
UNIVERSITY OF PIRAEUS

DOCTORAL THESIS

Event Recognition Under Uncertainty and
Incomplete Data

Author:

Anastasios SKARLATIDIS

Supervisor:

Prof. George G. VOUROS

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

University of Piraeus

Artificial Intelligence Group

Department of Digital Systems

in collaboration with the

National Centre for Scientific Research “Demokritos”

Institute of Informatics and Telecommunications

Software and Knowledge Engineering Laboratory

October 2014

http://www.unipi.gr
http://www.iit.demokritos.gr/~anskarl
http://ai-group.ds.unipi.gr/georgev/
http://www.unipi.gr
http://ai-group.ds.unipi.gr/ai-group
http://www.ds.unipi.gr
http://www.demokritos.gr
http://www.iit.demokritos.gr
https://www.iit.demokritos.gr/skel

“I do not fear computers. I fear the lack of them.”

— Isaac Asimov

Abstract

Symbolic event recognition systems have been successfully applied to a variety of appli-

cation domains, extracting useful information in the form of events, allowing experts

or other systems to monitor and respond when significant events are recognised. In a

typical event recognition application, however, these systems often have to deal with a

significant amount of uncertainty. In this thesis, we address the issue of uncertainty in

logic-based event recognition by extending the Event Calculus with probabilistic reason-

ing. The temporal semantics of the Event Calculus introduce a number of challenges for

the proposed model. We show how and under what assumptions we can overcome these

problems. Additionally, we study how probabilistic modelling changes the behaviour

of the formalism, affecting its key property, the inertia of fluents. Furthermore, we

demonstrate the advantages of the probabilistic Event Calculus through examples and

experiments in the domain of activity recognition, using a publicly available dataset for

video surveillance.

Περίληψη

Τα συμβολικά συστήματα αναγνώρισης γεγονότων έχουν χρησιμοποιηθεί επιτυχώς σε μία

ποικιλία εφαρμογών. Τα συστήματα αυτά εξάγουν χρήσιμη πληροφορία υπό την μορφή γε-

γονότων, που δίνουν τη δυνατότητα σε ειδικούς, ή σε άλλα συστήματα, να παρακολουθούν

και να ανταποκρίνονται στην παρουσία γεγονότων σημαντικού ενδιαφέροντος. Ωστόσο είναι

πολύ συχνό σε μία τυπική εφαρμογή αναγνώρισης γεγονότων να παρουσιάζεται σημαντι-

κή αβεβαιότητα. Σε αυτή την διατριβή, εστιάζουμε στα προβλήματα που προκύπτουν από

την παρουσία της αβεβαιότητας στην αναγνώριση γεγονότων. Επεκτείνουμε ένα φορμαλισμό

λογικής άλγεβρας γεγονότων με πιθανοτικό συμπερασμό. Η χρονικές σχέσεις του λογικού

φορμαλισμού εισάγουν ένα πλήθος δυσκολιών στα πιθανοτικά μοντέλα και παρουσιάζουμε

τον τρόπο και τις προϋποθέσεις με τις οποίες μπορούμε να ξεπεράσουμε αυτές τις δυσκο-

λίες. Παράλληλα, μελετάμε τον τρόπο με τον οποίο η πιθανοτική μοντελοποίηση επηρεάζει

την συμπεριφορά του φορμαλισμού. Επιπλέον, παρουσιάζουμε τις δυνατότητες και τα προ-

τερήματα των πιθανοτικών μεθόδων που αναπτύξαμε με εκτενή πειραματισμό και ανάλυση

στον τομέα της αναγνώρισης συμπεριφορών από βίντεο.

Acknowledgements

The completion of my PhD has been a long journey and so far is the most challenging

activity of my life. Pursuing a PhD is an astonishing but often an overwhelming experi-

ence. The best and worst moments of my doctoral journey have been shared with many

people. It would not have been possible to write this doctoral thesis without the help

and support of the kind people around me, to only some of whom it is possible to give

particular mention here.

First of all, I am deeply grateful to my supervisors, Professor George Vouros and Dr. Gior-

gos Paliouras for their continuous support, invaluable assistance and guidance all these

years. They taught me many things including tenacity, patience and the importance of

holding high scientific standards. Professor George Vouros has been supportive, patient

and always had valuable suggestions to my work. I enjoyed all discussions that we had

together and I appreciate his limitless encouragement, especially when I was facing dif-

ficulties to my work. Dr. Giorgos Paliouras has been a steady influence throughout my

PhD work. I attribute my level of PhD degree to his excellent scientific guidance and

willingness to share his extensive knowledge. He always challenged me with interesting

research questions, especially when we were discussing new ideas. I appreciate that he

taught me how to tackle new problems and how to develop new techniques to solve

them.

During my PhD I had the privilege to collaborate with Dr. Alexander Artikis. I wish to

thank him for his insightful comments and valuable advice to my work. I appreciate all

motivating discussions that we had together throughout our collaboration. I am grateful

for all the concepts that he taught me about logic programming and the Event Calculus.

I would like to thank my former colleague Jason Filippou for our cooperation and dis-

cussions about probabilistic logic programming. I wish to thank Professor Larry S. Davis

and Dr. Vlad I. Morariu from the University Maryland for their valuable comments and

suggestions to my work.

I gratefully acknowledge the funding sources that made my PhD work possible. I would

like to thank the National Centre for Scientific Research “Demokritos” for the award of a

postgraduate research studentship that provided the necessary financial support of this

work. Additionally, this work has been partially funded by the European Commission, in

the context of the PRONTO project (FP7-ICT 231738). I would like to thank the Institute

of Informatics and Telecommunications of the NCSR “Demokritos” and its staff, for the

computer facilities and the scientific support.

I would like to thank the EC Funded CAVIAR project/IST 2001 37540 for the publicly

available activity recognition dataset, which I have used extensively in all of my experi-

ments for this thesis.

Special thanks to my friends Ilias Zavitsanos, Matina Politi, Pantelis Nasikas, Aris Kos-

mopoulos, Antonis Anastasiadis, George Giannakopoulos and Vassilis Vatikiotis for their

emotional support, valuable friendship and for helping me get through the difficult times.

I really enjoyed the discussions that we had and the time that we spent together with

Ilias Zavitsanos, George Giannakopoulos and Aris Kosmopoulos, either while we were

working in the lab or enjoying a cup of coffee somewhere outside the research centre. It

was a pleasure to work with them and to benefit from their knowledge and friendship. I

appreciate all the insightful discussions that we had with Pantelis Nasikas about software

engineering, but most importantly I am grateful for the long-term friendship that we

have from our undergraduate studies.

I wish to thank my parents for all the moral support and the amazing chances they have

given me over the years. They were always supportive to my life and career choices,

to my successes and most important to my failures. I am so lucky to have them as my

parents and I hope that this work will make them proud.

I would like to thank my brother Stelios. When we where kids, he was the one that

taught me how to use a personal computer for the very first time. I appreciate all the

things that we did together and everything that he taught me. I am grateful for his

continuous support and encouragement to my work and my life.

Last, but by no means least, I need to thank my ever supportive partner in life. I would

like to dedicate this work to my wife Maria Vasiliou. She was constantly supportive,

from the very beginning of my undergraduate studies to the completion of the PhD.

We have shared together all the moments of my doctoral journey, including difficulties

and successes. Without her love and endless encouragement it would be impossible to

complete this work. Thank you Maria.

Anastasios Skarlatidis

Athens, October 2014

Contents

Abstract iii

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 17

1.1 Motivation . 18

1.2 Contributions . 20

1.3 Outline of the Thesis . 22

2 Background 23

2.1 Running Example: Activity Recognition . 23

2.2 The Event Calculus . 24

2.2.1 Domain-independent Axiomatisation 25

2.2.2 Domain-dependent Axiomatisation 28

2.3 Statistical Relational Learning . 29

2.3.1 Markov Logic Networks . 31

2.3.2 Probabilistic Logic Programming with ProbLog 36

2.4 Related Work . 39

2.4.1 Action formalisms . 39

x Contents

2.4.2 Event Recognition . 41

2.4.3 Event Recognition Under Uncertainty 44

2.4.4 Discussion . 52

3 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks 55

3.1 Axiomatisation . 56

3.2 Application to Activity Recognition . 58

3.3 Compact Knowledge Base Construction . 61

3.3.1 Simplified Representation . 61

3.3.2 Knowledge Base Transformation 62

3.4 The Behaviour of the MLN−EC . 65

3.4.1 Soft-constrained rules in Σ . 65

3.4.2 Soft-constrained inertia rules in Σ′ 66

3.5 Conclusions . 70

4 Experimental Evaluation of MLN−EC 71

4.1 Setup . 71

4.1.1 The Methods Being Compared . 74

4.2 Network Size and Inference Times . 75

4.3 Experimental Results of the ECcrisp . 76

4.4 Experimental Results of the Probabilistic Methods 77

4.4.1 Task I . 77

4.4.2 Task II . 81

4.5 Conclusions . 86

5 ProbLog−EC: Probabilistic Event Calculus based on Logic Programming 87

5.1 Axiomatisation . 88

5.2 Application to Activity Recognition . 91

5.3 The Behaviour of the ProbLog−EC . 96

5.3.1 Multiple Initiations and Terminations 96

5.3.2 Single Initiation and Termination 100

5.4 Conclusions . 102

6 Experimental Evaluation of ProbLog−EC 103

Contents xi

6.1 Performance evaluation without Artificial Noise 103

6.2 Performance evaluation with Artificial Noise 104

6.2.1 Experiments With Smooth Noise 107

6.2.2 Experiments With Intermediate Noise 110

6.2.3 Experiments With Strong Noise . 112

6.3 Conclusions . 114

7 Conclusions and Future Work 117

7.1 Conclusions . 117

7.2 Future Work . 118

Bibliography 123

Index 140

Glossary 143

Symbols 145

List of Figures

1.1 High-level view of an event recognition system 19

2.1 Event recognition with the Event Calculus 28

2.2 Statistical Relational Learning . 30

3.1 The structure of the MLN−EC . 56

3.2 An example of event recognition with the MLN−EC 60

3.3 The behaviour of MLN−EC when initiation and termination clauses become

soft-constrained . 66

3.4 The behaviour of MLN−EC when all inertia clauses are soft-constrained with

equal weights . 68

3.5 The behaviour of MLN−EC when inertia clauses are soft-constrained with

arbitrary weights . 69

4.1 Task I: F1 scores of the probabilistic methods, using different threshold

values . 78

4.2 Task II: Average F1 scores over five runs when data are removed. 84

4.3 Average AUPRC scores over five runs when data are removed. Marginal

inference is used. 84

xiv List of Figures

4.4 Average F1 scores over five runs when data are removed. MAP inference

is used. 85

4.5 Average precision over five runs when data are removed. MAP inference

is used. 85

4.6 Average recall over five runs when data are removed. MAP inference is

used. 85

5.1 Example of CE probability fluctuation in the presence of multiple initia-

tions and terminations. 97

5.2 A fragment of the SLD tree for CE moving at time-point 22. 98

5.3 The probability of CE moving for various time-points. 100

5.4 Example of CE probability fluctuation in the presence of a single initiation

and a single termination. 101

6.1 Occurrences of normal and spurious walking SDEs with probability above

0.5 per Gamma mean value . 106

6.2 ECcrisp and ProbLog−EC F-measure per Gamma mean value under smooth

noise and a 0.5 threshold. 108

6.3 ECcrisp and ProbLog−EC F-measure per Gamma mean value under smooth

noise, with recognition threshold 0.3. 109

6.4 ECcrisp and ProbLog−EC F-measure per Gamma mean value under smooth

noise, with recognition threshold 0.7. 110

6.5 ECcrisp and ProbLog−EC F-measure per Gamma mean value under inter-

mediate noise and a 0.5 recognition threshold. 111

6.6 ECcrisp and ProbLog−EC F-measure per Gamma mean value under inter-

mediate noise and a recognition threshold 0.3. 113

List of Figures xv

6.7 ECcrisp and ProbLog−EC F-measure per Gamma mean value under inter-

mediate noise and a recognition threshold 0.7. 114

6.8 ECcrisp and ProbLog−EC F-measure per Gamma mean value under strong

noise and a 0.5 recognition threshold. 115

6.9 ECcrisp and ProbLog−EC F-measure per Gamma mean value under strong

noise in moving and different recognition thresholds. 116

List of Tables

2.1 The Event Calculus predicates. 25

2.2 Symbolic Event Recognition methods that can handle uncertainty. 46

3.1 The MLN−EC predicates. 56

4.1 Example training sets for CE moving. 73

4.2 Variants of MLN−EC, using hard and soft inertia rules in Σ′. 74

4.3 Probabilistic inference running times of MLN−EC. 76

4.4 Results for the moving and meeting CE using marginal inference. 79

4.5 Results for the moving and meeting CE using MAP inference 79

5.1 Main predicates of the ProbLog−EC. 88

6.1 True Positives (TP), False Positives (FP), False Negatives (FN), Precision,

Recall and F-measure on the dataset without artificial noise. 104

To my beloved wife, Maria.

1 | Introduction

“The only reason for time is so that everything doesn’t happen at once.”
— Albert Einstein

Today’s organisations depend upon multiple layered and distributed information systems.

As time evolves these systems share, collect and process data in various structured and

unstructured digital formats. In public transport management, for example, buses, trams

and trains, are equipped with multiple sensors, such as accelerometers, GPS devices,

etc. In video surveillance systems, multiple cameras send streams of video frames. In

computer networks, network packages are continuously exchanged between multiple

computers. At each point in time, data are exchanged as unrelated pieces of information

that flows silently across the information systems. When such information is aggregated

and correlated, it might become a source of significant knowledge and represent activities

of importance for an organisation. For example, at some point in time the sensor data

from public transportation vehicles may describe an ongoing traffic congestion, or that

the passenger safety in a bus is being significantly reduced. In video surveillance, the

stream of video frames may indicate that an accident may have happened. Finally, in

computer networks an abnormal high volume of network packet exchange may indicate

a possible attempt of distributed denial of service attack. These pieces of information,

together with their temporal occurrence, can be represented by events.

An event1 is simply something that happens, or contemplated as happening [Luckham

and Schulte, 2011]. It provides the fundamental abstraction for representing time-

evolving pieces of information. It can be anything, such as a sensor signal, a video

frame, a financial transaction, a GPS coordinate, as well as the result of some intelligent

processing, e.g., a person walking to some direction, traffic congestion, etc. Regardless

of the type of information that it curries, the important property of an event is that it

occurs for some period of time. Temporally, the occurrence of an event may come in all
1In general, the concept of ‘event’ is defined differently in scientific disciplines of Computing, Artificial

Intelligence, Philosophy, Mathematics, Physics, Psychology, etc. A unified definition of ‘event’ is beyond the
scope of this thesis. We investigate events only from the scope of Artificial Intelligence and Complex Event
Processing.

18 Introduction

sizes. It may happen instantaneously at some point in time (e.g., today at 17:00 o’clock)

or during some interval of time (e.g., today from 17:00 to 17:05 o’clock). Although an

event as an entity represents a single piece of information, it might be related to other

events in various ways, e.g., temporally, spatially, causally, etc. Furthermore, related

events tend to occur in patterns, possibly mixed with other unrelated events. For exam-

ple, in video surveillance the events representing that some people are walking together

at the same time (temporal relation), in close distance and in a similar direction (spatial

relations), may indicate the situation that those particular persons are moving together

(event pattern).

The automatic detection of such event patterns has received attention in a variety of

application domains, such as health care monitoring, public transport management,

telecommunication network monitoring, credit card fraud detection and activity recogni-

tion [Artikis et al., 2012b; Etzion and Niblett, 2010; Luckham, 2002, 2011; Turaga et al.,

2008]. Systems implementing symbolic event recognition methods — also known as event
pattern matching or event pattern detection systems — aim to extract useful information,

in the form of events, by processing time-evolving data that comes from various sources

(e.g., various types of sensor, surveillance cameras, network activity logs, etc.). The

extracted information can be exploited by other systems or human experts, in order to

monitor an environment and respond to the occurrence of significant events.

As shown in Figure 1.1, the input to a symbolic event recognition system is composed

of at least one linearly ordered sequence of time-evolving data, i.e., a stream. That

input stream consists of time-stamped symbols, called simple, derived events (SDEs).

Each SDE is an event that is generated by some external process applied to a single

observation. Consider, for example, a video tracking system detecting that someone is

walking. That system processes the raw video frames and generates a sequence of SDEs

that represent that someone is walking for some points in time. Based on such time-

stamped SDEs as input, the symbolic event recognition system detects patterns of events.

Every recognised instance of event pattern is represented as a composite event (CE). For

instance, that some people are moving together. The event patterns are predefined from

domain experts and capture knowledge of significant CE for the target application. A CE

is like a regular event, but could only happen when other related events (SDE or CE)

have happened under some specific constraints (e.g., temporal and spatial relations).

Therefore, its recognition is associated with the occurrence of various SDEs and/or other

CEs, involving multiple entities, e.g., people, vehicles or other objects, etc. CEs, are

therefore, relational structures over other sub-events, either CEs or SDEs.

1.1 Motivation

Symbolic approaches that adopt logic-based representation, in particular, can naturally

and compactly represent relational CE structures — the Event Calculus formalism [Artikis

Introduction 19

INPUT I RECOGNITION I OUTPUT �

Event
Recognition

System

CE Definitions

Streams of SDEs

.

.

Recognised CEs

.

.

FIGURE 1.1: High-level view of an event recognition system. Domain experts provide
a set of CE patterns to the event recognition system. Thereafter, the event recognition
system accepts input streams of SDEs and constantly seeks to identify CEs. The output
of the system is a stream or multiple streams of recognised CEs.

et al., 2010a; Kowalski and Sergot, 1986] and the Chronicle Recognition System [Dous-

son, 1996; Dousson and Maigat, 2007] are examples of such approaches. Logic-based

systems employ formal and declarative semantics. Moreover, they provide solutions that

allow one to easily incorporate and exploit prior knowledge from domain experts, in

order to improve the accuracy of the event recognition system. Specifically, CEs with

multiple complex temporal and spatial relations among other events can naturally be

defined using a declarative language. Given that a declarative language states what is

to be computed, not necessarily how it is to be computed, declarative semantics can

be more easily applied to a variety of settings, not just those that satisfy some low-level

operational criteria. However, pure logic-based systems cannot handle uncertainty which

naturally exists in many real-world event recognition applications.

Unfortunately, uncertainty is an unavoidable aspect of real-world event recognition ap-

plications and it appears to be a consequence of several factors [Shet et al. 2007; Artikis

et al. 2010a; Etzion and Niblett 2010, Section 11.2; Gal et al. 2011]. Under situations of

uncertainty, the performance of a Symbolic Event Recognition system may be seriously

compromised. Below we outline the types of uncertainty that might appear in an event

recognition application:

Erroneous SDEs. Noisy observations result to streams containing erroneous SDE. For

example, noise in the signal transmission may distort the observed values.

Incomplete SDE streams. Partial observations result in incomplete SDE streams. For

example, a sensor may fail for some period of time and stop sending information,

interrupting the detection of a SDE.

Imperfect CE definitions. Low-level detection systems often cannot detect all SDEs re-

quired for CE recognition, e.g. due to a limited number of sensing sources. Logical

20 Introduction

definitions of CEs, therefore, have to be constructed upon a limited and often in-

sufficient dictionary of SDEs. Furthermore, when Machine Learning algorithms

are used, similar patterns of SDEs may be inconsistently annotated. As a result,

CE definitions and background knowledge, either learnt from data or derived by

domain experts cannot strictly follow the annotation.

Statistical approaches, in particular variants of probabilistic graphical models, have been

successfully applied to event recognition in a variety of applications where uncertainty

exists (e.g., [Brand et al., 1997; Shi et al., 2006]). Probabilistic graphical models can

naturally model uncertainty through the use of probability theory [Getoor and Taskar

2007, Chapter 2; Koller and Friedman 2009]. Moreover, the structure of graphical models

exploits the independence properties that exist in real-world applications, in order to

compactly represent high-dimensional probability distributions. Although, graphical

models provide a general-purpose probabilistic approach to model uncertain relations

among entities, they lack a declarative and logic-based representation language. As a

result the definition of CEs and the use of background knowledge is not straightforward.

Furthermore, statistical approaches are data-driven and they are therefore dependent

upon the data used for training. Background knowledge (e.g., knowledge expressed by

domain experts) may describe situations that do not appear in the training data or are

difficult to collected and annotate.

In conclusion, the motivation behind this thesis is twofold. One motivating factor is

the requirement to compactly represent relational definitions of CEs and background

knowledge, using a logic-based declarative representation language. The other source

of motivation comes from the necessity to robustly handle various forms of uncertainty,

using statistical methods.

1.2 Contributions

In this thesis we focus on symbolic event recognition with a logic-based representation,

under situations where various forms of uncertainty hold. We explore the domain of

Statistical Relational Learning under the scope of Event Recognition and propose two

probabilistic and logic-based methods MLN−EC and ProbLog−EC. To demonstrate the

benefits of the proposed approaches, the methods are evaluated in the real-life event

recognition task of human activity recognition.

Both MLN−EC and ProbLog−EC extend discrete variants of the Event Calculus [Kowalski

and Sergot, 1986] formalism with probabilistic modelling. The Event Calculus is a

formalism for reasoning about events and their effects. Beyond its advantages as logic-

based formalism with formal and declarative semantics, one of the most interesting

Introduction 21

properties of the Event Calculus is that it handles the persistence of CEs with domain-

independent axioms. Specifically, CEs persist over time unless they are interrupted by

the occurrence of other events (SDEs or CEs).

MLN−EC employs the statistical relational framework of Markov Logic Networks (MLNs)

[Domingos and Lowd, 2009] that combines the expressivity of first-order logic with

the formal probabilistic properties of undirected graphical models — see de Salvo Braz

et al. [2008], de Raedt and Kersting [2010] and Blockeel [2011] for surveys on logic-

based probabilistic models. By combining the Event Calculus with MLNs, we present

a principled and powerful probabilistic logic-based method for event recognition. The

probabilistic modelling of MLN−EC uses weights in CE definitions, in order to handle

the uncertainty that stems from limited dictionary of SDEs, incomplete SDE streams,

annotation inconsistencies and imperfect CE definitions.

ProbLog−EC combines the Event Calculus with the probabilistic logic programming frame-

work of ProbLog [Kimmig et al., 2011]. In contrast to MLN−EC, this dialect of the proba-

bilistic Event Calculus handles noise in the input stream (i.e., erroneous SDEs), repre-

sented as detection probabilities of the SDE.

In particular, the contributions of this thesis are the following:

• MLN−EC is the first probabilistic version of the Event Calculus that is suitable for

event recognition. The method inherits the domain-independent properties of the

Event Calculus and supports the probabilistic recognition of CEs under situations

of limited dictionary of SDEs, incomplete SDE streams, annotation inconsistencies

and imperfect CE definitions.

• MLN−EC provides an efficient representation of the Event Calculus axioms and CE

definitions in MLNs, in order to avoid the combinatorial explosion caused by the

expressivity of the logical formalism.

• MLN−EC extends MLNs with a preprocessing step that translates the entire knowl-

edge base into a compact form, in order to reduce the complexity of learning and

inference.

• Under different conditions of interest, MLN−EC can model various types of CE per-

sistence, ranging from deterministic to purely probabilistic. This is illustrated by a

thorough study of the behaviour of CE persistence.

• ProbLog−EC is probabilistic logic-programming version of the Event Calculus that

handles noise in the input stream.

• Experimental evaluation of the performance for both probabilistic methods in real-

world benchmark dataset for activity recognition. The experimental analysis out-

lines the advantages and the benefits of uncertainty handling by employing proba-

bilistic modelling.

22 Introduction

Parts of this thesis have been published or are in the process of being published in the

following articles:

Journal publications

� Skarlatidis A., Paliouras G., Artikis A. and Vouros G. Probabilistic Event Calculus
for Event Recognition, Transactions of Computational Logic (TOCL), under review
(accepted with minor changes).

� Skarlatidis A., Artikis A., Filippou J. and Paliouras G. A Probabilistic Logic Program-
ming Event Calculus, Theory and Practice of Logic Programming (TPLP), To appear.

� Artikis A., Skarlatidis A., Portet F. and Paliouras G. Logic-Based Event Recognition,
Knowledge Engineering Review, 27(4):469-506, 2012.

� Artikis A., Skarlatidis A. and Paliouras G. Behaviour Recognition from Video Content:
A Logic Programming Approach, International Journal of Artificial Intelligence Tools,
19(2), 2010.

Conference publications

� Skarlatidis A., Paliouras G., Vouros G. and Artikis A. Probabilistic Event Calculus
based on Markov Logic Networks. Proceedings of International Symposium on Rules
(RuleML), Springer, 2011.

� Artikis A., Paliouras G., Portet F. and Skarlatidis A. Logic-Based Representation,
Reasoning and Machine Learning for Event Recognition, International Conference on
Distributed Event-Based Systems (DEBS), ACM, 2010.

1.3 Outline of the Thesis

In Chapter 2, we provide the required background for the Event Calculus and Statistical

Relational Learning. We also review and discuss the literature in probabilistic and sym-

bolic event recognition. Chapter 3 presents the first proposed method (MLN−EC) for event

recognition that handles uncertainty with the use of probabilistic graphical models. We

then, in Chapter 4, present the evaluation results of MLN−EC using a publicly available

dataset for activity recognition. In Chapter 5, we present the second proposed approach

(ProbLog−EC) for event recognition that handles uncertainty using probabilistic logic

programming techniques. In Chapter 6, we present the evaluation results of ProbLog−EC
on the same dataset for activity recognition. Finally, in Chapter 7, we present the main

conclusions of this work along with discussion regarding the open issues and future

directions.

2 | Background

“There should be no such thing as boring mathematics.”
— Edsger Dijkstra

In this thesis we focus on symbolic event recognition with a logic-based representation

under situations where various forms of uncertainty hold. This chapter provides the

required background for our work. Starting from the running example, in Section 2.1 we

present the activity recognition application where we draw our examples from through-

out this thesis, as well as demonstrate the features and the performance of the proposed

methods. The methods that are developed in this work combine the Event Calculus

formalism with Statistical Relational Learning. In particular, Section 2.2 presents briefly

the Event Calculus formalism. Then in Section 2.3, we present the two state-of-the-art

Statistical Relational Learning frameworks that we used in this work; that is Markov

Logic Networks and ProbLog. Finally, in Section 2.4, we present related work in the

domain of probabilistic and symbolic event recognition.

2.1 Running Example: Activity Recognition

To demonstrate the methods that we have developed in this work, we use the publicly

available benchmark dataset of the CAVIAR project1. The aim is to recognise complex ac-

tivities that take place between multiple persons, by exploiting information about simple

observed individual activities. This dataset comprises 28 surveillance videos, where each

frame is annotated by human experts from the CAVIAR team on two levels. The first

level contains simple, derived events (SDEs) that concern activities of individual persons

or the state of objects. The second level contains composite event (CE) annotations,

describing the activities between multiple persons and/or objects — i.e., people meeting

and moving together, leaving an object and fighting. Below we briefly describe the

input of the activity recognition application:
1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1

24 Background

1. The input to our methods is a stream of SDEs, representing people walking,

running, staying active, or inactive. The first and the last time that a person or

an object is tracked are represented by the SDEs enter and exit. Additionally, the

coordinates of tracked persons or objects are also taken into consideration in order

to express qualitative spatial relations, e.g. two persons being relatively close to

each other.

2. The definitions of the CEs meeting, moving, leaving an object and fighting

were developed in Artikis et al. [2010b]. These definitions take the form of common

sense rules and describe the conditions under which a CE starts or ends. For

example, when two persons are walking together with the same orientation, then

moving starts being recognised. Similarly, when the same persons walk away from

each other, then moving stops being recognised.

Based on the input stream of SDEs and the CE definitions, the aim is to recognise

instances of the CEs of interest.

In this work, we do not process the raw video data in order to recognise individual

activities. Instead we use the SDEs provided in the CAVIAR dataset. Despite its manual

annotation, the level of ambiguity in the dataset is high. First, there is a limited dictionary

of SDEs and context variables and thus the same pattern of SDEs may be ambiguously

annotated by the evaluators [List et al., 2005]. Additionally, the CE definitions that we

use in this work comprise common domain knowledge and do not follow the annotated

data strictly. As a result, regarding the annotation of the dataset, the CE definitions are

imperfect. This issue is addressed by the MLN−EC method in Chapter 3 and demonstrated

in Chapter 4.

Furthermore, in reality the input SDEs are commonly recognised with some certainty by

some external low-level classifier. This certainty is usually given in the form of probability,

expressing the level of uncertainty that an SDE is detected by the low-level classifier. The

ProbLog−EC method deals with the uncertainty in the input, as it is presented in Chapter

5 and demonstrated in Chapter 6.

Further details about the dataset, examples and the formal definitions of CEs are given

throughout the following chapters.

2.2 The Event Calculus

The Event Calculus, originally introduced by Kowalski and Sergot [1986], is a many-

sorted first-order predicate calculus for reasoning about events and their effects. A num-

ber of different dialects have been proposed using either logic programming or classical

Background 25

Predicate Meaning

initiallyP(F) Fluent F holds at time-point 0

initiallyN(F) Fluent F does not hold at time-point 0

holdsAt(F , T) Fluent F holds at time-point T

happens(E , T) Event E occurs at time-point T

initiates(E , F , T) Event E initiates fluent F at time-point T

terminates(E , F , T) Event E terminates fluent F at time-point T

clipped(F , T0, T1) Fluent F is terminated at some time-point in the interval [T0, T1)

declipped(F , T0, T1) Fluent F is initiated at some time-point in the interval [T0, T1)

TABLE 2.1: The Event Calculus predicates.

logic — see Shanahan [1999], Miller and Shanahan [2002] and Mueller [2008] for sur-

veys. Most Event Calculus dialects share the same ontology and core domain-independent

axioms. The ontology consists of time-points, events and fluents. The underlying time

model is often linear and may represent time-points as real or integer numbers. A fluent
is a property whose value may change over time. When an event occurs it may change

the value of a fluent. The core domain-independent axioms define whether a fluent holds

or not at a specific time-point. Moreover, the axioms incorporate the common sense law
of inertia, according to which fluents persist over time, unless they are affected by the

occurrence of some event.

2.2.1 Domain-independent Axiomatisation

In this work we consider finite domains of time-points, events and fluents, that are rep-

resented by the finite sets T , E and F , respectively. Similarly, all individual entities that

appear in a particular event recognition task, e.g., persons, objects, etc., are represented

by the constants of the finite set O. Among the many variants of the formalism, we chose

as a starting point for our work to present two dialects of the Event Calculus that are

formally defined in first-order logic.

Full Event Calculus

Shanahan’s Full Event Calculus is formally defined in first-order logic [Shanahan, 1999].

For simplicity and without loss of generality the predicate releases is excluded. This

predicate is domain-dependent and defines under which conditions the law of inertia for

a fluent is disabled. All fluents, therefore, are subject to inertia. Table 2.1 summarises the

main elements of the Event Calculus. Variables (starting with an upper-case letter) are

assumed to be universally quantified unless otherwise indicated. Predicates, functions

and constants start with a lower-case letter.

26 Background

The domain-independent axioms of the Full Event Calculus are presented below, where

F ∈ F , E ∈ E and T, T0, T1 ∈ T . Specifically, the axioms that determine when a fluent

holds are defined as follows:

holdsAt(F , T)⇐
initiallyP(F) ∧
¬clipped(F , 0, T)

(2.1)

holdsAt(F , T)⇐
happens(E , T0) ∧
initiates(E , F , T0) ∧
T0 < T ∧
¬clipped(F , T0, T)

(2.2)

According to axiom (2.1), a fluent holds at time T if it held initially and has not been

terminated in the interval [0, T). According to axiom (2.2), a fluent holds at time T if it

was initiated at some earlier time T0 and has not been terminated between T0 and T .

The axioms that determine when a fluent does not hold, are defined below:

¬holdsAt(F , T)⇐
initiallyN(F) ∧
¬declipped(F , 0, T)

(2.3)

¬holdsAt(F , T)⇐
happens(E , T0) ∧
terminates(E , F , T0) ∧
T0 < T ∧
¬declipped(F , T0, T)

(2.4)

Axiom (2.3) defines that a fluent does not hold at time T if it did not hold initially and

has not been initiated in the interval [0, T). Axiom (2.4) defines that a fluent does not

hold at time T if it was terminated earlier at T0 and has not been initiated between T0

and T .

The auxiliary domain-independent predicates clipped and declipped are defined be-

low:

clipped(F , T0, T1)⇔
∃ E, T happens(E , T) ∧

T0 ≤ T ∧ T < T1 ∧
terminates(E , F , T)

(2.5)

Background 27

declipped(F , T0, T1)⇔
∃ E, T happens(E , T) ∧

T0 ≤ T ∧ T < T1 ∧
initiates(E , F , T)

(2.6)

According to axiom (2.5), a fluent is clipped in [T0, T1) when the occurrence of an event

terminates the fluent in that interval. In the same manner, axiom (2.6) defines that a

fluent is declipped in [T0, T1) when the occurrence of an event initiates the fluent in that

interval. Below we present two commonly used dialects of the Event Calculus that are

both formalised in first-order logic.

Discrete Event Calculus

An alternative formalisation of the Event Calculus is the Discrete Event Calculus2 (DEC),

which has been proved to be logically equivalent to the Event Calculus when the domain

of time-points is limited to integers [Mueller, 2008] — i.e., T ∈ Z. The original DEC

is composed of twelve domain-independent axioms. Similar to the Full Event Calculus,

for the task of event recognition, we focus only on the domain-independent axioms that

determine the influence of events to fluents and the inertia of fluents. We do not consider

the predicates and axioms stating when a fluent is not subject to inertia (releases and

releasedAt), as well as its discrete change based on some domain-specific mathematical

function (trajectory and antiTrajectory).

The domain-independent axioms of the DEC are presented below, where F ∈ F , E ∈ E
and T ∈ T . The axioms that determine when a fluent holds are defined as follows:

holdsAt(F , T+1)⇐
happens(E , T) ∧
initiates(E , F , T)

(2.7)

holdsAt(F , T+1)⇐
holdsAt(F , T) ∧
¬∃ E happens(E , T) ∧
terminates(E , F , T)

(2.8)

According to axiom (2.7), when an event E that initiates a fluent F occurs at time T ,

the fluent holds at the next time-point. Axiom (2.8) implements the inertia of fluents,

dictating that a fluent continues to hold unless an event terminates it.
2An open-source implementation of the Discrete Event Calculus is available in http://decreasoner.

sourceforge.net

http://decreasoner.sourceforge.net
http://decreasoner.sourceforge.net

28 Background

The axioms that determine when a fluent does not hold, are defined similarly:

¬holdsAt(F , T+1)⇐
happens(E , T) ∧
terminates(E , F , T)

(2.9)

¬holdsAt(F , T+1)⇐
¬holdsAt(F , T) ∧
¬∃ E happens(E , T) ∧
initiates(E , F , T)

(2.10)

Axiom (2.9) states that when an event E that terminates a fluent F occurs at time T ,

then the fluent does not hold at the next time-point. Axiom (2.10) specifies that a fluent

continues not to hold unless an event initiates it.

In contrast to the Full Event Calculus, DEC axioms are defined over successive time-points.

In particular, axioms (2.7)–(2.10) are quantified over a single time-point variable T . As

a result, the number of ground clauses is substantially smaller than in the Full Event

Calculus. This simplification over time variables is particularly useful in situations where

we require to ground the entire knowledge base, in order to perform event recognition

over all time-points of an input stream of events.

2.2.2 Domain-dependent Axiomatisation

In the Event Calculus the predicates happens, initiates and terminates are defined

only in a domain-dependent manner. In particular, the predicates initiates and

terminates specify under which circumstances a fluent — representing a CE in event

recognition — is to be initiated or terminated at a specific time-point. Consider, for exam-

ple, that the CE meeting between two persons begins to be recognised when the persons

are standing close to each other. Similarly, the meeting stops being recognised when

the persons are walking away. Due to the common sense law of inertia, the meeting

activity holds at any time-point between the initiation and termination time-points. A

fluent does not hold at the time of the event that initiates it but does hold at the time

of the event that terminates it. Thus the intervals over which fluents hold are left-open

and right-closed. Therefore, as illustrated in Figure 2.1 at this interval the CE meeting

is recognised.

time I
... ...

initiation termination

meeting

FIGURE 2.1: Event recognition with the Event Calculus

Background 29

The input evidence, expressing the occurrence of SDEs at specific time-points, is rep-

resented using a collection of happens predicates. This collection forms a narrative in

the Event Calculus. Specifically, a narrative comprises a collection of (ground) happens

predicates that represent a distinguished history of SDEs occurrences. All axioms appeal,

directly or indirectly, to the narrative.

Detailed examples about the structure of the domain-dependent axioms and the input

narrative are given throughout the chapters of the thesis.

2.3 Statistical Relational Learning

Similar to any pure logic-based formalism, the Event Calculus can compactly represent

complex event relations. A knowledge base of Event Calculus axioms and CE definitions

is defined by a set of first-order logic formulas. Each formula is composed of predicates

that associate variables or constants, representing SDEs, CEs, time-points, etc. One of

the strong motivations for using such a relational representation is its ability to directly

express dependencies between related instances — e.g., events. While this type of rep-

resentation is highly expressive, it cannot handle uncertainty. Each formula imposes a

(hard) constraint over the set of possible worlds, that is, Herbrand interpretations. A

missed or an erroneous SDE detection can have a significant effect on the event recog-

nition results. For example, an initiation may be based on an erroneously detected SDE,

causing the recognition of a CE with absolute certainty.

Statistical machine learning systems, e.g., methods that are based on probabilistic graph-

ical models [Lafferty et al., 2001; Murphy, 2002; Rabiner and Juang, 1986], adopt a

probabilistic approach to handle uncertainty. Such probabilistic models have been suc-

cessfully used in real-word applications that involve various forms of uncertainty, such as

speech recognition, natural language processing, activity recognition, etc. By employing

statistical learning techniques, the parameters of such models are estimated automati-

cally from training example sets. Traditionally, such methods have been developed to

exploit data in propositional attribute-value form. Typically, the data is represented in

tabular form, where the rows of the single data table represent the example instances and

the columns represent the attributes [Getoor and Taskar, 2007; Kersting, 2006, Chapter

1]. Compared to logic-based methods, probabilistic methods are less flexible for applica-

tions containing several entities and relations among them. By relying on propositional

representations, it is difficult to represent complex relational data or assimilate prior

domain knowledge (e.g., knowledge from experts or common sense knowledge). When

the target application requires more expressive modelling capabilities, these methods

typically are extended specifically for the application in an ad-hoc fashion — see for

example the methods of Brand et al. [1997]; Gong and Xiang [2003]; Vail et al. [2007];

Wu et al. [2007] and Liao et al. [2005].

30 Background

To deal with both uncertainty and relational modelling, the research communities of

Inductive Logic Programming (ILP) and statistical Machine Learning (ML) have began

to incorporate aspects of complementary techniques under the domain of Statistical Rela-

tional Learning (SRL) — detailed surveys about SRL methods can be found in de Raedt

and Kersting [2008, 2010]; de Salvo Braz et al. [2008]; Getoor [2001]; Getoor and

Taskar [2007]; Kersting [2006] and Blockeel [2011]. In particular the ILP community

developed logic-based methods that incorporate probabilistic or stochastic modelling —

see for example the methods proposed by Cussens [1999]; Muggleton [2000]; Ng and

Subrahmanian [1992]; Ngo and Haddawy [1997] and Sato and Kameya [2001]. On

the other hand, the statistical ML community extended probabilistic methods to handle

relational data modelling — see for example the methods proposed by Getoor [2003,

2006] and Sutton and McCallum [2007].

Statistical Relational Learning (SRL) aims to develop methods that can effectively rep-

resent, reason and learn in domains with uncertainty and complex relational structure

(e.g., relations among instances of SDEs and CEs). As shown in Figure 2.2, SRL com-

bines a logic-based representation with probabilistic modelling and machine learning. In

the domain of event recognition, the logic-based representation allows one to naturally

define the relations between events and incorporate existing domain knowledge. This

powerful representation is combined with probabilistic modelling, in order to naturally

handle uncertainty. Using machine learning techniques, the model can automatically be

estimated or refined according to the given set of example data.

LOGIC

Formal and
declarative
relational
representation

LEARNING

Improving performance
through experience

PROBABILITIES
Sound mathematical
foundation for
reasoning under
uncertainty

FIGURE 2.2: The research domain of Statistical Relational Learning combines logic-
based representation with probabilistic modelling and machine learning.

Another advantage of SRL is that its probabilistic and logic-based representation naturally

enables parameter sharing (also known as parameter tying). Specifically, the logic-based

representation defines declaratively templates in the form of rules. Given some input

evidence (e.g., observed SDEs), all instantiations of a particular rule share an identical

structure and the same parameter (e.g., a weight value or some probability). Therefore,

the number of parameters is reduced and the probability distribution is simplified, result-

ing to more efficient inference and learning. This parameter sharing is essentially similar

to the plates notation [Buntine, 1994] or the transition probability distribution sharing

Background 31

between all states over time in Hidden Markov Models [Rabiner and Juang, 1986], but

more generic as it is based on a logical representation.

In the following sub-sections we briefly present the two state-of-the-art SRL methods that

we employ in this thesis. The first method is Markov Logic Networks, which is a frame-

work that combines first-order logic representation with Markov Network modelling. The

second is ProbLog, which is a probabilistic extension to logic programming.

2.3.1 Markov Logic Networks

Markov Logic Networks3 (MLNs) [Domingos and Lowd, 2009] soften the constraints that

are imposed by the formulas of a knowledge base and perform probabilistic inference. In

MLNs, each formula Fi is represented in first-order logic and is associated with a weight

value wi ∈ R. The higher the value of weight wi, the stronger the constraint represented

by formula Fi. In contrast to classical logic, all worlds in MLNs are possible with a certain

probability. The main idea behind this is that the probability of a world increases as the

number of formulas it violates decreases.

A knowledge base in MLNs may contain both hard and soft-constrained formulas. Hard-

constrained formulas are associated with an infinite weight value and capture the knowl-

edge which is assumed to be certain. Therefore, an acceptable world must at least

satisfy the hard constraints. Soft constraints capture imperfect knowledge in the domain,

allowing for the existence of worlds in which this knowledge is violated.

Formally, a knowledge base L of weighted formulas, together with a finite domain of

constants C, is transformed into a ground Markov network ML,C . All formulas are con-

verted into clausal form and each clause is ground according to the domain of its distinct

variables. The nodes in ML,C are Boolean random variables, each one corresponding to

a possible grounding of a predicate that appears in L. The predicates of a ground clause

form a clique in ML,C . Each clique is associated with a corresponding weight wi and a

Boolean feature, taking the value 1 when the ground clause is true and 0 otherwise. The

ground ML,C defines a probability distribution over possible worlds and is represented

as a log-linear model.

In event recognition we aim to recognise CEs of interest given the observed streams of

SDEs — e.g., recognise the moving activity, given a narrative of input events that rep-

resent people, walking, running, etc. For this reason we focus on discriminative MLNs

[Singla and Domingos, 2005], that are akin to Conditional Random Fields [Lafferty et al.,

2001; Sutton and McCallum, 2007]. Specifically, the set of random variables in ML,C

3Systems implementing MLN reasoning and learning algorithms can be found at the following addresses:
http://alchemy.cs.washington.edu

http://research.cs.wisc.edu/hazy/tuffy

http://code.google.com/p/thebeast

http://ias.cs.tum.edu/probcog-wiki

http://alchemy.cs.washington.edu
http://research.cs.wisc.edu/hazy/tuffy
http://code.google.com/p/thebeast
http://ias.cs.tum.edu/probcog-wiki

32 Background

can be partitioned into two subsets. The former is the set of evidence random variables

X, e.g., formed by a narrative of input ground happens predicates, representing the

occurred SDEs. The latter is the set of random variables Y that correspond to groundings

of query holdsAt predicates, as well as groundings of any other hidden/unobserved pred-

icates, i.e., initiates and terminates. The joint probability distribution of a possible

assignment of Y=y, conditioned over a given assignment of X=x, is defined as follows:

P (Y=y |X=x) =
1

Z(x)
exp

(|Fc|∑
i=1

wini(x,y)

)
(2.11)

The vectors x ∈ X and y ∈ Y represent a possible assignment of evidence X and

query/hidden variables Y , respectively. X and Y are the sets of possible assignments

that the evidence X and query/hidden variables Y can take. Fc is the set of clauses

produced from the knowledge base L and the domain of constants C. The scalar value

wi is the weight of the i-th clause and ni(x,y) is the number of satisfied groundings

of the i-th clause in x and y. Z(x) is the partition function, that normalises over all

possible assignments y′ ∈ Y of query/hidden variables given the assignment x, that is,

Z(x) =
∑

y′∈Y
exp(

∑|Fc|
i wini(x,y

′)).

Equation (2.11) represents a single exponential model for the joint probability of the

entire set of query variables that is globally conditioned on a set of observables. Such

a conditional model can have a much simpler structure than a full joint model, e.g., a

Bayesian Network. By modelling the conditional distribution directly, the model is not

affected by potential dependencies between the variables in X and can ignore them.

The model also makes independence assumptions among the random variables Y , and

defines by its structure the dependencies of Y on X. Therefore, conditioning on a specific

assignment x, given by the observed SDEs in event recognition, reduces significantly the

number of possible worlds and inference becomes much more efficient [Minka, 2005;

Singla and Domingos, 2005; Sutton and McCallum, 2007].

Inference

Still, directly computing equation (2.11) is intractable, because the value of Z(x) de-

pends on the relationship among all clauses in the knowledge base. For this reason, a

variety of efficient inference algorithms have been proposed in the literature, based on

local search and sampling [Biba et al., 2011; Poon and Domingos, 2006; Singla and

Domingos, 2006], variants of Belief Propagation [Gonzalez et al., 2009; Kersting, 2012;

Kersting et al., 2009; Singla and Domingos, 2008], Integer Linear Programming [Huynh

and Mooney, 2009; Noessner et al., 2013; Riedel, 2008], lifted model counting [Apsel

and Brafman, 2012; den Broeck et al., 2011; Gogate and Domingos, 2011], etc.

Background 33

Two types of inference can be performed in MLNs, i.e., marginal inference and maximum

a-posteriori inference (MAP). In event recognition, the former type of inference com-

putes the conditional probability that CEs hold given a narrative of observed SDEs, i.e.,

P (holdsAt(CE , T)=True |narrative of SDEs). In other words, this probability value

measures the confidence that the CE is recognised. Since it is #P-complete to compute

this probability, we can employ Markov Chain Monte Carlo (MCMC) sampling algorithms

to approximate it.

Due to the combination of logic with probabilistic modelling, inference in MLN must han-

dle both deterministic and probabilistic dependencies. Deterministic or near-deterministic

dependencies are formed from formulas with infinite and strong weights respectively.

Being a purely statistical method, MCMC can only handle probabilistic dependencies. In

the presence of deterministic dependencies, two important properties of Markov Chains,

ergodicity and detailed balance, are violated and the sampling algorithms give poor results

[Poon and Domingos, 2006]. Ergodicity is satisfied if all states are aperiodically reach-

able from each other, while detailed balance is satisfied if the probability of moving from

state y to state y′ is the same as the probability of moving from y′ to y. Ergodicity and

detailed balance are violated in the presence of deterministic dependencies because these

dependencies create isolated regions in the state space by introducing zero-probability

(impossible) states. Even near-deterministic dependencies create regions that are diffi-

cult to cross — i.e., contain states with near zero-probability. As a result, typical MCMC

methods, such as Gibbs sampling [Casella and George, 1992], get trapped in local re-

gions. Thus, they are unsound for deterministic dependencies and they find it difficult

to converge in the presence of near-deterministic ones.

To overcome these issues and deal with both deterministic and probabilistic dependencies,

we employ the state-of-the-art MC-SAT algorithm [Poon and Domingos, 2006], which is

a MCMC method that combines satisfiability testing with slice-sampling [Damlen et al.,

1999]. Initially, a satisfiability solver is used to find those assignments that satisfy all hard-

constrained clauses (i.e., clauses with infinite weights). At each subsequent sampling

step, MC-SAT chooses from the set of ground clauses satisfied by the current state the

clauses that must be satisfied at the next step. Each clause is chosen with probability

proportional to its weight value. Clauses with infinite or strong weights, that represent,

deterministic and near-deterministic dependencies will always be chosen with absolute

certainty and high probability, respectively. Then, instead of taking a sample from the

space of all possible states, slice-sampling restricts sampling to the states that satisfy

at least all chosen clauses. In this manner, MCMC cannot get trapped in local regions,

as satisfiability testing helps to collect samples from all isolated and difficult-to-cross

regions.

MAP inference, on the other hand, identifies the most probable assignment among all

holdsAt instantiations that are consistent with the given narrative of observed SDEs,

34 Background

i.e., argmax
holdsAt

P (holdsAt(CE , T) |narrative of SDEs). In MLNs this task reduces to find-

ing the truth assignment of all holdsAt instantiations that maximises the sum of weights

of satisfied ground clauses. This is equivalent to the weighted maximum satisfiability

problem. The problem is NP-hard in general and there has been significant work on find-

ing an approximate solution efficiently using local search algorithms (e.g., MaxWalkSAT

[Kautz et al., 1997], see Hoos and Stützle [2004] for in depth analysis) or using linear

programming methods (e.g., Huynh and Mooney [2009]; Noessner et al. [2013]; Riedel

[2008]). In this thesis the we employ the LP-relaxed Integer Linear Programming method

proposed by Huynh and Mooney [2009]. In particular, the ground Markov network is

translated into a set of linear constraints and solved using standard linear optimisation al-

gorithms. Due to the NP-hardness of the problem, the linear programming solver usually

returns non-integral solutions — i.e., the assignment of some ground holdsAt(CE , T)

is not Boolean, but within the open interval (0, 1). For that reason, the method uses

a rounding procedure called ROUNDUP [Boros and Hammer, 2002]. Specifically, the

procedure iteratively assigns the truth value of non-integral ground atoms, by satisfy-

ing the clauses that appear with respect to their cost (i.e., summation of their weights).

Compared to the local search MaxWalkSAT algorithm, the linear programming approach

typically achieves higher accuracy [Huynh and Mooney, 2009].

Learning

The weights of the soft-constrained clauses in MLNs can be estimated from training data,

using supervised learning techniques. When the goal is to learn a model that recognises

CEs with some confidence (i.e., probability), then the most widely adopted learning

approach is to minimise the negative conditional log-likelihood (CLL) function that is

derived from equation (2.11). Given training data that are composed of a set X of

evidence predicates (e.g., ground happens predicates) and their corresponding query

predicates Y (e.g., ground holdsAt predicates), the negative CLL has the following form:

− logPw(Y=y |X=x) = logZ(x)−
|Fc|∑
i=1

wini(x,y) (2.12)

The vector x is the assignment of truth values to the evidence random variables X,

according to the training data. Consider, for example, a set of ground predicates that

represent a stream of SDEs — people walking, running, standing still at specific points in

time. All given instantiations of predicates represent the occurrence of SDE and thus their

corresponding assignment in x is True. Conversely, the absence of any SDE is represented

the by the assignment of False in x. Similarly, y represents a possible assignment of truth

values to the query random variables Y that are provided as annotation. CLL is used to

evaluate how well the model fits the given training data.

Background 35

The parameters of the model are the weight values wi that are associated to the soft-

constrained clauses in Fc and can be estimated by using either first-order or second-order
optimisation methods [Lowd and Domingos, 2007; Singla and Domingos, 2005]. First-

order methods apply standard gradient descent optimisation techniques, e.g., the Voted

Perceptron algorithm [Collins, 2002; Singla and Domingos, 2005], while second-order

methods pick a search direction based on the quadratic approximation of the target

function. As stated by Lowd and Domingos [2007], second-order methods are more ap-

propriate for MLN training, as they do not suffer from the problem of ill-conditioning. In

a training set some clauses may have a significantly greater number of satisfied ground-

ings than others, causing the variance of their counts to be correspondingly larger. This

situation makes the convergence of the standard gradient descent methods very slow,

since there is no single appropriate learning rate for all soft-constrained clauses.

One approach to this problem is the diagonal Newton method, in order optimise the CLL

function. In particular, the method iteratively estimates the parameters of the model

using the following equation:

wt = wt−1 −αH−1g (2.13)

The vector w holds the weights wi of all soft-constrained clauses in Fc of the MLN. The

initial value of the weights can be randomly assigned, or set to zero or set to any other

value (e.g., prior weights). At each step t the algorithm estimates the current value of the

parameters wt, by calculating the difference between the previous weights wt−1 and the

product of the gradient g with the inverse Hessian H−1 matrix and the step size α. The

gradient g is a vector, which is composed of the partial derivatives of the negative CLL

with respect to the corresponding weight. Each partial derivative represents the differ-

ence between the expected number of satisfied groundings of the corresponding clause

and the actual number in the training data. The Hessian is a square matrix, comprising

the second-order partial derivatives of the negative CLL, representing the correlation

between two clauses. However, inverting the Hessian may become infeasible. For that

reason, diagonal Newton assumes that all off-diagonal entries of the Hessian are zero.

The product between the inverse Hessian and the gradient defines the direction of the

weight update. The step size α, is a vector that defines the magnitude of the correspond-

ing weight update and is computed using the full Hessian matrix. The exptected counts

that are used to compute the gradient and the Hessian of the negative CLL are efficiently

approximated using the MC-SAT algorithm.

An alternative approach to CLL optimisation is max-margin training, which is better

suited to problems where the goal is to maximise the classification accuracy [Huynh

and Mooney, 2009, 2011]. Instead of optimising the CLL, max-margin maximise the

following ratio:
P (Y=y|X=x,w)

P (Y=ŷ|X=x,w)
(2.14)

36 Background

The above equation measures the ratio between the probability of correct truth assign-

ment y of CEs and the closest competing incorrect truth assignment

ŷ=argmax
ȳ∈Y\y

P (Y=ȳ|X=x). Huynh and Mooney [2009] formulates the max-margin prob-

lem as 1-slack structural SVMs [Joachims et al., 2009] and estimates the weights by

employing linear programming techniques.

In this work we are interested in recognising CEs given a stream of SDEs. Depending on

the needs of the event recognition application, we may either want to recognise CEs with

probabilities (indicating a degree of belief) or aim to maximise the event recognition

accuracy. For the former type of recognition, we estimate the weights by maximising the

CLL using the second-order diagonal Newton method of Singla and Domingos [2005]. For

the accuracy maximisation task, we employ the max-margin training method proposed

by Huynh and Mooney [2009].

2.3.2 Probabilistic Logic Programming with ProbLog

ProbLog4 [de Raedt et al., 2007; Kimmig et al., 2011] is a probabilistic extension of

the well-known logic programming language Prolog. In contrast to Prolog, the facts in

ProbLog are associated with a probability value. Each fact has the form pi :: fi where

pi is a probability value and fi is an atom. When the fi is not ground (i.e., contains

at least one variable in its arguments), then the probability pi is applied to all possible

groundings of fi. All ground facts correspond to random variables, where each ground

fact fi is true with probability pi. When multiple instances of the same fact are given,

then they correspond to different random variables. Classic Prolog facts that are not

associated with a probability are silently given probability 1, indicating that they are true

with absolute certainty.

ProbLog makes an independence assumption on its random variables. This means that a

rule which is defined as a conjunction of some probabilistic facts has a probability equal

to the product of the probabilities of these facts. When a predicate appears in the head

of more than one rule then its probability is computed by calculating the probability of

the implicit disjunction created by the multiple rules. For example, for a predicate p with

two rules p← l1 and p← l2, l3, the probability of predicate p being true is P(p) and is

computed as follows:

P (p) = P
(
(p← l1) ∨ (p← l2, l3)

)
= P (p← l1) + P (p← l2, l3)− P

(
(p← l1) ∧ (p← l2, l3)

)
= P (l1) + P (l2)× P (l3)− P (l1)× P (l2)× P (l3)

4ProbLog has been fully integrated in the YAP Prolog system (http://www.dcc.fc.up.pt/~vsc/Yap).
Further details, examples and code samples are available on the ProbLog website (http://dtai.cs.
kuleuven.be/problog/problog1/problog1.html)

http://www.dcc.fc.up.pt/~vsc/Yap
http://dtai.cs.kuleuven.be/problog/problog1/problog1.html
http://dtai.cs.kuleuven.be/problog/problog1/problog1.html

Background 37

More formally, a ProbLog program Γ is composed of a set F of n probabilistic facts pi :: fi

and a set of definite clauses that express arbitrary background knowledge (BK) — i.e., Γ =

{p1 :: f1, . . . , pn :: fn}∪BK . The groundings of each probabilistic fact are defined by a fi-

nite number of substitutions, i.e., {θi1, . . . , θiji}. Therefore, the maximal set of ground log-

ical facts that can be added to the BK is LΓ = {f1θ11, . . . , f1θ1j1 , . . . , fnθn1, . . . , fnθnjn}.
As the random variables corresponding to facts in LΓ are mutually independent, the

ProbLog program defines a probability distribution over ground logic programs (or sub-

programs) Lg ⊆ LΓ:

P (Lg |Γ) =
∏

fiθj∈Lg

pi
∏

fiθj∈LΓ\Lg

(1− pi) (2.15)

The rules in BK are fixed and thus each sub-program Lg corresponds to a unique Her-

brand interpretation of Lg∪BK . In other words, according to equation (2.15) a ProbLog

program also defines a distribution over these Herbrand interpretations. Although these

semantics can be generalised to the countably infinite case (see Sato [1995] for further

details), in this work we assume that all probabilistic facts are ground. Furthermore,

in the context of event recognition, the probabilistic facts are ground SDEs and the BK

comprises arbitrary rules, e.g., CE definitions.

With the help of Equation (2.15), one could compute the probability that a query q holds

in a ProbLog program — named success probability — by summing the probabilities of

all sub-programs that entail it. Specifically, the success probability Ps(q |Γ) of a query q

in a ProbLog program Γ is given by the marginal of Ps(Lg |Γ) with respect to q:

Ps(q |Γ) =
∑
Lg⊆LΓ

1q(Lg)P (Lg |Γ) (2.16)

where 1q(Lg) = 1 when there exists a substitution θ such that Lg ∪ BK |= qθ, and

1q(Lg) = 0 otherwise.

Inference

However, computing the success probability through equation (2.16) is computationally

infeasible for large programs, as the number of sub-programs to be checked is exponential

in the number of probabilistic facts. By combining equations (2.15) and (2.16) and

eliminating redundant terms, we end up with the following characterisation:

Ps(q |Γ) = P
(∨

e∈Proofs(q)

∧
fi∈e

fi

)
(2.17)

That is, the task of computing the success probability of a query q is transformed into

the task of computing the probability of the Disjunctive Normal Form (DNF) formula

38 Background

of equation (2.17). Practically, equation (2.17) expresses that the success probability

of query q is equal to the probability that at least one of its proofs is sampled. This,

unfortunately, is not a question of straightforwardly transforming the probability of the

DNF to a sum of products. If we were to translate equation (2.17) to a sum of products,

we would assume that all different proofs (conjunctions) are disjoint, meaning that they

represent mutually exclusive possible worlds, which does not hold in the general case.

In order to make the proofs disjoint, one would have to enhance every conjunction with

negative literals, thus excluding worlds whose probability has already been computed

in previous conjunctions of the DNF. This problem is known as the disjoint-sum problem
and is #P-hard [Valiant, 1979].

ProbLog’s approach to this problem consists of using Binary Decision Diagrams (BDDs)

[Bryant, 1986] to compactly represent the DNF of equation (2.17). A BDD is a binary

decision tree with redundant nodes removed and isomorphic sub-trees merged. The

BDD nodes represent the probabilistic facts of the ProbLog program. Every node has a

positive and negative outward edge, leading to either a child node or the special true or

false terminal nodes. The positive outward edge of the BDD node is labelled with the

probability of the respective probabilistic fact and the negative edge is labelled with the

complement of that probability. Positive and negative edges represent distinct decisions

on inclusion of the relevant fact in the currently sampled possible world; a positive edge

signifies that the fact represented by its parent node is included in the sample with the

labelled probability, whereas a negative edge signifies that the fact is not included in the

sample with the complement of the same probability. Therefore, by following a path

from the root node to the true terminal node, one could sample a conjunction of the DNF

formula of equation (2.17). The negative outward edges offer a compact representation

of the negated literals required to enhance the DNF formula in order to make it represent

a disjunction over disjoint conjunctions.

To summarise, inference follows three steps. The first step is to gather all proofs of the

query q by scanning the Selective Linear Definite (SLD) tree of proofs and represent

them as the DNF formula of equation (2.17). Afterwards, the DNF is translated to a

BDD. Finally, the probability of this BDD is computed recursively, starting from the root

node and assuming a probability of 1 for the true terminal and 0 for the false terminal.

In this work, all ProbLog experiments have been performed using this exact inference

algorithm.

In some applications that include large knowledge bases, building a BDD for all proofs

may become intractable. Methods that approximate the success probability by selecting

a subset of proofs, have been proposed in the literature. de Raedt et al. [2007] proposed

an iterative deepening algorithm that approximates the success probability from a subset

of proofs, given a desired approximation factor ε. However, the algorithm may still need

to select large sets of proofs. A more efficient alternative is the k-best inference algorithm

[Kimmig et al., 2011], that selects only the k most probable proofs. However, the search

Background 39

strategy of k-best may not select the optimal set of proofs. The set may contain highly

redundant proofs and does not guarantee better approximation than any other set. The

k-Optimal algorithm [Renkens et al., 2012] overcomes these issues and ensures that the

set of k proofs is of provably good quality and that the set of proofs is diverse, i.e., less

likely to select proofs that share similar facts, leading to better approximation of the

success probability with fewer proofs.

Instead of searching for a near optimal subset of proofs, an alternative way to approxi-

mate the success probability is the use of Monte Carlo sampling techniques. The program

sampling algorithm of Kimmig et al. [2008, 2011] generates samples by exploring the

SLD tree. The DNF sampling algorithm of Shterionov et al. [2010] performs sampling

over the possible worlds that contain a proof of the query of interest. Finally, Fierens

et al. [2011] translates probabilistic logic programs and probabilistic facts into an equiv-

alent weighted CNF form of Markov Logic Networks. As a result, the state-of-the-art

high-performance algorithms MaxWalkSAT and MC-SAT algorithms can be used, in order

to perform MAP or marginal inference, respectively.

2.4 Related Work

In this section we present methods that can represent and reason about events with

complex relational structure, as well as handle various forms of uncertainty. In particular,

we outline action formalisms and present symbolic and probabilistic event recognition

methods. Events with complex relational structure require formal, declarative knowl-

edge representation and temporal reasoning. Action formalisms provide well-defined

logical representation of events and change that can be exploited by temporal reasoning

algorithms for recognition, planning, decision making and forecasting. Symbolic event

recognition systems are knowledge-driven methods that use a declarative representation

for event definitions. Finally, probabilistic symbolic event recognition methods combine

declarative representation capabilities with probabilistic modelling, in order to recognise

CEs under uncertainty.

2.4.1 Action formalisms

Event recognition can be modelled as a dynamic system — i.e., a system whose state

may change over time due to the occurrence of events [Sandewall, 1994, Chapter 1].

Representing and reasoning about events and change is a fundamental research field in

the domain of Artificial Intelligence. Numerous formalisms have been proposed in the

literature, such as the Situation Calculus [McCarthy, 1983; McCarthy and Hayes, 1968;

Reiter, 2001], the Event Calculus [Kowalski and Sergot, 1986; Miller and Shanahan,

2002; Mueller, 2008; Patkos and Plexousakis, 2008; Shanahan, 1999] the Fluent Calcu-

lus [Thielscher, 1999, 2001], the action language C+ [Akman et al., 2004; Giunchiglia

40 Background

et al., 2004] and Temporal Action Logics [Doherty et al., 1998; Kvarnström, 2005]. Ac-

tion formalisms focus on the development of axioms that model events (or actions) and

their affects, in order to deal with the dynamic aspects of the world and reason about

change. Comparisons and proofs of equivalence between action formalisms can be found

in Kowalski and Sadri [1997], Van Belleghem et al. [1997], Chittaro and Montanari

[2000], Miller and Shanahan [2002], Schiffel and Thielscher [2006], Mueller [2006,

Chapter 15], Craven [2006] and Paschke and Kozlenkov [2009]. All action formalisms

rely on the following two fundamental elements:

1. Events (or actions) [Kowalski and Sergot, 1986; McCarthy, 2002] are known to

have occurred (e.g., observed/detected by some other external process or system)

or are planned to happen in the future. Events compose the conditions under which

they have some effect on the actual states of the modelled world.

2. Fluents (or features) [McCarthy, 1983; Sandewall, 1994] represent properties of

the domain which may change in response to the execution of events. An important

characteristic of action formalisms, is that fluents are inert. In other words, the

value of a fluent remains the same (i.e., persists) until there is a specific reason for

it to change — e.g., the occurrence of some events.

Furthermore, logic representation action formalisms can compactly represent compos-

ite events with complex relations and directly incorporate domain-specific background

knowledge.

The representation of time is an important property of event recognition and different

action formalisms may use different time models. Situation Calculus and Fluent Calculus

employ a discrete and forward-branching time model, where each point in time may

have several successors, but only one predecessor. In fact, the occurrence of an event

may give rise to a different possible future. A point in time is represented by a situation,

which is a result of a possible sequence of events. Therefore, events are assumed to occur

sequentially and atemporally. On the other hand, in the Event Calculus, C+ and Temporal

Action Logics, there is a single time-line on which events occur. The time-line may be

continuous (i.e., the time domain as a set of real numbers) [Kowalski and Sergot, 1986;

Shanahan, 1999] or discrete (i.e., the time domain is restricted to integer numbers)

[Mueller, 2008]. The Event Calculus has also been extended with branching time in

order to support reasoning for hypothetical events — see the proposed Event Calculus

dialects of Provetti [1996], Kowalski and Sadri [1997], Lévy and Quantz [1998] and

Mueller [2007]. Similarly, the Situation Calculus has been extended with explicit time

representation and actual events — see for example the proposed variants of Pinto and

Reiter [1993, 1995] and Reiter [1996, 1998]. The branching time model is particularly

suited to planning or forecasting problems, where hypothetical events may guide to

different possible future solutions. On the other hand, in the single time-line model

Background 41

the events are not hypothetical and the time is expressed explicitly, allowing to directly

express temporal constraints in the CE definitions. Therefore, the single time-line model

is more suitable for event recognition, since the task is to recognise CEs of interest in

time-stamped streams of observed SDEs (i.e., actual events that have happened).

As presented in Section 1.1, noise is an unavoidable aspect of real-world applications.

For example, the input observations may be affected by a significant amount of noise,

resulting in erroneous recognition of CE. Action formalisms have been extended to

support various forms of uncertainty in planning and decision making.

Most of the probabilistic extensions concern the Situation Calculus Bacchus et al. [1995,

1999] proposed a probabilistic variant of the Situation Calculus, in order to deal with

noisy sensors. Based on Reiter’s formulation of the Situation Calculus [Reiter, 1991],

the probabilistic formalism supports non-determinism in actions and associates a weight

to each situation, capturing a degree of belief. The formalism allows to reason proba-

bilistically about an agent’s degrees of belief and how these beliefs change when actions

are executed. Similarly, a probabilistic variant of the Situation Calculus is proposed by

Reiter [2001, Chapter 12], in order to reason about actions with an uncertain outcome.

Mateus et al. [2001] extends the Situation Calculus with actions that have uncertain

effects, using discrete, continuous, and mixed probability distributions. Boutilier et al.

[2001] proposed a probabilistic variant of the Situation Calculus that formulates first-

order Markov decision processes. Hajishirzi and Amir [2008, 2010] model Reiter’s

probabilistic Situation Calculus by a graphical model in the form of a Bayesian Network

for answering queries given a sequence of actions.

There are also proposals for extending action languages other than Situation Calculus

with probabilities. Hölldobler et al. [2006] proposed a probabilistic extension of the

Fluent Calculus that models first-order Markov decision processes in planning domains

with actions having probabilistic effects. PC+ is a probabilistic generalisation of C+ that

incorporates probabilistic knowledge about the effects of events [Eiter and Lukasiewicz,

2003]. PC+ supports non-deterministic and probabilistic effects of events, as well as

probabilistic uncertainty about the initial state of the application. Similar to most other

probabilistic variants of common sense reasoning languages, the method focuses on plan-

ning under uncertainty while inertia remains deterministic. Such probabilistic planning

and reasoning approaches assume that the parameters of the model are known (i.e.,

probabilities or weights).

2.4.2 Event Recognition

Event recognition systems operate by observing streams of events that occur in the

environment. They interpret and combine these events, in order to identify composite

events (CEs). In this section we present, event recognition systems that can recognise

42 Background

CEs from heterogeneous streams of information, such as sensor data, log files or event

streams produced by other external special purpose algorithms (e.g., motion tracking,

object identification, etc). There are numerous event recognition approaches, that have

been developed for different application domains. Following a declarative approach,

the structure of CEs is defined in terms of logical, temporal or spatial constraints that

indicate the conditions under which CEs occur. Each definition represents a pattern that

isolates relevant events and combines their mutual relations (e.g., temporal), in order to

recognise CEs of interest. Such a declarative representation can directly incorporate and

take advantage of domain specific knowledge.

The chronicle recognition system (CRS) [Dousson, 1996; Dousson et al., 1993; Dousson

and Maigat, 2007] is a symbolic event recognition method that has been applied to

a variety of problems, such as cardiac arrhythmia recognition [Callens et al., 2008],

computer network monitoring [Dousson, 1996; Dousson and Maigat, 2007], airport

ground traffic monitoring [Choppy et al., 2009], etc. CE definitions are represented

using a declarative temporal language and translated into temporal constraint networks

(TCN), in order to perform efficient event recognition. In particular, a CE definition is a

conjunctive formula with predicates that represent events (SDEs or other CEs), as well

as persistency or event absence. The time model is linear and the temporal constraints

are expressed over time-points. A TCN is a directed symbolic network, where vertices

correspond to instantiations of some event (CE or SDE) and edges represent temporal

constraints between the involved events. Vu et al. [2003] proposed a scenario recognition

method for video interpretation that translates CE definitions into TCN. For reasons of

efficiency the networks are automatically decomposed into several sub-networks and the

recognition is performed hierarchically.

A Petri-Net is a mathematical modelling formalism that can express a variety of dynamic

behaviours, such as sequencing, concurrency and synchronisation [Petri, 1966]. It is

represented by a bipartite graph and there are numerous forms of Petri-Nets — see Mu-

rata [1989] and David and Alla [1994] for comprehensive surveys on Petri-Net variants.

Choppy et al. [2009] translated the CRS language into Petri-Nets, which are executed to

recognise CEs. Petri-Net modelling has been applied, among others, to computer vision

— see, for example, the methods of Castel et al. [1996], Lavee et al. [2007] and Ghanem

et al. [2004]. Each Petri-Net graph represents a CE, which is composed of SDEs (place

nodes) and temporal or logical constraints (transition nodes). Place nodes may hold

tokens, indicating the current state of the model. Transition nodes define the conditions

under which tokens can move between places, indicating the fulfillment of a constraint

(e.g., temporal, logical, spatial) between the SDEs. When a token reaches the terminal

node the CE is recognised, since all related events have happened under the required

constraints.

Rota and Thonnat [2000] proposed a logic-based declarative language for expressing

CE definitions in the domain of video surveillance. The definition of a CE consists of

Background 43

the relations between objects of the scene and the SDEs, using spatial and temporal

constraints. The knowledge base of definitions is translated into a constraint satisfaction

problem, in order to perform event recognition. Shet et al. [2005] proposed a logic

programming approach to represent and recognise CEs of human activities. Input SDEs

are detected by low-level computer vision algorithms. CE definitions are represented by

logical rules and event recognition is performed using a Prolog-based reasoning engine.

The method can continuously monitor and recognise predefined CEs, as well as answer

queries about events that have been archived.

Chen et al. [2008] employ Event Calculus representation and reasoning, in order to

recognise activities of daily living for the personalised assistance of elderly and disabled

persons in smart homes. The method models complex aspects of events, such as sequence,

non-deterministic choice of actions, concurrency, iteration and conditionals, using extra-

logical operators. An other method for recognising human behaviour activities based on

the Event Calculus is proposed by Artikis and Paliouras [2009]. The method extends the

logic-programming Event Calculus of Kowalski and Sergot [1986] with temporal inter-

vals. The input is formed by a narrative of SDEs that express short-term behaviours (e.g.,

people walking or standing still). Definitions expressing the spatio-temporal conditions

under which long-term human behaviours occur are represented using Event Calculus

language. The method recognises CE over maximal intervals. Artikis et al. [2012a]

propose an Event Calculus dialect for efficient run-time event recognition that can scale

to large data streams of SDEs. The method supports expressive CE definitions with

interval-based temporal constraints. The temporal reasoning of the method processes

the SDE streams on-line over sliding windows. Furthermore, the method can be used

in applications where data might arrive with a delay from, or might be revised by, the

underlying event sources.

Additionally, there are some approaches to event recognition, which use ontological

modelling. Saguna et al. [2011] performs CE recognition by combining ontological

modelling with spatio-temporal reasoning. Temporal and spatial knowledge is expressed

as properties of ontological concepts. At the input level, SDEs are provided by external

low-level classifiers (e.g., decision trees) or derived by sensors. Using ontological and

rule-based reasoning CEs are recognised. Okeyo et al. [2014, 2012] propose a hybrid

approach that combines ontologies with temporal reasoning for modelling activities of

daily living. Based on the Web Ontology Language (OWL) [Horrocks, 2005] the method

represents and reason about domain knowledge in terms of concepts, properties and

relations. The method augments OWL with the concept of 4D-Fluents [Batsakis and

Petrakis, 2011; Welty and Fikes, 2006], in order introduce a temporal dimension to the

knowledge base and represent time-points, time-intervals and fluents. CE definitions

model human activities, in terms of other events (SDEs or CEs) that are temporally

related using Allen’s interval relations [Allen, 1983]. Furthermore, the method employs

entailment rules with which it can reason about dependencies among ongoing SDEs and

44 Background

CEs — i.e, axioms that derive and assert intervals, assert instances of fluents, as well as

derive and assert CEs. Event recognition is performed by processing streams of sensor

data against a given set of CE definitions.

2.4.3 Event Recognition Under Uncertainty

The event recognition methods that have been outlined in the previous section, can

compactly represent and reason about composite events (CEs). In many real-world

applications, however, uncertainty naturally exists and may seriously compromise event

recognition accuracy. The aforementioned methods cannot consider, model or handle

any form of uncertainty. All input SDEs are considered as a stream of deterministic facts.

Similarly, CE definitions together with the event recognition engine form a deterministic

model.

Symbolic methods that can handle uncertainty have been developed especially for appli-

cations that involve considerable amounts of uncertain information, e.g., activity recog-

nition from video data. Table 2.2 summarises the main features of symbolic methods

for event recognition under uncertainty. In columns two to four, we consider three types

of uncertainty. First, the uncertainty that arises from incomplete input streams. For

example, due to some sensor failure, some SDEs may be missing from the input stream.

Second, low-level classifiers (e.g., tracking, object recognition, etc) usually detect SDEs

with some confidence. This confidence value can be propagated to the event recognition

system. Third, CE definitions may not capture perfectly the conditions under which

CEs occur. For example, due to the limited dictionary of SDEs or inconsistent training

data, the definitions of CEs may not be perfect. In that case, it is desirable to model the

uncertainty of CE definitions, e.g., associate definition with confidence value. In the fifth

column we present the temporal model of each method. Temporal modelling is an impor-

tant characteristic in event recognition. Most methods impose either sequential ordering

or temporal constraints over SDEs and CEs. Finally in the last column we briefly provide

additional characteristics of interest for each method, such as the probabilistic model

(e.g., Bayesian Network) the knowledge representation language (e.g., logic-based) or

the support for inertia.

Background 45

Work
Uncertainty

Temporal
Model

Method Details
Incomplete SDE CE

input conf. conf.

Albanese et al. [2007] X Sequential Stochastic Automata.

Albanese et al. [2011] X Sequential;
Intervals

Stochastic Automata
with temporal duration
constraints between
subsequent SDEs.
Recognition in the
presence of intervening
sub-events.

Molinaro et al. [2014] X Sequential

Probabilistic Penalty
Graphs. Recognition in
the presence of
intervening sub-events.

Albanese et al. [2008] X Sequential Probabilistic Petri-Nets.

Lavee et al. [2013] X Sequential Stochastic Petri-Nets.

Ryoo and Aggarwal
[2009]

X X Intervals

Hierarchical CE
representation with
probabilistic inference.

Albanese et al. [2010] X X Time-points
Probabilistic and
Logic-based.

Shet et al. [2007,
2011]

X X Sequential Billatice and logic-based.

Filippaki et al. [2011] X X Intervals
Weighted logic-based
definitions.

Romdhane et al.
[2013]

X X Time-points;
Intervals

Probabilistic extension
of Vu et al. [2003] event
description language.

Kersting et al. [2006] X Sequential
Logic-based Hidden
Markov Models.

Natarajan et al. [2008] X Sequential
Logic-based Hierarchical
Hidden Markov Models.

Manfredotti [2009];
Manfredotti et al.
[2010]

X X Sequential
Logic-based Dynamic
Bayesian Networks.

Biswas et al. [2007] X Sequential;
Time-points

Dynamic Markov Logic
Networks. Probabilistic
inertia.

Helaoui et al. [2011] X Time-points
Markov Logic Networks.
Probabilistic inertia.

This table continues to the next page I

46 Background

This table continues from the previous page.

Work
Uncertainty

Temporal
Model

Method Details
Incomplete SDE CE

input conf. conf.

Tran and Davis [2008] X X X Intervals

Markov Logic Networks.
Temporal intervals are
provided by input SDEs.

Morariu and Davis
[2011]

X Intervals

Markov Logic Networks.
Temporal intervals are
provided by input SDEs.

Song et al. [2013a,b] X Intervals

Markov Logic Networks.
Domain-independent
axioms. Temporal
intervals are provided by
input SDEs.

Brendel et al. [2011];
Selman et al. [2011]

X Intervals
Probabilistic Event Logic.
Intervals are inferred.

Sadilek and Kautz
[2012]

X Time-points

Hybrid Markov Logic
Networks. Real-valued
spatial constraints that
affect the recognition
confidence of CE.

Helaoui et al. [2013] X Sequential
Log-linear Description
Logics.

Wasserkrug et al.
[2005, 2008, 2012]

X X Time-points;
Intervals

Logic-based Bayesian
Networks.

Cugola et al. [2014] X X Time-points;
Intervals

Probabilistic extension
of Cugola and Margara
[2010] event description
language. Bayesian
Networks.

TABLE 2.2: Symbolic Event Recognition methods that can handle uncertainty.

Albanese et al. [2007] developed a recognition method that models activities using

a stochastic automaton. However, their initial method cannot represent temporal con-

straints. The method is extended in [Albanese et al., 2011], in order to identify situations

that cannot be explained sufficiently by any of the known CEs. In particular, the stochas-

tic automaton is extended with temporal constraints, specifying that each subsequent

SDE can occur within a user-defined temporal interval. Using possible-worlds modelling,

Background 47

the method finds totally (or partially) unexplained activities. One limitation of stochastic

automata, is that the recognition of a CE is suspended in situations where other events

are intervening between the required events (SDEs or other CEs). The probabilistic

penalty graphs (PPGs) of Molinaro et al. [2014] overcome this limitation by extending

the stochastic automaton of Albanese et al. [2007] with belief degradation. The edges

that connect subsequent events in a PPG, forming the structure of a CE, are associated

with a probability (noise) value that degrades the belief of the CE when other events

intervene. As a result, the CE is being recognised, with reduced probability. The method

can also discover event patterns that do not belong to the set of known CEs. Additionally,

for scalability reasoning PPGs can be combined by merging common sub-PPGs, indexed

and executed in parallel.

A probabilistic extension to Petri-Nets has been proposed by Albanese et al. [2008], in

order to perform probabilistic recognition of CEs that represent human activities. Each

Petri-Net expresses a CE and is formed by SDEs that are connected through constraints

(i.e., spatial constraints, temporal durations and forbidden actions). The transition

between a pair of subsequent SDEs is associated with a probability value. Given a

sequence of SDEs, the method can identify segments of the sequence in which a CE

occurs with probability above a specified threshold or infer the most likely CE in the

sequence. Lavee et al. [2013] proposed a stochastic variant of Petri-Nets for modelling

the uncertainty of input SDEs. Specifically, SDEs are recognised with some certainty, by

lower level classification algorithms. CEs are represented by Petri-Nets, in terms of SDEs

that are associated with certainties and temporal constraints.

Ryoo and Aggarwal [2009] proposed a hierarchical description-based method that com-

bines a formal syntax for representing CE definitions, introduced in Ryoo and Aggarwal

[2006], with probabilistic recognition. The method aims to probabilistically detect the

time intervals in which CEs occur. Input SDEs are associated with probabilities, indi-

cating a degree of belief. Based on a context-free grammar representation scheme, CE

definitions are expressed in terms of other events (SDEs or CEs) and form a hierarchical

model. Furthermore, events are related through logical (i.e., conjunction, disjunction

and negation), spatial and temporal interval constraints [Allen, 1983]. In situations

where the input stream is incomplete, the method generates the missing SDEs with lower

confidence. The probability of a CE is calculated by exploiting the dependency informa-

tion between the CE and its sub-events. When the calculated probability of the CE is

above a specified threshold, it is considered to be recognised.

Albanese et al. [2010] proposed a probabilistic activity description language for express-

ing CE on top of an image processing suit. Their method merges a logic-based representa-

tion with probabilistic modelling. The input SDEs can be either Boolean or probabilistic.

CEs are defined by users in a first-order logic where the dependencies between SDEs are

modelled by triangular norms [Fagin, 1996]. The method provides efficient algorithms

for off-line and on-line recognition. Another logic-based method for handling uncertainty

48 Background

in activity recognition is proposed by Shet et al. [2007, 2011]. The method employs

logic programming and handles uncertainty using the Bilattice framework [Ginsberg,

1988]. The knowledge base consists of domain-specific rules, expressing CEs in terms

of SDEs. Each CE or SDE is associated with two uncertainty values, indicating a degree

of information and confidence respectively. The underlying idea of the method is that

the more confident information is provided, the stronger the recognition belief for the

corresponding CE becomes.

Filippaki et al. [2011] proposed a logic-based method that recognises user activities over

noisy or incomplete data. The method recognises CEs from SDEs using rules that impose

temporal and spatial constraints between SDEs. Some of the constraints in CE definitions

are optional. As a result, a CE can be recognised from incomplete information, but with

lower confidence. The confidence of a CE increases when more of the optional SDEs

are recognised. Due to noisy or incomplete information, the recognised CEs may be

logically inconsistent with each other. The method resolves those inconsistencies using

the confidence, duration and number of involved SDEs. Another method that handles

missing SDEs is presented in Romdhane et al. [2013]. The method extends the scenario

recognition method of Vu et al. [2003], in order to deal with uncertain and incomplete

knowledge. Sub-events of a CE are associated with utility values in the definition of the

CE, in order to express the importance or priority of sub-events in the recognition of

the CE. The higher the utility value, the higher the importance of the sub-event. As a

result, in situations where the stream of input SDEs becomes incomplete (e.g., due to

some type of error or noise) and some SDEs are missing the method can still recognise

the target CE. Using a hierarchical Bayesian inference approach, the method can handle

uncertainty at the input level, as well as at the event recognition level of a CE.

Probabilistic graphical models have been successfully applied to a variety of event recog-

nition tasks where a significant amount of uncertainty exists. Since event recognition

requires the processing of streams of time-stamped SDEs, numerous event recognition

methods are based on sequential variants of probabilistic graphical models, such as Hid-

den Markov Models (HMM) [Rabiner and Juang, 1986], Dynamic Bayesian Networks

(DBN) [Murphy, 2002] and linear-chain Conditional Random Fields (CRF) [Lafferty

et al., 2001]. Such models can naturally handle uncertainty but their propositional struc-

ture provides limited representation capabilities. To overcome this limitation, graphical

models have been extended to model interactions between multiple entities [Brand et al.,

1997; Gong and Xiang, 2003; Vail et al., 2007; Wu et al., 2007], to capture long-term

dependencies between states [Hongeng and Nevatia, 2003] and to model the hierarchi-

cal composition of events [Liao et al., 2005; Natarajan and Nevatia, 2007]. However,

the lack of a formal representation language makes the definition of structured CEs

complicated and the use of background knowledge very hard.

Recently, statistical relational learning (SRL) methods have been applied to event recog-

nition. These methods combine logic with probabilistic models, in order to represent

Background 49

complex relational structures and perform reasoning under uncertainty. Using a declar-

ative language as a template, SRL methods specify probabilistic models at an abstract

level. Given an input stream of SDE observations, the template is partially or completely

instantiated, creating lifted or propositional graphical models on which probabilistic

inference is performed [de Raedt and Kersting, 2010; de Salvo Braz et al., 2008].

Among others, HMMs have been extended in order to represent states and transitions

using logical expressions [Kersting et al., 2006; Natarajan et al., 2008]. In contrast

to standard HMM, the logical representation allows the model to represent compactly

probability distributions over sequences of logical atoms, rather than propositional sym-

bols. Similarly, DBNs have been extended using first-order logic [Manfredotti, 2009;

Manfredotti et al., 2010]. A tree structure is used, where each node corresponds to a

first-order logic expression, e.g., a predicate representing a CE, and can be related to

nodes of the same or previous time instances. Compared to their propositional counter-

parts, the extended HMM and DBN methods can compactly represent CE that involve

various entities.

Markov Logic Networks have also recently been used for event recognition in the liter-

ature. The knowledge base of weighted first-order logic formulas in MLNs defines an

arbitrarily structured undirected graphical model. Therefore, MLNs provide a generic

SRL framework, which subsumes various graphical models, e.g., HMM, CRF, etc., and

can be used with expressive logic-based formalisms, such as the Event Calculus. Addi-

tionally, MLNs support discriminative modelling and thus avoid common independence

assumptions over the input SDEs. Biswas et al. [2007] proposed a first-order probabilistic

method that models dynamic MLNs. The method combines the information provided

by different low-level computer vision algorithms with the use of MLNs, in order to

recognise CEs that represent human activities from video data. CEs are represented

by fluents that persist over successive time-points. The formalism does not support the

simultaneous occurrence of CEs and requires that at each time-point a CE must occur.

A more expressive approach that can represent persistent and concurrent CEs, as well

as their starting and ending points, is proposed by Helaoui et al. [2011]. However, that

method has a quadratic complexity to the number of time-points.

Tran and Davis [2008] address the issues of missing and noisy SDEs, as well as im-

perfect definitions of CEs, in activity recognition. CEs are defined by common sense

domain knowledge and expressed in first-order logic, which may not capture perfectly

the conditions under which CEs occur. SDEs are detected by low-lever computer vision

algorithms with some degree of belief. The degree is propagated inside the MLN using

utility weighted formulas. Rules with disjunctive effects help the recognition of missing

SDEs. CE definitions are associated with weight values indicating a degree of certainty,

that is defined manually by the domain expert. The temporal model of CEs is represented

through temporal intervals that are defined by a specific number of video frames. Each

CE rule is defined over events that happened in the same interval. Morariu and Davis

50 Background

[2011] proposed an MLN-based method that uses employs temporal constraints over

interval relations in events. Similar to Tran and Davis [2008] the method uses first-

order logic representation, but it employs temporal relations from the Interval Algebra

of Allen [1983]. The ontology of the knowledge base is composed of properties, event

definitions and observations. Properties are expressed by predicates that represent the

state of the world in each temporal interval. Spatio-temporal prerequisites of relevant

properties are expressed by event definitions, using interval constraints over the occur-

rence of sub-events. Observations provide the evidence and are generated by computer

vision algorithms. The method determines the sequence of CEs that is most likely, given

the observation sequences. In order to avoid the combinatorial explosion of possible

intervals and eliminate the existential quantifiers in CE definitions, a bottom-up process

eliminates the unlikely event hypotheses. Their elimination process is guided by the ob-

servations and the interval relations of the event definitions. Song et al. [2013a,b] also

combine MLNs with Allen’s Interval Algebra relations to recognise and forecast CE. Com-

puter vision algorithms detect and track the state of objects (e.g., items, human hands,

etc.), which is expressed in terms of symbolic features that span over time intervals —

i.e., spatial and qualitative and object to object relations that occur for periods of time.

Events are generated by combining the features. The events are hierarchical and related

with part-of relations. Furthermore, Song et al. propose a set of domain-independent

prediction axioms. These axioms express that the occurrence of an event implies the

occurrence of its parts. Constraint axioms ensure the integrity of the (temporal) relations

among CE and its parts. Finally, a set of abduction axioms allow events to be inferred on

the basis of their parts — i.e., inferring when some events are missing.

In the aforementioned MLN-based methods intervals are not inferred, but provided

as input evidence. A different approach to interval-based activity recognition, is the

Probabilistic Event Logic (PEL) [Brendel et al., 2011; Selman et al., 2011]. Similar

to MLNs, the method defines a log-linear model from a set of weighted formulas, but

the formulas are represented in Event Logic [Siskind, 2001]. Each formula defines a

soft constraint over some events, using interval relations that are represented by the

spanning intervals data structure. The method performs inference via a local-search

algorithm (based on the MaxWalkSAT of Kautz et al. [1997]), but using the spanning

intervals it avoids grounding all possible time intervals.

Sadilek and Kautz [2012] employ hybrid-MLNs [Wang and Domingos, 2008] in order to

recognise successful and failed interactions between humans, using noisy location data

from GPS devices. The method uses hybrid formulas that de-noise the location data.

Hybrid formulas are defined as normal soft-constrained formulas, but their weights are

also associated with real-valued functions, e.g., the distance between two persons. As a

result, the strength of the constraint that a hybrid rule imposes is determined by both its

weight and function — e.g., the smaller the distance between two people, the stronger

the constraint. The weights are estimated from training data with supervised learning.

Background 51

Furthermore, Sadilek and Kautz also proposed a knowledge refinement method that

revises the CE definitions, in order to achieve higher recognition accuracy.

Helaoui et al. [2013] proposed an activity recognition system that employs the probabilis-

tic framework of log-linear Description Logics [Niepert et al., 2011]. Similar to MLNs,

Log-Linear Description Logics combine a logic-based representation with log-linear mod-

elling. In particular, the method can represent events (SDEs or CEs) and CE definitions

expressed in the OWL 2 Web Ontology Language [Grau et al., 2008] and incorporate both

probabilistic and deterministic dependencies between the CE definitions. CE definitions

can be associated with predefined weight values, indicating a degree of confidence. One

major limitation is that the OWL 2 language does not support temporal reasoning [Riboni

et al., 2011]. To overcome this limitation, the method recognises events progressively.

Starting from the input level (e.g., atomic gestures of humans), events are collected

within a specified time window and are added to the ontology as a sequence of events —

i.e., each event has a property that defines its order of execution within the time window.

Thereafter, using maximum a-posteriori reasoning, the recognised events of the current

level (e.g., CE representing the activities of a single person) forms the input for the next

level (e.g., CE representing complex activities between multiple persons).

Wasserkrug et al. [2005, 2008, 2012] introduced a generic framework for probabilistic

event processing. The representation of CE definitions is logic-based with temporal

constraints over time-points and intervals. To model the uncertainty, input SDEs and CE

definitions are associated with probability values. The knowledge base of CE definitions

forms a template for a Bayesian network that is dynamically constructed every time new

SDE is received. CEs are continuously recognised using probabilistic inference over the

Bayesian network.

Cugola et al. [2014] extend the TESLA [Cugola and Margara, 2010] event specification

language with probabilistic modelling, in order to handle the uncertainty in input SDEs,

as well as recognise CEs that have imperfect definitions. The semantics of the TESLA

language are formally specified by a first-order logical representation with temporal

constraints, which expresses the length of time intervals quantitatively [Ghezzi et al.,

1990; Morzenti et al., 1992] — e.g., an event X must occur within five minutes after

the occurrence of some other event Y. At the input level, the method supports the

uncertainty in the occurrence of SDEs, as well as the uncertainty regarding the attributes

of the SDEs. In the former case, SDEs are associated with probabilities that indicate

a degree of belief. In the latter case, the attributes of a SDE are modelled as random

variables with some measurement error. The probability distribution function of the

measurement error is assumed to be known (e.g., Gaussian distribution). The method

also models the uncertainty of CE definitions, by building a Bayesian network for each

rule. The probabilistic parameters of the network are manually estimated by domain

experts.

52 Background

2.4.4 Discussion

In general, CEs are defined by complex event patterns and their recognition depends

on rich temporal (e.g., sequence, duration, temporal distance, etc.) and logical (e.g.,

conjunction, disjunction, negation, etc.) relationships among their sub-events. Action

formalisms and symbolic event recognition methods can compactly represent and reason

about CEs (see Sections 2.4.1 and 2.4.2). Their formal and declarative semantics can

naturally represent CEs and domain knowledge. Such knowledge-driven approaches

have been used in numerous applications that combine information from heterogeneous

sources — e.g., video processing algorithms, sensor networks, computer network traffic,

etc. In many cases, however, the knowledge is imperfect and the input sources are noisy.

As a result, the performance of knowledge-driven approaches may be seriously compro-

mised. On the other hand, pure data-driven methods employ probabilistic modelling

and handle uncertainty naturally — e.g., Hidden Markov Models, Dynamic Bayesian

networks, Conditional Random Fields, etc. Although data-driven approaches are robust

to uncertainty, they cannot represent directly domain knowledge and CE definitions. Fur-

thermore, in order to represent rich temporal and logical relationships between events,

their structure may become prohibitively complex with a large number of parameters.

Furthermore, purely data-driven models require large amounts of training data, which

is difficult to obtain in practice.

Symbolic methods augmented with probabilistic modelling combine the advantages of

knowledge-driven and data-driven approaches in a single hybrid model (see Section

2.4.3). Such models can directly and compactly represent knowledge with rich temporal

and logical relations, while handling various forms of uncertainty. The structure of

the hybrid model is based on the given domain knowledge — e.g., logic-based rules.

Depending on the application, the parameters of the model (i.e., probabilities or weight

values) can be either manually specified by experts or automatically estimated from

training data using machine learning techniques. As the number of the parameters

grows, however, their manual setting becomes tedious and error prone — especially in

methods that rely on probabilistic graphical models. In contrast to pure data-driven

approaches, hybrid methods exploit the given domain knowledge in order to reduce the

required amount of training data. Compared to knowledge-driven approaches, hybrid

methods consider, model and handle uncertainty. First, there are hybrid methods that can

directly incorporate the uncertainty of input SDEs (e.g., Lavee et al. [2013]; Shet et al.

[2007]; Tran and Davis [2008]). Since domain knowledge is usually imperfect, hybrid

methods can also associate CEs with probabilities, indicating a degree of confidence (e.g.,

Molinaro et al. [2014]; Morariu and Davis [2011]; Song et al. [2013a]). Furthermore,

by combining background knowledge and probabilistic modelling hybrid methods can

also handle situations where the input data become incomplete (e.g., Romdhane et al.

[2013]; Ryoo and Aggarwal [2009]; Tran and Davis [2008]).

Background 53

In contrast to action formalisms, the majority of the hybrid methods do not employ any

generic formalism for representing the events and their effects and thus their knowl-

edge base is restricted to domain-dependent CE definitions (e.g., Kersting et al. [2006],

Biswas et al. [2007], Albanese et al. [2010], Shet et al. [2011], Lavee et al. [2013],

etc.). There are methods that employ some domain-independent ontology for expressing

temporal constraints, but their knowledge base is still composed of domain-dependent

definitions (e.g., Morariu and Davis [2011], Brendel et al. [2011], Selman et al. [2011],

etc). Domain-independent axioms characterise formally the properties and the behaviour

of the formalism, making it easier to use in different event recognition applications. For

instance, the hybrid method of Song et al. [2013a,b] incorporates domain-independent

axioms, in order to support prediction, retain the temporal integrity and infer missing

events. A further difference, between action formalisms and the hybrid methods pre-

sented in this section, is that very few of the latter, namely those Biswas et al. [2007]

and Helaoui et al. [2011], support a form of inertia. However, even in these methods

introduce elements of inertia into the domain-dependent definitions, thus limiting their

applicability to the specific event recognition applications.

The methods that we have developed in this work combine a formal, logic-based repre-

sentation with probabilistic modelling. Similar to the hybrid approaches, the developed

methods can compactly express CE definitions and employ background domain knowl-

edge, while probabilistic modelling allows them to handle various forms of uncertainty.

For the probabilistic modelling we employ the state-of-the-art probabilistic and relational

frameworks of MLNs and ProbLog. Both frameworks provide powerful logic-based rep-

resentation that allows to knowledge with complex relations among events. We exploit

their generic representation capabilities, in order to incorporate the Event Calculus ac-

tion formalism. We chose the Event Calculus, in order to provide a approach to reasoning

about events and their effects. Furthermore, with the linear temporal model of the Event

Calculus, we can directly define temporal constraints in the CE definitions. Additionally,

the developed methods inherit and extend the domain-independent property of inertia

with probabilistic modelling.

3 | MLN−EC: Probabilistic Event Calculus based

on Markov Logic Networks

“The probable is what usually happens.”
— Aristotle

As mentioned in Section 1.1, logic-based event recognition approaches can compactly rep-

resent complex event relations and background knowledge. However, event recognition

systems often have to deal with data that involves a significant amount of uncertainty.

A missed or an erroneous simple, derived event (SDE) detection may have a signifi-

cant effect on the event recognition results, e.g., causing the erroneous recognition of

a composite event (CE). When Machine Learning techniques are used, the training set

often involves inconsistent CE annotations. Furthermore, CE definitions and background

knowledge, either learnt from data or derived by domain experts, cannot strictly follow

the annotation. The definitions, therefore, cannot capture perfectly the conditions under

which CEs occur. Under such situations of uncertainty, the performance of an Event

Recognition system can be seriously compromised.

To deal with uncertainty and retain the advantages of logic-based representation, we

combine a discrete variant of the Event Calculus with the probabilistic framework of

Markov Logic Networks. Figure 3.1 outlines the structure of the method (MLN−EC).

The input to MLN−EC is composed of a stream of SDE occurrences and a set of domain-

dependent CE definitions. The CE definitions take the form of common-sense rules and

describe the conditions under which a CE starts or ends. The method combines the

given definitions with the domain-independent axioms of MLN−EC, generating a compact

knowledge base that forms a template for the production of Markov Networks. The

method employs Markov Logic Networks, in order to perform learning and probabilistic

inference. Learning takes place once, in order to estimate the parameters of the model

from data. Using probabilistic inference, MLN−EC recognises the CE of interest for the

given input stream of SDEs.

56 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks

INPUT I TRANSFORMATION I INFERENCE I OUTPUT �

Compact
Knowledge

Base

Composite
Event

Definitions

Event
Calculus
Axioms

Simple,
Derived
Event

Stream

Recognised
Composite

Events

Markov Logic Networks

FIGURE 3.1: The structure of the MLN−EC

3.1 Axiomatisation

We base our model on an axiomatisation of a discrete version of the Event Calculus

(DEC) in first-order logic (see Section 2.2). Furthermore, similar to Artikis et al. [2010a],

predicates stating the initiation and termination of fluents are only defined in terms of

fluents and time-points. Table 3.1 summarises the main elements of the proposed Event

Calculus (MLN−EC). Variables (starting with an upper-case letter) are assumed to be

universally quantified unless otherwise indicated. Predicates, functions and constants

start with a lower-case letter.

Predicate Meaning

happens(E , T) Event E occurs at time-point T

holdsAt(F , T) Fluent F holds at time-point T

initiatedAt(F , T) Fluent F is initiated at time-point T

terminatedAt(F , T) Fluent F is terminated at time-point T

TABLE 3.1: The MLN−EC predicates.

The MLN−EC axioms that determine when a fluent holds are defined as follows:

holdsAt(F , T+1)⇐
initiatedAt(F , T)

(3.1)

holdsAt(F , T+1)⇐
holdsAt(F , T) ∧
¬terminatedAt(F , T)

(3.2)

Axiom (3.1) defines that if a fluent F is initiated at time T , then it holds at the next

time-point. Axiom (3.2) specifies that a fluent continues to hold unless it is terminated.

MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks 57

The axioms that determine when a fluent does not hold are defined similarly:

¬holdsAt(F , T+1)⇐
terminatedAt(F , T)

(3.3)

¬holdsAt(F , T+1)⇐
¬holdsAt(F , T) ∧
¬initiatedAt(F , T)

(3.4)

According to axiom (3.3), if a fluent F is terminated at time T then it does not hold at

the next time-point. Axiom (3.4) states that a fluent continues not to hold unless it is

initiated.

The predicates happens, initiatedAt and terminatedAt are defined only in a domain-

dependent manner. happens expresses the input evidence, determining the occurrence

of a SDE at a specific time-point. The input stream of observed SDEs, therefore, is

represented in the MLN−EC as a narrative of ground happens predicates. initiatedAt

and terminatedAt specify under which circumstances a fluent — representing a CE —

is to be initiated or terminated at a specific time-point. The domain-dependent rules

of MLN−EC, i.e., the initiation and/or termination of some fluent1 over some domain-

specific entities X and Y take the following general form:

initiatedAt(fluent1(X ,Y), T)⇐
happens(eventi(X), T) ∧ . . . ∧
holdsAt(fluentj(X), T) ∧ . . . ∧
Conditions[X ,Y ,T]

terminatedAt(fluent1(X ,Y), T)⇐
happens(eventk(X), T) ∧ . . . ∧
holdsAt(fluentl(X), T) ∧ . . . ∧
Conditions[X ,Y ,T]

(3.5)

In this work we consider finite domains of time-points, events and fluents, that are

represented by the finite sets T , E and F , respectively. All individual entities that appear

in a particular event recognition task, e.g., persons, objects, etc., are represented by

the constants of the finite set O. Conditions[X ,Y ,T] in (3.5) is a set of predicates,

joined by conjunctions, that introduce further constraints in the definition, referring

to time T ∈ T and entities X, Y ∈ O. The predicates happens and holdsAt, as well

as those appearing in Conditions[X ,Y ,T], may also be negated. The initiation and

termination of a fluent can be defined by more than one rule, each capturing a different

initiation and termination case. With the use of happens predicates, we can define a

CE over SDE observations. Similarly, with the holdsAt predicate we can define a CE

over other CE, in order to create hierarchies of CE definitions. In both initiatedAt and

terminatedAt rules, the use of happens, holdsAt and Conditions[X ,Y ,T] is optional

and varies according to the requirements of the target event recognition application.

58 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks

3.2 Application to Activity Recognition

As it has been presented in Section 2.1, to demonstrate our method we apply it to

video surveillance in public spaces using the publicly available benchmark dataset of the

CAVIAR project. The aim is to recognise CE that involve multiple persons, by exploiting

information about observed SDEs. In this work, we focus on the recognition of the

meeting and moving CEs, for which the dataset contains a sufficient amount of training

examples.

The input to MLN−EC is a narrative of ground happens predicates (SDEs), representing

people walking, running, staying active, or inactive. The first and the last time that a

person or an object is tracked are represented by the SDEs enter and exit. The coordinates

of tracked persons or objects are preprocessed and represented by the utility predicates

close and orientationMove, expressing qualitative spatial relations. As an example,

consider the following fragment of a narrative:

. . .

happens(walking(id1), 100)

happens(walking(id2), 100)

orientationMove(id1 , id2 , 100)

close(id1 , id2 , 34, 100)

. . .

happens(active(id1), 200)

happens(active(id2), 200)

. . .

(3.6)

According to the above narrative, it has been observed that at time-point 100 the persons

id1 and id2 are walking close to each other with similar orientation. The ground predicate

close indicates that the distance between the two persons at time-point 100 is below the

specified threshold of 34 pixels. Similarly, orientationMove states that their orientation

is almost the same (e.g., the difference is below 45 degrees). Later at time-point 200

both persons are staying active, e.g., they are moving their arms, while staying at the

same position.

The input CE definitions of the meeting and moving activities were developed in [Artikis

et al., 2010b]. These definitions are common-sense rules that are expressed using the

general form (3.5). Consider the following definition of the meeting CE in our example.

initiatedAt(meeting(ID1 , ID2), T)⇐
happens(active(ID1), T) ∧
¬happens(running(ID2), T) ∧
close(ID1 , ID2 , 25, T)

(3.7)

MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks 59

initiatedAt(meeting(ID1 , ID2), T)⇐
happens(inactive(ID1), T) ∧
¬happens(running(ID2), T) ∧
¬happens(active(ID2), T) ∧
close(ID1 , ID2 , 25, T)

(3.8)

terminatedAt(meeting(ID1 , ID2), T)⇐
happens(walking(ID1), T) ∧
¬close(ID1 , ID2 , 34, T)

(3.9)

terminatedAt(meeting(ID1 , ID2), T)⇐
happens(running(ID1), T)

(3.10)

terminatedAt(meeting(ID1 , ID2), T)⇐
happens(exit(ID1), T)

(3.11)

According to rules (3.7) and (3.8), the meeting CE is initiated when the people involved

interact with each other, i.e., at least one of them is active or inactive, the other is not

running, and the measured distance between them is at most 25 pixels. The meeting CE

is terminated when people walk away from each other (rule 3.9), when one of them is

running (rule 3.10), or has exited the scene (rule 3.11).

The definition of the CE that people are moving together is represented as follows:

initiatedAt(moving(ID1 , ID2), T)⇐
happens(walking(ID1), T) ∧
happens(walking(ID2), T) ∧
orientationMove(ID1 , ID2 , T) ∧
close(ID1 , ID2 , 34, T)

(3.12)

terminatedAt(moving(ID1 , ID2), T)⇐
happens(walking(ID1), T) ∧
¬close(ID1 , ID2 , 34, T)

(3.13)

terminatedAt(moving(ID1 , ID2), T)⇐
happens(active(ID1), T) ∧
happens(active(ID2), T)

(3.14)

terminatedAt(moving(ID1 , ID2), T)⇐
happens(active(ID1), T) ∧
happens(inactive(ID2), T)

(3.15)

terminatedAt(moving(ID1 , ID2), T)⇐
happens(running(ID1), T)

(3.16)

60 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks

terminatedAt(moving(ID1 , ID2), T)⇐
happens(exit(ID1), T)

(3.17)

According to rule (3.12), the moving CE is initiated when two persons ID1 and ID2

are walking close to each other (their distance is at most 34 pixels) with almost the

same orientation. The moving CE is terminated under several cases: (a) When people

walk away from each other, i.e., they have a distance larger than 34 pixels, (b) when

they stop moving, i.e., either both are active, or one is active while the other is inactive,

represented by rules (3.14) and (3.15). (c) When one of them is running or exiting the

scene, represented by rules (3.16) and (3.17), respectively.

The output of MLN−EC is a stream of recognised activities. The clauses that are produced

from MLN−EC axioms (i.e., axioms (3.1)–(3.4)) and input CE definitions (i.e., rules (3.7)–

(3.17)) are associated with weights. Given a narrative of SDEs, MLN−EC probabilistically

determines whether a CE holds or not at any time-point. For example, the SDEs and

spatial conditions at time-points 100 and 200, according to narrative (3.6), satisfy the

conditions of rules (3.12) and (3.14), respectively. As it is shown in Figure 3.2, at time-

point 100 the moving CE is initiated. This situation increases the belief that CE moving

will hold at the next time-point — i.e., holdsAt(moving(id1 , id2), 101). On the other

hand, at time-point 200 the CE moving is terminated. As a result, this situation reduces

the belief that moving holds at time-point 201. Therefore, according to this example the

CE moving has been recognised with some probability in the interval (100, 200]. In the

following sections we give a detailed description of how clause weights are determined,

affecting the probability of the recognised CEs.

time I
... ...

100 200

Initiation caused by :

happens(walking(id1), 100)

happens(walking(id2), 100)

orientationMove(id1 , id2 , 100)

close(id1 , id2 , 34, 100)

Termination caused by :

happens(active(id1), 200)

happens(active(id2), 200)

For each time-point T ∈ (100, 200] :

holdsAt(moving(id1 , id2), T) = true

FIGURE 3.2: An example of event recognition with the MLN−EC

MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks 61

3.3 Compact Knowledge Base Construction

The use of MLNs for inference and learning requires the grounding of the entire knowl-

edge base used for event recognition. Unless optimised, this process leads to unmanage-

ably large ground Markov Networks, where inference and learning become practically

infeasible. We address this problem at two levels:

1. We use the simplified dialect of the Event Calculus that is presented in Section 3.1.

2. We extend MLNs with a preprocessing step that transforms the knowledge base into

a logically stronger one. The simplifications that are made during the preprocessing

reduce the number of random variables in the ground Markov network, simplifying

the complexity of inference and learning.

3.3.1 Simplified Representation

The choice of Event Calculus dialect, as presented in Section 3.1, has a significant impact

on the grounding process. For example, Shanahan’s Full Event Calculus [Shanahan,

1999] employs axioms that contain triply quantified time-point variables (see Section

2.2). As a result, the number of their groundings has a cubic relation to the number

of time-points. Furthermore, that formalism contains existentially quantified variables

over events and time-points. During MLN grounding existentially quantified formulas

are replaced by the disjunction of their groundings [Domingos and Lowd, 2009]. This

leads to a large number of disjunctions and a combinatorial explosion of the number of

clauses, producing unmanageably large Markov networks.

In contrast, the proposed Event Calculus (MLN−EC) is based on the DEC [Mueller, 2008],

where the domain-independent axioms are defined over successive time-points (see

Section 2.2). The inertia axioms (2.8) and (2.10) of DEC, however, still contain the

existentially quantified variable E over a conjunction of predicates. Each of these axioms

will be transformed into 2|E| clauses, each producing |F| × |T | groundings1. Moreover,

each ground clause will contain a large number of disjunctions, causing large cliques in

the ground Markov network. On the other hand, in MLN−EC the initiation and termination

predicates are only defined in terms of fluents and time-points (see the general form

(3.5)). This representation can be used to reduce further the number of variables and

eliminate the existential quantification in the domain-independent axioms. For example,

axiom (3.1) produces one clause in Conjunctive Normal Form and has two distinct vari-

ables F and T . Therefore, the number of its groundings is determined by the Cartesian
1Mueller [2008] uses the technique of sub-formula renaming [Nonnengart and Weidenbach, 2001] in

order to avoid the creation of 2|E| clauses. However, the existential quantification remains in the axioms,
causing the creation of large cliques in the ground network. Additionally, sub-formula renaming introduces
utility predicates that do not belong in the input evidence, creating hidden variables in the network. As a
result, the complexity of inference and learning increases.

62 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks

product of the corresponding variable-binding constraints, that is |F|×|T |. Assuming

that the domain of fluents F is relatively small compared to the domain of time-points

T , the number of groundings of axiom (3.1) grows linearly to the number of time-points.

Thus, compared to the Discrete Event Calculus and the Full Event Calculus (see Section

2.2), MLN−EC produces a substantially smaller number of ground clauses.

3.3.2 Knowledge Base Transformation

In addition to choosing an Event Calculus dialect that makes the number of ground

clauses linearly dependent on the number of time-points, we can achieve significant

improvements in the size of the ground Markov Networks, by making the closed-world

assumption.

A knowledge base with domain-dependent rules in the form of (3.5) describes explicitly

the conditions in which fluents are initiated or terminated. It is usually impractical to

define also when a fluent is not initiated and not terminated. However, the open-world

semantics of first-order logic result in an inherent uncertainty about the value of a fluent

for many time-points. In other words, if at a specific time-point no event that terminates

or initiates a fluent happens, we cannot rule out the possibility that the fluent has been

initiated or terminated. As a result, we cannot determine whether a fluent holds or not,

leading to the loss of inertia.

This is a variant of the well-known frame problem and one solution for the Event Calculus

in first-order logic is the use of circumscription [Doherty et al., 1997; Lifschitz, 1994;

McCarthy, 1980; Mueller, 2008; Shanahan, 1997]. The aim of circumscription is to

automatically rule out all those conditions which are not explicitly entailed by the given

formulas. Hence, circumscription introduces a closed-world assumption to first-order

logic.

Technically, we perform circumscription by predicate completion — a syntactic trans-

formation where formulas are translated into logically stronger ones. In particular, we

perform predicate completion on initiatedAt and terminatedAt predicates. Due to

the form of CE definitions (see formalisation (3.5)), the result of predicate completion

concerns each CE separately, e.g., initiatedAt(meeting(ID1 , ID2), T), rather than a

generic initiatedAt(F , T) predicate. Similar to Mueller [2008], we also eliminate the

initiatedAt and terminatedAt predicates from the knowledge base, by exploiting the

equivalences resulting from predicate completion. In cases where the definitions of the

initiation or termination of a specific CE are missing, the corresponding initiation or termi-

nation is considered False for all time-points, e.g., terminatedAt(fluent(X ,Y), T) ⇔
False.

To illustrate the form of the resulting knowledge base, consider the domain-dependent

definition of meeting — i.e., rules (3.7)–(3.11). After predicate completion, these rules

MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks 63

will be replaced by the following formulas:

initiatedAt(meeting(ID1 , ID2), T)⇔(
happens(active(ID1), T) ∧
¬happens(running(ID2), T) ∧
close(ID1 , ID2 , 25, T)

) ∨(
happens(inactive(ID1), T) ∧
¬happens(running(ID2), T) ∧
¬happens(active(ID2), T) ∧
close(ID1 , ID2 , 25, T)

)
(3.18)

terminatedAt(meeting(ID1 , ID2), T)⇔(
happens(walking(ID1), T) ∧
¬close(ID1 , ID2 , 25, T)

) ∨
happens(running(ID1), T)

∨
happens(exit(ID1), T)

(3.19)

The resulting rules (3.18) and (3.19) define all conditions under which the meeting CE

is initiated or terminated. Any other event occurrence cannot affect this CE, as it cannot

initiate the CE or terminate it. Based on the equivalence in formula (3.18), the domain-

independent axiom (3.1) is automatically re-written into the following specialised form2:

holdsAt(meeting(ID1 , ID2), T+1)⇐
happens(active(ID1), T) ∧
¬happens(running(ID2), T) ∧
close(ID1 , ID2 , 25, T)

holdsAt(meeting(ID1 , ID2), T+1)⇐
happens(inactive(ID1), T) ∧
¬happens(running(ID2), T) ∧
¬happens(active(ID2), T) ∧
close(ID1 , ID2 , 25, T)

(3.20)

2This direct re-writing of (3.18) results in a single formula that contains the disjunction found in formula
(3.18). However, for reasons that have to do with the handling of uncertainty in MLN and will be discussed
in a later section, in (3.20) we choose to equivalently represent it using two separate formulas.

64 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks

Similarly, the inertia axiom (3.2) can be re-written according to (3.19) as follows:

holdsAt(meeting(ID1 , ID2), T+1)⇐
holdsAt(meeting(ID1 , ID2), T) ∧
¬
((

happens(walking(ID1), T) ∧
¬close(ID1 , ID2 , 25, T)

) ∨
happens(running(ID1), T)

∨
happens(exit(ID1), T)

)
(3.21)

The result of this transformation procedure replaces the original set of domain-independent

axioms and domain-dependent CE definitions with a logically stronger knowledge base.

The rules in the resulting knowledge base form the template that MLNs will use to pro-

duce ground Markov networks. The transformed formulas produce considerably more

compact ground Markov networks than the original ones, as the clauses to be grounded

are reduced. Moreover, the predicates initiatedAt and terminatedAt are eliminated

and the corresponding random variables are not added to the network. This reduction

decreases substantially the space of possible worlds, since the target random variables

of the network (Y in equation (2.11)) are limited only to the corresponding holdsAt

ground predicates. Specifically, the space of possible worlds is reduced from 23×|F|×|T | to

2|F|×|T | — where |T | and |F| denote the number of distinct time-points and fluents, re-

spectively. These reductions improve the computational performance of the probabilistic

inference. Additionally, due to the reduced space of possible worlds, the same number

of sampling iterations results in better probability estimates.

Formally, the resulting knowledge base is composed of rules having the following form:

Σ =

holdsAt(fluent1(X , Y), T+1)⇐
happens(eventi(X), T) ∧ . . . ∧ Conditions[X ,Y ,T]

. . .

(3.22)

¬holdsAt(fluent1(X ,Y), T+1)⇐
happens(eventj(X), T) ∧ . . . ∧ Conditions[X ,Y ,T]

. . .

(3.23)

Σ′ =

holdsAt(fluent1(X ,Y), T+1)⇐
holdsAt(fluent1(X ,Y), T) ∧
¬
(

(happens(eventj(X), T) ∧ . . . ∧ Conditions[X ,Y ,T])
∨
. . .
)

. . .

(3.24)

¬holdsAt(fluent1(X ,Y), T+1)⇐
¬holdsAt(fluent1(X ,Y), T) ∧
¬
(

(happens(eventi(X), T) ∧ . . . ∧ Conditions[X ,Y ,T])
∨
. . .
)

. . .

(3.25)

MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks 65

The rules in (3.22)–(3.25) can be separated into two subsets. The former set Σ contains

specialised definitions of axioms (3.1) and (3.3), specifying that a fluent holds (or does

not hold) when its initiation (or termination) conditions are met. The latter set Σ
′

contains specialised definitions of the inertia axioms (3.2) and (3.4), specifying whether

a specific fluent continues to hold or not at any instance of time.

The presented knowledge transformation procedure reduces the size of the produced

network, based only on the rules of the knowledge base. It is automated and taken place

as a preprocessing step, preceding the standard grounding procedure of MLNs.

3.4 The Behaviour of the MLN−EC

Recall that the compact knowledge base of MLN−EC is separated into the Σ and Σ′ subsets

(see Section 3.3.2). The set Σ is composed of the formulas that specify when a fluent

holds (or does not hold), while Σ′ comprises the formulas that specify when a fluent

continues to hold or not. As mentioned in Section 2.3.1, by associating weights to

such formulas we define soft constraints, allowing some worlds that do not satisfy these

formulas to become likely. For example, consider a knowledge base of Event Calculus

axioms and CE definitions (e.g. meeting and moving) compiled in the form of rules

(3.22)–(3.25). Given a narrative of SDEs, the probability of a CE to hold at a specific

time-point is determined by the probabilities of the worlds in which this CE holds. Each

world, in turn, has some probability which is proportional to the sum of the weights of

the ground clauses that it satisfies. Consequently, the probability of a CE to hold at a

specific instance of time depends on the corresponding constraints of the ground Markov

network. Thus, by treating the rules in the Σ and Σ′ sets as either hard or soft constraints,

we can modify the behaviour of the Event Calculus. Compared to crisp implementations

of the Event Calculus, this flexibility of changing the behaviour of the formalism is an

important advantage of the proposed method.

3.4.1 Soft-constrained rules in Σ

In order to illustrate how the probability of a CE is affected when its initiation or ter-

mination conditions are met, consider the case that the rules in Σ are soft-constrained

while the inertia rules in Σ′ remain hard-constrained. By soft-constraining the rules in Σ,

the worlds violating their clauses become probable. This situation reduces the certainty

with which a CE is recognised when its initiation or termination conditions are met. For

example, assume that the initiation rules (3.20) of the meeting CE are associated with

weights. As a result, the meeting activity is initiated with some certainty, causing the CE

to hold with some probability. Depending on the strength of the weights, the worlds that

violate these rules become more or less likely. Thus, we can control the level of certainty

with which a CE holds or not under the same conditions.

66 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks

timeI0 3 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P
(h
o
l
d
s
A
t
(m
e
e
t
i
n
g
(i
d
1
,
id

2
),

T
)|S

D
E
s
)

ECcrisp

MLN−ECHI

initiation initiation termination

FIGURE 3.3: The probability of the meeting CE given some SDE narrative. ECcrisp is
a crisp Event Calculus. MLN−ECHI is a probabilistic Event Calculus where rules in Σ are
soft-constrained, while the inertia rules in Σ′ remain hard-constrained.

When the initiation conditions are met, the probability of the CE to hold increases.

Equivalently, when the termination conditions are satisfied, the probability of the CE

decreases. At the same time, all worlds that do not fully satisfy hard-constrained inertia

rules in Σ′ are rejected, thus the inertia is retained deterministically as in crisp logic.

Figure 3.3 illustrates this behaviour with the fluent meeting that initially does not hold at

time 0. According to the narrative of SDEs, the meeting activity is initiated at time-points

3 and 10, e.g., satisfying the constraints imposed by rules (3.7) and (3.8) respectively.

At time 20, the meeting activity is terminated by the conditions of rule (3.9). In crisp

Event Calculus, denoted as ECcrisp, after its first initiation the meeting activity holds

with absolute certainty. The second initiation at time 10 does not cause any change and

the CE continues to hold. The termination at time 20 causes the CE to not hold, again

with absolute certainty, for the remaining time-points. In MLN−ECHI (hard-constrained

inertia rules), however, the rules in Σ are soft-constrained. As a result, at time-point 4

the probability of meeting to hold increases to some value. Similar to ECcrisp, the inertia

is fully retained and the probability of meeting deterministically persists in the interval 4

to 10. In contrast to ECcrisp, the second initiation at time-point 10 increases the certainty

of meeting to hold. As a result, the probability of meeting is higher in the interval 11 to

20. In the same manner, the termination at 20 reduces the probability of meeting and

the CE continues to hold with some reduced probability.

3.4.2 Soft-constrained inertia rules in Σ′

To illustrate how the behaviour of inertia is affected by soft-constraining the correspond-

ing rules in Σ′, consider that the rules in Σ are hard-constrained. Consequently, when

the initiation (or termination) conditions are met, a CE holds (or does not hold) with

absolute certainty. The persistence of a CE depends on its inertia rules in Σ′. If the inertia

MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks 67

of holdsAt is hard-constrained, the worlds in which an initiated CE does not hold are

rejected. Similarly, by keeping the inertia of ¬holdsAt hard-constrained, all worlds in

which a terminated CE holds are rejected. By soft-constraining these rules we control

the strength of the inertia constraints. Even when the inertia constraints are partially

violated, the probability of the CE is affected. Thus, the persistence of holdsAt and

¬holdsAt is gradually lost over successive time-points. When allowing the constraints

of holdsAt inertia to be violated, the probability of a CE gradually drops. Inversely, by

allowing the constraints representing the inertia of ¬holdsAt to be violated, the proba-

bility of a CE gradually increases. The lower the value of the weight on the constraint,

the more probable the worlds that violate the constraints become. In other words, weight

values in Σ′ cause CE to persist for longer or shorter time periods.

Since the sum of the probabilities of holdsAt and ¬holdsAt for a specific CE is always

equal to 1, the relative strength of holdsAt and ¬holdsAt rules in Σ′ determines the

type of inertia in the model. The following two general cases can be distinguished.

Equally strong inertia constraints All rules in Σ′ are equally soft-constrained, i.e., they

are associated with the same weight value. Consequently, both inertia rules of holdsAt

and ¬holdsAt for a particular CE impose constraints of equal importance, allowing

worlds that violate them to become likely. As a result, in the absence of useful evidence,

the probability of holdsAt will converge to the value 0.5. For example, Figure 3.4(a)

illustrates soft persistence for the meeting CE when it holds with absolute certainty

at time-point 0, and thereafter nothing happens to initiate or terminate it. The curve

MLN−ECSIeq (soft-constrained inertia rules with equal weights) shows the behaviour of

inertia in this case. As time evolves, the probability of meeting appears to gradually

drop, converging to 0.5. If we assign weaker weights to the inertia axioms, shown by the

MLN−ECSIeqweak curve, the probability of meeting drops more sharply. Similarly, in Figure

3.4(b), the meeting CE is assumed to not hold initially. As time evolves, the probability

of meeting gradually increases up to the value 0.5, as shown by the MLN−ECSIeq and

MLN−ECSIeqweak curves respectively.

Inertia constraints of different strength When the inertia rules of holdsAt and

¬holdsAt for a particular CE in Σ′ have different weights, the probability of the CE

will no longer converge to 0.5. Since the weights impose constraints with different confi-

dence, worlds violating the stronger constraints become less likely than worlds violating

the weaker ones. Depending on the relative strength of the weights, the probability of

the CE may converge either to 1.0 or 0.0. The relative strength of the weights affects also

the rate at which the probability of CE changes. As an extreme example, in Figure 3.4(a),

the rules for the inertia of ¬holdsAt remain hard-constrained. By assigning weights to

the rules for the inertia of holdsAt, the persistence of the CE is lost. Since the inertia

constraints of holdsAt are weaker than the constraints of ¬holdsAt, worlds violating the

68 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time

Pr
ob

ab
ili

ty

MLN−ECSIh MLN−ECSIhweak
MLN−ECSIeq MLN−ECSIeqweak

(a) The CE initially holds.

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time

Pr
ob

ab
ili

ty

MLN−ECSI¬h MLN−ECSI¬h
weak

MLN−ECSIeq MLN−ECSIeqweak

(b) The CE initially does not hold.

FIGURE 3.4: In both figures SDEs occur that lead to the partial satisfaction of the
initiation/termination conditions of a CE in the interval 0 to 100. In the left figure the
CE holds at time 0 with absolute certainty, while in the right figure the CE does not hold
at time 0.

former set of constraints will always be more likely. As a result, the probability of the CE

will continue to drop, even below 0.5. The curves MLN−ECSIh (soft-constrained inertia of

holdsAt) and MLN−ECSIhweak (weaker holdsAt inertia constraints) illustrate how the prob-

ability of meeting drops sharply towards 0.0. The weaker the constraints (MLN−ECSIhweak)

the steeper the drop. In a similar manner, when the inertia constraints of ¬holdsAt
are weaker than the constraints of holdsAt, the probability of CE gradually increases

and may reach values above 0.5 — presented by the MLN−ECSI¬h (soft-constrained inertia

of ¬holdsAt) and MLN−ECSI¬h
weak

(weaker ¬holdsAt inertia constraints) cases in Figure

3.4(b).

As explained in Section 3.3.2, the inertia rule of a CE may consist of a large body of

conditions, e.g., rule (3.21). Depending on the number of conditions involved, the rule

may be decomposed into several clauses, each corresponding to a different subset of

conditions. For instance, the following two clauses are added to Σ′ by the inertia rule

(3.21):

happens(walking(ID1), T) ∨ happens(running(ID1), T) ∨ happens(exit(ID1), T) ∨
¬holdsAt(meeting(ID1 , ID2), T) ∨ holdsAt(meeting(ID1 , ID2), T+1)

(3.26)

¬close(ID1 , ID2 , 25, T) ∨ happens(running(ID1), T) ∨ happens(exit(ID1), T) ∨
¬holdsAt(meeting(ID1 , ID2), T) ∨ holdsAt(meeting(ID1 , ID2), T+1)

(3.27)

The above clauses contain literals from the termination rules of the meeting CE. Often,

some of these clauses become trivially satisfied. For example, at time-point 10 both

MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks 69

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time

Pr
ob

ab
ili

ty

MLN−ECSIh MLN−EC′
SIh

(a) The CE initially holds.

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time

Pr
ob

ab
ili

ty

MLN−ECSI¬h MLN−EC′
SI¬h

(b) The CE initially does not hold.

FIGURE 3.5: In both figures no useful SDEs occur in the interval 0 to 100. In MLN−ECSIh
and MLN−ECSI¬h none of the inertia clauses in Σ′ become trivially satisfied by the SDEs.
However, in MLN−EC′SIh and MLN−EC′SI¬h some inertia clauses are trivially satisfied by the
SDE. In the left figure, the CE holds at time 0 with absolute certainty, while in the right
figure the CE does not hold at time 0.

persons ID1 and ID2 are active, while their distance is above the threshold of 25 pixels,

i.e., close(ID1 , ID2 , 25, 10)=False. Consequently, the grounding of clause (3.27) at

time-point 10 is trivially satisfied for all possible worlds. Although the meeting CE is not

terminated at time-point 10, because clause (3.26) is not satisfied, the satisfaction of

clause (3.27) reduces the probability of holdsAt for the CE. This is because the inertia

at time-point 10 is now supported only by the satisfaction of the ground clause (3.26).

In other words, the difference between the probabilities of worlds that violate the inertia

of holdsAt and worlds that do not, is reduced.

To illustrate this phenomenon, consider the example cases in Figure 3.5(a) where only

the rules about the inertia of holdsAt are soft-constrained. Both MLN−ECSIh and MLN−EC′SIh
cases share the same knowledge base. In the MLN−ECSIh case, the occurrence of SDEs

causes none of the inertia clauses to become trivially satisfied. In the MLN−EC′SIh case,

however, the SDEs are randomly generated and cause a different subset of inertia clauses

to become trivially satisfied at each time-point. In both cases the probability of the

CE is reduced. In contrast to MLN−ECSIh , however, the inertia in MLN−EC′SIh drops more

sharply, as some of the clauses in Σ′ are trivially satisfied by the given SDEs. Additionally,

the probability of the CE to hold in MLN−EC′SIh persists at a different level in each time-

point, since different subsets of clauses become trivially satisfied each time. Similarly, in

Figure 3.5(b) the rules about the inertia of ¬holdsAt are soft-constrained. In contrast

to MLN−ECSI¬h , the occurrence of SDEs leads to the partial satisfaction of the initiation

conditions, causing the inertia in MLN−EC′SI¬h to persist with a different confidence at each

time-point, thus increasing the probability of the CE to hold more sharply.

Having analysed the effect of softening the inertia rules, it is worth noting that in many

70 MLN−EC: Probabilistic Event Calculus based on Markov Logic Networks

real cases the entire knowledge base may be soft-constrained. In this case, since the rules

in Σ are soft-constrained, CEs are not initiated or terminated with absolute certainty.

At the same time, CEs do not persist with certainty, as the rules in Σ′ are also soft-

constrained.

Depending on the requirements of the target application, various policies regarding the

soft-constraining of the knowledge base may be adopted. This flexibility is one of the

advantages of combining logic with probabilities in the proposed method. Furthermore,

it should be stressed that in a typical event recognition application the knowledge base

will contain a large number of clauses. The strength of a constraint imposed by a clause

is also affected by the weights of other clauses with which it shares the same predicates.

Due to these interdependencies, the manual setting of weights is bound to be suboptimal

and cumbersome. Fortunately, the weights can be estimated automatically from training

data, using standard parameter optimisation methods.

3.5 Conclusions

We addressed the issue of imperfect CE definitions that stems from the uncertainty that

naturally exists in event recognition. MLN−EC is the first probabilistic version of the Event

Calculus based on Markov Logic Networks. The method has declarative and formal

(probabilistic) semantics, inheriting the properties of the Event Calculus. We placed par-

ticular emphasis on the efficiency and effectiveness of our approach. By simplifying the

axioms of the Event Calculus and following a knowledge transformation procedure, the

method produces compact Markov networks of reduced complexity. Consequently, the

performance of probabilistic inference is improved, as it takes place on a simpler model.

In contrast to the standard Event Calculus, MLN−EC supports flexible CE persistence, rang-

ing from deterministic to probabilistic. As a result, the behaviour of the persistence can

be adjusted, in order to meet the requirements of different applications.

4 | Experimental Evaluation of MLN−EC

“It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.

If it doesn’t agree with experiment,
it’s wrong.”

— Richard P. Feynman

In this chapter we evaluate our MLN−EC method in the domain of video activity recognition.

As presented in Section 2.1, we use the publicly available benchmark dataset of the

CAVIAR project. The aim of the experiments is to assess the effectiveness of MLN−EC in

recognising CEs that occur among people, based on imperfect CE definitions and in the

presence of incomplete narratives of SDEs.

MLN−EC combines the benefits of logic-based representation (e.g., direct expression of

domain background knowledge) with probabilistic modelling (i.e., uncertainty handling).

For comparison purposes, we include in the experiments two approaches that are closely

related to our method. First, we use the logic-based activity recognition method of Artikis

et al. [2010b], which we call here ECcrisp. Like our method, ECcrisp employs a variant of

the Event Calculus and uses the same definitions of CEs (see Section 3.2). Unlike MLN−EC,

ECcrisp cannot perform probabilistic reasoning. Second, we use a pure probabilistic

method that employs a linear-chain Conditional Random Field model [Lafferty et al.,

2001], which we call here l−CRF. Similar to our method, l−CRF is a log-linear model that

performs probabilistic reasoning over an undirected probabilistic network. On the other

hand, l−CRF does not employ a logic-based representation of the domain knowledge.

4.1 Setup

From the 28 videos of the CAVIAR dataset, we have extracted 19 sequences that are

annotated with the meeting and/or moving CEs. The rest of the sequences in the dataset

are ignored, as they do not contain examples of the two target CEs. Out of 19 sequences, 8

72 Experimental Evaluation of MLN−EC

are annotated with both moving and meeting activities, 9 are annotated only with moving

and 2 only with meeting. The total length of the extracted sequences is 12869 frames.

Each frame is annotated with the occurrence or not of a CE and is considered an example

instance. The whole dataset contains a total of 25738 annotated example instances.

There are 6272 example instances in which moving occurs and 3622 in which meeting

occurs. Consequently, for both CEs the number of negative examples is significantly

larger than the number of positive examples, 19466 for moving and 22116 for meeting.

The input of all three methods consists of a sequence of SDEs, i.e., active, inactive, walk-
ing, running, enter and exit. In both MLN−EC and l−CRF, the spatial constraints close

and orientationMove are precomputed and their truth value is provided as input. In

situations where no event occurs or the distance of the involved persons is above the

highest predefined threshold, the tags none and far are given to l−CRF, respectively.

The output of the ECcrisp method consists of a sequence of ground holdsAt predicates,

indicating which CEs are recognised. Since ECcrisp performs crisp reasoning, all CEs are

recognised with absolute certainty. On the other hand, the output of the probabilistic

methods depends on the inference type, i.e., maximum a-posteriori (MAP) or marginal

inference. Given a sequence of SDEs, MAP inference outputs the most probable instan-

tiations of CEs for all time-points. On the other hand, marginal inference estimates the

probability of each CE of each time-point.

Table 4.1 presents the structure of the training sequences for the probabilistic methods. In

particular, Table 4.1(a) shows an example training sequence for MLN−EC. Each sequence

is composed of input SDEs (ground happens), precomputed spatial constraints between

pairs of people (ground close and orientationMove), as well as the corresponding CE

annotations (ground holdsAt). Negated predicates in the training sequence state that

the truth value of the corresponding predicate is False. Table 4.1(b) shows the equivalent

input training data for l−CRF. The random variables Person A and Person B represent the

events that the two persons may be involved in at each time-point and variables Close
and Orientation Move represent the spatial constraints between the two persons. Similar

to MLN−EC, l−CRF does not contain any hidden variables between input SDEs and output

CEs. As a result, training is fully supervised for both methods.

To estimate the weights in l−CRF, we use the quasi-Newton optimisation algorithm L-

BFGS [Byrd et al., 1994]. For MAP and marginal inference we use the Viterbi and Forward-
Backward algorithms [Culotta and McCallum, 2004; Sutton and McCallum, 2007]. In

MLN−EC we use the second-order Diagonal Newton method of Lowd and Domingos [2007]

and perform marginal inference with the MC-SAT algorithm [Poon and Domingos, 2006],

taking 1000 samples for each sequence. We additionally perform max-margin training

and MAP inference, using the method of Huynh and Mooney [2009]. Details about

learning and inference algorithms that we use in MLN−EC are outlined in Section 2.3.1. In

Experimental Evaluation of MLN−EC 73

Simple Derived Events Composite Events

.

happens(walking(id1), 100)

happens(walking(id2), 100) holdsAt(moving(id1 , id2), 100)

orientationMove(id1 , id2 , 100) holdsAt(moving(id2 , id1), 100)

close(id1 , id2 , 24, 100)

.

happens(active(id1), 101)
happens(walking(id2), 101) holdsAt(moving(id1 , id2), 101)

orientationMove(id1 , id2 , 101) holdsAt(moving(id2 , id1), 101)

¬close(id1 , id2 , 24, 101)

.

happens(walking(id1), 200)

happens(running(id2), 200) ¬holdsAt(moving(id1 , id2), 200)

¬orientationMove(id1 , id2 , 200) ¬holdsAt(moving(id2 , id1), 200)

¬close(id1 , id2 , 24, 200)

.

(a) Input narrative for MLN−EC.

Person A Person B Close Orientation Move Composite Events

.

walking walking 24 True Moving

active walking Far True NotMoving

.

walking running Far False NotMoving

.

(b) Input sequence for l−CRF.

TABLE 4.1: Example training sets for CE moving. Table 4.1(a) shows a training set for
MLN−EC. The first column is composed of a narrative of SDEs and precomputed spatial
constraints for MLN−EC, while the second column contains the CE annotation in the form
of ground holdsAt predicates. Table 4.1(b) shows the equivalent training set for l−CRF.
Columns Person A to Orientation Move contain the input SDEs and spatial constraints,
while the last column contains the annotation.

74 Experimental Evaluation of MLN−EC

the experiments we use the open-source software packages ALCHEMY [Kok et al., 2005]

and CRF++1.

MLN−EC is tested under three different scenarios (MLN−ECHI, MLN−ECSIh and MLN−ECSI, see

Table 4.2 for a description). In all three variants of MLN−EC, the rules in Σ are soft-

constrained while the inertia rules in Σ′ are either soft or hard.

Throughout the experimental analysis, the results for marginal inference are presented in

terms of F1 score for threshold values ranging between 0.0 and 1.0. Any CE with proba-

bility above the threshold is considered to be recognised. A snapshot of the performance

using the threshold value 0.5, is presented in terms of True Positives (TP), False Positives

(FP), False Negatives (FN), Precision, Recall and F1 score. Additionally, the overall

performance for marginal inference is measured in terms of area under precision-recall

curve (AUPRC). Similar to F1 score, precision and recall, the AUPRC is insensitive to

the number of true negatives, which is much higher that the true positives in the dataset.

The evaluation results using MAP inference are presented in terms of True Positives (TP),

False Positives (FP), False Negatives (FN), Precision, Recall and F1 score. All reported

experiment statistics are micro-averaged over the instances of recognised CEs in 10 folds.

Scenarios Description

MLN−ECHI All inertia rules in Σ′ are hard-constrained.

MLN−ECSIh The inertia rules of holdsAt are soft-constrained, while the rest of Σ′

remains hard-constrained.

MLN−ECSI All inertia rules in Σ′ are soft-constrained.

TABLE 4.2: Variants of MLN−EC, using hard and soft inertia rules in Σ′.

4.1.1 The Methods Being Compared

Both ECcrisp and MLN−EC employ a logic-based representation, implement a variant of

the Event Calculus and contain equivalent definitions of CEs. The CE definitions of

meeting and moving of ECcrisp are translated into first-order logic for MLN−EC using the

formulation proposed in Section 3.1. The definition of meeting is given by formulas

(3.7)–(3.11), while that of moving is given by formulas (3.12)–(3.17). In contrast to

ECcrisp, each clause in MLN−EC may be associated with a weight value, indicating a degree

of confidence.

Similar to MLN−EC, l−CRF is a discriminative probabilistic graphical model. In l−CRF,

the relationship among CEs at successive time-points is modelled as a Markov network,

conditioned on the input evidence of SDEs. A CE is represented by a Boolean random

variable, stating whether the CE holds or not at any time-point in the sequence. For
1http://code.google.com/p/crfpp

http://code.google.com/p/crfpp

Experimental Evaluation of MLN−EC 75

example, the random variables representing the moving CE may take either the value

Moving or NotMoving at some time-point in the sequence.

Despite their similarities, there are also several differences between the two probabilis-

tic methods. In l−CRF, the input SDEs and the spatial constraints are represented by

multivariate random variables. For instance, the input SDEs for a particular person are

represented by a single random variable that can take any SDE value, e.g., active, inac-
tive, walking, etc. The relationship among random variables is defined by two types of

feature. The former type associates input SDEs and spatial constraints with output CEs

at the same time-point, creating features for all possible instantiations. The latter type

associates successive CEs, in order to form linear chains. In particular, features are con-

structed for each possible pair of CE instantiations at successive time-points. All features

in l−CRF are associated with weights and thus all relationships are soft-constrained.

On the other hand, MLN−EC employs a logic-based representation and all features are

produced from ground clauses. Domain knowledge is combined with the Event Calcu-

lus axioms, in order to form the structure of the network. For example, the relations

between successive CE instantiations are formed by the inertia axioms and the corre-

sponding initiation and termination rules. Moreover, the MLN−EC provides control over

the behaviour of CE persistence, by allowing the inertia clauses to be defined as either

soft or hard constraints. The probabilistic inference in MLN−EC can deal with both deter-

ministic (i.e., hard-constrained clauses) and probabilistic (i.e., soft-constrained clauses)

dependencies, as well as arbitrarily structured networks. On the other hand, the struc-

tural simplicity of l−CRF allows for specialised and significantly faster inference and

learning methods.

4.2 Network Size and Inference Times

The CE definitions of moving (rules (3.12)–(3.17)) and meeting (rules (3.7)–(3.11))

together with the domain-independent axioms of MLN−EC (rules (3.1)–(3.4)) are prepro-

cessed using the transformation procedure presented in Section 3.3.2. Given the SDEs

of all 19 sequences, the knowledge bases of moving and meeting are transformed into

Markov networks of 128689 ground clauses and 51548 ground predicates.

Our experiments were performed on a machine with an Intel R© CoreTM i7-980 3.33

GHz processor and 24GB of RAM, running Debian GNU/Linux 7.0. Table 4.3 shows the

inference times of all MLN−EC scenarios: we show the inference times for the 12869 video

frames of all 19 sequences (this corresponds to a video of 8 minutes and 58 seconds), as

well as, the average inference time and standard deviation for a single frame.

Our knowledge base transformation procedure reduces significantly the size and com-

plexity of the produced ground Markov networks. Without this transformation procedure

76 Experimental Evaluation of MLN−EC

MARGINAL MAP

Scenarios All sequences Single frame All sequences Single frame

MLN−ECHI 1 m 16 s 6.67 ± 2.42 ms 1 m 38 s 7.11 ± 1.47 ms

MLN−ECSIh 1 m 17 s 6.77 ± 2.32 ms 1 m 41 s 7.32 ± 1.40 ms

MLN−ECSI 1 m 40 s 7.96 ± 3.07 ms 1 m 42 s 7.44 ± 1.47 ms

(a) moving

MARGINAL MAP

Scenarios All sequences Single frame All sequences Single frame

MLN−ECHI 1 m 21 s 6.32 ± 1.43 ms 0 m 19 s 1.40 ± 0.29 ms

MLN−ECSIh 1 m 15 s 6.06 ± 1.17 ms 0 m 19 s 1.41 ± 0.28 ms

MLN−ECSI 1 m 30 s 7.16 ± 1.59 ms 0 m 20 s 1.48 ± 0.22 ms

(b) meeting

TABLE 4.3: Probabilistic inference running times of MLN−EC.

and for the same Event Calculus dialect, the resulting Markov networks for the same 19

SDE sequences are three times larger, consisting of 334452 ground clauses and 154428

ground predicates. As an example, in the case of meeting and the MLN−ECHI scenario,

the time for marginal inference is 4 minutes and 33 seconds — this is more than 3 times

slower than the inference over the transformed knowledge base (see MLN−ECHI in Table

4.3(b)).

4.3 Experimental Results of the ECcrisp

The CE definitions are domain-dependent rules that together with the domain-independent

axioms of the Event Calculus represent common-sense domain knowledge. This knowl-

edge may deviate from knowledge of human captured in an annotated dataset, resulting

in errors when recognising events. Such issues can be shown by analysing the perfor-

mance of ECcrisp, which uses the CE definitions also used in MLN−EC and does not involve

the representation of probabilistic knowledge.

As shown in Figure 4.1, ECcrisp achieves a similar F1 score for both activities. However, in

terms of precision and recall the situation is quite different, revealing two different cases

of imperfect CE definitions. The precision for moving is 22 percentage points higher

than that of meeting. The opposite holds for recall, with the recall for moving being

21.6 percentage points lower than that of meeting. The lower recall values for moving

indicate a larger number of unrecognised moving activities (FN). In some example

sequences moving is being initiated late, producing many false negatives. Additionally,

the termination rules of moving cause the CE to be prematurely terminated in some

cases. For example, when the distance of two persons that are moving together becomes

greater than 34 pixels for a few frames, rule (3.13) terminates moving. On the other hand,

Experimental Evaluation of MLN−EC 77

compared to moving, the definition of meeting results in a larger number of erroneously

recognised meeting activities (FP). The initiation rule (3.8), for example, causes the

meeting activity to be initiated earlier than it should.

Another issue caused by the definitions of meeting and moving is that the two CEs may

overlap. According to rules (3.7)–(3.17), the initiation of moving does not cause the

termination of meeting. Consider, for example, a situation where two people meet for a

while and thereafter they move together. During the interval in which moving is detected,

meeting will also remain detected, as it is not terminated and the law of inertia holds.

However, according to the annotation of the CAVIAR data set these activities do not

happen concurrently. Furthermore, meeting appears to be annotated in cases where the

relative distance of both interacting persons is greater than that used in the initiation

rules (3.7) and (3.8).

On the other hand, the domain knowledge may describe situations that are not included

in the dataset. For example, by allowing the meeting CE to be initiated when the two

persons are not very close to each other, one may achieve better results in this subset of

the dataset, but erroneously recognise the meeting CE in other situations, e.g., people

passing by each other. Additionally, the domain-independent property of inertia, which

is included in the background knowledge, helps the method to continue to recognise the

occurrence of a CE even when the narrative of SDEs is temporally incomplete, e.g., due

to camera failures.

4.4 Experimental Results of the Probabilistic Methods

The experiments for the probabilistic methods are organised into two tasks2. In the

first task, both probabilistic methods are trained discriminitavely and their performance

is evaluated using 10-fold cross-validation. In the second task, we asses the value of

inertia by erasing input evidence from randomly chosen successive time-points. In the

second task, we use the models trained for the first task, but the testing sequences are

incomplete narratives of SDEs.

4.4.1 Task I

In contrast to ECcrisp, l−CRF is a probabilistic model and cannot employ background

knowledge in the form of common sense rules. The recognition of a CE is affected from

all input SDEs that are detected at a particular time-point, as well as from the adjacent

CEs that have been recognised. The parameters of the model are estimated from the
2MLN and l−CRF formatted version of the dataset, CE definitions of MLN−EC, template files of l−CRF and

the results of both probabilistic methods can be found at: http://www.iit.demokritos.gr/~anskarl/

pub/mlnec

http://www.iit.demokritos.gr/~anskarl/pub/mlnec
http://www.iit.demokritos.gr/~anskarl/pub/mlnec

78 Experimental Evaluation of MLN−EC

MLN−ECHI MLN−ECSIh MLN−ECSI ECcrisp l−CRF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold

F
1

sc
or

e

(a) moving

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold

F
1

sc
or

e

(b) meeting

FIGURE 4.1: F1 scores using different threshold values for the moving and meeting CE.

training set and thus the model is completely data-driven. Compared to ECcrisp, l−CRF
achieves better performance for both moving and meeting. Using marginal inference,

l−CRF gives higher F1 scores for most threshold values, as shown in Figures 4.1(a)

and 4.1(b). For threshold 0.5, the F1 score is higher than of ECcrisp by 4.6 and 13.5

percentage points for moving and meeting, respectively (see Tables 4.4(a) and 4.4(c)).

The recall of moving is higher by 18.4 percentage points, while the precision is lower by

13.7 percentage points. l−CRF recognises a larger number of moving activities, increasing

the number of both true and false positives. As noted in Section 4.3, this can be achieved

by looser spatial constraints. Recall and precision scores for meeting are higher by 1.7

and 23.7 percentage points, respectively. In the case of MAP inference, l−CRF gives almost

the same F1 score as ECcrisp for moving (see Tables 4.5(a) and 4.5(b)). In general l−CRF
outperforms ECcrisp in both CE. Unlike ECcrisp, l−CRF learns to interrupt the recognition

of meeting when moving starts.

In the first MLN−EC scenario, indicated by MLN−ECHI, rules in Σ are soft-constrained,

i.e., they are associated with a weight value after training. Those weights control the

certainty with which a CE holds when its initiation or termination conditions are sat-

isfied. The rules in Σ′, however, remain hard-constrained and thus the behaviour of

inertia for both CEs is preserved deterministically and cannot be adjusted. Compared

to ECcrisp, MLN−ECHI achieves a higher F1 score using marginal inference for the moving

CE, for most threshold values (see Figure 4.1(a)). For threshold 0.5, the recall of MLN−EC
is higher by 17.7 percentage points than ECcrisp while precision is lower by 6 points,

leading the F1 score of MLN−EC to be higher than ECcrisp by 8.2 points (Table 4.4(a)).

This improvement in recall is caused by the weights that are learned for the termination

conditions, which prevent the moving CE from terminating prematurely. Compared to

l−CRF, MLN−ECHI achieves better F1 scores for many thresholds and higher AUPRC by

4.8 percentage points (see Tables 4.4(a) and 4.4(b)). Using MAP inference, MLN−ECHI

Experimental Evaluation of MLN−EC 79

Method

ECcrisp

MLN−ECHI
MLN−ECSIh
MLN−ECSI
l−CRF

TP TN FP FN Precision Recall F1 score

4008 19086 400 2264 0.9093 0.6390 0.7506

5121 18584 902 1151 0.8502 0.8165 0.8330

5233 18542 944 1039 0.8472 0.8343 0.8407

4938 17760 1726 1334 0.7410 0.7873 0.7635

5160 17964 1522 1112 0.7722 0.8227 0.7967

(a) moving, threshold 0.5.

AUPRC

0.8847

0.8597

0.8280

0.8358

(b) moving

Method

ECcrisp

MLN−ECHI
MLN−ECSIh
MLN−ECSI
l−CRF

TP TN FP FN Precision Recall F1 score

3099 20723 1413 523 0.6868 0.8556 0.7620

1284 20786 1350 2338 0.4875 0.3545 0.4105

3060 21147 989 562 0.7557 0.8448 0.7978

3052 20800 1336 570 0.6955 0.8426 0.7620

3160 21874 262 462 0.9234 0.8724 0.8972

(c) meeting, threshold 0.5.

AUPRC

0.5160

0.7559

0.7730

0.8937

(d) meeting

TABLE 4.4: Results for the moving and meeting CE using marginal inference.

Method TP TN FP FN Precision Recall F1 score

ECcrisp 4008 19086 400 2264 0.9093 0.6390 0.7506

MLN−ECHI 5598 18358 1128 674 0.8323 0.8925 0.8614

MLN−ECSIh 5902 18398 1088 370 0.8443 0.9410 0.8901

MLN−ECSI 4040 17911 1575 2232 0.7195 0.6441 0.6797

l−CRF 4716 17848 1638 1556 0.7422 0.7519 0.7470

(a) moving

Method TP TN FP FN Precision Recall F1 score

ECcrisp 3099 20723 1413 523 0.6868 0.8556 0.7620

MLN−ECHI 3099 20739 1397 523 0.6893 0.8556 0.7635

MLN−ECSIh 3067 21825 311 555 0.9079 0.8468 0.8763

MLN−ECSI 1083 21641 495 2539 0.6863 0.2990 0.4165

l−CRF 3154 21906 230 468 0.9320 0.8708 0.9004

(b) meeting

TABLE 4.5: Results for the moving and meeting CE using MAP inference

80 Experimental Evaluation of MLN−EC

achives higher F1 score by 11 percentage points than both ECcrisp and l−CRF (see Table

4.5(a)). Compared to ECcrisp, the recall of MLN−ECHI is improved by 25.3 percentage

points, while its precision drops by 7 percentage points. MLN−ECHI achieves higher recall

and precision scores than l−CRF, by 14 and 9 percentage points, respectively. However, in

the case of meeting, MLN−ECHI performs worse than ECcrisp and l−CRF in marginal infer-

ence, as shown in Figure 4.1(b) and Table 4.4(c). The combination of hard-constrained

inertia rules with the fact that meeting does not terminate when moving starts, push the

weights of the initiation rules to very low values during training. This situation results in

many unrecognised meeting instances and low precision and recall values. Max-margin

training in this scenario is not affected as much as the Diagonal Newton weight learning

method, leading to a model with similar behaviour and performance as ECcrisp, as shown

in Table 4.5(b).

In the MLN−ECSIh scenario, while Σ remains soft-constrained, the inertia rules of holdsAt

in Σ′ are also soft-constrained. As a result, the probability of a CE tends to decrease, even

when the required termination conditions are not met and nothing relevant is happening.

This scenario is more suitable to our target activity recognition task and MLN−EC learns a

model with a high F1 score for both CEs. In order to explain the effect of soft constraining

the inertia of holdsAt, we will use again the example of meeting being recognised and

thereafter moving being also recognised. Since meeting is not terminated, it continues

to hold and overlaps with moving. During the overlap, all occurring SDE are irrelevant

with respect to meeting and cannot cause any initiation or termination. As a result,

the recognition probability of meeting cannot be reinforced, by re-initiation. As shown

in Section 3.4, in such circumstances the recognition probability of meeting gradually

decreases.

For the moving CE, the performance of MLN−ECSIh using marginal inference is similar to

MLN−ECHI, as shown in Figure 4.1(a) and Table 4.4(a). Using a threshold of 0.5, recall

is higher than that of ECcrisp by 19.5 percentage points while precision is lower by 6.2

points, resulting in 9 points increase in F1 measure. Compared to l−CRF, MLN−ECSIh
achieves higher F1 scores for many thresholds (see Figure 4.1(a)), as well as higher

AUPRC by 2.4 percentage points (see Table 4.4(b)). In the case of MAP inference,

MLN−ECSIh increases further its performance (Table 4.5(a)). Compared to ECcrisp, recall

is higher by 30 percentage points and precision drops only by 6.5 percentage points,

resulting in 14 percentage points higher F1 score. MLN−ECSIh achieves higher F1 score,

precision and recall than l−CRF by 14.3, 10 and 18.9 percentage points, respectively.

For the meeting CE, the performance of MLN−ECSIh using marginal inference is signif-

icantly better than that of MLN−ECHI (see Figure 4.1(b)). At the 0.5 threshold value,

precision increases by 6.9 percentage points over ECcrisp, while recall falls by only 1

point and thus F1 is higher by 3.5 points (Table 4.4(c)). However, the F1 scores of

MLN−ECSIh remain lower than those of l−CRF and its AUPRC is lower by 13.8 points (Table

4.4(d)). Using MAP inference, the performance of MLN−EC improves, but remains worse

Experimental Evaluation of MLN−EC 81

than l−CRF, by 2.4 percentage points in terms of F1 (Table 4.5(b)). MLN−ECSIh misses

the recognition of meeting at time-points where the persons involved are not sufficiently

close to each other according to the initiation rules (3.7) and (3.8), i.e., they have a

distance greater than 25 pixels.

Finally, in the MLN−ECSI scenario, the entire knowledge base is soft-constrained. The

weights in Σ allow full control over the confidence that a CE holds when its initiation

or termination conditions are met. Additionally, by soft-constraining the rules in Σ′,

MLN−ECSI provides full probabilistic inertia. However, this flexibility comes at the cost of

an increase in the number of parameters to be estimated from data, as all clauses in the

knowledge base are now soft-constrained. As a result, MLN−ECSI requires more training

data. Using marginal inference MLN−ECSI performs almost the same as ECcrisp in terms of

F1 score, but worse than MLN−ECSIh for both CEs. In the case of MAP inference, MLN−ECSI
performs worse than ECcrisp, as well as l−CRF for both CEs.

The three variants of MLN−EC used in the above experiments, illustrated the potential

benefits of softening the constraints and performing probabilistic inference in event

recognition. In contrast to ECcrisp, an important characteristic of MLN−EC is that multiple

successive initiations (or terminations) can increase (or decrease) the recognition prob-

ability of a CE. By softening the CE definitions, premature initiation or termination can

be avoided. In particular, as explained above, the weights learned for the termination

definitions of the moving CE reduced the number of unrecognised moving activities.

The choice of rules to be softened affects significantly the event recognition accuracy.

In the presented application, for example, the MLN−ECSIh setting is the best choice, as

softening the inertia of holdsAt provides advantages over crisp recognition. Depending

on the target application and the availability of training data, different types of inertia

rules may be softened, varying the inertia behaviour from deterministic to completely

probabilistic. This is a key feature of MLN−EC.

4.4.2 Task II

An important difference between the proposed logic-based approach and its purely data-

driven competitors, such as l−CRF, is that it is less dependent on the peculiarities of

the training data. The use of background knowledge about the task and the domain,

in terms of logic, it can make the recognition process more robust to variations in the

data. Such variations are very common in practice, particularly in dynamic environments,

such as the ones encountered in event recognition. The common assumption made in

machine learning that the training and test data share the same statistical properties

is often violated in these situations. In order to measure the benefits that we can gain

by the combination of background knowledge and learning in MLNs, we examine the

recognition of CEs under such situations. In particular, in this second task, we are

82 Experimental Evaluation of MLN−EC

comparing the performance of MLN−EC and l−CRF in cases where the input evidence is

missing from a number of successive time-points in the test data. The models are not

retrained and thus their weights remain as they were estimated in Task I.

The incomplete test sequences are generated artificially by erasing successive input SDEs

and associated spatial relations at random starting points. We have generated two

variants of incomplete test sequences, containing random blank intervals of length 10

and 20 time-points respectively. The starting time-points of the blank intervals are chosen

randomly with probability 0.01, drawn from a uniform distribution. Since the target CEs

require the interaction of two persons, erasing SDEs at time-points where only a single

person appears to be doing something cannot affect the performance of the recognition

methods that we compare. Therefore, blank intervals are created only from time-points

where both persons are involved in some SDEs. This process of artificially generating

incomplete test sequences is repeated five times, generating corresponding test sets.

The recognition performance can be affected in various ways, depending on the position

where evidence is erased from the test sequences. For example, when the beginning of an

activity is erased, its recognition will be delayed, increasing the number of false negatives.

Similarly, erasing information at the end of an activity will delay the termination of a

CE, resulting in a higher number of false positives. In cases where missing information

appears during an activity, the recognition of the CE may be interrupted, increasing the

number of false negatives. The recognition performance may even be improved in some

cases, due to the removal of SDEs that would cause false positives or false negatives.

Out of all the methods examined in Task I the performance of ECcrisp and MLN−ECHI is

bound to be affected less by the missing data, due to the use of deterministic inertia.

This is because the erased evidence will often be in the interval that a CE is (not) being

recognised. In these cases, the erased evidence will not affect the inertia of the CE and

the CE will remain (not) recognised. ECcrisp and MLN−ECHI are only affected when the

evidence is erased at the beginning or at the end of an activity, which is less frequent.

For this reason, we chose to exclude these two methods from Task II. Furthermore,

we excluded MLN−ECSI, which performed significantly worse than MLN−ECSIh in Task I.

Therefore, in this task we compare only MLN−ECSIh against l−CRF.

In the rest of this section we will denote as medium and large incomplete sequences the

test sequences that contain random blank intervals of 10 and 20 time-points, respectively.

The evaluation measures are the same as in Task I. Figure 4.2 presents the results in

terms of F1 score for the two methods, using marginal inference. The bar charts of Figure

4.3, on the other hand, present the average AUPRC of the two methods compared also

to the AUPRC when no data is removed (from Tables 4.4(b) and 4.4(d) of Task I). The

threshold values range between 0.0 and 1.0. Using a similar illustration, Figures 4.4,

4.5 and 4.6 present the results of the two methods using MAP inference. All results are

averaged over five runs and error bars correspond to the standard deviation.

Experimental Evaluation of MLN−EC 83

Unlike MLN−ECSIh , l−CRF appears to be affected significantly from incomplete evidence.

Using marginal inference on the moving CE in the original test sequences (see Table

4.4(a)) l−CRF achieved an F1 score of 0.7967. At the same threshold value, the average

F1 score of l−CRF drops to 0.566 and 0.53 for medium and large incomplete sequences,

respectively. MLN−ECSIh is affected much less, achieving F1 scores of 0.836 and 0.832,

for medium and large incomplete sequences, respectively. In terms of AUPRC (Figure

4.3(a)), the performance of l−CRF also drops by 13 points, while MLN−ECSIh remains

almost unaffected. When MAP inference is used, the effect of the removal of data seems

to be larger. The recall of l−CRF falls by more than 45 percentage points, causing the

F1 score to drop by more than 30 percentage points (Figures 4.5(a) and 4.4(a)). The

number of recognised moving activities is reduced, resulting in an increase in precision,

but with high variance (Figure 4.5(a)). The precision of MLN−ECSIh remains close to the

original test set, with a small variance. However, its recall drops and causes the reduction

of F1 score by 8 and 9 percentage points for medium and large incomplete sequences,

respectively.

In the case of the meeting CE, MLN−ECSIh also seems to resist more than l−CRF to the

distortion of the data. The F1 score is higher than that of l−CRF for many threshold

values, using marginal inference (see Figures 4.2(b) and 4.2(d)). For threshold 0.5 in

the original test sequences l−CRF achieved an F1 score that was higher by 10 percentage

points than that of MLN−ECSIh . However, when data are removed its F1 score for the

same threshold drops much lower than that of MLN−ECSIh (a difference of more than

15 percentage points). The AUPRC of l−CRF also drops much more (more than 10

points) than that of MLN−ECSIh (see Figure 4.3(b)). The effect is even higher when MAP

inference is used for the meeting CE. In particular, the recall of l−CRF drops by more

than 60 percentage points (see Figure 4.6(b)), while that of MLN−ECSIh drops much less.

Thus, the F1 score of MLN−ECSIh reduces by less than 10 percentage points, while that of

l−CRF is 50 percentage points lower than in the original data (see Figure 4.4(b)).

In summary, this task confirmed that the logic-based MLN−EC method is more robust

than its purely statistical l−CRF counterpart, when data are removed from the test set,

rendering it less similar to the training set. This is due to the fact that l−CRF is completely

data-driven and does not employ explicit domain knowledge. On the other hand, MLN−EC
employs background knowledge, including the domain independent axioms of inertia.

Consequently, the persistence of a CE is modelled differently by l−CRF and MLN−EC. l−CRF
learns to maintain the state of CEs under some circumstances that appear in the training

data. However it does not model the inertia explicitly. Therefore, when the circumstances

change, its performance is hurt significantly. On the other hand, MLN−EC enjoys the

explicit modelling of inertia, provided as background knowledge. Even when this inertia

is softened, it remains a strong bias in the model. As a result, MLN−EC avoids overfitting

the training data and behaves robustly when the data changes.

84 Experimental Evaluation of MLN−EC

MLN−ECSIh ECcrisp l−CRF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold

F
1

sc
or

e

(a) moving – medium incomplete.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold
F
1

sc
or

e
(b) meeting – medium incomplete.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold

F
1

sc
or

e

(c) moving – large incomplete.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold

F
1

sc
or

e

(d) meeting – large incomplete.

FIGURE 4.2: Average F1 scores over five runs when data are removed. Marginal infer-
ence is used.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l−CRF

MLN−ECSIh

0.7080

0.7066

0.8358

0.8418

0.8548

0.8597

AUPRC

original medium large

(a) moving

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l−CRF

MLN−ECSIh

0.7337

0.7912

0.8937

0.7119

0.7195

0.7559

AUPRC

original medium large

(b) meeting

FIGURE 4.3: Average AUPRC scores over five runs when data are removed. Marginal
inference is used.

Experimental Evaluation of MLN−EC 85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l−CRF

MLN−ECSIh

0.4112

0.4316

0.7470

0.7974

0.8078

0.8901

F1 score

original medium large

(a) moving

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l−CRF

MLN−ECSIh

0.3319

0.4101

0.9004

0.7763

0.8222

0.8763

F1 score

original medium large

(b) meeting

FIGURE 4.4: Average F1 scores over five runs when data are removed. MAP inference
is used.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l−CRF

MLN−ECSIh

0.8650

0.7824

0.7422

0.8527

0.8410

0.8443

Precision

original medium large

(a) moving

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l−CRF

MLN−ECSIh

0.8238

0.8434

0.9320

0.9066

0.9168

0.9079

Precision

original medium large

(b) meeting

FIGURE 4.5: Average precision over five runs when data are removed. MAP inference is
used.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l−CRF

MLN−ECSIh

0.2697

0.2980

0.7519

0.7489

0.7771

0.9410

Recall

original medium large

(a) moving

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l−CRF

MLN−ECSIh

0.2078

0.2709

0.8708

0.6788

0.7453

0.8468

Recall

original medium large

(b) meeting

FIGURE 4.6: Average recall over five runs when data are removed. MAP inference is
used.

86 Experimental Evaluation of MLN−EC

4.5 Conclusions

Due to the use of MLNs, the method lends itself naturally to learning the weights of

event definitions from data, as the manual setting of weights is sub-optimal and cumber-

some. MLN−EC is trained discriminatively, using a supervised learning technique. In the

experimental evaluation, MLN−EC outperforms its crisp equivalent on a benchmark data,

while it matches the performance of a linear-chain Conditional Random Fields method.

Furthermore, due to the use of background knowledge in the form of the Event Calculus,

MLN−EC is affected less by missing data in the test sequences than its probabilistic akin.

5 | ProbLog−EC: Probabilistic Event Calcu-

lus based on Logic Programming

“You don’t understand anything until you learn it more than one way.”
— Marvin Minsky

The approach to event recognition adopted in this thesis separates low-level from high-

level recognition. The lower level provides the input to the high-level recognition, in the

form of simple, derived events (SDEs). The higher level combines the input streams of

SDEs, in order to recognise CEs of interest. As presented in Section 1.1, uncertainty is

an unavoidable aspect of real-world event recognition applications. In particular, in the

domain of video activity recognition the lower level is usually processed by computer

vision and pattern recognition techniques (e.g., using Hidden Markov Models or Condi-

tional Random Fields) that recognise SDEs of individual activities. For example, such

techniques can detect a person walking or staying active. Due to noise, low-level event

recognition systems often detect SDEs with some confidence — usually expressed in the

form of probabilities.

One commonly used approach in event recognition, is to filter such input SDEs by defining

a minimum threshold. Therefore, only the SDEs associated with confidence that exceeds

this threshold value form the input to the high-level event recognition system. Although

this approach is simple and does not require any changes to the high-level system, it has

two main disadvantages. First, it requires to estimate the appropriate threshold value.

Second, the information about the recognition confidence of SDEs is not exploited by the

high-level system, leading to sub-optimal and often erroneous event recognition.

In this chapter we focus on such erroneous SDE detection and present the ProbLog−EC
method that extends the Event Calculus with probabilistic logic programming, in order

to handle the uncertainty at the input of the system. ProbLog−EC can directly exploit

input SDEs that are associated with probabilities, indicating the degree of confidence.

88 ProbLog−EC: Probabilistic Logic Programming based Event Calculus

5.1 Axiomatisation

The Event Calculus dialect presented here is based on probabilistic logic-programming

(ProbLog). The time model is linear and discrete (i.e., it includes only integers). For

the task of event recognition, we focus only on the domain-independent axioms that

determine the influence of events on fluents and the inertia of fluents. Where F is a

fluent — a property that is allowed to have different values at different points in time

— the term F=V denotes that fluent F has value V . Boolean fluents are a special case

in which the possible values are true and false. Informally, F=V holds at a particular

time-point if F=V has been initiated by an event at some earlier time-point, and not

terminated by another event in the meantime — law of inertia. The axioms and domain-

dependent composite event (CE) definitions of the Event Calculus dialect are expressed

as definite clauses. Predicates stating the initiation and termination of fluents are defined

in terms of fluents and time-points. Table 5.1 summarises the main predicates of the

ProbLog−EC. Variables, starting with an upper-case letter, are assumed to be universally

quantified unless otherwise indicated. Predicates, function symbols and constants start

with a lower-case letter.

Predicate Meaning

happensAt(E , T) Event E occurs at time-point T

initially(F=V) The value of fluent F is V at time 0

holdsAt(F=V , T) The value of the fluent F is V at time T

initiatedAt(F=V , T) At time T a period of time for which F=V is initiated

terminatedAt(F=V , T) At time T a period of time for which F=V is terminated

clipped(F=V , T) The value V of fluent F is terminated at time T

negate1(Fact) The complement probability of a (probabilistic) Fact

negate2(Goal) The complement probability of a (probabilistic) Goal

TABLE 5.1: Main predicates of the ProbLog−EC.

To express the Event Calculus in ProbLog we had to update our treatment of negation in

order to allow for probabilistic atoms. To compute the complement probability of a prob-

abilistic fact, ProbLog provides the built-in predicate problog_not. For any probabilistic

fact pi :: fi, we have that:

Ps(problog_not(fi)) = 1− Ps(fi) = 1− pi (5.1)

problog_not can only be used on facts that are part of the knowledge base. For facts that

do not belong to the knowledge base, such as an SDE that is not part of an input stream,

problog_not fails silently and reports a probability of 0. Consequently, translating not

to problog_not, where facts are used in our Event Calculus axioms, would lead to

ProbLog−EC: Probabilistic Logic Programming based Event Calculus 89

undesirable behaviour. To overcome this issue, we define the following predicate:

negate1(Fact)← not Fact (5.2)

negate1(Fact)← problog_not(Fact) (5.3)

With the use of negate1 we produce a probability of 1 whenever the negated SDE is not

detected (see rule (5.2)), but also produce the complement of the probability of the SDE

whenever it is detected (see rule (5.3)). Note that in the latter case, that is, when an

SDE is detected with some probability, then ‘not Fact ’ fails.

Furthermore, the built-in predicate problog_neg is an extension of problog_not appli-

cable to both probabilistic facts and derived atoms. For a derived atom r, we have:

Ps(problog_neg(r)) = 1− Ps(r) (5.4)

Similarly to problog_not, problog_neg cannot be used on goals that are not inferable

from the knowledge base. To overcome this issue, we define the negate2 predicate:

negate2(Goal)← not Goal (5.5)

negate2(Goal)← problog_neg(Goal) (5.6)

With the use of negate2 we produce a probability of 1 whenever the negated goal is not

inferable (see rule (5.5)), but also produce the complement of the probability of the goal

whenever it is inferable (see rule (5.6)).

The domain-independent rules of the Event Calculus dialect are defined as follows:

holdsAt(F=V , 0)←
initially(F=V).

(5.7)

holdsAt(F=V , T)←
initiatedAt(F=V , T−1).

(5.8)

holdsAt(F=V , T)←
holdsAt(F=V , T−1),

negate2(clipped(F=V , T−1)).

(5.9)

clipped(F=V , T)←
terminatedAt(F=V , T).

(5.10)

clipped(F=V , T)←
initiatedAt(F=V ′, T),

V 6= V ′.

(5.11)

According to rule (5.7), F=V holds at time-point 0 if F=V held initially. According to

rule (5.8), F=V holds at time-point T if the fluent F has been initiated with value V at

90 ProbLog−EC: Probabilistic Logic Programming based Event Calculus

the previous time-point. According to rule (5.9) F=V continues to hold at time-point

T if F=V held at the previous time-point and it was not clipped. In particular, F=V

is clipped either when it is terminated (rule (5.10)) or the fluent F is initiated with

a different value V ′ (rule (5.11)). Therefore, rule (5.11) ensures that a fluent cannot

have more than one value at any time. We do not insist that a fluent must have a value at

every time-point. In ProbLog−EC there is a difference between initiating a Boolean fluent

F=false and terminating F=true: the first implies, but is not implied by the second.

The definitions of initiatedAt and terminatedAt are domain-specific. The domain-

dependent rules of ProbLog−EC, i.e., the initiation and/or termination of some F to

value V takes the following general form:

initiatedAt(F=V , T)←
happensAt(Ei , T), . . . ,

holdsAt(Fj=Vl , T), . . . ,

Conditions[T]

terminatedAt(F=V , T)←
happensAt(Ek , T), . . . ,

holdsAt(Fl=Vl , T), . . . ,

Conditions[T]

(5.12)

where Conditions[T] is some set of further conditions referring to time-point T . Note

that in this Event Calculus formulation, initiatedAt(F=V , T) does not necessarily

imply that F 6=V at T . Similarly, terminatedAt(F=V , T) does not necessarily imply

that F=V at T . Suppose, for example, that F=V is initiated at time-point 20 and

terminated at time-point 30 and that there are no other time-points at which it is initiated

or terminated. Then F=V holds at all time-points T such that 20 < T ≤ 30. Suppose

now that F=V is initiated at time-points 10 and 20 and terminated at time-point 30

(and at no other time-points). Then F =V holds at all T such that 10 < T ≤ 30. And

suppose finally that F=V is initiated at time-points 10 and 20 and terminated at time-

points 25 and 30 (and at no other time-points). In that case F=V holds at all T such

that 10 < T ≤ 25. The predicates happens and holdsAt, as well as those appearing in

Conditions[T], may also be negated using the utility predicates negate1 and negate2

(see rules (5.2)–(5.6)). In the following section we illustrate the use of initiatedAt

and terminatedAt rules for expressing CE definitions.

ProbLog−EC: Probabilistic Logic Programming based Event Calculus 91

5.2 Application to Activity Recognition

To demonstrate our method we use a modified version of the first dataset of the CAVIAR

project1. As presented in Section 2.1, the aim in activity recognition is to recognise CEs

that take place between multiple persons, given a stream of SDEs. The videos are staged

— e.g., actors walk around, sit down, meet one another, leave objects behind, fight, and

so on. Each video has been manually annotated by the CAVIAR team, in order to provide

the ground truth for both SDEs and CEs. Specifically, the input to ProbLog−EC is formed

by the following:

(i) Input SDEs walking, running, active (i.e., non-abrupt body movement in the

same position) and inactive (i.e., standing still), together with their time-stamps.

The original CAVIAR dictionary does not include a SDE for abrupt motion. Specifi-

cally, abrupt motion is a form of SDE that can be detected by some state-of-the-art

detection systems (e.g., Kosmopoulos et al. [2008]). Our preliminary experiments

with this dataset showed that the absence of such SDE compromises the recogni-

tion accuracy of some CEs. We have manually modified the SDE annotation of the

dataset by changing, when necessary, the label of an SDE to abrupt.

All SDEs are mutually exclusive and represented as a narrative by means of ground

happensAt predicates. For example, happensAt(active(id5), 80) expresses that

id6 displayed active bodily movement at time-point 80. Additionally, the first

and the last time a person or object is tracked (i.e., appear and disappear) is repre-

sented using the happensAt predicate. For example, happensAt(appear(id10), 300)

expresses that id10 is first tracked at time-point 300.

(ii) The coordinates of the tracked people and objects as pixel positions at each time-

point, as well as their orientation. The coordinates are represented with the use

of the holdsAt predicate. For example, holdsAt(coord(id2)=(14 , 55), 10600), ex-

presses that the coordinates of id2 are (14, 55) at time-point 10600. Orientation

is similarly represented, e.g., holdsAt(orientation(id2)=120 , 10600) expresses

that, in the two-dimensional projection of the video, the same person was forming

a 120◦ angle with the x-axis at the same time-point. This type of information is

necessary for computing the distance between two entities, as well as the direction

in which a person might be headed.

Event recognition is based on a manually developed knowledge base of CE definitions

expressed in terms of initiatedAt and terminatedAt. Below we present the definitions

of the CE knowledge base.
1The modified version of the dataset, including ProbLog−EC, the CE definitions and the event recognition

results are freely available at: http://www.iit.demokritos.gr/~anskarl/pub/ProbLog-EC

http://www.iit.demokritos.gr/~anskarl/pub/ProbLog-EC

92 ProbLog−EC: Probabilistic Logic Programming based Event Calculus

The CE that expresses the leaving an object activity is defined by the following rules:

initiatedAt(leaving_object(P , Obj)=true, T)←
happensAt(appear(Obj), T),

happensAt(inactive(Obj), T),

holdsAt(close(P , Obj , 30)=true, T),

holdsAt(person(P)=true, T).

(5.13)

terminatedAt(leaving_object(P , Obj)=true, T)←
happensAt(disappear(Obj), T).

(5.14)

In the CAVIAR dataset an object carried by a person is not tracked — only the person that

carries it is tracked. The object will be tracked (i.e., appear) only when the person leaves

it somewhere. Moreover, objects (as opposed to persons) can only exhibit the inactive

SDE. Accordingly, rule (5.13) expresses the conditions in which leaving an object is

recognised. The fluent recording this activity, leaving_object(P ,Obj), becomes true

at time T when object Obj appears at T , its SDE at T is inactive, and there is a person P

close to Obj at T . Fluent close(ID1 , ID2 ,Threshold) expresses that the distance between

ID1 and ID2 is at most Threshold pixels. This fluent is defined as follows:

holdsAt(close(ID1 , ID2 ,Threshold)=true, T)←
holdsAt(distance(ID1 , ID2)=Dist , T),

Dist < Threshold .

(5.15)

According to rule (5.15), the distance between two tracked objects/people is computed

as the Euclidean distance between their coordinates in the two-dimensional projection

of the video. All distance threshold values in the knowledge base were determined from

an empirical analysis of the dataset.

The CE leaving an object is terminated when the object that is picked up by someone

is no longer tracked (it disappears) — see rule (5.14).

In the dataset there is no explicit information that a tracked entity is a person or an

inanimate object. To deduce whether a tracked entity is a person or an object given the

detected SDEs, we define the utility fluent person(P) to have value true when P was

active, walking, running or moved abruptly at some time-point since P appeared.

initiatedAt(person(P)=true, T)←
happensAt(active(P), T).

initiatedAt(person(P)=true, T)←
happensAt(walking(P), T).

initiatedAt(person(P)=true, T)←
happensAt(running(P), T).

ProbLog−EC: Probabilistic Logic Programming based Event Calculus 93

initiatedAt(person(P)=true, T)←
happensAt(abrupt(P), T).

terminatedAt(person(P)=true, T)←
happensAt(disappear(P), T).

The value of person(P) is time-dependent because in CAVIAR the identifier P of a

tracked entity that disappears (is no longer tracked) at some point may be used later

to refer to another entity that appears (becomes tracked), and that other entity may

not necessarily be a person. Note, finally, that rule (5.13) incorporates a (reasonable)

simplifying assumption, that a person entity will never exhibit inactive activity at the

moment it first appears (is tracked). If an entity is inactive at the moment it appears it

can be assumed to be an object, as in the first two conditions of rule (5.13).

The CE meeting is recognised when two people interact with each other, i.e., at least

one of them is active or inactive, the other is not running or moving abruptly, and the

distance between them is at most 25 pixels. The following rules show the conditions in

which meeting is initiated:

initiatedAt(meeting(P1 ,P2)=true, T)←
happensAt(inactive(P1), T),

holdsAt(close(P1 ,P2 , 25)=true, T),

holdsAt(person(P1)=true, T),

holdsAt(person(P2)=true, T),

negate1(happensAt(running(P2), T)),

negate1(happensAt(abrupt(P2), T)),

negate1(happensAt(active(P2), T)).

(5.16)

initiatedAt(meeting(P1 ,P2)=true, T)←
happensAt(active(P1), T),

holdsAt(close(P1 ,P2 , 25)=true, T),

holdsAt(person(P2)=true, T),

negate1(happensAt(running(P2), T)),

negate1(happensAt(abrupt(P2), T)).

(5.17)

The CE meeting is terminated by the conditions of the following rules:

terminatedAt(meeting(P1 ,P2)=true, T)←
happensAt(walking(P1), T),

holdsAt(close(P1 ,P2 , 34)=false, T).

(5.18)

94 ProbLog−EC: Probabilistic Logic Programming based Event Calculus

terminatedAt(meeting(P1 ,P2)=true, T)←
happensAt(running(P1), T).

(5.19)

terminatedAt(meeting(P1 ,P2)=true, T)←
happensAt(abrupt(P1), T).

(5.20)

terminatedAt(meeting(P1 ,P2)=true, T)←
happensAt(disappear(P1), T).

(5.21)

The meeting activity stops being recognised when the two people are moving away (rule

(5.18)) or when one of the two people involved in the CE starts running (rule (5.19)),

moves abruptly (rule (5.20)) or disappears from the scene (rule (5.21)).

The CE meeting may have multiple initiations, indicating that two people may be inter-

acting at several time-points. Similarly, meeting may have multiple terminations. This is

in contrast to leaving_object where there is a single initiation and a single termination,

i.e., an object appears once before it disappears. In general, there is no fixed relation

between the number of initiations and terminations of a fluent, e.g., a CE may have

multiple initiations and a single termination.

The CE moving represents the activity that two people are walking along together and is

defined as follows:

initiatedAt(moving(P1 ,P2)=true, T)←
happensAt(walking(P1), T),

happensAt(walking(P2), T),

holdsAt(close(P1 ,P2 , 34)=true, T),

holdsAt(orientation(P1)=Or1 , T),

holdsAt(orientation(P2)=Or2 , T),

|Or1 −Or2 | < 45 .

(5.22)

According to rule (5.22), in order to recognise the CE moving, both people involved

have to be walking while being close to each other. In addition, they have to be facing

towards, more or less, the same direction (people walking in opposite directions are

not assumed to be walking along together). This is accomplished by constraining their

orientations so that they are headed towards the same area while they are walking.

The termination definitions of moving are given below:

terminatedAt(moving(P1 ,P2)=true, T)←
happensAt(walking(P1), T),

holdsAt(close(P1 ,P2 , 34)=false, T).

(5.23)

ProbLog−EC: Probabilistic Logic Programming based Event Calculus 95

terminatedAt(moving(P1 ,P2)=true, T)←
happensAt(active(P1), T),

happensAt(active(P2), T).

(5.24)

terminatedAt(moving(P1 ,P2)=true, T)←
happensAt(active(P1), T),

happensAt(inactive(P2), T).

(5.25)

terminatedAt(moving(P1 ,P2)=true, T)←
happensAt(running(P1), T).

(5.26)

terminatedAt(moving(P1 ,P2)=true, T)←
happensAt(abrupt(P1), T).

(5.27)

terminatedAt(moving(P1 ,P2)=true, T)←
happensAt(disappear(P1), T).

(5.28)

According to rule (5.23), moving is terminated when either person walks away from

the other with respect to the predefined threshold of 34 pixels. Furthermore, moving

is terminated when both persons are staying active (rule (5.24)), when one of them

is inactive while the other remains active (rule (5.25)), when either person is running

away from the other (rule (5.26)) or is moving abruptly (rule (5.27)), as well as when

one of them disappears from the scene (rule (5.28)).

The last definition concerns the activity that two persons are fighting:

initiatedAt(fighting(P1 ,P2)=true, T)←
happensAt(abrupt(P1), T),

holdsAt(close(P1 ,P2 , 44)=true, T),

negate1(happensAt(inactive(P2), T)).

(5.29)

Rule (5.29) defines that in order to recognise CE fighting both people must be suffi-

ciently close to each other and at least one of them moves abruptly, while the other one

is not inactive (i.e., participating in the fight). fighting is terminated according to

the following rules:

terminatedAt(fighting(P1 ,P2)=true, T)←
happensAt(walking(P1), T),

holdsAt(close(P1 ,P2 , 44)=false, T),

(5.30)

terminatedAt(fighting(P1 ,P2)=true, T)←
happensAt(running(P1), T),

holdsAt(close(P1 ,P2 , 44)=false, T),

(5.31)

96 ProbLog−EC: Probabilistic Logic Programming based Event Calculus

terminatedAt(fighting(P1 ,P2)=true, T)←
happensAt(disappear(P1), T).

(5.32)

The fighting activity ceases to be recognised when either person involved in the activity

starts walking away (5.30)), running away ((5.31)), or exits from the scene ((5.32)).

According to the presented definitions, all CEs are not mutually exclusive, in contrast to

SDEs. For example, meeting may overlap with moving: two people interact and then

start moving, that is, they walk while being close to each other. In general, however,

there is no defined relationship between CE.

5.3 The Behaviour of the ProbLog−EC

In contrast to a typical pure logic-based Event Calculus (e.g., the Event Calculus in

Section 2.2), the input SDEs in ProbLog−EC can be associated with a probability value,

i.e., Prob :: happensAt(SDE , T). As a result, CEs are not being initiated or terminated

with absolute certainty, but with some probability. This situation affects the behaviour of

the Event Calculus, causing the recognition of a CE to hold with some probability. Specif-

ically, an initiation increases the recognition probability of a CE, while a termination

degreases that probability. To illustrate this behaviour we present the inference proce-

dure of ProbLog−EC with two examples, one with multiple initiations and terminations,

and one with a single initiation and a single termination.

5.3.1 Multiple Initiations and Terminations

To illustrate how multiple initiation and terminations affect the recognition probability

of a CE, suppose that two persons (identified as id1 and id2) are engaging in a moving

activity for a number of time-points. As presented in Figure 5.1, the CE is first initiated

at time-point 1, when both id1 and id2 start walking. At time-point 2, person id2 stops

walking and stays active (SDE walking is required by rule (5.22) to initiate the CE

moving). Furthermore, person id1 continues to walk but does not move far enough from

id2 to terminate moving. At time-point 21 id2 resumes walking, once again initiating

moving. Later, at time-point 41 person id2 continues to walk, but id1 stays inactive

and is thus left behind. Therefore, the two persons are no longer close enough to each

other, which triggers the termination of moving (rule (5.23)).

For simplicity, let all information pertaining to orientation and coordinates hold with

absolute certainty (i.e., probability of 1). Moreover, assume that the SDEs walking,

ProbLog−EC: Probabilistic Logic Programming based Event Calculus 97

timeI0 1 2 21 41
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
of

C
E
m
o
v
i
n
g

moving persists

through inertia

moving repeatedly

initiated

moving repeatedly

terminated

id1 begins

walking with id2

id1 continues walking,

while id2 is active

id1 walks

with id2 again

id2 walks

away from id1

FIGURE 5.1: Example of CE probability fluctuation in the presence of multiple initiations
and terminations.

active and inactive have probabilities attached, as follows:

0.70 :: happensAt(walking(id1), 1)

0.46 :: happensAt(walking(id2), 1)

0.73 :: happensAt(walking(id1), 2)

0.55 :: happensAt(active(id2), 2)

. . .

0.69 :: happensAt(walking(id1), 21)

0.58 :: happensAt(walking(id2), 21)

. . .

0.18 :: happensAt(inactive(id1), 41)

0.32 :: happensAt(walking(id2), 41)

. . .

At time-point 2, the query holdsAt(moving(id1, id2)=true, 2) has a probability equal to

the probability of the initiation condition of time-point 1. Specifically, according to rule

(5.22) and given that all coordinate and orientation-related information have probability

1, the probability of initiation at time-point 1 is the product of the probabilities that

both id1 and id2 are walking — i.e., 0.70×0.46 = 0.322. This is visualised at the far

left of Figure 5.1, where the CE’s probability increases from 0 to 0.322. During the

interval 2 to 20 no initiation or termination conditions are fired and the probability of

moving remains unchanged. This occurs due to the law of inertia (rule (5.9)) and is

depicted graphically by the horizontal line between time-points 2 and 21. At time-point

98 ProbLog−EC: Probabilistic Logic Programming based Event Calculus

21, id1 starts walking alongside id2 again. Consequently, at time-point 22, the query

holdsAt(moving(id1, id2)=true, 22) has two initiation conditions to consider: one fired

at time-point 1 and one at time-point 21, due to rules (5.8) and (5.9), respectively.

As mentioned in Section 2.3.2, ProbLog computes the probability of a query by first

scanning the entire Selective Linear Definite Tree (SLD) tree of the query. Figure 5.2

depicts a fragment of the SLD tree for the query holdsAt(moving(id1, id2)=true, 22).

Then ProbLog represents these proofs as a Disjunctive Normal Form (DNF) formula. In

our case, the DNF is the following:

initiatedAt(moving(id1, id2)=true, 1)︸ ︷︷ ︸
init1

∨
initiatedAt(moving(id1, id2)=true, 21)︸ ︷︷ ︸

init21

(5.33)

We have simplified the representation by omitting the all relevant negate2 clauses since,

as can be seen in Figure 5.2, they are provable through negation as failure and therefore

have a probability of 1. This occurs because no termination conditions for moving have

been fired between time-points 1 and 21.

holdsAt(moving(id1, id2)=true, 22)

initiatedAt(. . ., 21)holdsAt(. . ., 21),
negate2(clipped(. . ., 21))

negate2(clipped(. . ., 21))

not clipped(. . ., 21)

succeed

problog_neg(
clipped(. . ., 21))

fail

holdsAt(. . ., 21)

. . .
...

holdsAt(. . ., 2)

initiatedAt(. . ., 1)

FIGURE 5.2: A fragment of the SLD tree for CE moving at time-point 22.

Up to time-point 21, there exist two initiation conditions for the moving CE, init1 and

init21 (see formula (5.33)). In the general case, there may exist many more initiation

conditions in the interval between the start of the video and the examined time-point.

In addition, for every time-point, rule (5.9) checks recursively whether the CE holds

at the previous time-points, without been interrupted (i.e., terminated or initiated with

different value). This repeating process leads to numerous redundant computations. We

ProbLog−EC: Probabilistic Logic Programming based Event Calculus 99

overcame this problem by implementing an elementary caching technique according

to which the probability of holdsAt(F=V , T−1) is stored in memory and, therefore,

holdsAt(F=V , T) simply checks to see how the initiation or termination conditions (if

any) fired at time-point T−1 affect this probability. This technique operates under the

assumption that the activity recognition system receives the video frames in a temporally

sorted manner.

The next step of ProbLog inference involves translating the DNF into a BDD. However,

our example is simple enough to allow us to perform manual calculations, as there exist

only two proofs for holdsAt, which are easily separable. The probability of DNF formula

(5.33) can be computed as the probability of a disjunction of two elements, as explained

in Section 2.3.2:

P (init1 ∨ init21) = P (init1) + P (init21)− P (init1 ∧ init21)

= 0.70× 0.46 + 0.69× 0.58− 0.7× 0.46× 0.69× 0.58

= 0.593

Therefore, the probability that id1 and id2 are moving together at time-point 22 has

increased, owing to the presence of the additional initiation at time-point 21. Similar to

MLN−EC, in ProbLog−EC the continuous presence of initiation conditions of a particular

CE causes an increase of the probability of the CE. This behaviour is consistent with our

intuition: given continuous indication that an activity has (possibly) occurred, we are

more inclined to accept that it has indeed taken place, even if the confidence of each

individual indication is low. For this reason, from time-point 22 up to and including

time-point 41, the probability of moving increases, as is visible in Figure 5.1. In this

example, at time-point 41 the activity’s probability has increased to around 0.8.

At time-point 42, ProbLog−EC has to take into consideration the satisfaction of the termi-

nation condition at time-point 41. This termination, corresponding to rule (5.23), is also

probabilistic. According to rule (5.23) and the fact that close is detected with absolute

certainty, the probability that id2 walked away from id1. is equal to the probability

of the walking SDE itself, which is 0.32. Therefore, when estimating the probability

that at time-point 42 id1 and id2 are still moving together, we have to incorporate the

probability of all possible worlds in which id2 did not walk away from id1. The prob-

ability of these worlds is computed by the use of negate2 in rule (5.9) and is equal to

1−0.32 = 0.68. Consequently, the probability that id1 and id2 are still moving together

at time-point 42 is 0.8×0.68 = 0.544. Similarly to the steady probability increase given

continuous initiation conditions, when faced with subsequent termination conditions,

the probability of the CE will steadily decrease. The slope of the descent (ascent) is

defined by the probability of the termination (initiation) conditions involved. For this

example, we assume that id2 keeps walking away from id1 until the end of the video,

causing the probability of the CE to converge to 0, as shown at the far right of Figure 5.1.

100 ProbLog−EC: Probabilistic Logic Programming based Event Calculus

0 5 10 15 20 25 30 35 40 45 50 55

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time

Pr
ob

ab
ili

ty
Probability
Threshold

FIGURE 5.3: The probability of CE moving for various time-points.

Figure 5.3 shows the real output of ProbLog for our example. Following an abrupt jump

from 0 to 0.322, the probability remains stable between time-points 2 and 21, indicating

that for this period of time the CE persists through the law of inertia. Between time-points

22 and 41, the probability of the CE increases monotonically, reflecting the repeated

initiations of moving that occur during that time. After time-point 41, the probability

decreases, reflecting the repeated termination conditions occurring at the same time

period. The dashed horizontal line at probability 0.5 represents the recognition threshold

that we use to discern between CE instances that we consider to be trustworthy enough

and those that we do not. The choice of 0.5 as a threshold serves simply the purposes of

illustration — other thresholds could have been chosen.

5.3.2 Single Initiation and Termination

In this section we illustrate the behaviour of ProbLog−EC in the case of fluents with

a single initiation and a single termination. Assume that person id2 is walking while

simultaneously carrying a suitcase for 10 time-points. At time-point 11, id2 leaves the

suitcase on the floor and walks away from it. This causes the suitcase to appear in the

low-level tracking system, triggering the leaving_object initiation condition expressed

by rule (5.13). Suppose that this initiation has a probability of 0.6. At time-point 20,

id2 picks up the suitcase, causing it to disappear, triggering the termination condition

expressed by rule (5.14). Suppose that the termination also has a probability of 0.6.

Figure 5.4 depicts the probability fluctuation of leaving_object in this case. As can be

seen in this figure, in the absence of any initiations after time-point 11, the CE persists

entirely due to the law of inertia. The probability of this CE is equal to the probability

of the single initiation, i.e., 0.6. Because this probability is above the chosen recognition

threshold — 0.5 in this example — the CE is considered to hold for all time-points until

id2 picks up the suitcase. If the probability of the initiation was below the threshold,

then leaving_object would not have been recognised.

ProbLog−EC: Probabilistic Logic Programming based Event Calculus 101

timeI0 11 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
of

C
E
l
e
a
v
i
n
g
_o
b
j
e
c
t

initiation termination

Probability
Threshold

FIGURE 5.4: Example of CE probability fluctuation in the presence of a single initiation
and a single termination.

Note that we may transform a fluent with a single initiation to a version of that fluent

with multiple initiations — consider the following formalisation:

initiatedAt(leaving_object_mi(P , Obj) = true, T)←
holdsAt(leaving_object(P , Obj) = true, T)

(5.34)

leaving_object_mi may have multiple initiations — it is initiated as long as

leaving_object holds. While this transformation would have been beneficial for our

experiments in the CAVIAR dataset, since we would be able to augment the probability

of leaving_object_mi through multiple initiations and eventually surpass the chosen

recognition threshold, it introduces some subtle perils. Consider, for example, a sce-

nario in which a leaving_object CE is initiated with a small probability, such as 0.1,

indicating that the sensor’s confidence about the SDE appearing in rule (5.13) is low.

ProbLog−EC will then compute that leaving_object holds with a probability of 0.1 up

until the time-point, if any, where the object in question is picked up. These positives

will be correctly discarded under most recognition thresholds given their small probabili-

ties. leaving_object_mi, however, will continue to augment its probability, eventually

surpassing the chosen threshold and thus producing a potentially large number of false

positives. While it is true that such situations do not arise in CAVIAR, it is very likely that

they take place in other activity recognition applications.

The leaving_object CE in Figure 5.4 has a single termination. In this example, the

probability of the termination degreases the probability of leaving_object below the

chosen threshold of 0.5. In other examples, the absence of subsequent terminations may

not allow the probability of an CE to drop below the chosen recognition threshold, thus

possibly resulting in false persistence.

102 ProbLog−EC: Probabilistic Logic Programming based Event Calculus

5.4 Conclusions

We presented ProbLog−EC, a discrete Event Calculus dialect for probabilistic reasoning.

ProbLog−EC is the first probabilistic Event Calculus dialect that is able to deal with uncer-

tainty in the input SDE. In particular, SDEs that may recognised using other lower-level

classification techniques are given to ProbLog−EC with their recognition probabilities.

These probabilities represent a degree of belief, which is directly propagated to the

ProbLog−EC. As a result, CEs are probabilistically recognised.

Another characteristic of the ProbLog−EC is that, similar to MLN−EC, in situations where

the continuous presence of SDEs initiate (terminate) a particular CE causes the in-

crease (degrease) of the belief the CE. The more continuous indication of initiations

(terminations), the more confident we are for the occurrence (absence) of the corre-

sponding CE.

6 | Experimental Evaluation of ProbLog−EC

“No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.”

— Albert Einstein

In this chapter we evaluate our ProbLog−EC method in the domain of video activity

recognition. We use a modified version of the publicly available benchmark dataset

of the CAVIAR project (see Section 5.2). The aim of the experiments is to assess the

effectiveness of ProbLog−EC in recognising composite events (CEs) that occur among

people, in the presence of noisy narratives of input simple, derived events (SDEs).

ProbLog−EC combines the benefits of logic-based representation (e.g., direct expression

of domain background knowledge) with probabilistic modelling of input SDEs. For

comparison purposes, we include the logic-based activity recognition method of Artikis

et al. [2010b], which we call here ECcrisp. Similar to ProbLog−EC, ECcrisp employs a

variant of the Event Calculus and uses the same definitions of CEs (see Section 5.2).

Unlike ProbLog−EC, ECcrisp cannot perform any type of probabilistic reasoning in order

to handle the noise at the input SDEs.

6.1 Performance evaluation without Artificial Noise

Our empirical analysis is based on the 28 surveillance videos of the CAVIAR dataset which

contain, in total, 26419 video frames. These frames have been manually annotated by

the CAVIAR team to provide the ground truth for SDEs and CEs. We performed minor

editing of the annotation in order to introduce a SDE for abrupt motion (see Section

5.2). According to the manual annotation of the dataset, SDEs are not associated with

a probabilities. Table 6.1 shows the recognition results in terms of True Positives, False

Positives, False Negatives, Precision, Recall and F-measure. These results have been

produced by computing queries of the form holdsAt(CE=true, T). SDEs are assumed

to happen with probability 1, and therefore ProbLog−EC provides identical results to

ECcrisp.

104 Experimental Evaluation of ProbLog−EC

Composite Event TP FP FN Precision Recall F-measure

meeting 3099 1910 525 0.619 0.855 0.718

moving 4008 2162 2264 0.650 0.639 0.644

fighting 531 97 729 0.421 0.845 0.562

leaving_object 143 1539 55 0.085 0.722 0.152

TABLE 6.1: True Positives (TP), False Positives (FP), False Negatives (FN), Precision,
Recall and F-measure on the dataset without artificial noise.

Particularly notable in the results is the low precision for the leaving_object CE, owing

to a substantial number of false positives. This is due to the problematic annotation

of the dataset with respect to this CE. For example, in video 14, the object that is left

at frame 946, triggering an initiation of leaving_object, is picked up (disappears) at

frame 1354. However, the relevant annotation mistakenly reports that leaving_object

stops occurring at frame 996. We therefore end up with 358 false positives which could

have been avoided with a more consistent annotation of this video. Similarly, in the

annotation of videos 17 and 18, a large number of annotated frames are missing.

Video 16 includes a particularly interesting case of leaving_object. In this video, a

person leaves a bag next to a chair, exits the scene, re-enters after a couple of seconds

and picks up the bag. When the person re-enters a new identifier is been assigned

(this is common in this dataset). Various complications arise due to this. The original

leaving_object activity is not terminated by our rules when the person in question

disappears. This is deliberate on our part: we choose to terminate leaving_object

when the object is picked up rather than when the person that leaves it disappears

from the sensor’s view. We thus emphasize on time-points in which a package might be

unattended. The annotation, however, views the leaving_object CE from a different

perspective and thus assumes that the activity is terminated when the person disappears.

This difference in perspective leaves us with a substantial number of false positives,

one for each frame for which the person is absent from the scene. When the person

re-enters the scene, the dataset provides a new identifier and resumes the annotation

of leaving_object with a < new_person_id, same_object_id > tuple. After a couple

of frames, the person (described by new_person_id) picks up the object, terminating a

leaving_object(new_person_id, same_object_id) CE occurrence which ECcrisp never

initiated in the first place. Thus, in addition to a substantial number of false positives,

we also generate 55 false negatives (see Table 6.1) because ECcrisp never recognises the

new leaving_object activity.

6.2 Performance evaluation with Artificial Noise

As mentioned above, according to the manual annotation of the CAVIAR dataset all

SDEs can be assumed to happen with probability 1. In real-world activity recognition

Experimental Evaluation of ProbLog−EC 105

applications, SDEs frequently are detected with some certainty. In order to experiment

with that setting, we added artificial noise to the dataset in the form of probabilities

attached to the input facts — SDEs and related coordinate and orientation information.

Our experimental procedure may be summarised as follows:

(i) We inject noise into the dataset:

(a) We add probabilities to SDEs. Toward this end, we use a Gamma distribution

with a varying mean, in order to represent different levels of noise. Gamma

distribution is commonly used in the literature for noise modelling — see

Gonzalez and Woods [2007, 5.2] for an outline of common probability distri-

butions for noise modelling.

(b) In addition to SDEs, we add probabilities to their associated coordinate and

orientation fluents. Although we use the same Gamma distribution for this

step, SDEs are not required to have the same probability as their associated

coordinate and orientation fluents.

(c) On top of the above, we introduce spurious SDEs, that is, SDEs that are not

part of the original dataset. We do this by augmenting the frames in which

there is a walking SDE with another walking SDE and related coordinate

and orientation information about an entity that does not exist in the dataset.

We use a uniform distribution to choose the 5% of the frames that will be

augmented with spurious facts. The probability of a spurious fact at frame t

is 1−p, where p is the probability of some walking SDE at t (recall that p is

computed by the Gamma distribution). Consequently, the higher the mean,

the lower the probabilities attached to the input SDEs and the higher the

probability of the spurious facts, indicating a higher amount of noise.

Thus we end up with three different noisy versions of the dataset. To facilitate

the presentation that follows, we will call the three aforementioned approaches to

noise injection smooth, intermediate and strong noise.

(ii) We feed these data to ProbLog−EC and filter its output — which is a series of CE

instances of the form Prob :: holdsAt(CE=true, T) — to keep only the ones with

probability above a chosen threshold, indicating that we trust these to be accurate.

(iii) Once the recognition with ProbLog−EC is complete, we remove the SDEs with prob-

ability below the chosen threshold. We retain the SDEs with probability above

the threshold, removing their probability values. Thus we assume that such SDEs

have been tracked with certainty. For smooth noise, this step means that we re-

move a certain amount of the SDEs (e.g., walking, running, active, etc.), while

for intermediate noise we additionally remove coordinate and orientation fluents.

Furthermore, for strong noise we keep a certain amount of spurious information,

based on the probability values.

106 Experimental Evaluation of ProbLog−EC

(iv) We give these filtered versions of the dataset as input to ECcrisp. With this step we

aim to estimate the impact of noise on ECcrisp, by assuming that ECcrisp can only

reason on facts that have been tracked with relative certainty, that is, facts with

probability above the chosen threshold.

(v) We compare the performance of ECcrisp and ProbLog−EC.

We repeated the above experimental procedure 16 times, once for each Gamma distri-

bution mean value between 0.5 and 8.0 inclusive, with a step of 0.5. Noise is added

randomly; for example, a SDE that is erased from the input of ECcrisp for Gamma mean

6.0 might be present at the dataset produced for Gamma mean 6.5.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

5000

10000

15000

20000

25000

30000

Gamma distribution mean

O
cc

ur
re

nc
es

walking SDE

(a) walking SDE

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

2000

4000

6000

8000

10000

Gamma distribution mean

O
cc

ur
re

nc
es

spurious walking SDE

(b) spurious walking SDE

FIGURE 6.1: Occurrences of normal and spurious walking SDE with probability above
0.5 per Gamma mean value. Mean value 0.0 represents the dataset without artificial
noise.

Figure 6.1(a) illustrates the noise injection on the dataset. The number of occurrences

of walking SDEs with probability above the 0.5 threshold is plotted. Note that the

number of walking occurrences shown in this figure does not include the spurious facts

introduced in the strong noise experiments. The number of walking occurrences drops

exponentially as we increase the level of noise, that is, the Gamma mean value. All

other SDE follow the same pattern. In the case of intermediate noise, the occurrences of

coordinate and orientation fluents also drop exponentially.

Figure 6.1(b) shows the number of occurrences of the spurious walking SDE — these are

introduced in the strong noise experiments — with probability above the 0.5 threshold.

The amount of spurious facts increases as we increase the level of noise (Gamma mean

value).

Noise injection may significantly reduce recognition accuracy. The sections that follow

illustrate this. However, given that there are mistakes in the original dataset (i.e., dataset

without artificial noise), it may occur that a false positive in the original dataset becomes

a true negative in the noisy version of the dataset. Similarly for false negatives. To

Experimental Evaluation of ProbLog−EC 107

demonstrate this with an example, assume that two people are moving along together

on a pavement. Suddenly they have to step aside to allow a disabled person full access

to the pavement. This would fire the ‘walk away’ termination condition (see rule (5.23))

because the distance between the two people would exceed the pre-specified threshold.

This does not mean that the people have stopped moving together — they merely had to

distance themselves momentarily. Firing — erroneously — the ‘walk away’ termination

condition creates false negatives for some video frames. If, however, the walking SDE

gets a very low probability during the frames at which the people make way to the

disabled person, moving will not be terminated, which, in this special case, adds true

positives to the evaluation.

6.2.1 Experiments With Smooth Noise

Figure 6.2 compares the recognition accuracy of ECcrisp and ProbLog−EC in terms of

F-measure under smooth noise using a 0.5 threshold. In all experiments we plot the

F-measure per Gamma distribution mean averaged over five different runs — i.e., each

point in the diagram is the average of five different F-measure values. The vertical error

bars display the standard deviations.

The recognition accuracy of ProbLog−EC is higher than that of ECcrisp in the meeting,

moving and fighting CEs. In meeting (see Figure 6.2(a)), the accuracy of ECcrisp starts

falling from Gamma mean 5.5 onwards, because a significant number of active and

inactive SDEs tend to be erased from its input, since they receive probability below

0.5 — the chosen threshold in the experiments presented in Figure 6.2 — when we

generate noise. ProbLog−EC, on the other hand, is able to initiate meeting with a certain

degree of probability (recall that rules (5.16) and (5.17) express the conditions in which

meeting is initiated). After a number of frames, the repeated initiation of meeting leads

to a holdsAt probability of 0.5 or above, and thus ProbLog−EC eventually recognises

meeting (refer to Section 5.3.1 for a detailed explanation of this behaviour). Those

initiation conditions occur very frequently in the dataset. Therefore, meeting ends up

being recognised with a probability close to 1.

In the case of moving (see Figure 6.2(b)), it is the loss of multiple occurrences of walking

(due to smooth noise) that causes ECcrisp to suffer from numerous false negatives (see

rule (5.22) for the initiation condition of moving). ProbLog−EC, on the other hand, uses

repeated initiation to eventually surpass the 0.5 recognition threshold. The accuracy

of ECcrisp in moving deteriorates earlier than that of meeting. This occurs because the

initiation condition of moving bears two probabilistic conjuncts in its body, corresponding

to two separate occurrences of the walking SDE. Therefore, it is affected by noise twice.

The initiation conditions of meeting may sometimes have two probabilistic conjuncts,

but usually they have just one — the negate1 conditions are usually crisp.

108 Experimental Evaluation of ProbLog−EC

ECcrisp ProbLog−EC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(a) meeting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(b) moving

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(c) fighting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(d) leaving an object

FIGURE 6.2: ECcrisp and ProbLog−EC F-measure per Gamma mean value under smooth
noise and a 0.5 threshold.

Similar to moving and meeting, ProbLog−EC fares better than ECcrisp in fighting (see

Figure 6.2(c)). For high levels of noise, i.e., high Gamma mean values, ECcrisp has trou-

ble initiating fighting (see rule (5.29)), whereas ProbLog−EC uses repeated initiation

to surpass the 0.5 recognition threshold. ProbLog−EC manages to surpass this threshold

despite the relatively short duration of fights, compared to other CE.

The leaving_object activity is an interesting special case, owing to the fact that this

CE is recognised through a single initiation (see Section 5.3.2). In the dataset, a person

leaves an object after a few frames in which the person is walking. In rare situations it

is possible that either ECcrisp or ProbLog−EC miss the recognition of person due to noise

and, consequently, the recognition of leaving_object. Such cases did not arise in our

smooth noise experiments. In these experiments, ProbLog−EC and ECcrisp are equally

accurate (see Figure 6.2(d)). When person is recognised by ECcrisp, it is recognised

with a sufficiently high probability by ProbLog−EC and vice versa.

CEs in the dataset are usually terminated when an entity disappears or when people walk

away from each other. In the latter case, the probability of the CE termination depends

Experimental Evaluation of ProbLog−EC 109

solely on that of walking (e.g., rule (5.23)). In general, probabilistic terminations are

similar to probabilistic initiations. When a termination condition is repeatedly fired with

probabilities below 0.5 then ProbLog−EC eventually stops recognising the CE, whereas

ECcrisp does not, producing false positives.

Figures 6.3 and 6.4 compare the recognition accuracy of ECcrisp and ProbLog−EC using

0.3 and 0.7 thresholds, respectively. ProbLog−EC is only slightly affected by the thresh-

old change. This is due to the fact that the probabilities of most recognised CEs in

ProbLog−EC are either very small (< 0.3) or very high (> 0.7). On the other hand, the

recognition accuracy of ECcrisp is highly affected by the choice of threshold: the lower

the threshold the better the accuracy of ECcrisp. This is expected given the nature of the

smooth noise experiments. As the threshold decreases, the input of ECcrisp gets closer to

the original, noise-free dataset.

ECcrisp ProbLog−EC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(a) meeting, threshold = 0.3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(b) moving, threshold = 0.3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(c) fighting, threshold = 0.3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(d) leaving an object, threshold = 0.3

FIGURE 6.3: ECcrisp and ProbLog−EC F-measure per Gamma mean value under smooth
noise, with recognition threshold 0.3.

110 Experimental Evaluation of ProbLog−EC

ECcrisp ProbLog−EC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(a) meeting, threshold = 0.7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(b) moving, threshold = 0.7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(c) fighting, threshold = 0.7

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(d) leaving an object, threshold = 0.7

FIGURE 6.4: ECcrisp and ProbLog−EC F-measure per Gamma mean value under smooth
noise, with recognition threshold 0.7.

6.2.2 Experiments With Intermediate Noise

Figure 6.5 compares the recognition accuracy of ECcrisp and ProbLog−EC under inter-
mediate noise using a 0.5 threshold. Overall, attaching probabilities to the coordinates

and orientation, in addition to SDEs, leads to accuracy of both ECcrisp and ProbLog−EC.

Compared to smooth noise, the difference between ProbLog−EC and ECcrisp in meeting

increases (see Figure 6.5(a)). In addition to losing the active and inactive SDEs

due to noise, ECcrisp now has trouble proving that entities are close, because under

intermediate noise we also remove coordinate-related information, required to compute

the distance between two entities. Thus, even in cases where the active or inactive

SDEs are present and indicate that the relevant frame might be an initiation condition

for meeting, ECcrisp is unable to prove that the two entities are close enough to initiate

the CE. ProbLog−EC, on the other hand, uses repeated initiation to eventually break the

0.5 barrier and produce recognitions.

Concerning moving (see Figure 6.5(b)), ECcrisp suffers again from the loss of the walking

SDE. Under intermediate noise, this conclusion is more striking: after Gamma mean 2.5,

Experimental Evaluation of ProbLog−EC 111

ECcrisp ProbLog−EC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(a) meeting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(b) moving

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(c) fighting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(d) leaving an object

FIGURE 6.5: ECcrisp and ProbLog−EC F-measure per Gamma mean value under interme-
diate noise and a 0.5 recognition threshold.

ECcrisp is unable to produce a single positive. This is because, in addition to the walking

SDEs and associated coordinate fluents being erased from the input of ECcrisp, orien-

tation fluents are also candidates for removal. As a result, even in cases where both

entities potentially involved in a moving activity are believed to be walking close to each

other by the low-level tracking system, the absence of orientation information leads to

an inability to initiate moving.

What is perhaps more interesting is that ProbLog−EC performs as bad as ECcrisp in moving

(see Figure 6.5(b)). Whenever faced with an initiation condition for moving, ProbLog−EC
has to calculate the probability of this initiation condition as a product of six probabil-

ities in total. Recall from rule (5.15) that close is defined in terms of two coordinate

input facts. It therefore contributes as the product of two probabilities. Consequently,

ProbLog−EC has trouble surpassing the 0.5 recognition threshold. Even in cases of near-

certainty about some conditions of the input, ProbLog’s independence assumption leads

to very low probability values. For example, consider the two entities id1 and id2 , whose

SDEs (in our case, walking) and associated information (coordinates, orientation) are

all tracked with a probability of 0.8. Whereas ECcrisp will be able to initiate moving CE,

112 Experimental Evaluation of ProbLog−EC

since all the facts will make their appearance in the input, ProbLog−EC will produce an

initiation condition probability of (0.8)6 = 0.262. Consequently, we will not trust the

probability of the relevant holdsAt query. Furthermore, due to the fact that each initia-

tion condition has usually a very low probability, repeated initiation does not exceed the

0.5 threshold.

With respect to fighting (see Figure 6.5(c)), ProbLog−EC outperforms ECcrisp for cer-

tain Gamma mean values. For high Gamma mean values, ProbLog−EC and ECcrisp are

equally inaccurate. In the case of intermediate noise, there are at least three probabilistic

conjuncts per initiation condition. Due to the fact that fights have a relatively short

duration (much shorter than meeting, for example), there are not enough initiations to

raise ProbLog−EC’s probability above the 0.5 threshold in high Gamma mean values.

Regarding leaving_object (see Figure 6.5(d)), ECcrisp seems to fair slightly better

than ProbLog−EC for low Gamma mean values. Under the intermediate noise assumption,

ProbLog−EC has to consider more probabilistic conjuncts per initiation condition, due to

the presence of close. As a result, and given the single initiation of leaving_object,

ProbLog−EC tends to produce probabilities below 0.5 for this CE, even in cases where the

SDE probabilities themselves might be above 0.5 and therefore sufficient to allow ECcrisp

to recognise leaving_object. For higher Gamma mean values, ProbLog−EC and ECcrisp

are equally inaccurate, because the data required by ECcrisp to initiate leaving_object,

whether it is the person fluent, the inactive SDE or the coordinate fluents of the entities

involved, are missing.

Figure 6.7 compares the recognition accuracy of ECcrisp and ProbLog−EC using 0.3 and

0.7 as threshold values. As in the case of the smooth noise experiments, ECcrisp is affected

more than ProbLog−EC by the threshold change — the accuracy of ECcrisp improves as

the threshold decreases (the lower the threshold, the closer the input of ECcrisp to the

original, noise-free dataset).

6.2.3 Experiments With Strong Noise

Figure 6.8 compares the recognition accuracy of ECcrisp and ProbLog−EC under strong
noise using a 0.5 threshold. As can be seen from this figure, the recognition accuracy

under strong noise is very similar to that under intermediate noise in the 0.5 threshold. For

ProbLog−EC, we need a series of spurious information to surpass the chosen threshold —

the introduction of spurious SDEs in the strong noise experiments is not that systematic

and does not create problems to ProbLog−EC. ECcrisp is very slightly affected by the

introduction of spurious SDEs: it now has a number of additional false positives, mainly

in the case of moving. Even a single initiation condition fired by a spurious walking

SDE and some other SDEs may be enough in ECcrisp to create a series of false positives.

However, in low Gamma values most of the spurious SDE have low probabilities — below

Experimental Evaluation of ProbLog−EC 113

ECcrisp ProbLog−EC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(a) meeting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(b) moving

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(c) fighting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(d) leaving an object

FIGURE 6.6: ECcrisp and ProbLog−EC F-measure per Gamma mean value under interme-
diate noise and a recognition threshold 0.3.

the 0.5 threshold — and therefore are not part of the input of ECcrisp. Furthermore, in

high Gamma values the spurious SDEs cannot initiate a CE because several of the SDEs

tend to be deleted from the input of ECcrisp as they have low probabilities.

Figure 6.9 compares the accuracy of ECcrisp and ProbLog−EC in moving using thresholds

of 0.3 and 0.7 (the diagrams for the remaining CEs are omitted as they are similar to

those concerning intermediate noise). ECcrisp, as in the previous experimental settings, is

more significantly affected than ProbLog−EC by the threshold change. Unlike the last two

experimental settings, reducing the threshold causes problems to ECcrisp with respect to

moving. With a lower threshold, ECcrisp loses fewer SDEs, but at the same time keeps

more spurious facts, creating many more false positives. ProbLog−EC, even in the low

threshold of 0.3, is almost unaffected by the spurious facts. In the 0.7 threshold ECcrisp

has a very small number of spurious facts in its input and, therefore, its accuracy is not

compromised.

In addition to walking SDEs, we could have added other spurious facts such abrupt,

active, or inactive and repeated the experiments. The results would be expected to

114 Experimental Evaluation of ProbLog−EC

ECcrisp ProbLog−EC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(a) meeting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(b) moving

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(c) fighting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(d) leaving an object

FIGURE 6.7: ECcrisp and ProbLog−EC F-measure per Gamma mean value under interme-
diate noise and a recognition threshold 0.7.

be similar to those presented above — for example, spurious abrupt SDE would have

compromised the accuracy of ECcrisp in fighting, especially in low thresholds.

6.3 Conclusions

Our experimental evaluation on a benchmark activity recognition dataset showed that

ProbLog−EC outperforms ECcrisp when:

• a CE has multiple initiations, and

• the CE depends on a small number of probabilistic conjuncts.

ProbLog−EC is more resilient to spurious facts than ECcrisp. Even a single such fact may

create a series of false positives in ECcrisp, whereas this type of noise must be much more

systematic to affect ProbLog−EC: to impinge the accuracy of the latter we need a series

of spurious facts in order to surpass the recognition threshold.

Experimental Evaluation of ProbLog−EC 115

ECcrisp ProbLog−EC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(a) meeting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(b) moving

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(c) fighting

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(d) leaving an object

FIGURE 6.8: ECcrisp and ProbLog−EC F-measure per Gamma mean value under strong
noise and a 0.5 recognition threshold.

In the case of a single initiation, there are situations in which ProbLog−EC may fare

significantly better than ECcrisp and vice versa, but these did not arise in our experiments.

On average, ProbLog−EC is expected to have similar performance to ECcrisp on CE with

a single initiation, in the case of a small number of probabilistic conjuncts, while ECcrisp

is likely to perform better in the case of a large number of such conjuncts.

The experimental results concerning one or more terminations are similar to those for

one or more initiations. For example, ProbLog−EC outperforms ECcrisp in the case of CE

with multiple terminations that depend on a small number of probabilistic conjuncts. The

repeated terminations allow ProbLog−EC to stop recognising a CE when ECcrisp continues

the recognition producing false positives.

ProbLog−EC makes an independence assumption about input SDEs and thus the prod-

uct of the probabilities of many probabilistic conjuncts may be very small, even if the

probability of each individual conjunct is high. The greater the number of probabilistic

conjuncts, the more initiations ProbLog−EC requires to surpass the chosen recognition

threshold.

116 Experimental Evaluation of ProbLog−EC

ECcrisp ProbLog−EC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(a) moving, threshold = 0.3

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gamma distribution mean

F
1

sc
or

e

(b) moving, threshold = 0.7

FIGURE 6.9: ECcrisp and ProbLog−EC F-measure per Gamma mean value under strong
noise in moving and different recognition thresholds.

7 | Conclusions and Future Work

“Science never solves a problem without creating ten more.”
— George Bernard Shaw

In this thesis we focused on symbolic event recognition under situations where uncer-

tainty exists . In Section 2.4.1, we argue that action formalisms can represent the

dynamic aspects of event recognition applications and provide an event description lan-

guage with well-defined formal semantics. Furthermore, in Section 2.4.2 we observed

that symbolic approaches can compactly represent composite events (CE) and domain

knowledge. Under uncertainty, however, the performance of symbolic methods may be

seriously compromised. For that reason, numerous of probabilistic and symbolic meth-

ods for event recognition have been proposed in the literature (see Section 2.4.3). In

order to address these issues in this thesis we have developed two symbolic methods that

combine a discrete variant of the Event Calculus formalism with probabilistic modelling.

7.1 Conclusions

In Chapter 3 we presented the MLN−EC method, in order to address the issue of event

recognition using imperfect CE definitions. MLN−EC uses Markov Logic Networks (MLNs)

to achieve a probabilistic Event Calculus dialect for event recognition. For reasons of

efficiency, we placed emphasis on transforming the probabilistic Event Calculus into com-

pact Markov networks. Furthermore, MLN−EC supports flexible inertia of CEs, ranging

from deterministic to probabilistic. The performance of MLN−EC in event recognition

is demonstrated in Chapter 4 through a series of experiments on a publicly available

benchmark dataset. MLN−EC has been compared with a method that uses crisp Event

Calculus and with a purely data-driven probabilistic method that employs linear-chain

Conditional Random Fields (l−CRF). In the experiments where the data were sufficient

for the data-driven method to estimate the model parameters, MLN−EC outperformed its

crisp equivalent and achieved comparable performance to the data-driven method. In

118 Conclusions and Future Work

contrast to its crisp equivalent, CEs in MLN−EC are associated with weight values, indicat-

ing a degree of confidence. The probabilistic modelling of MLN−EC managed to correct

many of the recognition errors that are caused by imperfect definitions of CEs. Further-

more, in the experiments where the input stream was incomplete, MLN−EC performed

considerably better than the data-driven l−CRF method. MLN−EC retains its performance

when data is incomplete, by exploiting the given domain knowledge and the modelling

of inertia by the Event Calculus formalism.

In order to deal with the uncertainty of the input events, we presented the ProbLog−EC
method in Chapter 5. Similar to the MLN−EC, the method combines a discrete Event Cal-

culus dialect with probabilistic logic programming. In contrast to MLN−EC, ProbLog−EC
can directly exploit input SDEs that are associated with probabilities, indicating a degree

of confidence in their recognition. Therefore, the uncertainty of input SDEs is directly

propagated to the recognition of CEs. While MLN−EC does not make any independence

assumption on the input variables, in ProbLog−EC input SDEs are assumed to be in-

dependent. On the other hand, in MLN−EC all input SDEs are represented by Boolean

random variables and thus input uncertainty cannot propagated into the event recogni-

tion method. Another difference, compared to MLN−EC, is that the rules in the ProbLog−EC
knowledge base are expressed only as hard constraints and thus all CE definitions are

defined with absolute certainty. Furthermore, the inertia is modelled by the closed-world

semantics of logic programming and is restricted to be deterministic.

In the experimental evaluation of ProbLog−EC (see Chapter 6), we have observed that

when a CE has multiple initiations and the CE depends on a small number of probabilistic

conjuncts, ProbLog−EC outperforms its crisp equivalent.

In summary the proposed probabilistic event recognition methods exhibit the following

characteristics:

• Event recognition using a logic-based representation with formal and declarative

semantics and probabilistic modelling (MLN−EC and ProbLog−EC).

• Efficient representation of the probabilistic Event Calculus accompanied with a

knowledge transformation that produces compact Markov Networks (MLN−EC).

• Flexible inertia of CEs, ranging from deterministic to probabilistic (MLN−EC).

• Event recognition using imperfect knowledge (MLN−EC), incomplete input event

stream (MLN−EC) and uncertain input events (ProbLog−EC).

7.2 Future Work

There are several directions in which we would like to extend our work. The main ones

are presented below:

Conclusions and Future Work 119

Extended Knowledge Representation

The temporal model in both methods presented in this work is linear and discrete, based

on time-points. Many event recognition methods support constraints over intervals, using

pre-processing techniques (e.g., Morariu and Davis [2011]) or by employing different

representation and inference methods (e.g., Brendel et al. [2011] and Selman et al.

[2011]). One possible improvement is to extend the temporal model with intervals, in

order to support constraints over interval relations.

In addition to event recognition, in many applications forecasting of events is required.

The aim of event forecasting is to predict which CEs are likely to happen in future. One

solution is to employ a forward-branching time model for future events, e.g., Situation

Calculus [Reiter, 2001] and Branching Event Calculus [Mueller, 2007], in order to

represent and reason about hypothetical future CEs, given the observed time-line of

input SDEs.

The two probabilistic and symbolic methods that have been developed in this thesis

assume that input can only be symbolic. For example, the spatial constraints of distance

between two persons are discretised using some specified threshold values. The threshold

values require off-line analysis, which can be tedious and error-prone. Therefore, it would

be ideal to directly support quantitative information in the model (e.g., Hybrid MLNs

[Sadilek and Kautz, 2012; Wang and Domingos, 2008], Hybrid ProbLog [Gutmann et al.,

2010] and Probabilistic Soft Logic [Bröcheler et al., 2010]). Using real-valued functions

we can directly affect the confidence value of CE definitions — e.g., to define that the

closer are two persons, are the more confident we are for the meeting activity.

Other variants of the Event Calculus (e.g., Mueller [2008]) provide additional domain-

independent axioms, in order to support discrete change of fluents, control of when a

fluent is not subject to inertia, etc. We would like to investigate the effects of introducing

these additional features in the probabilistic environment of the proposed methods.

Scalable Inference

In terms of inference there are various improvements that we would like to explore. The

preprocessing step that we perform in MLN−EC (see Section 3.3) reduces the complexity

and the size of the resulting Markov network. Further simplifications can be performed

using lifted unit propagation (e.g., den Broeck et al. [2011]; Papai et al. [2011]), in

order to reduce the number of first-order clauses in the knowledge base. In particular,

hard-constrainted unit clauses (such as the initial state of fluents) can be propagated to

the knowledge base and create tautological clauses or create other unit clauses.

MLN−EC deals with the uncertainty in CE definitions, while ProbLog−EC deals with the

uncertainty in input SDEs. We would like to combine these features into a single model.

120 Conclusions and Future Work

By introducing auxiliary probabilistic facts for each rule in CE definitions, ProbLog−EC
may model the uncertainty of CEs. One issue with that approach is that the probabilistic

conjuncts in the definition will increase, leading to low probability values (see Chapter

6). On the other hand, according to Jain and Beetz [2010] there are two directions for

supporting probabilistic SDEs in MLN−EC. First, we can employ virtual evidence (e.g., Li

[2009]; Tran and Davis [2008]), in which each probabilistic SDE is represented by an

auxiliary Boolean random variable in the model and a utility unit clause with weight

equal to the log-odds of its probability. Virtual evidence, however, assumes that SDEs

are independent. Alternatively, by modifying the inference algorithm [Jain and Beetz,

2010], MLN−EC can be extended using soft evidence and directly support probabilistic SDEs

without an independence assumption.

Event recognition in both MLN−EC and ProbLog−EC is performed offline. On-line event

recognition requires dynamic inference, during the evolution of input SDEs. Although

exact inference in MLN is intractable (see Section 2.3.1), in Section 4.2 we showed that

approximate inference times in MLN−EC are faster than real-time in activity recognition.

Therefore, approximate inference could be useful for on-line event recognition. Along

those lines, Geier and Biundo [2011] perform on-line approximate inference in MLNs,

using the marginal probabilities of ground atoms of a past time step to construct weighted

formulas to be included in the network at the next time step. However, the approximate

inference propagates a degree of error which may become large after a few time steps.

A different direction is to employ belief-propagation based inference. For example, Nath

and Domingos [2010] perform incremental network construction and inference that

reuses previously sent messages. Additionally, Kersting et al. [2009] reduce the inference

cost by exploiting the network symmetries. However, belief-propagation in MLNs may

fail to converge to the correct solution [Poon and Domingos, 2006]. Yet another direction

is to employ the model of slice-normalised dynamic MLN of Papai et al. [2012], in which

the knowledge base is transformed into a network in which the clique potential between

adjacent slices (e.g., the inertia rules (3.24) and (3.25)) is always normalised.

As outlined in Section 2.3.2, in applications with large knowledge bases building a

Binary Decision Diagram for all proofs may become intractable. Therefore, more efficient

inference methods are needed for on-line inference in ProbLog−EC. Examples are the

k-best of Kimmig et al. [2011], k-optimal of Renkens et al. [2012] or by performing MLN

inference using the transformation of Fierens et al. [2011].

In situations where we prefer to query only for a fraction of time-points and CEs, lifted

inference techniques may be more suitable and efficient, as they avoid grounding the

entire knowledge base. We are planning to investigate lifted inference methods for event

recognition — e.g., Apsel and Brafman [2012]; den Broeck et al. [2014, 2011]; Gogate

and Domingos [2011]; Sarkhel and Gogate [2013]; Sarkhel et al. [2014].

Conclusions and Future Work 121

Machine Learning

In Chapter 4, we evaluated the performance of MLN−EC using different types of inertia,

which proved useful under various experimental conditions. We would like to extend our

method to automatically soften the right subset of inertia axioms during weight learning.

Both MLN−EC and ProbLog−EC assume that CE definitions are known, e.g., given by do-

main experts. Although CE definitions are usually simple common sense rules, in many

applications their manual specification may be a tedious process. An important research

direction is to automatically extract or refine CE definitions from training data, using

structure learning techniques. As in Chapter 4, the training set for such methods would

be composed of SDEs (i.e., ground happens predicates) and their annotation of CEs (i.e.,

ground holdsAt predicates). Furthermore, the knowledge transformation procedure

presented in Section 3.3.2 eliminates the initiatedAt and terminatedAt predicates,

allowing the application of fully supervised learning methods. If such transformation of

the domain knowledge is not desired and event definitions need to be learned in terms of

initiation and termination conditions, initiation and termination predicates would also

need to be observable in the training set [Artikis et al., 2010b]. In that case, structure

learning would require semi-supervised techniques that combine abduction and induc-

tion. Abductive reasoning techniques [Kakas, 2010; Kakas and Flach, 2009] can fill the

missing observations in the training set by generating a set of explanations about initia-

tion and termination predicates — see, for example, the works of Blythe et al. [2011];

Corapi et al. [2009]; Ray [2009]; Ray et al. [2003]; Singla and Mooney [2011] and

Katzouris et al. [2014].

Bibliography

Akman, V., Selim T. Erdoğan, J. L., Lifschitz, V., and Turner, H. (2004). Representing the

Zoo World and the Traffic World in the language of the Causal Calculator. Artificial
Intelligence, 153(1):105–140.

Albanese, M., Chellappa, R., Cuntoor, N., Moscato, V., Picariello, A., Subrahmanian, V. S.,

and Udrea, O. (2010). PADS: A Probabilistic Activity Detection Framework for Video

Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12):2246–

2261.

Albanese, M., Chellappa, R., Cuntoor, N. P., Moscato, V., Picariello, A., Subrahmanian,

V. S., and Udrea, O. (2008). A Constrained Probabilistic Petri Net Framework for

Human Activity Detection in Video. IEEE Transactions on Multimedia, 10(6):982–996.

Albanese, M., Molinaro, C., Persia, F., Picariello, A., and Subrahmanian, V. S. (2011).

Finding “Unexplained” Activities in Video. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI), pages 1628–1634.

Albanese, M., Moscato, V., Picariello, A., Subrahmanian, V. S., and Udrea, O. (2007).

Detecting Stochastically Scheduled Activities in Video. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI), pages 1802–1807.

Allen, J. F. (1983). Maintaining Knowledge about Temporal Intervals. Communications
of the ACM, 26(11):832–843.

Apsel, U. and Brafman, R. I. (2012). Lifted MEU by Weighted Model Counting. In

Proceedings of the 26th AAAI Conference on Artificial Intelligence. AAAI Press.

Artikis, A. and Paliouras, G. (2009). Behaviour recognition using the event calculus.

In Iliadis, L. S., Maglogiannis, I., Tsoumakas, G., Vlahavas, I. P., and Bramer, M.,

editors, Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications and
Innovations (AIAI), IFIP Advances in Information and Communication Technology,

pages 469–478. Springer.

Artikis, A., Sergot, M., and Paliouras, G. (2010a). A Logic Programming Approach to

Activity Recognition. In Proceedings of the 2nd International Workshop on Events in
Multimedia (EiMM), pages 3–8. ACM.

124 Bibliography

Artikis, A., Sergot, M. J., and Paliouras, G. (2012a). Run-time Composite Event Recog-

nition. In Bry, F., Paschke, A., Eugster, P. T., Fetzer, C., and Behrend, A., editors,

Proceedings of the Sixth ACM International Conference on Distributed Event-Based Sys-
tems (DEBS), pages 69–80. ACM.

Artikis, A., Skarlatidis, A., and Paliouras, G. (2010b). Behaviour Recognition from

Video Content: a Logic Programming Approach. International Journal on Artificial
Intelligence Tools (JAIT), 19(2):193–209.

Artikis, A., Skarlatidis, A., Portet, F., and Paliouras, G. (2012b). Logic-based event

recognition. Knowledge Engineering Review, 27(4):469–506.

Bacchus, F., Halpern, J. Y., and Levesque, H. J. (1995). Reasoning about Noisy Sensors

in the Situation Calculus. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI), pages 1933–1940. Morgan Kaufmann.

Bacchus, F., Halpern, J. Y., and Levesque, H. J. (1999). Reasoning about Noisy Sensors

and Effectors in the Situation Calculus. Artificial Intelligence, 111(1-2):171–208.

Batsakis, S. and Petrakis, E. G. M. (2011). SOWL: A Framework for Handling Spatio-

temporal Information in OWL 2.0. In Bassiliades, N., Governatori, G., and Paschke,

A., editors, Rule-Based Reasoning, Programming, and Applications - 5th International
Symposium (RuleML), volume 6826 of Lecture Notes in Computer Science, pages 242–

249. Springer.

Biba, M., Xhafa, F., Esposito, F., and Ferilli, S. (2011). Engineering SLS Algorithms

for Statistical Relational Models. In Proceedings of the International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS), pages 502–507. IEEE

Computer Society.

Biswas, R., Thrun, S., and Fujimura, K. (2007). Recognizing Activities with Multiple

Cues. In Proceedings of the 2nd Workshop on Human Motion - Understanding, Modeling,
Capture and Animation, Lecture Notes in Computer Science, pages 255–270. Springer.

Blockeel, H. (2011). Statistical Relational Learning. In Bianchini, M., Maggini, M., and

Jain, L., editors, Handbook on Neural Information Processing. Springer.

Blythe, J., Hobbs, J. R., Domingos, P., Kate, R. J., and Mooney, R. J. (2011). Imple-

menting Weighted Abduction in Markov Logic. In In Proceedings of the International
Conference on Computational Semantics, pages 55–64, Oxford, England.

Boros, E. and Hammer, P. L. (2002). Pseudo-Boolean optimization. Discrete Applied
Mathematics, 123(1–3):155–225.

Boutilier, C., Reiter, R., and Price, B. (2001). Symbolic Dynamic Programming for

First-Order MDPs. In Nebel, B., editor, Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI), pages 690–700. Morgan Kaufmann.

Bibliography 125

Brand, M., Oliver, N., and Pentland, A. (1997). Coupled hidden Markov models for

complex action recognition. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), pages 994–999. IEEE Computer Society.

Brendel, W., Fern, A., and Todorovic, S. (2011). Probabilistic Event Logic for Interval-

based Event Recognition. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3329–3336. IEEE Computer Society.

Bröcheler, M., Mihalkova, L., and Getoor, L. (2010). Probabilistic similarity logic. In

Grünwald, P. and Spirtes, P., editors, Proceedings of the 26th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 73–82. AUAI Press.

Bryant, R. (1986). Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691.

Buntine, W. L. (1994). Operations for Learning with Graphical Models. Journal of
Artificial Intelligence Research (JAIR), 2:159–225.

Byrd, R. H., Nocedal, J., and Schnabel, R. B. (1994). Representations of quasi-Newton

matrices and their use in limited memory methods. Mathematical Programming,

63(1):129–156.

Callens, L., Carrault, G., Cordier, M.-O., Fromont, E., Portet, F., and Quiniou, R. (2008).

Intelligent adaptive monitoring for cardiac surveillance. In Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence (ECAI), volume 178 of Frontiers in Artificial
Intelligence and Applications, pages 653–657. IOS Press.

Casella, G. and George, E. I. (1992). Explaining the Gibbs Sampler. The American
Statistician, 46(3):167–174.

Castel, C., Chaudron, L., and Tessier, C. (1996). What is going on? a high level

interpretation of sequences of images. In ECCV Workshop on Conceptual Descriptions
from Images, pages 13–27. Citeseer.

Chen, L., Nugent, C., Mulvenna, M., Finlay, D., Hong, X., and Poland, M. (2008). Using

Event Calculus for Behaviour Reasoning and Assistance in a Smart Home. In Helal,

S., Mitra, S., Wong, J., Chang, C., and Mokhtari, M., editors, Smart Homes and Health
Telematics, volume 5120 of Lecture Notes in Computer Science, pages 81–89. Springer

Berlin Heidelberg.

Chittaro, L. and Montanari, A. (2000). Temporal Representation and Reasoning in

Artificial Intelligence: Issues and Approaches. Annals of Mathematics and Artificial
Intelligence, 28(1):47–106.

Choppy, C., Bertrand, O., and Carle, P. (2009). Coloured Petri Nets for Chronicle

Recognition. In Proceedings of the 14th International Conference on Reliable Software

126 Bibliography

Technologies - Ada-Europe, volume 5570 of Lecture Notes in Computer Science, pages

266–281. Springer.

Collins, M. (2002). Discriminative training methods for Hidden Markov Models: Theory

and Experiments with Perceptron Algorithms. In Proceedings of the ACL Conference on
Empirical Methods in Natural Language Processing (EMNLP), volume 10, pages 1–8.

Association for Computational Linguistics.

Corapi, D., Ray, O., Russo, A., Bandara, A. K., and Lupu, E. C. (2009). Learning Rules

from User Behaviour. In Iliadis, L. S., Maglogiannis, I., Tsoumakas, G., Vlahavas, I. P.,

and Bramer, M., editors, Proceedings of the 5TH IFIP Conference on Artificial Intelligence
Applications and Innovations (AIAI), volume 296 of IFIP Advances in Information and
Communication Technology, pages 459–468. Springer.

Craven, R. (2006). Execution mechanisms for the action language C+. PhD thesis,

University of London.

Cugola, G. and Margara, A. (2010). TESLA: A Formally Defined Event Specification

Language. In Proceedings of the 4th ACM International Conference on Distributed Event-
Based Systems, DEBS ’10, pages 50–61, New York, NY, USA. ACM.

Cugola, G., Margara, A., Matteucci, M., and Tamburrelli, G. (2014). Introducing

uncertainty in complex event processing: model, implementation, and validation.

Computing, pages 1–42.

Culotta, A. and McCallum, A. (2004). Confidence estimation for information extraction.

In Proceedings of HLT-NAACL 2004: Short Papers, pages 109–112. Association for

Computational Linguistics.

Cussens, J. (1999). Loglinear models for first-order probabilistic reasoning. In Pro-
ceedings of the 15th conference on Uncertainty in Artificial Intelligence, pages 126–133.

Morgan Kaufmann Publishers Inc.

Damlen, P., Wakefield, J., and Walker, S. (1999). Gibbs sampling for Bayesian non-

conjugate and hierarchical models by using auxiliary variables. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 61(2):331–344.

David, R. and Alla, H. (1994). Petri Nets for Modeling of Dynamic Systems: A Survey.

Automatica, 30(2):175–202.

de Raedt, L. and Kersting, K. (2008). Probabilistic Inductive Logic Programming. In

Probabilistic Inductive Logic Programming - Theory and Applications, volume 4911 of

Lecture Notes in Computer Science, pages 1–27. Springer.

de Raedt, L. and Kersting, K. (2010). Statistical Relational Learning. In Sammut, C.

and Webb, G. I., editors, Encyclopedia of Machine Learning, pages 916–924. Springer.

Bibliography 127

de Raedt, L., Kimmig, A., and Toivonen, H. (2007). ProbLog: A Probabilistic Prolog

and Its Application in Link Discovery. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI), pages 2462–2467.

de Salvo Braz, R., Amir, E., and Roth, D. (2008). A Survey of First-Order Probabilistic

Models. In Innovations in Bayesian Networks: Theory and Applications, volume 156 of

Studies in Computational Intelligence, pages 289–317. Springer.

den Broeck, G. V., Meert, W., and Darwiche, A. (2014). Skolemization for Weighted

First-Order Model Counting. In Baral, C., De Giacomo, G., and Eiter, T., editors,

Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth
International Conference (KR). AAAI Press.

den Broeck, G. V., Taghipour, N., Meert, W., Davis, J., and de Raedt, L. (2011). Lifted

Probabilistic Inference by First-Order Knowledge Compilation. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI), pages 2178–2185.

IJCAI/AAAI.

Doherty, P., Gustafsson, J., Karlsson, L., and Kvarnström, J. (1998). TAL: Temporal

Action Logics Language Specification and Tutorial. Electronic Transactions on Artificial
Intelligence, 2(3–4):273–306.

Doherty, P., Lukaszewicz, W., and Szalas, A. (1997). Computing Circumscription

Revisited: A Reduction Algorithm. Journal of Automated Reasoning, 18(3):297–336.

Domingos, P. and Lowd, D. (2009). Markov Logic: An Interface Layer for Artificial Intelli-
gence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &

Claypool Publishers.

Dousson, C. (1996). Alarm Driven Supervision for Telecommunication Network: II-On-

line Chronicle Recognition. Annals of Telecommunications, 51(9):501–508.

Dousson, C., Gaborit, P., and Ghallab, M. (1993). Situation recognition: Representa-

tion and algorithms. In Bajcsy, R., editor, Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI), pages 166–174. Morgan Kaufmann.

Dousson, C. and Maigat, P. L. (2007). Chronicle Recognition Improvement Using

Temporal Focusing and Hierarchization. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI), pages 324–329.

Eiter, T. and Lukasiewicz, T. (2003). Probabilistic Reasoning about Actions in Non-

monotonic Causal Theories. In Meek, C. and Kjærulff, U., editors, Proceedings of the
19th Conference in Uncertainty in Artificial Intelligence (UAI), pages 192–199. Morgan

Kaufmann.

Etzion, O. and Niblett, P. (2010). Event Processing in Action. Manning Publications

Company.

128 Bibliography

Fagin, R. (1996). Combining fuzzy information from multiple systems. In In Proceedings
of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 216–226. ACM Press.

Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., and De Raedt, L. (2011).

Inference in probabilistic logic programs using weighted CNF’s. In Proceedings of the
27th Conference on Uncertainty in Artificial Intelligence (UAI), pages 211–220.

Filippaki, C., Antoniou, G., and Tsamardinos, I. (2011). Using Constraint Optimization

for Conflict Resolution and Detail Control in Activity Recognition. In Proceedings of
the 2nd International Joint Conference on Ambient Intelligence (AmI), volume 7040 of

Lecture Notes in Computer Science, pages 51–60. Springer.

Gal, A., Wasserkrug, S., and Etzion, O. (2011). Event Processing over Uncertain

Data. In Helmer, S., Poulovassilis, A., and Xhafa, F., editors, Reasoning in Event-
Based Distributed Systems, volume 347 of Studies in Computational Intelligence, pages

279–304. Springer.

Geier, T. and Biundo, S. (2011). Approximate Online Inference for Dynamic Markov

Logic Networks. In ICTAI, pages 764–768. IEEE.

Getoor, L. (2001). Learning Statistical Models from Relational Data. PhD thesis, Stanford.

Getoor, L. (2003). Learning Structure From Statistical Models. IEEE Data Eng. Bull.,
26(3):11–18.

Getoor, L. (2006). An Introduction to Probabilistic Graphical Models for Relational Data.

IEEE Data Eng. Bull., 29(1):32–39.

Getoor, L. and Taskar, B. (2007). Introduction to statistical relational learning. MIT

press.

Ghanem, N., DeMenthon, D., Doermann, D., and Davis, L. (2004). Representation and

Recognition of Events in Surveillance Video Using Petri Nets. In Computer Vision and
Pattern Recognition Workshop, 2004. CVPRW ’04. Conference on, pages 112–112.

Ghezzi, C., Mandrioli, D., and Morzenti, A. (1990). TRIO: A Logic Language for

Executable Specifications of Real-time Systems. Journal of Systems and Software,

12(2):107–123.

Ginsberg, M. L. (1988). Multivalued logics: a uniform approach to reasoning in artificial

intelligence. Computational Intelligence, 4:265–316.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. (2004). Nonmonotonic

Causal Theories. Artificial Intelligence, 153(1):49–104.

Bibliography 129

Gogate, V. and Domingos, P. (2011). Probabilistic Theorem Proving. In Proceedings
of the 27th Conference on Uncertainty in Artificial Intelligence (UAI), pages 256–265.

AUAI Press.

Gong, S. and Xiang, T. (2003). Recognition of Group Activities using Dynamic Proba-

bilistic Networks. In Proceedings of the 9th International Conference on Computer Vision
(ICCV), volume 2, pages 742–749. IEEE Computer Society.

Gonzalez, J., Low, Y., Guestrin, C., and O’Hallaron, D. R. (2009). Distributed Parallel

Inference on Large Factor Graphs. In Proceedings of the 25th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 203–212. AUAI Press.

Gonzalez, R. C. and Woods, R. E. (2007). Digital Image Processing. Prentice Hall, 3nd

edition.

Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., and Sattler, U. (2008).

Owl 2: The next step for owl. Web Semantics: Science, Services and Agents on the World
Wide Web, 6(4):309–322. Semantic Web Challenge 2006/2007.

Gutmann, B., Jaeger, M., and de Raedt, L. (2010). Extending ProbLog with Continuous

Distributions. In Frasconi, P. and Lisi, F. A., editors, ILP, volume 6489 of Lecture Notes
in Computer Science, pages 76–91. Springer Berlin Heidelberg.

Hajishirzi, H. and Amir, E. (2008). Sampling First Order Logical Particles. In Proceedings
of the 24th Conference in Uncertainty in Artificial Intelligence (UAI), Helsinki, Finland,

pages 248–255. AUAI Press.

Hajishirzi, H. and Amir, E. (2010). Reasoning about deterministic actions with proba-

bilistic prior and application to stochastic filtering. In Lin, F., Sattler, U., and Truszczyn-

ski, M., editors, Principles of Knowledge Representation and Reasoning: Proceedings of
the Twelfth International Conference (KR). AAAI Press.

Helaoui, R., Niepert, M., and Stuckenschmidt, H. (2011). Recognizing Interleaved

and Concurrent Activities: A Statistical-Relational Approach. In Proceedings of the 9th
Annual International Conference on Pervasive Computing and Communications (PerCom),

pages 1–9. IEEE Computer Society.

Helaoui, R., Riboni, D., and Stuckenschmidt, H. (2013). A Probabilistic Ontological

Framework for the Recognition of Multilevel Human Activities. In Mattern, F., Santini,

S., Canny, J. F., Langheinrich, M., and Rekimoto, J., editors, Proceedings of the 2013
ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp),

pages 345–354. ACM.

Hölldobler, S., Karabaev, E., and Skvortsova, O. (2006). FLUCAP: a heuristic search plan-

ner for first-order MDPs. Journal of Artificial Intelligence Research (JAIR), 27(1):419–

439.

130 Bibliography

Hongeng, S. and Nevatia, R. (2003). Large-Scale Event Detection Using Semi-Hidden

Markov Models. In Proceedings of the 9th International Conference on Computer Vision
(ICCV), volume 2, pages 1455–1462. IEEE Computer Society.

Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann.

Horrocks, I. (2005). OWL: A Description Logic Based Ontology Language. In van Beek,

P., editor, 11th International Conference on the Principles and Practice of Constraint
Programming (CP), volume 3709 of Lecture Notes in Computer Science, pages 5–8.

Springer Berlin Heidelberg.

Huynh, T. N. and Mooney, R. J. (2009). Max-Margin Weight Learning for Markov

Logic Networks. In Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), volume 5781

of Lecture Notes in Computer Science, pages 564–579. Springer.

Huynh, T. N. and Mooney, R. J. (2011). Online Max-Margin Weight Learning for

Markov Logic Networks. In Proceedings of the 11th SIAM International Conference on
Data Mining (SDM11), pages 642–651, Mesa, Arizona, USA.

Jain, D. and Beetz, M. (2010). Soft Evidential Update via Markov Chain Monte Carlo

Inference. In Proceedings of the 33rd Annual German Conference on AI (KI), volume

6359 of Lecture Notes in Computer Science, pages 280–290. Springer.

Joachims, T., Finley, T., and Yu, C.-N. (2009). Cutting-plane training of structural SVMs.

Machine Learning, 77(1):27–59.

Kakas, A. C. (2010). Abduction. In Sammut, C. and Webb, G. I., editors, Encyclopedia of
Machine Learning, pages 3–9. Springer.

Kakas, A. C. and Flach, P. A. (2009). Abduction and Induction in Artificial Intelligence.

Journal of Applied Logic, 7(3):251.

Katzouris, N., Artikis, A., and Paliouras, G. (2014). Incremental learning of event

definitions with inductive logic programming. CoRR, abs/1402.5988.

Kautz, H., Selman, B., and Jiang, Y. (1997). A General Stochastic Approach to Solving

Problems with Hard and Soft Constraints. In Gu, D., Du, J., and Pardalos, P., editors,

The Satisfiability Problem: Theory and Applications, volume 35 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 573–586. AMS.

Kersting, K. (2006). An Inductive Logic Programming Approach to Statistical Relational
Learning. Dissertations in artificial intelligence. IOS Press.

Kersting, K. (2012). Lifted probabilistic inference. In de Raedt, L., Bessière, C., Dubois,

D., Doherty, P., Frasconi, P., Heintz, F., and Lucas, P. J. F., editors, 20th European

Bibliography 131

Conference on Artificial Intelligence, Including Prestigious Applications of Artificial Intelli-
gence (PAIS-2012) System Demonstrations Track, volume 242 of Frontiers in Artificial
Intelligence and Applications, pages 33–38. IOS Press.

Kersting, K., Ahmadi, B., and Natarajan, S. (2009). Counting Belief Propagation. In

Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI), pages

277–284. AUAI Press.

Kersting, K., de Raedt, L., and Raiko, T. (2006). Logical Hidden Markov Models. Journal
of Artificial Intelligence Research (JAIR), 25(1):425–456.

Kimmig, A., Costa, V. S., Rocha, R., Demoen, B., and de Raedt, L. (2008). On the efficient

execution of ProbLog programs. In Logic Programming, pages 175–189. Springer.

Kimmig, A., Demoen, B., de Raedt, L., Costa, V. S., and Rocha, R. (2011). On the

implementation of the probabilistic logic programming language ProbLog. Theory and
Practice of Logic Programming, 11:235–262.

Kok, S., Singla, P., Richardson, M., Domingos, P., Sumner, M., Poon, H., and Lowd, D.

(2005). The Alchemy system for statistical relational AI. Technical report, Depart-

ment of Computer Science and Engineering, University of Washington, Seattle, WA.

http://alchemy.cs.washington.edu.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. MIT press.

Kosmopoulos, D., Antonakaki, P., Valasoulis, K., Kesidis, A., and Perantonis, S. (2008).

Human behaviour classification using multiple views. In Darzentas, J., Vouros, G.,

Vosinakis, S., and Arnellos, A., editors, Proceedings of Hellenic Conference on Artifi-
cial Intelligence, volume 5138 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg.

Kowalski, R. and Sadri, F. (1997). Reconciling the Event Calculus with the Situation

Calculus. The Journal of Logic Programming, 31(1):39–58.

Kowalski, R. and Sergot, M. (1986). A Logic-based Calculus of Events. New Generation
Computing, 4(1):67–95.

Kvarnström, J. (2005). TALplanner and Other Extensions to Temporal Action Logic. PhD

thesis, Linköping.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the
18th International Conference on Machine Learning (ICML), pages 282–289. Morgan

Kaufmann.

Lavee, G., Borzin, A., Rivlin, E., and Rudzsky, M. (2007). Building Petri Nets from video

event ontologies. In Advances in Visual Computing, pages 442–451. Springer.

 http://alchemy.cs.washington.edu

132 Bibliography

Lavee, G., Rudzsky, M., and Rivlin, E. (2013). Propagating Certainty in Petri Nets for

Activity Recognition. IEEE Transactions on Circuits and Systems for Video Technology,

23(2):326–337.

Lévy, F. and Quantz, J. (1998). Representing Beliefs in a Situated Event Calculus.

In Proceedings of the 13th European Conference on Artificial Intelligence (ECAI), pages

547–551.

Li, X. (2009). On the Use of Virtual Evidence in Conditional Random Fields. In

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1289–1297. ACL.

Liao, L., Fox, D., and Kautz, H. A. (2005). Hierarchical Conditional Random Fields

for GPS-Based Activity Recognition. In International Symposium of Robotics Research
(ISRR), volume 28 of Springer Tracts in Advanced Robotics (STAR), pages 487–506.

Springer.

Lifschitz, V. (1994). Circumscription. In Handbook of logic in Artificial Intelligence and
Logic Programming, volume 3, pages 297–352. Oxford University Press, Inc.

List, T., Bins, J., Vazquez, J., and Fisher, R. B. (2005). Performance Evaluating the Eval-

uator. In 2nd Joint IEEE International Workshop on Visual Surveillance and Performance
Evaluation of Tracking and Surveillance, pages 129–136.

Lowd, D. and Domingos, P. (2007). Efficient Weight Learning for Markov Logic

Networks. In Proceedings of the 11th European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD), volume 4702 of Lecture Notes in Computer
Science, pages 200–211. Springer.

Luckham, D. and Schulte, R. (2011). EPTS Event Processing Glossary v2.0. Technical

report.

Luckham, D. C. (2002). The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc.

Luckham, D. C. (2011). Event Processing for Business: Organizing the Real-Time Enterprise.

Wiley.

Manfredotti, C. (2009). Modeling and Inference with Relational Dynamic Bayesian

Networks. In Gao, Y. and Japkowicz, N., editors, Advances in Artificial Intelligence,

volume 5549 of Lecture Notes in Computer Science, pages 287–290. Springer Berlin /

Heidelberg.

Manfredotti, C., Hamilton, H., and Zilles, S. (2010). Learning RDBNs for Activity

Recognition. In NIPS Workshop on Learning and Planning from Batch Time Series Data.

Mateus, P., Pacheco, A., Pinto, J., Sernadas, A., and Sernadas, C. (2001). Probabilistic

Situation Calculus. Annals of Mathematics and Artificial Intelligence, 32(1):393–431.

Bibliography 133

McCarthy, J. (1980). Circumscription - A Form of Non-Monotonic Reasoning. Artificial
Intelligence, 13(1-2):27–39.

McCarthy, J. (1983). Situations, Actions, and Causal Laws. Technical Report Memo 2,

Stanford Artificial Intelligence Project, Stanford University.

McCarthy, J. (2002). Actions and other events in situation calculus. In Fensel, D.,

Giunchiglia, F., McGuinness, D. L., and Williams, M.-A., editors, Proceedings of the
Eights International Conference on Principles and Knowledge Representation and Reason-
ing (KR), pages 615–628. Morgan Kaufmann.

McCarthy, J. and Hayes, P. J. (1968). Some philosophical problems from the standpoint
of artificial intelligence. Stanford University.

Miller, R. and Shanahan, M. (2002). Some Alternative Formulations of the Event

Calculus. In Computational Logic: Logic Programming and Beyond, Essays in Honour
of Robert A. Kowalski, Part II, Lecture Notes in Computer Science, pages 452–490.

Springer.

Minka, T. (2005). Discriminative models, not discriminative training. Technical report,

Microsoft Research. Available at: http://research.microsoft.com/pubs/70229/

tr-2005-144.pdf.

Molinaro, C., Moscato, V., Picariello, A., Pugliese, A., Rullo, A., and Subrahmanian,

V. S. (2014). PADUA: Parallel Architecture to Detect Unexplained Activities. ACM
Transactions on Internet Technology (TOIT), 14(1):3:1–3:28.

Morariu, V. I. and Davis, L. S. (2011). Multi-agent event recognition in structured

scenarios. In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3289–3296. IEEE Computer Society.

Morzenti, A., Mandrioli, D., and Ghezzi, C. (1992). A Model Parametric Real-time Logic.

ACM Transactions on Programming Languages and Systems (TOPLAS), 14(4):521–573.

Mueller, E. T. (2006). Commonsense Reasoning. Morgan Kaufmann.

Mueller, E. T. (2007). Discrete event calculus with branching time. In AAAI Spring
Symposium: Logical Formalizations of Commonsense Reasoning, pages 126–131.

Mueller, E. T. (2008). Event Calculus. In Handbook of Knowledge Representation,

volume 3 of Foundations of Artificial Intelligence, pages 671–708. Elsevier.

Muggleton, S. (2000). Learning Stochastic Logic Programs. Electronic Transactions on
Artificial Intelligence, 4(B):141–153.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580.

http://research.microsoft.com/pubs/70229/tr-2005-144.pdf
http://research.microsoft.com/pubs/70229/tr-2005-144.pdf

134 Bibliography

Murphy, K. P. (2002). Dynamic Bayesian Networks: representation, inference and learning.

PhD thesis, University of California.

Natarajan, P. and Nevatia, R. (2007). Hierarchical Multi-channel Hidden Semi Markov

Models. In Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 2562–2567.

Natarajan, S., Bui, H. H., Tadepalli, P., Kersting, K., and Wong, W.-K. (2008). Logical

Hierarchical Hidden Markov Models for Modeling User Activities. In Proceedings of
the 18th International Conference Inductive Logic Programming (ILP), volume 5194 of

Lecture Notes in Computer Science, pages 192–209. Springer.

Nath, A. and Domingos, P. (2010). Efficient Lifting for Online Probabilistic Inference.

In Fox, M. and Poole, D., editors, Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI). AAAI Press.

Ng, R. T. and Subrahmanian, V. S. (1992). Probabilistic logic programming. Information
and Computation, 101(2):150–201.

Ngo, L. and Haddawy, P. (1997). Answering queries from context-sensitive probabilistic

knowledge bases. Theoretical Computer Science, 171(1-2):147 – 177.

Niepert, M., Noessner, J., and Stuckenschmidt, H. (2011). Log-Linear Description Logics.

In Walsh, T., editor, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pages 2153–2158.

Noessner, J., Niepert, M., and Stuckenschmidt, H. (2013). RockIt: Exploiting Parallelism

and Symmetry for MAP Inference in Statistical Relational Models. In desJardins,

M. and Littman, M. L., editors, Proceedings of the 27th AAAI Conference on Artificial
Intelligence, 2013, USA. AAAI Press.

Nonnengart, A. and Weidenbach, C. (2001). Computing Small Clause Normal Forms.

In Robinson, J. A. and Voronkov, A., editors, Handbook of Automated Reasoning, pages

335–367. Elsevier and MIT Press.

Okeyo, G., Chen, L., and Wang, H. (2014). Combining Ontological and Temporal

Formalisms for Composite Activity Modelling and Recognition in Smart Homes. Future
Generation Computer Systems, 39:29–43.

Okeyo, G., Chen, L., Wang, H., and Sterritt, R. (2012). A Hybrid Ontological and

Temporal Approach for Composite Activity Modelling. In Min, G., Wu, Y., Liu, L. C.,

Jin, X., Jarvis, S. A., and Al-Dubai, A. Y., editors, 11th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom), pages

1763–1770. IEEE Computer Society.

Papai, T., Kautz, H., and Stefankovic, D. (2012). Slice Normalized Dynamic Markov

Logic Networks. In Pereira, F., Burges, C., Bottou, L., and Weinberger, K., editors,

Bibliography 135

Advances in Neural Information Processing Systems 25, pages 1907–1915. Curran

Associates, Inc.

Papai, T., Singla, P., and Kautz, H. A. (2011). Constraint Propagation for Efficient Infer-

ence in Markov Logic. In Lee, J. H.-M., editor, In Proceedings of the 17th International
Conference in Principles and Practice of Constraint Programming (CP), Lecture Notes in

Computer Science, pages 691–705. Springer.

Paschke, A. and Kozlenkov, A. (2009). Rule-Based Event Processing and Reaction Rules.

In Proceedings of the 3rd International Symposium on Rules (RuleML), volume 5858 of

Lecture Notes in Computer Science, pages 53–66. Springer.

Patkos, T. and Plexousakis, D. (2008). A Theory of Action, Knowledge and Time in

the Event Calculus. In Artificial Intelligence: Theories, Models and Applications, pages

226–238. Springer.

Petri, C. A. (1966). Communication with automata. PhD thesis, Universität Hamburg.

Pinto, J. and Reiter, R. (1993). Temporal Reasoning in Logic Programming: A Case for

the Situation Calculus. In Warren, D. S., editor, Proceedings of the 10th International
Conference on Logic Programming (ICLP), pages 203–221. MIT Press.

Pinto, J. and Reiter, R. (1995). Reasoning about time in the Situation Calculus. Annals
of Mathematics and Artificial Intelligence, 14(2):251–268.

Poon, H. and Domingos, P. (2006). Sound and Efficient Inference with Probabilistic and

Deterministic Dependencies. In Proceedings of the 21st AAAI Conference on Artificial
Intelligence, pages 458–463. AAAI Press.

Provetti, A. (1996). Hypothetical reasoning about actions: From Situation Calculus to

Event Calculus. Computational Intelligence, 12(3):478–498.

Rabiner, L. R. and Juang, B.-H. (1986). An introduction to Hidden Markov Models.

Acoustics, Speech, and Signal Processing Magazine (ASSP), 3(1):4–16.

Ray, O. (2009). Nonmonotonic abductive inductive learning. Journal of Applied Logic,
7(3):329–340.

Ray, O., Broda, K., and Russo, A. (2003). Hybrid Abductive Inductive Learning: A

Generalisation of Progol. In Horváth, T., editor, Inductive Logic Programming: 13th
International Conference (ILP), volume 2835 of Lecture Notes in Computer Science, pages

311–328. Springer.

Reiter, R. (1991). Artificial intelligence and mathematical theory of computation.

chapter The Frame Problem in Situation the Calculus: A Simple Solution (Sometimes)

and a Completeness Result for Goal Regression, pages 359–380. Academic Press

Professional, Inc., San Diego, CA, USA.

136 Bibliography

Reiter, R. (1996). Natural actions, concurrency and continuous time in the situation

calculus. In Aiello, L. C., Doyle, J., and Shapiro, S. C., editors, Proceedings of the 5th
International Conference on Principles of Knowledge Representation and Reasoning (KR),

pages 2–13. Morgan Kaufmann.

Reiter, R. (1998). Sequential, Temporal GOLOG. In Cohn, A. G., Schubert, L. K., and

Shapiro, S. C., editors, Proceedings of the 6th International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages 547–556. Morgan Kaufmann.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. MIT Press.

Renkens, J., Van den Broeck, G., and Nijssen, S. (2012). k-Optimal: a novel approximate

inference algorithm for ProbLog. Machine learning, 89(3):215–231.

Riboni, D., Pareschi, L., Radaelli, L., and Bettini, C. (2011). Is Ontology-based Activity

Recognition Really Effective? In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2011 IEEE International Conference on, pages 427–431.

Riedel, S. (2008). Improving the Accuracy and Efficiency of MAP Inference for Markov

Logic. In Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence
(UAI), pages 468–475. AUAI Press.

Romdhane, R., Crispim, C., Bremond, F., and Thonnat, M. (2013). Activity Recognition

and Uncertain Knowledge in Video Scenes. In Advanced Video and Signal Based
Surveillance (AVSS), 2013 10th IEEE International Conference on, pages 377–382.

Rota, N. and Thonnat, M. (2000). Activity recognition from video sequences using

declarative models. In Horn, W., editor, Proceedings of the 14th European Conference
on Artificial Intelligence (ECAI), pages 673–680. IOS Press.

Ryoo, M. S. and Aggarwal, J. K. (2006). Recognition of Composite Human Activities

through Context-Free Grammar Based Representation. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1709–1718. IEEE Computer

Society.

Ryoo, M. S. and Aggarwal, J. K. (2009). Semantic Representation and Recognition of

Continued and Recursive Human Activities. International Journal of Computer Vision,

82(1):1–24.

Sadilek, A. and Kautz, H. A. (2012). Location-Based Reasoning about Complex Multi-

Agent Behavior. Journal of Artificial Intelligence Research (JAIR), 43:87–133.

Saguna, Zaslavsky, A., and Chakraborty, D. (2011). Recognizing Concurrent and Inter-

leaved Activities in Social Interactions. In Dependable, Autonomic and Secure Comput-
ing (DASC), 2011 IEEE Ninth International Conference on, pages 230–237.

Bibliography 137

Sandewall, E. (1994). Features and Fluents: A Systematic Approach to the Representation
of Knowledge About Dynamical Systems. Oxford University Press, Oxford.

Sarkhel, S. and Gogate, V. (2013). Lifting WALKSAT-Based Local Search Algorithms

for MAP Inference. In Statistical Relational Artificial Intelligence, Papers from the 2013
AAAI Workshop, volume WS-13-16 of AAAI Workshops. AAAI.

Sarkhel, S., Venugopal, D., Singla, P., and Gogate, V. (2014). Lifted MAP Inference for

Markov Logic Networks. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 33 of JMLR Proceedings, pages

859–867. JMLR.org.

Sato, T. (1995). A Statistical Learning Method for Logic Programs with Distribution

Semantics. In Proceedings of the 12th International Conference on Logic Programming
(ICLP), pages 715–729. MIT Press.

Sato, T. and Kameya, Y. (2001). Parameter Learning of Logic Programs for Symbolic-

statistical Modeling. Journal of Artificial Intelligence Research, 15:391–454.

Schiffel, S. and Thielscher, M. (2006). Reconciling Situation Calculus and Fluent

Calculus. In Proceedings of the National Conference on Artificial Intelligence, volume 21,

page 287. AAAI Press.

Selman, J., Amer, M. R., Fern, A., and Todorovic, S. (2011). PEL-CNF: Probabilistic

event logic conjunctive normal form for video interpretation. In Proceedings of the
International Conference on Computer Vision Workshops (ICCVW), pages 680–687.

IEEE Computer Society.

Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press.

Shanahan, M. (1999). The Event Calculus Explained. In Wooldridge, M. and Veloso, M.,

editors, Artificial Intelligence Today, volume 1600 of Lecture Notes in Computer Science,

pages 409–430. Springer.

Shet, V. D., Harwood, D., and Davis, L. S. (2005). VidMAP: Video Monitoring of Activity

with Prolog. In Proceedings of the International Conference on Video and Signal Based
Surveillance (AVSS), pages 224–229. IEEE Computer Society.

Shet, V. D., Neumann, J., Ramesh, V., and Davis, L. S. (2007). Bilattice-based Logical

Reasoning for Human Detection. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1–8. IEEE Computer Society.

Shet, V. D., Singh, M., Bahlmann, C., Ramesh, V., Neumann, J., and Davis, L. S. (2011).

Predicate Logic Based Image Grammars for Complex Pattern Recognition. International
Journal of Computer Vision, 93(2):141–161.

138 Bibliography

Shi, Y., Bobick, A. F., and Essa, I. A. (2006). Learning Temporal Sequence Model from

Partially Labeled Data. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1631–1638. IEEE Computer Society.

Shterionov, D., Kimmig, A., Mantadelis, T., and Janssens, G. (2010). DNF sampling

for ProbLog inference. In Proceedings International Colloquium on Implementation of
Constraint and LOgic Programming Systems (CICLOPS), page 15.

Singla, P. and Domingos, P. (2005). Discriminative Training of Markov Logic Networks.

In Proceedings of the 20th National Conference on Artificial Intelligence, pages 868–873.

AAAI Press / The MIT Press.

Singla, P. and Domingos, P. (2006). Memory-Efficient Inference in Relational Domains.

In Proceedings of the 21st AAAI Conference on Artificial Intelligence, pages 488–493.

AAAI Press.

Singla, P. and Domingos, P. (2008). Lifted First-Order Belief Propagation. In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence, pages 1094–1099. AAAI Press.

Singla, P. and Mooney, R. J. (2011). Abductive Markov Logic for Plan Recognition.

In In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pages

1069–1075. AAAI Press.

Siskind, J. M. (2001). Grounding the Lexical Semantics of Verbs in Visual Perception

using Force Dynamics and Event Logic. Journal of Artificial Intelligence Research (JAIR),

15:31–90.

Song, Y. C., Kautz, H., Allen, J., Swift, M., Li, Y., Luo, J., and Zhang, C. (2013a). A

Markov Logic Framework for Recognizing Complex Events from Multimodal Data. In

Proceedings of the 15th ACM on International Conference on Multimodal Interaction,

ICMI ’13, pages 141–148, New York, NY, USA. ACM.

Song, Y. C., Kautz, H. A., Li, Y., and Luo, J. (2013b). A General Framework for

Recognizing Complex Events in Markov Logic. In AAAI Workshop: Statistical Relational
Artificial Intelligence. AAAI.

Sutton, C. and McCallum, A. (2007). An Introduction to Conditional Random Fields for

Relational Learning. In Getoor, L. and Taskar, B., editors, Introduction to Statistical
Relational Learning, pages 93–127. MIT Press.

Thielscher, M. (1999). From Situation Calculus to Fluent Calculus: State update axioms

as a solution to the inferential frame problem. Artificial intelligence, 111(1):277–299.

Thielscher, M. (2001). The qualification problem: A solution to the problem of anoma-

lous models. Artificial Intelligence, 131(1):1–37.

Bibliography 139

Tran, S. D. and Davis, L. S. (2008). Event Modeling and Recognition Using Markov

Logic Networks. In Proceedings of the 10th European Conference on Computer Vision
(ECCV), volume 5303 of Lecture Notes in Computer Science, pages 610–623. Springer.

Turaga, P., Chellappa, R., Subrahmanian, V. S., and Udrea, O. (2008). Machine Recogni-

tion of Human Activities: A Survey. IEEE Transactions on Circuits and Systems for Video
Technology., 18(11):1473–1488.

Vail, D. L., Veloso, M. M., and Lafferty, J. D. (2007). Conditional Random Fields

for Activity Recognition. In Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 1331–1338. IFAAMAS.

Valiant, L. G. (1979). The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8:410–421.

Van Belleghem, K., Denecker, M., and De Schreye, D. (1997). On the relation between

Situation Calculus and Event Calculus. The Journal of Logic Programming, 31(1):3–37.

Vu, V.-T., Brémond, F., and Thonnat, M. (2003). Automatic Video Interpretation:

A Novel Algorithm for Temporal Scenario Recognition. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI), pages 1295–1302.

Wang, J. and Domingos, P. (2008). Hybrid Markov Logic Networks. In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence, pages 1106–1111. AAAI Press.

Wasserkrug, S., Gal, A., and Etzion, O. (2005). A Model for Reasoning with Uncer-

tain Rules in Event Composition Systems. In Proceedings of the 21st Conference in
Uncertainty in Artificial Intelligence (UAI), pages 599–608. AUAI Press.

Wasserkrug, S., Gal, A., Etzion, O., and Turchin, Y. (2008). Complex Event Processing

Over Uncertain Data. In Baldoni, R., editor, Proceedings of the Second International Con-
ference on Distributed Event-Based Systems (DEBS), volume 332 of ACM International
Conference Proceeding Series, pages 253–264. ACM.

Wasserkrug, S., Gal, A., Etzion, O., and Turchin, Y. (2012). Efficient Processing of

Uncertain Events in Rule-Based Systems. IEEE Transactions on Knowledge and Data
Engineering, 24(1):45–58.

Welty, C. A. and Fikes, R. (2006). A Reusable Ontology for Fluents in OWL. In Bennett,

B. and Fellbaum, C., editors, Formal Ontology in Information Systems, Proceedings of the
Fourth International Conference (FOIS), volume 150 of Frontiers in Artificial Intelligence
and Applications, pages 226–236. IOS Press.

Wu, T.-y., Lian, C.-c., and Hsu, J. Y.-j. (2007). Joint Recognition of Multiple Concurrent

Activities using Factorial Conditional Random Fields. In Proceedings of the Workshop
on Plan, Activity, and Intent Recognition (PAIR), pages 82–88. AAAI Press.

Index

F1 score, 74, 103

C+, 39

PC+, 41

Abduction, 50

Abductive reasoning, 121

Action formalism, 39

Activity recognition, 23, 58, 71, 87,

91, 103

Area under precision-recall curve, 74

Background knowledge, 77, 86, 103

Domain knowledge, 75, 83

Prior knowledge, 19, 29

Bayesian Network, 51

Dynamic Bayesian Network, 48, 49

Bilattice, 48

Binary Decision Diagram, 38, 120

CAVIAR, 71, 91, 103, 104

Chronicle Recognition System, 42

Circumscription, 62

Clausal Form, 31

Clique, 31

Closed-world assumption, 62

Common-sense knowledge, 55

Common-sense rule, 58, 77

Compact knowledge base, 55, 61, 65

Conditional model, see Discriminative

model

Conditional Random Field, 71, 74, 82,

83

Conditional Random Fields, 31, 48

Constraint satisfaction, 43

Context-free grammar, 47

Data-driven model, 20, 52, 78, 81, 117

Declarative, 19, 42

Derived atom, 89

Detailed balance, 33

Deterministic dependencies, 33, 51

Diagonal Newton, 35, 72

Discriminative model, 31, 74

Disjoint-sum problem, 38

Disjunctive Normal Form, 37, 98

Domain knowledge, 42, 118, 121

Domain-dependent axiom, 28

Domain-dependent definition, 55, 57

Domain-dependent rule, 90

Domain-independent axiom, 26, 50,

55, 63, 89, 119

Ergodicity, 33

Event, 17, 25, 40, 88

Composite Event, 18, 24, 41, 55,

117

Hypothetical Event, 40, 119

Simple, Derived Event, 18, 23, 24,

55, 87, 91

Event Calculus, 18, 20, 24, 39, 43, 53,

55, 61, 75, 117, 119

Crisp Event Calculus, 66, 71, 74,

103, 114

Discrete Event Calculus, 27, 56,

61, 118

Full Event Calculus, 25, 61

Event definition, 42, 55, 58, 59, 91

Event forecasting, 119

Index 141

Event pattern detection, see Symbolic

event recognition

Event pattern matching, see Symbolic

event recognition

Existential quantification, 61, 61

F-measure, see F1 score

Fact

Ground fact, 36

Probabilistic fact, 36, 37, 88

False negative, 74, 103

False positive, 74, 103

First-order logic, 21, 24, 25, 27, 29,

31, 47, 49–51

First-order Markov decision process, 41

Fluent, 25, 40, 49, 88, 105

Fluent Calculus, 39

Forward-branching time model, 40, 119

Gamma distribution, 105

Hard constraint, 29, 31, 75, 118, 119

Herbrand Interpretation, 29, 37

Hidden Markov Model, 31, 48, 49

Hidden predicate, 32

Hidden variable, 72

Hybrid model, 52

Ill-conditioning, 35

Imperfect definition, 19, 24, 49, 55,

71, 76

Imperfect knowledge, see Imperfect def-

inition

Incomplete narrative, 71, 77, 82, 83,

118

Independence assumption, 32, 36, 49,

120

Inductive Logic Programming, 30

Inertia, 25, 25, 28, 40, 53, 65, 69, 77,

83, 119

Deterministic inertia, see Hard-constrained

inertia

Hard-constrained inertia, 66, 78

Probabilistic inertia, see Soft-constrained

inertia

Soft-constrained inertia, 66, 67, 80,

81, 117

Initiation condition, 66

Input stream of SDEs, see Narrative

Integral solution, 34

Interval constraint, 119

Joint Probability Distribution, 32

Knowledge transformation, 62, 64, 65,

70, 75

Knowledge-driven model, 52

L-BFGS, 72

Linear Programming, 32, 34

Linear-chain Conditional Random Field,

117

Log-Linear Description Logics, 51

Logic-based event recognition, see Sym-

bolic event recognition

Machine Learning, 30, 121

Marginal inference, 33, 72, 76

Markov Chain Monte Carlo, 33

Markov Logic Networks, 21, 31, 49,

53, 55, 117

Dynamic Markov Logic Networks,

49

Hybrid Markov Logic Network, 50

Markov network, 31, 31, 61, 64, 65,

70

Max-margin, 35, 72, 80

Maximum a-posteriori inference, 33,

72

MaxWalkSAT, 39

MC-SAT, 33, 39, 72

Narrative, 29, 57, 58, 60

Negation, 88

Negative Conditional Log Likelihood,

34

Noise, 41, 49, 105, 106

142 Index

On-line event recognition, 120

Ontologies, 43

Open-world assumption, 62

Parameter sharing, 30

Persistence, see inertia

Petri-Net, 42

Probabilistic Petri-Net, 47

Stochastic Petri-Net, 47

Possible worlds, 29, 31, 31, 38, 39,

46, 64

Precision, 74, 103

Predicate completion, 62

Probabilistic dependencies, 33

Probabilistic Event Calculus, 117

MLN−EC, 55, 56, 61, 70, 71, 74, 82,

83, 117

ProbLog−EC, 87, 89, 102, 103, 114,

118

Probabilistic Event Logic, 50

Probabilistic Graphical Model, 20, 48,

74

Probabilistic inference, 32, 37

Probabilistic initiation, 109

Probabilistic Logic Programming, 21,

36

Probabilistic Penalty Graph, 47

Probabilistic termination, 109

ProbLog, 21, 36, 53, 88

ProbLog program, 37

Quantitative information, 119

Random variable, 118

Recall, 74, 103

Recognition threshold, 74, 78, 100

Selective Linear Definite Tree, 38, 98

Single time-line model, 40

Situation Calculus, 39, 41, 119

Slice-sampling, 33

Soft constraint, 31, 50, 65–67, 70, 75,

81

Soft evidence, 120

Soft-constrained inertia, see Soft-constrained

inertia

Spatial constraint, 58–60, 72, 75, 91,

92, 119

Spurious event, 105, 112

Statistical Relational Learning, 29, 30,

48

Stochastic Automaton, 46

Structure learning, 121

Success probability, 37

Symbolic event recognition, 18, 41, 55,

87, 117

Template, 49

Temporal Action Logics, 40

Temporal Constraint Network, 42

Temporal Interval, 43, 50, 51

Interval Algebra, 43, 47, 50

Spanning interval, 50

Termination condition, 66

Time, 40

Time-point, 25

Training data set, 72, 83

True positive, 74, 103

Uncertainty, 19, 29, 41, 44, 49, 55,

117, 118

Uniform distribution, 82

Unit clause, 119

Unit propagation, 119

Virtual evidence, 120

Weak constraint, 68

Web Ontology Language, 43

Weight learning, 34, 72

Glossary

ALP Abductive Logic Programming

ASP Answer Set Programming

AUPRC Area Under Precision Recall Curve

BDD Binary Decision Diagram

BN Bayesian Network

CAVIAR Context Aware Vision using Image-based

Activity Recognition

CE Composite Event

CEP Complex Event Processing

CLL Conditional Log-Likelihood

CNF Conjunctive Normal Form

CRF Conditional Random Field

CRS Chronicle Recognition System

DEC Discrete Event Calculus

DNF Disjunctive Normal Form

ECcrisp Crisp Event Calculus

HMM Hidden Markov Model

ILP Inductive Logic Programming

l−CRF linear-chain Conditional Random Field

LLDL Log Linear Description Logic

LP Linear Programming

MAP Maximum a-posteriori

MAX-SAT Maximum Satisfiability Problem

144 Glossary

MCMC Markov Chain Monte Carlo

MLN Markov Logic Network

MLN−EC Markov Logic Network based Event Calculus

MN Markov Network

MRF Markov Random Field

OWL Web Ontology Language

PEL Probabilistic Event Logic

PPG Probabilistic Penalty Graph

ProbLog Probabilistic Logic Programming

ProbLog−EC ProbLog based Event Calculus

SA Stochastic Automaton

SAT Boolean Satisfiability Problem

SDE Simple, Derived Events

SLD Selective Linear Definite

Symbols

Σ The set of CE definitions

Σ′ The set of complimentary CE definitions

F The finite domain of fluents

E The finite domain of events

T The finite domain of time-points

O The finite domain of individual entities, e.g. persons, objects,

etc.

C The finite domain of all constants, i.e. C=T ∪ O ∪ E ∪ F
R The set of real numbers

wi The weight value of the i-th clause/formula, where wi ∈ R

Fi The i-th formula

L A knowledge base of weighted formulas

Fc The set of clauses produced from L and constants C
ML,C The ground Markov network that is created from weighted

formulas of L and constants C
Z Partition function

|A| Cardinality of set A

|A|×|B| The Cartesian product of cardinalities |A| and |B|
∧ Conjunction

∨ Disjunction

⇔ Equivalence

⇐ or⇒ Implication

∃ Existential quantification

∀ Universal quantification

P (Y |X) Conditional distribution of random variables Y , given X

146 Symbols

Γ ProbLog program

BK Background knowledge

F Set of probabilistic facts in a ProbLog program

pi :: fi The i-th probabilistic fact, where pi indicates the probability

of fact fi

LΓ Maximal set of ground logical facts

Lg Ground logic program or sub-program

Ps(q|Γ) Success probability of query q in a ProbLog program Γ

“Everything not saved will be lost”
— Nintendo “Quit Screen” message

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline of the Thesis

	2 Background
	2.1 Running Example: Activity Recognition
	2.2 The Event Calculus
	2.2.1 Domain-independent Axiomatisation
	2.2.2 Domain-dependent Axiomatisation

	2.3 Statistical Relational Learning
	2.3.1 Markov Logic Networks
	2.3.2 Probabilistic Logic Programming with ProbLog

	2.4 Related Work
	2.4.1 Action formalisms
	2.4.2 Event Recognition
	2.4.3 Event Recognition Under Uncertainty
	2.4.4 Discussion

	3 MLN-EC: Probabilistic Event Calculus based on Markov Logic Networks
	3.1 Axiomatisation
	3.2 Application to Activity Recognition
	3.3 Compact Knowledge Base Construction
	3.3.1 Simplified Representation
	3.3.2 Knowledge Base Transformation

	3.4 The Behaviour of the MLN-EC
	3.4.1 Soft-constrained rules in
	3.4.2 Soft-constrained inertia rules in '

	3.5 Conclusions

	4 Experimental Evaluation of MLN-EC
	4.1 Setup
	4.1.1 The Methods Being Compared

	4.2 Network Size and Inference Times
	4.3 Experimental Results of the ECcrisp
	4.4 Experimental Results of the Probabilistic Methods
	4.4.1 Task I
	4.4.2 Task II

	4.5 Conclusions

	5 ProbLog-EC: Probabilistic Event Calculus based on Logic Programming
	5.1 Axiomatisation
	5.2 Application to Activity Recognition
	5.3 The Behaviour of the ProbLog-EC
	5.3.1 Multiple Initiations and Terminations
	5.3.2 Single Initiation and Termination

	5.4 Conclusions

	6 Experimental Evaluation of ProbLog-EC
	6.1 Performance evaluation without Artificial Noise
	6.2 Performance evaluation with Artificial Noise
	6.2.1 Experiments With Smooth Noise
	6.2.2 Experiments With Intermediate Noise
	6.2.3 Experiments With Strong Noise

	6.3 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Index
	Glossary
	Symbols

