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Volatility Clustering in Monthly Stock Returns  
And  

Temporal Aggregation of Simulated Data.  
 
 

Abstract: 

 

Financial markets display pronounced volatility clustering. Over the last 

decade financial economists have began to seriously model the temporal dependencies 

in return volatilities. This paper investigates the volatility clustering using 

econometric models based on the methodology of temporal aggregation for GARCH 

processes. We initially derive low frequency volatility models first from low 

frequency data and then from high frequency data using a Monte Carlo simulation. 

We compare the different models and finally we try to find out whose model’s 

parameters are more efficient. The one’s that were produced directly from low 

frequency data or the other’s that was produced through temporal aggregation from 

high frequency data? 

 

The paper is divided in three parts. In the first part we summarize the 

theoretical background on which this empirical survey is based. In the second part we 

make use of real data and more precisely, data of the Dow Jones Industrial 65 

composite price index and the Standard and Poor΄s 500 composite price index. In the 

third part we produce, through a Monte Carlo simulation, low frequency volatility 

models from high frequency data using the methodology of temporal aggregation.  

The initial values for our simulation are taken from the analysis of the real data and 

our effort is to replicate the behaviour of Dow Jones Index’s volatility.  
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 4 

 

Introduction: 

 

The stock return volatility in a period of time is called the conditional variance 

of these returns in the same period. The volatility of flows of an investment is very 

important and the prediction of this volatility is a powerful financial tool for investors, 

bankers, traders etc. During the last years more and more papers are dealt with the 

behaviour of volatility. This is not something strange since volatility is to some degree 

predictable contrary to returns whose future behaviour is more difficult to fit in a 

model and more difficult to be predicted. 

The econometric models had initially focused on the study of conditional mean. 

The expansion of econometric theory and the need of the market for further 

understanding of the risk drove the study of higher order moments. The models that 

where produced are called ARCH-type models (Autoregressive Conditional 

Heteroskedasticity Models). 

The purpose of each study determines what frequency will be used in each case. 

For instance if the forecasts of future volatility will be used by a stock trader the 

forecasts will be meaningful if they predict next minute’s or hour’s volatility. In such 

a study we are obliged to use high frequency data (every second, minute, hour, day). 

On the other hand predictions that are going to be used by an investment 

manager will be useful only if they are referred to next month’s or next year’s 

volatility. In this case low frequency data has to be used (weekly, bi-weekly or 

monthly data).    
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PART 1 

 

1.1 Stylised facts about stock returns volatility: 

 

The behaviour of stock returns volatility has some special characteristics that 

have been confirmed in numerous studies:  

1. The distribution of returns is leptokurtic e.g. contrary to normal distribution it 

has more extreme values. This phenomenon is referred in bibliography as 

thick tails. It is well established that the unconditional distribution of asset 

returns has heavy tails. Typical Kurtosis estimates range from 4 to 50 

indicating very extreme non-normality. This is a feature that should be 

incorporated in any volatility model. The relation between the conditional 

density of returns and the unconditional density partially reveals the source of 

heavy tails. If the conditional density is Gaussian, then the unconditional 

density will have excess kurtosis due simply to the mixture of Gaussian 

densities with different volatilities. However there is no reason to assume that 

the conditional density is itself fat tailed, generating still greater kurtosis in the 

unconditional density.  

2. Stock returns exhibit volatility clustering. In other words the autocorrelation of 

first lags is statistically significant. This phenomenon is related to the thick 

tales phenomenon that was mentioned above. What we know is that in high 

frequency data the volatility-clustering phenomenon is very intense. As we 

move to lower frequency data the phenomenon is gradually becoming less and 

less intense. Mandelbrot (1963) and Fama (1965) both reported evidence that 

large changes in the price of an asset are often followed by other large 

changes; this behaviour has been reported by numerous other studies, such as 

Bailie et al. (1996), Chou (1998) and Schwert (1989). The implication of such 
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volatility clustering is that volatility shocks today will influence the 

expectation of volatility many periods in the future.   

3. Volatility clustering implies that volatility comes and goes. Thus a period of 

high volatility will eventually give way to more “normal” volatility and 

similarly, a period of low volatility will be followed by rise. Mean reversion in 

volatility is generally interpreted as meaning that there is “normal” level of 

volatility to which volatility will eventually return. Very long forecasts of 

volatility should all converge to this same normal level of volatility, no matter 

when they are made.  There is a controversy over the  “normal” level of 

volatility and whether it is constant over all time and institutional changes.  

4. The asymmetry effect that a “good news shock” and a “bad news shock” have 

on the stock returns is another characteristic of stock return volatility. More 

precisely it has been found that the volatility is negatively related to equity 

returns. [Black (1976), Christie (1982), Nelson (1991), Glosten et al (1993)] 

This asymmetry is sometimes ascribed to a leverage affect and sometimes to a 

risk premium effect. In the former theory, as the price of a stock falls, its debt-

to-equity ratio rises, increasing the volatility of returns to equity holders. In the 

latter story, news of increasing volatility reduces the demand for a stock 

because of risk aversion. The consequent decline in stock value is followed by 

the increased volatility as forecast by the news. 

5. Another characteristic of stock returns behaviour is the exaltation of the 

volatility just before a predictable event of great importance like the opening 

and the closing in every trading day in the stock market or the public 

announcement of the corporate earnings.  

6. Another very interesting characteristic of the volatility is its simultaneously 

raise and fall in different interactive markets such as the stock market as a 

whole, the market for a single stock, the T-bills market and more general the 

world money markets.  
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7. According to Glosten et al. (1993) there is a strong positive relation between 

the stocks return volatility and interest rates volatility. On the other hand only 

a weak link was detected between macroeconomic uncertainty and volatility.  

 

 

 

 

1.2 Definitions and Notation: 

 

In order to define the models properly let },{ Ζ∈ttε be a sequence of stationary 

errors with finite fourth moments. Define operators  

 

∑ =
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let the sequence },{ Ztht ∈  be defined as the stationary solution of: 

 
2}1)({)( tt LhLB εψ −Α+=  

 

We assume that B(L) and B(L)+1-A(L) have roots outside the unit circle and hence are 

invertible. Three definition of GARCH will be used: 

 

Strong GARCH: 

 

The sequence },{ Ζ∈ttε  is defined to be generated by a strong GARCH (p,q) process 

if ψ, A(L) and B(L) can be chosen such that : 
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 8 

 

where D(0,1) specifies a distribution with mean zero and unit variance.  

 

Semi-strong GARCH: 

 

The sequence },{ Ζ∈ttε  is defined to be generated by a semi-strong GARCH (p,q) 

process if ψ, A(L) and B(L) can be chosen such that : 

 

0],/[ ,21 =−− KtttE εεε   and 

 

tttt hE =−− ],,/[ 21
2 Kεεε  

 

Weak GARCH:  

 

The sequence },{ Ζ∈ttε  is defined to be generated by a weak GARCH (p,q) process 

if ψ, A(L) and B(L) can be chosen such that : 

 

0],,/[ 21 =−− KtttP εεε  and  

tttt hP =−− ],,/[ 21
2 Kεεε  

 

where ],,/[ 21 K−− tttxP εε denotes the best linear predictor of tx in terms of 

..,,,,,,1 2
2

2
12,1 eitttt KK −−−− εεεε  

 

   0]),,/[( 21 =− −−−
r

ittttt xPxE εεε K  for 1≥i  and .2,1,0=r  

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 9 

All these GARCH definitions require ∑ ∑= =
<+

p

i

q

i ii a
1 1

1β . The most popular 

distributions are normal and t distributions. A strong GARCH process will also be 

semi-strong GARCH. On the other hand a semi-strong GARCH process with time –

varying higher order conditional moments of the rescaled innovations ttt h/εξ = is 

not strong GARCH. Finally the requirements for weak GARCH are met both by 

strong and semi-strong GARCH processes. The weak GARCH definition is quite 

general and captures the characterizing features of the other GARCH formulations. It 

is possible to obtain strongly consistent estimators of the GARCH parameters in this 

general formulation.  

The most general model used is the ARMA model with GARCH errors: 

 

tt LyL ε)()( Θ=Γ  where : 

 

)1()( 1 LL i
P
i γ−Π=Γ =  and  ).1()( 1 LL i

Q
i θ−Π=Θ =  

 

It is assumed that all standard regularity conditions are fulfilled. This implies 

that the roots of Γ(L) and Θ(L) are all outside the unit circle and that no roots of Γ(L) 

coincides with roots of Θ(L).  

High frequency observations are assumed to be on ),,1( Ttyt K= . If ty is stock 

variable low frequency observations are assumed to be on ),,2,( Tmmtyt K= where m 

is some known integer. We suppose that T is a multiple of m. 
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1.3 Temporal Aggregation: 

 

When high frequency data is available we can calculate a low frequency model 

using high frequency data through temporal aggregation. The methodology for 

temporal aggregation that will be followed in this paper was initially introduced by 

Drost and Nijman (1993). This methodology enables us to compare the parameters of 

the two low frequency models. The one that will be produced by low frequency data 

and the other that will be produced by high frequency data. It’s interesting to see the 

behavior of conditional variance and how it reacts to frequency changing.  

 It is feasible to estimate strongly consistent estimators of the low frequency 

model. Simulations have proven that the quasi-maximum likelihood estimator is very 

close to the real values of the parameters.  

This analysis will be focused on GARCH (1,1) model. This choice is not 

random. Many studies have proven that the simple GARCH (1,1) model has better 

forecasting ability in relation to all other models that are usually more complicated.  

The temporal aggregation has also bothered Diebold and Nelson. In 1988 

Diebold showed that the conditional heteroskedasticity disappears as time sampling 

interval tends to infinity. In the case of flow variables the implied low frequency 

distribution tends to normal distribution. In 1990 Nelson studied the effects of the 

increasing frequency of the sample. 
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1.4 Aggregation of GARCH (1,1): 

 

In the case of stock variables the class of symmetric weak GARCH (1,1) models 

is closed against temporal aggregation. The high frequency parameters 

αβψ ,, and yκ determine the corresponding low frequency parameters.  

More precisely, if },{ Ζ∈tyt  is weak GARCH (1,1) with symmetric marginal 

distributions and 2
11 −− ++= ttt ayhh βψ  then }{ Ζ∈tmy  is symmetric weak GARCH 

(1,1) with: 

 
2

)()()()()( mtmmmtmmmmtmm yahh −− ++= βψ  where: 
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What is observed is that m
mm )()()( αβαβ +=+  tends to zero as m tends to 

infinity. Hence conditional heteroskedasticity disappears in the limit if the process is 

aggregated more and more.  

We can derive strongly consistent estimators of the high and low frequency 

parameters only based upon low frequency data. Let us consider the low frequency 

ARMA (1,1) model that is known to generate the squared observations: 

mtmmtmmtmmmmtm yy −− −+++= ηβηαβψ )(
2

)()()(
2 )(  
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where tmmtm h )(
2 −η . The tmη  are uncorrelated. Assume that { tmη } is ergodic. As a 

result the vector process )},,{( 2
2

22
mtmmtmtm yyy −− is also ergodic. This implies that the 

sample mean and the first two sample autocorrelations converge almost surely and a 

simple one-one relation between these limits and the GARCH parameters determines 

the required estimators. The assumption of ergodicity of the low frequency process is 

e.g. trivially satisfied if there exists an underlying high frequency strong GARCH 

process. Then the low frequency GARCH parameters can be consistently estimated 

using low frequency data. This implies that consistent estimation of the high 

frequency parameters, based on low frequency data only, is possible. The high 

frequency parameters are uniquely determined by the corresponding low frequency 

ones.  

The problem of multiple high frequency models that are consistent with the low 

frequency evidence that can arise in ARMA (1,1) models is absent in the GARCH 

(1,1) model because of the restriction that all parameters are nonnegative. Drost and 

Nijman proved that GARCH (1,1) are close to ARCH (1) models if the sampling 

interval is large and the conditional heteroskedasticity disappears when the sampling 

period is large. Furthermore they showed that highly aggregated models with 

nontrivial variance parameters are generated by a DGM close to integration in 

variance models.  
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PART 2 

 

2.1 Data description and Variable Construction: 

 

Daily, weekly and monthly data was downloaded from DATASTREAM 

database for the period: January 1979 to May 2004. We initially examine two indices: 

The Dow Jones Industrial Composite 65 price index (from now on DJ) and the 

Standard and Poor’s 500 Composite price index (from now on SP). These indices are 

chosen because they are large enough, with available data for a long period of time, 

economically important and because such indices are minimally impacted by isolated 

corporate developments contrary to indices of small countries. From now on the 

returns of these two indices are RDJ and RSP respectively. If the data is at the daily, 

weekly or monthly frequency the abbreviation will have the prefix D~ for daily data, 

W~ for weekly data and M~ for monthly data respectively (DRDJ, WRDJ, MRDJ, 

etc).    

In order to examine the stochastic process over the study period we employed 

models of conditional variances using the generalized autoregressive conditional 

heteroskedasticity (GARCH) formulation. The autoregressive conditional 

heteroskedasticity (ARCH) model was introduced by Engle (1982) and allows the 

variance of the error term to vary over time, in contrast to the standard time series 

regression models that assume a constant variance. The generalized ARCH models, 

i.e. the GARCH models, have been found to be valuable in modeling the time series 

behavior of stock returns (Akgiray, 1989; French et al. 1987;). Bollerslev (1986) 

allows the conditional variance to be a function of prior period’s squared errors as 

well as of its past conditional variances. The GARCH model has the advantage of 

incorporating heteroskedasticity into the estimation procedure. All GARCH models 

are martingale difference implying that all expectations are unbiased. The GARCH 
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models are capable of capturing the tendency for volatility clustering in financial data. 

Volatility clustering in stock returns implies that large (small) price changes follow 

large (small) price changes of either sign. Engle et al. (1987) provide an extension of 

the GARCH model where the conditional mean is an explicit function of the 

conditional variance. Such a model is known as the GARCH in the mean model.  

The persistence of shocks to volatility depends on the sum of the α+β 

parameters. Values of the sum lower than unity imply a tendency for the volatility 

response to decay over time. In contrast, values of the sum equal or greater than unity 

imply indefinite or increasing volatility persistence to shocks over time. However a 

significant impact of volatility on the stock prices can only take place if shocks to 

volatility persist over a long time.  

 

Figure (1): Dow Jones Industrial 65 Composite Price Index and Standard &  

Poor’s 500 Composite Price Index. 

0

500

1000

1500

2000

2500

3000

3500

1980 1985 1990 1995 2000

DJW

0

400

800

1200

1600

1980 1985 1990 1995 2000

SPW
 

 

Figure (2): Returns of Dow Jones Industrial 65 Composite Price Index and 

Standard & Poor’s 500 Composite Price Index. 
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As we notice volatility clustering is present in both time series. It appears as 

clusters of high and low volatility. During the 90’s volatility is not as intense as it is 

during the first years of the 00’s or the 80’s.  

 

Some summary statistics of the data are presented in the tables below: 

 

(1)  Returns of Dow Jones Industrial 65 Composite Price Index: 

 

Daily Data Weekly Data Monthly Data 

Number of 

observations 
6523 1304 300 

Mean 0.044825 0.212353 0.954055 

Std. Dev. 1.049377 2.341541 4.354195 

Skewness -1.558261 -1.049756 -0.599395 

Kurtosis 41.22057 17.92316 6.269915 
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(2) Returns of Standard & Poor’s 500 Composite Price Index: 

 

 

Daily Data Weekly Data Monthly Data 

Number of 

observations 
6523 1304 300 

Mean 0.042898 0.218016 0.91189 

Std. Dev. 1.034637 2.436149 4.262545 

Skewness -1.224119 -1.021674 -0.619104 

Kurtosis 30.78527 17.06107 5.468054 

 
 

We use the following measure for skewness: 

 

3)(1
σ)

rr
T

s i −
=

. 

 

The skewness of a symmetric distribution, such as the normal distribution, is 

zero. Positive skewness means that the distribution has a long right tail and negative 

skewness implies that the distribution has a long left tail. At the daily, weekly and 

monthly frequency the series seem to be negatively skewed.  

The series also exhibit high kurtosis. Kurtosis measures the peakedness or 

flatness of the distribution of the series. Kurtosis is computed as:  
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 The level of kurtosis increases as data frequency increases.  On a daily basis it 

equals 41.22057 for the Dow Jones 65. In the presence of volatility clustering the 

squared returns should be highly autocorrelated. An analysis of the correlogram of the 

returns indicates no dependence in the mean of the series and so we will assume a 

constant conditional mean. 
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2.2 Econometric Analysis of Real Data 

 

The results of the “real” data analysis will be presented in the next few pages. 

The analysis was performed with the E-views programme. The ARCH (1) parameter 

is the parameter α of the GARCH (1,1) model, which was presented analytically in 

the first part of this paper. The GARCH (1) parameter is the parameter β of the 

GARCH (1,1) model.  

The behavior of the volatility is examined, as data frequency switches from 

daily to weekly and from weekly to bi-weekly and from bi-weekly to monthly 

frequency for both indices. The final results are presented in a separate table at the 

end of this analysis.  

 
Dependent Variable: RDJD 
Method: ML - ARCH (Marquardt) 
Date: 04/26/04   Time: 16:01 
Sample (adjusted): 2 6524 
Included observations: 6523 after adjusting endpoints 
Convergence achieved after 42 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob.  
C 0.062681 0.010555 5.938273 0.0000 
        Variance Equation 

C 0.013842 0.001471 9.408010 0.0000 
ARCH(1) 0.065156 0.001577 41.32581 0.0000 

GARCH(1) 0.923652 0.003039 303.8919 0.0000 
R-squared -0.000290     Mean dependent var 0.044825 
Adjusted R-squared -0.000750     S.D. dependent var 1.049377 
S.E. of regression 1.049770     Akaike info criterion 2.694861 
Sum squared resid 7184.054     Schwarz criterion 2.699021 
Log likelihood -8785.289     Durbin-Watson stat 1.976462 

 
 
Estimation Command: 
===================== 
ARCH RDJD C  
 
Estimation Equation: 
===================== 
RDJD = C(1) 
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Substituted Coefficients: 
===================== 
RDJD = 0.06268101107 
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Dependent Variable: RSPD 
Method: ML - ARCH (Marquardt) 
Date: 04/26/04   Time: 16:04 
Sample(adjusted): 2 6524 
Included observations: 6523 after adjusting endpoints 
Convergence achieved after 33 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob.  
C 0.058845 0.010227 5.753839 0.0000 
        Variance Equation 

C 0.009647 0.001160 8.317874 0.0000 
ARCH(1) 0.062214 0.001539 40.42083 0.0000 

GARCH(1) 0.930327 0.002631 353.6221 0.0000 
R-squared -0.000238     Mean dependent var 0.042898 
Adjusted R-squared -0.000698     S.D. dependent var 1.034637 
S.E. of regression 1.034998     Akaike info criterion 2.652259 
Sum squared resid 6983.285     Schwarz criterion 2.656418 
Log likelihood -8646.343     Durbin-Watson stat 1.959678 
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Estimation Command: 
===================== 
ARCH RSPD C  
 
Estimation Equation 
===================== 
RSPD = C(1) 
 
Substituted Coefficients: 
===================== 
RSPD = 0.05884517401 
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Dependent Variable: RDJW 
Method: ML - ARCH (Marquardt) 
Date: 04/26/04   Time: 16:05 
Sample(adjusted): 1/08/1979 12/29/2003 
Included observations: 1304 after adjusting endpoints 
Convergence achieved after 17 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob.  
C 0.305436 0.057408 5.320457 0.0000 
        Variance Equation 

C 0.634838 0.126391 5.022817 0.0000 
ARCH(1) 0.181574 0.011712 15.50371 0.0000 

GARCH(1) 0.714808 0.031308 22.83176 0.0000 
R-squared -0.001582     Mean dependent var 0.212353 
Adjusted R-squared -0.003893     S.D. dependent var 2.341541 
S.E. of regression 2.346095     Akaike info criterion 4.422333 
Sum squared resid 7155.407     Schwarz criterion 4.438202 
Log likelihood -2879.361     Durbin-Watson stat 2.102479 
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Estimation Command: 
===================== 
ARCH RDJW C 
 
Estimation Equation: 
===================== 
RDJW = C(1) 
 
Substituted Coefficients: 
===================== 
RDJW = 0.3054363252 
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Dependent Variable: RSPW 
Method: ML - ARCH (Marquardt) 
Date: 04/26/04   Time: 16:17 
Sample(adjusted): 1/15/1979 12/29/2003 
Included observations: 1303 after adjusting endpoints 
Convergence achieved after 41 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob.  
C 0.282851 0.053520 5.284984 0.0000 

RSPW(-1) -0.099358 0.030662 -3.240387 0.0012 
        Variance Equation 

C 0.257329 0.065714 3.915880 0.0001 
ARCH(1) 0.161614 0.011831 13.66067 0.0000 

GARCH(1) 0.809945 0.021012 38.54631 0.0000 
R-squared 0.008305     Mean dependent var 0.216036 
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Adjusted R-squared 0.005249     S.D. dependent var 2.436033 
S.E. of regression 2.429632     Akaike info criterion 4.451290 
Sum squared resid 7662.237     Schwarz criterion 4.471138 
Log likelihood -2895.016     F-statistic 2.717567 
Durbin-Watson stat 1.996498     Prob(F-statistic) 0.028502 

 
 
Estimation Command: 
===================== 
ARCH RSPW C RSPW(-1) 
 
Estimation Equation: 
===================== 
RSPW = C(1) + C(2)*RSPW(-1) 
 
Substituted Coefficients: 
===================== 
RSPW = 0.2828508197 - 0.09935765588*RSPW(-1) 
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Dependent Variable: RDJM 
Method: ML - ARCH (Marquardt) 
Date: 04/26/04   Time: 16:14 
Sample(adjusted): 1979:02 2004:01 
Included observations: 300 after adjusting endpoints 
Convergence achieved after 42 iterations 
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Variance backcast: ON 
 Coefficient Std. Error z-Statistic Prob.  

C 0.902588 0.228763 3.945518 0.0001 
        Variance Equation 

C 0.571728 0.503837 1.134749 0.2565 
ARCH(1) 0.068681 0.035054 1.959308 0.0501 

GARCH(1) 0.805582 0.048971 18.49237 0.0000 
R-squared -0.000140     Mean dependent var 0.954055 
Adjusted R-squared -0.010277     S.D. dependent var 4.354195 
S.E. of regression 4.376511     Akaike info criterion 5.766413 
Sum squared resid 5669.539     Schwarz criterion 5.815797 
Log likelihood -860.9619     Durbin-Watson stat 1.990198 

 
 
 
Estimation Command: 
===================== 
ARCH RDJM C 
 
Estimation Equation: 
===================== 
RDJM = C(1) 
 
Substituted Coefficients: 
===================== 
RDJM = 0.9025879876 
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Dependent Variable: RSPM 
Method: ML - ARCH (Marquardt) 
Date: 04/26/04   Time: 16:09 
Sample(adjusted): 1979:02 2004:01 
Included observations: 300 after adjusting endpoints 
Convergence achieved after 23 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob.  
C 0.896568 0.215841 4.153845 0.0000 
        Variance Equation 

C 0.472939 0.367377 1.287337 0.1980 
ARCH(1) 0.088983 0.037161 2.394535 0.0166 

GARCH(1) 0.791873 0.039289 22.70054 0.0000 
R-squared -0.000012     Mean dependent var 0.911189 
Adjusted R-squared -0.010147     S.D. dependent var 4.262545 
S.E. of regression 4.284117     Akaike info criterion 5.713813 
Sum squared resid 5432.682     Schwarz criterion 5.763197 
Log likelihood -853.0719     Durbin-Watson stat 1.954979 

 
 
Estimation Command: 
===================== 
ARCH RSPM C 
 
Estimation Equation: 
===================== 
RSPM = C(1) 
 
Substituted Coefficients: 
===================== 
RSPM = 0.89656841 
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The results of the analysis of the real data are presented in the next paragraph.  
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2.3 Results of the Econometric Analysis 
 
 
The final results are presented in the next table: 
 

DOW JONES D.J. arch (1) D.J.garch (1) D.J.arch (1)+garch (1) 
Daily 0.065156 0.923652 0.988808 

Weekly 0.181574 0.714808 0.896382 
Monthly 0.068681 0.805582 0.874263 

    
S&P S&P arch (1) S&P garch (1) S&P arch (1)+garch (1) 
Daily 0.062214 0.930327 0.992541 

Weekly 0.161614 0.809945 0.971559 
Monthly 0.088983 0.791873 0.880856 

 
 

As we can see volatility persistence lowers as the data frequency lowers. This is 

something we expected to happen. It is attributed to a number of reasons, which will 

be analysed in the third part of this paper.  
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In this figure it is clear that the sum of α and β parameters if falling as the data 

frequency becomes lower. The sum of the two parameters is presented with the purple 

line for the Dow Jones time series and with the brown line for the Standard and Poor 

time series. From this analysis of the real data we will obtain the initial values for the 

Monte Carlo simulation which will be performed in the next part of the paper.  
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Part 3 

 
 
 

3.1 Monte Carlo Simulation Program  

 

The Monte Carlo Simulation program is written in EViews 4.0, a forecasting 

and analysis package for Windows-based computers and is analytically presented in 

appendix B at the end of this paper.  

         The program is analytically presented with extended comments between each 

step. The key points of the process are the following: 

The purpose of this simulation is to create data and more precisely simulated 

stock returns that have some characteristics that resemble with those of the real world. 

These stock returns are created by a variance equation that is GARCH (1,1) and a 

mean equation that is a standard term. The model that was used is the following:  

h(!i)=!g+!b*h(!i-1)+!a*t(!i-1)^2+e(!i) 
y(!i)=!c 

The initial values that are needed for this process are taken from the analysis 

that took place earlier. The data that is created is supposed to be the daily stock 

returns. The weekly, bi-weekly and monthly stock returns are taken from the daily 

stock returns series and are series in descending frequency. The program estimates the 

variance equation 100 times for each frequency and calculates the average of the 

repetitions and presents it as the direct estimation of each estimator. Then the program 

estimates the parameters not directly from the generated data but using the equations 

for the temporal aggregation with the daily data.  At the end of the simulation a table 

is created where you can find two different estimations for each parameter. The first 

estimation is calculated by the correspondent frequency data and the latter using only 

high frequency (daily) data.  
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3.2 Results of the Monte – Carlo Simulation 

 

These are the results of the Monte – Carlo simulation program. The average 

estimated parameters are those that were estimated directly from the correspondent 

data frequency. For example the daily average estimated parameters were estimated 

from daily data, the weekly parameters from weekly data etc. In fact the so-called 

daily data is nothing more than a high frequency data series. The weekly data is a 

series with lower frequency etc. I use this terminology (daily, weekly, bi-weekly etc.) 

for reason of better comprehension. The latter estimators which are called “formula” 

estimators are those that were estimated using the equations of temporal aggregation. 

More specifically the weekly, bi – weekly and monthly estimators were estimated 

from high frequency data (the so - called daily data). That ‘s why these estimators 

cannot estimate parameters for the daily frequency.  

 

 Daily  Weekly  Bi-weekly   Monthly 
Average 

estimated g  
 0.7415078  0.7193845  0.8378596  0.7869354 

 Average 
estimated b 

 0.0631654 0.195431  0.0302438  0.0634974 

 Average 
estimated a 

0.9168478  0.7614882  0.676073  0.944330 

     
 g formula    0.6330264  0.7867453  0.7908663 
 b formula   0.17503646  0.028047  0.074 
 a formula  0.782237 0.619 0.9022 
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Fig. 1:  Direct and implied estimations of parameter α. 

In the above figure we observe the behavior of the direct (deep blue) and 

implied (pink) estimators for the parameter α. As we can see the two parameters are 

very close. In the weekly frequency the implied estimator (temporal aggregated 

estimator) is higher than the direct estimator. The direct estimator seems to be higher 

though in the bi-weekly and in the monthly frequency.  
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Fig. 2:  Direct and implied estimations of parameter β. 

 

In this figure we can see that the implied estimators (pink) are close to the direct 

estimators (deep blue). The implied estimators are calculated with high frequency 

data. The direct estimators are calculated with weekly, bi- weekly and monthly data.  
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Fig. 3:  Direct and implied estimations of parameter κ. 

 

In the above figure we can see the behavior of the two different estimators for 

the parameter γ. The implied estimator (pink) that was estimated with high frequency 

data is lower than the direct estimators (deep blue) for the weekly and bi-weekly 

frequency. For the monthly data the two estimators seem to coincide. 

The parameter κ (or g) is the kurtosis coefficient. This parameter is used for the 

calculation of parameter b (or β).  
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3.2 Results on the efficiency of the estimators for the parameters: 

 

In this part we try to find out whether implied estimators based on high 

frequency data are more efficiency than direct estimators based on low frequency. 

Drost and Nijman suggest that implied estimators might be more efficient than the 

direct estimators. A gain of efficiency should then be caused by the fact that on higher 

frequency more data are available than on lower frequency and this is in fact a gain in 

efficiency. 

We address this issue by calculating the bias between the true parameter and the 

implied one for each replication in the Monte – Carlo simulation. The moving average 

of the sum of the biases is the standard deviation of the parameter*. We calculated the 

standard deviation for each frequency (weekly, bi-weekly and monthly). As we can 

see temporal aggregation by itself leads to larger standard deviation when the 

frequency decreases. For the Dow Jones Composite Price Index parameter α1 

increases from 0.015 to 0.052 and from 0.025 to 0.058 for β1. Temporal aggregation 

leads to larger (implied) standard deviation when the frequency decreases. This 

increase is more than offset by the gain from the use of the additional information. To 

verify these results we performed the Monte Carlo simulation. In our simulation we 

generated 100 time series for a simulated GARCH (1,1) process with a length of 5000 

observations based on the direct parameter estimates for the Dow Jones at the daily 

frequency. Similar to the procedure for the stock return series we then directly 

estimated the parameters at four different frequencies, which we denote daily, weekly, 

bi-weekly and monthly. Based on these direct estimates we calculated the implied 

estimates at the lower frequencies.  
                                                
*We calculated the differences: truedirecttrueimplied aaaa −−  and  for parameter α and 

trueimplied ββ −  and truedirect ββ − . 
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In the next figure we plotted the direct estimates of α1 and β1 at the daily 

frequency (the cloud at the right) and the implied estimates at the lower frequencies 

(the cloud on the left shows the monthly implied estimates by the daily direct 

estimates). This plot shows some interesting results.  The direct estimates at the daily 

frequency for α1 tend to be slightly higher than the true parameter α1. The average of 

the direct estimates equals 0.105 with a standard deviation of 0.046. Even though the 

true parameter lies within 1.96 standard deviations of the estimates, the direct 

estimates for α1 seem marginally biased. The direct estimate of β1 does not seem to 

exhibit any bias. The average estimate for this parameter almost equals the true 

parameter value (0.879 and 0.878 respectively). The standard error for β1 equals 

0.0069.  
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Fig. 1: Temporal aggregation results of 100 simulated time series. Most right cloud 
is the direct estimates at the daily frequency, moving to the left we find the implied 
weekly estimates, implied bi weekly estimates and implied monthly estimates (all 
implied by direct estimates at the daily frequency) 
 

 

 

The increase in the standard errors caused by the temporal aggregation is 

smaller than the decrease in efficiency due to increase in the number of observations 

when we derive the estimates of the lower frequency from the high frequency 

estimates. This can be seen in the next figure.  
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Fig 2: Monthly estimates: direct (1st figure) and implied by daily estimates (2nd 

figure). ΠΑ
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In the above figures we compare the monthly direct estimates with the implied 

estimates of the daily frequency. The implied estimates are much more dense. This 

confirms our earlier result that the implied estimators are more efficient than the 

direct ones. 

In the next figure we consider the efficiency increase in estimators α1 and β1. We 

measure the efficiency increase by the empirical standard errors derived from the 100 

generated series.  

When we compare the standard errors of the direct estimators with those implied 

estimators we find that for α1 the efficiency increases from 0.111 to 0.049. For β1 the 

increase is even higher.  

 

 

 

 

 

Monthly parameter estimates are determined using: 

 Monthly direct  

estimates  

Implied estimates based  

on direct bi-weekly estimates 

Direct weekly 
estimates  

Direct daily 
estimates 

Standard 

Deviation 

for α1  

0.111 0.068 0.057 0.049 

Standard 

Deviation 

for β1 

0.187 0.112 0.062 0.046 
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Fig. 3: Efficiency increase in estimators measured by standard deviation when 

monthly parameter estimates are determined using direct monthly estimates implied 

estimates based on direct bi-weekly estimates, direct weekly estimates and finally 

direct daily estimates.   

 

There are plenty of other reasons why we make use of the implied estimators 

instead of the direct estimators, which are easier to be estimated.  

Another reason why we prefer the implied estimations is that the structure of 

long time series, like Dow Jones’ Price Index, is usually subject to radical changes 

that may set the econometric analysis difficult or even trivial.  

A final reason why we prefer the implied estimators is mainly econometric. The 

implied estimators, as Drost and Nijman proved, are more efficient that the direct 

estimators since they incorporate more data.  

The estimators, that where estimated through the temporal aggregation, are 

closer to the true parameters in comparison with the ones that were estimated directly ΠΑ
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from the correspondent data frequency. The use of daily data produced more effective 

estimators than the use of data of lower frequency.  

Summarizing we find that if one has the possibility to estimate low frequency 

models using high frequency data, implied estimation using temporal 

aggregation seems to be preferred to direct estimation using the data at the lower 

frequency.  
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CONCLUSIONS 

 

In this empirical analysis we proved that for long time series (like the Dow 

Jones Price Index) the homoskedasticity assumption can be rejected. We 

estimated low frequency parameters from high frequency data. The implied 

parameters are relatively more efficient from the directly estimated parameters. 

Our Monte Carlo simulation confirms that these implied estimations based on 

higher frequencies are more efficient than the direct estimators. Our results 

suggest that temporal aggregation is extremely useful to estimate low frequency 

GARCH models using high frequency data but that temporal aggregation also 

offers the possibility to reduce parameter estimation uncertainty. 
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Appendix A 
 
 
 
The case of flow variables: 
 
 
 

In their paper Drost and Nijman showed that the class of ARMA models with 

weak GARCH errors is closed under temporal aggregation. Weak GARCH is defined 

as a GARCH model in which the projections of the conditional variance are 

considered. Then, the following conditions hold: 

 

LP [ εt / Et-1  ] = 0 

 

LP [ ε2
t / Et-1  ] = ht 

 

Here LP [εt  / Et-1] = 0 and LP [ε2t  / Et-1] = ht are the best linear projections of εt 

and ε2
t in terms of εt-s and ε2

t-s and 1 for s≥1.  

 

If the disturbances εt follow a weak GARCH (1,1) process with unconditional 

kurtosis κε, then the aggregated disturbances εt
 (m) over m periods (t=1,2…) are also 

weak GARCH (1,1) distributed. In the case of flow variables upon aggregating it then 

follows: 

∑ −

= −=
1

0

m

s stm
m
t εε  

 

For the aggregated series, the conditional variance is equal to: 
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The corresponding parameters are equal to: 
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Here the functions a and b are defined as follows: 

 

+
+−−

−−−−
−+−=

))(1)(1(
)21()1()1(2)1(),,,( 2

11

11
22

112
111 βακ

βββ
βκβαα

ε
ε

aammmm t  

 

2
11

111111111

)(1
))()()()(1(4

βα
βαββαβ

+−
+−+++−− aaamm m

 

 

2
11

2
11

1111111 )(1
)(1))((),,(

β
βα

βαββα
+−
+−

+−=
a

aamb
m

 

 

The kurtosis of the aggregated series is equal to  
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Appendix B 
 
 
 
(1) I define the size of the sample. 

' SIZE OF THE SAMPLE' 
!size=5000 
 
 

(2) I define the size of the replications. 
' NUMBER OF REPLICATIONS' 
!rep=100 
 
 

(3) I define the result file whose name is GARCH with the size defined above. Then I 
define the initial values of the coefficients as estimated from daily stock returns. 
    

'RESULT FILE' 
create garch u 1  !size 
'DEFINITION OF COEFS' 
 
' initial values as estimated from daily stock returns with a GARCH(1,1) , AR(1) 

model' 
 
!f=0.011429 
!c=0.044197 
!a=0.9258808 
!g=0.01336 
!b=0.063525 
 
!j=5 'step in weekly data' 
!l=10 ' step in bi-weekly data' 
!m=20 ' step in monthly data' 
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(4) Then I proceed to the simulation generating processes for daily returns with 
conditional variance GARCH (1,1). The series y represents daily returns which is an 
AR (1) model. The series h represents the conditional variance, which is a GARCH 
(1,1). The yw series represents weekly returns, the ybm represents biweekly series and 
the ym represents the monthly returns series.  
 

' SIMULATION STEP 1  - Generate processes for daily returns and conditional     
variance GARCH (1,1)' 

series y 
series h 
 
series yw 
 
series ybw 
series ym 

 
 
 
The series e is a pseudo random draw from a uniform distribution (0,1). The 

series t generates pseudo random draws from a normal distribution with zero mean 
and unit variance.  

 
series e=rnd 
series t=nrnd 
 
 
for !i=2 to !size 
 
t(1), h(1) and y(1) are the initial values for the garch(1,1) model. The h(!i)is the 

variance equation and the y(!i) is the daily returns equation. 
 
t(1)=0.5 
h(1)=0.3 
h(!i)=!g+!b*h(!i-1)+!a*t(!i-1)^2+e(!i) 
y(1)=0.5 
y(!i)=!c+!f*y(!i-1) 
next 

 
 
(5) Then I create aggregated processes for weekly, bi-weekly and monthly returns. 
For the weekly frequency I will choose the fifth, the tenth, the fifteenth value etc, for 
the bi-weekly frequency I will choose the tenth, the twentieth, the thirtieth value etc 
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and for the monthly frequency I will choose the twentieth, the fortieth, the sixtieth 
values etc. 
 
 

' SIMULATION STEP 2 - Generate processes for weekly, bi-weekly and 
monthly returns' 

  
for !i=1 to (!size-1)/!j 
 
'step= the number of days that we aggregate stock returns- for a week , step=5'  
series yw 
 
yw(1)=y(1) 
yw(!i+1)=y(!i+1+4*!i) 
next 
 
for !i=2 to (!size-1)/!l 
 
 
 
'step= the number of days that we aggregate  stock returns- for 2 weeks , 
step=10'  
 
ybw(1)=yw(1) 
ybw(!i)=yw(2*!i-1) 
 
 
 
next 
 
for !i=2 to (!size-1)/!m 
 
'step= the number of days that we aggregate  stock returns- for month , step=20' 
 
ym(1)=ybw(1) 
ym(!i)=ybw(2*!i-1) 
next 
 

(6) Then I estimate the variance equations for daily, weekly, bi-weekly and monthly 
return which follow a GARCH (1,1). The simulation will be replicated 100 times. I 
create matrices for the results.  
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' SIMULATION STEP 3 - Estimate variance equations for daily, weekly, bi-
weekly and monthly returns - GARCH (1,1)- repeat simulation n times' 

 
matrix(!rep , 3) bd 
matrix(!rep , 3) bw 
matrix(!rep , 3) bbw 
matrix(!rep , 3) bm 
 
for !n=1 to !rep 
equation arcy!n.arch(1,1)   y(!n) 
equation arcyw!n.arch(1,1) yw(!n) 
equation arcybw!n.arch(1,1) ybw(!n) 
equation arcym!n.arch(1,1) ym(!n) 
 
freeze(resultsd!n) arcy!n 
freeze(resultsw!n) arcyw!n 
freeze(resultsbw!n) arcybw!n 
freeze(resultsm!n) arcym!n 
 
bd(!n,1)=resultsd!n(13,2) 
bd(!n,2)=resultsd!n(14,2) 
bd(!n,3)=resultsd!n(15,2) 
 
bw(!n,1)=resultsw!n(13,2) 
bw(!n,2)=resultsw!n(14,2) 
bw(!n,3)=resultsw!n(15,2) 
 
bbw(!n,1)=resultsbw!n(13,2) 
bbw(!n,2)=resultsbw!n(14,2) 
bbw(!n,3)=resultsbw!n(15,2) 
 
bm(!n,1)=resultsm!n(13,2) 
bm(!n,2)=resultsm!n(14,2) 
 
 
 
bm(!n,3)=resultsm!n(15,2) 
next 
 
for !j=1 to 3 
 
vector akd!j=@columnextract(bd,!j) 
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vector akw!j=@columnextract(bw,!j) 
vector akbw!j=@columnextract(bbw,!j) 
vector akm!j=@columnextract(bm,!j) 
next 
 
for !h=1 to 3 
series akfd!h 
series akfw!h 
series akfbw!h 
series akfm!h 
next 
for !p=1 to 3 
for !k=1 to !rep 
akfd!p(!k)=akd!p(!k) 
akfw!p(!k)=akw!p(!k) 
akfbw!p(!k)=akbw!p(!k) 
akfm!p(!k)=akm!p(!k) 
next 
next 
 

(7) In this step I will compute the mean of the estimated variance equations, which 
were estimated in the previous step. The mean will be placed on a matrix. 

 
' SIMULATION STEP 4 - From n-times estimated variance equations find the 

mean of the empirical distribution of estimated parameters' 
scalar gdsim2 
scalar bdsim2 
scalar adsim2 
gdsim2=@mean(akfd1) 
bdsim2=@mean(akfd2) 
adsim2=@mean(akfd3) 
 
 
!gdsim=gdsim2 
!bdsim=bdsim2 
!adsim=adsim2 

 
(8) Then I will solve the quadratic equation as presented in Drost-Nijman paper for 
temporal aggregation.  
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' SIMULATION STEP 5 - Solve the quadratic equation for aggregate b 

parameter for weekly, bi-weekly and monthly and calculate coefficients from 
formulas' 

 
scalar cw 
scalar cbw 
scalar cm 
 
 
cw=(!bdsim*((!bdsim+!adsim)^(!j-1)))/(1+((!adsim^2)*(1-

(!bdsim+!adsim)^(2*!j-2))/(1-
(!bdsim+!adsim)^2))+(!bdsim)^2*(!bdsim+!adsim)^(2*!j-2)) 

!cw=cw 
 
scalar dcw 
 
dcw=((-1)^2)-4*!cw*!cw 
 
!dcw=dcw 
 
scalar estbw1 
scalar estbw2 
estbw1=(1-@sqrt(!dcw))/2*!cw 
estbw2=(1+@sqrt(!dcw))/2*!cw 
 
cbw=(!bdsim*((!bdsim+!adsim)^(!l-1)))/(1+((!adsim^2)*(1-

(!bdsim+!adsim)^(2*!l-2))/(1-
(!bdsim+!adsim)^2))+(!bdsim)^2*(!bdsim+!adsim)^(2*!l-2)) 

!cbw=cbw 
 
scalar dcbw 
 
dcbw=((-1)^2)-4*!cbw*!cbw 
 
!dcbw=dcbw 
 
scalar estbbw1 
scalar estbbw2 
estbbw1=(1-@sqrt(!dcbw))/2*!cbw 
estbbw2=(1+@sqrt(!dcbw))/2*!cbw 
 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 47 

 
cm=(!bdsim*((!bdsim+!adsim)^(!m-1)))/(1+((!adsim^2)*(1-

(!bdsim+!adsim)^(2*!m-2))/(1-
(!bdsim+!adsim)^2))+(!bdsim)^2*(!bdsim+!adsim)^(2*!m-2)) 

!cm=cm 
 
scalar dcm 
 
 
 
 
dcm=((-1)^2)-4*!cm*!cm 
 
!dcm=dcm 
 
scalar estbm1 
scalar estbm2 
estbm1=(1-@sqrt(!dcm))/2*!cm 
estbm2=(1+@sqrt(!dcbw))/2*!cm 

 
(9) The model is run and the results are presented in a table.  
 

' FINAL STEP - Show results' 
 
table(18,6) finalresults 
finalresults(2,3)="weekly " 
finalresults(2,4)="bi-weekly " 
finalresults(2,5)=" monthly" 
finalresults(3,1)="average estimated g " 
finalresults(4,1)=" average estimated b" 
finalresults(5,1)=" average estimated a" 
finalresults(7,1)=" g formula " 
finalresults(8,1)=" b formula" 
finalresults(9,1)=" a formula" 
 
 
finalresults(11,1)=" estimated gd" 
finalresults(12,1)=" estimated bd  " 
finalresults(13,1)=" estimated ad " 
 
finalresults(15,1)=" initial g" 
finalresults(16,1)=" initial b " 
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finalresults(17,1)=" initial a" 
 
 
finalresults(3,3)=@mean(akfw1) 
finalresults(4,3)=@mean(akfw2) 
finalresults(5,3)=@mean(akfw3) 
 
finalresults(3,4)=@mean(akfbw1) 
finalresults(4,4)=@mean(akfbw2) 
finalresults(5,4)=@mean(akfbw3) 
 
finalresults(3,5)=@mean(akfm1) 
finalresults(4,5)=@mean(akfm2) 
finalresults(5,5)=@mean(akfm3) 
 
 
 
 
finalresults(11,3)=@mean(akfd1) 
finalresults(12,3)=@mean(akfd2) 
finalresults(13,3)=@mean(akfd3) 
 
 
finalresults (7,3)=!gdsim*(1-(!bdsim+!adsim)^(!j))/(1-(!bdsim+!adsim)) 
finalresults (7,4)=!gdsim*(1-(!bdsim+!adsim)^(!l))/(1-(!bdsim+!adsim)) 
finalresults (7,5)=!gdsim*(1-(!bdsim+!adsim)^(!m))/(1-(!bdsim+!adsim)) 
 
finalresults (8,3)=estbw2 
finalresults (8,4)=estbbw2 
finalresults (8,5)=estbm2 
 
finalresults (9,3)=(!adsim+!bdsim)^(!j)-estbw2 
finalresults (9,4)=(!adsim+!bdsim)^(!l)-estbbw2 
finalresults (9,5)=(!adsim+!bdsim)^(!m)-estbm2 
 
 
finalresults (15,3)=!g*(1-(!b+!a)^(!j))/(1-(!b+!a)) 
finalresults (15,4)=!g*(1-(!b+!a)^(!l))/(1-(!b+!a)) 
finalresults (15,5)=!g*(1-(!b+!a)^(!m))/(1-(!b+!a)) 
 
finalresults (17,3)=(!a+!b)^(!j)-estbw2 
finalresults (17,4)=(!a+!b)^(!l)-estbbw2 
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finalresults (17,5)=(!a+!b)^(!m)-estbm2 
 

 
Show final results 
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Σκοπός της εργασίας είναι η μελέτη της δεσμευμένης διακύμανσης
των αποδόσεων των χρηματιστηριακών μετοχών για διάφορες 
συχνότητες δεδομένων. Επίσης η κατασκευή μοντέλου 
χαμηλής συχνότητας με χρήση δεδομένων υψηλής συχνότητας. 
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Εισαγωγικοί Ορισμοί:
•Διακύμανση είναι η μεταβλητότητα των τιμών των 
μετοχών σε μία περίοδο χρόνου.
•Η διακύμανση είναι μέτρου κινδύνου και διαχρονικά 
μεταβάλλεται.

Σε αυτήν την εργασία όταν αναφερόμαστε σε :
•High frequency data μιλάμε για daily returns
•Low frequency data για weekly , bi-weekly , monthly 
returns.
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• Stylized facts about volatility:
1) Η κατανομές των αποδόσεων είναι λεπτόκυρτη.
2) Οι αποδόσεις των μετοχών επιδεικνύουν το λεγόμενο 

volatility clustering.
3) Οι αποδόσεις έχουν τάση για γρήγορη επιστροφή στο μέσο

(mean reversion).
4) Η μεταβλητότητα που παρατηρείται ως συνέπεια κακών 

ειδήσεων είναι πιο έντονη από αυτή που παρατηρείται 
ως συνέπεια καλών ειδήσεων.   

5) Πριν από σημαντικά αλλά προβλέψιμα γεγονότα όπως η 
ανακοίνωση των ετήσιων αποτελεσμάτων η μεταβλητότητα
αυξάνεται. 

6) Η έξαρση της διακύμανσης σε μία αγορά επεκτείνεται 
και σε όλες τις παρεμφερείς της. ΠΑ
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• Το volatility 
clustering 
εμφανίζεται ως 
διαδοχικές περίοδοι 
αυξημένης 
διακύμανσης στις 
αποδόσεις των 
μετοχών που 
ακολουθούνται από 
περιόδους σχετικά 
μειωμένης 
διακύμανσης.
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Temporal Aggregation : η διαδικασία δημιουργίας οικονομετρικών 
μοντέλων για μία συγκεκριμένη συχνότητα χρησιμοποιώντας 
δεδομένα διαφορετικής συχνότητας. Συνήθως με δεδομένα υψηλής 
συχνότητας κατασκευάζουμε χαμηλής συχνότητας μοντέλα. 
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Aggregation of GARCH (1,1):
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Aggregation of GARCH (1,1):
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Daily Data Weekly Data Monthly Data

Number 
of 

observati
ons

6523 1304 300

Mean 0.044825 0.212353 0.954055

Std. 
Dev.

1.049377 2.341541 4.354195

Βάση δεδομένων : DATASTREAM
Χρονική διάρκεια δεδομένων: 1/1/1979-1/1/2004
Συχνότητα δεδομένων:Ημερήσια , Εβδομαδιαία και Μηνιαία

Περιγραφικά Στατιστικά Δεδομένων
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DOW JONES ARCH (1) GARCH (1) ARCH (1)+GARCH (1)

Daily 0.065156 0.923652 0.988808

Weekly 0.181574 0.714808 0.896382

Monthly 0.068681 0.805582 0.874263
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Υπολογισμός GARCH (1,1) για τις διάφορες συχνότητες δεδομένων:
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Monte Carlo Simulation :

Το πρόγραμμα γράφτηκε στο οικονομετρικό πακέτο Ε-VIEWS 

Το μοντέλο που χρησιμοποιήσαμε στην προσομοίωση μας 
ήταν το ακόλουθο:

h(!i)=!g+!b*h(!i-1)+!a*t(!i-1)^2+e(!i)
y(!i)=!c
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Daily Weekly Bi-weekly Monthly

Average 
estimated g 

0.7415078 0.7193845 0.8378596 0.7869354

Average 
estimated b

0.0631654 0.195431 0.0302438 0.0634974

Average 
estimated a

0.9168478 0.7614882 0.676073 0.944330

g formula 0.6330264 0.7867453 0.7908663

b formula 0.17503646 0.028047 0.074

a formula 0.782237 0.619 0.9022

Results of the Monte – Carlo Simulation
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Fig. 1: Direct and implied 
estimations of parameter α.

Fig. 2: Direct and 
implied estimations of 
parameter β.
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Γιατί να προτιμήσω τους implied estimators αντί 
των direct estimators?

1) Γιατί οι implied estimators είναι πολύ efficient από τους direct.
2) H δομή της χρονοσειράς όσο πιο πίσω πάω τόσο πιο επικίνδυνο

είναι να έχει υποστεί η δομή της αλλοίωση και να είναι 
δύσκολη η μελέτη της.

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



Temporal aggregation results of 100 simulated time series.
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Monthly estimates: direct (1st

figure) and implied by daily 
estimates (2nd figure).
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if one has the possibility to estimate low 
frequency models using high frequency 
data, implied estimation using temporal 
aggregation seems to be preferred to 
direct estimation using the data at the 
lower frequency. 
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