j=1

dF0(xij),

and the parameters satisfy the constraints
∫

eαi+βih(x)dF0(x) = 1, i = 0, 1, . . . , K. As usual,
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in the context of empirical likelihood, the maximization ofL with respect toF0 is achieved

within the set of discrete CDFs with jumps at the observed values. LetN =
∑K

i=0 ni and

z1, . . . , zN be the combined (or pooled) sample. Then, the maximization of L with respect

to α, β andF0 under the aforementioned constraints is equivalent to the maximization of

L∗(α, β, p) = exp

{ K∑

i=1

niαi +
K∑

i=1

βi

ni∑

j=1

h(xij)

} N∏

k=1

pk,

where

pk = dF0(zk) = F0(zk) − F0(zk−), k = 1, . . . , N,

andp = (p1, . . . , pN), under the constraints

N∑

k=1

pke
αi+βih(zk) = 1, i = 0, 1, . . . , K, (2.3)

or, equivalently, of its logarithm

ℓ(α, β, p) ≡ log L∗(α, β, p) =
K∑

i=1

niαi +
K∑

i=1

βi

ni∑

j=1

h(xij) +
N∑

k=1

log pk. (2.4)

Such maximization tasks are typically done with the use of Lagrange multipliers. Here

we will denote them byλ = (λ0, λ1, . . . , λK) (since there areK + 1 constraints). The

corresponding Lagrangian is

L(α, β, p, λ) =

N∑

k=1

log pk +

K∑

i=1

niαi +

K∑

i=1

βi

ni∑

j=1

h(xij)+

λ0

( N∑

k=1

pk − 1

)
+

K∑

k=1

λi

( N∑

k=1

pke
αi+βih(zk) − 1

)
.

The first partial derivatives ofL with respect toαi’s are

∂

∂αi
L(α, β, p, λ) = ni + λi

N∑

k=1

pke
αi+βih(zk), i = 1, . . . , K.

By equating them to zero and using the constraints
∑N

k=1 pke
αi+βih(zk) = 1, i = 1, . . . , K,

we get explicitly the Lagrange multipliersλ1, . . . , λK as

λi = −ni, i = 1, . . . , K. (2.5)
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Furthermore, the first partial derivative ofL with respect topk is

∂

∂pk
L(α, β, p, λ) =

1

pk
+ λ0 +

K∑

i=1

λie
αi+βih(zk). (2.6)

By multiplying bypk and equating it to zero we get the equations

1 + λ0pk +

K∑

i=1

λipke
αi+βih(zk) = 0, k = 1, . . . , N.

Summation with respect tok and use of the constraints(2.3) gives

N + λ0 +
K∑

i=1

λi = 0

which together with(2.5) implies

λ0 = −n0. (2.7)

If we replace the values of all Lagrange multipliers given in(2.5) and(2.7) into the derivative

in (2.6) and set it equal to zero we get

pk =
1

n0 +
∑K

i=1 nieαi+βih(zk)
=

{ K∑

i=0

nie
αi+βih(zk)

}−1

(2.8)

(recall that we have setα0 = β0 = 0). By replacing further these values into(2.4) we obtain

the profile loglikelihood ofα, β,

ℓ̃(α, β) =

K∑

i=1

niαi +

K∑

i=1

βi

ni∑

j=1

h(xij) −
N∑

k=1

log

K∑

i=0

nie
αi+βih(zk). (2.9)

The last function can be easily maximized with respect toα, β since it is essentially the log-

likelihood of the parameters in a multinomial logistic regression model. More specifically,

suppose that with haveK + 1 categories labeled0, 1, . . . , K, and the probabilityπi(z) of

observing theith category given the covariate valuez satisfies

log{πi(z)/π0(z)} = α′
i + βih(z),
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whereα′
i = αi + log(ni/n0). Then, the loglikelihood of this model’s parameters is exactly

(2.9).

The well-known condition of “nonseparation” for the existence of the MLEs in the lo-

gistic regression models (Albert and Anderson, 1984) applies in the case of DR model as

well. Hence, in order the MLEs to exist and be unique, the observationsxij , i = 0, 1, . . . , K,

j = 1, . . . , nij, must satisfy the condition

for all i ∈ {0, 1, . . . , K} there existsi′ ∈ {0, 1, . . . , K}, i′ 6= i,

such that
(
min

j
h(xij), max

j
h(xij)

)⋂(
min

j
h(xi′j), max

j
h(xi′j)

)
6= ∅.

In simple words, this condition means that there must be no sample completely separated of

the others.

The (profile) likelihood equations forα andβ are

∂

∂αi

ℓ̃(α, β) = ni −
N∑

k=1

nie
αi+βih(zk)

∑K
i=0 nieαi+βih(zk)

= 0, i = 1, . . . , K, (2.10)

∂

∂βi
ℓ̃(α, β) =

ni∑

j=1

h(xij) −
N∑

k=1

nih(zk)e
αi+βih(zk)

∑K
i=0 nieαi+βih(zk)

= 0, i = 1, . . . , K. (2.11)

Once we obtain their solutionŝα1, . . . , α̂K , β̂1, . . . , β̂K we plug them into(2.8) to get the

MLE of pk,

p̂k =
1

∑K
i=0 nieα̂i+β̂ih(zk)

.

Thus, the MLE ofF0 is

F̂0(x) =
∑

zk≤x

p̂k =
∑

zk≤x

1
∑K

i=0 nieα̂i+β̂ih(zk)
, x ∈ R.

Furthermore, the MLEs ofF1, . . . , FK are given by

F̂i(x) =
∑

zk≤x

eα̂i+β̂ih(zk)p̂k =
∑

zk≤x

eα̂i+β̂ih(zk)

∑K
i=0 nieα̂i+β̂ih(zk)

, x ∈ R, i = 1, . . . , K.
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Fokianos et al. (2001) showed thatα̂, β̂ are asymptotically normal estimators ofα, β,

i.e.,

√
N

(
α̂ − α

β̂ − β

)
d→ N2K(0, Σ) (2.12)

asN → ∞ in such a way thatni/N → ρi ∈ (0, 1), i = 0, 1, . . . , K. (The last condition

means that all sample sizes must tend to infinity at the same rate.) The covariance matrix of

the asymptotic normal distribution is given byΣ = U−1V U−1 where

U = N−1E{∇2ℓ̃(α, β)} and V = N−1E{∇ℓ̃(α, β)∇ℓ̃(α, β)T}.

Here,∇ℓ̃(α, β) denotes the(2K)-dimensional column vector of the derivatives in(2.10),

(2.11) (i.e., the gradient of̃ℓ) while ∇2ℓ̃(α, β) the (2K) × (2K) matrix with entries the

second partial derivatives of̃ℓ (i.e., its Hessian). This follows from the general theory of

M-estimators. It is important to note that if someβi’s coincide then the correspondingαi’s

coincide as well and then the asymptotic normal distribution in (2.12) is singular. On the

other hand, the general theory of semiparametric models andprofile likelihood implies that

F̂0 converges to a pinned Gaussian process with mean functionF0.

2.3 The DR model as an ALT model

Assume that we want to put on a lifetestN items in order to estimate a baseline distribution

functionF0, where the term “baseline” means that it is the distributionfunction of the items’

lifes under standard conditions. In order to deal with time limitations, we may split theN

items intoK + 1 groups ofn0, n1, . . . , nK items, respectively, and run the experiment under

different stress levels for each group. Group0 is put on the standard stress level, hence the

distribution function generating the corresponding sample isF0. The remaining groups are
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put on highter stress levels and it is assumed that the stressfor groupi is higher than that of

groupj for all i < j. Denote byFi, i = 1, . . . , K, the distribution functions of the remaining

groups and let̄Fi = 1 − Fi, i = 0, 1, . . . , K. Since the stress level increases withi, one

expects that the distributions are ordered, i.e.,Fi �st Fj for i < j. Recall that this means

that F̄i(x) ≥ F̄j(x), for all x, which means that lifetimes under a higher stress level are

expected to take lower values than lifetimes under a lower stress level.

The DR model in(2.2) it is a plausible model to describe such data. Assume that the

lifetime distribution of interest has densityf0 while the distributions under higher stress lev-

els belong to the same family with densities satifying(2.1). The parametersβi are assumed

to depend on theith stress level and they are easily estimated using the procedure described

in the previous section.

Although ordering of the distributions is expected to hold,sometimes the estimated pa-

rameters don’t completely agree with this assumption. In cases where we strongly believe to

the ordering, we could apply order restricted inference (Silvapulle and Sen, 2005) to force

the estimates to satisfy this assumption. Davidov, Fokianos and Iliopoulos (2010) considered

order restricted inference for the power biased model, i.e., the DR model withh(x) = log x.

However their procedure can be easily applied with any strictly increasing function instead

of the logarithm.

2.4 Illustrative example

In order to illustrate the DR model we consider a dataset originally presented in Kalka-

nis and Rosso (1989) and discussed as an example in Meeker andEscobar (1998, Ex-

ample 18.5). The data represent times of dielectric breakdown in minutes of units tested
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Figure 2.1: Log(times to dielectric breakdown) of units tested at100.3, 122.4, 157.1, 219.0,
and361.4 kV/mm.

at 100.3, 122.4, 157.1, 219.0, and361.4 kV/mm, i.e., under five different voltage stresses.

Meeker and Escobar (1998) explain that voltage stress across a dielectric is measured in

units of volts/thickness. The data are depicted in Figure 2.1.

Let us use the DR model in order to estimate the CDF of the time of breakdown under

100.3 kV/mm. Figure 2.1 shows some linearity of the data logarithms so itseems natural to

takeh(x) = log x and assume that

fi(x) = f0(x)eαi+βi log x ∝ xβif0(x), i = 0, 1, . . . , 4.

However, as we can clearly see from the graph, the last group corresponding to the highest

stress is separated from the other four groups. This means that the MLEs of the parameters

do not exist. Therefore, we will use only the first four groupsto estimate the model.
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Figure 2.2: Estimated CDFs of time to dielectric breakdown at 100.3, 122.4, 157.1 and219.0
kV/mm.

The maximization of̃ℓ has been done inR using the functionoptim. (Details on the im-

plementation are given in the next chapter.) After running the procedure we get the estimates

α̂ = (11.72, 16.31, 21.28), β̂ = (−1.59,−2.33,−3.30)

and thus that the estimates of the underlying CDFs are

F̂0(x) =
∑

zk6x

1

8 + 8e11.72−1.59 log zk + 10e16.31−2.33 log zk + 10e21.28−3.30 log zk
,

F̂1(x) =
∑

zk6x

8e11.72−1.59 log zk

8 + 8e11.72−1.59 log zk + 10e16.31−2.33 log zk + 10e21.28−3.30 log zk
,

F̂2(x) =
∑

zk6x

e16.31−2.33 log zk

8 + 8e11.72−1.59 log zk + 10e16.31−2.33 log zk + 10e21.28−3.30 log zk
,

F̂3(x) =
∑

zk6x

e21.28−3.30 log zk

8 + 8e11.72−1.59 log zk + 10e16.31−2.33 log zk + 10e21.28−3.30 log zk
.
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Figure 2.2 shows the four estimated CDFs. The lowest line corresponds toF̂0 while the

highest line toF̂3. This follows from the fact that̂βi decreases withi and thus, the CDFs are

stochastically decreasing ini.





Chapter 3

A density ratio model with proportional βββ’s

As mentioned in the previous section, the parametersβ1, . . . , βK depend on the particular

stress level under which we observe the “biased” lifetimesXij, i = 1, . . . , K, j = 1, . . . , ni.

In this section we consider a linear model for these parameters. In particular, we assume that

βi = φwi, i = 1, . . . , K,

wherew1, . . . , wK are known values related to theK stress levels. For instance, if the dif-

ferent stress levels are formed by changing the operating temperature,wi could be either

the temperature or some simple transformation of it. Even simpler, if the different stresses

could be assumed “equidistance”, we could setwi = i. For convenience, in the sequel we

setw0 = 0.

3.1 Empirical likelihood and its maximization

Under this model and with data as in Section 2.2, the empirical likelihood ofα = (α1, . . . , αK),

φ andF0 is

L(α, φ, F0) =
K∏

i=0

ni∏

j=1

dFi(xij)

=

K∏

i=0

ni∏

j=1

dF0(xij) exp{αi + φwih(xij)}

37
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= exp

{ K∑

i=1

niαi + φ

K∑

i=1

wi

ni∑

j=1

h(xij)

} K∏

i=0

ni∏

j=1

dF0(xij),

with the parameters satisfying the constraints
∫

eαi+φwih(x)dF0(x) = 1, i = 0, 1, . . . , K.

Similarly to the Section 2.2, the maximization ofL is equivalent to the maximization of

L∗(α, φ, p) = exp

{ K∑

i=1

niαi + φ
K∑

i=1

wi

ni∑

j=1

h(xij)

} N∏

k=1

pk,

under the constraints
∑N

k=1 pke
αi+φwih(zk) = 1, i = 0, 1, . . . , K. By taking the logarithm and

employing Lagrange multipliers we can again profile with respect top since the maximizer

satisfies

pk =

{ K∑

i=0

nie
αi+φwih(zk)

}−1

, k = 1, . . . , N,

i.e., formula(2.8) with theφwi’s in the place ofβi’s. By replacing thesepk’s, the profile

loglikelihood ofα’s andφ becomes

ℓ̃(α, φ) =
K∑

i=1

niαi + φ
K∑

i=1

wi

ni∑

j=1

h(xij) −
N∑

k=1

log
K∑

i=0

nie
αi+φwih(zk).

The likelihood equations are

∂

∂αi
ℓ̃(α, φ) = ni −

N∑

k=1

nie
αi+φwih(zk)

∑K
i=0 nieαi+φwih(zk)

= 0, i = 1, . . . , K,

∂

∂φ
ℓ̃(α, φ) =

K∑

i=1

wi

ni∑

j=1

h(xij) −
N∑

k=1

niwih(zk)e
αi+φwih(zk)

∑K
i=0 nieαi+φwih(zk)

= 0.

Their solution corresponds to the MLEs under the DR model with proportionalβ’s.

3.2 Testing the proportionality assumption

The adequacy of the proportionalβ’s model must be tested, given that the original DR model

holds. There are two basic procedures which can be applied inorder to test the hypothesis

H0 : βi = φwi, i = 1, . . . , K vs H1 : H0 does not hold. (3.1)
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First, there is the asymptotic approach. Clearly, the proportionalβ’s model is nested to the

free β’s DR model. Since the profile likelihood of the DR model behaves essentially as a

standard parametric likelihood, we have asni → ∞, i = 0, 1, . . . , K, such thatni/N →

ρi ∈ (0, 1) for all i,

T = 2{ℓ̃(α̂, β̂) − ℓ̃(α̂, φ̂)} d→ χ2
K−1.

This means that the asymptotic approach tests the null hypothesis based on a standard chi-

squared test: The asymptotic p-value is

pA = P (χ2
K−1 ≥ Tobs), (3.2)

whereTobs is the observed value ofT .

The second method one can use is bootstrap. In general, in order to perform a bootstrap

test for a null hypothesis based on some statisticT , one has to drawB bootstrap samples by

resampling with replacement from the observed sample underthe assumption that the null

hypothesis holds. IfT ∗
1 , . . . , T ∗

B are the values of the statisticT based on these bootstrap

samples, the bootstrap p-value is

pB = B−1
B∑

b=1

I(T ∗
b ≥ Tobs). (3.3)

In general, in the nonparametric or semiparametric context, the exact distribution which

generates the data is unknown even under the null hypothesis. Therefore, the bootstrap

samples are formed from the corresponding estimated null distribution. In our case, this

means that we will sample from the (discrete) distributionswith CDFs

F̂i(x) =
∑

zk≤x

eα̂i+φwih(zk)

∑K
i=0 eα̂i+φwih(zk)

, i = 0, 1, . . . , K.

At the bth bootstrap iteration we samplen0 z’s from F̂0, n1 z’s from F̂1 and so on in order to

form the bootstrap samplex∗
ij , i = 0, 1, . . . , K, j = 1, . . . , ni, from which the bootstrapped
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Asymptotic Bootstrap

K + 1 = 3 Truewi 10% 5% 1% 10% 5% 1%

ni = 20 i .108 .062 .014 .103 .055 .012

i1/2 .212 .142 .036 .200 .131 .032

i3/2 .204 .120 .040 .193 .110 .039

i2 .447 .346 .160 .437 .325 .437

ni = 50 i .093 .049 .013 .087 .046 .012

i1/2 .307 .213 .078 .305 .209 .081

i3/2 .319 .216 .091 .321 .209 .098

i2 .793 .715 .473 .793 .695 .474

ni = 100 i .112 .059 .016 .116 .058 .017

i1/2 .517 .403 .194 .517 .400 .199

i3/2 .542 .412 .203 .537 .414 .212

i2 .983 .949 .842 .981 .950 .840

Table 3.1: Estimated size and power of asymptotic and bootstrap tests of nominal levels1%,
5% and10% for testing proportionality ofβ’s whenK + 1 = 3 groups are observed based
on1000 Monte Carlo iterations. The first row for each sample size corresponds to the actual
size of the tests.

valueT ∗
b of the (log)likelihood ratio statisticT = 2{ℓ̃(α̂, β̂)− ℓ̃(α̂, φ̂)} is calculated. Finally,

the corresponding p-value is calculated as in(3.3).

In order to evaluate the performance of the two tests, a smallsimulation study is con-

ducted. As baseline distribution is taken the standard exponential, i.e.,

F0(x) = 1 − e−x, x > 0.

The distributions under the other stresses were taken also exponentials which means that

h(x) = x. Their rates are set equal to1 + φwi, i = 1, . . . , K, so that

fi(x) = f0(x)elog(1+φwi)−φwix, i = 1, 2, . . . ,

i.e., βi = −φwi. In our simulations we tookφ = 2 andwi = i, i1/2, i3/2, i2. However, in
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Asymptotic Bootstrap

K + 1 = 4 Truewi 10% 5% 1% 10% 5% 1%

ni = 20 i .098 .044 .010 .083 .038 .009

i1/2 .252 .151 .045 .225 .142 .045

i3/2 .265 .181 .072 .246 .160 .063

i2 .722 .613 .356 .705 .586 .342

ni = 50 i .105 .052 .009 .098 .046 .007

i1/2 .488 .348 .155 .473 .342 .163

i3/2 .517 .393 .187 .512 .387 .196

i2 .976 .958 .866 .977 .963 .867

ni = 100 i .098 .048 .012 .099 .044 .011

i1/2 .724 .588 .331 .716 .584 .347

i3/2 .788 .694 .467 .789 .689 .460

i2 1 1 .999 1 1 .999

Table 3.2: Estimated size and power of asymptotic and bootstrap tests of nominal levels1%,
5% and10% for testing proportionality ofβ’s whenK + 1 = 4 groups are observed based
on1000 Monte Carlo iterations. The first row for each sample size corresponds to the actual
size of the tests.

fitting the model, we considerwi = i in all cases. Hence, when the truewi is i the null

hypothesis holds while for the otherwi’s it does not. We consideredK = 2 andK = 3, i.e.,

the cases where we have in total three and four groups and balanced samples of sizes20, 50

and100. For each configuration ofwi’s, K andni’s we ran1000 Monte Carlo iterations

and in every iteration we tookB = 500 bootstrap samples. The power of the two tests for

nominal levelα (= 10%, 5% or 1%) was estimated as follows: In themth Monte Carlo

iteration we calculated the two p-values p(m)
A and p(m)

B using(3.2) and (3.3), respectively.

We then set

powerA =
1000∑

m=1

I(p(m)
A ≤ α)/1000 and powerB =

1000∑

m=1

I(p(m)
B ≤ α)/1000,
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Figure 3.1: Estimates ofF0 under the original DR model (solid line) and under the propor-
tionalβ’s DR model (dashed line).

that is, the percentages of rejections ofH0 by the two tests at levelα. The results are dis-

played in Tables 3.1 and 3.2. We can see that the size of both tests is close to the nominal level

of significance while they have the power to reject the null when it is not true. Moreover,

the asymptotic test seems to be slightly more powerful than the bootstrap one. However, it

is unknown howB affects the power of the latter. This subject needs further investigation.

3.3 Illustrative example

In order to illustrate the proportinalβ’s DR model we use again the dataset analyzed previ-

ously. We consider againh(x) = log x and set

(w1, w2, w3) = (122.4 − 100.3, 157.1 − 100.3, 219.0 − 100.3) = (22.1, 56.8, 118.7),
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i.e., the differences between thekV/mm of the three higher stess levels to that of the “base-

line” one.

After running the procedure with the proportionalβ’s DR model, we got

α̂ = (3.51, 8.47, 15.42), φ̂ = −0.02194

so that

φ̂ × (w1, w2, w3) = (−0.48,−1.24,−2.60)

The estimatedF0 under this model is shown in Figure 3.1 together with the estimatedF0

under the first DR model.

The adequacy of proportionalβ’s model under the assumption that the original DR model

holds has been tested using both the asymptotic approach (although the sample size is rather

small) and the bootstrap procedure. The corresponding p-values were0.169 and0.264, re-

spectively. This means that the proportionalβ’s model can describe the underlying distribu-

tions almost as well as the original DR model.





Chapter 4

A density ratio model with randomly censored data

4.1 Random censoring

Censoring is very common in life testing experiments and canoccur either by design or acci-

dentally. Here we will consider the second case and, more specifically, independent random

censoring. LetX◦ denote the original lifetime of an item andU be an independent random

variable with some unknown distributionHU . Then,X◦ is subject to random censoring if we

observeX = min{X◦, U} rather thanX◦ itself. This kind of situation may occur if items

can fail due to an independent cause which is irrelevant to the experiment.

4.2 Empirical likelihood and its maximization

Let X◦
ij , i = 0, 1, . . . , K, j = 1, . . . , ni, be lifetimes following model(2.2) andUij are corre-

sponding independent random variables. Assume that we observe(Xij, δij), i = 0, 1, . . . , K,

j = 1, . . . , ni, whereXij = min{X◦
ij, Uij} andδij = I(X◦

ij ≤ Uij) ≡ I(Xij = X◦
ij). The

empirical likelihood based on the data described above is

L(α, β, F0) =

K∏

i=0

ni∏

j=1

dFi(xij)
δij F̄i(xij)

1−δij

=

K∏

i=0

ni∏

j=1

dF0(xij)
δijeδij{αi+βih(xij)}F̄i(xij)

1−δij .
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As in the previous chapter, letz1, . . . , zN be the combined sample andpk = dF0(zk). Then,

maximization ofL is equivalent to the maximization of

L∗(α, β, p) =
( N∏

k=1

pk

)
exp

{ K∑

i=1

αi

ni∑

j=1

δij +

K∑

i=1

βi

ni∑

j=1

δijh(xij)
}
×

K∏

i=0

ni∏

j=1

( ∑

zk>xij

pke
αi+βih(zk)

)1−δij

,

under the constraints
∑N

k=1 pke
αi+βih(zk) = 1, i = 0, 1, . . . , K.

Unfortunately, the above maximization problem is much moreinvolved than the one we

described in the previous chapter due to the presence of the last term. However, recently

Wei and Zhou (2016) presented an EM algorithm for maximizingsuch likelihoods. More

specifically, they considered a two-sample density ratio model where the data are subject to

independent random censoring. Here we will slightly extendtheir approach to the case of

more than two samples.

Recall that the EM algorithm (Dempster et al., 1977) is an iterative procedure which can

be applied in models with missing data. The algorithm alternates repeatedly between the

E-step (E for “expectation”) and the M-step (M for “maximization”) until the sequence of

maximizers to converge. In the special case where the underlying distribution belongs to an

exponential family, the algorithm simplifies a lot: The E-step consists of imputing as missing

values their expectations by considering as true values of the parameters the maximizer of

the previous step. After the imputation, the data are “complete” and the maximization is

carried out as usually.

Since the underlying distributions are assumed to be continuous, each of the values

z1, . . . , zN has been observed only once. By the discrete nature of the maximizer with re-

spect toF0, the only values supported byp are the observed valuesz1, . . . , zN . Since the
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data are censored, some of these values could have been “observed” more than one time.

In the sequel assume that thez-values have been sorted, i.e., thatz1 < · · · < zN . Let bik

denote the multiplicity ofzk in the ith sample. Note that when the underlying distributions

are continuous we havebik = 1 or 0 according to whetherzk comes from theith sample or

not and
∑N

k=1 bik = ni. Wei and Zhou (2016) gave the expected number of observations

which are equal tozk in the groupi explicitly. In our case where the underlying distributions

are assumed continuous, it reads

E(bik) = I(zk is an uncensored value from groupi)+

pke
αi+βih(zk)

k∑

j=1

I(zj is a censored value from groupi)
∑N

ℓ=j pℓeαi+βih(zℓ)
. (4.1)

In order to understand this, notice that, given the data, theexpectation of the original (i.e.,

before possible censoring) lifetimeX◦
ij under the discrete DR model which assigns positive

probabilitiesp1, . . . , pN only toz1, . . . , zN is

E{I(X◦
ij =zk)|data} = E{I(X◦

ij = zk, δij = 1)|Xij, δij} + E{I(X◦
ij = zk, δij = 0)|Xij, δij}

= I(Xij = zk, δij = 1) + I(Xij ≤ zk, δij = 0)
P (X◦

ij = zk, Uij = Xij)∑
Xij≤zℓ

P (X◦
ij = zℓ, Uij = Xij)

= I(Xij = zk, δij = 1) + I(Xij ≤ zk, δij = 0)
P (X◦

ij = zk)dHU(Xij)∑
Xij≤zℓ

P (X◦
ij = zℓ)dHU(Xij)

(by the independence assumption ofX◦
ij andUij)

= I(Xij = zk, δij = 1) + I(Xij ≤ zk, δij = 0)
P (X◦

ij = zk)dHU(Xij)∑
Xij≤zℓ

P (X◦
ij = zℓ)dHU(Xij)

= I(Xij = zk, δij = 1) +
k∑

m=1

I(Xij = zm, δij = 0)
pke

αi+βih(zk)

∑K
ℓ=m pℓeαi+βih(zℓ)

.

Therefore, the expected value of the number of observationsin groupi which are equal tozk

is

ni∑

j=1

{
I(Xij = zk, δij = 1) +

k∑

m=1

I(Xij = zm, δij = 0)
pke

αi+βih(zk)

∑K
ℓ=m pℓeαi+βih(zℓ)

}
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=

ni∑

j=1

I(Xij = zk, δij = 1) + pke
αi+βih(zk)

k∑

m=1

ni∑

j=1

I(Xij = zm, δij = 0)
1

∑K
ℓ=m pℓeαi+βih(zℓ)

which is equal to(4.1) since

ni∑

j=1

I(Xij = zk, δij = 1) = I(zk is an uncensored value from groupi)

and
ni∑

j=1

I(Xij = zm, δij = 0) = I(zm is a censored value from groupi).

When possible multiplicities of observations are considered the likelihood based on un-

censored data is

L(α, β, F0) =

N∏

k=1

K∏

i=0

dFi(zk)
bik

=
N∏

k=1

K∏

i=0

dF0(zk)
bikebik{αi+βih(zk)}

=
( N∏

k=1

dF0(zk)
bk

)
exp

{ K∑

i=1

αi

N∑

k=1

bik +
K∑

i=1

βi

N∑

k=1

bikh(zk)
}

=
( N∏

k=1

dF0(zk)
bk

)
exp

{ K∑

i=1

niαi +

K∑

i=1

βi

N∑

k=1

bikh(zk)
}

(recall that
∑N

k=1 bik = ni).

As before, its maximization with respect toα, β andF0 is equivalent to the maximization of

L∗(α, β, p) =
( N∏

k=1

pbk

k

)
exp

{ K∑

i=1

niαi +

K∑

i=1

βi

ni∑

j=1

bikh(zk)
}

with respect toα, β andp, under the constraints
∑N

k=1 pke
αi+βih(zk) = 1, i = 0, 1, . . . , K.

By using again Lagrange multipliers and repeating the procedure of the previous chapter we

get that

pk = bk

{ K∑

i=0

nie
αi+βih(zk)

}−1

, k = 1, . . . , N.
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By replacingpk into L∗ and taking the logarithm we get the profile loglikelihood ofα, β,

ℓ̃(α, β) =
K∑

i=1

niαi +
K∑

i=1

βi

N∑

k=1

bikh(zk) −
N∑

k=1

bk log
K∑

i=0

nie
αi+βih(zk). (4.2)

In this case the likelihood equations become

∂

∂αi
ℓ̃(α, β) = ni −

N∑

k=1

bk
nie

αi+βih(zk)

∑K
i=0 nieαi+βih(zk)

= 0, i = 1, . . . , K,

∂

∂βi

ℓ̃(α, β) =
N∑

k=1

bikh(zk) −
N∑

k=1

bk
nih(zk)e

αi+βih(zk)

∑K
i=0 nieαi+βih(zk)

= 0, i = 1, . . . , K.

Following Wei and Zhou (2016), we run the following EM algorithm for maximizingL∗:

0. Initialization

Setb(0)
ik = I(zk is an uncensored value from groupi), i = 0, 1, . . . , K + 1, k = 1, . . . , N .

1. At iterationm = 1, 2, . . .:

M-step

Maximize ℓ̃(α, β) in (4.2) with b
(m−1)
ik in the place ofbik.

Denote byα(m), β(m) the maximizers and set

p
(m)
k = b

(m−1)
k

{ K∑

i=0

nie
α

(m)
i +β

(m)
i h(zk)

}−1

, k = 1, . . . , N.

E-step

Set

b
(m)
ik = I(zk is an uncensored value from groupi)+

p
(m)
k eα

(m)
i +β

(m)
i h(zk)

k∑

j=1

I(zj is a censored value from groupi)
∑N

ℓ=j p
(m)
ℓ eα

(m)
i +β

(m)
i h(zℓ)

2. Repeat until some convergence criterion is met.

Natural convergence criteria could be
∑K

i=1{|α
(m)
i − α

(m−1)
i | + |β(m)

i − β
(m−1)
i |} < ε,
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∑N
k=1 |p

(m)
k − p

(m−1)
k | < ε, ℓ̃(α(m), β(m)) − ℓ̃(α(m−1), β(m−1)) < ε whereǫ > 0 is some

tolerance as well as combinations of them.

Once the EM algorithm converges, we take as MLEs ofα, β andp their current values.

4.3 Implementation inRRRRRRRRR

The maximization of the likelihood inR is done with the help of functionoptim. Given the

data(xij , δij), i = 0, 1, . . . , K, j = 1, . . . , ni, we first define the vectors

z = (z1, . . . , zN ) ≡ (x01, . . . , x0n0 , x11, . . . , x1n1 , . . . , xK1, . . . , xKnK
),

δ = (δ01, . . . , δ0n0 , δ11, . . . , δ1n1 , . . . , δK1, . . . , δKnK
)

as well as theN × (K + 1) “membership” matrixB0 with (k, i)-entry

b0,ki = I(zk comes from samplei), k = 1, . . . , N, i = 0, 1, . . . , K.

Moreover, letzord be the sorted version ofz andδord, Bord
0 be δ, B0 but permuted to much

the ordering ofz. In particular, inR we set

z.ord = sort(z), del.ord = del[order(z)] and B0.ord = B0[order(z), ],

respectively (del andB0 areδ andB0). We also define the vectorshz = h(z), hz.ord =

h(z.ord). We finally setB = B0: this will be the matrix ofb(m)
ik ’s in the implementation of

the EM algorithm.

TheR function giving the (profile) loglikelihood ofθ = (α, β) is

loglikelihood = function(theta){

alf = c(0,theta[1:K]); bet = c(0,theta[(K+1):(2*K)])

sum(n*alf)+sum(bet*colSums(B*hz))-

sum(rowSums(B)*log(colSums(exp(alf+log(n)+outer(bet,hz)))))

}
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while its gradient (the score function),

score = function(theta){

alf = c(0,theta[1:K]); bet = c(0,theta[(K+1):(2*K)])

a.plus.beta.h = t(alf+log(n)+outer(bet,hz))

c( (n-colSums(rowSums(B)*exp(a.plus.beta.h)/

rowSums(exp(a.plus.beta.h))))[-1],

(colSums(B*hz)-colSums(rowSums(B)*hz*exp(a.plus.beta.h)/

rowSums(exp(a.plus.beta.h))))[-1] )

}

The EM algorithm is implemented by repeated calls of the function

estimate = function(){

ahat.old <<- ahat; bhat.old <<- bhat

res = optim(p=c(ahat,bhat),

fn=loglikelihood, g=score, method="BFGS",

control=list(abstol=1e-16,reltol=1e-16,fnscale=-1))

ahat <<- res$par[1:K]; bhat <<- res$par[(K+1):(2*K)]

ahat0 = c(0,ahat); bhat0 = c(0,bhat)

phat <<- rowSums(B)*exp(t(ahat0+outer(bhat0,hz)))/

rowSums(exp(t(ahat0+log(n)+outer(bhat0,hz))));

phat = t(t(phat)/colSums(phat))

phat.ord = phat[order(z),]

Phatbar.ord = apply(phat.ord[N:1,],2,cumsum)[N:1,]

B.ord = B0.ord*del.ord+

phat.ord*apply(B0.ord*(1-del.ord)/Phatbar.ord,2,cumsum)

B <<- B.ord[rank(z),]

}

as follows:

while(sum(abs(ahat-ahat.old)+abs(bhat-bhat.old))>1e-8)

estimate()
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Before running the abovewhile command, we assign initial values

ahat.old = bhat.old = rep(1, K) and ahat = bhat = rep(0, K)

This ensures thatR will proceed to the call ofestimate at least once.

As we can see, the functionestimate returns the maximizersα(m), β(m) (variables

ahat, bhat) together withp(m) (variablephat) as well as the updated matrixB (which

containsb(m)
ik ’s as mentioned above), making them global variables via theassignment “<<-”.

Note finally that ifδ contains only ones (i.e., there is no censoring in our data) then the func-

tion estimate returns the MLEs ofα andβ in just one step.

4.4 Illustrative example

In order to get an idea how censoring can affect the estimate of α, β andF0 we consider

again the dielectric breakdowns dataset analyzed in the previous chapter. There is no censor-

ing in these data therefore we introduced artificial censoring random times as follows. We

simulated exponential random variatesUij , i = 0, 1, 2, 3, j = 1, . . . , ni, such that the mean

of Uij to be equal to a particular quantile of the corresponding group of observations. We

then setxij the minimum of the(ij)th observation andUij .

We censored artificially the dataset using the third quartiles and the medians of the groups

of the observations. This implies that we introduced about25% and50% censoring to the

data, respectively. Here we report the results of a single run. When we used the third quartiles

we got the MLEs

α̂ = (7.46, 14.47, 25.59), β̂ = (−1.00,−2.09,−4.46)
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Figure 4.1: Estimates ofF0 based on the complete data (black line) and under25% and50%
censoring rate (red and blue lines, respectively).

while when we used the median we got

α̂ = (6.43, 10.91, 19.24), β̂ = (−0.86,−1.57,−3.29).

(Recall that the MLEs based on the complete data wereα̂ = (11.72, 16.31, 21.28), β̂ =

(−1.59,−2.33,−3.30).)

The estimates ofF0 are shown in Figure 4.1 using red and blue color, respectively. We

can see that the red line is much closer to the black than the blue. This is expected since the

less censored values the closer the estimate should be to theone we get from the complete

data.
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Final comments and thoughts for future work

As already mentioned, accelerated life test models cover a considerable amount of the liter-

ature on reliability and they are used in many scientific fields. In this dissertation we fitted

the density ratio model to estimate a baseline distributionfunction using either complete or

censored data. Howerver, many questions arise from this procedure. For instance, there is

the problem of choice of the functionh. This is a well-known problem in the DR model liter-

ature with no “correct” answer. Several suggestions have been made, including preliminary

estimation of the densities and plotting their ratios. Another issue is the choice ofwi’s in the

proportionalβ’s DR model.

There are other interesting types of reliability data wherethe DR model can be applied. In

particular, we are interested in using it on accelerated life data in the presence of competing

risks. To be more specific, assume that within each of theK + 1 stresses there exist up to

m ≥ 2 different risk factors that may cause failure. Then, every datapoint contributes to the

likelihood the density of the distribution related to a particular factor (the one that causes its

failure) and the survival functions of the distributions related to the rest of the factors. We

believe that if we model the data via a DR model then the EM algorithm described in the last

chapter can be adapted in order to estimate its parameters.
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