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Abstract 

In this thesis we examine the use of Return-Oriented Programming (ROP) combined with 

other practices for local (i.e. infected executables on disk) antivirus evasion. ROP is 

considered as a polymorphism alternative to crypters and packers. The software product of 

this work is a tool written in Win32 C which, given any piece of shellcode and any non-

packed 32-bit Portable Executable (PE) file, it transforms the shellcode into its ROP 

equivalent and patches it into (i.e. infects) the PE file. After trying various combinations of 

evasion techniques, the results show that certain methods can evade nearly and completely all 

antivirus software employed in the online VirusTotal service. From a theoretical standpoint, 

the main outcome of this research is a) the algorithms for analysis and manipulation of 

assembly code on the x86 instruction set (up to and excluding the SSE), and b) the 

highlighting of common antivirus software weaknesses. 
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1. Motivation 

The evolution of antivirus (AV) detection mechanisms starts with plain string signatures of 

common malware code found in exploits and viruses. Executable files on disk are 

traditionally scanned by AVs for matches against any of the signatures collected in their 

databases. The method is static and most of the time reactive, i.e. after a worm/virus 

outbursts, security analysts examine the malware code and create signatures for AV software 

to match against it. Malware authors proved this scheme trivial to bypass by injecting NOP 

(No-OPeration) instructions and code that cancels out itself or code that is never reached 

(a.k.a. dead code) in-between the malicious instructions. To tackle such constructs, signatures 

evolved to regular expressions (RegEx). With regex’es powerful capabilities, now AVs relied 

on “some” of the malicious instructions being there, even if irrelevant code was in-between. 

The next step by the attackers’ side was to cypher the malicious code and decipher it online 

when taken control of execution flow. Such malware are known as polymorphic and/or 

oligomorphic.  Even though the decryptor is still subject to signing and the technique requires 

a read-writable-executable (RWX) memory section, polymorphic code is still very popular 

and in many cases effective, especially when the encryption is run multiple times over the 

cipher. A special case of polymorphism is metamorphic and self-modifying code that mutates 

itself on each infection while maintaining the same functionality. Polymorphism can be 

tackled by a) static analysis, i.e. disassembly and Control Flow Graph (CFG) extraction, b) 

heuristics on the entropy and statistics of the machine code, and c) dynamic/behavioral 

analysis using emulation or virtualization, i.e. execution of the suspicious code into a sandbox 

environment in order to profile sequences of invocations to common system calls. 

The main argument represented by this thesis is that Return-Oriented Programming (ROP) 

can be a strong polymorphism alternative (for the reasons outlined in Section 3) and that if 

combined with mild behavioral anti-profiling techniques it may render AV detection near 

infeasible. Besides the transformation of the code into a non-recognizable non-recurrent form 

though, several additional issues must be considered to achieve evasion such as the patching 

method. This includes, but is not limited to, the positioning of the virus in the carrier 

executable and the way of transferring control to the virus since it is very common for AVs to 

detect minor deviations from the typical arrangement of the file sections and their 

characteristics (e.g. a second executable section with RWX permissions). 

To prove the aforementioned concept, we choose to work on Win32 Portable Executables 

(PEs) and the x86 architecture by building a ROP compiler and patcher in Win32 C that 

converts any piece of given shellcode (hereafter , also referred to as source (shell)code) into 

its ROP equivalent and infects any given PE with it. Figure 1 summarizes the functioning of 

the proof-of-concept tool developed to infect and evaluate the evasion ratio of the proposed 

techniques. 
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Figure 1: Overview of the proof-of-concept ROP patcher 

The rest of this paper is structured as follows: Section 2 is a brief positioning with respect to 

related work on the field of PE infection; Section 3 presents the approach to transforming 

normal x86 machine code to its return-oriented equivalent and the patching mechanisms; 

section 4 is a brief documentation of the developed software and section 5 presents evaluation 

of the results after infecting several well-known executables with some of the most common 

and popular shellcodes. Finally, section 6 concludes the thesis with discussion on the 

evolution of both AV detection and malware evasion with respect to ROP. 

PE file on disk Malware shellcode
\xfc\xe8\x89\x00\x00\...

ROP Compiler  
& Patcher

PE file

- Common shellcode
(e.g. taken from MSF) 
- Easily signable
- Alarming to AVs

- ROP code is different 
for different PEs and 
difficult to generate 
signature for

Benign file

ROP dictates that malware 
borrows original PE’s code,
hence avoiding patterns or 

affecting the original 
entropy statistics of the file

ROP malware code
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2. Related Work 

To the author’s best knowledge this is the first work that infects PEs with ROP-encoded 

payload. Nevertheless, in this section we examine two tools having the same purpose with our 

ROP patcher, that is, to infect PE files with common (possibly encrypted) shellcode in a way 

that bypasses AV software. 

The first, Shellter [1], focuses on maintaining the original structure of the PE file, by avoiding 

injection of the shellcode into predefined locations or changing the characteristics of the 

existing sections. It achieves so by overwriting existing code for which it is certain that will 

be given control during execution of the program. The latter is deduced by tracing the 

executable file and analyzing its execution flow. Shellter is also capable of reusing imports of 

the original PE file to change the writing permissions of the section containing the shellcode 

so that encrypted and self-modifying code can be used. It is also capable of injecting “junk 

code” before the shellcode that delays execution as a means to anti-emulation. Shellter is 

advanced in terms of dynamically selecting the location of the patch in the shellcode (as 

opposed to extending the .text section). However, while it features a patching method that 

introduces variability (as to where in the file is the shellcode injected), it relies on traditional 

polymorphism methods, that are still subject to signature generation and detection of write 

permissions or modifications of the .text section in memory. Moreover, as detailed later on 

paragraph 3.1, the proposed approach introduces variability too, due to the transformation to 

ROP (which is dependent on the PE file). 

PEinject [2] is mostly a method (and referenced as such) rather than a full-featured tool. It 

injects the shellcode in the (first sufficiently large) padding space found in the .text section 

(either 0xCC nests or section padding) and does not encrypt or modify the shellcode in any 

way, neither does it anticipate for self-modifying or encrypted payloads. Control is passed to 

the injected shellcode by modifying the address of entry point of the PE file’s NT_HEADER.  

The evasion ratios of both methods are compared with the proposed approach in Section 5. 
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3. Approach 

3.1 Return-Oriented Programming as a polymorphism alternative 

ROP gained increased attention during the late 2000’s [3] as an advanced stack smashing 

attack that could bypass Data Execution Prevention (DEP) mechanisms. It is a rediscovery of 

threaded code in which programs typically consist of a chain of addresses in the stack 

pointing to code chunks in the attacked executable (or its loaded libraries) each of them 

ending with a return instruction (commonly ret, 0xC3, but not only). These borrowed code 

chunks are called gadgets and their “return” is in fact a call to the next gadget in the chain. As 

an analogy to regular code, in ROP, gadgets are the “instructions” and esp is the program 

counter. 

 

Figure 2: Sample return-oriented program performing  
mov eax 10; xchg eax, ecx; add ebx, 3 

The first and most important benefit of using ROP for AV evasion is that such borrowed code 

(that of gadgets) is always benign and tested against false positives. Of course, the return 

address chain has to be built somehow in the stack and that would leave a footprint subject to 

signing. The process involves either pushing the return addresses to the stack or just copying 

the whole chain from another memory location (possibly some .data segment) and adjusting 

the stack pointer. However, a) the kind of code required for such operations is very common 

and seemingly benign, b) it largely depends on the attacked PE and its image base since in the 

worst case it is a series of push <VAi> operations, and c) can be randomized or encrypted in 

many and trivial ways. (b) in particular holds because gadget addresses change for different 

PEs and different image bases, hence changing the footprint and statistics of the chain 

building instructions even if they are for the same source shellcode.  

Given these features, ROP enables polymorphism without requiring a writeable code 

section in memory (which is very rare in benign PEs unless they are packed, as well as a 

typical heuristic for detection). Encryption/decryption can be applied on the gadget chain in 

010F0319: pop eax
010F031A: ret

:
010F0900: xchg eax, ecx
010F0902: ret

:
010F0903: inc ebx
010F0324: ret

eip = 

00F00004: 010F0903
00F00008: 010F0903
00F0000C: 010F0903
00F00010: 010F0900
00F00014: 0A000000
00F00018: 010F0319

esp = 

code

stack

Gadget
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memory (i.e. in the stack and not in the code section) and/or different gadgets can be 

randomly chosen for the same operation hence altering the malware’s footprint. 

3.2 Other techniques employed for antivirus evasion 

Besides transforming the malicious code into its return-oriented equivalent for hiding it, a few 

other techniques are necessary or complementary to achieve lesser detection ratios.  

3.2.1 PE patching and passing control to the malware 

First of all, the patching of the PE file and the passing of control to the shellcode must be 

done in the least noticeable way. A second executable section hosting the malware would be 

too alarming, since the vast majority of executables has only one. The next least disruptive 

and easy to implement option would be to inject the malware code in the 0xCC padding 

commonly left by the linker in-between code segments (typically OBJ files) in the .text 

section of PEs. However, a) there may not always be sufficient space in those CC nests, and 

b) we will be using them for our ROP purposes later on.  

For these reasons we choose to append the malware to the existing .text section of the 

executable, and correct all section headers and relocations accordingly. To pass control to it, 

the default practice is to replace the instructions pointed to by 

NT_HEADER.AddressOfEntryPoint with a jump to the shellcode which is appended those 

replaced instructions followed by a jump back to the original execution flow. Figure 3 (a) 

depicts this scenario. Directly pointing the address of entry point to the malware in this case is 

avoided since many AVs’ heuristics are alarmed by the fact that it points towards the end of 

.text. An alternative to giving control to the malicious code at program entry, is to hook any 

calls to ExitProcess, exit or other similar function as depicted in Figure 3 (b). This 

technique in particular, as shown also later by the results, bypasses behavioral profiling by 

AVs that employ emulation or sandboxing. To our best knowledge, that is either because AVs 

emulate only a small portion of the executable’s entry code due to scanning time constraints, 

or because of lack of (universal) techniques for triggering a graceful exit (most programs do 

not handle SIGINT and SIGTERM signals). 
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       (a) (b) 

Figure 3: Overview of a patched PE file’s .text section: (a) control is given at address of entry point, (b) 

control is given right before the program exits. 

3.2.2 Delaying execution 

Delaying execution of the malicious code by “sleeping” a few seconds or minutes was 

attempted as a means to bypassing behavioral profiling -especially when control is given 

during the program entry- with unsuccessful results. Our conjecture is that during emulation, 

calls to Win32 Sleep() may be intercepted and avoided in order to speed up the scanning 

process. 

3.2.3 Replacing getPC constructs 

Shellcode is usually built for remote exploitation during which the attacker does not know the 

value of the program counter (EIP register), which is often necessary for memory addressing 

and callbacks. Exploit authors have been long using for this purpose some special (getPC) 

constructs to get the value of EIP. Among them the most common (and notably uncommon in 

regular machine code) is the relative call to a pop instruction (the call instruction pushes 

the value of EIP onto the stack and the pop retrieves it). However, when statically patching a 

PE file, EIP can be pre-calculated by knowing the (preferred) image base and adding a 

reference to the relocations table of the PE. Hence, to further decrease the suspicion ratio we 

replace such calls to getPC with:  

1: push <VA-of-8>  

6: jmp-to-pop 

8: ... 

18: pop r32 

and add the VA of <VA-of-8> (2 in this case) to relocations so that it gets repaired by the 

windows loader in case the PE cannot be loaded in the preferred image base. 

3.2.4 Hiding the certificate 

An issue that arises when patching signed executables is that their checksum/hash, and thus 

their certificate, gets invalidated. This is obviously very alarming and would prevent us from 

Section .text

[malware code]

jmp-back

jmp-to-malware

[replaced code]

NT Header

AddressOfEntryPoint

.. .

(1)

(2)

(3)

Section .text

[malware code]

jmp-to-malware

ExitProcess()

jmp-to-malware

Previous calls to 
ExitProcess()

/ exit()
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testing our methods on popular executables of every-day use. Surprisingly though, hiding the 

certificate by erasing its pointer in the security data directory of NT_HEADER does not trigger 

any alarms. Of course, regardless of the certificate, the checksum of the PE file is re-

calculated and patched accordingly. 

3.3 Reverse analysis of x86 machine code 

Reverse analysis of machine code into data structures that are easy to handle is crucial to 

perform any kind of patching, modifications, re-assembly, and any transformation to ROP. 

Two are the most important pieces of information required: i) the origin and destination of all 

relative references (e.g. a relative jump and its target) and ii) which registers are being written 

or read during each instruction, as well as which registers are free to modify. The former is 

required for injecting or removing instructions from a code segment without breaking its 

functioning. The latter is particularly useful to enhance gadget matching, either by performing 

permutations, or by using gadgets that contain redundant but safe instructions (in this case an 

unsafe instruction is any branch, or any using indirect addressing because it risks raising an 

access violation error).  

Other useful information collected during the reverse analysis phase include the offsets 

(within the opcode) to the MOD/REG/RM byte, Scaled Index Byte (SIB), displacement, 

immediate constant, primary opcode and prefixes. Such constructs are preprocessed to infer 

the bitness of the operand(s), whether it uses indirect addressing, what registers it reads and 

writes, and whether it contains a direct Virtual Address (VA) reference. VA references are 

needed when modifying the original PE’s code and particularly useful when pushing the VAs 

of gadgets onto the stack because they must be repaired in the relocations table.  

Section 4 presents in detail the data structures used to hold this information as well as the 

algorithm used for inferring the ranges of free general purpose registers in the shellcode. The 

semantics considered throughout this paper (as well as the PoC implementation) regarding the 

state of general purpose registers are listed in Table 1. 

Table 1: Semantics on general purpose register access 

Based on this formalism, a register X is considered linearly free in a range of instructions [Ia, 

Ib] iff:  

 ¬∃  I∈[Ia, Ib) : READS(I, X), i.e. no instruction reads X up until Ib, and 

 SETS(Ib, X) 

The lower bound Ia is chosen to be the last instruction prior to Ib that reads X. Note also how 

upper bound Ib might not be the first instruction that sets X. 

Notation/Predicate Meaning 

READS(I, X) Instruction I reads the value of register X 

WRITES(I, X) Instruction I writes/modifies the value of register X 

ACCESSES(I, X) READS(I, X) ∨ WRITES(I, X) 

SETS(I, X) WRITES(I, X) ∧ ¬READS(I, X): Instruction I sets the value of register 

X without considering its previous value 

FREE(I, X) Register X is free during execution of instruction I; any modification 

of X during I will not alter execution flow or results in any way 
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The proposed method for determining whether a register is totally free (as in FREE(I, X)), 

requires inferring such linear ranges and then recursively following relative branches in the 

code to potentially reduce the linear ranges according to register access in the branch 

destination(s) (the algorithm is documented in paragraph 4.2.2). 

3.3.1 Preprocessing of relative branches 

It is often required during the transformation of the source shellcode into ROP (and the 

prerequisite steps) to insert additional instructions or replace them with more/longer ones 

resulting in increased bytes in-between relative branches. This introduces the risk of overflow 

when repairing the offsets of relative branching instructions which are typically encoded in 

the least number of bytes possible (often 8-bit offsets). Testing and repairing such relative 

offsets on a per modification basis might result (unlikely but possible) in a cascading effect 

where one repair to avoid overflow (e.g. replacing a jmp rel8 /2 bytes, with a jmp rel16 

/4 bytes) causes another overflow. To avoid this situation we convert all relative branches to 

their 32-bit equivalents prior to any modification of the shellcode. If the size of the resulting 

patch is an issue, the process can be easily inverted in the end. 

3.3.2 MOD/REG/RM and SIB unrolling 

Instructions using the MOD/REG/RM indirect addressing mode with displacement or the 

Scaled Index Byte (SIB) addressing scheme in the shellcode are treated specially before the 

transformation to ROP. Such instructions are unwanted for the following reasons:  

i) They are long (in the best and not so likely case 3 bytes long: 1 for opcode, 1 for 

MOD/REG/RM and 1 for SIB) hence unlikely to be found in gadgets; 

ii) They often read many general purpose registers at once, thus reserving them 

while as mentioned earlier, the more the free registers the better; 

iii) Their respective gadgets (should they be found or injected) will probably not be 

reusable due to the use of displacement and index constants (e.g. mov edx, 

[esi*2+16]). 

In order to circumvent this kind of situations, we reduce such instructions to their arithmetic 

equivalents one-by-one. We call this process unrolling and it is performed to the shellcode 

before any transformation to ROP. For instance, [1] mov eax, [ebx+ecx*2] would be 

replaced by: 

[1'] sal ecx, 1 

[2'] add ecx, ebx 

[3'] mov eax, [ecx] 

which requires that FREE(1, ecx) holds, otherwise an alternative is to replace with: 

[1'] mov eax, ecx 

[2'] sal eax, 1 

[3'] add eax, ebx 

[4'] mov eax, [eax] 

which requires that SETS(1, eax). If none of the above holds then another temporary register 

that is free may be used, and if there is no such register we abort the conversion. 

Noteworthy is how unrolling unlocks register access from one atomic instruction to many. 

For instance, in the latter example, ecx is freed at [1'] and ebx at [3']. If eax where free at the 
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preceding, say, 10 instructions, [1'] through [3'] could be moved 10 instructions behind, thus 

resulting in one more free register (ecx and ebx, minus eax which will not be free then) in that 

preceding code segment. 

3.4 Compilation to ROP  

Compilation of the source shellcode to its return-oriented equivalent involves searching for, 

injecting, and chaining gadgets in the benign PE file as well as permuting instructions to 

enhance encoding results. In addition, and in order to assist permutations and encoding, both 

gadgets and instructions are parsed into a higher level intermediate representation (IR) 

abstracting out the peculiarities of the machine code and the architecture. 

3.4.1 Finding gadgets 

Candidate gadgets in the executable sections of the given PE file must end in one of the 

following chaining instructions (hereafter also referred to as gadget endings, or simply 

endings): 

 ret 

 retn 

 pop regX; jmp regX 

 jmp regX 

Exceptionally for the latter, the gadget in question must be then paired with a loader gadget 

of the form: 

[1] pop regX 

[2] <any of the first 3 endings> 

The process begins by finding all gadget endings and temporarily storing them to a list. For 

each of those endings, n bytes of preceding machine code is disassembled for each n up to 

maximum depth N (typically 20 bytes). If such disassembly aligns with the ending (not 

guaranteed since x86 instructions are of variable length) a candidate gadget has been found. 

Candidate gadgets containing any illegal, privileged (e.g. sysenter, int, iret), branch or 

push instruction are filtered out. The last step of gadget finding is to filter out exact 

duplicates (byte-by-byte comparison) for performance reasons (although they could serve 

randomization purposes later on). 

3.4.2 Parsing gadgets into IR 

The gadgets found in the aforementioned process are first analyzed instruction-by-instruction 

as presented in 3.3 to infer register access. Since gadgets are allowed to contain safe but 

redundant instructions, their register access is tested for modifications to the register in 

question (e.g. a mov ecx, eax; pop ecx; ret; gadget cannot be used for moving eax to 

ecx) as well as the non-free registers of the source instruction to be encoded.  

Following that, they are parsed into an IR consisting of a type, and 3 operands with different 

meaning depending on the type. Table 2 lists the types of gadgets and instructions defined by 

this IR, their semantics and the eligible instructions that are classified into each type. If a 

multi-instruction gadget contains more than one representable instructions, only the first is 

considered. However, the ones following have also been considered in other gadgets with the 
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same ending because of the backwards gadget finding process described in the previous 

paragraph.  

 Table 2: Intermediate representation of gadgets and instructions 

Noteworthy is the fact that by parsing into this higher level IR, one-to-one permutations are 

automatically performed. That is because both gadgets and instructions are classified into one 

of these types, based on which the encoding is then performed, rather than on the instructions 

per se. 

Type Semantics op1 op2 op3 Eligible instructions 
LOADS lods eax esi bitness lods (e)ax/al, m8/16/32 

LOAD_REG pop regA regA - - pop r32 

LOAD_RM pop [regA] regA - - pop m32 

ADD_IMM regA += imm regA imm op1 

bitness 

add r8/16/32, imm8/16/32 

add (e)ax/al, imm8/16/32 

xor r8/16/32, 0 

cmp r8/16/32, 0 

inc r8/16/32  

test ra32, rb32 (with ra == rb) 

test r8/16/32, 0xFF/FFFF/FFFFFFFF 

test (e)ax/al, 0xFF/FFFF/FFFFFFFF 

or ra32, rb32 (with ra == rb) 

and ra32, rb32 (with ra == rb) 

SUB_IMM regA -= imm regA imm op1 

bitness 

sub r8/16/32, imm8/16/32 

sub eax/al, imm8/16/32 

dec r8/16/32 

MUL_IMM regA= regB*imm regA regB imm imul r32, r32, imm8/16/32 

sal/shl r32, imm8 

sal/shl  r32, 1 

DIV_IMM regA /= imm 

(integer div.) 

regA imm op1 

bitness 

shr/sar  r32, imm8 

shr/sar  r32, 1 

MOV_REG_IMM mov regA, imm regA imm op1 

bitness 

mov r8/16/32, imm8/16/32 

imul r16/32, r16/32, 0 

xor ra8/16/32, ra8/16/32 

and r8/16/32, 0 

and (e)ax/al, 0 

or r8/16/32, 0xFF/FFFF/FFFFFFFF 

or (e)ax/al, 0xFF/FFFF/FFFFFFFF 

sub ra8/16/32,  ra8/16/32 

MOV_REG_REG mov regA, regB regA regB bitness mov r8/16/32, r8/16/32 

imul r16/32, r16/32, 1 

MOV_REG_RM mov regA, [regB] regA regB bitness mov r8/16/32, m8/16/32 

MOV_RM_REG mov [regA], regB regA regB bitness mov m8/16/32, r8/16/32 

MOV_RM_IMM mov [regA], imm regA imm bitness mov m8/16/32, imm8/16/32 

and m8/16/32, 0 

or m8/16/32, 0xFF/FFFF/FFFFFFFF 

ADD_REG regA += regB+x regA regB x [ADD/SUB_IMM]; add r32, r32 

SUB_REG regA -= regB+x regA regB x [ADD/SUB_IMM]; sub r32, r32 

MUL_REG regA *= regB regA regB - imul r32, r32 

imul edx, eax, r32 

DIV_REG eax /= regC 

(integer div.) 

eax eax regC idiv edx, eax, r32 

XCHG_REG_REG xchg regA, regB regA regB bitness xchg r8/16/32,  r8/16/32 

xchg r8/16/32,  (e)ax/al (with r != eax) 

XCHG_REG_RM xchg regA, regB regA regB bitness xchg m8/16/32,  r8/16/32 

GPUSH_IMM push imm32 imm - 4 for gadget: mov, [esp+x], imm32 (with x 

being 4+stackAdvance after gadget has 

returned) 

for instruction: push imm32 

GPUSH_REG push regA regA - 4 for gadget: mov, [esp+x], r32 (with x being 

4+stackAdvance after gadget has returned) 

for instruction: push r32 

UNDEFINED [all others] - - - [all others] 
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The IR is also useful for selecting the encoder function accompanying every gadget. Encoders 

are responsible to answer “whether their assigned gadget can encode a given instruction”, as 

well as to encode it into a list of stack operations (typically “pushes” of gadget VAs and 

immediate constants) if requested to. Given this IR, for instance, an encoder for an 

XCHG_REG_REG gadget might respond positively to a request to encode an 

XCHG_REG_REG instruction even if their operands are flipped. More details on such 

permutations are given in paragraph 3.4.4. The special case of an UNDEFINED gadget 

encoder requires that the given instruction to encode is an exact match at the byte level with 

the gadget. 

3.4.3 Injecting gadgets 

In order to enhance transformation of the source shellcode, and since not all required gadgets 

are always found in the PE file, new ones are also injected as needed. Firstly, the 0xCC nests 

are used for this injection, and if they are filled, the .text section is extended before the actual 

patch. The injection is performed in the least noticeable way to avoid alarms. If a standard 

epilogue (mov esp, ebp; pop ebp; ret) is found right before the 0xCC nest, the gadget 

is injected in-between the preceding code and the epilogue. For instance, if the missing gadget 

were mov ecx, eax and the following code were found in the PE: 

 <other instructions> 

 mov esp, ebp 

 pop ebp 

 ret(n) 

 CCCCCCCCCCCCCCCCCC 

then the injection would result in: 

 <other instructions> 

 jmp epilogue          ;  for normal flow to avoid gadget instruction 

 mov ecx, eax          ; the injected gadget instruction 

 jmp return            ;  for gadget flow to avoid the standard epilogue 

epilogue: 

 mov esp, ebp 

 pop ebp 

return: 

 ret(n) 

 CCCCCCCC 

In the case that no epilogue is found at the boundary with the 0xCC nest, a pseudo-function 

with standard prologue and epilogue is injected to avoid heuristics or n-grams that might raise 

suspicion due to non-ordinary returns. This pseudo-function has the following form: 
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 push ebp 

 mov ebp, esp 

 <gadget code> 

 jmp return  

 mov esp, ebp 

 pop ebp 

return: 

 ret 

Following gadget insertions will then reuse this pseudo-epilogue as stated above, by injecting 

before the standard epilogue, thus making it look more like a real function. 

3.4.4 Source code permutations 

We distinguish between two kinds of permutations: one-to-one, and one-to-many. The former 

is about one instruction being replaced by another, while the latter is about one instruction 

being replaced by many. The search space generated by the later quickly scales exponentially 

as one may seek for n-th order permutations recursively and its investigation is beyond the 

scope of this thesis.  

Predefined, one-to-one permutations are achieved through the IR and encoder functions. 

Besides the ones deriving from the listing in Table 2, the encoders will also perform basic 

algebraic permutations based on the properties of addition, subtraction multiplication and 

division. For instance, if the instruction to be encoded is of type ADD_IMM (add reg, 

imm), an encoder will repeat anything add reg, x with x being an integer divisor of imm, 

imm/x times. Addition and subtraction with constants will also be swapped if the signs of the 

constants are flipped. 

3.4.5 Chaining gadgets 

The return address chain can be built either during runtime or during compile-time and saved 

to the initialized data section of the file (to be then copied at runtime to the stack). The most 

alarming option would be the first (during runtime) and we choose this to evaluate our 

evasion ratio (also chosen as an implementation option). During this process, besides the 

pushing of the VAs onto the stack, the ROP compiler must consider pushing immediate 

constants, adjustments for stack pointer modifications in the gadget (e.g. redundant pops, 

retns) and gadgets with loader-gadgets (see also paragraph 3.4.1). For this purpose, the 

following types of stack operations are defined: 

 PUSH_VA    ; push a (loader) gadget VA onto the stack 

 PUSH_IMM ; push an immediate constant onto the stack 

 ADVANCE  ; advance (subtract from) the stack pointer a number of bytes 

 CHAIN         ; pseudo operation denoting a placeholder for the next gadget’s VA 

The result of the encoding process of a given instruction by a given gadget is a series of stack 

operations for the invocation of the gadget. The list of such operations for all gadget calls 

describes the assembly instructions that if executed, will build the chain in the stack. Of 

course, this list is produced in the direction of the source shellcode, while the chain building 

operations must be performed backwards in order to be executed forwards. 

In order to counterbalance potential stack pointer modifications (mainly pops, i.e. additions) 

by gadgets, the GADGET data structure (refer to Table 5 and Table 6 for details) contains 
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information describing the number of bytes the stack pointer is added before (the case in 

pop-pop-ret kind of endings) and after the return (the case in retn kind of endings) of the 

gadget. Using this information, each encoder outputs ADVANCE operations in-between 

others accordingly. For instance, if a gadget were: 

[1] 0x00040010: mov ecx, eax ; the useful instruction 

[2] ..........: pop ebp      ; redundant pop 

[3] ..........: retn 10      ; another 10 bytes added to esp after the  

                                                                                                                               return  

                           

then the encoding output would be: 

 PUSH_VA       0x00040010   ; VA of  mov ecx, eax 

 ADVANCE     4    ;  for pop ebp 

 CHAIN      ; placeholder for VA of next gadget 

 ADVANCE     10    ;  for  retn 10 

Its (backwards) interpretation by the compiler would result in the following chain building 

instructions: 

[1] push <VA of gadget following next> 

[2] sub esp, 10              ;  ADVANCE 10 

[3] push <VA of next gadget> ;  CHAIN 

[4] sub esp, 4               ;  ADVANCE 4 

[5] push 0x00040010          ;  PUSH_VA  0x00040010 

 

In the case of multiple calls to the same gadget (e.g. as in using inc eax to achieve add 

eax, X) the compiler wraps the call with a conditional jump loop using a free register. 

Furthermore, not all types of instructions can be easily encoded into ROP. In our proof-of-

concept we do not encode branches (jumps, calls, loops, interrupts), privileged instructions 

and pops. Hence, the return-oriented code chunks must finally return back to the source 

shellcode. This is achieved by wrapping the chain building instructions in the following: 

[1] call build_chain 

[2] jmp past_the_chain 

build_chain: 
[3] push <VA of gadget N> 
[4] .... 
[5] push <VA of gadget 1> 

past_the_chain: 
[6] <other instructions / chains> 

In this way, the last gadget will return to instruction [2] jumping past the chain building 

instructions and continuing normal execution flow. 
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4. Software Documentation 

This section is intended to provide an abstract documentation in terms of data structures and 

algorithms used in the implemented proof-of-concept rather than a reference documentation 

for developers. 

4.1 Main data structures 

Table 3 lists the fields of the INSTRUCTION data structure (also used as a linked list item). 

A list of such instructions is populated and returned as a result of the disassembly and reverse 

analysis of any machine code (either the shellcode’s or gadget instructions’). 

Table 3: INSTRUCTION data structure 

Table 4 lists the fields of the more abstract IR for instructions and gadgets. Operands might 

represent registers, immediate constants or bitness of instruction/other-operands depending on 

the type field. For more details on the semantics and mapping to IR the reader is referred to 

section 3.4.2 Table 2. 

Table 4: GINSTRUCTION data structure 

Table 5 lists the fields of the gadget ending (GADGET_END) data structure as these are 

returned from the gadget finding process. Endings might contain the standard function 

epilogue before the return instruction as long as a corresponding gadget loader is found. 

stackAdvBef is used in case the return instruction is preceded by pops while stackAdvAft 

is used in case the return instruction is a retn. The reg field is only used in case the ending 

uses a jmp reg instruction to return.  

Table 5: GADGET_END data structure 

typedef struct INSTRUCTION 

BYTE data[16] the complete instruction opcode lies in here 
WORD offsets to-primary-opcode | to-MOD/REG/RM | to-displacement | to-immediate 

4 bits each 
BYTE regReads 1-bit flag for each general purpose register this instruction reads 
BYTE regWrites 1-bit flag for each general purpose register this instruction writes 

BYTE freeRegs 1-bit flag for each free general purpose register during this instruction 
DWORD index the index of this instruction in the containing code segment  

INSTRUCTION *jmp pointer to the instruction it jmps/calls/loops to (if any) 
INSTRUCTION *next the next instruction in the containing code segment 
DWORD *directVA pointer to a VA in the INSTRUCTION.data array this instruction refers to (if any) 

DWORD flags e.g. HAS_SIB, IS_BRANCH/_{JMP, COND, REL, INT},  CONTAINS_VA, 

HAS_2B_OPCODE, HAS_OPCODE_EXT, HAS_8BIT_OPERAND 
BYTE totalSize total size in bytes of this instruction 

typedef struct GINSTRUCTION 

INSTR_TYPE type the type of this instruction (see Table 2 for possible types) 
long operand1 the first operand in this instruction (also denoted as op1) 
long operand2 the second operand in this instruction (also denoted as op2) 

long operand3 the third operand in this instruction (also denoted as op3) 
INSTRUCTION *i pointer to the original instruction this IR originated from 

typedef struct GADGET_END 

DWORD va the VA of this ending in the host PE file 

DWORD numIns the number of instructions in this ending 
BYTE size the total size in bytes of this ending 

BYTE regWrites 1-bit flag for each general purpose register this ending writes (join of all instructions 

in the ending) 
WORD stackAdvBef the number of bytes the stack pointer is advanced (added) before the actual return 
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Table 6 lists the fields of the GADGET data structure as these are returned from the gadget 

parsing process. The encoder function is assigned on a per-type basis, while it accepts as one 

of its arguments the gadget itself so that it can consider the value of operands (gi), 

modifications to registers, stack pointer adjustments and loader gadgets (if any). 

Table 6: GADGET data structure 

Noteworthy at this point is the ENCODER function prototype. In C language it reads: 

STACK_OPER*(*ENCODER)(const GADGET*const g, const GINSTRUCTION i, int *res); 

That is, all encoders return a list of stack operations (as described in paragraph 3.4.5) and 

accept as input a gadget and an instruction, both classified into IR. The encoding result is 

stored by-reference in the 3rd argument. In case of failure, null is returned. 

4.2 Algorithms and flowcharts 

4.2.1 Main program 

Figure 4 (flowchart 0) depicts the main process of the PoC ROP compiler implemented. It 

includes the parsing of the command line as well as decisions (based on the user’s request) to 

delay execution of the shellcode (via Sleep()), to convert relative branches to 32-bit 

equivalents, to unroll, compile to ROP, replace getPC constructs, hide certificate and patch 

into the host PE. The option to omit compilation to ROP is used to evaluate the effect of ROP 

on AV evasion. 

WORD stackAdvAft the number of bytes the stack pointer is advanced (added) after the actual return 

GEND_TYPE type the type of this ending (one of  { RET, RETN, JMP }) 
BYTE reg the register used to jump in case this is an ending of type JMP 

typedef struct GADGET 

DWORD va the VA of this gadget in the host PE file 

GINSTRUCTION gi the IR of this gadget 

ENCODER encode pointer to the encoder function of this gadget 

DWORD flags e.g. MODIF_EFLAGS, INJECTED, SETS_DF, CLEARS_DF, LAST_IN_CHAIN 
BYTE regWrites 1-bit flag for each general purpose register this gadget writes (join of all instructions 

and ending) 

WORD stackAdvance the number of bytes the stack pointer is advanced (added) after the useful instruction 
INSTRUCTION *i pointer to the list of instruction of this gadget (including ending) 
DWORD numIns the number of instructions in this gadget (including ending) 

GADGET_END *end pointer to the ending of this gadget 
GADGET *loader pointer to the loader gadget (applicable if ending returns using a jmp r32 with no 

loader:   end.type == JMP && end.numIns == 1) 
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Figure 4: Flowchart 0, the main process of the ROP compiler tool 

4.2.2 Reverse analysis of machine code 

Figure 5 (flowchart 1) depicts the subprocess of x86 machine code analysis. For disassembly, 

the ProView disassembler [5] was used, while the ref.x86asm.net database was heavily 

consulted as x86 assembly reference. The marking of instructions that contain VA references 

is necessary for adding-to/repairing the relocations table. The inference of register access as 

stated at this stage is per instruction and is the subprocess that populates the 

http://ref.x86asm.net/
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INSTRUCTION.regReads/Writes fields. The return value is a linked list of 

INSTRUCTIONs. 
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Figure 5: Flowchart 1, disassembly and reverse analysis of x86 machine code 

Figure 6 (flowchart 1a) depicts the wrapper function of calculating the free register ranges in 

the code, which in turn are used to set the INSTRUCTION.freeRegs field of all instructions. 
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Subprocess 1a1 calculates the linearly free registers while 1a2 repairs those ranges with 

respect to internal branches (relative jumps, loops and calls). 

1aEnter

Exit

(freeRanges, intBranches)

Repair free ranges 
based on internal 

branches

Calculate ranges of free 
registers regardless of 

internal branches

1a1

1a2

Filter special cases of freeRanges 
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Mark free registers for each instruction 
according to ranges calculated

internal: i.e. branches that target 
the (shell)code being analyzed (as 

opposed to external calls, e.g. 
Win32 API calls)

 

Figure 6: Flowchart 1a, calculation of free register ranges 
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Figure 7: Flowchart 1a1, calculation of linearly free registers 

Given the free register ranges -an array (freeRanges) of linked lists one per register- and an 

array of internal branches (intBranches), both calculated by subprocess 1a1, the next 

subprocess (1a2), repairs (i.e. shrinks) those ranges according to relative branching in the 

code. 
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Figure 8: Flowchart 1a2, calculation of free register ranges including internal branches 
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4.2.3 Gadget parsing and compilation to ROP 

Figure 9 (flowchart 2) depicts the process of backwards searching for gadgets given the list of 

gadget endings found. The gadget ending finding process is omitted for the sake of brevity 

since it is relatively straight-forward.  

“Analyze code” in this case refers to the same reverse analysis process described in paragraph 

3.3 and flowchart 1 (Figure 5). The typical value of MAX_DEPTH is 20 bytes. 

2Enter

Return

(gadget endings)
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Take next gadget ending

next depth value < MAX_DEPTH ?
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Has next gadget ending?
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Take next depth value (ascending)
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Y
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1

Y
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N

Y
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intermediate representation

N

Is there an equivalent gadget 
with less instructions 
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Y

Assign encoder function

Append new gadget in list of found N
 

Figure 9: Flowchart 2, Backwards parsing of gadgets given the candidate gadget endings 

Last, but certainly not least, Figure 10 (flowchart 3) documents the injection of gadgets and 

compilation to ROP given the source shellcode and the list of found gadgets. The complexity 

of the resulting code is estimated on a per-gadget basis in order to select the least complex 

encoding. This complexity estimation c(g, i) of gadget g encoding i, is calculated as:  

c(g, i) = number of VAs in the resulting chain × number of instructions in g 
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Figure 10: Flowchart 3, injection of gadgets and compilation to ROP 
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5. Results 

In order to evaluate the proposed techniques we used the VirusTotal online antivirus scanning 

service [4] which at the time of this writing includes 57 AVs. For carrier PEs, we selected 9 

32-bit executable of various sizes, most of them very popular and including certificates. 

Table 7: List of PE files used as carriers for infection and validation 

Executable Size 

(KB) 

Remarks SHA256 hash 

AcroRd32.exe 1489 Version 10.1.12 of Adobe Acrobat Reader X a03297789b5a784af3765c

523b33b9d54578e38a178

ca67103b5e0e74f905331 

cmd.exe 296 Version 6.1.7601.17514 Windows Command 

Processor 

17f746d82695fa9b35493b

41859d39d786d32b23a9d

2e00f4011dec7a02402ae 

Dummy.exe 56 An empty Win32 MFC application, straight from 

Microsoft Visual Studio 12 

efd58b54923f2001c14065

bc9687bdf345358ffce891

4250b3be924f8bd37069 

EssModel.exe 889 Version 2.2 of open source Eldean ESS-Model 

application  

5b82358f54f21fdb0ea5a3
9c6d87b2cbfe730af4184e

8cd0043cc1a4e098e6e8 

firefox.exe 331 Version 35.0.0.5486 of Mozilla Firefox 11740f07a822637874da4e
b4eafa309d145a1ca72977

9e30cb3d1e592c5484df 

java.exe 172 Version 7.0.710.14 of Oracle Java 06889c037faab8379aaafb

2bf9e77807e3d432da435c
dab1244bff36c5c562d5 

list_imports.exe 9 A tiny, Win32 console application written in C 

(compiled with MS compiler), listing all PE file 

imports 

44b636ac9293df95eb42c8

efe18b135649ebc2abc90c

e9670d41ccc0b5c58e59 

nam.exe 1829 Version 1.0a11a of “The Network Animator” 5d329bb39ba744cdba5e1a
fe107551c18ba0acd46cb6

764391024a73aa2d583f 

notepad++.exe 2348 Version 6.6.9.0 of the GNU text editor for 

windows 

a11077cb6c209c67eb2d50

7d650fbee0925f3cbe860c
70e0cd779b73f5af4b80 

 

As source shellcode, we selected the most popular payloads of Metasploit [7]: Reverse TCP 

Shell, and Reverse TCP Meterpreter. For each PE and each shellcode we tried various 

combinations of encoding methods as listed in Table 8 resulting in a total of 126 samples. 

Table 8: List of patching scenarios tested against VirusTotal 

Code name Description 

Original The file is not patched at all 

ROP-Exit The file is patched with the shellcode unrolled, converted to ROP, and 

entry point before the original program’s exit (hook ExitProcess or exit) 

Unroll-Exit The file is patched with the shellcode unrolled and entry point before the 

original program’s exit (hook ExitProcess or exit) 

Exit The file is patched with the shellcode intact and entry point before the 

original program’s exit (hook ExitProcess or exit) 

ROP-d20 The file is patched with the shellcode converted to ROP, and entry point 

before the original program. An additional delay of 20 seconds is inserted 

before execution of the shellcode.  

ROP The file is patched with the shellcode converted to ROP, and entry point 

before the original program. 

Shellcode The file is patched with the shellcode intact, and entry point before the 

original program. 
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Figure 11 and Figure 12 depict the evasion ratios (1 −
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝐴𝑉𝑠
) for each combination of 

method-PE file, for the reverse shell and the reverse meterpreter payloads respectively. In all 

cases, compiling to ROP and transferring control to the malware code before termination 

(“ROP-Exit” combination) produces the highest evasion ratio. In more than half of the test 

cases the method results in zero detections by AVs, while in the vast majority it results in less 

than two positives (an evasion ratio greater than 98.5%). 

 
Figure 11: Evasion ratio for the reverse shell payload 

 
Figure 12: Evasion ratio for the reverse meterpreter payload 

Figure 13 depicts the overall average evasion ratio for all the selected combinations of 

methods. ROP with entry point during termination (“ROP-Exit” case) produces on average 

slightly less positives (97.6% evasion rate) than the original file (97.1% evasion rate). This 

unexpected result is attributed to the increased false positives of the AVs for Dummy.exe and 

list_imports.exe which were falsely recognized as Gen:Variant.Graftor.122324 and 

Gen:Variant.Zusy.122107 respectively by the same 7 AVs (out of a total of 57). 
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Figure 13: Average evasion ratio per combination of methods 

We also notice that the second best results (in terms of higher evasion ratio) come from 

“Unroll-Exit” and the third best by “Exit” alone, while “ROP-d20” and “ROP” take two of 

the worst places, which lead us to the following conclusions:  

 Behavioral analysis is equally important to static signatures for most AVs (from the 

ones that were alarmed) and is mostly performed during entry of executables 

 Delaying execution of the shellcode has almost no effect which leads us to believe 

that probably some form of emu/simulation of the code is performed to gather the 

sequence of Win32 calls rather than pure virtualization/sandboxing and runtime 

hooking of Win32 API 

Another suspicion is that many AVs rely (by a significant amount) on code statistics (entropy, 

n-grams and more) in order to classify PE files as benign or malicious. Unless such methods 

are designed to consider separate parts of the file’s code, there is high chance that they will be 

heavily affected by the ratio of patch size over total code size. For this reason we plot the 

average evasion ratio of the reverse shell and meterpreter payloads against the file size of all 

PEs in Figure 14.  

 
Figure 14: Average evasion ratio for “ROP-Exit” vs PE file size 

The conjecture is confirmed by most cases (the two metrics seem correlated) except for 

instance by Dummy.exe versus EssModel.exe in which the bigger file (EssModel.exe) gets a 

lower evasion ratio. 

A comparison is also made with Shellter v2.2 [1] and PEinject [2] in Figure 15. Shellter was 

used with its default options (i.e. with polymorphic junk code). In all cases in the Reverse 

TCP Shell was patched in. “ROP-Exit” has the highest evasion ratio in all tests. However, 

since Shellter does not encode the payload (neither does it claim to) the “Exit” scenario is also 

given to compare on the patching method only. The results are mixed between Shellter and 
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“Exit” case, with 5/9 higher evasion rates by “Exit”, whereas in 8/9 tests “Exit” achieves 

higher rates than that of PEinject. 

 
Figure 15: Comparison of evasion ratio between “ROP-Exit”, “Exit” cases, Shellter and PEinject 

Besides VirusTotal, all patched PEs were also tested against NCCGroup’s “Experimental 

Windows .text section Patch Detector” [9]. This detector compares the executable sections in 

memory against the ones on disk to detect modifications/patching. Therefore, none was 

detected as patched, since our ROP patcher does not alter the .text section in memory (neither 

does it require to). 
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6. Conclusions 

Most antivirus software rely on string signatures and mild behavioral profiling detection 

mechanisms. By encoding malicious code into its return-oriented equivalent and even by 

performing elementary permutations (unrolling), the former can be bypassed in the vast 

majority of cases. Behavioral profiling can also be avoided by carefully intercepting normal 

execution flow in points that AVs either cannot emulate or simply cannot derive enough 

evidence to classify the behavior as malicious. In this thesis, we presented as a means to the 

latter the hooking of common calls to process exit resulting in many cases in absolute evasion 

and in others rates greater than 98%. 

The techniques presented can still be mitigated if dealt with individually. For instance, 

signatures could be created for ROP building instructions and behavioral analysis could be 

also performed backwards in terms of process life-cycle. However, since slight variations and 

randomization can again disarm scanners, a more robust countermeasure is not straight-

forward to design, practical to implement, or even realistic to propose. Perhaps the most 

promising direction is towards the strict coupling of the host operating system with the trusted 

software certificates (or checksums) and a “default distrust all” policy, i.e. whitelisting rather 

than blacklisting, pretty much like what was started by Microsoft back in 2001 [8] but did not 

flourish. 
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