

Postgraduate Programme

«Techno-economic Management & Security of Digital Systems»

Master’s Thesis

Advanced Antivirus Evasion Techniques

Poulios Giorgos

ΜΤΕ/1127, gpoulios@unipi.gr

Under the supervision of:

Prof. Christos Xenakis, xenakis@unipi.gr

Dr. Christoforos Dadoyan, dadoyan@unipi.gr

Piraeus 2014-15

University of Piraeus

Department of Digital Systems

mailto:gpoulios@unipi.gr
mailto:xenakis@unipi.gr
dadoyan@unipi.gr

ii

This thesis is dedicated to my parents, Katia, Thano, DK and VF

 for their endless support, patience and belief in me

Many thanks to Dado for his guidance and fruitful discussions

i

Table of Contents

Table of Figures ... ii

Table of Tables ... iii

Abstract .. iv

1. Motivation ... 1

2. Related Work ... 3

3. Approach ... 4

3.1 Return-Oriented Programming as a polymorphism alternative 4

3.2 Other techniques employed for antivirus evasion ... 5

3.2.1 PE patching and passing control to the malware .. 5

3.2.2 Delaying execution ... 6

3.2.3 Replacing getPC constructs .. 6

3.2.4 Hiding the certificate .. 6

3.3 Reverse analysis of x86 machine code .. 7

3.3.1 Preprocessing of relative branches ... 8

3.3.2 MOD/REG/RM and SIB unrolling ... 8

3.4 Compilation to ROP .. 9

3.4.1 Finding gadgets .. 9

3.4.2 Parsing gadgets into IR ... 9

3.4.3 Injecting gadgets ... 11

3.4.4 Source code permutations ... 12

3.4.5 Chaining gadgets .. 12

4. Software Documentation ... 14

4.1 Main data structures .. 14

4.2 Algorithms and flowcharts .. 15

4.2.1 Main program ... 15

4.2.2 Reverse analysis of machine code .. 16

4.2.3 Gadget parsing and compilation to ROP .. 21

5. Results ... 23

6. Conclusions ... 27

References ... 28

ii

Table of Figures

Figure 1: Overview of the proof-of-concept ROP patcher .. 2

Figure 2: Sample return-oriented program performing mov eax 10; xchg eax, ecx;

add ebx, 3 ... 4

Figure 3: Overview of a patched PE file’s .text section: (a) control is given at address of entry

point, (b) control is given right before the program exits. ... 6

Figure 4: Flowchart 0, the main process of the ROP compiler tool .. 16

Figure 5: Flowchart 1, disassembly and reverse analysis of x86 machine code 17

Figure 6: Flowchart 1a, calculation of free register ranges ... 18

Figure 7: Flowchart 1a1, calculation of linearly free registers .. 19

Figure 8: Flowchart 1a2, calculation of free register ranges including internal branches 20

Figure 9: Flowchart 2, Backwards parsing of gadgets given the candidate gadget endings ... 21

Figure 10: Flowchart 3, injection of gadgets and compilation to ROP 22

Figure 11: Evasion ratio for the reverse shell payload .. 24

Figure 12: Evasion ratio for the reverse meterpreter payload ... 24

Figure 13: Average evasion ratio per combination of methods ... 25

Figure 14: Average evasion ratio for “ROP-Exit” vs PE file size ... 25

Figure 15: Comparison of evasion ratio between “ROP-Exit”, “Exit” cases, Shellter and

PEinject ... 26

iii

Table of Tables

Table 1: Semantics on general purpose register access ... 7

Table 2: Intermediate representation of gadgets and instructions ... 10

Table 3: INSTRUCTION data structure .. 14

Table 4: GINSTRUCTION data structure ... 14

Table 5: GADGET_END data structure .. 14

Table 6: GADGET data structure .. 15

Table 7: List of PE files used as carriers for infection and validation 23

Table 8: List of patching scenarios tested against VirusTotal ... 23

iv

Abstract

In this thesis we examine the use of Return-Oriented Programming (ROP) combined with

other practices for local (i.e. infected executables on disk) antivirus evasion. ROP is

considered as a polymorphism alternative to crypters and packers. The software product of

this work is a tool written in Win32 C which, given any piece of shellcode and any non-

packed 32-bit Portable Executable (PE) file, it transforms the shellcode into its ROP

equivalent and patches it into (i.e. infects) the PE file. After trying various combinations of

evasion techniques, the results show that certain methods can evade nearly and completely all

antivirus software employed in the online VirusTotal service. From a theoretical standpoint,

the main outcome of this research is a) the algorithms for analysis and manipulation of

assembly code on the x86 instruction set (up to and excluding the SSE), and b) the

highlighting of common antivirus software weaknesses.

1

1. Motivation

The evolution of antivirus (AV) detection mechanisms starts with plain string signatures of

common malware code found in exploits and viruses. Executable files on disk are

traditionally scanned by AVs for matches against any of the signatures collected in their

databases. The method is static and most of the time reactive, i.e. after a worm/virus

outbursts, security analysts examine the malware code and create signatures for AV software

to match against it. Malware authors proved this scheme trivial to bypass by injecting NOP

(No-OPeration) instructions and code that cancels out itself or code that is never reached

(a.k.a. dead code) in-between the malicious instructions. To tackle such constructs, signatures

evolved to regular expressions (RegEx). With regex’es powerful capabilities, now AVs relied

on “some” of the malicious instructions being there, even if irrelevant code was in-between.

The next step by the attackers’ side was to cypher the malicious code and decipher it online

when taken control of execution flow. Such malware are known as polymorphic and/or

oligomorphic. Even though the decryptor is still subject to signing and the technique requires

a read-writable-executable (RWX) memory section, polymorphic code is still very popular

and in many cases effective, especially when the encryption is run multiple times over the

cipher. A special case of polymorphism is metamorphic and self-modifying code that mutates

itself on each infection while maintaining the same functionality. Polymorphism can be

tackled by a) static analysis, i.e. disassembly and Control Flow Graph (CFG) extraction, b)

heuristics on the entropy and statistics of the machine code, and c) dynamic/behavioral

analysis using emulation or virtualization, i.e. execution of the suspicious code into a sandbox

environment in order to profile sequences of invocations to common system calls.

The main argument represented by this thesis is that Return-Oriented Programming (ROP)

can be a strong polymorphism alternative (for the reasons outlined in Section 3) and that if

combined with mild behavioral anti-profiling techniques it may render AV detection near

infeasible. Besides the transformation of the code into a non-recognizable non-recurrent form

though, several additional issues must be considered to achieve evasion such as the patching

method. This includes, but is not limited to, the positioning of the virus in the carrier

executable and the way of transferring control to the virus since it is very common for AVs to

detect minor deviations from the typical arrangement of the file sections and their

characteristics (e.g. a second executable section with RWX permissions).

To prove the aforementioned concept, we choose to work on Win32 Portable Executables

(PEs) and the x86 architecture by building a ROP compiler and patcher in Win32 C that

converts any piece of given shellcode (hereafter , also referred to as source (shell)code) into

its ROP equivalent and infects any given PE with it. Figure 1 summarizes the functioning of

the proof-of-concept tool developed to infect and evaluate the evasion ratio of the proposed

techniques.

2

Figure 1: Overview of the proof-of-concept ROP patcher

The rest of this paper is structured as follows: Section 2 is a brief positioning with respect to

related work on the field of PE infection; Section 3 presents the approach to transforming

normal x86 machine code to its return-oriented equivalent and the patching mechanisms;

section 4 is a brief documentation of the developed software and section 5 presents evaluation

of the results after infecting several well-known executables with some of the most common

and popular shellcodes. Finally, section 6 concludes the thesis with discussion on the

evolution of both AV detection and malware evasion with respect to ROP.

PE file on disk Malware shellcode
\xfc\xe8\x89\x00\x00\...

ROP Compiler
& Patcher

PE file

- Common shellcode
(e.g. taken from MSF)
- Easily signable
- Alarming to AVs

- ROP code is different
for different PEs and
difficult to generate
signature for

Benign file

ROP dictates that malware
borrows original PE’s code,
hence avoiding patterns or

affecting the original
entropy statistics of the file

ROP malware code

3

2. Related Work

To the author’s best knowledge this is the first work that infects PEs with ROP-encoded

payload. Nevertheless, in this section we examine two tools having the same purpose with our

ROP patcher, that is, to infect PE files with common (possibly encrypted) shellcode in a way

that bypasses AV software.

The first, Shellter [1], focuses on maintaining the original structure of the PE file, by avoiding

injection of the shellcode into predefined locations or changing the characteristics of the

existing sections. It achieves so by overwriting existing code for which it is certain that will

be given control during execution of the program. The latter is deduced by tracing the

executable file and analyzing its execution flow. Shellter is also capable of reusing imports of

the original PE file to change the writing permissions of the section containing the shellcode

so that encrypted and self-modifying code can be used. It is also capable of injecting “junk

code” before the shellcode that delays execution as a means to anti-emulation. Shellter is

advanced in terms of dynamically selecting the location of the patch in the shellcode (as

opposed to extending the .text section). However, while it features a patching method that

introduces variability (as to where in the file is the shellcode injected), it relies on traditional

polymorphism methods, that are still subject to signature generation and detection of write

permissions or modifications of the .text section in memory. Moreover, as detailed later on

paragraph 3.1, the proposed approach introduces variability too, due to the transformation to

ROP (which is dependent on the PE file).

PEinject [2] is mostly a method (and referenced as such) rather than a full-featured tool. It

injects the shellcode in the (first sufficiently large) padding space found in the .text section

(either 0xCC nests or section padding) and does not encrypt or modify the shellcode in any

way, neither does it anticipate for self-modifying or encrypted payloads. Control is passed to

the injected shellcode by modifying the address of entry point of the PE file’s NT_HEADER.

The evasion ratios of both methods are compared with the proposed approach in Section 5.

4

3. Approach

3.1 Return-Oriented Programming as a polymorphism alternative

ROP gained increased attention during the late 2000’s [3] as an advanced stack smashing

attack that could bypass Data Execution Prevention (DEP) mechanisms. It is a rediscovery of

threaded code in which programs typically consist of a chain of addresses in the stack

pointing to code chunks in the attacked executable (or its loaded libraries) each of them

ending with a return instruction (commonly ret, 0xC3, but not only). These borrowed code

chunks are called gadgets and their “return” is in fact a call to the next gadget in the chain. As

an analogy to regular code, in ROP, gadgets are the “instructions” and esp is the program

counter.

Figure 2: Sample return-oriented program performing
mov eax 10; xchg eax, ecx; add ebx, 3

The first and most important benefit of using ROP for AV evasion is that such borrowed code

(that of gadgets) is always benign and tested against false positives. Of course, the return

address chain has to be built somehow in the stack and that would leave a footprint subject to

signing. The process involves either pushing the return addresses to the stack or just copying

the whole chain from another memory location (possibly some .data segment) and adjusting

the stack pointer. However, a) the kind of code required for such operations is very common

and seemingly benign, b) it largely depends on the attacked PE and its image base since in the

worst case it is a series of push <VAi> operations, and c) can be randomized or encrypted in

many and trivial ways. (b) in particular holds because gadget addresses change for different

PEs and different image bases, hence changing the footprint and statistics of the chain

building instructions even if they are for the same source shellcode.

Given these features, ROP enables polymorphism without requiring a writeable code

section in memory (which is very rare in benign PEs unless they are packed, as well as a

typical heuristic for detection). Encryption/decryption can be applied on the gadget chain in

010F0319: pop eax
010F031A: ret

:
010F0900: xchg eax, ecx
010F0902: ret

:
010F0903: inc ebx
010F0324: ret

eip =

00F00004: 010F0903
00F00008: 010F0903
00F0000C: 010F0903
00F00010: 010F0900
00F00014: 0A000000
00F00018: 010F0319

esp =

code

stack

Gadget

5

memory (i.e. in the stack and not in the code section) and/or different gadgets can be

randomly chosen for the same operation hence altering the malware’s footprint.

3.2 Other techniques employed for antivirus evasion

Besides transforming the malicious code into its return-oriented equivalent for hiding it, a few

other techniques are necessary or complementary to achieve lesser detection ratios.

3.2.1 PE patching and passing control to the malware

First of all, the patching of the PE file and the passing of control to the shellcode must be

done in the least noticeable way. A second executable section hosting the malware would be

too alarming, since the vast majority of executables has only one. The next least disruptive

and easy to implement option would be to inject the malware code in the 0xCC padding

commonly left by the linker in-between code segments (typically OBJ files) in the .text

section of PEs. However, a) there may not always be sufficient space in those CC nests, and

b) we will be using them for our ROP purposes later on.

For these reasons we choose to append the malware to the existing .text section of the

executable, and correct all section headers and relocations accordingly. To pass control to it,

the default practice is to replace the instructions pointed to by

NT_HEADER.AddressOfEntryPoint with a jump to the shellcode which is appended those

replaced instructions followed by a jump back to the original execution flow. Figure 3 (a)

depicts this scenario. Directly pointing the address of entry point to the malware in this case is

avoided since many AVs’ heuristics are alarmed by the fact that it points towards the end of

.text. An alternative to giving control to the malicious code at program entry, is to hook any

calls to ExitProcess, exit or other similar function as depicted in Figure 3 (b). This

technique in particular, as shown also later by the results, bypasses behavioral profiling by

AVs that employ emulation or sandboxing. To our best knowledge, that is either because AVs

emulate only a small portion of the executable’s entry code due to scanning time constraints,

or because of lack of (universal) techniques for triggering a graceful exit (most programs do

not handle SIGINT and SIGTERM signals).

6

 (a) (b)

Figure 3: Overview of a patched PE file’s .text section: (a) control is given at address of entry point, (b)

control is given right before the program exits.

3.2.2 Delaying execution

Delaying execution of the malicious code by “sleeping” a few seconds or minutes was

attempted as a means to bypassing behavioral profiling -especially when control is given

during the program entry- with unsuccessful results. Our conjecture is that during emulation,

calls to Win32 Sleep() may be intercepted and avoided in order to speed up the scanning

process.

3.2.3 Replacing getPC constructs

Shellcode is usually built for remote exploitation during which the attacker does not know the

value of the program counter (EIP register), which is often necessary for memory addressing

and callbacks. Exploit authors have been long using for this purpose some special (getPC)

constructs to get the value of EIP. Among them the most common (and notably uncommon in

regular machine code) is the relative call to a pop instruction (the call instruction pushes

the value of EIP onto the stack and the pop retrieves it). However, when statically patching a

PE file, EIP can be pre-calculated by knowing the (preferred) image base and adding a

reference to the relocations table of the PE. Hence, to further decrease the suspicion ratio we

replace such calls to getPC with:

1: push <VA-of-8>

6: jmp-to-pop

8: ...

18: pop r32

and add the VA of <VA-of-8> (2 in this case) to relocations so that it gets repaired by the

windows loader in case the PE cannot be loaded in the preferred image base.

3.2.4 Hiding the certificate

An issue that arises when patching signed executables is that their checksum/hash, and thus

their certificate, gets invalidated. This is obviously very alarming and would prevent us from

Section .text

[malware code]

jmp-back

jmp-to-malware

[replaced code]

NT Header

AddressOfEntryPoint

.. .

(1)

(2)

(3)

Section .text

[malware code]

jmp-to-malware

ExitProcess()

jmp-to-malware

Previous calls to
ExitProcess()

/ exit()

7

testing our methods on popular executables of every-day use. Surprisingly though, hiding the

certificate by erasing its pointer in the security data directory of NT_HEADER does not trigger

any alarms. Of course, regardless of the certificate, the checksum of the PE file is re-

calculated and patched accordingly.

3.3 Reverse analysis of x86 machine code

Reverse analysis of machine code into data structures that are easy to handle is crucial to

perform any kind of patching, modifications, re-assembly, and any transformation to ROP.

Two are the most important pieces of information required: i) the origin and destination of all

relative references (e.g. a relative jump and its target) and ii) which registers are being written

or read during each instruction, as well as which registers are free to modify. The former is

required for injecting or removing instructions from a code segment without breaking its

functioning. The latter is particularly useful to enhance gadget matching, either by performing

permutations, or by using gadgets that contain redundant but safe instructions (in this case an

unsafe instruction is any branch, or any using indirect addressing because it risks raising an

access violation error).

Other useful information collected during the reverse analysis phase include the offsets

(within the opcode) to the MOD/REG/RM byte, Scaled Index Byte (SIB), displacement,

immediate constant, primary opcode and prefixes. Such constructs are preprocessed to infer

the bitness of the operand(s), whether it uses indirect addressing, what registers it reads and

writes, and whether it contains a direct Virtual Address (VA) reference. VA references are

needed when modifying the original PE’s code and particularly useful when pushing the VAs

of gadgets onto the stack because they must be repaired in the relocations table.

Section 4 presents in detail the data structures used to hold this information as well as the

algorithm used for inferring the ranges of free general purpose registers in the shellcode. The

semantics considered throughout this paper (as well as the PoC implementation) regarding the

state of general purpose registers are listed in Table 1.

Table 1: Semantics on general purpose register access

Based on this formalism, a register X is considered linearly free in a range of instructions [Ia,

Ib] iff:

 ¬∃ I∈[Ia, Ib) : READS(I, X), i.e. no instruction reads X up until Ib, and

 SETS(Ib, X)

The lower bound Ia is chosen to be the last instruction prior to Ib that reads X. Note also how

upper bound Ib might not be the first instruction that sets X.

Notation/Predicate Meaning

READS(I, X) Instruction I reads the value of register X

WRITES(I, X) Instruction I writes/modifies the value of register X

ACCESSES(I, X) READS(I, X) ∨ WRITES(I, X)

SETS(I, X) WRITES(I, X) ∧ ¬READS(I, X): Instruction I sets the value of register

X without considering its previous value

FREE(I, X) Register X is free during execution of instruction I; any modification

of X during I will not alter execution flow or results in any way

8

The proposed method for determining whether a register is totally free (as in FREE(I, X)),

requires inferring such linear ranges and then recursively following relative branches in the

code to potentially reduce the linear ranges according to register access in the branch

destination(s) (the algorithm is documented in paragraph 4.2.2).

3.3.1 Preprocessing of relative branches

It is often required during the transformation of the source shellcode into ROP (and the

prerequisite steps) to insert additional instructions or replace them with more/longer ones

resulting in increased bytes in-between relative branches. This introduces the risk of overflow

when repairing the offsets of relative branching instructions which are typically encoded in

the least number of bytes possible (often 8-bit offsets). Testing and repairing such relative

offsets on a per modification basis might result (unlikely but possible) in a cascading effect

where one repair to avoid overflow (e.g. replacing a jmp rel8 /2 bytes, with a jmp rel16

/4 bytes) causes another overflow. To avoid this situation we convert all relative branches to

their 32-bit equivalents prior to any modification of the shellcode. If the size of the resulting

patch is an issue, the process can be easily inverted in the end.

3.3.2 MOD/REG/RM and SIB unrolling

Instructions using the MOD/REG/RM indirect addressing mode with displacement or the

Scaled Index Byte (SIB) addressing scheme in the shellcode are treated specially before the

transformation to ROP. Such instructions are unwanted for the following reasons:

i) They are long (in the best and not so likely case 3 bytes long: 1 for opcode, 1 for

MOD/REG/RM and 1 for SIB) hence unlikely to be found in gadgets;

ii) They often read many general purpose registers at once, thus reserving them

while as mentioned earlier, the more the free registers the better;

iii) Their respective gadgets (should they be found or injected) will probably not be

reusable due to the use of displacement and index constants (e.g. mov edx,

[esi*2+16]).

In order to circumvent this kind of situations, we reduce such instructions to their arithmetic

equivalents one-by-one. We call this process unrolling and it is performed to the shellcode

before any transformation to ROP. For instance, [1] mov eax, [ebx+ecx*2] would be

replaced by:

[1'] sal ecx, 1

[2'] add ecx, ebx

[3'] mov eax, [ecx]

which requires that FREE(1, ecx) holds, otherwise an alternative is to replace with:

[1'] mov eax, ecx

[2'] sal eax, 1

[3'] add eax, ebx

[4'] mov eax, [eax]

which requires that SETS(1, eax). If none of the above holds then another temporary register

that is free may be used, and if there is no such register we abort the conversion.

Noteworthy is how unrolling unlocks register access from one atomic instruction to many.

For instance, in the latter example, ecx is freed at [1'] and ebx at [3']. If eax where free at the

9

preceding, say, 10 instructions, [1'] through [3'] could be moved 10 instructions behind, thus

resulting in one more free register (ecx and ebx, minus eax which will not be free then) in that

preceding code segment.

3.4 Compilation to ROP

Compilation of the source shellcode to its return-oriented equivalent involves searching for,

injecting, and chaining gadgets in the benign PE file as well as permuting instructions to

enhance encoding results. In addition, and in order to assist permutations and encoding, both

gadgets and instructions are parsed into a higher level intermediate representation (IR)

abstracting out the peculiarities of the machine code and the architecture.

3.4.1 Finding gadgets

Candidate gadgets in the executable sections of the given PE file must end in one of the

following chaining instructions (hereafter also referred to as gadget endings, or simply

endings):

 ret

 retn

 pop regX; jmp regX

 jmp regX

Exceptionally for the latter, the gadget in question must be then paired with a loader gadget

of the form:

[1] pop regX

[2] <any of the first 3 endings>

The process begins by finding all gadget endings and temporarily storing them to a list. For

each of those endings, n bytes of preceding machine code is disassembled for each n up to

maximum depth N (typically 20 bytes). If such disassembly aligns with the ending (not

guaranteed since x86 instructions are of variable length) a candidate gadget has been found.

Candidate gadgets containing any illegal, privileged (e.g. sysenter, int, iret), branch or

push instruction are filtered out. The last step of gadget finding is to filter out exact

duplicates (byte-by-byte comparison) for performance reasons (although they could serve

randomization purposes later on).

3.4.2 Parsing gadgets into IR

The gadgets found in the aforementioned process are first analyzed instruction-by-instruction

as presented in 3.3 to infer register access. Since gadgets are allowed to contain safe but

redundant instructions, their register access is tested for modifications to the register in

question (e.g. a mov ecx, eax; pop ecx; ret; gadget cannot be used for moving eax to

ecx) as well as the non-free registers of the source instruction to be encoded.

Following that, they are parsed into an IR consisting of a type, and 3 operands with different

meaning depending on the type. Table 2 lists the types of gadgets and instructions defined by

this IR, their semantics and the eligible instructions that are classified into each type. If a

multi-instruction gadget contains more than one representable instructions, only the first is

considered. However, the ones following have also been considered in other gadgets with the

10

same ending because of the backwards gadget finding process described in the previous

paragraph.

 Table 2: Intermediate representation of gadgets and instructions

Noteworthy is the fact that by parsing into this higher level IR, one-to-one permutations are

automatically performed. That is because both gadgets and instructions are classified into one

of these types, based on which the encoding is then performed, rather than on the instructions

per se.

Type Semantics op1 op2 op3 Eligible instructions
LOADS lods eax esi bitness lods (e)ax/al, m8/16/32

LOAD_REG pop regA regA - - pop r32

LOAD_RM pop [regA] regA - - pop m32

ADD_IMM regA += imm regA imm op1

bitness

add r8/16/32, imm8/16/32

add (e)ax/al, imm8/16/32

xor r8/16/32, 0

cmp r8/16/32, 0

inc r8/16/32

test ra32, rb32 (with ra == rb)

test r8/16/32, 0xFF/FFFF/FFFFFFFF

test (e)ax/al, 0xFF/FFFF/FFFFFFFF

or ra32, rb32 (with ra == rb)

and ra32, rb32 (with ra == rb)

SUB_IMM regA -= imm regA imm op1

bitness

sub r8/16/32, imm8/16/32

sub eax/al, imm8/16/32

dec r8/16/32

MUL_IMM regA= regB*imm regA regB imm imul r32, r32, imm8/16/32

sal/shl r32, imm8

sal/shl r32, 1

DIV_IMM regA /= imm

(integer div.)

regA imm op1

bitness

shr/sar r32, imm8

shr/sar r32, 1

MOV_REG_IMM mov regA, imm regA imm op1

bitness

mov r8/16/32, imm8/16/32

imul r16/32, r16/32, 0

xor ra8/16/32, ra8/16/32

and r8/16/32, 0

and (e)ax/al, 0

or r8/16/32, 0xFF/FFFF/FFFFFFFF

or (e)ax/al, 0xFF/FFFF/FFFFFFFF

sub ra8/16/32, ra8/16/32

MOV_REG_REG mov regA, regB regA regB bitness mov r8/16/32, r8/16/32

imul r16/32, r16/32, 1

MOV_REG_RM mov regA, [regB] regA regB bitness mov r8/16/32, m8/16/32

MOV_RM_REG mov [regA], regB regA regB bitness mov m8/16/32, r8/16/32

MOV_RM_IMM mov [regA], imm regA imm bitness mov m8/16/32, imm8/16/32

and m8/16/32, 0

or m8/16/32, 0xFF/FFFF/FFFFFFFF

ADD_REG regA += regB+x regA regB x [ADD/SUB_IMM]; add r32, r32

SUB_REG regA -= regB+x regA regB x [ADD/SUB_IMM]; sub r32, r32

MUL_REG regA *= regB regA regB - imul r32, r32

imul edx, eax, r32

DIV_REG eax /= regC

(integer div.)

eax eax regC idiv edx, eax, r32

XCHG_REG_REG xchg regA, regB regA regB bitness xchg r8/16/32, r8/16/32

xchg r8/16/32, (e)ax/al (with r != eax)

XCHG_REG_RM xchg regA, regB regA regB bitness xchg m8/16/32, r8/16/32

GPUSH_IMM push imm32 imm - 4 for gadget: mov, [esp+x], imm32 (with x

being 4+stackAdvance after gadget has

returned)

for instruction: push imm32

GPUSH_REG push regA regA - 4 for gadget: mov, [esp+x], r32 (with x being

4+stackAdvance after gadget has returned)

for instruction: push r32

UNDEFINED [all others] - - - [all others]

11

The IR is also useful for selecting the encoder function accompanying every gadget. Encoders

are responsible to answer “whether their assigned gadget can encode a given instruction”, as

well as to encode it into a list of stack operations (typically “pushes” of gadget VAs and

immediate constants) if requested to. Given this IR, for instance, an encoder for an

XCHG_REG_REG gadget might respond positively to a request to encode an

XCHG_REG_REG instruction even if their operands are flipped. More details on such

permutations are given in paragraph 3.4.4. The special case of an UNDEFINED gadget

encoder requires that the given instruction to encode is an exact match at the byte level with

the gadget.

3.4.3 Injecting gadgets

In order to enhance transformation of the source shellcode, and since not all required gadgets

are always found in the PE file, new ones are also injected as needed. Firstly, the 0xCC nests

are used for this injection, and if they are filled, the .text section is extended before the actual

patch. The injection is performed in the least noticeable way to avoid alarms. If a standard

epilogue (mov esp, ebp; pop ebp; ret) is found right before the 0xCC nest, the gadget

is injected in-between the preceding code and the epilogue. For instance, if the missing gadget

were mov ecx, eax and the following code were found in the PE:

 <other instructions>

 mov esp, ebp

 pop ebp

 ret(n)

 CCCCCCCCCCCCCCCCCC

then the injection would result in:

 <other instructions>

 jmp epilogue ; for normal flow to avoid gadget instruction

 mov ecx, eax ; the injected gadget instruction

 jmp return ; for gadget flow to avoid the standard epilogue

epilogue:

 mov esp, ebp

 pop ebp

return:

 ret(n)

 CCCCCCCC

In the case that no epilogue is found at the boundary with the 0xCC nest, a pseudo-function

with standard prologue and epilogue is injected to avoid heuristics or n-grams that might raise

suspicion due to non-ordinary returns. This pseudo-function has the following form:

12

 push ebp

 mov ebp, esp

 <gadget code>

 jmp return

 mov esp, ebp

 pop ebp

return:

 ret

Following gadget insertions will then reuse this pseudo-epilogue as stated above, by injecting

before the standard epilogue, thus making it look more like a real function.

3.4.4 Source code permutations

We distinguish between two kinds of permutations: one-to-one, and one-to-many. The former

is about one instruction being replaced by another, while the latter is about one instruction

being replaced by many. The search space generated by the later quickly scales exponentially

as one may seek for n-th order permutations recursively and its investigation is beyond the

scope of this thesis.

Predefined, one-to-one permutations are achieved through the IR and encoder functions.

Besides the ones deriving from the listing in Table 2, the encoders will also perform basic

algebraic permutations based on the properties of addition, subtraction multiplication and

division. For instance, if the instruction to be encoded is of type ADD_IMM (add reg,

imm), an encoder will repeat anything add reg, x with x being an integer divisor of imm,

imm/x times. Addition and subtraction with constants will also be swapped if the signs of the

constants are flipped.

3.4.5 Chaining gadgets

The return address chain can be built either during runtime or during compile-time and saved

to the initialized data section of the file (to be then copied at runtime to the stack). The most

alarming option would be the first (during runtime) and we choose this to evaluate our

evasion ratio (also chosen as an implementation option). During this process, besides the

pushing of the VAs onto the stack, the ROP compiler must consider pushing immediate

constants, adjustments for stack pointer modifications in the gadget (e.g. redundant pops,

retns) and gadgets with loader-gadgets (see also paragraph 3.4.1). For this purpose, the

following types of stack operations are defined:

 PUSH_VA ; push a (loader) gadget VA onto the stack

 PUSH_IMM ; push an immediate constant onto the stack

 ADVANCE ; advance (subtract from) the stack pointer a number of bytes

 CHAIN ; pseudo operation denoting a placeholder for the next gadget’s VA

The result of the encoding process of a given instruction by a given gadget is a series of stack

operations for the invocation of the gadget. The list of such operations for all gadget calls

describes the assembly instructions that if executed, will build the chain in the stack. Of

course, this list is produced in the direction of the source shellcode, while the chain building

operations must be performed backwards in order to be executed forwards.

In order to counterbalance potential stack pointer modifications (mainly pops, i.e. additions)

by gadgets, the GADGET data structure (refer to Table 5 and Table 6 for details) contains

13

information describing the number of bytes the stack pointer is added before (the case in

pop-pop-ret kind of endings) and after the return (the case in retn kind of endings) of the

gadget. Using this information, each encoder outputs ADVANCE operations in-between

others accordingly. For instance, if a gadget were:

[1] 0x00040010: mov ecx, eax ; the useful instruction

[2]: pop ebp ; redundant pop

[3]: retn 10 ; another 10 bytes added to esp after the

 return

then the encoding output would be:

 PUSH_VA 0x00040010 ; VA of mov ecx, eax

 ADVANCE 4 ; for pop ebp

 CHAIN ; placeholder for VA of next gadget

 ADVANCE 10 ; for retn 10

Its (backwards) interpretation by the compiler would result in the following chain building

instructions:

[1] push <VA of gadget following next>

[2] sub esp, 10 ; ADVANCE 10

[3] push <VA of next gadget> ; CHAIN

[4] sub esp, 4 ; ADVANCE 4

[5] push 0x00040010 ; PUSH_VA 0x00040010

In the case of multiple calls to the same gadget (e.g. as in using inc eax to achieve add

eax, X) the compiler wraps the call with a conditional jump loop using a free register.

Furthermore, not all types of instructions can be easily encoded into ROP. In our proof-of-

concept we do not encode branches (jumps, calls, loops, interrupts), privileged instructions

and pops. Hence, the return-oriented code chunks must finally return back to the source

shellcode. This is achieved by wrapping the chain building instructions in the following:

[1] call build_chain

[2] jmp past_the_chain

build_chain:
[3] push <VA of gadget N>
[4]
[5] push <VA of gadget 1>

past_the_chain:
[6] <other instructions / chains>

In this way, the last gadget will return to instruction [2] jumping past the chain building

instructions and continuing normal execution flow.

14

4. Software Documentation

This section is intended to provide an abstract documentation in terms of data structures and

algorithms used in the implemented proof-of-concept rather than a reference documentation

for developers.

4.1 Main data structures

Table 3 lists the fields of the INSTRUCTION data structure (also used as a linked list item).

A list of such instructions is populated and returned as a result of the disassembly and reverse

analysis of any machine code (either the shellcode’s or gadget instructions’).

Table 3: INSTRUCTION data structure

Table 4 lists the fields of the more abstract IR for instructions and gadgets. Operands might

represent registers, immediate constants or bitness of instruction/other-operands depending on

the type field. For more details on the semantics and mapping to IR the reader is referred to

section 3.4.2 Table 2.

Table 4: GINSTRUCTION data structure

Table 5 lists the fields of the gadget ending (GADGET_END) data structure as these are

returned from the gadget finding process. Endings might contain the standard function

epilogue before the return instruction as long as a corresponding gadget loader is found.

stackAdvBef is used in case the return instruction is preceded by pops while stackAdvAft

is used in case the return instruction is a retn. The reg field is only used in case the ending

uses a jmp reg instruction to return.

Table 5: GADGET_END data structure

typedef struct INSTRUCTION

BYTE data[16] the complete instruction opcode lies in here
WORD offsets to-primary-opcode | to-MOD/REG/RM | to-displacement | to-immediate

4 bits each
BYTE regReads 1-bit flag for each general purpose register this instruction reads
BYTE regWrites 1-bit flag for each general purpose register this instruction writes

BYTE freeRegs 1-bit flag for each free general purpose register during this instruction
DWORD index the index of this instruction in the containing code segment

INSTRUCTION *jmp pointer to the instruction it jmps/calls/loops to (if any)
INSTRUCTION *next the next instruction in the containing code segment
DWORD *directVA pointer to a VA in the INSTRUCTION.data array this instruction refers to (if any)

DWORD flags e.g. HAS_SIB, IS_BRANCH/_{JMP, COND, REL, INT}, CONTAINS_VA,

HAS_2B_OPCODE, HAS_OPCODE_EXT, HAS_8BIT_OPERAND
BYTE totalSize total size in bytes of this instruction

typedef struct GINSTRUCTION

INSTR_TYPE type the type of this instruction (see Table 2 for possible types)
long operand1 the first operand in this instruction (also denoted as op1)
long operand2 the second operand in this instruction (also denoted as op2)

long operand3 the third operand in this instruction (also denoted as op3)
INSTRUCTION *i pointer to the original instruction this IR originated from

typedef struct GADGET_END

DWORD va the VA of this ending in the host PE file

DWORD numIns the number of instructions in this ending
BYTE size the total size in bytes of this ending

BYTE regWrites 1-bit flag for each general purpose register this ending writes (join of all instructions

in the ending)
WORD stackAdvBef the number of bytes the stack pointer is advanced (added) before the actual return

15

Table 6 lists the fields of the GADGET data structure as these are returned from the gadget

parsing process. The encoder function is assigned on a per-type basis, while it accepts as one

of its arguments the gadget itself so that it can consider the value of operands (gi),

modifications to registers, stack pointer adjustments and loader gadgets (if any).

Table 6: GADGET data structure

Noteworthy at this point is the ENCODER function prototype. In C language it reads:

STACK_OPER*(*ENCODER)(const GADGET*const g, const GINSTRUCTION i, int *res);

That is, all encoders return a list of stack operations (as described in paragraph 3.4.5) and

accept as input a gadget and an instruction, both classified into IR. The encoding result is

stored by-reference in the 3rd argument. In case of failure, null is returned.

4.2 Algorithms and flowcharts

4.2.1 Main program

Figure 4 (flowchart 0) depicts the main process of the PoC ROP compiler implemented. It

includes the parsing of the command line as well as decisions (based on the user’s request) to

delay execution of the shellcode (via Sleep()), to convert relative branches to 32-bit

equivalents, to unroll, compile to ROP, replace getPC constructs, hide certificate and patch

into the host PE. The option to omit compilation to ROP is used to evaluate the effect of ROP

on AV evasion.

WORD stackAdvAft the number of bytes the stack pointer is advanced (added) after the actual return

GEND_TYPE type the type of this ending (one of { RET, RETN, JMP })
BYTE reg the register used to jump in case this is an ending of type JMP

typedef struct GADGET

DWORD va the VA of this gadget in the host PE file

GINSTRUCTION gi the IR of this gadget

ENCODER encode pointer to the encoder function of this gadget

DWORD flags e.g. MODIF_EFLAGS, INJECTED, SETS_DF, CLEARS_DF, LAST_IN_CHAIN
BYTE regWrites 1-bit flag for each general purpose register this gadget writes (join of all instructions

and ending)

WORD stackAdvance the number of bytes the stack pointer is advanced (added) after the useful instruction
INSTRUCTION *i pointer to the list of instruction of this gadget (including ending)
DWORD numIns the number of instructions in this gadget (including ending)

GADGET_END *end pointer to the ending of this gadget
GADGET *loader pointer to the loader gadget (applicable if ending returns using a jmp r32 with no

loader: end.type == JMP && end.numIns == 1)

16

Parse command line options

Load input files

Enter

Exit

YSane options?

PE file to be patched

File containing
shellcode in text
or binary form

Inputs

Delay requested?

Y

Prepend shellcode with
call to Sleep(<delay>)

Y

Unroll or ROP
requested?

N

Y
Convert all shellcode relative

branches to 32bit

Unroll requested?

N

Y
Unroll shellcode instructions

containing SIB or
displacement

Analyze
shellcode

ROP requested?

N

Y Find all gadget endings in PE file

Search endings to find all gadgets

Compile shellcode into
ROP

Replace getPC
requested?

N

Y Replace all getPC constructs

N

Patch PE and write to file

PE has certificate? Y Hide certiicate

N

PE file patched
with ROP
shellcode

Output

32bit .exe?N

N

1

0

2

3

Figure 4: Flowchart 0, the main process of the ROP compiler tool

4.2.2 Reverse analysis of machine code

Figure 5 (flowchart 1) depicts the subprocess of x86 machine code analysis. For disassembly,

the ProView disassembler [5] was used, while the ref.x86asm.net database was heavily

consulted as x86 assembly reference. The marking of instructions that contain VA references

is necessary for adding-to/repairing the relocations table. The inference of register access as

stated at this stage is per instruction and is the subprocess that populates the

http://ref.x86asm.net/

17

INSTRUCTION.regReads/Writes fields. The return value is a linked list of

INSTRUCTIONs.

1
Disassemble all code linearly

into a linked list of instructions

Take next instruction in list

Enter

Exit

Opcode denotes
8bit operand?

Mark as INSTR_8BIT_OPERANDY

Opcode denotes
absolute VA
reference?

N

Y

Infer register access (R/W)

N

Infer offsets in opcode to
common x86 constructs

Opcode denotes
branch?

Y

Instruction
has next?

N

Y

N

Infer free registers

Such as: prefixes, MOD/REG/RM,
SIB, immediate constants,

displacement

Mark as INSTR_CONTAINS_VA

Set offset to VA in opcode

Mark accordingly as INSTR_BRANCH_/
{JMP, CALL} / {COND, UNCOND} /

{REL, ABS} / {INT, EXT}

Has 2-byte
primary opcode?

Mark as INSTR_2B_OPCODEY

N

1a

Figure 5: Flowchart 1, disassembly and reverse analysis of x86 machine code

Figure 6 (flowchart 1a) depicts the wrapper function of calculating the free register ranges in

the code, which in turn are used to set the INSTRUCTION.freeRegs field of all instructions.

18

Subprocess 1a1 calculates the linearly free registers while 1a2 repairs those ranges with

respect to internal branches (relative jumps, loops and calls).

1aEnter

Exit

(freeRanges, intBranches)

Repair free ranges
based on internal

branches

Calculate ranges of free
registers regardless of

internal branches

1a1

1a2

Filter special cases of freeRanges
(starting-before / ending-after list of

instructions)

Mark free registers for each instruction
according to ranges calculated

internal: i.e. branches that target
the (shell)code being analyzed (as

opposed to external calls, e.g.
Win32 API calls)

Figure 6: Flowchart 1a, calculation of free register ranges

19

Take next instruction [i] in list

Enter

return register free ranges and
internal branches array

[i] has next?

N

Y

N

Is internal branch? Save to temp intBranch arrayY

N

N

lastOperation[reg] == SET?

For [reg] in all registers:
lastOperation[reg]  SET

Save freeRange[reg]Y

freeRange[reg].start  i

N

lastOperation[reg]  READ

freeRange[reg].end  i

lastOperation[reg]  SET

Is a call ? On ESP readYOn ESP, EBP read

On [all registers except ESP, EBP] set

Is external branch?Y

N

Take next register [reg] in list of all registers

[i] reads [reg]?

[i] sets [reg]?

N

On [reg] readY

On [reg] setY

[reg] has next?

Y

N

Initialize
new freeRange[reg]

1a1

Figure 7: Flowchart 1a1, calculation of linearly free registers

Given the free register ranges -an array (freeRanges) of linked lists one per register- and an

array of internal branches (intBranches), both calculated by subprocess 1a1, the next

subprocess (1a2), repairs (i.e. shrinks) those ranges according to relative branching in the

code.

20

1a2

Take next internal branch instruction [b] from
intBranches

Enter

Return

(freeRanges, intBranches)

Is [b] in any
freeRange[reg]?

Take next register [reg] in list of all registers

Y

[i] jumps into
freeRange?

Y

Initialize new takenJumps list

[i] has next?

[i] in takenJumps?

N

N

Y

N

End of registers?

N

Y

N

Add [i] to takenJumps

Y

i  i.next

[i] reads [reg]?

Y

N

Repair freeRange of [reg]:
freeRange.start  b

Y

Is [i] internal
branch?

N N

Is [i] unconditional OR
[reg] free in [i].next

Y

N

End of branches?

N

Y

i  b

i  i.target

Iterate over all instructions
under this branches landing,

 looking for any that reads [reg]

Y

No repair

Repair free range

Is [i] an ext. branch OR
is [i] int. branch AND jumps into freeRange OR

[i] sets [reg]?

Figure 8: Flowchart 1a2, calculation of free register ranges including internal branches

21

4.2.3 Gadget parsing and compilation to ROP

Figure 9 (flowchart 2) depicts the process of backwards searching for gadgets given the list of

gadget endings found. The gadget ending finding process is omitted for the sake of brevity

since it is relatively straight-forward.

“Analyze code” in this case refers to the same reverse analysis process described in paragraph

3.3 and flowchart 1 (Figure 5). The typical value of MAX_DEPTH is 20 bytes.

2Enter

Return

(gadget endings)

Valid instruction(s)?

N

Take next gadget ending

next depth value < MAX_DEPTH ?

N

Has next gadget ending?

N

Take next depth value (ascending)

Disassemble [depth] bytes before ending

Y

Y Contains branch, push, relocation
or privileged instruction?

Y Analyze code

1

Y

Is there a gadget with
exactly the same code?

N

Y

Parse gadget into higher level
intermediate representation

N

Is there an equivalent gadget
with less instructions
and better ending?

Y

Assign encoder function

Append new gadget in list of found N

Figure 9: Flowchart 2, Backwards parsing of gadgets given the candidate gadget endings

Last, but certainly not least, Figure 10 (flowchart 3) documents the injection of gadgets and

compilation to ROP given the source shellcode and the list of found gadgets. The complexity

of the resulting code is estimated on a per-gadget basis in order to select the least complex

encoding. This complexity estimation c(g, i) of gadget g encoding i, is calculated as:

c(g, i) = number of VAs in the resulting chain × number of instructions in g

22

3

Enter

(analyzed shellcode, gadgets)

Take next shellcode
instruction [i]

Take next gadget [g]

[g] encodes [i]?

Parse [i] into intermediate
representation

Estimate complexity c(g, i) of
gadget [g] encoding [i]

N

c(g, i) < c ?

Initialize complexity
c = Infinite

Has next gadget?

Y

N

Y

N

c = c(g, i)
bestGdg = g

Has next
instruction?

Y

ReturnN

Y

bestGdg found?

Y

Does [i]
access ESP (except for

push imm)?

N

Y

Has PE file free
space in 0xCC nest

Inject required gadget in free space

Extend .text sectionN

Y

Add injected gadget in list of gadgets

N

Encode [i] using bestGdg bestGdg = injected gdg

Figure 10: Flowchart 3, injection of gadgets and compilation to ROP

23

5. Results

In order to evaluate the proposed techniques we used the VirusTotal online antivirus scanning

service [4] which at the time of this writing includes 57 AVs. For carrier PEs, we selected 9

32-bit executable of various sizes, most of them very popular and including certificates.

Table 7: List of PE files used as carriers for infection and validation

Executable Size

(KB)

Remarks SHA256 hash

AcroRd32.exe 1489 Version 10.1.12 of Adobe Acrobat Reader X a03297789b5a784af3765c

523b33b9d54578e38a178

ca67103b5e0e74f905331

cmd.exe 296 Version 6.1.7601.17514 Windows Command

Processor

17f746d82695fa9b35493b

41859d39d786d32b23a9d

2e00f4011dec7a02402ae

Dummy.exe 56 An empty Win32 MFC application, straight from

Microsoft Visual Studio 12

efd58b54923f2001c14065

bc9687bdf345358ffce891

4250b3be924f8bd37069

EssModel.exe 889 Version 2.2 of open source Eldean ESS-Model

application

5b82358f54f21fdb0ea5a3
9c6d87b2cbfe730af4184e

8cd0043cc1a4e098e6e8

firefox.exe 331 Version 35.0.0.5486 of Mozilla Firefox 11740f07a822637874da4e
b4eafa309d145a1ca72977

9e30cb3d1e592c5484df

java.exe 172 Version 7.0.710.14 of Oracle Java 06889c037faab8379aaafb

2bf9e77807e3d432da435c
dab1244bff36c5c562d5

list_imports.exe 9 A tiny, Win32 console application written in C

(compiled with MS compiler), listing all PE file

imports

44b636ac9293df95eb42c8

efe18b135649ebc2abc90c

e9670d41ccc0b5c58e59

nam.exe 1829 Version 1.0a11a of “The Network Animator” 5d329bb39ba744cdba5e1a
fe107551c18ba0acd46cb6

764391024a73aa2d583f

notepad++.exe 2348 Version 6.6.9.0 of the GNU text editor for

windows

a11077cb6c209c67eb2d50

7d650fbee0925f3cbe860c
70e0cd779b73f5af4b80

As source shellcode, we selected the most popular payloads of Metasploit [7]: Reverse TCP

Shell, and Reverse TCP Meterpreter. For each PE and each shellcode we tried various

combinations of encoding methods as listed in Table 8 resulting in a total of 126 samples.

Table 8: List of patching scenarios tested against VirusTotal

Code name Description

Original The file is not patched at all

ROP-Exit The file is patched with the shellcode unrolled, converted to ROP, and

entry point before the original program’s exit (hook ExitProcess or exit)

Unroll-Exit The file is patched with the shellcode unrolled and entry point before the

original program’s exit (hook ExitProcess or exit)

Exit The file is patched with the shellcode intact and entry point before the

original program’s exit (hook ExitProcess or exit)

ROP-d20 The file is patched with the shellcode converted to ROP, and entry point

before the original program. An additional delay of 20 seconds is inserted

before execution of the shellcode.

ROP The file is patched with the shellcode converted to ROP, and entry point

before the original program.

Shellcode The file is patched with the shellcode intact, and entry point before the

original program.

24

Figure 11 and Figure 12 depict the evasion ratios (1 −
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝐴𝑉𝑠
) for each combination of

method-PE file, for the reverse shell and the reverse meterpreter payloads respectively. In all

cases, compiling to ROP and transferring control to the malware code before termination

(“ROP-Exit” combination) produces the highest evasion ratio. In more than half of the test

cases the method results in zero detections by AVs, while in the vast majority it results in less

than two positives (an evasion ratio greater than 98.5%).

Figure 11: Evasion ratio for the reverse shell payload

Figure 12: Evasion ratio for the reverse meterpreter payload

Figure 13 depicts the overall average evasion ratio for all the selected combinations of

methods. ROP with entry point during termination (“ROP-Exit” case) produces on average

slightly less positives (97.6% evasion rate) than the original file (97.1% evasion rate). This

unexpected result is attributed to the increased false positives of the AVs for Dummy.exe and

list_imports.exe which were falsely recognized as Gen:Variant.Graftor.122324 and

Gen:Variant.Zusy.122107 respectively by the same 7 AVs (out of a total of 57).

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe cmd.exe Dummy.exe EssModel.exe firefox.exe java.exe list_imports.exe nam.exe notepad++.exe

Ev
as

io
n

 ra
ti

o

Original file ROP-Exit Unroll-Exit Exit ROP-d20 ROP Shellcode

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe cmd.exe Dummy.exe EssModel.exe firefox.exe java.exe list_imports.exe nam.exe notepad++.exe

Ev
as

io
n

 ra
ti

o

Original file ROP-Exit Unroll-Exit Exit ROP-d20 ROP Shellcode

25

Figure 13: Average evasion ratio per combination of methods

We also notice that the second best results (in terms of higher evasion ratio) come from

“Unroll-Exit” and the third best by “Exit” alone, while “ROP-d20” and “ROP” take two of

the worst places, which lead us to the following conclusions:

 Behavioral analysis is equally important to static signatures for most AVs (from the

ones that were alarmed) and is mostly performed during entry of executables

 Delaying execution of the shellcode has almost no effect which leads us to believe

that probably some form of emu/simulation of the code is performed to gather the

sequence of Win32 calls rather than pure virtualization/sandboxing and runtime

hooking of Win32 API

Another suspicion is that many AVs rely (by a significant amount) on code statistics (entropy,

n-grams and more) in order to classify PE files as benign or malicious. Unless such methods

are designed to consider separate parts of the file’s code, there is high chance that they will be

heavily affected by the ratio of patch size over total code size. For this reason we plot the

average evasion ratio of the reverse shell and meterpreter payloads against the file size of all

PEs in Figure 14.

Figure 14: Average evasion ratio for “ROP-Exit” vs PE file size

The conjecture is confirmed by most cases (the two metrics seem correlated) except for

instance by Dummy.exe versus EssModel.exe in which the bigger file (EssModel.exe) gets a

lower evasion ratio.

A comparison is also made with Shellter v2.2 [1] and PEinject [2] in Figure 15. Shellter was

used with its default options (i.e. with polymorphic junk code). In all cases in the Reverse

TCP Shell was patched in. “ROP-Exit” has the highest evasion ratio in all tests. However,

since Shellter does not encode the payload (neither does it claim to) the “Exit” scenario is also

given to compare on the patching method only. The results are mixed between Shellter and

40%

50%

60%

70%

80%

90%

100%

Average evasion ratio
Ev

as
io

n
 ra

ti
o

Original file ROP-Exit Unroll-Exit Exit ROP-d20 ROP Shellcode

0.00

0.02

0.20

2.00

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe cmd.exe Dummy.exe EssModel.exe firefox.exe java.exe list_imports.exe nam.exe notepad++.exe

File
size (M

iB
)Ev

as
io

n
 ra

ti
o

ROP-Exit Filesize

26

“Exit” case, with 5/9 higher evasion rates by “Exit”, whereas in 8/9 tests “Exit” achieves

higher rates than that of PEinject.

Figure 15: Comparison of evasion ratio between “ROP-Exit”, “Exit” cases, Shellter and PEinject

Besides VirusTotal, all patched PEs were also tested against NCCGroup’s “Experimental

Windows .text section Patch Detector” [9]. This detector compares the executable sections in

memory against the ones on disk to detect modifications/patching. Therefore, none was

detected as patched, since our ROP patcher does not alter the .text section in memory (neither

does it require to).

40%

50%

60%

70%

80%

90%

100%

AcroRd32.exe cmd.exe Dummy.exe EssModel.exe firefox.exe java.exe list_imports.exe nam.exe notepad++.exe

Ev
as

io
n

 r
at

io

ROP-Exit Exit Shellter peinject

27

6. Conclusions

Most antivirus software rely on string signatures and mild behavioral profiling detection

mechanisms. By encoding malicious code into its return-oriented equivalent and even by

performing elementary permutations (unrolling), the former can be bypassed in the vast

majority of cases. Behavioral profiling can also be avoided by carefully intercepting normal

execution flow in points that AVs either cannot emulate or simply cannot derive enough

evidence to classify the behavior as malicious. In this thesis, we presented as a means to the

latter the hooking of common calls to process exit resulting in many cases in absolute evasion

and in others rates greater than 98%.

The techniques presented can still be mitigated if dealt with individually. For instance,

signatures could be created for ROP building instructions and behavioral analysis could be

also performed backwards in terms of process life-cycle. However, since slight variations and

randomization can again disarm scanners, a more robust countermeasure is not straight-

forward to design, practical to implement, or even realistic to propose. Perhaps the most

promising direction is towards the strict coupling of the host operating system with the trusted

software certificates (or checksums) and a “default distrust all” policy, i.e. whitelisting rather

than blacklisting, pretty much like what was started by Microsoft back in 2001 [8] but did not

flourish.

28

References

[1] Shellter, https://www.shellterproject.com, last accessed on February 15, 2015

[2] Injecting Shellcode into a Portable Executable(PE) using Python,

http://www.debasish.in/2013/06/injecting-shellcode-into-portable.html, last accessed on

February 15, 2015

[3] Shacham, Hovav. "The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86)." Proceedings of the 14th ACM conference on Computer and

communications security. ACM, 2007.

[4] VirusTotal, https://www.virustotal.com, last accessed on February 15, 2015

[5] ProView disassembler,

http://www.woodmann.com/collaborative/tools/index.php/PVDasm_Disassembly_Core_

Engine, last accessed on February 15, 2015

[6] x86 Opcode and Instruction reference, http://ref.x86asm.net, last accessed on February

15, 2015

[7] Metasploit, http://www.metasploit.com/, last accessed on February 15, 2015

[8] Default Deny All Applications, http://www.windowsecurity.com/articles-

tutorials/authentication_and_encryption/Default-Deny-All-Applications-Part1.html, last

accessed on February 15, 2015

[9] Experimental Windows .text section Patch Detector,

https://github.com/nccgroup/WindowsPatchDetector, last accessed on February 15, 2015

https://www.shellterproject.com/
http://www.debasish.in/2013/06/injecting-shellcode-into-portable.html
https://www.virustotal.com/
http://www.woodmann.com/collaborative/tools/index.php/PVDasm_Disassembly_Core_Engine
http://www.woodmann.com/collaborative/tools/index.php/PVDasm_Disassembly_Core_Engine
http://ref.x86asm.net/
http://www.metasploit.com/
http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Default-Deny-All-Applications-Part1.html
http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Default-Deny-All-Applications-Part1.html
https://github.com/nccgroup/WindowsPatchDetector

	Table of Figures
	Table of Tables
	Abstract
	1. Motivation
	2. Related Work
	3. Approach
	3.1 Return-Oriented Programming as a polymorphism alternative
	3.2 Other techniques employed for antivirus evasion
	3.2.1 PE patching and passing control to the malware
	3.2.2 Delaying execution
	3.2.3 Replacing getPC constructs
	3.2.4 Hiding the certificate

	3.3 Reverse analysis of x86 machine code
	3.3.1 Preprocessing of relative branches
	3.3.2 MOD/REG/RM and SIB unrolling

	3.4 Compilation to ROP
	3.4.1 Finding gadgets
	3.4.2 Parsing gadgets into IR
	3.4.3 Injecting gadgets
	3.4.4 Source code permutations
	3.4.5 Chaining gadgets

	4. Software Documentation
	4.1 Main data structures
	4.2 Algorithms and flowcharts
	4.2.1 Main program
	4.2.2 Reverse analysis of machine code
	4.2.3 Gadget parsing and compilation to ROP

	5. Results
	6. Conclusions
	References

