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1.1. Summary of Thesis 

 

 The subject of this thesis is "Dynamic Searchable Symmetric Encryption" 

(DSSE). DSSE is one of the solutions that can be used for implementations of 

searchable encryption schemes. Searchable encryption allows a client to outsource the 

storage of its encrypted data to a server, while maintaining the ability to search over 

the data without downloading it. The encryption of the outsourced data, is part of the 

privacy that client requires. Moreover, the search over that data should not be done 

with plaintext queries. The queries are done through encrypted keywords, so that it is 

not possible for the cloud server to decrypt  the plaintext query, based only on the 

received encrypted query. 
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1.2. Introduction 

 

 The thesis is structured as follows. The second chapter is an introduction  to 

searchable encryption, whereas in the third one, the possible cryptographic primitives 

that can be used in order to achieve a searchable encryption scheme are analyzed. 

These solutions are also compared in terms of security and efficiency. In the fourth 

chapter, a thorough analysis of the principles that most DSSE schemes make use of is 

conducted and the necessary security definitions of a scheme are discussed. 

 The fifth chapter is an analysis of the first efficient DSSE proposal that could 

also meet the appropriate security definitions. Most of future proposals were based on 

this scheme. The sixth chapter is about Blind Storage scheme. Although not adopted 

by the majority of the researchers, it gave an idea on how a DSSE scheme could rely 

only on a cloud storage service, without the need of a cloud computation server. 

 Chapters seven and eight are the analysis of two schemes that were the main 

subject of this thesis. The first one was based on inverted indexes solutions, as most 

of DSSE schemes, while the second one was based on dictionary structures and seems 

to be one of the most efficient schemes until now. Both of them managed to support 

forward privacy. 

 The scope of this thesis was to understand DSSE theory, study and analyze  

these two schemes and then try to add some more features on them, such as the ability 

to execute Boolean queries on encrypted data and support multi-client scenarios. Both 

of these add-ons are analyzed in chapters ten and eleven. Furthermore, in chapter 

eleven the scheme is further extended in order to become more parallel in terms of 

search and in chapter twelve the scheme is made more secure, by not allowing the 

Dataowner, who authorize the queries, to learn the keyword of the queries, but only 

their attribute.  
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 In the cloud era, data outsourcing is becoming the dominant storage model. As 

businesses and even individuals have their data hosted by an untrusted storage service 

provider, data privacy has become an important concern. Over the years, the problem 

of encrypted search has become an important problem in security and cryptography. 

This is due to a combination of three things: 

 

 1) Search is now the primary way we access our data. 

2)  We are outsourcing more and more of our data to third parties. 

3)  We trust these third parties less.  

 

 Because of these reasons, the problem of encrypted search is now of interest to 

many sub-fields in computer science such as databases, security, cryptography and 

privacy. Moreover industry and  governments start paying attention more and more to 

encrypted search. 

 While a-priori searching on encrypted data may sound impossible, there are a 

lot of  ways known, in order to achieve it. Some methods are more efficient than 

others, some are more secure than others and some are more flexible. 

 One straightforward solution is to upload all data encrypted using one of the 

symmetric encryption techniques. However, by adopting this approach, the client has 

to download all its data and decrypt them in order to perform even simple 

computations, such as data search. Such a solution is not practical, even for small 

databases. 

 The problem of searching on encrypted data was first considered explicitly by 

Song, Wagner and Perrig in  "Practical Techniques for Searches on Encrypted 

Data", from 2001. Relative work must be consider prior work on oblivious RAMs by 

Goldreich and Ostrovsky and on secure two-party computation by Yao who also 

provided solutions to this problem. Both of them are a lot less efficient nowadays. 

 Every techniques used in searchable encryption, like any cryptographic 

technology have tradeoffs that must be taken under consideration. A basic goal of this 

thesis is  to make clarify these tradeoffs. 

 

 

 

 

http://en.wikipedia.org/wiki/Secure_two-party_computation
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 A simple Searchable Encryption scheme consist of at least two phases. 

Usually there is a Client, who is the Dataowner of the database and a Server who 

hosts the encrypted Database. 

 

1) A setup phase, where the database is encrypted and loaded on a Server. The 

encryption is mandatory because the Server is not totally trusted by the Dataowner. 

 

 

Figure 2.1 - Encryption of the Database 

 

2) A search phase, where the Client uses tokens in order to query the Server, without 

revealing the plaintext of his query. 

 

 

 Figure 2.2 - Query on the Encrypted Database 

 

The Setup Phase 

  

 During the setup phase, the client will take n documents (D1,....,Dn) and 

generate an encrypted database (EDB)  and a set of encrypted documents (c1,....,cn). 

Usually documents are encrypted using a standard encryption scheme such as AES. 

What searchable encryption should figure out, is the way that EDB should be 

constructed. 
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 It is not necessary that encrypted documents and EDB are hosted in the Same 

Cloud Server. Encrypted documents could be stored in a Cloud Storage System by 

using appropriate labels, in order to retrieve them. The main purpose of the Server, 

that host the EDB, is to answer to Client's queries, based on his token, by retrieving 

the labels of the encrypted files that match the query. Finally, client should ask to 

download these labels from the Cloud Storage. 

 

 

Figure 2.3 - Two steps of the Search phase 

 

 A concrete example is considering the documents as an e-mail collection. The 

client will generate an EDB and then encrypt each e-mail separately. After generating 

the EDB and encrypted documents, client will send EDB to the server and encrypted 

documents to Cloud Storage. 
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Search Phase 

 

 During the search phase, the client wants the server to send him back all the 

labels of the encrypted documents associated with a keyword w. To do this, the client 

will send a token that encapsulates w without revealing information about the 

plaintext of the keyword w. The server will then use the token with the EDB to 

somehow figure out which encrypted documents, or labels, it should send back to 

Client. 

 These two phases exist on every searchable encryption scheme. Six different 

ways are known for searching on encrypted data. Each way is based on one of the 

following cryptographic primitives: 

 

o property-preserving encryption 

o functional encryption 

o fully-homomorphic encryption 

o searchable symmetric encryption 

o oblivious RAMs 

o secure two-party computation 

 

 Every scheme has a tradeoff between efficiency, security and functionality. 

Some of them will be described briefly and some of them more thoroughly in the 

following chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

http://outsourcedbits.org/2013/10/14/how-to-search-on-encrypted-data-part-2/
http://outsourcedbits.org/2013/10/30/how-to-search-on-encrypted-data-part-3/
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Proposals for Searching in Encrypted Data 
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3.1. Deterministic Encryption 

 

 In this chapter, the simplest way to search on encrypted data will be covered. 

This is usually the solution people come up with when they first think of the problem 

of encrypted search. This approach has some nice properties, but on the other hand, 

there are also many limitations. 

 Deterministic Encryption needs a special type of encryption scheme called 

property-preserving encryption (PPE) scheme. PPE schemes encrypt messages in a 

way that leaks certain properties of the underlying message. 

 There are different types of PPE schemes that each leak different properties. 

The simplest form is deterministic encryption which always encrypts the same 

message to the same ciphertext. The property preserved by deterministic encryption 

is equality since, given two encryptions 

 

1 1( )KE mc      and    2 2( )KE mc   

 

then, by just checking if c1=c2, one can test if the underlying messages are equal. 

 PPE-based encrypted search was first proposed in the Database community 

and later studied more formally in the Cryptography community. The first scheme to 

provide a cryptographic treatment of this approach was by Bellare, Boldyreva and O’ 

Neill from 2006. 

 We will now discuss a high-level idea of a Deterministic Encryption scheme. 

Suppose there exist both a deterministic encryption scheme E
D
 and a standard CPA-

secure encryption scheme E
R
. An encrypted database EDB can be created as follows. 

  For each document Di in the collection (D1,.....,Dn), the client computes 

deterministic encryptions of each keyword of  Di. Assuming each 

document Di has m keywords (wi,1 ,......,wi,m), the EDB then simply consists 

of n tuples, 

 

,1 ,( ,......, , ( ))i i i m ir d d ptr c  

 

where , 2 ,( )D

i j K i jd E w , 1( )R

i K ic E D  and ptr(ci) is a pointer to ciphertext ci. 

Recall that in that scheme, the client sends the encrypted database 

http://en.wikipedia.org/wiki/Ciphertext_indistinguishability
http://en.wikipedia.org/wiki/Ciphertext_indistinguishability
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EBD=(r1,.......,rn) 

 

to the server and the randomized encryptions of the documents (c1,........,cn) at the 

cloud Storage. 

 To search for keyword w, the client just sends a deterministic encryption 

of w to the server. This encryption of the keyword (dw) 

 

2( )D

w Kd E w  

 

will serve as the token. Now all the server has to do is compare dw to all the 

deterministic encryptions in EDB. If dw is equal to any of them, the server follows the 

corresponding pointer and returns the encrypted document.  

 In other words, for all 1 i n   and 1 j m  , the server tests if dw=di,j  and if 

they are equal, then server sends the ptr(ci)  back to client. This ptr(ci) is the label of 

the file ci stored at Storage. 

 Obviously there is a limitation in the way the scheme is constructed. The 

search time for the server is O(nm). This means that the search time, even assuming 

that the set of keywords is small, is linear in the number of documents. Of course, 

linear-time search is too slow for practice. On the other hand, in reality this is not a 

problem, because the deterministic encryptions of EDB can be stored in data 

structures that support fast search, such as a binary search tree, so that search can be 

performed very quickly (O(log(n)). 

 As far as efficiency is concerned, deterministic schemes might be efficient. 

From Security point of view, there are some limitations with respect to security 

 The first problem is that the encrypted database EDB leaks a lot of 

information to the server about the data collection, even from the setup phase. During 

the search phase it leaked even more data. The keywords in EDB are encrypted using 

a deterministic encryption scheme. Because of that, the same keyword w will always 

encrypt to the same ciphertext. This means that if the server sees two or more equal 

ciphertexts in EDB, it knows that the corresponding encrypted documents contain a 

keyword in common. 
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  In addition to the previous leakage, the server learns the frequency with which 

keywords appear. This makes the encrypted database vulnerable to frequency 

analysis.  

 

 

Figure 3.1 - EDB of Deterministic Encryption 

 

 Another issue is that since tokens are deterministic encryptions of the search 

terms, the server will always know whether the client is repeating a search a not. This 

is a result of the fact that the encryption of keyword w1, will always be the same 

ciphertext.   

 A final issue occurs when the deterministic encryption scheme uses public-

key. In this case, all the deterministic encryptions, including the EDB and the tokens, 

are encrypted under the client’s public key which is, obviously, public and available 

to the server. The server can then mount a dictionary attack on the encrypted database 

by encrypting a list of possible keywords and comparing them to the ones found 

in EDB and in the tokens. If it gets a match then Server can learn the plaintext of the 

keyword. 

 This attack clearly shows that public-key PPE-based solutions should probably 

not be used for “normal” data such as text and emails. But it doesn't mean that they 

should not be used at all. As Bellare et al. observe , such a solutions can be used when 

the data has high min-entropy. High min-entropy means that the data looks random to 

the server. The problem of course is that it is not clear when this applies in practice. 

Also, note that even if the keywords do have high min-entropy, the other security  

issues still remain. 

http://en.wikipedia.org/wiki/Frequency_analysis
http://en.wikipedia.org/wiki/Frequency_analysis
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 Concluding, an approach for searching over encrypted data was presented, 

which is based on property-preserving encryption. It supports fast search on encrypted 

data, but on the other hand, the scheme leaks quite a bit of information to the server.  
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3.2  Functional Encryption 

 

 Now, a different approach that provides the opposite properties from the 

previous chapter, will be described. It has slow search, but better security. At a high-

level, one can view this approach as simply replacing the PPE scheme from the 

previous solution with a functional encryption (FE) scheme. 

 The notion of Functional Encryption was first described by Sahai and Waters 

and later formalized by Boneh, Sahai and Waters  and by O’Neill . Starting with the 

work of Boneh and Franklin on identity-based encryption (IBE), there was a slew of 

new encryption schemes achieving various properties, such as attribute-based 

encryption, hidden vector encryption or predicate encryption. Though everything that 

will be presented can be done with Functional Encryption, for concreteness, the 

special case of Identity Based Encryption will be considered, which was first 

suggested by Shamir and realized by Boneh and Franklin. 

 

A public-key Identity Base Encryption (IBE) scheme consists of four algorithms: 

 

1. A setup algorithm "SETUP" is used to generate a master secret and public key 

pair ( msk , mpk ). 

 

2. An encryption algorithm "ENC", which takes as input the master public-

key mpk, an identity id and a message m as input and returns a ciphertext c. 

 

3. A key generation algorithm "KEYGEN" that takes as input the master secret 

key msk and an identity id and returns a secret key skid. 

 

4. And finally a decryption algorithm "DEC" that takes as input a secret 

key skid  and a ciphertext c and returns a message m or a failure symbol . 

 

 The motivation behind IBE is key distribution. In particular, using an IBE 

scheme should be easier than using a standard (public-key) encryption scheme where 

public keys have to be certified, revoked and verified. 

http://en.wikipedia.org/wiki/ID-based_encryption
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 In order to better understand how this scheme is working a example will be 

presented. Suppose Alice wants to send an encrypted message to Bob who works at 

Microsoft. The idea is that Microsoft would first generate a pair of master keys (msk, 

mpk) and distribute mpk together with a certificate. To send her message m, Alice 

would retrieve Microsoft’s master public key mpk, verify Microsoft's certificate and 

then encrypt m under Bob’s identity (bob@microsoft.com): 

 

c=Enc(mpk, "bob@microsoft.com",m) 

 

To decrypt the ciphertext c, Bob needs to hold a secret key for his identity under 

Microsoft’s master key. So, he needs to create his decryption key sk by: 

 

sk=Keygen(msk, "bob@microsoft.com") 

 

Now, Bob can recover the message by computing: 

 

m=Dec(sk,c) 

 

 Notice that Alice never needed to know what Bob’s public key was or to 

verify any certificate for his key. The only certificate she had to verify was for 

Microsoft’s master public key but once that key is authenticated, Alice can send email 

to anyone at Microsoft without any additional work. 

 Continuously it will be shown how (anonymous) IBE can be used to search 

over encrypted data. This idea was first proposed by Boneh, Di Crescenzo, Ostrovsky 

and Persiano and is best explained by considering again the following email scenario 

where Alice wants to send an encrypted email to Bob. 

 

1) Bob generates a master secret and public key pair for the IBE 

scheme (msk,mpk)   

 

2) Bob generates a secret and public key pair for a standard public-key 

encryption scheme (sk,pk).  
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3) Bob reveals the public keys (mpk , pk) publicly and keeps the secret keys  

(msk , sk) private.  

 

4) Alice encrypts her message under pk using the standard public-key encryption 

scheme, resulting in a ciphertext c.  

 

5) She then attaches IBE encryptions of "1" under Bob’s master public 

key mpk with the keywords as the identity. This results in a set of IBE 

encryptions (e1,.....,em) where each ej (for 1 j m  ) is defined as: 

 

ej=ENC(mpk,wj,1) , where (w1,.....,wn)  are the keywords. 

 

6) When Email server will have received n emails of this form, he will holds a set 

of encrypted emails (c1,.....,cn) and an encrypted database (EDB). 

 

7) Now, if Bob wants to retrieve the emails with keyword w, he just needs to 

generate a secret IBE key as: 

 

( , )wsk Keygen msk w  

 

and send it as the token to the server. 

 

8) The server then tries to decrypt each IBE ciphertext in EDB. When it is 

successful, it send the associated label back to client. Client will request the 

label from the Cloud Storage. 

 

 An important observation is that a standard IBE scheme here will not be 

enough. The problem is that the notion of IBE does not necessarily guarantee that a 

ciphertext hides information about the identity used to create it. This means that, if a 

standard IBE scheme is used, EDB could leak the keywords to the server.  
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 To address this, Boneh et al. observe that what you actually need is an 

anonymous IBE scheme which essentially means that the ciphertexts do not reveal 

information about the identities. Fortunately, it is known how to construct such 

schemes efficiently, so this is not a major concern from a practical point of view. 

 The Drawback of this scheme is Search time. The Search time for the server 

is O(nm) since it has to try to decrypt each ciphertext in the EDB. Even 

Assuming that m<<n, the search time is O(n), which is a a lot slower than the solution 

based on deterministic encryption described in the previous post which required 

time O(log(n)) which is sub-linear in n. 

 From Security point of view, although this approach is slower than the PPE-

based approach, it has better security properties. First, the encrypted database by itself 

does not reveal much useful information to the server since—unlike the deterministic 

approach—keywords are encrypted using a randomized identity-based encryption 

scheme. So, even if two documents have keywords in common, the encrypted 

keywords in EDB will be different. This means that it is not needed to make unnatural 

assumptions about the data, such as high entropy, in order to use it safely. 

 On the other hand there is a security issue, with this approach. It does not 

protect the search terms. Particularly, the server could launch the following attack to 

figure out which keyword the client is searching for. 

 Suppose the server has some dictionary W of d words. For each 

keyword w W  it encrypts "1" with key mpk and identity w. This results in a set 

of d (identity-based) encryptions (e'1,.....,e'd). Now, given some token skw, the server 

can learn w by simply trying to decrypt each of the ciphertext e'i with skw. If the 

decryption works for some e'i, then the server knows that skw is for the identity used 

to generate e'i. 

 The previous attack does not result from a deficiency of any particular IBE 

scheme, but that it applies to any public-key encrypted search solution. The 

fundamental problem is that the server has both the ability to create EDBs, since it has 

the public-key and to search over them. The conclusion is that, search on publicly-

encrypted data cannot protect search terms. 

 

 

 

 

http://outsourcedbits.org/2013/10/14/how-to-search-on-encrypted-data-part-2/
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 The solution to that security issue was given recently by Boneh, Raghunathan 

and Segev and Arriaga and Tang who design public-key encrypted search solutions 

that achieved the best possible level of confidentiality for search terms. Those 

schemes suppose that search terms are hard enough to guess in order the schemes 

proposed to be able to protect them. If that assumption does not exist there is no 

known solution to the problem. In that case using symmetric solution is the only 

secure solution, since only the client can generate EDBs.  
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3.3  Oblivious RAM 

 

 Until now, two approaches were presented, in order to search on encrypted 

data. The first one was the Property Preserving Encryption approach, which resulted 

in schemes with fast search ( O(log(n) ), but with relatively weak security 

characteristics. The second one, which was the FE-based approach, resulted in 

schemes with slow search (O(n) ), but with better security guarantees. 

 In the chapter, solutions that are even slower will be presented, but which on 

the other hand achieve the strongest possible levels of security. In order to have a 

better understanding about what is secure, while speaking about searchable 

encryption, it should be mentioned which security properties were initially proposed 

and which we should expected from an encrypted search solution.  

 

 The encrypted database EDB generated by the scheme, should not leak any 

information about the database DB of the user 

 

 The tokens tw generated by the user, should not leak any information about the 

underlying search term  to the server. 

 

 This definition of security is reasonable, but there are several issues. There are 

many details that impact security that are not taken into account in this high-level 

intuition. For example,  what does it mean not to leak information? This is why 

cryptographers are so pedantic about security definitions. The details really do matter 

and so security definitions must be very accurate. 

 Moreover the previous security definition mention nothing about the search 

results. More precisely, it does not specify whether it is appropriate or not for an 

encrypted search solution to reveal to the server which encrypted documents match 

the search term. We usually refer to this information as the client’s access pattern and 

for concreteness you can think of it as the matching encrypted documents’ identifiers 

or their locations in memory. All is really needed as an identifier, is a per-document 

unique string (labelf), that is independent of the contents of the document and of the 

keywords associated with it (w). 

 

http://outsourcedbits.org/2013/10/14/how-to-search-on-encrypted-data-part-2/
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 So, is it appropriate to reveal the access pattern? There are two possible 

answers to this question. Some researchers believe that it is fine to reveal the access 

pattern since the whole point of using encrypted search is so that the server can return 

the encrypted documents that match the query. And if it is expected from the server to 

return those encrypted documents, then it clearly has to know which ones to return, 

without leaking any information about the content of the document. On the other 

hand, one could argue that, in theory, the access pattern reveals some information to 

the server. In fact, by continuously observing search results the server could use some 

sophisticated statistical attack to infer something about the client’s queries and data.  

 Furthermore, the argument that the server needs to know which encrypted 

documents match the query in order to return the desired documents is not technically 

true. In fact, it is known how to design cryptographic protocols that allow one party to 

send items to another without knowing which item it is sending. With private 

information retrieval and oblivious transfer,  this principle can be achieved. 

 

 Nowadays, it is known how to design systems that allow us to read and write 

to memory without the memory device knowing which locations are being accessed. 

The latter are called oblivious RAMs (ORAM) and can be used for searching on 

encrypted data without revealing the access pattern to the server. Oblivious RAM 

(ORAM) is a cryptographic primitive designed to conceal access patterns, when a 

client with small local memory executes a sequence of reads and writes to remotely 

stored data. An ORAM algorithm is secure, if for any two access patterns the client 

performs, the corresponding two physical access patterns sequences are 

computationally indistinguishable. The issue, of course, is that using ORAM will slow 

things down and so there are not efficient schemes. 

 So, the answer to the previous question depends on what kind of tradeoff we 

are willing to make between efficiency and security. If efficiency is the priority, then 

revealing the access pattern might not be too much to give up in terms of security for 

certain applications. On the other hand, if some inefficiency is tolerable, then it is 

always best to be conservative and not reveal anything. In this chapter, ORAMs 

structures are explored and the security analysis of those schemes is presented. 
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 Oblivious RAM was firstly proposed by Goldreich and Ostrovsky for software 

protection. That work turned out to be really ahead of its time as several ideas 

explored in it turned out to be related to more modern topics like cloud storage. 

 

An ORAM scheme consists of three phases, SETUP, READ, WRITE. 

 

 A Setup algorithm that takes as input a security parameter 1k  and a memory 

(array) RAM of N items. It outputs a secret key K and an oblivious 

memory ORAM. 

 

 A two-party protocol READ executed between a client and a server that works 

as follows. The client runs the protocol with a secret key K and an index i as 

input, while the server runs the protocol with an oblivious memory ORAM as 

input. At the end of the protocol, the client receives RAM[i] while the server 

receives  (nothing). This is written sometimes 

as Re (( , ), ) ( [ ], )ad K i ORAM RAM i  . 

 

 A two-party protocol WRITE executed between a client and a server that 

works as follows. The client runs the protocol with a key K, an index i and a 

value "u" as input and the server runs the protocol with an oblivious 

memory ORAM as input. At the end of the protocol, the client receives  and 

the server receives an updated oblivious memory ORAM' such that the i
th

 

location now holds the value "u": 

'(( , , ), ) ( , )Write K i u ORAM RAM  . 

 

 Usually ORAM schemes are designed by using fully-homomorphic encryption 

or symmetric encryption. The simplest way to design ORAM is FHE, and so an 

overview will be presented. 

 

  Suppose that there exists an FHE scheme FHE=(Gen, Enc, Eval, Dec). Then it 

is easy to construct an ORAM as follows: 

 



25 
 

 Setup(1
k
 , RAM): Generate a key for the FHE scheme by computing 

K=FHE.Gen(1
k
) and encrypt RAM as c=FHE.Enck(RAM). Output c as the 

oblivious memory ORAM. 

 

 Read((K,i),ORAM): The client encrypts its index i as ci=FHE.EncK(i)  and 

sends ci to the server. The server computes: 

 

c'=FHE.Eval(f,ORAM,ci) 

 

where f is a function that takes as input an array and an index i and returns 

the i
th

 element of the array. The server returns c' to the client who decrypts it to 

recover RAM[i]. 

 

 Write((K,i,u),ORAM): The client encrypts its index i as ci=FHE.EncK(i)  and 

its value as cu=FHE.EncK(u) and sends them both to the server. The server 

computes: 

 

c'=FHE.Eval(g,ORAM,ci,cu) 

 

where g is a function that takes as input an array, an index i and a value u and 

returns the same array with the i
th

 element updated to u. 

 

 The security properties of FHE will guarantee that ORAM leaks no 

information about RAM to the server and that the READ and WRITE protocols reveal 

no information about the index and values either. 

 The obvious downside of this FHE-based ORAM is efficiency. Even 

supposing that there is a very fast FHE scheme, this ORAM would still be too slow 

simply because the homomorphic evaluation steps in 

the READ and WRITE protocols require O(N) time, which is linear in the size of the 

memory. Again, assuming we had a very efficient FHE scheme, this would only be 

usable for small memories. 

 After having understand  how to build an ORAM, it will be explained how to 

use ORAM for encrypted search. There are two possible ways to do this: 



26 
 

First approach 

 

 A naive approach could be the client to just dump all the n documents 

D=(D1,.......,Dn)  in an array RAM, setup an ORAM by: 

 

(K, ORAM)=Setup(1
k
,RAM) 

 

and send ORAM to the server. For the search phase, the client can just simulate a 

sequential search algorithm via the READ protocol, by replacing every read operation 

of the search algorithm with an execution of the READ protocol. To update the 

documents the client can similarly simulate an update algorithm using 

the WRITE protocol. 

 This approach is obviously very slow. Assuming that all the documents have 

bit-length d and that RAM has a block size of B bits. The document collection will 

then fit in   blocks. The sequential scan algorithm is itself O(N), but 

on top of that, an entire READ protocol should be executed for every address of 

memory read. Additionally, if the FHE-based ORAM described above is used, which 

requires O(N) work for each READ and WRITE, then a single search would 

take O(N
2
) time! 
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Second approach 

 

 A better approach  is for the client to build two arrays RAM1 and RAM2. 

In RAM1 it will store a data structure that supports fast searches on the document 

collection, such as an inverted index. In RAM2 it will store the 

documents  themselves. It then builds and sends: 

 

ORAM1=Setup(1
k
,RAM1) 

 

 and 

 

ORAM2=Setup(1
k
,RAM2) 

 

to the server. For the search operation, the client simulates a query to the data 

structure in ORAM1 via the READ protocol. This can be done by replacing each read 

operation in the data structure’s query algorithm with an execution of READ. From 

this operation, the client will recover the identifiers of the documents that contain the 

keyword and with this information it can just read those documents from ORAM2. 

 There are also works that tradeoff client storage for access efficiency. For 

example, Williams, Sion and Carbunar propose a solution with  O(logN*loglogN) 

amortized access cost and ( )O N  client storage while Stefanov, Shi and Song 

propose a solution with O(logN) amortized overhead for clients that have O(N) local 

storage, where the underlying constant is very small.  

 There is also a line of work that tries to de-amortize ORAM in the sense that it 

splits the re-structuring operation so that it happens progressively over each access. 

This was first considered by Ostrovsky and Shoup in and was further studied by 

Goodrich, Mitzenmacher, Ohrimenko, Tamassia and by Shi, Chan, Stefanov and Li . 

 All in all this may not seem that bad and, intuitively, the two-RAM solution 

might actually be reasonably practical for small to moderate-scale data collections, 

especially considering all the recent improvements in efficiency that have been 

proposed. However, for large scale collections, other schemes should be used. 

 

http://en.wikipedia.org/wiki/Inverted_index
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 Concluding, the ORAM-based solution for encrypted search were presented, 

which provides the most secure solution to our problem since it hides everything, 

even the access pattern. For the rest of the thesis, a different approach will be 

analyzed for searching on encrypted data, which strikes to balance between efficiency 

and security. In particular, this solution is as efficient as the deterministic-encryption-

based solution, while being only slightly less secure than the ORAM-based solution. 
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3.4 Searchable Symmetric Encryption 

 

 Searchable Symmetric Encryption (SSE) was first introduced by Song, 

Wagner and Perrig in 2001. SSE tries to achieve the best of all worlds. It is as 

efficient but provides a lot more security than most of other schemes. Two basic keys 

for SSE are security definitions and leakage which will be analyzed in the following 

chapter. Leakage is an important issue that was overlooked in previous work. As it 

was explained before, non-ORAM solutions leak some information. Usually SSE 

schemes reveal the search results, which are the identifiers of the documents that 

contained the keyword. This was the whole point of SSE and most people wrongly 

believed that this was why it was more efficient than ORAM. 

 There are many variants of SSE including interactive schemes, where the 

search operation is interactive such as two-party protocol and response-hiding 

schemes, where search results are not revealed to the server but only to the client. 

 For simplicity, the document collection itself will be ignored and will be just 

assumed that the individual documents are encrypted using some symmetric 

encryption scheme and that the documents each have a unique identifier (labelf), 

which is independent of their content. 

 Now assuming that the client processes the data collection D=(D1,.......,Dn)  by 

setting up a “database” DB . That Database maps every keyword w in the collection, 

to the identifiers of the documents that contain it. For a keyword w, DB[w] will refer 

to the list of identifiers of documents that contain w. 

 A non-interactive and response-revealing SSE scheme consists of the three 

following algorithms. 

 

1. a SETUP algorithm executed by the client, that takes as input a security 

parameter 1k and a database DB. It returns a secret key K and an encrypted 

database EDB. 

 

2. A TOKEN algorithm, which is also run by the client and takes as input a 

secret key K and a keyword w. It returns a token tk. 
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3. A SEARCH algorithm executed by the server, that takes as input an encrypted 

database EDB and a token tk. It returns a set of identifiers DB[w]. 

 

 In addition to security, the most important thing that is expected from an SSE 

solution is to have low search complexity. Low search complexity means that the 

solution is efficient. For our purposes fast will mean sub-linear in the number of 

documents. Moreover, ideally, it should be linear in the number of documents that 

contain the search term. Note that the latter is optimal since at a minimum the server 

needs to fetch the relevant documents just to return them.  Requiring sub-linear search 

complexity is fundamental for practical purposes.  

 However, the sub-linear requirement has consequences. Particularly it means 

that working in a offline/online setting cannot be avoided, where an one-time pre-

processing phase is executed in order to setup a search structure in linear time. On the 

other hand, it would be possible then to execute search queries on the data structure in 

sub-linear time. This is exactly the approach that most researchers  follow. 

 Because DSSE is the main subject of this thesis, it will be explained 

analytically in the following chapters. At the next chapter, the principles of the 

majority of DSSE schemes will be presented thoroughly and the security definitions, 

which must be taken under consideration at DSSE schemes, will also be mentioned. 
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Chapter 4 

 

Principles of DSSE and security definitions 
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4.1 DSSE Principles 

 

 In the cloud era, as more and more businesses and individuals have their data 

hosted by an untrusted storage service provider, data privacy has become an important 

concern. In this context, searchable symmetric encryption (SSE) has gained a lot of 

attention. Searchable symmetric encryption allows a client to encrypt its data in such a 

way that this data can still be searched. So, it aims to protect the privacy of the 

outsourced data by supporting, at the same time, outsourced search computation. The 

most immediate application of SSE is to cloud storage.  

 SSE has been the focus of active research and a multitude of schemes that 

achieve various levels of security and efficiency have been proposed. Any practical 

SSE scheme, however, should, at a minimum satisfy the following properties:  

 Sublinear search time,  

 Security against adaptive chosen keyword attacks,  

 Compact indexes and  

 Ability to add and delete files efficiently.  

 

 Unfortunately, the design of an efficient SSE has been shown to be a 

challenging task. The first schemes that has been proposed on SSE couldn't  achieve 

all these properties at the same time. This was severely limiting the practical value of 

SSE and decreased its chance of deployment in real-world cloud storage systems. 

Nowadays, after some years of research on Searchable Symmetric Encryption, there 

are finally schemes that can achieve these properties in a very efficient way that can 

achieve a search in less than 100ms. 

 Most efficient approaches of SSE use one or more inverted indexes. Because 

of its popularity we will give an example of an inverted index approach. Assuming 

that there are four files f=(f1,f2,f3,f4) and 5 keywords, that can be used for single-word 

queries, w=(w1,w2,w3,w4,w5). The keywords that its file contains are: 

 

f1{w1,w4,w5} 

f2{w2,w3,w4} 

f3{w1,w3} 

f4{w2,w3} 
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 Based on the above, an inverted index for that SSE would be the follow: 

 

 

Figure 4.1 - Inverted Indexes 

 

 Now, when there is a search query for the keyword w4, EDB will learn the 

position of the first tuple that contains that keyword. Which stores the label of f1 and 

then it will be revealed the position of the second tuple which will contain the label of 

the file f2. 

 While the inverted index approach yields the most efficient SSE schemes to 

date, it has at least three important limitations.  

 The first is that it is not well-suited to handle dynamic collections and so 

complex constructions are required. 

 In addition, the update operations reveal a non-trivial amount of information.  

 The third limitation is that it is inherently sequential, requiring a lot of time 

even in a parallel model of computation. This happens mainly due to the fact 

that the majority of SSE schemes require the search algorithm to access a 

sequence of memory locations, each of which is unpredictable and stored at 

the previous location in the sequence.  

 

Motivated by advances in multi-core architectures, some researchers presented a new 

method for constructing sub-linear SSE schemes, which is highly parallelizable and 

dynamic. 
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  SSE schemes might have a lot of add-ons that researchers are currently focus 

on. One category, that was already mentioned is Dynamic SSE, which supports 

adding and removing documents at any point during the life-time of the system. 

Sometimes there is no offer for a specific operation for initial outsourcing and it is 

assumed that all data are added incrementally. The vast majority of the proposed 

schemes have a setup phase where an encrypted index is computed for the specific 

collection of documents, i.e. each keyword is related to a precomputed set of file 

identifiers. So, if the index remains unaltered after this phase, then the SSE scheme is 

called static SSE. If additions and deletions are supported, then it is a dynamic SSE 

(DSSE) scheme. 

 Moreover, there are protocols of DSSE that present the design, analysis and 

implementation of schemes that can support conjunctive search and general Boolean 

queries on outsourced symmetrically-encrypted data These schemes can scale to very 

large databases and arbitrarily structured data including free text search. Boolean 

query is not a single keyword, but it can be a formula like the following one :   x AND 

y NOT z 

 A second extension is the support of multi-client capabilities. At this scenario 

there is a Dataowner who execute the SETUP Phase and ADD or DELETE phase. But 

there are also clients that can be authorized be the Dataowner to make queries at the 

EBD.  Basically Dataowner (D) provides search tokens to clients based on their 

queries and according to a given authorization policy. Security considers multiple 

clients acting maliciously and possibly colluding with each other and a semi-trusted 

server E which acts as "honest-but-curious", but does not collude with clients. 

 The issue initially with the previous extension was that the Dataowner was 

learning the keywords of the query. This was a unwanted leak, especially for certain 

cases. At least, nowadays there are surveys which have investigated that issue and 

have proposed new solutions.  In those solutions the dataowner D outsources its data 

to a server E, but D is now interested to allow clients to search the database such that 

clients learn the information D authorizes them to learn but nothing else while E still 

does not learn about the data or queried values as in the basic SSE setting. Usually in 

those cases the Dataowner learns only the attribute that the keywords of the query 

belongs to. 
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 On the other hand, while most constructions have theoretically optimal search 

times that scale only with the number of documents matching the query, the 

performance of their implementations on large datasets is less clear. Factors like I/O 

latency, storage utilization, and the variance of real world dataset distributions 

degrade the practical performance of theoretically efficient SSE schemes. One critical 

source of inefficiency in practice often ignored in theory is a complete lack of locality 

and parallelism: To execute a search, most SSE schemes read sequentially  each result 

from storage at a pseudorandom position, and the only known way to avoid this while 

maintaining privacy involves padding the server index to a prohibitively large size. 

Research tries to focus on those issues in order to make DSSE schemes even more 

efficient in real world environments. 

 SSE schemes found numerous applications, such as searching one’s encrypted 

files stored at Amazon S3 or Google Drive, without leaking much information to 

Amazon or Google. 

 A criticism from some researchers is that SSE constructions are not 

really searching over data. The underlying issue is that no computation is being 

performed. Probably this reflects a very uninformed understanding of the real world. 

Given the amounts of data which are currently produced and have to search over, 

search has become analogous to sub-linear-time search and therefore to some form of 

indexed-based search. So, the kind of scale we now have to deal with has 

fundamentally changed what we usually mean by the term "search". 
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4.2 Security Definitions 

 

 Security definitions are of the most interesting aspects of encrypted search, 

from a research point of view. The first scheme to explicitly address this question was 

by Eu-Jin Goh. It had many contributions, but one of the most important ones was 

simply to point out that SSE schemes were not normal encryption schemes and, 

therefore, the standard notion of CPA-security was not meaningful for SSE. The 

problem that he pointed out was essentially that, when an adversary interacts with an 

SSE scheme, he has access to more than an encryption oracle. As a result, he also has 

access to a search oracle. Goh’s point was that this had to be captured in the security 

definition otherwise it was meaningless. 

 Moreover, he proposed the first security definition for SSE, in order to address 

this. The definition that he proposed guaranteed that given an EDB and the encrypted 

documents, the adversary would learn nothing about the underlying documents 

beyond the search results even if it had access to a search oracle. Unfortunately, 

Goh’s definition was a game-based definition and  it did not provide query. A follow 

up scheme by Chang and Mitzenmacher  proposed a new definition that was 

simulation-based and that guaranteed query privacy in addition to data privacy. 

 It should be mentioned here that, simulation-based definitions have some 

advantages over game-based definitions and are preferable because they are easier to 

work, with especially when composing various primitives to build larger protocols.  

Moreover, Reza Curtmola, Juan Garay, Rafail Ostrovsky and Kamara were also 

noticed that the previous security definitions did not seem to really capture all the 

security parameters that could affect a SSE scheme. There were primarily two issues: 

 

 1) The security definitions were restricting the adversary’s power. 

 2) They did not explicitly capture the fact that the constructions were leaking 

information, during every phase of the protocols. 

 

 Those security definitions will be further analyzed, beginning from adaptivity. 

The first problem was that in these definitions, the adversary was never given neither 

the search tokens nor the EDB or the results of its searches. The implication of this 

was that the adversary could not choose its search oracle queries as a function of the 
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EDB. Nor as a function of the tokens that he used or previous search results. So, 

adversary's behavior was being implicitly restricted to making non-adaptive queries to 

its search oracle. In the real world the adversary, we are trying to protect against, is a 

server that stores the EDB, that receives tokens from the client and that sees the 

results of the of the search. So, clearly this was an issue.  

 By allowing the adversary to also query a search oracle, he must be allowed to 

query the oracle as a function of the EDB or the tokens and previous search results. 

When a SSE scheme is secure based on that, then even in the real world, it is secured 

from an attack where the server send some oracle queries based on the EDB, the 

tokens or previous search results. 

 Such a security might seem excessive by non-cryptographers, but it is 

considered to be mandatory. Usually when a protocol, that uses weak primitives, is 

hacked by a more sophisticated attacks, it should be redesigned and patched, resulting 

to an expensive protocol. This has happened in the cases of encryption (CPA- vs. 

CCA2-security) and key exchange. 

 In any case, surveys have been written about that stronger definition, where 

the adversary was allowed to generate its queries as a function of the EDB, the tokens 

and previous search results. It is called adaptive security. Even though cryptographic 

community is not aware of an explicit attack on a concrete SSE construction that takes 

advantage of adaptivity, this fact should not matter anymore because nowadays it is 

known how to construct adaptively-secure SSE schemes that are as efficient as non-

adaptively-secure ones. Moreover, another important reason to consider adaptive 

security is for situations where SSE schemes are used as building blocks in larger 

protocols. In such situations, the primitive can be used in unorthodox ways, which 

open up more new oracles that one may not have considered. 

 Another important issue that was overlooked in previous work is leakage. It is 

a fact that non-ORAM solutions leak some information. Everyone was basically 

aware that SSE revealed the search results, which are the identifiers of the documents 

that contained the keyword (labelf). The problem was that the definitions did not 

capture any of this leakages. To address it researchers decided to treat leakage in SSE 

more formally and to capture it very explicitly in their security definitions. Leakage 

will be explained for every protocol that will be presented in that thesis. 
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Initially it was considered that leakage has two types.  

 The access pattern  

 The search pattern.  

 

 The access pattern is basically the search results . It is the identifiers of the 

documents that contain the keyword of the query. The search pattern is whether a 

search query is repeated. For the SSE, there are two more kinds of leakages:  

 

 Setup leakage, which is revealed just by the EDB  

 Search leakage, which is revealed by a combination of the EDB and a token.  

 

 Comparing a solution based on deterministic encryption or on property-

preserving encryption which have a high degree of setup leakage, SSE-based 

solutions are better because their setup leakage is usually minimal. Furthermore, the 

query leakage is controlled by the client, since queries can only be executed with 

knowledge of the secret key. 

 

Finally the last two security notions that should be mentioned are: 

 Forward Privacy 

 Backward Privacy 

  

 Forward privacy exists when a new keyword and file identifier pair is added 

and the server does not learn anything about this pair. In backward privacy, queries 

cannot leak the file identifiers of deleted documents. Based on the fact that search 

query token are deterministic, the adversary (Server with memory) can learn if that 

keyword was existing in a document that have been deleted. Designing an efficient 

DSSE scheme that possesses both these security properties has been shown to be a 

very difficult task. During the last years, some schemes do exist that fulfill the 

requirements  of Forward Privacy, but none for Backward Privacy. 
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 Summing up, although there is not a good way to understand and analyze the 

leakage of SSE schemes, for now, the best solution is to describe it precisely. What 

should be expected from an SSE security definition is a guarantee that the adversary 

cannot learn anything about the data and the queries beyond the explicitly allowed 

leakage, even if the adversary can make adaptive queries to a search oracle. A scheme 

that is secure against adaptive chosen-keyword attacks (CKA2) guarantees security 

even when the client's queries are based on the encrypted index and the results of 

previous queries. Whereas with CKA1 could not guarantee this. 

 After having discussed the security definitions and understood the principles 

of DSSE schemes, in the next chapters four DSSE proposals are presented. 
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Chapter 5 

 

First analysis of a DSSE proposal 

"Dynamic Searchable Symmetric Encryption" 
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5.1  Introduction 

  

 The first proposal that will be discussed is the " Dynamic Searchable 

Symmetric Encryption" of Kamara, Papamanthou and Roeder. It was chosen for 

presentation because of its, which is outlined as follows: 

1. They presented a formal security definition for dynamic SSE. In particular, their 

definition captures a strong notion of security for SSE, which is adaptive security 

against chosen-keyword attacks (CKA2). 

2. They construct the first SSE scheme that is dynamic, CKA2-secure and also 

achieves optimal search time. Unlike previously known schemes their construction is 

secure in the random oracle model. 

3. They described the first implementation and evaluation of an SSE scheme based on 

the inverted index approach that seems to be very efficient. 

 

 The overview of their index-based SSE proposal is that the encryption 

algorithm takes as input an index δ and a sequence of n files f=(f1,......,fn) and 

outputs an encrypted index γ and a sequence of n ciphertexts c=(c1,.............,cn). All 

constructions can encrypt the files f using any symmetric encryption scheme. To 

search for a keyword w, the client generates a search token τw and given γ and c, the 

server can find the identifiers Iw of the files that contain the keyword w. From these 

identifiers it can recover from the cloud storage the appropriate ciphertexts cw.  

 If the scheme is used as dynamic SSE it should be allowed addition and 

removal of files. Both of these operations are handled using tokens. To add a file f, 

the client generates an add token τa and given τa and γ , the provider can update the 

encrypted index γ. Similarly, to delete a file f, the client generates a delete token τd, 

which the provider uses to update γ. It is assumed that each file has a unique identifier 

id(fi) or it could also be denoted as labelf. The files do not have to be text files but can 

be any type of data, as long as there exists an efficient algorithm that maps each 

document to a file of keywords from W. 
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5.2  Algorithm 

 

A dynamic index-based SSE scheme is a tuple of nine polynomial-time 

algorithms SSE = (Gen, Enc, SrchToken, AddToken, DelToken, Search, Add, Del, 

Dec) such that: 

 K  Gen(1
k
): is a probabilistic algorithm that takes as input a security 

parameter k and outputs a secret key K. 

 (γ,c)Enc(K,f): is a probabilistic algorithm that takes as input a secret key K 

and a sequence of files f. It outputs an encrypted index γ, and a sequence of 

ciphertexts c. 

 τsSrchToken(K,w): is an algorithm that takes as input a secret key K and a 

keyword w. It outputs a search token τs. 

 (τa,cf)AddToken(K,f): is an algorithm that takes as input a secret key K and 

a file f. It outputs an add token τa and a ciphertext cf . 

 τdDelToken(K,f): is an algorithm that takes as input a secret key K and a 

file f. It outputs a delete token τd. 

 Iw:= Search(γ,c,τs): is a deterministic algorithm that takes as input an 

encrypted index γ , a sequence of ciphertexts c and a search token τs. It outputs 

a sequence of identifiers Iw, that belongs to c. 

 (γ',c'):=Add(γ,c,τα,c): is a deterministic algorithm that takes as input an 

encrypted index γ, a sequence of ciphertexts c, an add token τa and a ciphertext 

c. It outputs a new encrypted index γ' and sequence of ciphertexts c'. 

 (γ',c'):=Del(γ,c,τd): is a deterministic algorithm that takes as input an encrypted 

index γ, a sequence of ciphertexts c, and a delete token τd. It outputs a new 

encrypted index γ' and new sequence of ciphertexts c'. 

 f := Dec(K,c): is a deterministic algorithm that takes as input a secret key K 

and a ciphertext c and outputs a file f. 

  

 Having already described the algorithms, the construction of them will be 

presented with an example. 
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 Αn array is referred to as the search array and a dictionary Ts is referred to as 

the search table. To encrypt a collection of files f , the scheme constructs for each 

keyword w   W a list Lw. Each list Lw is composed of #fw nodes (N1,.......,N#fw) that 

are stored at random locations in the search array As. The node Ni is defined as Ni = 

{id, addrs(Ni+1)}, where id is the unique file identifier of a file that contains w and 

addrs(N) denotes the location of node N in As. 

 For each keyword w, a pointer to the head of Lw is then inserted into the 

search table Ts under search key FK1(w), where K1 is the key to the PRF F. Each list is 

then encrypted using SKE under a key generated as GK2(w), where K2 is the key to 

the PRF G. To search for a keyword w, it suffices for the client to send the values 

FK1(w) and GK2(w). The server can then use FK1(w) with Ts to recover the pointer to 

the head of Lw, and use GK2(w) to decrypt the list and recover the identifiers of the 

files that contain w. The total search time for the server is linear in the number of fw, 

which is optimal. 

 In order for the scheme to become dynamic there were some limitations to 

overcome. The difficulty is that the addition, deletion or modification of a file 

requires the server to add, delete or modify nodes in the encrypted lists stored in As. 

This is difficult for the server to do since:  

 

1) Upon deletion of a file f, it does not know where in As the nodes corresponding to f 

are stored. 

2) Upon insertion or deletion of a node from a list, it cannot modify the pointer of the 

previous node since it is encrypted. 

3) Upon addition of a node, it does not know which locations in As are free. 

 

They  addressed these limitations as follows: 

1) For the file deletion issue, they added an extra encrypted data structure Ad called 

the deletion array, that the server will query, with a token provided by the client, in 

order to recover pointers to the nodes that correspond to the file being deleted. More 

precisely, the deletion array stores for each file f a list Lf of nodes that point to the 

nodes in As that should be deleted if file f is ever removed. So every node in the 

search array has a corresponding node in the deletion array and every node in the 

deletion array points to a node in the search array. 
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2) For the pointer modification issue, they decided to encrypt the pointers stored in a 

node with a homomorphic encryption scheme. By providing the server with an 

encryption of an appropriate value, it can then modify the pointer without ever having 

to decrypt the node.  

3) For the memory management, in order to keep track of which locations in As are 

free they added a "free list" that the server uses to add new nodes. 

 With the Figures and the example that follows, you will have a better 

understanding of the scheme. 

 

 

Figure 5.1 - All indexes of the DSSE scheme 

 

 

Figure 5.2 - All Lists of the DSSE scheme 
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 The above figures shows the data structures of our fully-dynamic SSE scheme 

for a specific index. The index is built on three documents, namely f1,f2,f3 over three 

keywords, namely w1,w2,w3. All the documents contain keyword w1, keyword w2 is 

only contained in document f2 and w3 is contained in documents f2 and f3. The 

respective search table Ts, the deletion table Td, the search array As and the deletion 

array Ad are also shown in that Figure. Note that in a real DSSE index, there would be 

padding to hide the number of file-word pairs. They omit padding for simplicity in 

this example. The reason that they have the search Array As, is to store in random 

places the tuples of every inverted index of any keyword. With this approach they 

hide the number of files per keyword and reduce the leakage of their scheme. 

 Searching is the simplest operation in their scheme. Supposing the client 

wishes to search for all the documents that contain keyword w1. He prepares the 

search token, which among others contains FK1(w1) and GK2(w1). The first value 

FK1(w1) will enable the server to locate the entry corresponding to keyword w1 in the 

search table Ts. This value would be    2 1 4 1|| Kx G w . The server now uses the 

second value GK2(w1) to compute  2 1Kx G w . This will allow the server to locate 

the right entry (4 in our example) in the search array and begin "unmasking" the 

locations 

storing pointers for the documents containing w1. This unmasking is performed by 

means of the third value contained in the search token. In this example the "next" 

pointer of tuple number 4 in As, will point out that the next tuple for w1 is tuple in 

position 7. After the unmask of tuple 7, the "next" pointer will reveal the position 3 of 

the search array Ad. Finally, the "next" pointer of that tuple will inform us that this is 

the last tuple of the inverted index for that keyword, and the search operation will 

terminate.  

 For the adding operation, suppose that the client wishes to add a document f4 

containing keywords w1 and w2. Note that the search table does not change at all since 

f4 is going to be the last entry in the list of keywords w1 and w2 and the search table 

only stores the first entries. However, all the other data structures must be updated in 

the following way. First the server uses "free" to quickly retrieve the indices of the 

free positions in the search array As, where the new entries are going to be stored. In 

our example these positions are 2 and 6. The server stores in these entries the new 

information (w1,f4) and (w2,f4).  
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 Now the server needs to connect this new entries to the respective keywords 

lists by using the add token. It retrieves the indices i=0 and j=3 in the search array As 

of the elements x and y such that x and y correspond to the last entries of the keyword 

lists w1 and w2. In this way the server homomorphically sets As[0]'s and As[3]'s 

"next" pointers to point to the newly added nodes, already stored in the search array at 

positions 2 and 6. Because keyword w1 is placed at position 2, the "next" pointer of 

the tuple at position 3 (As[3]) will change in order to point to position 2. Respectively 

the pointer of As[0], will now point to position 6.  

 Note that getting access to the free entries in the search array also provides 

access to the respective free positions of the deletion array Ad. In our example, the 

indices of the free positions in the deletion array are 3 and 7. The server will store the 

new entries (f4,w1) and (f4,w2) at these positions in the deletion array and will also 

connect them with pointers. Finally, the server will update the deletion table by 

setting the entry FK1(f4) to point to position 3 in the deletion array, so that file f4 could 

be easily retrieved for deletion later. 

 For the Deleting operation let suppose that the client wants to delete document 

f3, which contains the keywords w1 and w3. The deletion is a "dual operation" to 

addition. First the server uses the value FK1(f3) of the deletion token to locate the right 

value  2 34 KG f  in the deletion table. This will allow the server to get access to the 

portion of the remaining data structures that need to be updated. Namely it will free 

the positions 4 and 6 in the deletion array and positions 1 and 3 in the search array. 

While "freeing" the positions in the search array, it will also homomorphically update 

the pointers of previous entries in the keyword list w1 and w3 to point to the new 

entries. Note that no such an update of pointers is required for the deletion array, 

because when deleting a file, all the nodes related to that file are deleted from the Td. 
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5.3  Leakage 

 

 A limitation of all known SSE constructions is that the tokens they generate 

are deterministic, in the sense that the same token will always be generated for the 

same keyword. This means that searches leak statistical information about the user's 

search pattern. Currently, it is not known how to design efficient SSE schemes with 

probabilistic trapdoors. 

 The scheme that was just described has some leakage that must be mentioned 

for every phase separately. During Setup phase, that scheme reveals some 

information, which is the setup leakage. More specific those are the number of 

elements that the search array As contains and the total number of keywords and the 

number of files that have been added at setup phase. 

 Search takes as input a keyword w and returns a set of file identifiers (labelf / 

id(f)) to the client. So, during the search operation it is leaked the pairs of (w,f) that 

fulfill the query. Moreover server can learn through search leakage weather that 

keyword was searched in the past again or not. How many times it has been searched 

and when.  

 Add takes as input an add token that contains the identifier for a file f and adds 

word information for a set of words associated with this file. Like Search, Add writes 

tuples (w,id(f)) for each word w associated with the file in the Add Token. Server can 

learn the number of keywords that this document contains. Additionally, however, the 

Add operation reveals to the server whether or not f is the only file that contains w. In 

some cases it might also learn the file f' which was the head of the list before the add 

operation. 

 Delete takes as input a delete token that contains an identifier for a file f. This 

token does not contain any word-specific information. However, in the process of 

executing the Delete operation, the server uncovers in the index a word-identifier (the 

search key for Ts) for each word associated with the file. So, like Search and Add, 

Delete learns tuples (w, id(f)) for each word w associated with f. As each word w is 

deleted for f, it reveals the location of its neighbors in the search array. So, the 

leakage in this case consists of the file identifiers for the previous and next nodes in 

the list for every w that exist in the deleted file. 
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Chapter 6 

 

Second analysis of a DSSE proposal 

"Dynamic Searchable Encryption via Blind Storage" 
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6.1 Introduction 

 

 The second scheme presented in this chapter is considered to be simpler than 

the others proposals. Particularly, it does not require the server to support any 

operation other than upload and download of data. Thus the server in that scheme can 

be based solely on a cloud storage service, rather than a cloud computation service as 

well. So, the important feature of that pseudorandom set construction, compared to 

linked-list based constructions, of related work in the literature, is that the server need 

not carry out any decryptions. In linked-list based constructions, each node in the list 

is progressively revealed. In contrast, that construction allows the server to be 

“crypto-free” and still have only constant number of rounds of interaction. Indeed, the 

only operations that need to be supported by the server are uploading and 

downloading blocks of data, if possible, parallelly. 

 Most of the previous SSE schemes that have been presented are using a 

dedicated server, that performed both storage and computation, like the figure bellow. 

 

Figure 6.1 - Topology of most DSSE schemes 

 

 In such cases, the computation typically involved a sequence of decryptions. 

To deploy such a scheme, one would need to rely not only on cloud storage services, 

but also cloud computation services. This presents several limitations. Firstly, this 

limits the choice of service providers available to a user. Someone could use Amazon 

EC2 for computation and combine it with Amazon S3 for storage. However, it is not 

viable to use Dropbox for persistent storage and Amazon EC2 for computation, as this 

would incur high costs for communication between these two services.  

 In contrast to, this proposal of Blind Storage, can be easily implemented using 

Dropbox or other similar services which provide only storage, as can be seen from the 

Figure 6.2. 
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Figure 6.2 - Topology of Blind Storage scheme 

 

 The Blind Storage scheme allows a client to store a set of files on a remote 

server in such a way that the server does not learn how many files are stored, or the 

lengths of the individual files. Only when a file is retrieved, the server will learn about 

its existence. A drawback again is that the Storage can notice if the same file being 

downloaded subsequently, but again the file’s name and its content are not revealed. 

 The Blind Storage scheme also supports adding new files and updating or 

deleting existing files. Further, though not needed for the Dynamic SSE construction, 

the Blind Storage scheme can be used so that the actual operation is hidden from the 

server. As a result the storage cannot understand if the operation is add, delete, write 

or read.  

 The main construction is that of a versatile tool called Blind Storage, which is 

then used to build a SSE scheme. In building the SSE scheme, the search index entries 

for all the keywords are stored as individual files in the Blind Storage scheme.  

 The Blind Storage scheme, called SCATTERSTORE, is constructed using a 

simple, yet powerful technique. Each file is stored as a collection of blocks that are 

kept in pseudorandom locations. At Figure 6.3 you can see how a file is transformed 

to a collection of blocks. The server sees only a super-set of the locations where the 

file’s blocks are kept, and not the exact set of locations. The key security property, 

from the point of view of the server, is that each file is associated with a set of 

locations independent of the other files in the system. On the other hand, the sets of 

locations for two files can overlap. 
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Figure 6.3 - File transforming to a collection of blocks 

 

 A probabilistic analysis shows that for appropriate choice of parameters, the 

probability that any information about files not yet accessed is leaked to the server can 

be made negligible. 

 The only cryptographic tools used in our scheme are block ciphers for 

standard symmetric key encryption, as well as for generating pseudorandom locations 

where the data blocks are kept and collision resistant hash functions. 

 Also our SSE scheme could, in principle, involve up to three rounds of 

communication for retrieving the documents (this happens if the keyword has a large 

number of matching documents). In contrast, many existing schemes involve only two 

rounds (one to retrieve encrypted list of documents, and one to retrieve the documents 

themselves). 
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6.2 Algorithm 

 

 The blind storage system consists of a client and a “dumb” storage server. The 

server is expected to provide only two operations, download and upload. The data are 

represented as an array of blocks. The download operation is allowed to specify a list 

of indices of blocks, to be downloaded. Similarly, the upload operation is allowed to 

specify a list of data blocks and indices for those blocks. 

 

Simpler scheme 

 

 A blind storage system is defined by three polynomial-time algorithms on the 

client-side: BSTORE-Keygen, BSTORE-Build and BSTORE-Access. Of these, only 

the BSTORE-Access is an interactive protocol. 

 

BSTORE-Keygen takes security parameter as an input and outputs a key KBSTORE. 

The KBSTORE, which the client is required to retain throughout the lifetime of the 

system, is required to be independent of the data to be stored. 

 

BSTORE-Build takes as input (KBSTORE, d0, {idi, datai}
t
i=1, where KBSTORE is a key, d0 

is an upper bound on the total number of data blocks to be stored in the system and  

(idi, datai) are the id and data of the files, that the system will be initialized with. 

Finally, it outputs an array of blocks D to be uploaded to the server. 

 

BSTORE-Access takes as input a key KBSTORE, a file id "id", an operation specifier op 

ϵ {read, write, update, delete}, and optionally data "data". Then it interacts with the 

server and returns a status message and optionally file data. For the update operation, 

BSTORE-Access allows more flexibility. First it requires only id as input, and outputs 

the current size of the file with that ID. Then it accepts as input (an upper bound on) 

what the size of the file will be after update. Then it outputs the current file data. Only 

then, it will require the new data with which the file will be updated. 
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 To store a file f of n blocks, a pseudorandom subset Sf of not n blocks is  

required to be chosen. For collision and security issues usually 2n blocks are required. 

This subset of 2n blocks will be chosen independent of the other files in the system. 

This subset is what the server sees when the client accesses this file. Within this set a 

subset  of n blocks is chosen, where the actual data are stored. The set  is 

of course, selected depending on the other blocks used by other files, to avoid 

collisions. However, since the contents of the blocks are kept encrypted, the server 

does not learn anything about  , except of its size.  

   

Full Construction 

 

 In the simpler scheme described above, the client maintained a data-structure 

mapping a file-identifier idf to a descriptor of the pseudorandom set Sf . This is not 

desirable if the system would store a large number of small files. In such cases the 

size of this data structure is comparable to that of the entire collection of files. The 

client should store only a constant number of cryptographic keys.  

 In order to define a pseudorandom set Sf , two pieces of information are 

needed, a seed and the size of the set. The seed itself can be obtained by applying a 

full-domain PRF to the file-identifier. So, if the client knew the size of Sf as well, 

there will be no need to store this map at all. This can be achieved by using a two-

level access to a file, as follows.  

 For each file, the first block consists of a header that stores the size of the file. 

The size of the file is the number of blocks that are needed to store the file. To 

retrieve a file with idf , the client assumes that the file is “small” and retrieves a 

pseudorandom set S
0

f with the smallest possible number of blocks, i.e. κ. After 

recovering the first block of the file from the blocks in S
0

f, the client computes  the 

actual size of Sf. In case, it is larger than κ, then client retrieves the rest of Sf from the 

server. 

 As you can see from the figure 6.4, every block has a header and a Data-field. 

Header field is required in order for the client to understand if that blocks refers to the 

file that he is searching for. In cases of updates, the header also store the version. An 

exception to that format is only the first block of a file, which has a bigger header. It 

also stores the number of blocks that this file has. 
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Figure 6.4 - Format of blocks that consist a file 

 

 

Figure 6.5 - Format of the first block of every file 

 

 

Dynamic SSE 

 

 Finally, this pseudorandom set construction easily supports a dynamic blind-

storage scheme. The update operation such as creating or deleting a file are 

considered as special cases of the update operation. To update a file, the client 

retrieves the encrypted blocks corresponding to the file’s pseudorandom set Sf, and 

decrypts them. Then he updates the subset of blocks  where the file’s blocks are 

present and re-encrypts all of the downloaded blocks. Finally uploads them back to 

the server. 

 A dynamic searchable symmetric encryption scheme consists of five 

probabilistic polynomial time procedures which are run by the client. SSE-keygen, 

SSE-indexgen, SSE-search, SSE-add and SSE-remove. These procedures interact 

with, a “dumb” server which provides download and upload facilities to access blocks 

in an array and also with a simple file-system in order to lookup documents by 

identifiers. 
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SSE-keygen: Takes the security parameter as input, and outputs a key KSSE. All of the 

following procedures take KSSE as an input. 

 

SSE-indexgen: Takes as input the collection of all the documents, a dictionary of all 

the keywords and for each keyword, an index file which lists the document IDs in 

which that keyword is present. It interacts with the  server to create a representation of 

this data on the server side. 

 

SSE-search: Takes as input a keyword w, interacts with the server, and returns all the 

documents containing w. 

 

SSE-add: Takes as input a new document, interacts with the server, and incorporates 

it into the document collection. 

 

SSE-remove: Takes as input a document ID, interacts with the server, and if a 

document with that ID is present in the server, removes it from the document 

collection. 

 

 In order for the dynamic scheme to be functional, for each keyword, they use 

two index files. One is listing the original documents that include that keyword, and 

another listing the newly added documents. The first index file is stored with the 

server using a blind storage scheme, where as the second can be stored in a “clear 

storage” system.  

 Searching for keywords now involves retrieving both these index files. Adding 

documents involves updating only the second kind of index files. Also, removing a 

newly added document involves updating only the second kind of index files, which is 

straightforward. But, while removing an original document, it should be ensured that, 

the information for keywords in it, which have not been searched, remains secret. This 

is achieved by a lazy deletion strategy. The index file of a keyword, from the original 

set of documents is not updated until that keyword is searched for. At that point, if the 

client learns that a document listed in that index has been deleted, the index is updated 

accordingly. 
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6.3 Leakage 

 

 The information revealed to the server is strictly lesser than in all prior 

Dynamic SSE schemes. Moreover it satisfies a fully adaptive security definition, 

allowing for the possibility that the search queries can be adversarial influenced, 

based on the information revealed to the server by prior searches.  

 Security is in the standard model, rather than the heuristic Random Oracle 

Model. This is achieved because it relies only on the security of block ciphers and 

collision resistant hash functions. The number of documents in the system and their 

lengths can be kept secret, revealing the existence of a document only when it is 

accessed by the client. 

 So, the Blind Storage scheme lets the client keep all information, including the 

number and size, about files secret from the server who stores them, until they are 

accessed. 
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Chapter 7 

 

Third analysis of a DSSE proposal 

"An ORAM based forward privacy preserving 

Dynamic Symmetric Searchable Encryption Scheme" 
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7.1 Introduction 

 

 Until now, it is obvious that ORAM schemes provide security, but they are not 

efficient. This was the reason that SSE schemes seemed to be the reasonable choice 

for searchable encryption. The proposal presented in this chapter is a SSE protocol, 

proposed by Rizomiliotis, that makes a limited use of ORAM algorithms in order to 

achieve forward privacy and to minimize the overhead that ORAMs introduce. "An 

ORAM based forward privacy preserving Dynamic Symmetric Searchable Encryption 

Scheme" was one of the first proposals that achieved that level of security and also 

improved the search and update complexity.  

 In this survey, it is introduced an efficient DSSE scheme that achieves forward 

privacy with very small leakage. The scheme uses double linked lists to store the set 

of file identifiers per keyword and an ORAM structure in order to manage keyword 

related information. Because using just ORAM is not efficient, this proposal shows 

how to make a limited use of an ORAM algorithm in order to achieve forward privacy 

security and at the same time, to minimize the overhead that an ORAM construction 

introduces. More precisely, the scheme has the following characteristics: 

 As far as leakage concerns, it leaks the access and the search patterns, as 

every SSE scheme do.  

 Furthermore there is no backward privacy, because it leaks the identifiers of 

the deleted pairs.  

 However, it is only the second DSSE that offers forward privacy. 

 Efficiency. The search complexity is O(max(log
2
(|W|)/c, |Iw|)), where |W| is 

the number of keywords, |Iw| the number of files that contain the keyword w 

and c depends on the ORAM scheme that is used. 

 

 The definition of the SSE is similar to previous works. The only difference is 

that they define update at the level of a single (w, id) pair. The majority of all other 

proposals consider additions/deletions of files, which can be seen as, a lot of pairs 

together. 

 That scheme, uses several data structures. More precisely, there are two 

double indexed lists per keyword, a hash table T which stores simultaneously these 

lists and an ORAM structure which stores all the keyword related information. They 
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also use an IND- CPA secure secret-key encryption scheme SKE, a pseudorandom 

function H : 
*{0,1} {0,1} {0,1}   and a random oracle G : 

*{0,1} {0,1} {0,1}   , where λ is the security parameter. In order to encrypt the 

files F, a secret-key encryption scheme is used, which is a tuple of three algorithms 

SKE = (Gen, Enc, Dec). The ciphertexts are outsourced and managed using the 

corresponding file identifier (labelf).  

 As mentioned before, it is based on the inverted index approach, for the 

keywords. For each keyword w ϵ W, they maintain two double indexed lists of file 

identifiers, 
( )o

wL  and 
( )n

wL . The list 
( )n

wL  contains the subset of the file identifiers Iw that 

have been added after the last search for the keyword w. Moreover at this list, they 

store all the pairs at Setup procedure. The list 
( )o

wL  contains all the remaining file 

identifiers, which are the file identifiers that have been leaked because of a search 

query for w and that have not been deleted. 

 As an overview, when a pair has been searched, and so has been leaked to 

server, it is treated differently than other pairs who have not been searched yet. When 

a pair is leaked, then efficiency must be the first priority for these pairs and not 

security. 

 

 

Figure 7.1 - Example of Table T structure 

 

 When the set Iw is updated, one of the two lists is updated, depending on the 

file identifier's history. This means that, when a previously leaked identifier is deleted 

from Iw, then the corresponding node is removed from the list 
( )o

wL , otherwise it is 



60 
 

deleted from the list 
( )n

wL  . Similarly, additions are performed into the corresponding 

list. When a pair is added to hash table T, first it is checked whether this tuple has 

been removed in the past and in such a case whether that tuple has been searched in 

the past or not. So, if the new pair was never searched in the past, they will add it at  

( )n

wL . Otherwise, if that pair has been searched and then deleted, now that it will be 

added again, it will be placed at 
( )o

wL .  

 Since double linked lists are used, each node of the list contains three fields: a 

link to the previous node, a link to the next node and the data field. In our case, the 

pair (w, id), which is the keyword-file identifier pair, consists the node's data field: 

 

[linkprev | (w, id) | linknext] 

When linknext= ' '  the node is the last of the list (tail), while when linkprev= ' '  , it is 

the first (head). 

 Four types of keys are used in the scheme, those are the following k1, k2, k3 

and kw. k1, k2, k3 are stored at the client, and they remain the same for the lifetime of 

the scheme. k1, is the ORAM key and it is used by the client in order to communicate 

with ORAM with encryption. k2 is used to encrypt the outsourced files F with the 

IND-CPA encryption algorithm. k3 is used to produce the search keys of the hash 

table T by keying the pseudorandom function H. Finally, each keyword w ϵ W has its 

own secret key kw. When a keyword w is searched by the client then the key kw for 

that keyword is changed. A new one Kw'  is created by the client and stored back at 

ORAM. 
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7.2 Algorithm 

 

 The list nodes are stored in a hash table T. The pair (w, id) is inserted into the 

table under the search key Hk3 (w, id), where k3 is the λ-bit secret key to the pseudo-

random function H. In other words, the link to a node, is a location in T and equals the 

output of Hk3(w, id) for a pair (w, id). The list's 
( )o

wL  nodes are stored unencrypted, 

while the 
( )n

wL  list nodes are stored partly encrypted. Only the data field is kept 

encrypted, by masking with Gkw(r), where r is a randomly sampled string. Thus, each 

node of the 
( )n

wL   list has the form: 

 

[ | ( , ( ), ) | ]
wprev k nextlink w id G r r link   

 

where the secret key kw is different per keyword. In the following figure it is 

explained the format of both lists. The yellow tuples are the pointers. The blue one are 

the leaked and unencrypted datafield of list  
( )o

wL  . The red tuples are the encrypted 

datafield of the list  
( )n

wL
.
    

 

 

Figure 7.2 - Example of Double Linked Lists for keyword w4 

 

 The position of every tuple in T is found based on the hash function: 

Hk3(wi,idj). So the yellow parts of every node, which are the pointers to the previous 

and next node contains the result of these hash functions. 
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 The ORAM structure is maintained in order to provide forward privacy, by 

storing information for every keyword. Per keyword, the ORAM stores the 

followings: 

 The head of the list 
( )n

wL   

 The head of the list 
( )o

wL   

 The keyword's secret key kw.  

 

 The ORAM is searched using a keyword w and the ORAM's secret key k1. 

The structure has the format that you can see below: 

 

( ) ( )[ | | ]o n

w w w wDataO k head head  

 

 The ORAM supports two operations, ReadOram and WriteOram. Using the 

secret key k1, the first operation is used for reading the keywords data DataOw and the 

second for updating this data: 

 

 (O', DataOw)  ReadOram(O, k1, w): Using the key k1 the ORAM O is 

queried using the keyword w as the search key. The new ORAM state O' and 

the keyword's data DataOw are returned. 

 

 O' WriteOram(O, k1, w, DataOw): Using the key k1, the ORAM is queried 

using the keyword w as the search key. The keyword's data are replace by 

DataOw and the new ORAM state O' is returned. 

 

As far as double List operations are concerned, they are defined four operations for 

the management of those lists: 

 ReadList (T, head, kw): The list is read from the hash table T using the "head" 

as the location of the first node. It returns a set Iw of the file identifiers stored 

at the data filed of the list's nodes. When the node's data field is encrypted, kw 

which was retrieved from the ORAM is used as the key for decryption of the 

datafield. After the decryption, the nodes are stored back into the hash table T 

unencrypted, because now those entries belongs to 
( )o

wL  list. 
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 AppendList (T, head1, head2): The list 
( )n

wL  with the first node stored at the 

location head2 of the hash table T is appended at the end of the list 
( )o

wL  with 

first node location head1 . This procedure is followed after every search for a 

keyword w. 

 

 AddNode (T, head, pos, nd): The node nd is added as the head of a list. The 

node is stored at the pos-th location of the hash table T. The old first node of 

the list is stored at the location head. Because when a new pair is added at an 

inverted index, it is always added at the head of the list, it should be modified 

So, the  linkprev of the old head is modified to point to the location "pos", 

which is the new head position in T. 

 

 DelNode (T, pos): Deletes the node that is stored at the pos-th location of the 

hash table T. In order this to be done, the server needs to connect the previous 

with the next node. In order to learn if the deleted node was the head of the list 

and to store the new head's location, the fields linkprev and linknext of the 

deleted node are returned as output. 

 

Dynamic 

As an overview, the operations of the DSSE scheme will be described more precisely. 

 

 Setup operation. The client chooses three random λ-bit strings k1 for the 

ORAM structure, k2 for the files encryption and k3 for keying the pseudorandom 

function H that connects the pairs with the hash table entries. Moreover, it initiates the 

ORAM structure for O(|W|) elements and the hash table for O(N) pairs. All nodes 

during this phase are added at 
( )n

wL , because they are not leaked yet. 

 

 For the Search operation, initially the client needs to retrieve from ORAM the 

information that he needs. By using the secret key k1 and the keyword w he reads 

from the ORAM O all dataw related to the specific keyword. Dataw contains the 

location of the head of the list
( )o

wL , the location of the head of the list 
( )n

wL  and the 

current secret key kw of the keyword w. Because after every search the list 
( )n

wL  is 
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appended at the end of 
( )o

wL , the location of the head is set to ' '  and the keywords 

secret key is reset to a new value kw'. After that phase, client send to the server a 

search token that consists of the information he retrieved from ORAM. The server 

reads the lists 
( )o

wL  and then decrypts, by using kw and read the list 
( )n

wL  . From both 

lists, server compiles a set Iw which contains all the file identifiers that fulfill the 

query for keyword w. Iw is sent back to the client as the answer. Then, the list 
( )n

wL  is 

appended at the end of 
( )o

wL .  

 

 For the UpdatePair operation. The client computes and sends to the server the 

position of the pair (w, id) at the hash table T. The position is calculated by Hk3(w,id). 

The server checks this position. If it has never been used or if it was used but it was 

never decrypted, then the list that must be modified is 
( )n

wL . In all other cases, the list 

( )o

wL  is modified. In the case of a delete operation, then the server uses the DelNode 

operation to delete the node and the sends to the client the values linkprev and 

linknext of the deleted node. If linkprev equals ' ' , that means that the deleted node 

was the head of the list, and the client updates the keyword's w ORAM information 

with the location of the new list' head. It should be also mentioned here that the 

content of T is not erased when the operation is "delete". For the AddNode operation, 

the client retrieves from the ORAM the list's head as well as the keyword's secret key 

kw. The client prepares the new node and encrypts only the data field with kw, in case 

that the new node will be placed at 
( )n

wL . Then it uses the AddNode to write the node 

into the hash table and updates the ORAM information, such as the new list's head 

position. 
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7.3 Leakage 

 

 In terms of security, all SSE schemes leak some information. Although 

Oblivious RAM solutions are costly, they can be used in order to minimize this 

leakage. During the last years, ORAM proposals and implementations are getting 

more practical, but there is still a performance gap to be filled. On the other hand, in 

order to make SSE schemes practical, some more leakage should be expected. SSE 

leakage contains at minimum the search pattern which refers to the hashes of the 

keywords that are searched and the access pattern, which is the matching document 

identifiers of a keyword search. 

 Beside the above two patterns that cannot be hidden at SSE schemes, some 

extra information is revealed at every phase of the scheme. The Setup operation leaks 

the number of keywords |W| and the number N of different pairs of keyword-file 

identity pairs. A search operation for a keyword w leaks the set of file identifiers 

matching the keyword, that have been added or even deleted in the past. The deleted 

pairs are leaked and so the scheme does not have backward privacy. Furthermore, the 

server could learn how many times and the exact time that the same keyword was 

accessed in the past.  

 The UpdatePair operation leaks the file identifier and the type of the update 

operation, such as add or delete. If the pair was searched in the past, then the keyword 

w is leaked. If the pair has never been searched, then the keyword is not leaked.  

 During the add operation, an extra leakage exist that was not mentioned in the 

leakage analysis. Because the pointers are unencrypted when a new tuple is becoming 

the head of the list, the server must learn which was the location of the old head of the 

list. As a result, the server could also learn the length of the list, simply by following 

the "linknext" until he found ' ' . In other words the extra leakage is that the server 

could learn how many files have also the same keyword, as the keyword which is 

added.  A proposal in order to avoid that leakage is analyzed in the following chapter. 

  

 

 

 

 



66 
 

7.4 Proposal to minimize leakage 

 

 When a new file is added then the reverted lists for all the keywords that are 

contained in that file should be updated. The old head of every list is retrieved from 

the ORAM structure. Then the ORAM information is updated, in order to point out at 

the new head. Finally the linknext of the new head and the linkprev of the old head 

are updated. 

 The issue is that the links are unencrypted. So, the Server can use those links 

and can find out how many nodes (files) already contain the keyword that correspond 

to that list. This is an extra leakage that has not be taken under consideration and 

should be eliminated. 

 In order to eliminate a second key is needed to be stored at ORAM for every 

keyword. K'w will be used in order to encrypt the linknext pointers of the newly added 

pairs. Like Kw, K'w will also change after every search operation. By encrypting the 

pointer to the next node, the Server will not be able to follow the pointers and learn 

the number of nodes of that list.  

 

 

Figure 7.3 - Example of encrypted pointers at 
( )n

wL  

 

 During deletion operation the Server is not obligatory to learn the key K'w 

because he just have to move the linknext pointer of the deleted node and use it as the 

linknext pointer of the previous node in the list. The same will be done for the 

linkprev pointer. 
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 Even if two pairs/nodes are added with encrypted linknext pointer, the Server 

will have no issue because both of them will be encrypted with the same key K'w. This 

encryption is only valid for the additions at list 
( )n

wL . The list 
( )o

wL is totally 

unencrypted and all the information are leaked.  
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Chapter 8 

 

 Forth analysis of a DSSE proposal 

"ORAM based forward privacy preserving  

Dynamic Symmetric Searchable Encryption Scheme" 
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8.1 Introduction 

 

 At this survey, the author presents two efficient DSSE schemes that leak a 

limited amount of information. Both of them make a limited use of ORAM algorithms 

in order to achieve forward privacy. It is one of the first proposals that could achieve 

forward privacy while still be efficient and simple.  

 The contribution of this proposal, is not only the forward privacy or the small 

leakage that it has. An advantage that is has is that it relies only on hash functions for 

the search operation, which makes it very fast comparing to other DSSE schemes that 

also need a lot of decryption operations during the search phase. Moreover, it make 

use of simple structures such as dictionaries to store the inverted index for keyword 

and the index for file. The locality that some of this structures have helps a lot to 

make the scheme even more efficient. 

 The main difference of the two proposals (simple and the extended one) of 

that research, is the leakage at setup phase. Both of them leak the access and the 

search pattern after each search operation for a keyword. Furthermore during add or 

delete phase, both schemes offer forward privacy and the only information leaked is 

the number of keywords per added file. Each file that it is added, even if it was 

previously deleted from the DSSE, it is treated as a completely new file with new file 

identifier. At setup phase, if padding is not used, then it is leaked the Finally, number 

of keywords and files. However the difference is that the simple DSSE leaks also the 

number of keywords per file. The 'extended' DSSE hides this information, by using 

two more structures. 

 As far as efficiency is concerned, the search complexity of both schemes is 

O(max(log2(|W|)/γ, |Iw|)), where |W| is the number of keywords, |Iw| is the number of 

files that contain the keyword w and γ depends on the ORAM scheme that is used. 

Furthermore, even at the simple scheme the Search, Add and Delete operations can be 

performed with parallelism.  

 As a general idea of this proposal, the information is divided into two 

categories, leaked and not leaked. The leaked data can be treated differently by mean 

of security, in order to have a gain for locality. So the leaked data are stored in 

contiguous area of memory positions and dictionary reads are replaced by array reads. 
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 A drawback of most previous works on DSSE was that they did not support 

the storage of the index for file at the DSSE. So, it was not obvious how the deletions 

of a file was achieved, while not knowing the exact keywords that this file contained. 

That scheme took that under consideration and so it also maintains the index for file. 

 

Simple Scheme 

 

 In order to support search queries, the inverted index for keyword must be 

stored in a structure. The scheme is based on the following observation: at any time t 

the set Iw of the file identifiers related to a keyword w can be divided into two subsets  

(1)

wI  and 
(0)

wI . The subset 
(0)

wI  contains the file identifiers (labelf) that have been 

leaked because they were used in a previous search. They can be stored efficiently, 

without any privacy concern, by using locality. The structure for those file identifiers 

is S0. The other subset 
(1)

wI contains the file identifiers that have not been used in a 

search reply. The data structure for those file identifiers is called S1 and is formatted 

in a way that protects their privacy. Note that this set includes also the file identifiers 

that were leaked, deleted and, then, added again.  

 The inverted index of any keyword is stored to S0 and S1. In many cases there 

would be some entries of the inverted index for a keyword to S0 and some unleaked 

entries to S1. Of course, after each search operation the corresponding S1 entries are 

appended to structure S0, because at the end of the search operation, they would be 

leaked . 

 On the other hand addition or deletion of files requires the maintenance of the 

file index. A third data structure S2 is used to store the sequence of keywords Wi per 

file fi   F. The simple scheme has five structures. S0, S1 and S2 are using 

dictionaries. The other two are ORAM structures where it is stored the client's state. 

ORAMw is used to store keyword related information while ORAMf is used for the 

client's file state and is necessary for achieving forward privacy. The Dataowner can 

read and write data from the ORAM structures using the secret keys KW and KF. 

 Besides those structure the scheme also use some more cryptographic tools 

such as an IND-CPA secure secret-key encryption scheme for the encryption of files 

F and a random oracle H.  
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 As it was mentioned before each file has a unique file identifier (labelf), which 

is randomly selected at the addition of the file. Each keyword has a unique identifier 

w and a temporary secret key Kw. Every time the keyword w is searched, a new key 

value K'w is selected and stored at ORAMw for that keyword. All labels Pw used in S1 

are computed by applying the random oracle to the secret key Kw and a counter c. 

 The basic idea of the proposal is that for each keyword/file identifier pair (w, 

lablef ) there are two dictionary entries. One in S2 for the file index and one either in 

S0 or in S1, depending whether that pair has been leaked or not. 

 In case the pair is unleaked , then there is an entry in S1 : 

 

1( ) |w fS P label c  

 

with label Pw and an entry in S2 : 

 

2( ) ( | '1')f wS label P  

 

with label the labelf. The '1' indicates that the pair has not been read yet. Moreover, Pw 

is calculated by : 

 

( | )w wP H K c  

 

 Also, c is the value of the counter used to compute Pw and at the same time indicates 

that it is the c-th entry in S2 with label the labelf.  

 On the other hand, if the pair has been leaked, then in S0 there is an entry with 

label the keyword w : 

0( ) ( | )fS w label c  

and is S2 : 

 

2( ) ( | | '0')fS label w i  
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where '0' indicates that the pair has been leaked and it is stored in S0 with label w. 

Value i , means that it is the i-th item with this label at structure S0. It is used for 

sorting purposes in order for S0 to have locality. 

 After having explain the format of the dictionaries, it should also be 

mentioned that the ORAMw structure's data is a pair (Kw, c) per keyword w. The Kw is 

the current secret key used for labeling the entries in S1 related to w. The counter c 

indicates how many such entries have been added since the last search for the 

keyword w. On the other hand, ORAMf entries store only the current identifier labelf 

of a file f. Labelf is a random choice and it cannot be retrieved with any other way  

than storing it. 

 The following figure will help to better understand the structures that are used 

in this scheme. 

 

 

Figure 8.1 - All structures of the simple DSSE scheme 
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ORAMf 

 It Stores the random labelf of every file and the number of keywords that the 

file contains. 

 

ORAMw 

 It stores the current key of every keyword and the number of unleaked files 

that contain this keyword. 

 

S1 

 The first value is the labelf of the file of the corresponding pair. The second 

value points out the column of the S2 structure, which will be leaked, due to the 

search that returned that labelf. 

 

S2 

 The final value is "1" if the pair is unleaked or "0" if it is leaked. In case the 

pair is unleaked then the first value is the label at structure S1 for the corresponding 

pair. Otherwise the first value is the keyword of the pair and the middle value is the 

column of S0 structure that should be deleted if that pair should be removed. 

 

S0 

 The first value is the labelf of the file of that pair. The second value is used in 

order to sort again the row in case of deletion of a cell. 
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8.2 Algorithm 

 

 The scheme is a Dynamic SSE, so it must support four operations (Setup / 

Search / Add / Delete), which  will be described in this chapter and also present the 

algorithms for them. 

 

 Setup operation.  

 

 The Dataowner (D) chooses three random λ-bit strings KF, KW for the two 

ORAM structures and K for the files encryption. Then, initiates the two ORAM 

structures ORAMw and ORAMf which are of size |W| and |F| respectively. For each 

keyword w W it is generated a random key Kw and it is stored at ORAMw with label 

the specific keyword w.  

 The next step would be to fill in S1 the inverted index for keyword and in S2 

the file index. For this step D creates the labelf for each file and calculate the values of 

the Pw, which will be used as labels at structure S1.Because at the setup phase no 

search will have been done yet, the structure S0 is empty, as there is no leaked 

information. As a final step he encrypts every file with K and outsource it at Cloud 

Storage. Moreover he outsource S1 and S2 at Cloud Server 
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1. 
$ . (1 )K SKE Gen  , 

$ {0,1}FK  , 
$ {0,1}WK   

 

2. Initiate two ORAMs of size |W| and |F| 

 

3. For each w W  

 
$ {0,1}wK   

 

4. For each f F  

 f'=SKE.Enc(K,f) 

 $ {0,1}flabel   

 add (labelf,f') to list C  

 ORAMf.write(f,labelf) 

 i=0 

 For each w W  

  i++ 

  P=H(Kw|i) 

  S1.insert(P,(labelf|i))) 

  S2.insert(labelf,(P|'1'))) 

  c(w)=i 

 

For each w W  

 c=c(w) 

 ORAMw.write(w,(Kw,c)) 

 

5. Output C,S1,S2 
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Search operation  

 

 The search for a keyword w returns the set of file identifiers Iw that contains 

that keyword. The search should check both S0 and S1 for that keyword. The first 

step is very efficient as it has to do with the retrieval of the file identifiers that have 

been used in a previous search. These identifiers are stored with the same label w in 

S0. This step is parallizable with high locality.  

 In order to retrieve the file identifiers from S1, the server should create and 

then search for all the labels P, that correspond to the keyword w. In order this to be 

done the client retrieves from ORAM the information about that keyword, Kw and c, 

and sends them at the server, who will create the labels P and search them at S1. The 

retrieved identifiers from S1 are then stored in S0 using the label w and the 

corresponding entries in S2 are updated. At S2, the entry (P|'1') will change to (w|j|'0') 

and now the entry at S2 will be leaked and reviled. Finally, the keyword's secret key 

Kw is updated with a new randomly selected value and the counter c is set to zero. 

 

The client side 

1. (Kw,c)ORAMwread(w) 

2. 
$' {0,1}wK  , c'=0 

3.ORAMw.write(w,(K'w,c')) 

4.Output w, Kw, c 

 

The server side 

1.IwS0.get(w) 

2. For i=1:c do 

 PH(Kw|i) 

 blockS1.remove(P) 

 Iw Iwblock.l 

 jS0.insert(w,block) 

 S2.update(block.l,block.j,(w|j|'0')) 

3.Output Iw 
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Add file operation 

 

 When a file f  is added, the server must update S1 with all the new pairs of 

(w,f) and the S2 with the corresponding sequence of keywords w which should be 

stored in S2 using a completely new labelf. The update of the structure S1 is more 

complicated because client should retrieve from ORAMw all the information for every 

keyword that exist in the new file and send them to server. Server then will compute a 

new label P for every pair (w,fnew) and store it at S1. For the computation, server will 

use the Kw and c of each file. 

 

The client side 

1. f'=SKE.Enc(K,f) 

2. $ {0,1}flabel   

3. For each w W  

 (Kw,c)=ORAMw.read(w) 

 c++ 

 ORAMw.write(w,(Kw,c)) 

 P=H(Kw|c) 

 add P to list L 

4. ORAMf.write(f,labelf) 

5.Output L, labelf, f' 

 

The server side 

for i=1:|L| do 

 P=L[i] 

 S1.insert(P,(labelf|i))) 

 S2.insert(labelf,(P|'1'))) 
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Delete file operation 

 

 In order to delete a file f, initially its labelf is needed and so it is retrieved from 

ORAMF . Using labelf as the label, the server searches at structure S2 and retrieves all 

the needed information in order to delete the appropriate entries from S0 and S1. The 

last value of every cell in S2 which is 0 or 1, informs as about the structure, S0 or S1, 

that this pair is stored to. 

 If it is 1, then the first value of the cell is the lable of S1 that should be deleted. 

In case it is 0, the first value is the label for S0 structure and the second one is the j-th 

value of that label. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Client side 

1. labelfORAMf.read(f) 

2.Send labelf at server 

3.Send Delete request at cloud storage for lablef  

 

Server side 

1.IpS2.removeALL(labelf) 

   \\Ip={first-value|second-value|last-value},second-value exists only at leaked 

cells 

 

2. for every retrieved Ip do: 

 If last-value=='1' then 

  S1.remove(first-value) 

 else 

  S0.remove(first-value,second-value) 

 

3.Output "OK" 
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8.3 Extended Scheme 

 

 At this scheme, because the newly added files are treated the same way as in 

the simple version, the Search and Update leakages are exactly the same as in the 

simple case. However, there is a difference at the Setup phase, where two new 

structures are used. They are named 1S and 2S . 1S , is used to store the inverted index 

for keywords and 2S is used for the file index storage. Both of them are dictionaries 

with the entries encrypted and a different 1S label per entry. 

 There is also an addition at Secret keys. Besides the three keys of the simple 

scheme, another λ-bit secret key K  is needed. This key is used to compute two keys 

per keyword and two per file for the initial set of files.  

 

1. 
(1)

( |1| )wK H K w  

2. 
(2)

( | 2 | )wK H K w  

3. 
(1)

( |1| )fK H K f  

4. 
(2)

( | 2 | )fK H K f  

 

 For each pair (w, labelf ) of the initial set of files, two entries are stored, one 

into 1S and one into 2S . More precisely, the labels 
1( | )w wH K cP  and 

1( | ')f fH K cP  are computed, where c, c' are counters on the number of pairs with 

the same keyword and the same file identifier labelf , respectively. 

 A pair is stored encrypted into 1S  with a label Pw as: 

 

(2)

1( ) (( | ) ( | ), )ww f fS P label P H K r r   

 

where r is a random string of length λ. Similarly, an entry of 2S  is encrypted and 

stored with label 
'

wP  as: 
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(2)
'

2( ) (( | '1') ( | '), ')fw wS P H K r rP   

where r' is a random string of length λ and '1' means that this pair has not been leaked 

yet and it is stored in 1S  with label Pw.  

 However, when the keyword w is searched, as in the simple scheme, the entry 

of 2S  is modified and it is stored again unencrypted with label labelf as: 

 

2( ) ( | | '0')fS label w i  

 

where '0' indicates that the pair has been read and it is i-th item stored in S0 with label 

w.  

 

8.2 All structures for the advance DSSE scheme 
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1S  

 The payload of this structure is encrypted until the moment of the first search 

for that label. The first value if the corresponding labelf of the pair and the second 

value is the label of that pair at the structure 2S . 

 

2S  

 The final value is "1" if the pair is unleaked or "0" if it is leaked. In case the 

pair is unleaked then the first value is the label at structure 1S  for the corresponding 

pair. Otherwise the first value is the keyword of the pair and the middle value is the 

column of S0 structure that should be deleted if that pair should be removed. 

 

 Now,  only the three operations that differ from the simple scheme will be 

further explained. The add operation remains exactly the same. 

 

 

Setup operation 

 

 The difference, in comparison to simple scheme is that for every file of the 

setup phase, the Dataowner needs to compute the values 
(1)

fK  and 
(2)

fK . The first one 

will be used with the hash function in order to produce the label Pf, of each pair, for 

the structure 2S , whereas the second one will be used in order to encrypt the datafield 

of every entry at 2S . The structure 2S  will not have columns anymore and its label 

won't be the labelf but a Pf. The length of 2S will also reveal the number of pairs 

(keyword, files) at the setup phase. 
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1. 
$ . (1 )K SKE Gen  , $ {0,1}K   

2.
$ {0,1}FK  , 

$ {0,1}WK   

3. Initiate two ORAMs of size |W| and |F| 

4. For each w W  

 
$ {0,1}wK   

5. For each f F  

 f'=SKE.Enc(K,f) 

 $ {0,1}flabel   

 add (labelf,f') to list C  

 ORAMf.write(f,labelf) 

 
(1)

( |1| )fK H K f ,
(2)

( | 2 | )fK H K f  

 i=0 

 For each w W  

  i++ 

  
(1)

( |1| )wK H K w , 
(2)

( | 2 | )wK H K w  

  1( | )f fH K iP  ,
1( | )w wH K iP   

  
$

1 {0,1}r  ,
$

2 {0,1}r   

  
(2)

1 1 1. ( ,(( | ) ( | ), )ww f fS insert P label P H K r r  

  
(2)

2 2 2. ( ,(( | '1') ( | ), )ff wS insert P H K r rP   

  c(w)=i 

For each w W  

 c=c(w) 

 ORAMw.write(w,(Kw,c)) 

6. Reshuffle C  

7. Output C,S1,S2, 1S , 2S  
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Search operation 

 

 The search operation of the advance scheme has one more step comparing to 

the two steps of the simple one. So, the search for keyword w is performed in both  

structures S0 and S1 as before.  In the third step, 
(1)

wK is used in order to compute the 

labels in 1S  (
1( | )w wH K cP  ) . When all the datafields 1S are retrieved, they are 

decrypted by using the key 
(2)

wK  (
(2)

( | 2 | )wK H K w ). Like in the simple scheme, 

the entries from both S1 and 1S  are appended at structure S0, unencrypted. 

 

The client side 

1. (Kw,c)<--ORAMw.read(w) 

2. 
$' {0,1}wK  , c'=0 

3.ORAMw.write(w,(K'w,c')) 

 

4.
(1)

( |1| )wK H K w ,
(2)

( | 2 | )wK H K w  

 

5.Output w, Kw, c, 
(1)

wK , 
(2)

wK  

 

The server side 

1. IwS0.get(w) 

 

2. If Iw =   , then 

 For c=1 until remove returns   do 

  
1( | )w wH K iP   

  1. ( )wblock S remove p  

  
(2)

' '( . | . ) ( . | . ) ( | . )wdata l data l block block H K block r    

  Iw Iwdata.l 

  0. ( , )j S insert w data  

  
'

2. ( . ,( | | '0'))S update data l w j  
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3. For i=1:c do 

 PH(Kw|i) 

 blockS1.remove(P) 

 Iw Iwblock.l 

 jS0.insert(w,block) 

 S2.update(block.l,block.j,(w|j|'0')) 

 

4.Output Iw 

 

 

Delete operation 

 

 Delete operation musr take under consideration the fact that the file might has 

been added at a second time or during the setup phase. If it has been added at setup 

phase, then the server should create and check for that label at 2S . Whereas, if it had 

been added with the add operation, server should create the labels and search at 

structure S2.  

 The most efficient approach is, the client to retrieve from ORAMf the file 

identifier labelf and then to compute the two keys 
(1)

fK  and 
(2)

fK , which will send to 

the server. The Server then retrieve from S2 all the information related to that labelf, 

more basically the labels Pw for the corresponding entries in S1 or the exact position 

of the tuple at S0. As a final step, the server also remove the corresponding entries in 

S0 and S1 

 In case no match was found at S2 with label the labelf, then the server 

supposes that the file was there from the setup phase. So, the server then computes the 

related labels used in 2S  and decrypts their datafields by using the key 
(2)

fK . All 

found entries are removed from 2S , and based on their unencrypted information, the 

server also remove the corresponding entries in S0 and 1S . 

   

 

 

 



85 
 

Client side 

1. labelfORAMf.read(f) 

2.
(1)

( |1| )fK H K f , 
(2)

( | 2 | )fK H K f  

3.Output labelf, 
(1)

fK , 
(2)

fK  

4.Send Delete request at cloud storage for lablef  

 

Server side 

1. flag 'new' 

2.IpS2.removeAll(labelf) 

\\Ip={firtst-value|second-value|last-value},second-value exists only at leaked cells 

 

3. If Ip==  

 flag='init' 

 For i=1:c until remove returns   

 1( | )f fH K iP   

 block 1.S remove(Pf) 

 Ip Ipblock.l
(2)

( | . )fH K block r  

 

4. For pOp 

 If last-value=='0' then 

  S0.remove(firtst-value,second-value) 

 else if flag=='new' 

  S1.remove(first-value) 

 else 

  1S .remove(first-value) 

 

5.Output "OK" 
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8.4 Leakage 

 

 The author used the standard simulation model to define the scheme's security. 

The scheme is secure in the semi-honest model, where the server follows the protocol, 

but is curious. The Server is allowed to learn some information and leakage functions 

are used to define this knowledge. Three leakage functions exist, namely Lsetup, Lsearch 

and Lupdate. 

 The definition of leakage for that scheme captures forward privacy, because 

the leaked set Iw contains only documents that were added in the past, but no future 

file additions. On the other hand, Iw can contain deleted files and as a result the 

definition of leakage does not satisfy backward privacy. 

 More analytically, during the Setup operation it is leaked the number of files 

|F|, the number of keywords |W| that will be inserted at cloud server and the size of 

each file. Moreover at simple scheme server also learns the number of keywords per 

file. 

 A search operation for a keyword w leaks the keyword w and the set of file 

identifiers Iw , who match that keyword that have been added or even deleted in the 

past, which is the access pattern at time t ACCPt(w)). Moreover a curious server could 

also learn  the time the same keyword was accessed in the past, which is the search 

pattern SEAPt(w)).  

 During the add operation, it is only leaked the labelf of the file that is added, 

the file size len(f) and the number of keywords that it contains. The last is leaked from 

the number of labels that the server will add at structure S1. On the other hand, at 

delete operation, which is also part of the update leakage, again the labelf is revealed. 

Finally, for the update operation, the server can understand if the operation is adding 

or deleting a file. 
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Chapter 9 

 

Best Practices for Dynamic Searchable Encryption 
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1. For efficient search operation, the tuples that are used must be placed in 

lexicographical order. 

2. In order to achieve forward privacy the head of the keyword list should be 

stored in an ORAM structure. 

3. For forward privacy, the encryption key after every search should be different, 

so that new pairs are encrypted with new keys. 

4. For efficiency, it is a good practice to store extra information on the head tuple 

of the list. 

5. Revocation lists for deleted files should be avoided, because they introduce 

extra overhead for also reading the revocation list. 

6. Padding techniques are inefficient for large scale databases. 

7. Bottleneck for the search operation is the disk that should be read and 

moreover to encrypt or decrypt data from random places of those disks. Using 

RAM instead of HDD is a solution for storing indexes or lists. 

8. parallel searching capability should only be inserted if there is no other 

drawback from it. Otherwise, due to the amount of simultaneously searched 

keywords the CPU threads will probably be used for different queries and not 

for speeding up a single search. 

9. Boolean search capability is crucial in order for the DSSE scheme to be 

practical for using it in the real world scenarios. 

10. In order for a scheme to be practical it should also support Multi-Client 

environment.  
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Chapter 10 

 

Boolean Queries 
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10.1  Introduction 

 

 Despite the fact that all the previous DSSE schemes are efficient and they 

offer good privacy, they offer limited capabilities as far as the search operation is 

concerned. A client can only specify a single keyword, which he wants to search for, 

and then he receives all of the documents containing that keyword. In real world 

scenarios, like remotely-stored email or large databases, a single-keyword search will 

often return a large number of documents that the client must then download and filter 

himself in order to find the relevant results.  

 This limitation should be overcome, so that the client will have the ability to 

search with conjunctive queries or even with Boolean queries on the Encrypted 

database. This means that, given a set of keywords the cloud server should find all 

documents that contain all these keywords. 

 An illustrative example is in the case of a conjunction of two highly-frequent 

keywords, but whose intersection returns a small number of documents. When 

searching for name=Maria AND gender=Male, the amount of returned results will be 

minimum, despite the fact that individually, both terms of the query are highly 

frequent. 

 A solution that was initially proposed was the server to search for all the 

keywords of the query separately and then to combine the results in order to return the 

answer at the Client. This often results in inefficient searches and significant leakage. 

For the first disadvantage, we can just imagine that some keywords might have as 

answer a huge number of documents, perhaps half the database size. From the leakage 

point of view, all file identifiers for every keyword are revealed at server, although 

they don't satisfy the conjunctive query. In addition, this proposal could not extend to 

achieve Boolean queries. 

 Ideally, the search should be run with complexity proportional to the number 

of matches of the least frequent term in the conjunction, which is the standard of 

plaintext information retrieval algorithms. This can be achieved, but in order to be 

efficient, some forms of access-pattern leakage should be allowed. At least this  

leakage profile would be much better than the firstly proposed solution. 
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 The scheme that achieved the above was introduced be Cash et. al at "Highly-

Scalable Searchable Symmetric Encryption with Support for Boolean Queries" and 

was named OXT. The central idea of this protocol design is a “virtual” secure two-

party protocol in which the server holds encrypted pointers to documents, the client 

holds a list of keywords, and the output of the protocol is the set of encrypted pointers 

that point to documents containing all the client’s keywords. The client is then able to 

decrypt these pointers and obtain the matching (encrypted) documents but the server 

cannot carry this decryption nor can it learn the keywords in the client’s query.  

 While the protocol is interactive, the level of performance targeted by that 

solutions required to avoid multiple rounds of interaction. In order to avoid them, the 

authors proposed to pre-compute parts of the protocol messages and to store them 

encrypted at the server. During search operation, the client sends information to the 

server that allows to unlock these pre-computed messages without further interaction. 

For their implementation they used DH-type operations over any Diffie-Hellman 

group. 

  Moreover, the complexity of the search protocols is independent of the 

number of documents in the database. Complexity depends only on the number of 

documents which match the least frequent keyword in the conjunction. Of course, a 

crucial factor is the way that the least frequent keyword is estimated. 

 With the following example, which is given as an overview of the scheme, it 

would be easier to understand the basic idea of the scheme. Supposing there is a 

conjunctive query q, where: 

 

q= w1 AND w2 AND w3 

 

For the estimated most infrequent keyword the server run the search protocol and 

retrieves the files Iw that contains it. In this example the least frequent is w2 and the 

files that contain it are for example the: f1, f5, f8, f9. The keyword w2 will be referred 

as s-term keyword, whereas w1 and w3 as x-term keywords. 

 The second phase of the search protocol would be to find out if these four files 

also contain both the keywords w1 and w3. For that reason, they add to their scheme 

an extra structure named XSET, which stores an encrypted value for each pair (w,f) 

that exist in the scheme. These encrypted values are named xtag and depends on both 

f and w.  
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xindxtag xtrap  

where   

    
( , )p xF K w

xtrap g             depends only on w 

 

               ( , )p I fxind F K label     depends only on f 

 

and Fp is a PRF with range *

pZ  and keys either KI or Kx. 

 So, the server after the first step of the search operation knows the labelf, for 

every file at Iw, for keyword w2 and so can compute the four xind values. Based on 

the two x-term keywords w1 and w3, server can also compute the two xtrap values. By 

combining them he has 8 xtag values and now the server can search on XSET 

structure in order to find which of these eight values exist inside the XSET. If an xtag 

is found in XSET, that means that the corresponding pair also exist in the EDB. 

 If all the xtags that was generated by the xind of a file were found in the 

XSET, then it is assumed that the file fulfill the requirements of the query. 

 

 

Figure 10.1 - Example of xtag computation 
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Security issue.  

 

 In order for the server to compute the xtags values, client sends the strap 

values for the x-term keywords and he also uses the xind values that match the s-term 

keyword. The security issue of this approach is that, nothing can stop a curious server 

from combining the new strap values with old xinds, that the Server has stored from 

previous search operations, in order to find out if the combined pairs also exist in the 

Encrypted Database. This leakage was not tolerable. 

 

Solution 

 Every pair at the EDB will store a pre-computed blinded value named Yc. This 

value will blind the xind of the corresponding file of the pair, that is stored at that 

position. The blinded factor would be the Zc  

 

Yc=xind Zc
-1

. 

 

 During the search phase, the client will also send the corresponding factors Zc, 

in order for the server to be able to unblind the values of Yc, that will retrieve from 

the search of the s-term keyword. Moreover, with this approach there is no need for 

the server to knows the keys Kx and KI of the PRF that produces the xind values. 

 The blinding factor Zc is calculated as follows: 

 

Zc=PRF(w,c) 

 

where w is the keyword and c is a counter which increments by one for each different 

file associated with that keyword w.  

 Finally, it should be mentioned that when a Boolean query is negations (NOT) 

then the server also computes the value xtag, but he returns the files only if the xtag is 

not found in the XSET structure. 

 Cash et. al. Implemented their scheme that supports Boolean queries based on 

their DSSE proposal. Their DSSE Proposal is based on the inverted index approach, 

like the majority of DSSE schemes. One of the major goal of this thesis was to try to 

implement the addition of Boolean queries on the DSSE scheme that was presented in 

the previous chapter " ORAM based forward privacy preserving Dynamic Symmetric 
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Searchable Encryption Scheme ". This proposal as mentioned before, has a 

completely different approach and it uses dictionaries in order to reduce leakage and 

improve efficiency. 

 The following figure will help to better understand the structures that are used 

in this scheme. 

 

ORAMf 

 It Stores the random labelf of every file. Moreover, if the last value is "1" it 

means that the file had been added at setup phase. Only then there is a middle value 

for the number of keywords that the file contains. 

 

ORAMw 

 It stores the current key of every keyword and the number of unleaked files 

that contain this keyword. The last value is the number of files that ever had or have 

that keyword. Even in case of deletion that counter is not reduced. It is used for the 

computation of Zc. 

 

 

Figure 10.2 - All structures of the DSSE scheme 
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S1 

 The first value is the labelf of the file of the corresponding pair. The second 

value points out the column of the S2 structure, which will be leaked, due to the 

search that returned that labelf. The third value is the blinded value of the xind of that 

label. 

 

S2 

 The final value is "1" if the pair is unleaked or "0" if it is leaked. In case the 

pair is unleaked then the first value is the label at structure S1 for the corresponding 

pair. Otherwise the first value is the keyword of the pair and the middle value is the 

column of S0 structure that should be deleted if that pair should be removed. 

 

S0 

 The first value is the labelf of the file of that pair. The second value is used in 

order to sort again the row in case of deletion of a cell. Again all cells have as last 

value the corresponding value of Yc. 

 

1S  

 The payload of this structure is encrypted until the moment of the first search 

for that label. The first value if the corresponding labelf of the pair and the second 

value is the label of that pair at the structure 2S . The last value is unencrypted and it 

is the Yc. 

 

2S  

 The final value is "1" if the pair is unleaked or "0" if it is leaked. In case the 

pair is unleaked then the first value is the label at structure 1S  for the corresponding 

pair. Otherwise the first value is the keyword of the pair and the middle value is the 

column of S0 structure that should be deleted if that pair should be removed. 
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XSETA 

 It stores the xtag values inserted with the addition operation. 

 

XSETB 

 It stores the xtag values inserted with the setup operation. The label that is 

used for that structure is the same as in 2S , so that in case of deletion to be able to 

delete the correct xtag from the XSETB structure. 

 

 At the next chapter, there are presented the algorithms for each phase of the 

Dynamic Searchable Encryption proposal, which are based on the scheme of 

Rizomiliotis for single keyword search. 
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10.2 Algorithms 

 

 In order for a DSSE scheme to support Boolean queries, it should also support 

at delete phase the deletion of the xtags that correspond at the deleted pairs of the file. 

In order to achieve that, we split the XSET structure to two different structures. The 

first one is called XSETA and it stores the xtags of the files that were added with the 

addition operation. The second one is called XSETB and it stores the xtags of the files 

that were added at setup phase. So in that way all the xtags of all the pairs of the setup 

phase are stored with the same label as the corresponding pairs are stored at  2S . 

 

 At Setup phase, the 3 for steps are for key generation and fourth, fifth are for 

ORAM structure initiation. At step 6, every file of the setup phase is encrypted  and 

calculate the parameters 
(1)

fjK , 
(2)

fjK which will be later user for the calculation of the 

labels of 2S and the encryption of the payload stored at 2S . xindj will be used for the 

calculation of the xtags of that file. 

 Continuously at step 6 for every keyword of every file, there are retrieved 

from the ORAM all the needed information. Counter c reveals the number of 

unleaked files that have this keyword, whereas m is the total number of files, even if 

they are deleted now, that ever had that keyword. With these counters, the Dataowner 

computes the keys 
(1)

wiK , 
(2)

wiK which will be used at computing the labels of structure 

1S  and the encryption of the payload stored at 1S . 

 Finally 1S and 2S are filled with the information. Yc is the blinded factor in 

order for the server to store the value of the xind encrypted. The key for the 

decryption is Zc which is sent by the client during the search phase. Zc is computed 

using a PRF , the keyword wi and a counter m, so that it won't be possible that two 

pair (w,f) with the same w will ever have the same value of Zc. This is the reason that 

the value of m at ORAMw, is never reduced even when a pair is deleted. 
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Setup Phase 

 

1. . (1 )K SKE Gen   

2. {0,1}K   ,
$ {0,1}IK   

3. {0,1}wK   , {0,1}fK   

4. Initiate ORAMw of size |W| 

5. Initiate ORAMf of size |F| 

6. j=0 

    For each fF do 

 j++  

 fj'=SKE.Enc(Kf,fj) 

 labelfj {0,1}
λ
 

 add (labelfj,fj' to list L1) 

 
(1)

( |1| )jfjK H K f  

 
(2)

( | 2 | )jfjK H K f  

 xindj = Fp(KI,labelfj) 

 

 i=0     

 for each wWf do 

  i++ 

  Kw {0,1}
λ
    

  c,m   ORAM.READ(wi) 

  m++, c=++  

  ORAMw.write(wi&Kw,c,m) 

  
(1)

( |1| )wi iK H K w  

  
(2)

( | 2 | )wi iK H K w  

  
(1)

( | )fj fjH iP K  

  
(1)

( | )wi wiH iP K  
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  r1{0,1}
λ
    ,     r2{0,1}

λ
    

  Zc=PRF(wi,m)    Zp  

  Yc=xindZc
-1 

 

  
(2)

1 1 1. ( ,(( | ) ( | ), ) |wiwi cfj fjS insert P label P H K r r Y  

  
(2)

2 2 2. ( , ( | ), ) | '1'fjwifjS insert P P H K r r  

  
,( )p x i

F K w xindxtag g  

 

  
XSETB.insert(pfj,xtag) 

  ORAMf.write (f,labelf|i|1) 

 

 

  7. Reshuffle L1 and store it at STORAGE.  

 

   8. Output XSETB , 1S  and 2S   at Server 

 

 

 
Add Phase 

 

 The add operation have many similarities with the setup phase. The major 

difference is that it only involves one file. After the encryption of the file and the 

creation of its labelf, the value xind is calculated. Again for every keyword of the file  

the same approach is followed, as in setup phase, with the exception that now the 

inverted index is stored at S1 and file index is stored at S2  
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Στον Client (Dataowner) 

 

f'=SKE.Enc(K,f) 

$ {0,1}flabel   

add (labelfj,fj') to list L1 

xind=Fp(KI,labelf) 

 

i=0 

for w W do 

 i++ 

 (Kw,c,m)=ORAM.READ(w) 

 c++  , m++      

 ORAM.WRITE (w,&Kw,c,m) 

 

 pwi=H(Kw,c) 

 add pwi to list L2 

 

 Zc=PRF(wi,m)  

 Yc=xindZc
-1

 

 add Yc to list L3 

 
,( )p x i

i

F K w xindxtag g  

 Add xtagi to List L4 

 

ORAMf.WRITE (f, labelf|'0')  

 

Output L2,L3,L4,labelf at Server 

 

Reshuffle L1 and store it at STORAGE 
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Στον SERVER 

 

for j=1:|L2| do 

 pw=L2[j] 

 Yc=L3[j] 

  

 S1.insert (pw , labelf | j | Yc) 

 S2.insert (labelf , pw | '1') 

 

 XSETA.insert (labelf , xtagi) 

 

Search Phase 

 

 Search phase is an interactive phase. Initially, the client choose the s-term 

keyword from his query and retrieves from the ORAMw the information about that 

keyword. He then calculates the values 
(1)

( |1| )wK H K w , 
(2)

( | 2 | )wK H K w  and 

sends them at server along with the s-term keyword, the temporary key for that 

keyword and the number of the rest keywords of his Boolean query (t). 
 

 

Figure 10.3 - Information sent during the first step of the query 

 

 With these values the server firstly retrieve the leaked information for the files 

that contain that keyword from S0. The next step is to search for the unleaked files at 

1S , by computing the labels that are needed for accessing the structure 1S . The first 

portion of the payload from 1S  must be decrypted with the use of the key 
(2)

wK . These 
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information is then considered as "leaked" and should be removed from 1S  and stored 

at S0. The same procedure is followed for the searching at S1 structure. 

 All the retrieved file identifiers are stored at Iw and their respective values of 

Yc are stored at List L8. Server creates an empty table(x,y) where x=|L8| and y is the 

number of x-term keywords. The cells of this table will be stored with the tokens that 

the client will send at the next phase. 

 

 

Figure 10.4 - Information sent during the second step of the query 

 

 Client receives the Iw and the list L8 that contains the values of Yc. Now he 

can computes the xind values based on the labelf of the Iw and then the corresponding 

value of Zc for every file retrieved for keyword ws. Afterwards, for every x-term 

keyword of every file of Iw client computes the values token(x,y) that sends at server 

with list L9. 

 

 

Figure 10.5 - Information sent during the third step of the query 

 

 Finally the server fill the table(x,y) with the tokens(x,y) that received from 

client. Then by searching the values of all xtags at Structures XSETA and XSTEB 

server decides if any of the rows of the table fulfill the Boolean query. 
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Dataowner-Client side 

 

1. Choose the s-term keyword (ws) from the query, the number of the rest w is "t" 

 

2.(Kw,c,m)ORAMw.read(ws) 

   Kw'{0,1}
λ
   ,   c'=0  

   ORAMw.write(w , Kw'|c'|m) 

 

3. 
(1)

( |1 | )
ws sK H K w  

   
(2)

( | 2 | )
ws sK H K w  

 

4. Output: ws, 
(1)

ws
K , 

(2)

ws
K  ,Kw , t   

 

Server Side 

 

1. For i=1 until found "nothing" do 

 (labelfi,Yci)S0.get(w) 

 Iw Iw U labelfi 

 Add Yci to L8  

 

2. n=0 

   for n until pwn not found at 1S  do 

 n++ 

 pwnH(
(1)

wK ,n) 

 block.λ | block.λ'' 1S .remove(pwn) 

 Yc=block.λ'' 

 Add Yc to L8 

 
(2)

| . ( | . )wa b block H K block r   

 labelfn=a 
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 Iw Iw U labelfn 

 j   S0.insert (w, labelfn | j | Yc) 

 pf=b 

 

 2. ( , | | '0')fn nS update P w j  

 

3. n=0    

   for n until pwn not found at S1 do    

 n++ 

 pwnH(Kw,n) 

 

 a|b|c S1.remove(pw) 

 Yc = c 

 Add Yc to L8 

 

 labelf=a 

 Iw Iw U label 

 j   S0.insert (wn , labelfn | j | Yc) 

 S2.update (labelf/b , wn | j | '0') 

 

4. x=|L8|    

    y=t 

   Create an empty table(x,y) 

 

5. Sent to Client : L8 , Iw 
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Dataowner-Client side 

1. for x=1:|Iw| do 

 Ycx=L8[x] 

 labelfx=Iw[x] 

 xind=Fp(KI,labelfx) 

 Zcx=xind Ycx
-1

  

 for y=1:t do         

  
,( )p x i

i

F K w xindxtag g  

  ( , ) ( ) cxZ

ytoken x y xtrap  

  add token(x,y) to L9 

 

2. Client sends to Server L9  

 

Server Side 

1. Server Stores tokens(x,y) at table(x,y) 

2. Iwfinal=empty 

 

3. For x=1:|L5| do     

 for y=1:t do   

  xtag=(token(x,y))
Ycx

 

  if xtag € XSETA(labelx) 

   THEN table(x,y)==TRUE 

  elseif xteg € XSETB 

   THEN table(x,y)==TRUE 

  else table(x,y)==FALSE 

 

4. For x=1:|L5| do 

 if boolean function is TRUE 

  then Iwfinal= Iwfinal U Iwx 

 

Server outputs Iwfinal 
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Delete Phase 

 

 The first step of the deletion operation is to read from the ORAMf all the 

related information about the deleted file. This information and especially counter z 

will reveal if the file had been added during the setup phase or with the addition 

operation. In case z=1 then the file was inserted at setup phase and so the deleted 

values would be from structures 1S , 2S  or S0 for the leaked pairs. If on the other 

hand z=0, then Server understand that the file had been added with addition and so the 

values of the pairs will be removed from S1, S2 or S0. 

 Value x at ORAMf exist only for files from the setup phase. It is used in order 

to calculate the labels Pf for the 2S . Finally in both structures S2 and 2S , if counter 

c=0, then server understands that the pair is already leaked and so server deletes the 

appropriate cell of the S0 structure. After every deletion of a cell at S0, S0 is auto-

restructured in order not to have empty cells for locality and efficiency. 

 

Client (Dataowner) Side 

 

1. y|x|zORAMf.READ(f)      

   

2. ORAMf.DELETE(f) 

 

3. labelf=y 

 

4. 
(1)

( |1| )fK H K f  

    
(2)

( | 2 | )fK H K f  

 

5. Dataowner sends to Server: 
(1)

fK  , 
(2)

fK , x, y, z 

 

6. Storage.Delete(labelf)  
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Server Side 

if z==1 then     

 for i=1:x do     

  1( | )f fH K iP   

  
2| | . ( )fa b c S read P  

  
2. ( )fS delete P  

  XSETB.delete(Pf) 

  if c==0 do     

   S0.remove(a,b) 

   maxcount.S0(a)  

   a | b''' | c'''   READ.S0(a,max) 

   Remove.S0(a,max) 

   Write.S0(a/b , a | b | c''') 

  else do  

   
(2)

' ( | . )fa a H K block r   

   1S .remove(a') 

if z==0 then      

 a | b | cS2.READ(labelf) 

 XSETA.DELETE(labelf) 

 S2.DELETE(labelf) 

 if c==0 do    

  S0.remove(a,b)  

  maxcount.S0(a) 

  a | b''' | c'''   READ.S0(a,max) 

  Remove.S0(a,max) 

  Write.S0(a/b , a | b | c''') 

 else do 

  S1.remove(a) 
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10.3 Toy Example 

 

 In this chapter, a toy example will be presented in order to explain the design 

philosophy of this proposal. 

  

Setup Phase  

 At Setup phase, there exist four files with four keywords. The initial keyword 

sequence is as follows: 

 

• f1 with keywords w1,w2,w3  

• f2 with keywords w4,w1  

• f3 with keywords w2,w1,w4  

• f4 with keywords w3  

 

 For every phase a figure will present the state of each structure at the end of 

the phase. Red color  indicates that there were a change at that row of the table. 

 

 

Figure 10.6 - State of structures after Setup phase. 
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Search Phase  

 

 At this phase the query of the search would be the: 

 

   w1 AND w2 AND w4  

 

w2 keyword will be the chosen s-term keyword 

 

 

Figure 10.7 - State of structures after Search phase. 

 

 All pairs that were leaked from  1S are moved at structure S0. Furthermore, all 

corresponding tuples of structure 2S are leaked. 
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Add Phase  

 

 At this phase a new file (f5) will be added at the scheme. f5 contains the 

following keywords: w5, w2 and w4  

   

 

 

Figure 10.8 - State of structures after Add phase. 

 

 As it was expected, the new pairs were added at structure S1 and S2 which are 

dedicated for the pairs of the add operation. 
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Search Phase  

 

 At the second search operation of this toy example the Boolean query is the 

following: 

   (w3 AND w5 AND w2) OR w4  

 

Because of the OR, two s-terms keyword are needed  w4 and s-term w3, so the first 

figure will be the result of the search operation for keyword w4 and the second figure 

will be for keyword w3. xtag values will be sent from Client to Server only for the Iw 

of keyword w3. 

   

 

Figure 10.9 - State of structures after Search for keyword w4. 
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Figure 10.10 - State of structures after Search for keyword w3. 
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Delete Phase  

 

 At this phase the deleted file would be the f3. Based on retrieved information 

from ORAMf, the server will know that it contains three files.  

 

 

Figure 10.11 - State of structures after Delete of file f3. 
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10.4 Leakage 

 

Setup 

 Number of Keywords*files 

 

Add 

 Operation add or delete 

 File Identifier (labelf) 

 Number of keywords per added file 

 

Search 

 Search Pattern  (hash of keyword s-term , document identifiers that have been 

added or deleted for s-term keyword) 

 Access Pattern 1 (matching document identifiers of the s-term  keyword 

search) 

 Access Pattern 2 (only the matching document identifiers of the x-term  

keywords that fulfill the Boolean query) 

 Time that the same keyword was accessed in the past 

 Access Pattern at that time in the past 

 Boolean Query Expression  (AND-OR-NOT) 

 

Delete 

 Operation add or delete 

 File Identifier (labelf) 

 Number of keywords per deleted file 
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Chapter 11 

 

Multi-Client and Parallel Search 
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11.1 Introduction 

 

 In a simplest multi-client scenario, the Dataowner (D) encrypts and stores his 

documents at the Server (E). Then the Dataowner authorizes the clients to query the 

Server with Boolean Queries. Only the Dataowner can add new files or delete existed 

ones. Moreover only the Dataowner can query both ORAM structures. Both 

procedures have no changes comparing to the single client scenario, because they are 

executed only by the Dataowner and the Server. 

 

 

Figure 11.1 - Multi-Client Scenario Topology 

 

 During the Search procedure the Dataowner learns the Boolean query from the 

client and he is the one who will determine the s-term keyword and will also query the 

ORAMw structure. A major difference now is that the Dataowner must authorize the 

query by using a quantity named pi. He blinds the xtraps values with these quantities 

and sends them to Server through the Client. The blinded values are called bxtrap. 

 

bxtrap=xtrap
pi
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 Moreover, the Dataowner will send an encrypted envelope at the Server with key ke, 

again through the client. This envelope contains all the blinded factors for every xtrap 

value. 

 Using the previous approach the computation time is increased, but it is the 

only way to authorize a client to do the queries, by not allowing him to have any 

leakage. Even replay attacks cannot be executed. 

  

 

Figure 11.2 - Authorization envelope exchange 

 

 In order to make the search procedure even more parallel, the time needed for 

the delete operation must be sacrificed . This is acceptable because search operations 

are usually far more than delete operations. 

 More specifically, three more counters are needed to be stored at ORAMw, 

which will point out the accurate number of leaked and unleaked files that contains 

that keyword and whether these pairs exist from the setup phase . If the Server knows 
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these counters, he would be able to create from the beginning the correct number of 

labels for searching at S0, S1 or 1S .  

 

 The new counter that exist in ORAMw for each keyword are the following: 

1. c  -  The number of unleaked files 

2. d  - The number of leaked and unleaked files as a total 

3. b  - The number of unleaked files which exist from the setup phase  

4. e  - Number of unleaked files from add / No decrease at delete / Zero at Search  

5. m - Total number of files ever added (even Setup). Never Decrease   

 

 As a result, the number of pairs that Server will find at S0 is d minus c. The 

number of labels produced for searching at 1S  is equal to b. Finally the number of 

labels that should be generated for searching at S1 will be equal to c minus b.  

 Another counter that is needed is the counter e, which is increased for a pair 

when a new file is added, but it never decreases at delete operations. This counter is 

only becoming zero when the corresponding keyword is the s-term keyword of a 

search. By adding that counter there are no more collisions at computation of labels 

Pw, as there might exist by using the counter c. So, Server will not have to create the 

labels Pw for S1 structure in serial way, until the client to make him stop. The only 

drawback is that server will probably create more Pw than needed, but not a lot. 

 

 An issue was that in order for these counters to be accurate, every time a file 

was deleted, the Dataowner should learn the keyword that it contained in order to 

reduce those counters. In case of deleting a file from S0, this could be done. On the 

other hand in case of deleting a cell from S1 or 1S , this is not possible with the 

existing format, because the payload of them can not reveal the keyword. 

 For the reason above it was mandatory to also include in the payload of S1 and 

1S  structures the corresponding keyword encrypted. 
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11.2 Algorithm 

 

Setup Phase 

 

 The only changes of the Setup algorithm, comparing to the previous presented 

scheme, are: 

 The increased number of counters that are stored at structure ORAMw, in 

order to make the search operation more parallel. 

 Blinded Keyword stored at S2 and  2S  structures.  

 

1. . (1 )K SKE Gen   

2. {0,1}K   ,
$ {0,1}IK   

3. {0,1}wK   , {0,1}fK   

 

4. Initiate ORAMw of size |W| 

5. Initiate ORAMf of size |F| 

 

6. j=0 

    For each fF do 

 j++  

 fj'=SKE.Enc(Kf,fj) 

 labelfj <--{0,1}
λ
 

 add (labelfj,fj' to list L1) 

 

 
(1)

( |1| )jfjK H K f  

 
(2)

( | 2 | )jfjK H K f  

 xindj = Fp(KI,labelfj) 
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 i=0     

 for each wWf do 

  i++ 

  Kw <--{0,1}
λ
    

  c,e,b,d,m <-- ORAM.READ(wi) 

  m++ , c=++ , b++ , d++  

  ORAMw.write(wi , Kw | c | e | b | d | m) 

  
(1)

( |1| )wi iK H K w  

  
(2)

( | 2 | )wi iK H K w  

  
(1)

( | )fj fjH iP K  

  
(1)

( | )wi wiH iP K  

  r1<--{0,1}
λ
    ,     r2<--{0,1}

λ
    

  Zc=PRF(wi,m)    Zp  

  Yc=xindZc
-1 

  
(2)

1 1 1. ( ,(( | ) ( | ), ) |wiwi cfj fjS insert P label P H K r r Y  

  
(2)

2 2 2| ). ( ,( ( | ), ) | '1'i fwifj wS insert P P H K r r  

  
,( )p x i

F K w xindxtag g  

 

  
XSETB.insert(pfj,xtag) 

  ORAMf.write (f,labelf|i|1) 

 

 

7.   Reshuffle L1 and store it at STORAGE.  

 

8.   Output XSETB , 1S  and 2S   at Server 
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Add phase 

 

 The only changes of the Addition algorithm, comparing to the previous 

presented scheme, are: 

 The increased number of counters that are stored at structure ORAMw, in 

order to make the search operation more parallel. 

 Blinded Keyword stored at S2 and  2S  structures.  

 

Στον Client (Dataowner) 

 

f'=SKE.Enc(K,f) 

$ {0,1}flabel   

add (labelfj,fj') to list L1 

xind=Fp(KI,labelf) 

 

i=0 

for w W do 

 i++ 

 (Kw,c,e,d,b,m)=ORAM.READ(w) 

 c++  , m++ , e++ , d++      

 ORAM.WRITE (w , Kw | c | e | d |b |m) 

 pwi=H(Kw,e) 

 add pwi to list L2 

 Zc=PRF(wi,m)  

 Yc=xindZc
-1

 

 add Yc to list L3 

 

 
(

2

2)

2( | ),i fiB Kw H r r  

 Add Bi to List L4 

 

 
,( )p x i

i

F K w xindxtag g  

 Add xtagi to List L5 
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ORAMf.WRITE (f, labelf|'0')  

 

Output L2,L3,L4,L5,labelf at Server 

 

Reshuffle L1 and store it at STORAGE 

 

Στον SERVER 

 

for j=1:|L2| do 

 pw=L2[j] 

 Yc=L3[j] 

 B=L4[j] 

 xtag=L5[j] 

 

 S1.insert (pw , labelf|j|Yc) 

 

 S2.insert (labelf , pw| B | '1') 

 

 

 XSETA.insert (labelf , xtagi) 
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Search Phase 

 

 The major change of that operation is that client does not send anymore the 

value xtrap at the Server but the blinded value of xtrap named bxtrap. The blinded 

factors pi are also send in an encrypted envelope at the server. 

 

Client side 

 

1. Sent the Query at Server 

 

Dataowner Side 

1. Choose the s-term keyword (ws) from the query, the number of the rest w is "t" 

 

2.(Kw,c,e,d,b,m)ORAMw.read(ws) 

   Kw'{0,1}
λ
   ,   c'=0 , b'=0 , e'=0 

   ORAMw.write(w , Kw' | c' | e' | d | b' m) 

 

3. 
(1)

( |1 | )
ws sK H K w  

   
(2)

( | 2 | )
ws sK H K w  

 

4. For y=1:t do  

 Choose a y pp Z  

 
( ),x yK wFp

yxtrap g  

 ( ) yp

y ybxtrap xtrap  

 Add ybxtrap  to List L10 

 

5.  1 2,  , ,....e yenv Enc K p p p  

6. Output: ws, 
(1)

ws
K , 

(2)

ws
K  ,Kw , t , d, c, e, b, L10 
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Client Side 

Client sends at Server : ws, 
(1)

ws
K , 

(2)

ws
K  ,Kw , t , d, c, e, b, L10 

 

Server Side 

1. q=d-c 

 

2. for i=1:q do 

 (labelfi,Yci)S0.get(w) 

 Iw Iw U labelfi 

 Add Yc to L8 

 

3. n=0 

   for n=1:b do 

 n++ 

  (1) ,wn wp H K n  

 1. | . . ( )wnSblock block remove p     

 Yc=block.λ'' 

 Add Yc to L8 

 
(2)

| . ( | . )wa b block H K block r   

 labelfn=a 

 Iw Iw U labelfn 

 j   S0.insert (w , labelfn | j | Yc) 

 pf=b 

 2 (. , | | 0 )fn nupda e w jS t p    

 

4. n=0 

   for n=1:(e-b) do 

 n++  

 pw=H(Kw|e) 

  if pw is found in S1 then 

  a|b|c  S1.remove(pw) 
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  Yc = c 

  Add Yc to L8 

  labelf=a 

 

  Iw Iw U labelf 

  j S0.insert (wn , labelfn | j | Yc) 

  S2.update (labelf/b , wn | j | '0') 

 

 

5. x=|L8|    

    y=t 

   Create an empty table(x,y) 

6. Sent to Client : L8 , Iw 

 

Client side 

 

1. for x=1:|Iw| do 

 Ycx=L8[x] 

 labelfx=Iw[x] 

 xind=Fp(KI,labelfx) 

 Zcx=xind Ycx
-1

  

 

 for y=1:t do         

  
,( )p x i

i

F K w xindxtag g  

  ( , ) ( ) cxZ

ytoken x y xtrap  

  add token(x,y) to L9 

 

2. Client sends to Server L9 and evn=encryption.(py) for all y 
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Server Side 

 

1. Server Stores tokens(x,y) at table(x,y) 

2. Iwfinal=empty 

 

3. For x=1:|L5| do     

 for y=1:t do   

  xtag=(token(x,y))
Ycx

 

  if xtag € XSETA(labelx) 

   THEN table(x,y)==TRUE 

  elseif xteg € XSETB 

   THEN table(x,y)==TRUE 

  else table(x,y)==FALSE 

 

4. For x=1:|L5| do 

 if boolean function is TRUE 

  then Iwfinal= Iwfinal U Iwx 

 

Server outputs Iwfinal 
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Delete Phase 

 A major change of the Delete operation is that at the end of it, the Dataowner 

should be aware of the pairs that have been deleted in order to reduce the appropriate 

counters of the ORAMw structure for every keyword of the file. 

 

Client (Dataowner) Side 

 

1. y|x|zORAMf.READ(f)        

2. ORAMf.DELETE(f) 

3. labelf=y 

 

4. 
(1)

( |1| )fK H K f  

    
(2)

( | 2 | )fK H K f  

 

5. Dataowner sends to Server: 
(1)

fK  , 
(2)

fK , x, y, z 

 

6. Storage.Delete(labelf)  

 

Server Side 

 

if z==1 then     

 for i=1:x do     

  1( | )f fH K iP   

  2| | . ( )fa b c S read P  

  2. ( )fS delete P  

  XSETB.delete(pf) 
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  if c==0 do     

   S0.remove(a,b) 

   Add a to List L6 

   maxcount.S0(a)  

   a | b''' | c'''   READ.S0(a,max) 

   Remove.S0(a,max) 

   Write.S0(a/b , a | b | c''') 

  else do  

   
(2)

' | ( | . )fa b a H K block r   

   Add b to List L7 

   1S .remove(a') 

 

if z==0 then      

 a | b | cS2.READ(labelf) 

 XSETA.DELETE(labelf) 

 S2.DELETE(labelf) 

 

 if c==0 do    

  S0.remove(a,b) 

  Add a to List L8 

   

  maxcount.S0(a) 

  a | b''' | c'''   READ.S0(a,max) 

  Remove.S0(a,max) 

  Write.S0(a/b , a | b | c''') 

 

 else do 

  
(2)

2 2( | ),i fKw b H r r   

  Add wi to List L9 

  S1.remove(a) 

 

Server Export L6,L7,L8,L9 
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Στον Dataowner 

 

For every w€L6 do 

 (Kw,c,e,b,d,m)<--read.ORAMw(w) 

 d-- 

 ORAMw.write (w&Kw,c,e,b,d,m) 

 

For every w€L7 do 

 (Kw,c,e,b,d,m)<--read.ORAMw(w) 

 c-- 

 d-- 

 b-- 

 ORAMw.write (w&Kw,c,e,b,d,m) 

 

For every w€L8 do 

 (Kw,c,e,b,d,m)<--read.ORAMw(w) 

 d-- 

 ORAMw.write (w&Kw,c,e,b,d,m) 

 

For every w€L9 do 

 (Kw,c,b,d,m)<--read.ORAMw(w) 

 c-- 

 d-- 

 ORAMw.write (w&Kw,c,e,b,d,m) 
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11.3 Leakage 

 

Search leakage to Server 

 Search Pattern  (hash of keyword s-term , document identifiers that have been 

added or deleted for s-term keyword) 

 Access Pattern 1 (matching document identifiers of the s-term  keyword 

search) 

 Access Pattern 2 (only the matching document identifiers of the x-term  

keywords that fulfill the boolean query) 

 Time that the same keyword was accessed in the past 

 Access Pattern at that time in the past 

 Boolean Query Expression  (AND-OR-NOT) 

 

Search leakage to Dataowner 

 Boolean expression 

 s-term and x-term keywords 

 

Search leakage to Client 

 Matching document identifiers of the s-term keyword search, even if they 

don't fulfill the Boolean query expression. 
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Chapter 12 

 

OSPIR - Dataowner with Limited Knowledge 
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12.1 Introduction 

 

 This chapter is about a special case of the Multi-client scheme, where the 

Dataowner who authorizes the Boolean query is not aware of the keywords of the 

query. The Dataowner is only allowed to learn the Attributes that each keyword of the 

query belongs to. The attribute will be denoted as ωn or I(wn), and the set of attribute 

for a query as ( )av  . This scheme will be referred to as OSPIR-MC. 

 

 The OSPIR - MC scheme can be implemented with two different scenarios. 

1) keyword of the query and attribute of the query are two different values. 

2) keyword w contains both value and attribute w=(value, attribute)  

The second approach will be used for the rest of this thesis. 

 More specifically, the Dataowner will now learn only the value: 

 

1( ) ( ( ),..... ( ))nav I w I w   

 

and will check if the ( )av   satisfies the Policy that the Dataowner has for that 

specific client that makes the query. 

 

 The main differences between the MC protocol and the OSPIR-MC protocol 

are presented bellow. The OSPIR-MC protocol uses an "oblivious PRF" (OPRF) 

computation between the Client and the Dataowner. A PRF F(K, w) is called 

oblivious when there is a two-party protocol in which Client inputs w, Dataowner 

inputs K, Client learns the value of F(K, w) and Dataowner learns nothing.  

 An example is the Hashed DH OPRF which is used in the implementation of 

the OSPIR-MC protocol, defined as 
KF(K,x) = H(x) . The OPRF protocol consists of 

Client sending    
r

a H x for random r in *

pZ , Dataowner sending back b = a
K
 and 

finally Client  computing H(x)
K
 as

1/rb .  

 For security it is needed that only queries on authorized attributes can generate 

valid tokens for search at E. To enforce that Dataowner must use a different key for 

each possible attribute.  
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 A major change is the replacement of the PRF Fp used in computing xtrap and 

xtag values with a PRF FG, which maps w directly onto the group G generated by g. 

So, xtrap is set as FG(KX,w)  instead of 
p XF (K ,w)

g and from now xtag = (xtrap)
xind

  will 

be computed as  FG(KX,w)
xind

 instead of
p XF (K ,w)xind

g .  

 

 The first step of the Search operation would be the Client to send at 

Dataowner the ( )av  , so the D could authorize or not the Boolean query. Moreover 

Client will send for the s-term keyword the value as and for the rest of the keywords 

(x-term) the values ai. ai=H(wi)
ri
  where ri is a random value that is known only by the 

Client. 

 

 

Figure 12.1 - Information sent during the first step of the query 
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 At the second step, the Dataowner will check if the ( )av  satisfies the Policy 

P for that client and if it does, then he will raise the quantity as at a product of two 

values. The key Kxs which is the key of the attribute that s-term keyword belongs to, 

and ρ1 which is a random blinded factor that is known only at Dataowner and the 

Server. The same blinded procedure if also followed for the rest of the keywords of 

the Boolean search, in order to produce the values bi.  

 

 

Figure 12.2 - Information sent during the second step of the query 

 

 The third step is the query that the client starts to the structure ORAMw in 

order to retrieve all the needed information about the s-term keyword. 
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Figure 12.3 - Information sent during the third step of the query 

 

 For the fourth step of the search operation the client un-blinds the value of bs 

that received from the Dataowner by raising it at 1/ρs. Moreover the Client sends at 

Server: 

 The previous un-blinded value 

 The attribute of the s-term keyword 

 The s-term keyword itself 

 An encrypted envelope that contains all the random values pi that the 

Dataowner used in order to blind the queries 

 Both values 
(1)

ws
K  and 

(2)

ws
K  that computed based on the information that 

retrieved from the ORAMw 

 The keyword key Kw 
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 Figure 12.4 - Information sent during the fourth step of the query 
 

 Based on received values the Server firstly check if the Client is authorized for 

that query. 
 

 

Figure 12.5 - Information sent during the fifth step of the query 
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 As a sixth step, if the Client is authorized, the Server follow the protocol and 

retrieves all the file identifiers of the s-term keyword along with the corresponding 

values of Yc, for every pair that matched the search.  

 

 

Figure 12.6 - Information sent during the sixth step of the query 

 

 Based on the Iw, the client can now calculate the value xind of every file that 

belongs to Iw and by also using the Yc values, the Client can calculate all the needed 

Zc. Afterwards Client prepares the tokens that should send at Server by un-blinding 

every bi and raising it at the corresponding Zc. 

 

 If the Client try to cheat and send another query by using a keyword from 

different attribute, then the search will fail because every xtag value has a specific key 

based on the attribute of the keyword that is used at that xtag. 
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Figure 12.7 - Information sent during the seventh step of the query 
 

 Finally the Server, by combining the tokens, the blinding values pi (that 

receive encrypted by the Dataowner) and the values Yc, can compute the xtag values 

and search for their existence at both structures XSETA and XSETB.  
 

 

Figure 12.8 - Information sent during the eight step of the query 
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12.2 Algorithms  

 

 OSPIR-MC differs only at the search algorithm, which is presented bellow. 

The idea on which the search operation is based on, was presented on the previous 

chapter. Add, Delete and Setup operations remains the same as in simple MC scheme. 

 

Search 

 

Client side 

 

1. Sent the Query at Server 

2. wquery = (w1,....,wn) where w1 is chosen as s-term: 

    (as,rs)   OPRF.C1(w1) 

    for each i = 1,.....,n do 

   (ai,ri)   S-OPRF.C1(wi)  

3.Output at Dataowner:  (as, a1,....,an) and av = (I(w1),..., I(wn)). 

 

Dataowner Side 

1. Data owner D, on input policy P and master key  

      K = (KS,KX,KT ,KI ,KP ,KM): 

      if av is not in policy set P 

 then abort. 

 else set av as D's local output. 

 

2. (bs,ρ1)   S-OPRF.D(Kx , Is, as),  

 

3. for i = 2,.....,n do 

 Choose a pip Z  

  (bi,ρi) S-OPRF.D(KX, Ii, ai). 

  

4. envAuthEnc(KM, (ρ1, ρ2,......,ρn))  

 

5. Send (env, av, bs,b's,b2,.......,bn) at Client. 



140 
 

Client Side 

 

1.(Kw,c,e,d,b,m)ORAMw.read(ws) 

    Kw'{0,1}
λ
   ,   c'=0 , b'=0 , e'=0 

    ORAMw.write(w , Kw' | c' | e' | d | b' | m) 

 

2. 
(1)

( |1 | )
ws sK H K w  

    
(2)

( | 2 | )
ws sK H K w  

 

3. Client sends Server  bs,ws,I(ws),b,e,c,d 

 

Server Side 

 

1. ρs=env[1] 

2. Kx=Kx(I(ws)) 

3. as'= H(ws)
ρs Kx

 

4. if as'=bs then continue 

5. q=d-c    

 

6. for i=1:q do 

 (labelfi,Yci)S0.get(w) 

 Iw Iw U labelfi 

 Add Yc to L8 

 

7. n=0 

   for n=1:b do 

 n++ 

  (1) ,wn wp H K n  

 1. | . . ( )wnSblock block remove p     

 Yc=block.λ'' 

 Add Yc to L8 



141 
 

 
(2)

| . ( | . )wa b block H K block r   

 labelfn=a 

 Iw Iw U labelfn 

 j   S0.insert (w , labelfn | j | Yc) 

 pf=b 

 2 (. , | | 0 )fn nupda e w jS t p    

 

8. n=0 

   for n=1:(e-b) do 

 n++  

 pw=H(Kw|e) 

 if pw is found in S1 then 

  a|b|c  S1.remove(pw) 

  Yc = c 

  Add Yc to L8 

  labelf=a 

 

  Iw Iw U labelf 

  j S0.insert (wn , labelfn | j | Yc) 

  S2.update (labelf/b , wn | j | '0') 

 

 

9. x=|L8|    

    y=t 

   Create an empty table(x,y) 

 

10. Sent to Client : L8 , Iw 
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Client side 

 

1. for x=1:|Iw| do 

 Ycx=L8[x] 

 labelfx=Iw[x] 

 xind=Fp(KI,labelfx) 

 Zcx=xind Ycx
-1

  

 

 for y=1:t do         

  bxtrapiS-OPRF.C2(bi,ri)  

  bxtrapi= H(wi)
ri kx pi/ri 

= H(wi)
kx pi

 

  token(x,y)=(bxtrapy)
Zcx

 

  add token(x,y) to L9 

 

2. Client sends to Server L9 and evn=encryption.(py) for all y and tokens(x,y) 

 

 

Server Side 

 

1. Server Stores tokens(x,y) at table(x,y) 

 

2. Iwfinal=empty 

 

3. For x=1:|L5| do     

 for y=1:t do   

  xtag=(token(x,y))
Ycx

 

  if xtag € XSETA(labelx) 

   THEN table(x,y)==TRUE 

 

  elseif xteg € XSETB 

   THEN table(x,y)==TRUE 

 

  else table(x,y)==FALSE 
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4. For x=1:|L5| do 

 if boolean function is TRUE 

  then Iwfinal= Iwfinal U Iwx 

 

Server outputs Iwfinal 
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12.3 Leakage 

 

Search leakage to Server 

 Search Pattern  (hash of keyword s-term , document identifiers that have been 

added or deleted for s-term keyword) 

 Access Pattern 1 (matching document identifiers of the s-term  keyword 

search) 

 Access Pattern 2 (only the matching document identifiers of the x-term  

keywords that fulfill the boolean query) 

 Time that the same keyword was accessed in the past 

 Access Pattern at that time in the past 

 Boolean Query Expression  (AND-OR-NOT) 

 

Search leakage to Dataowner 

 Boolean expression 

 Attributes of s-term and x-term keywords 

 

Search leakage to Client 

 Matching document identifiers of the s-term keyword search, even if they 

don't fulfill the boolean query expression. 
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Chapter 13 

 

Proposal for improvements 
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13.1 Oblivious Transfer 

 

 An extra leakage that inserted at the scheme presented in chapter 10 is the 

ability of the Client to query the structure ORAMw. This was mandatory because the 

Dataowner should not learn the exact keyword of the search but only its attribute. So, 

the Dataowner could not ask the ORAMw on behalf of the Client.  

 A solution in order to avoid the extra leakage would be to avoid the use of the 

ORAMw structure and replace it with a Tablew structure, which will be hosted by the 

Dataowner. This approach supposes that Dataowner has the disk space needed for that 

hosting. Then, by using a principle named Oblivious Transfer, the Client will be able 

to retrieve the information that he needs from Tablew about the s-term keyword, but 

on the other hand the Dataowner will not be able to understand which keyword client 

asked for. The principle of the Oblivious Transfer seems to be impossible and so 

should be explained with more details in order to clarify it.  

 Oblivious Transfer implementations can be based on most public-key systems. 

There are also  implementations with two rounds of communication. Oblivious 

transfer was introduced by Rabin, and 1-out-of-2 OT by Even Goldreich and Lempel. 

The fundamental idea is that Sender has two values, Y0 and Y1. A chooser (Alice) can 

ask for one of these values from Sender and receive it. Sender never learns which 

value the chooser received. This is called 1-out-of-2 Oblivious Transfer. 

 

Figure 13.1 - 1-out-of-2 Oblivious Transfer scenario 
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 This scenario can also be generalized for 1-out-of-N Oblivious Transfer, 

where the chooser can choose between N values and not only 2. 

 

 

Figure 13.2 - 1-out-of-N Oblivious Transfer scenario 

 

Both parties learn nothing else: 

• Indistinguishable to Sender which   is used 

• Chooser learns no other value of m0,…,mN-1 

 

 It is interesting to examine the basic implementation of OT, in order to 

compare its efficiency. In the basic protocol (suggested by Even, Goldreich and 

Lempel)  the chooser sends two public keys to the sender, together with a proof that 

she knows the private key of only one of them. She should choose to make sure that 

she knows the private key of PKσ. The sender encrypts each input with the 

corresponding public key. The chooser can only decrypt mσ .  
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Figure 13.3 - Even, Goldreich and Lempel Proposal   

 

 

 A second approach of the 1-out-of-2 OT is the Bellare-Micali Protocol which 

is described by the following figure: 

 

 

 

Figure 13.4 - Bellare-Micali Proposal   
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 At this protocol the Sender pick a completely random number C and sends it 

to Chooser. Chooser picks a private key K and sends at Sender two private keys, so 

that 1 /PK C PK   . Sender now can be sure that Chooser knows only 1 private key. 

Sender then selects two random values r0 and r1 and sends at Chooser the E(m0) and 

E(m1). Finally the Chooser can decrypt the message that he has chosen (mσ), by using 

the private key k. 

 

 After having understand the Oblivious Transfer protocol, it should be 

mentioned that by adding it to our scheme, the computation cost of the scheme will be 

increased a lot. It is another tradeoff between leakage and efficiency that should be 

chosen,  depending on the needs of the scenario that will use the DSSE scheme. 
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13.2 Reduce Client-Server Interaction 

 

 In the schemes presented in the previous chapters there were two rounds of 

interaction between the Client and the Server during the search operation. Initially, the 

Client sends at the Server the s-term keyword along with other needed information. 

Then the Server returns the results of the Search which are the set of file identifiers 

(Iw) and list of Yc of all matched pairs. Finally, the Client based on the Iw and Yc can 

calculate the values of Zc and then the tokens of the query that sends at the Server in 

order to search them in both XSET structures. 

 Then main reason for the double interaction is that the Client must calculate 

somehow the values of Zc and for that he needs the values of Yc. 

 

Zc=xind Yc
-1

 

 

On the other hand Zc can also be calculated based on: 

 

Ζc=PRF(w,m)) 

   

 The Client knows from the beginning the x-term keywords, but he cannot use 

the above formula because with the current algorithm, the Client is not aware of the 

value m that was used in the calculation of each Zc. So Client and Server would not be 

able to agree on which Zc will be used to unblind each Yc. It should be mentioned 

once more, that the counter m is only increased for each file that contains the same 

keyword and it never decrease in case of deletions. So, there is not a pattern in order 

to know the correct value of m, because the pair corresponding to a value might have 

been deleted. 

 

 In order to solve that issue, it is needed to store at structures S1 and 1S the 

counter m that was used in order to compute the corresponding value of Yc that is 

stored on the same label of the structure. In that way, the Client will create from the 

beginning all the possible values of Zc for all the m values and will also create all the 

possible tokens based on the Zc. On the other hand, the Server will know from the 
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first step of the search, which m values are still valid and will only use those Zc 

values, received from the Client, in order to unblind the correct Yc values. 

 Having achieved that, it is no more needed for Client to know the values of Yc 

from the Server and so the Client even from the first round of interaction can send at 

Server the ws and the tokens for the x-term keywords of the search. 

 This approach increase a little bit the amount of time that is needed for the 

token creation, because it probably creates more tokens than the correct amount, but 

in the other hand, it decreases the rounds of communication between Client and 

Server, which might be vital for communications with high latency. 

 Most previous schemes that claim to have achieved DSSE schemes with 

support of Boolean queries, are using revocation lists for the deletion operation and so 

they don't even mention the way that they use in order to remove the deleted xtag 

values from the XSET or how they match the correct Zc value with the corresponding 

Yc. 
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Chapter 14 

 

Conclusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



153 
 

  As a conclusion, it should be mentioned that the structure of this thesis was 

based on the row of research followed, during the study on the subject of Dynamic 

Searchable Symmetric Encryption.  

 Initially, the basic information needed in order to understand the principles of 

Searchable Encryption was summarized and even more thoroughly the principles of 

Dynamic Searchable Symmetric Encryption. Two of the surveys on DSSE that were 

studied were briefly presented as standing out among the rest, by using a different 

approach compared to the rest of the proposals for that time. 

 One of the goal of this thesis was to propose a configuration change, for the 

survey presented in chapter seven, in order to achieve better forward privacy 

characteristics, when a new file is added. The second goal, was to add more features 

on the scheme presented in chapter eight. These add-ons, such as capability for 

Boolean queries and Multi-Client support, made the scheme even more practical for 

real world scenarios. 

 These proposals were analyzed and the algorithms for those add-on features 

were presented. Eventually, a modified scheme was presented, in which the 

Dataowner is not allowed to learn the keywords of the Boolean queries that Clients 

send to the Cloud Server. Of course more improvements can be implemented to that 

scheme and two of them were explained in detail  in the last chapter of this thesis.    
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