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Volatility Clustering in Monthly Stock Returns
And
Temporal Aggregation of Simulated Data.

Abstract:

Financial markets display pronounced volatility clustering. Over the last
decade financial economists have began to seriously model the temporal dependencies
in return volatilities. This paper investigates the volatility clustering using
econometric models based on the methodology of temporal aggregation for GARCH
processes. We initially derive low frequency volatility models first from low
frequency data and then from high frequency data using a Monte Carlo simulation.
We compare the different models and finally we try to find out whose model’s
parameters are more efficient. The one's that were produced directly from low
frequency data or the other’s that was produced through temporal aggregation from
high frequency data?

The paper is divided in three parts. In the first pat we summarize the
theoretical background on which this empirical survey is based. In the second part we
make use of real data and more precisely, data of the Dow Jones Industrial 65
composite price index and the Standard and Poor’s 500 composite price index. In the
third part we produce, through a Monte Carlo simulation, low frequency volatility
models from high frequency data using the methodology of temporal aggregation.
The initial values for our simulation are taken from the analysis of the real data and
our effort isto replicate the behaviour of Dow Jones Index’s volatility.



Introduction:

The stock return volatility in a period of time is called the conditional variance
of these returns in the same period. The volatility of flows of an investment is very
important and the prediction of this volatility is a powerful financial tool for investors,
bankers, traders etc. During the last years more and more papers are dealt with the
behaviour of volatility. Thisis not something strange since volatility isto some degree
predictable contrary to returns whose future behaviour is more difficult to fit in a
model and more difficult to be predicted.

The econometric models had initially focused on the study of conditional mean.
The expansion of econometric theory and the need of the market for further
understanding of the risk drove the study of higher order moments. The models that
where produced are called ARCH-type models (Autoregressive Conditional
Heteroskedasticity Models).

The purpose of each study determines what frequency will be used in each case.
For instance if the forecasts of future volatility will be used by a stock trader the
forecasts will be meaningful if they predict next minute’s or hour’s volatility. In such
a study we are obliged to use high frequency data (every second, minute, hour, day).

On the other hand predictions that are going to be used by an investment
manager will be useful only if they are referred to next month’'s or next year's
volatility. In this case low frequency data has to be used (weekly, bi-weekly or
monthly data).



PART 1

1.1 Stylised facts about stock returnsvolatility:

The behaviour of stock returns volatility has some special characteristics that
have been confirmed in numerous studies:

1. The distribution of returns is leptokurtic e.g. contrary to normal distribution it
has more extreme values. This phenomenon is referred in bibliography as
thick tails. It is well established that the unconditional distribution of asset
returns has heavy tails. Typical Kurtoss estimaies range from 4 to 50
indicating very extreme non-normality. This is a feature that should be
incorporated in any volatility model. The relation between the conditional
density of returns and the unconditional density partially reveals the source of
heavy tails. If the conditional density is Gaussian, then the unconditional
density will have excess kurtosis due simply to the mixture of Gaussian
densities with different volatilities. However there is no reason to assume that
the conditional density isitself fat tailed, generating till greater kurtosisin the
unconditional density.

2. Stock returns exhibit volatility clustering. In other words the autocorrelation of
first lags is statistically significant. This phenomenon is related to the thick
tales phenomenon that was mentioned above. What we know is that in high
frequency data the volatility-clustering phenomenon is very intense. As we
move to lower frequency data the phenomenon is gradually becoming less and
less intense. Mandelbrot (1963) and Fama (1965) both reported evidence that
large changes in the price of an asset are often followed by other large
changes; this behaviour has been reported by numerous other studies, such as
Bailie et al. (1996), Chou (1998) and Schwert (1989). The implication of such



volatility clustering is that volatility shocks today will influence the
expectation of volatility many periods in the future.

. Volatility clustering implies that volatility comes and goes. Thus a period of
high volatility will eventually give way to more “normal” volatility and
similarly, a period of low volatility will be followed by rise. Mean reversion in
volatility is generally interpreted as meaning that there is “normal” level of
volatility to which volatility will eventually return. Very long forecasts of
volatility should all converge to this same normal level of volatility, no matter
when they are made. There is a controversy over the “normal” level of
volatility and whether it is constant over all time and institutional changes.

. The asymmetry effect that a “good news shock™” and a *bad news shock” have
on the stock returns is another characteristic of stock return volatility. More
precisely it has been found that the volatility is negatively related to equity
returns. [Black (1976), Christie (1982), Nelson (1991), Glosten et al (1993)]
This asymmetry is sometimes ascribed to a leverage affect and sometimesto a
risk premium effect. In the former theory, asthe price of a stock falls, its debt-
to-equity ratio rises, increasing the volatility of returns to equity holders. In the
latter story, news of increasing volatility reduces the demand for a stock
because of risk aversion. The consequent decline in stock value is followed by
the increased volatility as forecast by the news.

. Another characteristic of stock returns behaviour is the exaltation of the

volatility just before a predictable event of great importance like the opening
and the closing in every trading day in the stock market or the public
announcement of the corporate earnings.

. Another very interesting characteristic of the volatility is its simultaneously
raise and fall in different interactive markets such as the stock market as a
whole, the market for a single stock, the T-bills market and more general the
world money markets.



7. According to Glosten et a. (1993) there is a strong positive relation between
the stocks return volatility and interest rates volatility. On the other hand only
awesak link was detected between macroeconomic uncertainty and volatility.

1.2 Definitions and Notation:

In order to define the models properly let {e,,tT Z} be a sequence of stationary

errors with finite fourth moments. Define operators
AL)=1+3 " al and B(L)=1- 3" b,L' and
let the sequence {h,,tT Z} be defined asthe stationary solution of:

B(L)h =y +{A(L)- Be’

We assume that B(L) and B(L)+1-A(L) have roots outside the unit circle and hence are
invertible. Three definition of GARCH will be used:

Strong GARCH:

The sequence {e,,t1 Z} is defined to be generated by a strong GARCH (p,q) process
if w, A(L) and B(L) can be chosen such that :

x, =€,/ /h ~iid. D(0Y)



where D(0,1) specifies a distribution with mean zero and unit variance.

Semi-strong GARCH:

The sequence {e,,t1 Z} is defined to be generated by a semi-strong GARCH (p,q)
processif w, A(L) and B(L) can be chosen such that :

Ele/e 1.6 .1 =0 and
E[etzlet-l’et-Z’K] = h
Weak GARCH:

The sequence {e,,t1 Z} is defined to be generated by a weak GARCH (p,q) process
if w, A(L) and B(L) can be chosen such that :

Ple, /e ;€. ,,K] =0 and

P[etzlet-l’et~ »Kl=h

where P[x /e_,.e_,,K]denotes the best linear predictor of xin terms of

lLe..e.,.K.el.e?, Kie

E(x - P[x/e_,.e._,K])e , =0foris1andr=012



All these GARCH definitions require § ” b, +§ & <1. The most popular
distributions are normal and t distributions. A strong GARCH process will also be
semi-strong GARCH. On the other hand a semi-strong GARCH process with time —
varying higher order conditional moments of the rescaled innovations x, =e, /,/h is
not srong GARCH. Finally the requirements for weak GARCH are met both by
strong and semi-strong GARCH processes. The weak GARCH definition is quite
general and captures the characterizing features of the other GARCH formulations. It
is possible to obtain strongly consistent estimators of the GARCH parameters in this
general formulation.

The most general model used isthe ARMA model with GARCH errors:

GL)y, =Q(L)e, where:
GL)=P (- gL) and Q(L)=P2 - qgL).

It is assumed that all standard regularity conditions are fulfilled. This implies
that the roots of /(L) and @(L) are all outside the unit circle and that no roots of /(L)
coincides with roots of ®(L).

High frequency observations are assumed to be on vy, (t =1LK,T). If y, is stock
variable low frequency observations are assumed to be on y, (t = m,2m,K,T) where m

is some known integer. We suppose that T is a multiple of m.
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1.3 Temporal Aggregation:

When high frequency data is available we can calculate a low frequency model
using high frequency data through temporal aggregation. The methodology for
temporal aggregation that will be followed in this paper was initially introduced by
Drogt and Nijman (1993). This methodology enables us to compare the parameters of
the two low frequency models. The one that will be produced by low frequency data
and the other that will be produced by high frequency data. It’s interesting to see the
behavior of conditional variance and how it reactsto frequency changing.

It is feasible to estimate strongly consistent estimators of the low frequency
model. Simulations have proven that the quasi-maximum likelihood estimator is very
close to the real values of the parameters.

This analysis will be focused on GARCH (1,1) model. This choice is not
random. Many studies have proven that the simple GARCH (1,1) model has better
forecasting ability in relation to all other models that are usually more complicated.

The temporal aggregation has also bothered Diebold and Nelson. In 1988
Diebold showed that the conditional heteroskedasticity disappears as time sampling
interval tends to infinity. In the case of flow variables the implied low frequency
distribution tends to normal distribution. In 1990 Nelson studied the effects of the
increasing frequency of the sample.
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1.4 Aggregation of GARCH (1,1):

In the case of stock variables the class of symmetric weak GARCH (1,1) models
is closed against temporal aggregation. The high frequency parameters
y ,b,a andk, determine the corresponding low frequency parameters.

More precisely, if {y,,t1 Z} is weak GARCH (1,1) with symmetric marginal
distributions and h =y +bh_, +ay’, then {y, 1 Z} is symmetric weak GARCH
(1,2) with:

— 2 .
h(m)tm =y (m) + b(m)h(m)tm- m + a(m) ytm- m where:

1- (b +a)™

: =(b+a)"- b,,, and
1'(b+a) a(m) ( ) (m)

Ym =Y
b 1 (0) isthe solution of the quadratic equation :

b _ b(b+a)™*

1+b2 1- (b +a)’™2 L
o ray TV

M 1+a

What is observed is that b, +a., =(b +a)™ tends to zero as m tends to

infinity. Hence conditional heteroskedasticity disappears in the limit if the process is
aggregated more and more.

We can derive strongly consistent estimators of the high and low frequency
parameters only based upon low frequency data. Let us consider the low frequency
ARMA (1,1) model that is known to generate the squared observations:

2 2
Yim =Y (m) + (b(m) +a(m))ytm- m +htm - b(m)htm- m
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where h? - hym- Theh,, are uncorrelated. Assume that {h,,} isergodic. Asa

result the vector process {(YzZ,, Y. m Yon. om)} 1S @S0 ergodic. This implies that the

sample mean and the first two sample autocorrelations converge almost surely and a
simple one-one relation between these limits and the GARCH parameters determines
the required estimators. The assumption of ergodicity of the low frequency processis
e.g. trivially satisfied if there exists an underlying high frequency strong GARCH
process. Then the low frequency GARCH parameters can be consistently estimated
using low frequency data. This implies that consistent estimation of the high
frequency parameters, based on low frequency data only, is possible. The high
frequency parameters are uniquely determined by the corresponding low frequency
ones.

The problem of multiple high frequency models that are consistent with the low
frequency evidence that can arise in ARMA (1,1) models is absent in the GARCH
(1,2) model because of the restriction that all parameters are nonnegative. Drost and
Nijman proved that GARCH (1,1) are close to ARCH (1) models if the sampling
interval is large and the conditional heteroskedasticity disappears when the sampling
period is large. Furthermore they showed that highly aggregated models with
nontrivial variance parameters are generated by a DGM close to integration in
variance models.
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PART 2

2.1 Datadescription and Variable Construction:

Daily, weekly and monthly data was downloaded from DATASTREAM
database for the period: January 1979 to May 2004. We initially examine two indices:
The Dow Jones Industrial Composite 65 price index (from now on DJ) and the
Standard and Poor’s 500 Composite price index (from now on SP). These indices are
chosen because they are large enough, with available data for a long period of time,
economically important and because such indices are minimally impacted by isolated
corporate developments contrary to indices of small countries. From now on the
returns of these two indices are RDJ and RSP respectively. If the data is at the daily,
weekly or monthly frequency the abbreviation will have the prefix D~ for daily data,
W~ for weekly data and M~ for monthly data respectively (DRDJ, WRDJ, MRDJ,
etc).

In order to examine the stochastic process over the study period we employed
models of conditional variances using the generalized autoregressive conditional
heteroskedasticity (GARCH)  formulation. The autoregressive conditional
heteroskedasticity (ARCH) model was introduced by Engle (1982) and allows the
variance of the error term to vary over time, in contragt to the standard time series
regression models that assume a constant variance. The generalized ARCH models,
i.e. the GARCH models, have been found to be valuable in modeling the time series
behavior of stock returns (Akgiray, 1989; French et al. 1987;). Bollerslev (1986)
allows the conditional variance to be a function of prior period's squared errors as
well as of its past conditional variances. The GARCH model has the advantage of
incorporating heteroskedasticity into the estimation procedure. All GARCH models
are martingale difference implying that all expectations are unbiased. The GARCH
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models are capable of capturing the tendency for volatility clustering in financial data.
Volatility clustering in stock returns implies that large (small) price changes follow
large (small) price changes of either sign. Engle et al. (1987) provide an extension of
the GARCH model where the conditional mean is an explicit function of the
conditional variance. Such a model is known as the GARCH in the mean mode!.

The persistence of shocks to volatility depends on the sum of the at+f
parameters. Values of the sum lower than unity imply a tendency for the volatility
response to decay over time. In contrast, values of the sum equal or greater than unity
imply indefinite or increasing volatility persistence to shocks over time. However a
significant impact of volatility on the stock prices can only take place if shocks to
volatility persist over along time.

Figure (1): Dow Jones Industrial 65 Composite Price Index and Standard &
Poor’s 500 Composite Price I ndex.
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Figure (2): Returns of Dow Jones Industrial 65 Composite Price Index and
Standard & Poor’s 500 Composite Price Index.
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Some summary statistics of the data are presented in the tables below:

(1) Returnsof Dow Jones Industrial 65 Composite Price Index:

Daily Data Weekly Data Monthly Data

Number of

) 6523 1304 300
observations

Mean 0.044825 0.212353 0.954055
Std. Dev. 1.049377 2.341541 4.354195
Skewness -1.558261 -1.049756 -0.599395
Kurtosis 41.22057 17.92316 6.269915




(2) Returns of Standard & Poor’s 500 Composite Price Index:

16

Daily Data Weekly Data Monthly Data
Number of
) 6523 1304 300
observations
Mean 0.042898 0.218016 0.91189

Std. Dev. 1.034637 2.436149 4.262545
Skewness -1.224119 -1.021674 -0.619104

Kurtosis 30.78527 17.06107 5.468054

We use the following measure for skewness:

1

r-r

=13"y

T

The skewness of a symmetric distribution, such as the normal distribution, is

zero. Positive skewness means that the distribution has a long right tail and negative

skewness implies that the distribution has a long left tail. At the daily, weekly and

monthly frequency the series seem to be negatively skewed.

The series also exhibit high kurtosis. Kurtosis measures the peakedness or

flatness of the distribution of the series. Kurtosis is computed as:

14 =
;aq

g

1€ S ﬂ
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The level of kurtosis increases as data frequency increases. On a daily basis it
equals 41.22057 for the Dow Jones 65. In the presence of volatility clustering the
sguared returns should be highly autocorrelated. An analysis of the correlogram of the
returns indicates no dependence in the mean of the series and so we will assume a
constant conditional mean.
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2.2 Econometric Analysis of Real Data

The results of the “real” data analysis will be presented in the next few pages.
The analysis was performed with the E-views programme. The ARCH (1) parameter
is the parameter o of the GARCH (1,1) model, which was presented analytically in
the first part of this paper. The GARCH (1) parameter is the parameter B of the
GARCH (1,1) model.

The behavior of the volatility is examined, as data frequency switches from
daily to weekly and from weekly to bi-weekly and from bi-weekly to monthly
frequency for both indices. The final results are presented in a separate table at the
end of thisanalysis.

Dependent Variable: RDJD

Method: ML - ARCH (Marquardt)

Date: 04/26/04 Time: 16:01

Sample (adjusted): 2 6524

Included observations: 6523 after adjusting endpoints
Convergence achieved after 42 iterations

Variance backcast: ON

Coefficient  Std. Error  z-Statistic Prob.

C 0.062681  0.010555  5.938273  0.0000
Variance Equation

C 0.013842  0.001471  9.408010  0.0000

ARCH(1) 0.065156  0.001577  41.32581  0.0000
GARCH(1) 0.923652  0.003039  303.8919  0.0000
R-squared -0.000290 Mean dependent var 0.044825
Adjusted R-squared -0.000750 S.D. dependent var 1.049377
S.E. of regression 1.049770 Akaike info criterion 2.694861
Sum squared resid 7184.054  Schwarz criterion 2.699021
Log likelihood -8785.289  Durbin-Watson stat 1.976462

Estimation Command:

ARCH RDJD C

Estimation Equation:

RDJD = C(1)



Substituted Coefficients:

-12

1000 2000 3000 4000 5000 6000

— RDJD Residuals

Dependent Variable: RSPD
Method: ML - ARCH (Marquardt)
Date: 04/26/04 Time: 16:04
Sample(adjusted): 2 6524

T T T T T T
1000 2000 3000 4000 5000 6000

— Standardized Residuals

Included observations: 6523 after adjusting endpoints

Convergence achieved after 33 iterations
Variance backcast: ON

Coefficient ~ Std. Error  z-Statistic Prob.
C 0.058845  0.010227  5.753839  0.0000

Variance Equation
C 0.009647  0.001160 8.317874  0.0000
ARCH(1) 0.062214 0.001539  40.42083  0.0000
GARCH(1) 0.930327 0.002631  353.6221  0.0000
R-squared -0.000238 Mean dependent var 0.042898
Adjusted R-squared -0.000698 S.D. dependent var 1.034637
S.E. of regression 1.034998  Akaike info criterion 2.652259
Sum squared resid 6983.285 Schwarz criterion 2.656418
Log likelihood -8646.343  Durbin-Watson stat 1.959678
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Estimation Command:

ARCH RSPD C

Estimation Equation

RSPD = C(1)

Substituted Coefficients:

RSPD = 0.05884517401

-25

T T T T T T
1000 2000 3000 4000 5000 6000

-12-L—

—— RSPD Residuals

Dependent Variable: RDIW

Method: ML - ARCH (Marquardt)

Date: 04/26/04 Time: 16:05
Sample(adjusted): 1/08/1979 12/29/2003
Included observations: 1304 after adjusting endpoints
Convergence achieved after 17 iterations

Variance backcast: ON

T T T T T T
1000 2000 3000 4000 5000 6000

— Standardized Residuals

Coefficient ~ Std. Error  z-Statistic Prob.
C 0.305436  0.057408  5.320457  0.0000

Variance Equation
C 0.634838 0.126391  5.022817  0.0000
ARCH(1) 0.181574 0.011712  15.50371  0.0000
GARCH(1) 0.714808 0.031308 22.83176  0.0000
R-squared -0.001582 Mean dependent var 0.212353
Adjusted R-squared -0.003893 S.D. dependent var 2.341541
S.E. of regression 2.346095 Akaike info criterion 4.422333
Sum squared resid 7155.407 Schwarz criterion 4.438202
Log likelihood -2879.361  Durbin-Watson stat 2.102479

20



Estimation Command:

ARCH RDJW C

Estimation Equation:

RDJIW = C(1)

Substituted Coefficients:

RDJW = 0.3054363252

20

104

-10

.20
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1980 1985 1990 1995 2000 1980 1985 1990 1995 2000

— RDJW Residuals — Standardized Residuals

Dependent Variable: RSPW

Method: ML - ARCH (Marquardt)

Date: 04/26/04 Time: 16:17

Sample(adjusted): 1/15/1979 12/29/2003

Included observations: 1303 after adjusting endpoints
Convergence achieved after 41 iterations

Variance backcast: ON

Coefficient  Std. Error  z-Statistic Prob.

C 0.282851  0.053520 5.284984  0.0000

RSPW(-1) -0.099358  0.030662  -3.240387  0.0012
Variance Equation

C 0.257329  0.065714  3.915880  0.0001

ARCH(1) 0.161614 0.011831  13.66067  0.0000

GARCH(1) 0.809945 0.021012  38.54631  0.0000

R-squared 0.008305 Mean dependent var 0.216036

21



Adjusted R-squared 0.005249 S.D. dependent var

S.E. of regression 2.429632 Akaike info criterion
Sum squared resid 7662.237  Schwarz criterion
Log likelihood -2895.016  F-statistic

Durbin-Watson stat 1.996498 Prob(F-statistic)

2.436033
4.451290
4.471138
2.717567
0.028502

Estimation Command:

ARCH RSPW C RSPW(-1)

Estimation Equation:

RSPW = C(1) + C(2)*RSPW(-1)

Substituted Coefficients:

RSPW = 0.2828508197 - 0.09935765588*RSPW/(-1)

20 6
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Dependent Variable: RDIJM

Method: ML - ARCH (Marquardt)

Date: 04/26/04 Time: 16:14

Sample(adjusted): 1979:02 2004:01

Included observations: 300 after adjusting endpoints
Convergence achieved after 42 iterations

1985 1990 1995

— Standardized Residuals

2000

22



Variance backcast: ON
Coefficient  Std. Error  z-Statistic Prob.

C 0.902588  0.228763  3.945518  0.0001
Variance Equation

C 0.571728  0.503837  1.134749  0.2565

ARCH(1) 0.068681  0.035054  1.959308  0.0501
GARCH(1) 0.805582 0.048971  18.49237  0.0000
R-squared -0.000140 Mean dependent var 0.954055
Adjusted R-squared -0.010277 S.D. dependent var 4.354195
S.E. of regression 4.376511 Akaike info criterion 5.766413
Sum squared resid 5669.539 Schwarz criterion 5.815797
Log likelihood -860.9619  Durbin-Watson stat 1.990198

Estimation Command:

ARCH RDJM C

Estimation Equation:

RDJM = C(1)

Substituted Coefficients:

RDJM = 0.9025879876

20

104

2104

-204

1980 1985 1990 1995 2000 1980 1085 1990 1995 2000
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Dependent Variable: RSPM
Method: ML - ARCH (Marquardt)
Date: 04/26/04 Time: 16:09
Sample(adjusted): 1979:02 2004:01

Included observations: 300 after adjusting endpoints

Convergence achieved after 23 iterations
Variance backcast: ON

24

Coefficient ~ Std. Error  z-Statistic Prob.
C 0.896568  0.215841  4.153845  0.0000

Variance Equation
C 0.472939  0.367377  1.287337  0.1980
ARCH(1) 0.088983 0.037161  2.394535  0.0166
GARCH(1) 0.791873 0.039289  22.70054  0.0000
R-squared -0.000012 Mean dependent var 0.911189
Adjusted R-squared -0.010147 S.D. dependent var 4.262545
S.E. of regression 4.284117  Akaike info criterion 5.713813
Sum squared resid 5432.682  Schwarz criterion 5.763197
Log likelihood -853.0719  Durbin-Watson stat 1.954979

Estimation Command:

ARCH RSPM C

Estimation Equation:

RSPM = C(1)

Substituted Coefficients:

RSPM = 0.89656841

-30-1 ‘ : : : 6
1980 1985 1990 1995 2000 1980

T T T T
1985 1990 1995 2000

‘— Standardized Residuals ‘

The results of the analysis of the real data are presented in the next paragraph.
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2.3 Resaults of the Econometric Analysis

The final results are presented in the next table:

DOW JONES D.J. arch (1) D.Jgarch(l) D.Jarch (L)+garch (1)

Daily 0.065156  0.923652 0.988808
Weskly 0.181574  0.714808 0.896382
Monthly 0.068681  0.805582 0.874263

S&P S&Parch (1) S&P garch (1) S&Parch (1)+garch (1)
Daily 0.062214  0.930327 0.992541
Weskly 0.161614  0.809945 0.971559
Monthly 0.088983  0.791873 0.880856

As we can see volatility persistence lowers as the data frequency lowers. Thisis
something we expected to happen. It is attributed to a number of reasons, which will
be analysed in the third part of this paper.

OD.J.arch(1)
ED.J.garch(1)
Os&Parch(1)
Os&Pgarch(1)

B D.J.arch(1)+garch(1)
B S&Parch(1)+garch(1)

daily weekly monhlty
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In this figure it is clear that the sum of a and B parameters if falling as the data
frequency becomes lower. The sum of the two parameters is presented with the purple
line for the Dow Jones time series and with the brown line for the Standard and Poor
time series. From this analysis of the real data we will obtain the initial values for the
Monte Carlo simulation which will be performed in the next part of the paper.

—&—D.J. arch (1)
——D.J.garch (1)

S&P arch (1)

S&P garch (1)
—X¥—D.J.arch (1)+garch (1)
—@— S&P arch (1)+garch (1)




27

:

3.1 Monte Carlo Simulation Program

The Monte Carlo Simulation program is written in EViews 4.0, a forecasting
and analysis package for Windows-based computers and is analytically presented in
appendix B at the end of this paper.

The program is analytically presented with extended comments between each
step. The key points of the process are the following:

The purpose of this simulation is to create data and more precisely simulated
stock returns that have some characteristics that resemble with those of the real world.
These stock returns are created by a variance equation that is GARCH (1,1) and a
mean equation that is a standard term. The model that was used is the following:

h(1)=!g+!b*h(li-1)+1a*t(li-1)"2+e(!i)
y(li)=!c

The initial values that are needed for this process are taken from the analysis
that took place earlier. The data that is created is supposed to be the daily stock
returns. The weekly, bi-weekly and monthly stock returns are taken from the daily
stock returns series and are series in descending frequency. The program estimates the
variance equation 100 times for each frequency and calculates the average of the
repetitions and presents it as the direct estimation of each estimator. Then the program
estimates the parameters not directly from the generated data but using the equations
for the temporal aggregation with the daily data. At the end of the simulation a table
is created where you can find two different estimations for each parameter. The first
estimation is calculated by the correspondent frequency data and the latter using only
high frequency (daily) data.
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3.2 Reaults of the Monte— Carlo Simulation

These are the results of the Monte — Carlo simulation program. The average
estimated parameters are those that were estimated directly from the correspondent
data frequency. For example the daily average estimated parameters were estimated
from daily data, the weekly parameters from weekly data etc. In fact the so-called
daily data is nothing more than a high frequency data series. The weekly data is a
series with lower frequency etc. | use this terminology (daily, weekly, bi-weekly etc.)
for reason of better comprehension. The latter estimators which are called “formula”’
estimators are those that were estimated using the equations of temporal aggregation.
More specifically the weekly, bi — weekly and monthly estimators were estimated
from high frequency data (the so - called daily data). That ‘s why these estimators

cannot estimate parameters for the daily frequency.

Daily Weekly Bi-weekly Monthly
Average 0.7415078 0.7193845 0.8378596 0.7869354
estimated g
Average 0.0631654 0.195431 0.0302438 0.0634974
estimated b
Average 0.9168478 0.7614882 0.676073 0.944330
estimated a
g formula 0.6330264 0.7867453 0.7908663
b formula 0.17503646 0.028047 0.074
aformula 0.782237 0.619 0.9022
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Fig. 1. Direct and implied estimations of parameter «.

In the above figure we observe the behavior of the direct (deep blue) and
implied (pink) estimators for the parameter «.. As we can see the two parameters are
very close. In the weekly frequency the implied estimator (temporal aggregated
estimator) is higher than the direct estimator. The direct estimator seems to be higher
though in the bi-weekly and in the monthly frequency.
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Fig. 2: Direct and implied estimations of parameter .

In this figure we can see that the implied estimators (pink) are close to the direct
estimators (deep blue). The implied estimators are calculated with high frequency
data. The direct estimators are calculated with weekly, bi- weekly and monthly data

0.85

0.8

0.75

—&— Average estimated K
—l— « formula

0.7

0.65

0.6

Daily Weekly  Bi-weekly Monthly

Fig. 3: Direct and implied estimations of parameter «.

In the above figure we can see the behavior of the two different estimators for
the parameter y. The implied estimator (pink) that was estimated with high frequency
data is lower than the direct estimators (deep blue) for the weekly and bi-weekly
frequency. For the monthly data the two estimators seem to coincide.

The parameter « (or g) isthe kurtosis coefficient. This parameter is used for the

calculation of parameter b (or ).
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3.2 Resultson theefficiency of the estimatorsfor the parameters:

In this part we try to find out whether implied estimators based on high
frequency data are more efficiency than direct estimators based on low frequency.
Drogst and Nijman suggest that implied estimators might be more efficient than the
direct estimators. A gain of efficiency should then be caused by the fact that on higher
frequency more data are available than on lower frequency and thisisin fact againin
efficiency.

We address this issue by calculating the bias between the true parameter and the
implied one for each replication in the Monte — Carlo simulation. The moving average
of the sum of the biases is the standard deviation of the parameter’. We calculated the
standard deviation for each frequency (weekly, bi-weekly and monthly). As we can
see temporal aggregation by itself leads to larger standard deviation when the
frequency decreases. For the Dow Jones Composite Price Index parameter o
increases from 0.015 to 0.052 and from 0.025 to 0.058 for B;. Temporal aggregation
leads to larger (implied) standard deviation when the frequency decreases. This
increase is more than offset by the gain from the use of the additional information. To
verify these results we performed the Monte Carlo simulation. In our simulation we
generated 100 time series for a simulated GARCH (1,1) process with alength of 5000
observations based on the direct parameter estimates for the Dow Jones at the daily
frequency. Similar to the procedure for the stock return series we then directly
estimated the parameters at four different frequencies, which we denote daily, weekly,
bi-weekly and monthly. Based on these direct estimates we calculated the implied

estimates at the lower frequencies.

"We calculated the differences: ainpied - 8y, @ Adrea - 8y, fOr parameter o and
D gt = Dyue @0 D o - B

implied true direct true *
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In the next figure we plotted the direct estimates of o, and B at the daily
frequency (the cloud at the right) and the implied estimates at the lower frequencies
(the cloud on the left shows the monthly implied estimates by the daily direct
estimates). This plot shows some interesting results. The direct estimates at the daily
frequency for a; tend to be slightly higher than the true parameter a;. The average of
the direct estimates equals 0.105 with a standard deviation of 0.046. Even though the
true parameter lies within 1.96 standard deviations of the estimates, the direct
estimates for a1 seem marginally biased. The direct estimate of 1 does not seem to
exhibit any bias. The average estimate for this parameter almost equals the true
parameter value (0.879 and 0.878 respectively). The standard error for B1 equals
0.0069.



33

+ Simulation
+ True data
oi'd .
t."‘ e - ? [}
- ‘,. i'# N .
S LA -
n WA +s 00
R o iy
a- * s
heta (1)

Fig. 1. Temporal aggregation results of 100 smulated time series. Most right cloud
isthe direct estimates at the daily frequency, moving to the left we find the implied
weekly estimates, implied bi weekly estimates and implied monthly estimates (all
implied by direct estimates at the daily frequency)

The increase in the standard errors caused by the temporal aggregation is
smaller than the decrease in efficiency due to increase in the number of observations
when we derive the estimates of the lower frequency from the high frequency

estimates. This can be seen in the next figure.
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Fig 2: Monthly estimates: direct (1% figure) and implied by daily estimates (2™
figure).
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In the above figures we compare the monthly direct estimates with the implied
estimates of the daily frequency. The implied estimates are much more dense. This
confirms our earlier result that the implied estimators are more efficient than the
direct ones.

In the next figure we consider the efficiency increase in estimators oy and 1. We
measure the efficiency increase by the empirical standard errors derived from the 100
generated series.

When we compare the standard errors of the direct estimators with those implied
estimators we find that for a, the efficiency increases from 0.111 to 0.049. For B, the

increase is even higher.

Monthly parameter estimates are determined using:
Monthly direct | Implied estimates based Direct weekly | Direct daily
estimates on direct bi-weekly estimates estimates estimates
Standard
Deviation 0.111 0.068 0.057 0.049
for a;
Standard
Deviation 0.187 0.112 0.062 0.046
for By
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Fig. 3: Efficiency increase in estimators measured by standard deviation when
monthly parameter estimates are determined using direct monthly estimates implied
estimates based on direct bi-weekly estimates, direct weekly estimates and finally
direct daily estimates.

There are plenty of other reasons why we make use of the implied estimators
instead of the direct estimators, which are easier to be estimated.

Another reason why we prefer the implied estimations is that the structure of
long time series, like Dow Jones Price Index, is usually subject to radical changes
that may set the econometric analysis difficult or even trivial.

A final reason why we prefer the implied estimators is mainly econometric. The
implied estimators, as Drost and Nijman proved, are more efficient that the direct
estimators since they incorporate more data.

The estimators, that where estimated through the temporal aggregation, are

closer to the true parameters in comparison with the ones that were estimated directly
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from the correspondent data frequency. The use of daily data produced more effective
estimators than the use of data of lower frequency.

Summarizing we find that if one has the possibility to estimate low frequency
models using high frequency data, implied estimation using temporal
aggregation seemsto be preferred to direct estimation using the data at the lower

frequency.
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NCLUSION

In this empirical analysis we proved that for long time series (like the Dow
Jones Price Index) the homoskedasticity assumption can be reected. We
estimated low frequency parameters from high frequency data. The implied
parameters are relatively more efficient from the directly estimated parameters.
Our Monte Carlo smulation confirms that these implied estimations based on
higher frequencies are more efficient than the direct estimators. Our results
suggest that temporal aggregation is extremely useful to estimate low frequency
GARCH models using high frequency data but that temporal aggregation also

offersthe possibility to reduce parameter estimation uncertainty.
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Appendix A

The case of flow variables:

In their paper Drogt and Nijman showed that the class of ARMA models with
weak GARCH errors is closed under temporal aggregation. Weak GARCH is defined
as a GARCH model in which the projections of the conditional variance are

considered. Then, the following conditions hold:
LP[ St/ Et-l ] =0
LP[ &%/ Em]=h

Here LP [&: / E.qy = 0and LP [¢2t / Ev.q) = hyare the best linear projections of &

and €% in terms of g.cand £%..and 1 for s 1.

If the disturbances ¢; follow a weak GARCH (1,1) process with unconditional
kurtosis k., then the aggregated disturbances ;™ over m periods (t=1,2...) are also
weak GARCH (1,1) distributed. In the case of flow variables upon aggregating it then

follows:

For the aggregated series, the conditional variance is equal to:



(M) = (M 4 (M (M2 4 (M)p(m)
hm - aom +aim e(tlrr]l) + blm h(trr]l)
The corresponding parameters are equal to:

1- (al' bl)m
° 1- (al' bl)

al™ =ma
(m) — (m)
alm _(a1+b1)m' blm

and b/™is the solution of

b/ __ a(a,b,k.,m(a +b,)" - b(a,b,m)

1+b™* a(a, bk, m(+(a +b,)™) - 2b(a, b, m)

Here the functions a and b are defined as follows:

201 12
a(@,, by k., m=ml- b,)*+2m(m- 1) d-a-b)°@-b’-2ab,)

(ke - 1)(1' (al + bl)z)

4(m-1- m@a +b,)+(@, +b,)")(a - ab,(@, +b,))
1- (al + b1)2

1- (al + bl)zm

b(@,,b;,;m =(a - ab,(@, +b,)) 1- (a,+b )2

The kurtosis of the aggregated seriesis equal to

40
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k.- 3 (m' 1- m(ai + bl) + (al + bl)m)(ai - aibl(al + bl(al +b1))

k™ =3+=2—"+6(k,- D*
t m ( ° ) mz(l' a - bl)z(l' b12' 2a1b1)

Appendix B

(1) 1 define the size of the sample.

'SIZE OF THE SAMPLE'
Isize=5000

(2) | define the size of the replications.
"NUMBER OF REPLICATIONS
Irep=100

(3) | define the result file whose name is GARCH with the size defined above. Then |
define theinitial values of the coefficients as estimated from daily stock returns.

'RESULT FILE'
creategarchu 1 !size
'DEFINITION OF COEFS

"initial values as estimated from daily stock returns with a GARCH(1,1) , AR(2)
model’

1f=0.011429
1c=0.044197
1a=0.9258508
1g=0.01336
1b=0.063525

1j=5 "step in weekly data
11=10 " step in bi-weekly data
'm=20 ' step in monthly data
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(4) Then | proceed to the simulation generating processes for daily returns with
conditional variance GARCH (1,1). The seriesy represents daily returns which is an
AR (1) model. The series h represents the conditional variance, which is a GARCH
(1,2). The yw series represents weekly returns, the ybm represents biweekly series and
the ym represents the monthly returns series.

"SIMULATION STEP 1 - Generate processes for daily returns and conditional
variance GARCH (1,1)'

seriesy

seriesh

series yw

series ybw
seriesym

The series e is a pseudo random draw from a uniform distribution (0,1). The
series t generates pseudo random draws from a normal distribution with zero mean
and unit variance.

series e=rnd
series t=nrnd

for li=2 to !size

t(1), h(1) and y(1) are theinitial values for the garch(1,1) model. The h(!i)is the
variance equation and the y(!i) is the daily returns equation.

t(1)=0.5

h(1)=0.3

h(ti)=!g+!'b*h(li-1)+la* t(li-1)~2+e(i)
y(1)=0.5

y(')=tcHIfry(li-1)

next

(5) Then | create aggregated processes for weekly, bi-weekly and monthly returns.
For the weekly frequency | will choose the fifth, the tenth, the fifteenth value etc, for
the bi-weekly frequency | will choose the tenth, the twentieth, the thirtieth value etc
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and for the monthly frequency | will choose the twentieth, the fortieth, the sixtieth
values etc.

" SIMULATION STEP 2 - Generate processes for weekly, bi-weekly and
monthly returns

for li=1to (Isize-1)/']

'step= the number of days that we aggregate stock returns- for aweek , step=5'
series yw

yw(1)=y(1)

yw(li+1)=y(li+1+4* i)

next

for li=2 to (Isize-1)/'l

'step= the number of days that we aggregate stock returns- for 2 weeks ,
step=10'

ybw(1)=yw(1)
ybw(!i)=yw(2*!i-1)

next
for li=2 to (!size-1)/'m
'step= the number of days that we aggregate stock returns- for month , sep=20'
ym(1)=ybw(1)
ym(li)=ybw(2*!i-1)
next
(6) Then | estimate the variance equations for daily, weekly, bi-weekly and monthly

return which follow a GARCH (1,1). The smulation will be replicated 100 times. |
create matrices for the results.



" SIMULATION STEP 3 - Egimate variance equations for daily, weekly, bi-
weekly and monthly returns - GARCH (1,1)- repeat simulation n times

matrix(!rep , 3) bd
matrix(!rep, 3) bw
matrix(!rep , 3) bbw
matrix(!rep , 3) bm

for In=1to rep

equation arcy!n.arch(1,1) y(!'n)
equation arcyw!n.arch(1,1) yw(!n)
equation arcybw!n.arch(1,1) ybw(!n)
equation arcym!n.arch(1,1) ym(!n)

freeze(resultsd!n) arcy!n
freeze(resultsw!n) arcyw!n
freeze(resultsbw!n) arcybw!n
freeze(resultsm!n) arcym!n

bd(!n,1)=resultsd!n(13,2)
bd(!n,2)=resultsd!n(14,2)
bd(!n,3)=resultsd!n(15,2)

bw(!n,1)=resultsw!n(13,2)
bw(!n,2)=resultsw!n(14,2)
bw(!n,3)=resultsw!n(15,2)
bbw(!n,1)=resultsbw!n(13,2)
bbw(!n,2)=resultsbw!n(14,2)
bbw(!n,3)=resultsbw!n(15,2)

bm(!n,1)=resultsm!n(13,2)
bm(!n,2)=resultsm!n(14,2)

bm(!n,3)=resultsm!n(15,2)
next

for lj=1t0 3

vector akd!j=@columnextract(bd,!j)
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vector akw!j=@columnextract(bw,!j)
vector akbw!j=@columnextract(bbw,!j)
vector akm! j=@columnextract(bm,!j)
next

for'h=1to 3

series akfd'h

series akfw!h

series akfbw!h

series akfmlh

next

for Ip=1to 3

for lk=1to rep
akfd!p('k)=akd!p('k)
akfw!p(k)=akw!p('k)
akfbw!p(!k)=akbw!p(!k)
akfm!p('k)=akm!p('k)
next

next

(7) In this step | will compute the mean of the estimated variance equations, which
were estimated in the previous step. The mean will be placed on a matrix.

' SIMULATION STEP 4 - From n-times estimated variance equations find the
mean of the empirical distribution of estimated parameters

scalar gdsim2

scalar bdsim2

scalar adsim2

gdsim2=@mean(akfdl)

bdsim2=@mean(akfd2)

adsim2=@mean(akfd3)

Igdsim=gdsim?2
I'bdsim=bdsim2
ladsim=adsim?2

(8) Then | will solve the quadratic equation as presented in Drost-Nijman paper for
temporal aggregation.
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" SSIMULATION STEP 5 - Solve the quadratic equation for aggregate b
parameter for weekly, bi-weekly and monthly and calculate coefficients from
formulas

scalar cw
scalar cbw
scalar cm

ow=(!bdsim* (! bdsim+ adsim)A(1j-1)))/(1+(('adsim2)* (1-
(1bdsim-+ adsim)(2* 1j-2))/(1-
(1bdsim+ adsim)~2))-+(! bdsim)"2* (1 bdsim+ adsim)~(2*1j-2))
lew=cw

scalar dew
dew=((-1)"2)-4* lcw* lcw
ldcw=dcw

scalar estbwl
scalar estbw?2
estbwl1=(1-@sgrt('dcw))/2* lcw
estbw2=(1+@sqgrt(!dcw))/2* lcw

cbw=(!bdsim* ((! bdsim+!adsim)”(!l-1)))/(1+(('adsim*2)* (1-
(bdsim+!adsim)(2*11-2))/(1-
(Ybdsim+!adsim)”2))+(! bdsim)”~2* (bdsim+!adsim)”~(2* !1-2))
Icbw=cbw

scalar dcbw
dcbw=((-1)"2)-4* \cbw*!cbw
Idcbw=dcbw

scalar estbbwl

scalar estbbw?2

estbbw1=(1-@sqrt(!dcbw))/2* I chw
estbbw2=(1+@sqrt(!dcbw))/2* L chw



cm=(!bdsim* ((bdsim+!adsim)*(!m-1)))/(1+(('adsin™2)* (1-
(Ybdsim+!adsim)™(2*'m-2))/(1-
(Tbdsim+!adsim)”2))+('bdsim)”2* (! bdsim+!adsim)™(2* 'm-2))
lcm=cm

scalar decm

dem=((-1)"2)-4* Icm*lcm
Idcm=dcm

scalar estbml

scalar estbm?2
estbml1=(1-@sgrt('dcm))/2*lcm
estbm2=(1+@sgrt(!dcbw))/2*lcm

(9) The model isrun and the results are presented in a table.
"FINAL STEP - Show results

table(18,6) finalresults
finalresults(2,3)="weekly "
finalresults(2,4)="bi-weekly "
finalresults(2,5)=" monthly"
finalresults(3,1)="average estimated g "
finalresults(4,1)=" average estimated b"
finalresults(5,1)=" average estimated a"
finalresults(7,1)=" g formula"
finalresults(8,1)=" b formula’
finalresults(9,1)=" aformula’

finalresults(11,1)=" estimated gd"
finalresults(12,1)=" estimated bd "
finalresults(13,1)=" estimated ad "

finalresults(15,1)=" initial g"
finalresults(16,1)=" initial b"



finalresults(17,1)="initial &"

finalresults(3,3)=@mean(akfwl)
finalresults(4,3)=@mean(akfw?2)
finalresults(5,3)=@mean(akfw3)

finalresults(3,4)=@mean(akfbwl)
finalresults(4,4)=@mean(akfbw?2)
finalresults(5,4)=@mean(akfbw3)

finalresults(3,5)=@mean(akfml)
finalresults(4,5)=@mean(akfm2)
finalresults(5,5)=@mean(akfm3)

finalresults(11,3)=@mean(akfdl)
finalresults(12,3)=@mean(akfd2)
finalresults(13,3)=@mean(akfd3)

finalresults (7,3)=!gdsim* (1-('bdsim+!adsim)”(!j))/(1-('bdsim+!adsim))
finalresults (7,4)=!gdsim* (1-('bdsim+!adsim)”(!1))/(1-('bdsim+!adsim))
finalresults (7,5)=!gdsim* (1-(! bdsim+!adsim)”(!m))/(1-(!bdsim+!adsim))

finalresults (8,3)=estbw2
finalresults (8,4)=estbbw?2
finalresults (8,5)=estbm?2

finalresults (9,3)=('adsim+!bdsim)*(!j)-estbw2
finalresults (9,4)=('adsim+!bdsim)”(!1)-estbbw2
finalresults (9,5)=('adsim+!bdsim)”(! m)-estbom2

finalresults (15,3)=1g* (1-("b+1a) (!j))/(1-('b+!&))
finalresults (15,4)=1g* (1-("b+1a) (1))/(1-(1b+!))
finalresults (15,5)=1g* (1-("b+a) (! m))/(1-(!b+!a))

finalresults (17,3)=('a+! b)(1j)-estbw2
finalresults (17,4)=('a+! ) (!1)-estbbw2

48



finalresults (17,5)=('at+!b)*(!m)-estbm2

Show final results
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Elcaywyikotl Opiopot:
e AlokOpovon ival n LETAPANTOTNTA TOV TILOV TOV
LETOY MV GE Ui TEPTOOO YPOVOV.

*H Jwakopavon eival LETPOL KIvoDVOU Kol 010 POVIKAL
uetoPaAiieTon.

2€ QUTNV TNV EPYOCLO OTUV AVOPEPOUOCTE GE .
*High frequency data wiaue yio daily returns

L ow frequency data yio weekly , bi-weekly , monthly
returns.

Volatility Clustering in Monthly Stock Returns And Temporal Aggregation of Simulated Data.



o Stylized facts about volatility:

1) H xatavouéc tmv omoddcemv ival AeTToKvpTh.

2) O1 0mod0GEIS TMV LETOYMDV EMOEIKVOOUV TO AEYOLEVO
volatility clustering.

3) O1 0wodOcELS £YOVV TAGT Yo YPTYOPT ETIGTPOPT GTO HECO
(mean reversion).

4) H petafAntotnta mov mopotnpeitol ¢ GUVETELD KOKMV

EIONGEMV EIVOL IO EVTOVT 07TO OTY) TOV TAPOTNPELTOL
(OC CUVETELN KOAMV EOT|GEMV.

5) pwv amd onuavtikd oAkl TpoBAEYLLO YEYOVOTL OTTMOC 1
AVOKOIVOGOT TOV ETNCLOV OMTOTEAEGLATOV 1] LETAPANTOTNTO
AVEAVETAL.

6) H ¢€opon tng Srokvpavenc oe pio ayopd exekTeiveTon
KOl 6€ OAEC TIC TTOPEUPEPELC TNC.



e To volatil |ty NYSE Index 5000 Points Starting 7/3(62
clustering
eUEOAVICETOL MG : |
OLUOOYIKEC TTEPTOOOL
OVENHEVNS
OLLKVLOVONG OTIG
ATOO0OGELC TV
LLETOY MV TOV . |
aKoAovBovvtal amo |
TEPLOOOVS GYETIKA e M
HELOHEVNG
OLOKVLOVGTG.
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Aggregation of GARCH (1,1):
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Bdon deoouévov : DATASTREAM
Xpovikn otdpxeta dedopévaov: 1/1/1979-1/1/2004
2uyvotnta ocoousvov:Huepnowa , EBoounaowaio ko Mnviaia

[eprypagikd Xtatiotikd AcdopEvmv

Daily Data Weekly Data Monthly Data
Number
of 6523 1304 300
observati
ons
0.044825 0.212353 0.954055
M ean
Std. 1.049377 2.341541 4.354195

Dev.










Results of the Monte — Carlo Simulation
Daily Weekly Bi-weekly Monthly

Average 0.7415078 0.7193845 0.8378596  0.7869354
estimated g

Average 0.0631654 0.195431 0.0302438 0.0634974
estimated b

Average 0.9168478 0.7614882 0.676073 0.944330
estimated a

g formula 0.6330264 0.7867453  0.7908663
b formula 0.17503646  0.028047 0.074
aformula 0.782237 0.619 0.9022
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If one has the possibility to estimate low
frequency models using high frequency
data, implied estimation using temporal
aggregation seems to be preferred to
direct estimation using the data at the
lower freguency.
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