
UNIVERSITY OF PIRAEUS

Department of Digital Systems

Postgraduate Program

Digital Systems Security

Master Course Thesis

Windows Phone 8.1 File Fuzzer

Sotiris Tsiamouris – MTE/1135

Supervisor: Dr. Christos Xenakis

Advisor: Dr. Christoforos Dadoyan

Piraeus, November 2014

Abstract

According to wikipedia fuzz testing or fuzzing is a software testing technique, often automated or
semi-automated, that involves providing invalid, unexpected, or random data to the inputs of a
computer program. The program is then monitored for exceptions such as crashes, or failing built-in
code assertions or for finding potential memory leaks. Fuzzing is commonly used to test for security
problems in software or computer systems.

The field of fuzzing originates with Barton Miller at the University of Wisconsin in 1988.

“The original work was inspired by being logged on to a modem during a storm with lots of line
noise. And the line noise was generating junk characters that seemingly were causing programs to
crash. The noise suggested the term ‘fuzz’”-Barton Miller.

In this thesis we will introduce a file fuzzing tool called “Windows Phone File Fuzzer” for
Windows Phone 8.1. This tool is a “black box”/mutilation-based fuzzing tool for ascii and binary
file formats based in the concept of FileFuzz presented by Michael Sutton, Adam Greene and
Pedram Amini in Fuzzing: Brute Force Vulnerability Discovery.

Windows Phone 8.1 File Fuzzer

Table of Contents
1. Introduction..6

1.1 Fuzzing Categorization by Type..7
1.1.1 Mutation Based..8
1.1.2 Generation Based...8

1.2 Fuzzing Categorization by Target..9
1.3 Windows Phone ..10

1.3.1 Windows Phone Architecture...11
1.3.2 Windows Phone Runtime...12

1.4 Windows Phone 8.1 Security...14
1.4.1 Apps Security...15
1.4.3 Summary..17

1.5 Windows Phone 8.1 File Fuzzer Overview...18
1.5.1 Considerations..18
1.5.2 Overview..19

1.6 Summary..19
2. Windows Phone 8.1 File Fuzzer Development..21

2.1 Windows Phone File Fuzzer Design..21
2.1.1 Analysis of the Pages...24

2.2 Windows Phone 8.1 File Fuzzer Functionality..25
3. Windows Phone 8.1 File Fuzzer Demonstration..28

3.1 Creating Ascii Test Cases...28
3.2 Creating Binary Test Cases..33

4. Testing..36
4.1 Ascii Test Cases...39
4.2 Binary Test Cases...43

4.2.1 PNG..43
4.2.2 JPEG...45
4.2.3 BMP...45
4.2.4 GIF...55
4.2.5 DOC...55
4.2.6 XLS..58
4.2.7 ZIP..59
4.2.8 PDF..64
4.2.9 EPUB...66

5. Monitoring...67
6. Conclusions..68
7. Further Work ..69

7.1 Metasploit String Pattern Creator..69
7.2 Code Coverage...69
7.3 Generation Based ..69
7.4 Debugger..70

Bibliography...71

3

Windows Phone 8.1 File Fuzzer

Illustration Index
Illustration 1: Fuzzing concept [4]...7
Illustration 2: Windows Phone Architecture[7]..12
Illustration 3: Windows Runtime Execution Model...14
Illustration 4: Windows Phone 8.1 File Fuzzer: Icon...21
Illustration 5: WP8.1 File Fuzzer: Main Page..22
Illustration 6: Windows Phone 8.1 File Fuzzer: Ascii Page...23
Illustration 7: Windows Phone 8.1 File Fuzzer: Binary Page...23
Illustration 8: Hexstring Parsing Example...26
Illustration 9: Windows Phone 8.1 File Fuzzer: Create Ascii Test Cases...26
Illustration 10: Windows Phone 8.1 File Fuzzer: Create Binary Test Cases......................................26
Illustration 11: Windows Phone 8.1 File Fuzzer: Launch Test Cases..27
Illustration 12: Windows Phone 8.1 File Fuzzer: Ascii Test Cases Create...32
Illustration 13: Facebook.htm...32
Illustration 14: fuzzbook.htm...33
Illustration 15: Windows Phone 8.1 File Fuzzer: Binary Test Cases Create......................................33
Illustration 16: The Original Binary File..34
Illustration 17: Fuzzed Binary 0...35
Illustration 18: Fuzzed Binary 0...35
Illustration 19: Fuzzed Binary 9...35
Illustration 20: Internet Explorer opens mutated file...40
Illustration 21: html file mutations...41
Illustration 22: Ascii Fuzzed Files Folder..42
Illustration 23: PNG mutated files..44
Illustration 24: JPEG mutated files...45
Illustration 25: After the crash..51
Illustration 26: BMP test cases creation...52
Illustration 27: BMP mutated files...53
Illustration 28: BMP mutated file opened via Photo viewer..54
Illustration 29: Uncompressed DOCX file...56
Illustration 30: DOC mutated files...56
Illustration 31: DOC can't be opened...58
Illustration 32: DOC can't be opened 2..58
Illustration 33: XLS can't be opened..59
Illustration 34: ZIP mutated file unable to open...60
Illustration 35: ZIP mutated file unable to open 2..60
Illustration 36: mutated ZIP 13...61
Illustration 37: mutated ZIP 30...62
Illustration 38: mutated ZIP 43...63
Illustration 39: PDF mutated files..64
Illustration 40: PDF mutated file not valid...65
Illustration 41: EPUB mutated files...66
Illustration 42: Data Model XML for Peach Fuzzer...70

4

Windows Phone 8.1 File Fuzzer

Index of Tables
Table 1: File Types..34

5

Windows Phone 8.1 File Fuzzer

1. Introduction

Vulnerability discovery is a critical part of security research and software development. Whether
you perform a penetration testing, auditing a source code, or developing new software-software
vulnerabilities are a critical issue to solve.

Source code auditing is a white box technique used to discover vulnerabilities in software problems.
This technique requires the auditor to know every programming concept of the software, the
product's operating environment and the source code of the program must be available.[1] The basic
problems of source code auditing are, the lack of automation, the need of available source code and
the time and effort needed from the auditor to complete the auditing tasks.

The need of a fast and automated source code auditing method brought Fuzzing to the fore. Fuzzing
can be implemented without knowing the source code (black-box) and it is fully or semi
automated.-saving the auditor from a great workload.

Fuzzing focuses on finding some critical defects quickly, and the found errors are usually very real.
Fuzzing can also be performed without any understanding the inner workings of the tested system,
whereas code auditing requires full access to source code. Code auditing is usually able to uncover
more issues over time, but it also finds more false positives that need to be manually verified by an
expert before they can be declared real, critical errors.[2]

Neither fuzzing nor code auditing is able to provably find all possible bugs and defects in a tested
system or program. As a rule of thumb, the effectiveness of fuzzing is based on how thoroughly it
covers the input space of the tested interface (input space coverage), and how good are the
representative malicious and malformed inputs for testing each element or structure within the
tested interface definition (quality of generated inputs).[2]

Fuzzing is especially useful in analyzing proprietary systems, as it does not require any access to
source code. The system under test can be viewed as a black-box, with one or more external
interfaces available for injecting tests, but without any other information available on the internals
of the tested system. Having access to information such as source code, design or implementation
specifications, debugging or profiling hooks, logging output, or details on the state of the system
under test or its operational environment will help in root cause analysis of any problems that are
found, but none of this is strictly necessary. Having any of this information available turns the
process into gray-box testing, and is recommended for organizations that have access to the details
of the systems under test.[2]

 Fuzz testing or fuzzing is a software testing technique, often automated or semi-automated, that
involves providing invalid, unexpected, or random data to the inputs of a computer program. The
program is then monitored for exceptions such as crashes, or failing built-in code assertions or for
finding potential memory leaks. Fuzzing is commonly used to test for security problems in software
or computer systems.[3]

6

Windows Phone 8.1 File Fuzzer

The scope of fuzzing is to trigger the events in the software's source code that the developer could
not or did not handle.

Fuzzing attack types as presented in OWASP:

A fuzzer would try combinations of attacks on:[5]

• numbers (signed/unsigned integers/float...)

• chars (urls, command-line inputs)

• metadata: user-input text (id3 tag)

• pure binary sequences

A common approach to fuzzing is to define lists of "known-to-be-dangerous values" (fuzz vectors)
for each type, and to inject them or recombinations:[5]

• for integers: zero, possibly negative or very big numbers

• for chars: escaped, interpretable characters / instructions (ex: For SQL Requests, quotes /
commands...)

• for binary: random ones

1.1 Fuzzing Categorization by Type

Fuzzing can be categorized based on the technique that it use to generate the test cases. The two
basic categories are:

1. Mutation based, or Black-Box, or Dumb.

2. Generation based, or White-Box, or Intelligent.

7

Illustration 1: Fuzzing concept [4]

Windows Phone 8.1 File Fuzzer

Which will be explained below.

Other fuzzing categories are Brute-Force Fuzzing, Pattern-Matching Fuzzing and Hybrid Fuzzing.

1.1.1 Mutation Based

Mutation based Fuzzing do no need any knowledge of the software to be fuzzed. Mutation based
Fuzzers use a sample valid input and they create the mutated test cases based on the instructions the
user gave to them.

The advantages of Mutation based Fuzzing is that the fuzzer requires minimal setup and no
knowledge of the input format.

The disadvantages of Mutation based Fuzzing are:

• The mutated files might not be able to pass the input validation tests of the software being
fuzzed-checksums for example.

• It's a time consuming technique. For example a 20kb Microsoft word file needs 20,480
separate files in order fuzz every byte of the file.

Nevertheless despite of all the disadvantages of Mutation based Fuzzing it is the best way so far for
black-box fuzzing and the fact that CERT is using it (FOE), means that it is still getting the work
done.

1.1.2 Generation Based

Generation based Fuzzing create new test cases based on the model of the input the software being
fuzzed takes.

The advantages of Generation based Fuzzing are:

• A smaller amount of test cases is created.

• The test cases are based on the input format.

• The test cases are passing software validation techniques.

The major disadvantage of Generation based fuzzing is that it needs to know the input format. This
makes it hard to create test cases for new and/or not known inputs.

Generation based Fuzzing tools are the most efficient tools for fuzzing. Some of the most used tools
are Generation based:

8

http://www.cert.org/vulnerability-analysis/tools/foe.cfm
http://www.cert.org/

Windows Phone 8.1 File Fuzzer

• SPIKE

• Peach

• Radamsa (has mutation based techniques too)

• Sulley

1.2 Fuzzing Categorization by Target

Based on the target (fuzzed) software Fuzzing is further categorized. The three most important
categories are presented bellow.

Application Fuzzing:

Whatever the fuzzed system is, the attack vectors are within it's I/O. For a desktop app:

• the UI (testing all the buttons sequences / text inputs)

• the command-line options

• the import/export capabilities (see file format fuzzing below)

For a web app: urls, forms, user-generated content, RPC requests, etc.[5]

Protocol Fuzzing:

A protocol fuzzer sends forged packets to the tested application, or eventually acts as a proxy,
modifying requests on the fly and replaying them.[5]

File Fuzzing:

 A file format fuzzer generates multiple malformed samples, and opens them sequentially. When the
program crashes, debug information is kept for further investigation.

One can attack:

• the parser layer (container layer): file format constraints, structure, conventions, field sizes,
flags, etc.

• the codec/application layer: lower-level attacks, aiming at the program's deeper internals.

9

Windows Phone 8.1 File Fuzzer

1.3 Windows Phone

Windows Phone (WP) is a smartphone operating system developed by Microsoft. It is the successor
to Windows Mobile, although it is incompatible with the earlier platform. With Windows Phone,
Microsoft created a new user interface, featuring a design language named "Modern" (which was
formerly known as "Metro"). Unlike its predecessor, it is primarily aimed at the consumer market
rather than the enterprise market. It was first launched in October 2010 with Windows Phone 7.[6]

Windows Phone 8.1 is the current generation of Microsoft's Windows Phone mobile operating
system, succeeding Windows Phone 8. It was initially introduced at Microsoft's Build Conference in
San Francisco, California, on April 2, 2014. It was released in final form to Windows Phone
developers on April 14, 2014, reached general availability on July 15, 2014 and is officially
supported by Microsoft as of August 3, 2014.[6]

Windows Phone 8.1 major improvements can be spotted on its filesystem-Windows Phone 8.1
allows apps to view all files stored on a WP device and move, copy, paste and share the contents of
a device's internal file system-also Windows Phone 8.1 adds support for closing apps by swiping
down on them in the multitasking view (invoked by doing a long-press on the "back" button), which
is similar to how multitasking operates on Windows 8 and iOS. Pressing the back button now
suspends an app in the multitasking view instead of closing it.[6]

Apps for Windows Phone 8.1 can now be created using the same application model as Store apps
for Windows 8.1, based on the Windows Runtime, and the file extension for WP apps is now
".appx" (which is used for Windows Store apps), instead of Windows Phone's traditional ".xap" file
format. Applications built for WP8.1 can invoke semantic zoom, as well as access to single sign-on
with a Microsoft account. The Windows Phone Store now also updates apps automatically. The
store can be manually checked for updates available for applications on a device. It also adds the
option to update applications when on Wi-Fi only.[6]

App developers will be able to develop apps using C# / Visual Basic.NET (.NET), C++ (CX) or
HTML5/JavaScript, like for Windows 8.[6]

Developers will also be able to build "universal apps" for both Windows Phone 8.1 and Windows 8
that share almost all code, except for that specific to the platform, such as user interface and phone
APIs.[6]

Any universal apps that have been installed on Windows 8.1 will automatically appear in the user's
"My Apps" section on Windows Phone 8.1.[6]

Apps built for Windows Phone 8 and Windows Phone 7 automatically run on Windows Phone 8.1,
but apps built for Windows Phone 8.1 will not run on any previous version of Windows Phone.[6]

10

Windows Phone 8.1 File Fuzzer

1.3.1 Windows Phone Architecture

Windows Phone 8.1 is based on the Windows NT kernel. Windows Phone 8.1 uses the Core System
from Windows, which is a minimal Windows system that boots, manages hardware and resources,
authenticates and communicates on a network, and contains low-level security features. To handle
phone-specific tasks, the Core System is supplemented by a set of Windows Phone specific binaries
that form the Mobile Core.[7]

The following illustration provides a high-level overview of the operating system, organized by
layer and ownership. Partners provide most of the low-level hardware interaction and boot drivers
for the phone, in the form of a board support package (BSP). The BSP is a collection of drivers and
support libraries. The core of the BSP is written by the silicon vendor that creates the CPU. OEMs
are responsible for adding the drivers required to support the phone hardware, some of which they
write themselves, and some of which are provided by IHVs that build specific hardware
components. Meanwhile, the kernel and OS largely come from Windows with Windows Phone
specific modifications. On the layer above the kernel are the system services and programming
frameworks that applications use to create the user experiences of the phone.[7]

11

Illustration 2: Windows Phone Architecture[7]

Windows Phone 8.1 File Fuzzer

1.3.2 Windows Phone Runtime

Windows Runtime, or WinRT, is a platform-homogeneous application architecture on the Windows
8 operating system. WinRT supports development in C++/CX (Component Extensions, a language
based on C++) and the managed languages C# and VB.NET, as well as JavaScript and TypeScript.
WinRT applications natively support both the x86 and ARM architectures, and also run inside a
sandboxed environment to allow for greater security and stability. WinRT components are designed
with interoperability between multiple languages and APIs in mind, including native, managed and
scripting languages.[8]

Windows Phone 8 uses a version of the Windows Runtime known as the Windows Phone Runtime.
It enables app development in C#, VB.NET and development of Windows Runtime components in
C++/CX.[8]

Windows Runtime support on Windows Phone 8.1 converges with Windows 8.1. The release brings
a complete Windows Runtime API to the platform, including Windows Runtime XAML support, as
well as language bindings for C++/CX and HTML5/JavaScript. There is also a project type called
Universal apps that enables apps to share code across Windows Phone 8.1 and Windows 8.1
platforms.[8]

Windows Phone Runtime uses the AppX package format from Windows 8, after previously been
using Silverlight XAP.[8]

Almost everything in WinRT has been ported over to the phone. This includes the entire Windows
Runtime XAML stack, file I/O, Live tiles api, background agents, mapping and geofencing apis etc.
Those apis that hasn’t been ported over comes in two categories:

1. Apis that doesn’t make sense on the Phone platform; i.e Printing, search contract etc.
2. Apis that we’re dropped due to time constraints. These are few and hopefully they will be

converged over time.

A solution for Universal app that targets both Windows and Windows Phone contains three parts:

• A Windows 8.1 Project.

• A Windows Phone 8.1 Windows Runtime Project.

• A Shared folder. Everything you put here will be automatically included in both projects.

A WinRT component can be shared between Windows and Windows Phone, so the code can be
reused easily between projects.

12

Windows Phone 8.1 File Fuzzer

1.4 Windows Phone 8.1 Security

Microsoft made some major improvements in its new release of Windows Phone-Windows Phone
8.1. This section focuses in Windows Phone 8.1 system and application security, in order to make
clear the difficulty of File Fuzzing.

Initially Windows Phone 8.1 uses Trusted Boot, UEFI Secure Boot verifies that the boot loader is
trusted, and then Trusted Boot protects the rest of the startup process by verifying that all Windows
boot components have integrity and can be trusted. The boot loader verifies the digital signature of
the Windows Phone kernel before loading it. The Windows Phone kernel, in turn, verifies every
other component of the Windows startup process, including the boot drivers and startup files.[9]

If a file has been modified (for example, if malware has modified the file to launch malicious code),
Trusted Boot protects all of the Windows components and prevents any components that have been
tampered with from starting.[9]

After Trusted Boot has completed the startup process, Windows Phone loads the system
components and any apps that are loaded automatically at startup. The system components and apps
must be properly signed before Windows Phone will load and start them. If a malicious user or code
has tampered with the system component or app files, the corresponding component or app will not

13

Illustration 3: Windows Runtime Execution Model

Windows Phone 8.1 File Fuzzer

be loaded and started.[9]

Unsigned apps are unable to run on Windows Phone, because an app must be signed to be in the
Windows Store or be signed with the organization’s enterprise development signature. Because all
system components and apps must be signed, it is extremely difficult for attackers to run malicious
code on a device.[9]

1.4.1 Apps Security

Securing the Windows Phone operating system core is the first step in providing a defense-in-depth
approach to securing Windows Phone devices. Securing the apps running on the device is equally
important, because attackers could potentially use apps to compromise Windows Phone operating
system security and the confidentiality of the information stored on the device.[9]

Windows Phone can mitigate these risks by providing a secured and controlled mechanism for users
to acquire trustworthy apps. In addition, the Windows Phone Store app architecture isolates (or
sandboxes) one app from another, preventing a malicious app from affecting another app running on
the device. Also, the Windows Phone Store app architecture prevents apps from directly accessing
critical operating system resources, which helps prevent the installation of malware on devices.[9]

Windows Phone Store:

Downloading and using apps published in the Windows Phone Store dramatically reduce the
likelihood that a user can download an app that contains malware. All Windows Phone Store apps
go through a careful screening process and scanning for malware and viruses before being made
available in the store. The certification process checks Windows Phone Store apps for inappropriate
content, store policies, and security issues. Finally, all apps must be signed during the certification
process before they can be installed and run on Windows Phone devices. In the event that a
malicious app makes it’s way through the process and is later detected, the Windows Phone Store
can revoked access to the app on any devices that have installed it.[9]

In the end, the Windows Store app-distribution process and the app sandboxing capabilities of
Windows Phone 8.1 will dramatically reduce the likelihood that users will encounter malicious apps
on the system.[9]

AppContainer:

The Windows Phone security model is based on the principle of least privilege and uses isolation to
achieve it. Every app and even large portions of the operating system itself run inside their own
isolated sandbox called an AppContainer.[9]

An AppContainer is a secured isolation boundary that an app and its process can run within. Each
AppContainer is defined and implemented using a security policy. The security policy of a specific
AppContainer defines the operating system capabilities to which the processes have access within
the AppContainer. A capability is a Windows Phone device resource such as geographical location
information, camera, microphone, networking, or sensors.[9]

14

Windows Phone 8.1 File Fuzzer

By default, a basic set of permissions is granted to all AppContainers, including access its own
isolated storage location. In addition, access to other capabilities can be declared within the app
code itself. Access to additional capabilities and privileges cannot be requested at runtime, as can be
done with traditional desktop applications.[9]

The AppContainer concept is advantageous for the following reasons:

• Attack surface reduction. Apps get access only to capabilities that are declared in the
application code and are needed to perform their functions.[9]

• User consent and control. Capabilities that apps use are automatically published to the app
details page in the Windows Phone Store. Access to capabilities that may expose sensitive
information, such as geographic location, automatically prompt the user to acknowledge and
provide consent.[9]

• Isolation. Unlike desktop style apps, which have unlimited access to other apps,
communication between Windows Phone apps is tightly controlled. Apps are isolated from
one another and can only communicate using predefined communications channels and data
types.[9]

Like the Windows Store security model, all Windows Store apps follow the security principal of
least privilege. Apps receive the minimal privileges they need to perform their legitimate tasks only,
so even if an attacker exploits an app, the damage the exploit can do is severely limited and should
be contained within the sandbox. The Windows Phone Store displays the exact permissions that the
app requires along with the app’s age rating and publisher.[9]

Operating System App Protection:

Windows Phone includes core improvements to make it difficult for malware to perform buffer
overflow, heap spraying, and other low-level attacks. For example, Windows Phone includes ASLR
and DEP, which dramatically reduce the likelihood that newly discovered vulnerabilities will result
in a successful exploit. Technologies like ASLR and DEP act as another level in the defense-in-
depth strategy for Window Phone.[9]

• Address space layout randomization. One of the most common techniques for gaining
access to a system is to find a vulnerability in a privileged process that is already running, or
guess or find a location in memory where important system code and data have been placed,
and then overwrite that information with a malicious payload. In the early days of operating
systems, any malware that could write directly to system memory could pull off such an
exploit: The malware would simply overwrite system memory within well-known and
predictable locations. Because all Windows Phone Store apps run in an AppContainer and
with fewest necessary privileges, most apps are unable to perform this type of attack outside
of one app. It is conceivable that an app from the Window Phone Store might be malicious,
but the AppContainer severely limits any damage that the malicious app might do, as apps

15

Windows Phone 8.1 File Fuzzer

are also unable to access critical operating system components. The level of protection
AppContainers provide is one of the reasons that their functionality was brought into
Windows 8.1 client operating systems. However, ASLR provides an additional defense in-
depth to help further secure apps and the core operating system.[9]

• Data execution prevention. Malware depends on its ability to put a malicious payload into
memory with the hope that it will be executed later. ASLR makes that much more difficult,
but wouldn’t it be great if Windows Phone could prevent that malware from running if it
writes to an area that has been allocated solely for the storage of information? DEP does
exactly that by substantially reducing the range of memory that malicious code can use for
its benefit. DEP uses the eXecute Never (XN) bit on the ARM processors in Windows Phone
devices to mark blocks of memory as data that should never be executed as code. Therefore,
even if an attacker succeeds in loading the malware code into memory, to the malware code
will not execute. DEP is automatically active in Windows Phone because all devices have
ARM processors that support the XN bit.[9]

Internet Explorer:

Windows Phone includes Internet Explorer 11 for Windows Phone. Internet Explorer helps to
protect the user because it runs in an isolated AppContainer and prevents web apps from accessing
the system and other app resources. In addition, Internet Explorer on Windows Phone supports a
browser model without plug-ins, so plug-ins that compromise the user experience or perform
malicious actions cannot be installed (just like the Windows Store version of Internet Explorer in
Windows 8.1).[9]

The SmartScreen URL Reputation filter is also available in Internet Explorer for Windows Phone.
This technology blocks or warns users of websites that are known to be malicious or are suspicious.
[9]

Internet Explorer on Windows Phone can also use SSL to encrypt communication, just as in other
Windows operating systems. This is discussed in more detail in the “Communication encryption”
section later in this guide.[9]

1.4.3 Summary

Malware resistance is a cornerstone to a security strategy, and Windows Phone
devices are designed from the ground up to mitigate or in some cases even eliminate
the potential for the most common malware threats. Windows Phone includes the
following malware-resistance features:[9]

• UEFI and Secure Boot. Rest easy that malware cannot be introduced during the boot process
(bootkits or rootkits). Only trusted, signed software is started and loaded during the startup
process. Coupled with UEFI, your devices will be less vulnerable to bootkits and rootkits.[9]

• Trusted Boot. When the boot process is secure, this feature helps ensure that all operating
system components and drivers are unmodified and free of malware. Any components that

16

Windows Phone 8.1 File Fuzzer

have been tampered with will be unable to start on the device.[9]

• System and app integrity. This feature builds on Trusted Boot process security by ensuring
that all system software (such as Windows services) and apps on Windows Phone are signed
and tamper free.[9]

• Windows Phone Store apps. Regardless of whether you use apps from the Windows Phone
Store or custom LOB apps, Windows Phone helps ensure that these apps are secure. All
Windows Phone Store apps are scanned for malware prior to being published in the store.
Internally developed LOB apps must be signed with the organization’s developer certificate,
ensuring that no malware can be introduced through unauthorized apps. You can even
restrict the apps that are available to users for installation from the Windows Phone Store or
completely disable access to the Windows Phone Store, if required by organizational or
regulatory agency guidelines.[9]

• AppContainer. All apps, and even some system components, on Windows Phone run in an
isolated sandbox called an AppContainer. Apps running within an AppContainer run with
least privilege and can only gain access to resources in a predefined, declarative manner.
Apps running in the AppContainer have limited to no access to the system, other apps, or
data.[9]

• Vulnerability mitigations. Technologies like ASLR and DEP help ensure that malware
cannot be injected onto your devices through vulnerabilities that may be discovered later.[9]

• Internet Explorer. Browsers are one of the most targeted and common ways to spread
malware. Internet Explorer on Windows Phone helps protect the organization’s apps and
data from attack by using technologies such as AppContainers and SmartScreen.[9]

1.5 Windows Phone 8.1 File Fuzzer Overview

Windows Phone 8.1 File Fuzzer is a Windows Phone 8.1 application. It is inspired by FileFuzz and
its is programmed to be user friendly and easy to use.

The scope of the app is to help security researchers and software developers to test build-in
Windows Phone file handling applications such as Windows Office, Picture Viewer, Music Player
and any other application that handles files. Also it gives the ability to software developers to test
their applications for Buffer Overflows, Memory Leaks, DoS, etc.

The application was developed using C# under Microsoft Visual Studio 2013 Express and tested in
a Nokia Lumia 520 device.

1.5.1 Considerations

17

Windows Phone 8.1 File Fuzzer

Anyone interested to develop a file fuzzing application in Windows Phone 8.1 needs to take into
consideration the facts bellow:

1. A mobile device for testing is necessary. Windows Phone 8.1 emulator does not let the user
to download apps, files, etc.

2. Windows Phone 8.1 takes over after a file is launched. The application which launched the
file is suspended and the application that handles the file takes over. The user need to use the
back button to get back to the application. That makes launching multiple files at once
almost impossible.

3. An OEM account is needed in order to use the attach-to-process Windbg future and Tshell
for Windows Phone.

4. Fuzzer should target a basic Windows Phone 8.1 application-most users are using them-but
Microsoft might fuzzing them with DFF and definitely run them inside a sandboxed
environment(so the amount of vulnerable crashes are limited).

1.5.2 Overview

Windows Phone 8.1 File Fuzzer is a Mutation based Fuzzer developed with C#. It has the ability to
Fuzz ascii and binary files and launch them in Windows Phone 8.1.

The basic two components of the application is the Ascii Test Case Creator and the Binary Test
Case Creator.

Ascii Test Case Creator is taking the data that the user provides and builds a N number of test cases
depending on the number of occurrences of the char that the user searched for C, or the total
number of occurrences of C in the template file.

Binary Test Case Creator is taking the data the user provides and builds a N number of test cases
depending on the length of the binary file, the range of bytes the user wants to overwrite , or the
specific byte the user wants to overwrite.

Windows Phone 8.1 File Fuzzer will be analyzed in more detail on the next chapter.

1.6 Summary

Fuzzing is not measured by a standard. There are no good or bad techniques. If the fuzzer works
and produces crashes then it is a good fuzzer.

The security researcher first of all should investigate the target and after that choose or build the

18

http://www.computerworld.com/s/article/9174539/Microsoft_runs_fuzzing_botnet_finds_1_800_Office_bugs

Windows Phone 8.1 File Fuzzer

proper tool for the work.

A Fuzzing process follows the order below:

1. Choose a target.

2. Investigate the target's inputs.

3. Create the test cases.

4. Launch a test case.

5. Monitor the target for flaws.

6. Kill the test case.

7. Repeat.

Data Generation tips:

1. Smart integers (max32, max16, max8)

2. Smart strings (long strings)

3. Field delimiters (space, tab, new line)

4. Format strings (%s, %n)

5. Character translation (0xFE, 0xFF)

6. Directory Traversal

7. Command Injection

Detection tips (info about the process):

1. Event Logs

2. Debuggers

3. Return Calls

4. Test Case metadata

19

Windows Phone 8.1 File Fuzzer

2. Windows Phone 8.1 File Fuzzer Development

Windows Phone File Fuzzer 8.1 development will be presented in this chapter. Application's design
and functionality will be extensively analyzed.

2.1 Windows Phone File Fuzzer Design

Windows Phone 8.1 File Fuzzer has a simple and user-friendly design in order to make the fuzzing
process easy for every user with a mid knowledge on the subject.

The first page prompts the user to choose what type of file to fuzz.

20

Illustration 4: Windows Phone 8.1
File Fuzzer: Icon

Windows Phone 8.1 File Fuzzer

After choosing the file type the user is navigated to the corresponding page.

If the user choose the ASCII selection, the app will navigate to the Ascii Page where the user can fill
the fuzzing data for an ascii file format.

21

Illustration 5: WP8.1 File Fuzzer:
Main Page

Illustration 6: Windows Phone
8.1 File Fuzzer: Ascii Page

Windows Phone 8.1 File Fuzzer

If the user choose the BINARY selection, the app will navigate to the Binary Page where the user
can fill the fuzzing data for a binary file format.

2.1.1 Analysis of the Pages

ASCII Page:

In the ascii page the user can add the following data:

1. Fuzz File: The template file to create the test cases.

2. Store Folder: The folder to store the test cases.

3. Time: The time to run every test case when it launch.

4. Find: The char to search for inside the file.

5. Replace: The char to add after the “Find” char.

6. X: the times to multiply the char the user adds.

7. #Files: The number of test cases the user wants to create. If 0 it creates a test case for each
“find” char occurrence.

8. CREATE! button: It creates the test cases.

22

Illustration 7: Windows Phone 8.1
File Fuzzer: Binary Page

Windows Phone 8.1 File Fuzzer

9. FUZZ! Button: Launches the test cases.

10. Output: A text block that informs the user.

BINARY Page:

In the Binary Page the user can add the following data:

1. Fuzz File: The template file to create the test cases.

2. Store Folder: The folder to store the test cases.

3. Time: The time to run every test case when it launch.

4. Byte(s) to Overwrite: The byte the user add to the test case.

5. X: The times to multiply the byte the user adds.

6. All Bytes (Selection): The fuzzer creates a test case for every byte of the file until byte =
file_length-user_created_byte_array.

7. Range (Selection): The fuzzer creates a test case for every byte in the range the user added
until byte = file_length-user_created_byte_array.

8. Depth (Selection): The fuzzer creates one test case for the byte the user added. The byte =
file_length-user_created_byte_array.

9. CREATE! button: It creates the test cases.

10. FUZZ! Button: Launches the test cases.

11. Output: A text block that informs the user.

2.2 Windows Phone 8.1 File Fuzzer Functionality

File and Folder Selection:

In order to select the template file and the store folder, FileOpenPicker and FolderPicker classes
from Windows.Storage.Pickers were used.

Parsing:

Parsing was used in order to avoid application's crashes from false data added by the user.

23

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.pickers.aspx

Windows Phone 8.1 File Fuzzer

Ascii Test Case Creation:

During this process the fuzzer copies the template file to the store folder the user choose and based
on the file's name and data the test cases are created. For example if the template's file name is
“test.txt” the fuzzer will name the test cases as “test0.txt”.....”testn.txt”.

Binary Test Case Creation:

The file names of the binary test cases are created similar to the Ascii Test Case Creation above.
The difference is the use of a Stream to alter and store the data.

24

Illustration 8: Hexstring Parsing Example

Illustration 9: Windows Phone 8.1 File Fuzzer: Create Ascii Test Cases

Illustration 10: Windows Phone 8.1 File Fuzzer: Create Binary Test Cases

Windows Phone 8.1 File Fuzzer

Launching Test Cases:

The test cases are launched using Windows.System.Launcher.

Of course the issue we discussed in section 1.3.1 makes launching a serious problem.

25

Illustration 11: Windows Phone 8.1 File Fuzzer: Launch Test Cases

http://msdn.microsoft.com/en-Us/library/windows/apps/xaml/windows.system.launcher.aspx

Windows Phone 8.1 File Fuzzer

3. Windows Phone 8.1 File Fuzzer Demonstration

In this chapter we will demonstrate the use of the application. Also we will see the files the fuzzer
creates according to the data the user adds.

3.1 Creating Ascii Test Cases

In this section we will see what test cases the fuzzer creates in a saved from the web facebook.htm
file. The reason to fuzz a .htm file is to see how Internet explorer will react openning a malformed
file.

The illustration below shows us the creation of the test cases, focusing in char “.

The original file was:

26

Illustration 12: Windows Phone 8.1 File
Fuzzer: Ascii Test Cases Create

Windows Phone 8.1 File Fuzzer

The fuzzed file (test case 1) is:

27

Illustration 13: Facebook.htm

Illustration 14: fuzzbook.htm

Windows Phone 8.1 File Fuzzer

3.2 Creating Binary Test Cases

In this section we will see what test cases the fuzzer creates for a .png image.

Creating the test cases:

The bytes of the original file using a decimal offset representation in the hex viewer:

28

Illustration 15: Windows Phone 8.1 File
Fuzzer: Binary Test Cases Create

Windows Phone 8.1 File Fuzzer

And the first (0) and last (9) fuzzed files:

29

Illustration 16: The Original Binary File

Illustration 17: Fuzzed Binary 0

Windows Phone 8.1 File Fuzzer

30

Illustration 18: Fuzzed Binary 0
Illustration 19: Fuzzed Binary 9

Windows Phone 8.1 File Fuzzer

4. Testing

In this chapter the tool will be evaluated (partially-since Microsoft only provides OEM tools to its
hardware partners and the critical phase of debugging could not be done). Test cases will be run
from the targeted apps and the expected crashes will be recorded and evaluated.

During this stage a great amount of test cases will be executed via various file reading apps of
Windows Phone 8.1. A part of these apps will be the standard file reading apps that Microsoft
develops/provides through its Windows Phones. An other part will be third party applications
developed by non-Microsoft developers but evaluated by Microsoft and available from the
Microsoft Store.

The table below presents the files and the file reading apps used for this thesis.

31

Windows Phone 8.1 File Fuzzer

File Type Application Description Fuzzing Type

.png • Image Viwer
• Adobe

Photoshop
Express

• Lomogram+
• Lumia Creative

Studio

Portable Network
Graphics (PNG), is a
raster graphics file
format that supports
lossless data
compression. PNG was
created as an improved,
non-patented
replacement for
Graphics Interchange
Format (GIF), and is
the most used lossless
image compression
format on the Internet.*

Binary

.jpg • Image Viwer
• Adobe

Photoshop
Express

• Lomogram+
• Lumia Creative

Studio

JPEG (seen most often
with the .jpg or .jpeg
filename extension) is a
commonly used
method of lossy
compression for digital
images, particularly for
those images produced
by digital photography.
The degree of
compression can be
adjusted, allowing a
selectable tradeoff
between storage size
and image quality.*

Binary

.bmp • Image Viwer
• Adobe

Photoshop
Express

• Lomogram+
• Lumia Creative

Studio

The BMP file format,
also known as bitmap
image file or device
independent bitmap
(DIB) file format or
simply a bitmap, is a
raster graphics image
file format used to store
bitmap digital images,
independently of the
display device (such as
a graphics adapter),
especially on Microsoft
Windows and OS/2

Binary

32

Windows Phone 8.1 File Fuzzer

operating systems.*

.gif • Image Viwer
• Adobe

Photoshop
Express

• Lomogram+
• Lumia Creative

Studio

The Graphics
Interchange Format
(better known by its
acronym GIF; is a
bitmap image format
that was introduced by
CompuServe in 1987
and has since come into
widespread usage on
the World Wide Web
due to its wide support
and portability.*

Binary

.zip • Archiver ZIP is an archive file
format that supports
lossless data
compression. A ZIP file
may contain one or
more files or folders
that may have been
compressed. The .ZIP
file format permits a
number of compression
algorithms.*

Binary

.doc • Office DOC or doc (an
abbreviation of
'document') is a
filename extension for
word processing
documents, most
commonly in the
proprietary Microsoft
Word Binary File
Format.*

Binary

.xls • Office Microsoft Excel up
until 2007 version used
a proprietary binary file
format called Excel
Binary File Format
(.XLS) as its primary
format.*

Binary

.pdf • Adobe Reader
• Pdf Reader

Portable Document
Format (PDF) is a file
format used to present

Binary

33

Windows Phone 8.1 File Fuzzer

documents in a manner
independent of
application software,
hardware, and
operating systems.
Each PDF file
encapsulates a
complete description of
a fixed-layout flat
document, including
the text, fonts,
graphics, and other
information needed to
display it.*

.epub • Epub Reader EPUB (short for
electronic publication)
is a free and open e-
book standard by the
International Digital
Publishing Forum
(IDPF). Files have the
extension .epub.*

Binary

.html • Internet
Explorer

A web browser can
read HTML files and
compose them into
visible or audible web
pages. The browser
does not display the
HTML tags, but uses
them to interpret the
content of the page.
HTML describes the
structure of a website
semantically along with
cues for presentation,
making it a markup
language rather than a
programming
language.*

Ascii

*From Wikipedia.

Table 1: File Types

4.1 Ascii Test Cases

34

Windows Phone 8.1 File Fuzzer

The only application tested via Windows Phone 8.1 File Fuzzer using the Ascii test cases creator
was Internet Explorer. A html saved page from the web (yahoo greece home page) was mutated for
various string occurrences, searching for buffer overflows. Internet Explorer managed to open
without crashes all the test cases but during the lack of automation a great amount of possible test
cases were not created.

The pictures below shows the mutated html files and the Ascii folder the files are stored.

35

Illustration 20: Internet Explorer opens mutated file

Windows Phone 8.1 File Fuzzer

36

Illustration 21: html file mutations

Windows Phone 8.1 File Fuzzer

37

Illustration 22: Ascii Fuzzed Files Folder

Windows Phone 8.1 File Fuzzer

4.2 Binary Test Cases

On the contrary a greater amount of files were mutated and tested via the Binary test cases creator.
During this process only a suspicion of a crash occurred while .bmp files were launched, but it
probably was because of some kind of overload and when the same files were opened did not
provided any crashes.

Windows Phone applications managed to open or handle the errors of the files but the lack of
automation and the fact that Microsoft din not provided OEM tools is impossible to fully evaluate
the tool.

Binary File reading applications were tested for memory leaks and buffer overflows using bytes like
MAX_INT, MIN_INT, Ax1000 (for example, looking for buffer overflows), escape characters and
magic numbers.

During this process a large amount of test cases were created. For example a test case for each byte
of a small image file with approximately 700 KB of file size , creates 700K files, which makes the
fuzzing process impossible.

4.2.1 PNG

All the image reading applications (mentioned in the table above) tested during this thesis were able
to handle the mutated .png files. The images below shows some of the created test cases.

38

Windows Phone 8.1 File Fuzzer

39

Illustration 23: PNG mutated files

Windows Phone 8.1 File Fuzzer

4.2.2 JPEG

Like the PNG files JPEG files were properly executed from the tested applications. The images
below show some of the created test cases.

4.2.3 BMP

The tested applications managed to launch all the .bmp files. As mentioned earlier a crash of the file
browsing app occurred (Aerize Explorer) probably because of some kind of overload. After re-
launching the app and the test cases that were being launched during the time of the crash nothing
happened.

40

Illustration 24: JPEG mutated files

Windows Phone 8.1 File Fuzzer

After aerize explorer crashed and exited, delays on the phones functionality were noticed and the
apps screen was not showing applications' icons, but without the use of a debugger, further
investigation was not possible.

The images below test cases and their creation is showed.

41

Illustration 25: After the crash

Windows Phone 8.1 File Fuzzer

42

Illustration 26: BMP test cases creation

Windows Phone 8.1 File Fuzzer

43

Illustration 27: BMP mutated files

Windows Phone 8.1 File Fuzzer

44

Illustration 28: BMP mutated file opened via Photo viewer

Windows Phone 8.1 File Fuzzer

4.2.4 GIF

GIF mutated images were properly launched from the tested applications. Caption were not
captured.

4.2.5 DOC

Because of the compressed format of the DOCX files, DOC files were used because it was most
possible to create crashes. DOCX files are better fuzzed using generation-based fuzzers.
Nevertheless no crashes occurred and Windows Phone Office application properly handled the
“corrupted” files.

45

Illustration 29: Uncompressed DOCX file

Windows Phone 8.1 File Fuzzer

The pictures below show some of the mutated files and how Office handled them.

46

Illustration 30: DOC mutated files

Windows Phone 8.1 File Fuzzer

4.2.6 XLS

47

Illustration 31: DOC can't be opened

Illustration 32: DOC can't be opened 2

Windows Phone 8.1 File Fuzzer

As explained above for the .doc files .xls was used instead of .xlsx. Office had no problem to handle
the mutated files. The picture below shows an error message during an excel file execution.

4.2.7 ZIP

Compressed file types are usually being fuzzed with generation-based fuzzers for better results.
However Archiver application was fuzzed using Windows Phone 8.1 File Fuzzer which is a
mutation-based fuzzer. No crashes occurred and the application handled the mutated files. The
pictures below shows the process of fuzzing the Archiver application.

Most of the files were opened by the Archiver and for some of them error messages were shown.

48

Illustration 33: XLS can't be opened

Windows Phone 8.1 File Fuzzer

49

Illustration 34: ZIP mutated file unable to open

Illustration 35: ZIP mutated file unable to open 2

Windows Phone 8.1 File Fuzzer

50

Illustration 36: mutated ZIP 13

Windows Phone 8.1 File Fuzzer

51

Illustration 37: mutated ZIP 30

Windows Phone 8.1 File Fuzzer

52

Illustration 38: mutated ZIP 43

Windows Phone 8.1 File Fuzzer

4.2.8 PDF

PDFs are also compressed files and it is suggested to be fuzzed using generation-based fuzzers.
The mutated files created did not provided any crashes and both Acrobat Reader and PDF Reader
managed to handle the test cases. The pictures below show the process of creating and executing the
mutated .pdf files.

53

Illustration 39: PDF mutated files

Windows Phone 8.1 File Fuzzer

54

Illustration 40: PDF mutated file not valid

Windows Phone 8.1 File Fuzzer

4.2.9 EPUB

EPUB files are also compressed, thus the fuzzing process was not expected to produce crashes.
EPUB Reader was able to handle the mutated files. The pictures below shows the mutated files.

55

Illustration 41: EPUB mutated files

Windows Phone 8.1 File Fuzzer

5. Monitoring

After creating the test cases the most important thing (even more important) is monitoring.
Microsoft provides a number of tools for monitoring and debugging. The most interesting are
Windbg and Tshell, provided within Microsoft's OEM tools.

Using Tshell and Windbg a debugger can be attached to a process running inside the testing device.
Also Windbg gives the user the opportunity to save logs and dumps in any chosen directory.

Sadly, Microsoft only provides these tools to its Hardware Partners (OEMs), so the monitoring
process could not be done in this thesis.

56

Windows Phone 8.1 File Fuzzer

6. Conclusions

This thesis is the first attempt to create a File Fuzzer (as far as known) in a Windows Phone
environment and the security measures Microsoft took in it's mobile OS where hard to overcome.
The fact that Microsoft don't let 3rd party developers to launch and kill processes makes auto-
execution of the test cases nearly impossible. Also the fact that attaching a debugger to a process
inside Windows Phone needs tools that are provided only to registered OEM (Hardware
constructors) users is a drawback.

The fact that no clear crashes occurred during the fuzzing process indicates that it was not
successful, but the lack of automation makes the launching process very difficult and time
consuming. Also the fact that a debugger could not be used makes the monitoring process
impossible. This does not mean that the tool is useless. Fuzzing is not an exact science and needs a
great amount of seed files and test cases in order to get results.

Most definitely the tool would provide a decent amount of crashes if Microsoft had given the
opportunity to the developers to handle the file launching operation (this is why the “FUZZ!”
button does not work) and of course provided a debugger in order to investigate the crushes.

Nevertheless building a File Fuzzer for this OS was a very educational and interesting experience
and it is a starting point for anyone who wants to fuzz or create his own File Fuzzer for Windows
Phone.

57

Windows Phone 8.1 File Fuzzer

7. Further Work

While Windows Phone 8.1 File Fuzzer is a functional File Fuzzer, some major improvements need
to be done. Some of them are possible others are not, however most of these improvements are
important for a fully functional and competitive File Fuzzer.

The major drawbacks where mentioned in the Conclusions chapter and fixing them is not something
a developer can do, but the improvements mentioned below are some interesting functions the
Fuzzer could use.

7.1 Metasploit String Pattern Creator

Metasploit string pattern is “tool” used in metasploit framework which generates a string composed
of unique patterns that can be used instead of A sequences in order to let the user know in which
exact byte the target application crashed.

A metasploit string pattern creator will be a very useful addition to Ascii and Binary Test Case
Creation.

7.2 Code Coverage

In computer science, code coverage is a measure used to describe the degree to which the source
code of a program is tested by a particular test suite. A program with high code coverage has been
more thoroughly tested and has a lower chance of containing software bugs than a program with
low code coverage.[10]

Code coverage is needed to test how much of the target source code is being tested while fuzzing.

7.3 Generation Based

Generation Based Fuzzing was mentioned in chapter 1. Microsoft gives the developer the ability to
create his own custom files. This is an opening for a generation based Fuzzer addition to the
existing project.

Using the benefits of Generation Based Fuzzing for known file protocols increases the possibility of
finding exploitable crashes.

58

Windows Phone 8.1 File Fuzzer

Most of the leading fuzzing frameworks nowadays has mutation and generation based abilities.
Peach fuzzer for example allows testers to create smart fuzzers adapted to their needs through XML
configuration files called “Peach pit files”. Making such files needs knowledge of the format
message and state machine of the targeted protocol as well as the actor Peach has to fuzz.

7.4 Debugger

Finally, a debugger must be provided by Microsoft to help the developers and/or the testers to
determine if a crash is vulnerable or not.

The problem with the current SDK is that Microsoft does not provide the Classes/Methods to
develop a debugger.

59

Illustration 42: Data Model XML for Peach Fuzzer

Windows Phone 8.1 File Fuzzer

Bibliography

[1]. Michael Sutton, Adam Greene, Pedram Amini. “Fuzzing: Brute Force Vulnerability
Discovery”. Addison-Wesley, July 9, 2007.

[2].Codenomicon. The Buzz on Fuzzing. http://www.codenomicon.com/products/buzz-on-
fuzzing.shtml

[3]. Wikipedia. Fuzz Testing. http://en.wikipedia.org/wiki/Fuzz_testing

[4].INFOSEC Institute. Fuzzing-Mutation vs. Generation.
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/

[5].OWASP. Fuzzing. https://www.owasp.org/index.php/Fuzzing

[6].Wikipedia. Windows Phone. http://en.wikipedia.org/wiki/Windows_Phone

[7].Microsoft. Windows Phone Architecture Preview. https://dev.windowsphone.com/en-
us/OEM/docs/Getting_Started/Windows_Phone_architecture_overview

[8].Wikipedia. Windows Runtime. http://en.wikipedia.org/wiki/Windows_Runtime

[9].Microsoft. Windows Phone 8.1 Security Overview. Microsoft, April 2014.

[10]. Wikipedia. Code Coverage. http://en.wikipedia.org/wiki/Code_coverage

[11]. Collin Mulliner, Charlie Miller. Fuzzing the Phone in your Phone. Black Hat USA,
June 25, 2009.

[12]. Charles Miller. How smart is Intelligent Fuzzing-or-How stupid is Dumb Fuzzing.
Independent Security Evaluators, August 3, 2007.

[13]. Charlie Miller, Zachary N. J. Peterson. Analysis of Mutation and Generation-based
Fuzzing. Independent Security Evaluators, March 1, 2007.

[14]. Kevin Mahaffey, John Hering, Anthony Lineberry. Fuzzit: A Mobile Fuzzing Tool.
DEF CON 17, 2009.

[15]. Wouter Veugelen. Windows Phone 8. Mobile Application Penetration Testing, 2013.

[16]. Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, David Brumley. Optimizing Seed Selection for Fuzzing. 23Rd
Usenix Security Symposium, August 20-22, 2014.

60

http://en.wikipedia.org/wiki/Windows_Runtime
http://en.wikipedia.org/wiki/Code_coverage
https://dev.windowsphone.com/en-us/OEM/docs/Getting_Started/Windows_Phone_architecture_overview
https://dev.windowsphone.com/en-us/OEM/docs/Getting_Started/Windows_Phone_architecture_overview
http://en.wikipedia.org/wiki/Windows_Phone
https://www.owasp.org/index.php/Fuzzing
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://en.wikipedia.org/wiki/Fuzz_testing
http://www.codenomicon.com/products/buzz-on-fuzzing.shtml
http://www.codenomicon.com/products/buzz-on-fuzzing.shtml

Windows Phone 8.1 File Fuzzer

61

	1. Introduction
	1.1 Fuzzing Categorization by Type
	1.1.1 Mutation Based
	1.1.2 Generation Based

	1.2 Fuzzing Categorization by Target
	1.3 Windows Phone
	1.3.1 Windows Phone Architecture
	1.3.2 Windows Phone Runtime

	1.4 Windows Phone 8.1 Security
	1.4.1 Apps Security
	1.4.3 Summary

	1.5 Windows Phone 8.1 File Fuzzer Overview
	1.5.1 Considerations
	1.5.2 Overview

	1.6 Summary

	2. Windows Phone 8.1 File Fuzzer Development
	2.1 Windows Phone File Fuzzer Design
	2.1.1 Analysis of the Pages

	2.2 Windows Phone 8.1 File Fuzzer Functionality

	3. Windows Phone 8.1 File Fuzzer Demonstration
	3.1 Creating Ascii Test Cases
	3.2 Creating Binary Test Cases

	4. Testing
	4.1 Ascii Test Cases
	4.2 Binary Test Cases
	4.2.1 PNG
	4.2.2 JPEG
	4.2.3 BMP
	4.2.4 GIF
	4.2.5 DOC
	4.2.6 XLS
	4.2.7 ZIP
	4.2.8 PDF
	4.2.9 EPUB

	5. Monitoring

	6. Conclusions
	7. Further Work
	7.1 Metasploit String Pattern Creator
	7.2 Code Coverage
	7.3 Generation Based
	7.4 Debugger

	Bibliography

