
University of Piraeus

Department of Digital Systems

Systems Security Laboratory

M.Sc. in “Techno-economic Management & Security of Digital Systems”

Master Thesis

Development of a Secure Linux Distribution

Panagiotis Tsesmetzis

February, 2014

 3

Supervisor

Professor Sokratis K. Katsikas,

University of Piraeus

 4

Examination Board

Professor Sokratis K. Katsikas,

University of Piraeus

Associate Professor Konstantinos Lambrinoudakis,

University of Piraeus

Assistant Professor Christos Xenakis,

University of Piraeus

Contents

 5

CONTENTS

ACKNOWLEDGEMENTS .. 7

ABSTRACT ... 8

1. INTRODUCTION.. 9

1.1 Problem Definition ... 9

1.2 Thesis Structure ... 10

1.3 Contribution ... 10

2. CREATING A NEW OPERATING SYSTEM ... 11

2.1 Introduction ... 11

2.2 Benefits of starting from scratch ... 11

2.3 Building the LFS System ... 12

 2.3.1 Process Overview .. 12

 2.3.2 Preparation ... 12

 2.3.3 Software Packages .. 15

 2.3.4 Constructing a Temporary System .. 16

 2.3.5 Compiling the Basic System Software ... 17

 2.3.6 Setting up Bootscripts ... 18

 2.3.7 Installation of the Linux Kernel ... 19

2.4 Final Result ... 20

3. LINUX SECURITY FEATURES .. 21

3.1 Introduction ... 21

3.2 Linux Security Modules .. 21

 3.2.1 SELinux .. 22

 3.2.2 AppArmor .. 22

 3.2.3 Smack .. 22

 3.2.4 TOMOYO ... 22

 3.2.5 YAMA ... 22

3.3 grsecurity ... 23

3.4 Comparison of Security Frameworks ... 23

3.5 Selection... 26

Contents

 6

4. IMPLEMENTING SELINUX ... 27

4.1 Kernel SELinux Integration ... 27

4.2 Userspace Configuration .. 30

4.3 The SELinux Policy .. 30

5. OTHER SECURITY ENHANCEMENTS ... 33

5.1 Layered Defense .. 33

5.2 Additional Security Measures .. 33

5.3 Notable Security Projects... 34

6. CONCLUSIONS.. 35

6.1 A Security Enhanced OS ... 35

6.2 Further Work ... 35

REFERENCES .. 36

APPENDICES .. 39

A. SOFTWARE PACKAGES DESCRIPTION .. 1

B. A SAMPLE SELINUX POLICY ... 1

 7

Acknowledgements

This project would not have been possible without the existence and

maintenance of the Linux from Scratch Project. I would also like to thank my supervisor

Professor Sokratis Katsikas for his guidance and insights.

Piraeus, February 2014

Abstract

 8

Abstract

The various forms of UNIX inherently suffer from security issues. However, forms of the

Unix OS family are widely used, often in critical applications. The aim of this work is to present

the process of developing a new operating system, based on Linux. The system will be

developed from the outset from source code, not based on any existing distribution and will

emphasize on the shielding of the entire system and its individual parts in order to provide

better security and be able to accommodate critical (military grade) applications of interest.

This thesis presents the process of creating a secure OS in two stages:

At a first stage, all the steps necessary to construct a brand new open source operating

system based on Linux are followed. To achieve this goal, the Linux From Scratch (LFS) project

is utilized [1]. The outcome is a new basic Linux operating system with the minimum amount of

software needed to operate and is based on the Linux 3.10.10 Kernel.

At a second stage, security measures to harden the security of the new OS are explored.

All major Linux Security Modules (LSM) and security suites are presented and a framework for

their comparison based on common attributes is suggested. Using this framework, the

Security Enhanced Linux (SELinux) project is chosen to harden the new OS. The suite is then

more thoroughly presented and applied. Other security measures for further hardening our

new system are presented and applied when possible. As a last step, we explore other

possibilities for evolving our security hardened OS implementation.

 Introduction

 9

Chapter 1

1. Introduction

Current information technology status reveals a rather intimidating canvas security-

wise: Recent claims suggest the involvement of major software and operating system vendors

in information gathering by security agencies [2]. Various techniques of placing back-doors on

operating systems and devices for information gathering where suggested. The story goes as

back as 1999, when the “_NSAKEY” cryptographic variable was discovered in Windows NT,

with many security experts suggesting that it enabled a back-door on Microsoft's Windows

2000 OS[3]. Recently, Germany's Office for Information Security (BSI) expressed concerns on

the Trusted Platform Module technology used in Windows 8 in conjunction with the Trusted

Platform Module (TPM) 2.0 chip [4].

Claims of condescending assistance to intelligence agencies for information gathering

have been refuted by software and operating system developers. With the extent of operating

systems compromise unknown, a new need presents itself: The need for a trusted OS designed

with security first in mind. This operating system should be able provide security as a

fundamental function for critical and military grade applications. This is an effort to suggest

such a system.

1.1 Problem Definition
The Linux operating system is assembled under the model of free and open source

software development and distribution (FOSS) [5]. As it is free to use and stable at its

performance, it has become the leading OS for servers, mainframes and supercomputers. It is

built into the firmware of most embedded systems. Even the most popular operating system

on mobile devices, the Android OS is based on Linux. Linux adoption in the enterprise has

been accelerating for more than a decade [6].

 While thought of as a generally secure operating system, Linux is based on UNIX which

was not designed with security first in mind. Inherently insecure services such as ftp and telnet

can be potential paths for entrance of malicious users into the system. Exploitable bugs in

server software our found almost at a daily basis and if not properly and timely patched, they

can lead to unauthorized access and system exploitation [7].

 In order to be used as a container in critical or sensitive (military grade) applications,

we need to take all necessary steps and measures to harden Linux from a security point of

view.

Introduction

 10

1.2 Thesis Structure
The problem is addressed in stages:

● First, a brand new Linux system is constructed by compiling all packets from source

code.

● Our new Linux OS is then hardened by applying specific security measures. While

writing this thesis, it became imperative that a framework of the existing security

enhancement solutions was introduced in order to choose from.

● To harden even more, other popular security measures are analyzed and applied if

possible.

● Finally, ways of continuing the work presented are suggested.

1.3 Contribution

This thesis contributes in increasing the security of the Linux OS in various ways:

● It describes and practices the procedure of constructing of a new Linux OS. The

created OS is a prototype, a basic system to build up from, selecting and installing only the

software packages needed for a specific task. This minimizes, in the most efficient way

possible, the installed software fingerprint and thus provides the smallest possible surface for

finding and exploiting software bugs.

● It proposes a framework for comparing the existing projects for Linux security

hardening. This helps the reader to decide which way to go, applying the solution or the

combination of solutions most suitable for the enterprise needs.

● By presenting up-to-date security measures, it can be used as a security guide from

system administrators and help them better secure their systems.

● By combining a purpose oriented OS with a minimal software fingerprint and the

appropriate security measures for its function, one can produce highly secure specialized

government or military systems, suitable for critical and sensitive applications.

 Creating a New Operating System

 11

Chapter 2

1. Creating a New Operating System

2.1 Introduction
In order to create a new Linux operating system from the source code up, this thesis

utilizes the Linux From Scratch Project [1]. Linux From Scratch (from now on referred to as LFS)

is a project that provides step-by-step instructions for building a custom Linux system entirely

from source code.

LFS follows Linux standards as closely as possible. The primary standards are:

● POSIX.1-2008 [8]

● Filesystem Hierarchy Standard (FHS)[9]

● Linux Standard Base (LSB) Specifications [10]

The steps and procedures described in the latest LFS book release, version 7.4, where

implemented. The outcome is a Linux System based on the 3.10.10 kernel.

2.2 Benefits of starting from scratch
One could argue that there is no reason for building a new Linux operating system

from the beginning. There are already many distributions out there, some supporting

advanced security features that one could use as a secure application container. While

choosing an already existing distribution is a valid option, there are certain benefits in starting

the building process from the beginning:

● Building an operating system from source code provides the knowledge of how a

Linux system works internally, what are the dependencies between different programs and

how they interact in the creating process. This knowledge is crucial in understanding how the

system operates and how to better secure it.

 ● A complete LFS system provides a very basic working system, a skeleton upon which

to build. Following the LFS process can produce minimal, purpose driven systems that include

only the absolutely necessary software packets to operate. This is a great benefit as it reduces

the software base and consecutively the amount of vulnerabilities in the operating system.

 ● Compiling the entire system from source code means that every aspect of the

operating system can be reviewed and if necessary audited for security purposes. If a security

hole is discovered, it can be patched without the need for a third party to release a security

patch.

Creating a New Operating System

 12

2.3 Building the LFS System
The system was built on a dual-core laptop with Ubuntu Linux 12.04 32 bit version as

its operating system (from now on referred to as host). The steps described in the LFS book up

to chapter 9 where followed, where the new OS is considered complete and can be chrooted

in. As the system was developed in an older laptop system with a minimal hardware and

software configuration, a bootable version of the produced OS will not be presented and the

extra steps necessary to make the system bootable in the specific host system are considered

out of scope.

As detailed step by step instructions for the build are provided in the LFS book, the

walkthrough of the creation process will be kept at a higher, more explanatory level, focusing

on key concepts at every step of the build.

2.3.1. Process Overview
In order to build a new system, an already installed Linux distribution such as Debian,

Mandriva, Red Hat, or SUSE is required. This host operating system will provide the necessary

programs, including a compiler, linker, and shell, to build the new system. After a new partition

and file system are prepared, a number of packages are downloaded into it, to build the basic

development suite (from now on referred to as toolchain).

We then proceed to build a first pass of the toolchain, including Binutils and GCC (first

pass basically means these two core packages will be reinstalled). The next step is to build

Glibc, the C library. Glibc will be compiled by the toolchain programs built in the first pass.

Then, a second pass of the toolchain will be built. This time, the toolchain will be dynamically

linked against the newly built Glibc. The remaining packages are built using this second pass

toolchain. The purpose of this operation is to insure that the LFS installation process will no

longer depend on the host distribution.

Finally, the full system is built. All packages that will constitute our new OS are

compiled using the toolchain created in the previous phase. Bootscripts and the Linux Kernel

are set up. The chroot (change root) program is used to enter a virtual environment and start a

new shell whose root directory will be set to the new system partition. This is similar to

rebooting and instructing the kernel to mount the LFS partition as the root partition. The

system does not actually reboot, but instead chroots into the new system.

2.3.2. Preparation
The following script checks and reports if all host system requirements are met:

cat > version-check.sh << "EOF"

#!/bin/bash

Simple script to list version numbers of critical development tools

export LC_ALL=C

bash --version | head -n1 | cut -d" " -f2-4

echo "/bin/sh -> `readlink -f /bin/sh`"

echo -n "Binutils: "; ld --version | head -n1 | cut -d" " -f3-

bison --version | head -n1

 Creating a New Operating System

 13

if [-e /usr/bin/yacc];

 then echo "/usr/bin/yacc -> `readlink -f /usr/bin/yacc`";

 else echo "yacc not found"; fi

bzip2 --version 2>&1 < /dev/null | head -n1 | cut -d" " -f1,6-

echo -n "Coreutils: "; chown --version | head -n1 | cut -d")" -f2

diff --version | head -n1

find --version | head -n1

gawk --version | head -n1

if [-e /usr/bin/awk];

 then echo "/usr/bin/awk -> `readlink -f /usr/bin/awk`";

 else echo "awk not found"; fi

gcc --version | head -n1

g++ --version | head -n1

ldd --version | head -n1 | cut -d" " -f2- # glibc version

grep --version | head -n1

gzip --version | head -n1

cat /proc/version

m4 --version | head -n1

make --version | head -n1

patch --version | head -n1

echo Perl `perl -V:version`

sed --version | head -n1

tar --version | head -n1

echo "Texinfo: `makeinfo --version | head -n1`"

xz --version | head -n1

echo 'main(){}' > dummy.c && g++ -o dummy dummy.c

if [-x dummy]

 then echo "g++ compilation OK";

 else echo "g++ compilation failed"; fi

rm -f dummy.c dummy

EOF

bash version-check.sh

In our Ubuntu host only 3 programs had to be installed: bison, gawk and texinfo.

Creating a New Operating System

 14

Using a disk partitioning program, a new 20GB partition was created on the

computer’s hard disk. The newly created partition was formatted for the ext4 file system:

Image 2.1: An ext4 partition (sda3) was prepared on the host disk.

Throughout the build, the environment variable $LFS will be used and must always be

defined. Next we mount the newly created partition and create a folder to put downloaded

software. We also create a /tools folder. This is the folder where all compiled programs will be

installed:

#Define the LFS variable:

export LFS=/mnt/lfs

mkdir -pv $LFS

mount -v -t ext3 /dev/sda3 $LFS

#Create the sources folder and download software:

mkdir -v $LFS/sources

chmod -v a+wt $LFS/sources

wget -i wget-list -P $LFS/sources

#Create the tools folder:

mkdir -v $LFS/tools

ln -sv $LFS/tools /

 Creating a New Operating System

 15

2.3.3. Software Packages

To build a basic Linux system, the following software packages are needed and where

downloaded into $LFS/sources. All software signatures where verified using the md5sums

program. In addition to these packages, a number of patches where downloaded to address

compatibility issues and provide package-specific fixes. Each program’s functionality is

described in Appendix A

List of Software Packages

1. Autoconf (2.69) 22. GMP (5.1.2) 43. Patch (2.7.1)

2. Automake (1.14) 23. Grep (2.14) 44. Perl (5.18.1)

3. Bash (4.2) 24. Groff (1.22.2) 45. Pkg-config (0.28)

4. Bc (1.06.95) 25. GRUB (2.00) 46. Procps (3.3.8)

5. Binutils (2.23.2) 26. Gzip (1.6) 47. Psmisc (22.20)

6. Bison (3.0) 27. Iana-Etc (2.30) 48. Readline (6.2)

7. Bzip2 (1.0.6) 28. Inetutils (1.9.1) 49. Sed (4.2.2)

8. Check (0.9.10) 29. IPRoute2 (3.10.0) 50. Shadow (4.1.5.1)

9. Coreutils (8.21) 30. Kbd (1.15.5) 51. Sysklogd (1.5)

10. DejaGNU (1.5.1) 31. Kmod (14) 52. Sysvinit (2.88dsf)

11. Diffutils (3.3) 32. Less (458) 53. Tar (1.26)

12. E2fsprogs (1.42.8) 33. LFS-Bootscripts (20130821) 54. Tcl (8.6.0)

13. Expect (5.45) 34. Libpipeline (1.2.4) 55. Time Zone Data (2013d)

14. File (5.14) 35. Libtool (2.4.2) 56. Texinfo (5.1)

15. Findutils (4.4.2) 36. Linux (3.10.10) 57. Systemd (206)

16. Flex (2.5.37) 37. Make (3.82) 58. Udev-lfs Tarball (206)

17. Gawk (4.1.0) 38. Man-DB (2.6.5) 59. Util-linux (2.23.2)

18. GCC (4.8.1) 39. Man-pages (3.53) 60. Vim (7.4)

19. GDBM (1.10) 40. MPC (1.0.1) 61. Xz Utils (5.0.5)

20. Gettext (0.18.3) 41. MPFR (3.1.2) 62. Zlib (1.2.8)

21. Glibc (2.18) 42. Ncurses (5.9)

List of Software Patches

1. Automake Test Fix Patch

2. Bash Upstream Fixes Patch

3. Bzip2 Documentation Patch

4. Coreutils Internationalization Fixes Patch

5. Kbd Backspace/Delete Fix Patch

6. Make Upstream Fixes Patch

7. Perl Libc Patch

8. Tar Manpage Patch

9. Readline Upstream Fixes Patch
10. Texinfo Test Patch

Table 2.1: Software Packages and Patches used in the LFS build

Creating a New Operating System

 16

2.3.4. Constructing a Temporary System
The first step in building our OS is to build a new and host-independent toolchain

(compiler, assembler, linker, libraries, and a few useful utilities). This step is necessary to

ensure a clean, trouble-free build of the target system:

First, the LFS user is assigned proper rights to the LFS folders:

groupadd lfs

useradd -s /bin/bash -g lfs -m -k /dev/null lfs

passwd lfs

chown -v lfs $LFS/tools

The build process is as follows:

For each package:

● Using the tar program, extract the package to be built.

● Change to the directory created when the package was extracted.

● Build the package using the configure, make, make install commands as specifically

instructed for each individual packet. Software in installed in the tools directory.

● Change back to the sources directory.

● Delete the extracted source directory and any <package>-build directories that were

created in the build process.

In strict order, these packages where compiled:

1. Binutils-2.23.2 - Pass 1

2. GCC-4.8.1 - Pass 1

3. Linux-3.10.10 API

Headers

4. Glibc-2.18

5. Libstdc++-4.8.1

6. Binutils-2.23.2 - Pass 2

7. GCC-4.8.1 - Pass 2

8. Tcl-8.6.0

9. Expect-5.45

10. DejaGNU-1.5.1

11. Check-0.9.10

12. Ncurses-5.9

13. Bash-4.2

14. Bzip2-1.0.6

15. Coreutils-8.21

16. Diffutils-3.3

17. File-5.14

18. Findutils-4.4.2

19. Gawk-4.1.0

20. Gettext-0.18.3

21. Grep-2.14

22. Gzip-1.6

23. M4-1.4.16

24. Make-3.82

25. Patch-2.7.1

26. Perl-5.18.1

27. Sed-4.2.2

28. Tar-1.26

29. Texinfo-5.1

30. Xz-5.0.5

Table 2.2: Packages used to construct the Toolchain

At the end of the process the toolchain is complete. We now have a minimal set of

tools that are necessary to build our final system. The time it takes to compile the toolchain

can be significant and depends greatly on the system’s processor and the lab configuration.

 Creating a New Operating System

 17

2.3.5. Compiling the Basic System Software
With the toolchain complete, we are ready to enter the build environment and start

shaping our new system:

chroot "$LFS" /tools/bin/env -i \

 HOME=/root \

 TERM="$TERM" \

 PS1='\u:\w\$ ' \

 PATH=/bin:/usr/bin:/sbin:/usr/sbin:/tools/bin \

 /tools/bin/bash --login +h

We create a standard Linux directory tree and all necessary compatibility symlinks for

the man, doc, and info directories by issuing:

mkdir -pv /{bin,boot,etc/{opt,sysconfig},home,lib,mnt,opt,run}

mkdir -pv /{media/{floppy,cdrom},sbin,srv,var}

install -dv -m 0750 /root

install -dv -m 1777 /tmp /var/tmp

mkdir -pv /usr/{,local/}{bin,include,lib,sbin,src}

mkdir -pv /usr/{,local/}share/{doc,info,locale,man}

mkdir -v /usr/{,local/}share/{misc,terminfo,zoneinfo}

mkdir -pv /usr/{,local/}share/man/man{1..8}

for dir in /usr /usr/local; do

 ln -sv share/{man,doc,info} $dir

done

case $(uname -m) in

 x86_64) ln -sv lib /lib64 && ln -sv lib /usr/lib64 && ln -sv

lib /usr/local/lib64 ;;

esac

mkdir -v /var/{log,mail,spool}

ln -sv /run /var/run

ln -sv /run/lock /var/lock

mkdir -pv /var/{opt,cache,lib/{misc,locate},local}

Creating a New Operating System

 18

At this point we have the final directory structure of our new OS:

Image 2.2: Directory Structure of the Final System

We can now start compiling the final system. Following the same steps used in section

2.3.4 to build the toolchain, the software packages where compiled in the exact following

order:

1. Linux-3.10.10 Headers

2. Man-pages-3.53

3. Glibc-2.18

4. Adjusting the Toolchain

5. Zlib-1.2.8

6. File-5.14

7. Binutils-2.23.2

8. GMP-5.1.2

9. MPFR-3.1.2

10. MPC-1.0.1

11. GCC-4.8.1

12. Sed-4.2.2

13. Bzip2-1.0.6

14. Pkg-config-0.28

15. Ncurses-5.9

16. Shadow-4.1.5.1

17. Util-linux-2.23.2

18. Psmisc-22.20

19. Procps-ng-3.3.8

20. E2fsprogs-1.42.8

21. Coreutils-8.21

22. Iana-Etc-2.30

23. M4-1.4.16

24. Flex-2.5.37

25. Bison-3.0

26. Grep-2.14

27. Readline-6.2

28. Bash-4.2

29. Bc-1.06.95

30. Libtool-2.4.2

31. GDBM-1.10

32. Inetutils-1.9.1

33. Perl-5.18.1

34. Autoconf-2.69

35. Automake-1.14

36. Diffutils-3.3

37. Gawk-4.1.0

38. Findutils-4.4.2

39. Gettext-0.18.3

40. Groff-1.22.2

41. Xz-5.0.5

42. GRUB-2.00

43. Less-458

44. Gzip-1.6

45. IPRoute2-3.10.0

46. Kbd-1.15.5

47. Kmod-14

48. Libpipeline-1.2.4

49. Make-3.82

50. Man-DB-2.6.5

51. Patch-2.7.1

52. Sysklogd-1.5

53. Sysvinit-2.88dsf

54. Tar-1.26

55. Texinfo-5.1

56. Udev-206 (Extracted

from systemd-206)

57. Vim-7.4

Table 2.3: Installed Software Packages in compilation order

When the time-consuming process of compiling each individual packet is complete,

the newly created system has a minimum set of tools and programs to operate as a basic but

complete standalone OS. Only two more steps are required, setting up the bootscripts and,

finally compiling the Linux Kernel itself.

2.3.6. Setting up Bootscripts
Proper system boot process and operation requires the installation of a number of

scripts and configuration files. A listing of the boot scripts and configuration files that where

installed are found in [11].

 Creating a New Operating System

 19

2.3.7. Installation of the Linux Kernel
This is the core of the new operating system and the final step in this exercise.

Building the kernel involves three steps: Configuration, compilation, and installation.

● Configuration: Prior to compiling the kernel tree has to be clean. This is

accomplished by issuing the following command:

make mrproper

The kernel will then be configured via a menu driven interface, by issuing:

make menuconfig

Image 2.3: Linux/x86 3.10.10 Kernel Configuration Options

This brings up a menu driven utility where all core system configuration are setup. For

this exercise, we will work with the default configuration on all options except security and

some file systems options, which will be re-examined in Chapter 4.

Compilation and installation of the kernel after configuration has been complete

involves the following:

● Compile the kernel image and selected modules:

make

make_modules install

● The kernel image, system map and config files are moved to the /boot directory:

cp -v arch/x86/boot/bzImage /boot/vmlinuz-3.10.10-lfs-7.4

cp -v System.map /boot/System.map-3.10.10

cp -v .config /boot/config-3.10.10

Creating a New Operating System

 20

2.4 Final Result
Our brand new operating system is now complete. If the build was made on a separate

hard disk we could boot from it. Due to the specific hardware configuration of the host

computer, a bootable version of the final result, will not be presented. With the exception of

running processes, the system can be chrooted in and commands executed. On the next

chapters, ways to provide better security against common attacks are discussed and specific

security measures are suggested.

 Linux Security Features

 21

Chapter 3

1. Linux Security Features

3.1 Introduction
“The first fact to face is that UNIX was not developed with security, in any realistic

sense, in mind; this fact alone guarantees a vast number of holes.” [12]

Linux started out with the traditional Unix security model, DAC (Discretionary Access

Control model). DAC allows the owner of an object (such as a file) to set the security policy for

that object which is why it's called a discretionary scheme. While simple and still effective, it

does not meet the modern internet era security needs. For example, exploiting buggy software

an attacker can gain access with the rights of the user, which can be very dangerous if that

user is the super user (root).

Over the time Linux security involved, introducing more advanced security

mechanisms to protect the OS, such as MAC (Mandatory Access Control) or RBAC (Role Based

Access Control) that will discussed in the next session. Several different approaches and

different methodology to security have been presented and are incorporated in the kernel as

modules. These are the LSM (Linux Security Modules). It must be noted that only one LSM can

be active in the Kernel.

3.2 Linux Security Modules
The LSM API adds hooks at all security-critical points within the kernel. The

implemented LSM receives callbacks from these hooks and may deny the operation. It also

allows different security models to be passed into the Kernel, such as ACL’s. DAC checks are

always performed first and only if they succeed the LSM control is invoked.

Image 3.1: LSM hook mechanism

Linux Security Features

 22

3.2.1. SELinux
SELinux (Security Enhanced Linux) was developed by the NSA (United States National

Security Agency)[13][14] and is now a community supported open source project. It has been

implemented in the kernel since the 2.6 version. It provides a flexible MAC scheme called

FLASK to a meet a wide variety of security requirements, from general purpose use to

government and military systems. MAC differs from DAC in that the security policy is

administered centrally and not by the user. This means that the user does not administer the

security policy for his own resources. This greatly helps against attacks on exploitable software

bugs or wrong configurations. All objects on the system are assigned security labels and all

interactions are hooked and passed to the SELinux LSM module which allows or denies it

according to the security policy. The security policy can be fine-grained to meet specific

security goals.

SELinux is a mature project and is implemented as a standard feature amongst others

in the Red Hat commercial, Fedora and CentOS Linux distributions.

3.2.2. AppArmor
AppArmor was developed by Immunix and is since 2009 maintained by Canonical [15].

Designed with ease of use in mind, it applies MAC controls to applications. Its main difference

with SELinux is that it uses pathnames to applications instead of their inodes (object names) to

apply the security policy. AppArmor policies are called profiles and work by setting the abilities

and file permissions of a program. AppArmor can automatically generate profiles by running it

in a special learning mode.

AppArmor ships with the Ubuntu and OpenSUSE Linux distributions.

3.2.3. Smack
Smack (Simplified Mandatory Access Control Kernel) LSM also uses a MAC framework.

Its goal is to provide good security without the complexity of SELinux policies. It uses extended

attributes (xattrs) to store labels on filesystem objects and the security policy can also be

modified. There are 4 predefined labels used to enforce access permission based on a simple

set of rules[16].

Smack is part of the Tizen Project [17].

3.2.4. TOMOYO
TOMOYO LSM (Task Oriented Management Obviates Your Onus) is a path-based MAC

module [18] that it is aimed at simplicity. It uses process execution history and has a learning

mode just like AppArmor. TOMOYO names the paths as domains. A domain records a chain of

tasks from the boot-up to a specific program execution and is used for policy installment.

TOMOYO is considered rather user than administrator oriented and is low on adoption.

3.2.5. YAMA
YAMA [19] is a new standard LSM. It uses a DAC scheme to apply security

enhancements mostly inspired from the grsecurity project. It currently implements enhanced

 Linux Security Features

 23

restrictions on ptrace, to prevent an attacker from compromising an application and use it to

attach to other running processes. In specific modes of operation, YAMA can be stacked with

other security modules when used as a kernel patch.

3.3 grsecurity
Grsecurity is a set of patches for the Linux kernel with an emphasis on

enhancing security. It includes Access Control Lists (ACL) to allow the system administrator to

define a least privilege policy for the system, in which every process and user have only the

lowest privileges needed to function. Grsecurity has not been ported as a security module for

the kernel, due to its developer disagreement with the LSM model [20].

Despite the fact that it is not implemented as a LSM, grsecurity is worth mentioning as

it offers significant security enhancements like the Pax Project, that efficiently protect a Linux

system mainly against memory smashing exploitation techniques and network-based

exploitations.

3.4 Comparison of Security Frameworks
To apply core security measures, one of the available security frameworks has to be

selected. To help decide on which security solution better meets our needs, a set of criteria

will be set to compare them. Official documentation as well as [21][22][23] where utilized to

complete our set of criteria:

i. LSM implementation: Kernel features can be applied either as patches or as

modules. Whether a security suite is applied as a patch or as a module is important, as official

LSM modules are included as part of the mainline kernel releases and are fully compatible with

it.

ii. Object Selection: The method used by the framework to assign security labels to

objects. Possible options are inode, filename, process tree. The method is important as using

inodes results in a larger number of supported objects than the other two methods (with a

cost on policy complexity).

iii. Supported Objects: A derivative of the object selection method, it depicts the kind

of objects (files, filesystem, processes, actions, sockets). The more objects a framework

supports, the better.

iv. Automatic Policy Generation: Whether the framework has the ability to produce

policies automatically by monitoring object behavior or not.

v. Memory Protection: Whether the framework provides security against memory

exploitation attacks.

vi. Whitelisting: Whether the framework provides the ability to add exceptions to the

enforced security policy.

vii. Implementation complexity: Based on the framework’s documentation,

installation procedure and policy generation techniques, each suite will be given a rank of

either high or low.

Linux Security Features

 24

viii. Security certifications: The existence of security certifications, specifically for the

security framework as a whole or as part of a platform is considered a great advantage.

vii. Popularity: Based on the security framework’s adoption in modern popular Linux

distributions, support from the security community and bibliography, each suite will be given a

rank of either high or low.

 Linux Security Features

 25

Linux Security Features

 26

3.5 Selection
Our security framework of choice is SELinux. Developed by a security aware

organization, it is adopted as a standard in Red Hat, CentOS and Fedora Linux distributions. As

a security module it is part of all mainstream Kernel releases and although it is difficult to fine

grain and properly tune, it supports training, security certifications and protects the widest

range of objects of a Linux OS.

Grsecurity, despite its advanced features mostly against memory exploitations, falls

short due to the absence of a security module and complexity of implementation. AppArmor,

our second runner up, works well in application firewalling but does not protect the system as

a whole nor it supports the number of objects supported by SELinux.

One point to make here is that this simple comparison framework can result in

choosing a different security suite if for example a user seeks the best way to protect his

personal Linux laptop. Our goal is to select the security suite that, complexity aside, can

maximize our new OS security.

 Implementing SELinux

 27

Chapter 4

1. Implementing SELinux

4.1 Kernel SELinux Integration
In this section the SELinux kernel options, module integration and the final kernel

compilation for our new system are presented. In order to activate the SELinux module the

entire kernel has to be recompiled. Again, we issue:

make mrproper

make menuconfig

This will clean all previous configurations and open the kernel menu driven interface.

In order to attach extended security attributes to objects, we check:

● File systems -> Ext3 extended attributes and Ext3 Security Labels

● File systems -> Ext4 extended attributes and Ext4 Security Labels

We can now proceed with the main security configuration of the kernel, in order to

support the SELinux Security Module [27]. Image 4.1 shows all available security options in the

3.10.10 kernel:

Implementing SELinux

 28

 Implementing SELinux

 29

● NSA SELinux Support
This enables SELinux. To be able to apply security policies, we will also need a policy

configuration and a labeled filesystem.

● NSA SELinux boot parameter/ boot parameter default value
This option adds a kernel parameter 'selinux', which allows SELinux to be disabled at

boot. If this option is set to 1, the SELinux kernel parameter will default to 1, enabling SELinux
at bootup. Our choice here will be 1.

● NSA SELinux runtime disable
This option enables writing to a selinuxfs node 'disable', which allows SELinux to be

disabled at runtime prior to the policy load. SELinux will then remain disabled until the next
boot. This option supports runtime disabling of SELinux, for portability across platforms where
boot parameters are difficult to employ. This option will be checked.

● NSA SELinux Development Support
This enables the development support option of NSA SELinux, which is useful for

experimenting with SELinux and developing policies. With this option enabled, the kernel will
start in permissive mode (log everything, deny nothing) unless we specify enforcing=1 on the
kernel command line. For our purpose this is a required feature and will be checked.

● NSA SELinux AVC Statistics
This option collects AVC (Access Vector Cache) statistics to /selinux/avc/cache_stats,

which may be monitored via tools such as avcstat. This is not a critical feature and will be not
checked.

● NSA SELinux checkreqprot default value
This option sets the default value for the 'checkreqprot' flag that determines whether

SELinux checks the protection requested by the application or the protection that will be
applied by the kernel. If this option is set to 0 (zero), SELinux will default to checking the
protection that will be applied by the kernel. If this option is set to 1 (one), SELinux will default
to checking the protection requested by the application. Our choice here will be 1.

● NSA SELinux maximum supported policy format version/value
This option enables the maximum policy format version supported by SELinux to be set

to a particular value. This mostly refers to Fedora-based distributions and will be not checked.

With all choices regarding general and SELinux configuration made, we are now ready

to re-compile the Kernel:

make

make_modules install

● Again, the new kernel image, system map and config files have to be moved to the

/boot directory (previous versions must be deleted):

cp -v arch/x86/boot/bzImage /boot/vmlinuz-3.10.10-lfs-7.4

cp -v System.map /boot/System.map-3.10.10

cp -v .config /boot/config-3.10.10

Implementing SELinux

 30

4.2 Userspace Configuration
To manage SELinux users, roles and policies, a number of software packages have to

be obtained and installed: libselinux, libsemanage, libsepol, policycoreutils and sepolgen. In

addition, a number of SELinux aware programs can replace standard ones : cp, find, id, ls,

mkdir are amongst them. Currently the packages are maintained and can be downloaded from

the selinuxproject software repository [24].

During the next boot, the entire file system is labeled. The labeling process labels all

files with a SELinux context:

*** Warning -- SELinux targeted policy relabel is required.

*** Relabeling could take a very long time, depending on file system

size and speed of hard drives.

This is a sample output of a ps command on a SELinux enabled system:

[root@~ /]# ps -e --context

 PID SID CONTEXT COMMAND

 1 7 system_u:system_r:init_t init

 2 1 system_u:system_r:kernel_t [keventd]

 3 1 system_u:system_r:kernel_t [kapmd]

 4 1 system_u:system_r:kernel_t [ksoftirqd_CPU0]

 5 1 system_u:system_r:kernel_t [kswapd]

 6 1 system_u:system_r:kernel_t [bdflush]

 7 1 system_u:system_r:kernel_t [kupdated]

 515 274 system_u:system_r:syslogd_t syslogd -m 0

 2726 297 system_u:system_r:sshd_t /usr/sbin/sshd

 2728 323 root:user_r:user_t -bash

 2920 323 root:user_r:user_t ps -e --context

 [root@~ /]#

We see two extra columns giving the SID (Security IDentifier tag) and the associated

user, role, and type for the process being displayed.

4.3 The SELinux Policy
The CONTEXT column in the ps output above in known in SELinux as the Security

Context: It is made of three elements, the identity, the role and the domain or type. The

identity can have the same name but is not the same as the Unix uid. Every process runs in a

domain which determines the access a process has. A type is assigned to an object and

determines who gets to access that object. The difference is that a domain applies to process

and a type applies to objects such as directories, files and sockets. A role determines what

domains can be used. The domains that a user role can access are predefined in policy

configuration files. If a role is not authorized to enter a domain (in the policy database), then it

will be denied.

 Implementing SELinux

 31

As an example running ls --context /proc in a SELinux enabled system shows the

following listing for the init process:

[root@~ /]# ps -e --context

dr-xr-xr-x root root system_u:system_r:init_t

[root@~ /]#

Here, the init process (domain) runs under the system_u (user) with the system_r

(role). Policy is the set of rules that guide the SELinux security engine. It defines types for file

objects and domains for processes, uses roles to limit the domains that can be entered, and

has user identities to specify the roles that can be attained[26].

SELinux follows the least-privilege model: By default everything is denied and then a

policy is written that gives each element of the system only the access required to function.

This description best describes the strict policy. However, such a policy is difficult to write as

all system, administrator and end user interactions have to be catalogued and policies written

for everything. Being the most intrusive but the most secure policy, this is a difficult but not

impossible implementation in a purpose driven LFS system as the one we have built. Another

type of policy is the targeted policy, which targets and confines critical system processes.

Target for a policy could be critical system processes and daemons such as httpd, named,

dhcpd, and mysqld. The targeted is the default policy in the Red Hat, CentOS and Fedora based

distributions.

The /etc/selinux/config file is the main SELinux configuration file. It controls the
SELinux mode and the SELinux policy to use:

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

disabled - No SELinux policy is loaded.

SELINUX=enforcing

SELINUXTYPE= can take one of these two values:

targeted - Targeted processes are protected,

mls - Multi Level Security protection.

SELINUXTYPE=targeted

Using the SELinux userspace utilities one can configure and fine grain security policies

using a c-like language structure containing classes, conditional expressions, rule lists etc. This

is a rule example from a targeted policy:

allow user_t bin_t : file {read execute getattr};

Here, applications with the type user_t (subject) are allowed to read, execute, and get

attributes for all objects of class file that have the type bin_t in their security context.

Creating a system specific security policy in SELinux depends on the systems function

in the enterprise, its users and the enterprise itself. As our new OS has not entered such an

Implementing SELinux

 32

environment, a sample SELinux policy configuration for a webserver is presented in Appendix

B.

Writing SELinux policies in the command line can be a very frustrating process.

Modern GUI tools like SLIDE (SELinux Policy IDE)[28] help easily develop, configure, remotely

install policies and audit log monitoring.

Image 4.2: The SLIDE Selinux Policy Configuration Tool

 Other Security Enhancements

 33

Chapter 5

1. Other Security Enhancements

5.1 Layered Defense
A basic principle in computer security is that security has to be built in layers,

combining multiple security controls to protect resources and data. No security recipe can

protect a system on its own but rather as a part of larger ecosystem of measures that as a

whole provide better security. In this section, additional security measures [29] that can work

in parallel with SELinux to enhance the security of our system, as well as other notable security

projects will be presented.

5.2 Additional Security Measures
● Iptables: Installing and enabling the iptables package turns on a host-based firewall

on the system. While having a steep learning curve (much like SELinux), iptables is powerful

due to its integration within the Kernel. It provides stateful packet inspection and network

traffic filtering and has advanced logging and DoS attack prevention features. Combined with

other software packets (like the squid proxy) it can even provide layer 7 (application) filtering

capabilities [30].

Through the SECMARK and CONNSECMARK labeling features, iptables can work in

conjunction with SELinux to apply the security policy to network entities [31] .

● Password Policy: Ensure a strict password policy by editing the /etc/login.defs file.

To add security, the file must contain settings for the following:

PASS_MAX_DAYS 90

PASS_MIN_DAYS 6

PASS_MIN_LEN 14

PASS_WARN_AGE 7

● System Logging: Logging on Linux systems is controlled by the Syslog daemon.

Logging configuration is stored in /etc/syslog.conf. This file identifies the level of logging and

the location of the log files. Log files must be owned by the root user and group.

It is recommended that log entries are logged to a centralized log server. Centralized

logging protects from deletion in the event the log files are tampered with. This is

accomplished by adding the following to the syslog.conf:

send to syslog server *.emerg;*.info;*.err @hostname<of syslog server>

There are several tools available to analyze and audit syslog messages. Combined with

a properly configured alert system, system logging can be very helpful in identifying security

threats on time.

Other Security enhancements

 34

● SysCtl security hardening: The /etc/sysctl.conf file provides an interface to interact

with a running kernel. A lot of security enhancement can be made by editing this file, but over-

tampering can lead to system crashes and should be avoided. The following lines of code can

add extra networking security features:

net.ipv4.ip_forward = 0

net.ipv4.conf.all.send_redirects = 0

net.ipv4.conf.default.send_redirects = 0

net.ipv4.tcp_max_syn_backlog = 1280

net.ipv4.icmp_echo_ignore_broadcasts = 1

net.ipv4.conf.all.accept_source_route = 0

net.ipv4.conf.all.accept_redirects = 0

net.ipv4.conf.all.secure_redirects = 0

net.ipv4.conf.all.log_martians = 1

net.ipv4.conf.default.accept_source_route = 0

net.ipv4.conf.default.accept_redirects = 0

net.ipv4.conf.default.secure_redirects = 0

net.ipv4.icmp_echo_ignore_broadcasts = 1

net.ipv4.icmp_ignore_bogus_error_responses = 1

net.ipv4.tcp_syncookies = 1

net.ipv4.conf.all.rp_filter = 1

net.ipv4.conf.default.rp_filter = 1

net.ipv4.tcp_timestamps = 0

5.3 Notable Security Projects
● OpenSCAP: The Security Content Automation Protocol (SCAP) is a line of standards

managed by NIST. The suite contains multiple complex data exchange formats that are to be

used to transmit important vulnerability, configuration, and other security data. The Open

SCAP project’s goal is to provide a standardized framework of libraries and tools for

maintaining the security of enterprise systems, by automatically verifying the presence of

patches, system security configuration settings, and examining systems for signs of

compromise [32].

● Bastille-Linux: The Bastille Hardening program locks down an operating system, by

configuring the system for increased security and decreasing its susceptibility to compromise.

It has a hardening mode in which it interactively asks the system’s administrator questions,

explains the topics of those questions, and builds a policy based on the user's answers. It then

applies the policy to the system. In its assessment mode, it builds a report intended to teach

the administrator about available security settings as well as inform the user as to which

settings have been tightened. It supports all major Linux distributions [33].

Both projects are worth further exploring and testing in a suitable lab environment.

 Conclusions

 35

Chapter 6

1. Conclusions

6.1 A Security Enhanced OS
This thesis has suggested a way of constructing a secure container for sensitive

government or military applications. Based on the Linux operating system, this goal was

achieved in the following ways:

 i. By providing the steps and proof of concept of constructing the OS from source

code. This can be the basis of building dedicated, specialized systems to fulfill a specific

function. The absence of any extra, never used software or useless running processes achieves

a major security goal by reducing the potential exploitation surface.

ii. By presenting all modern Linux security solutions and suggesting a comparison

framework based on their characteristics to choose from.

iii. By suggesting the best way to harden the security of our new OS, in way of applying

the controls of the SELinux security framework and other security measures.

6.2 Further Work
Further steps have to be taken in order to consider the process of creating a security

enhanced operating system complete. A more extensive lab configuration can provide the

means to make the new OS bootable, apply all security enhancements and test it against

known security attacks. The Open SCAP and Bastille-Linux projects mentioned in 5.3 can be

evaluated.

This project can also be the basis for security enhanced devices such as mobile phones,

tablets and embedded devices that are based on the Linux OS. The Security Enhancements for

Android (SE for Android) project aims to identify and address critical gaps in the security of

Android by enabling the use of SELinux on it [34].

 36

References

[1] Gerard Beekmans, “Linux From Scratch: Version 7.4”, 2013, Available:

www.linuxfromscratch.org

[2] PRISM (surveillance program). Available: http://en.wikipedia.org/wiki-

/PRISM(surveillance_program)

[3] _NSAKEY. Available: http://en.wikipedia.org/wiki/NSAKEY

[4] BSI (German Federal Office of Information Security), “Key Requirements on Trusted

Computing and Secure Boot”. Available: http://www.bmi.bund.de/SharedDocs/-

Downloads/ DE/Themen/ OED_Verwaltung /Informationsgesellschaft/-

trusted_computing_eng.pdf?__blob=publicationFile

[5] FOSS A General Introduction/Linux. Available: http://en.wikibooks.org/wiki/-

FOSS_A_General_Introduction/Linux

[6] The Linux Foundation, “Linux Adoption Trends: A Survey of Enterprise End Users”, 2012

[7] Michael Jang, “Security Strategies In Linux Platforms And Applications (Information

Systems Security & Assurance)”, Jhones & Bartlett Learning, 2011

[8] Portable Operating System Interface (POSIX), IEEE Standards Association. Available:

http://standards.ieee.org/findstds/standard/1003.1-2008.html

[9] Filesystem Hierarchy Standard (FHS), Available: http://www.pathname.com/fhs/-

pub/fhs-2.3.html

[10] Linux Standard Base (LSB) Specification, Available: http://refspecs.linuxfoundation.org-

/lsb.shtml

[11] LFS 7.4 Boot and Sysconfig scripts version-20130821, Available:

http://www.linuxfromscratch.org/lfs/view/stable/scripts/apds01.html

[12] Dennis M. Ritchie, “On the Security of UNIX”, Bell Labs, 1979

[13] United States National Security Agency (NSA): http://www.nsa.gov/

[14] Bill McCarty, “SELinux: NSA's Open Source Security Enhanced Linux”, O’Reilly, 2004

[15] AppArmor Security Module, Available: https://help.ubuntu.com/12.04/serverguide-

/apparmor.html

http://www.linuxfromscratch.org/
http://en.wikipedia.org/wiki-/PRISM(surveillance_program)
http://en.wikipedia.org/wiki-/PRISM(surveillance_program)
http://en.wikipedia.org/wiki/NSAKEY
http://www.bmi.bund.de/SharedDocs/-Downloads/%20DE/Themen/%20OED_Verwaltung%20/Informationsgesellschaft/-trusted_computing_eng.pdf?__blob=publicationFile
http://www.bmi.bund.de/SharedDocs/-Downloads/%20DE/Themen/%20OED_Verwaltung%20/Informationsgesellschaft/-trusted_computing_eng.pdf?__blob=publicationFile
http://www.bmi.bund.de/SharedDocs/-Downloads/%20DE/Themen/%20OED_Verwaltung%20/Informationsgesellschaft/-trusted_computing_eng.pdf?__blob=publicationFile
http://en.wikibooks.org/wiki/-FOSS_A_General_Introduction/Linux
http://en.wikibooks.org/wiki/-FOSS_A_General_Introduction/Linux
http://standards.ieee.org/findstds/standard/1003.1-2008.html
http://www.pathname.com/fhs/-pub/fhs-2.3.html
http://www.pathname.com/fhs/-pub/fhs-2.3.html
http://refspecs.linuxfoundation.org-/lsb.shtml
http://refspecs.linuxfoundation.org-/lsb.shtml
http://www.linuxfromscratch.org/lfs/view/stable/scripts/apds01.html
http://www.nsa.gov/
https://help.ubuntu.com/12.04/serverguide-/apparmor.html
https://help.ubuntu.com/12.04/serverguide-/apparmor.html

 37

[16] Casey Schaufler, “The Simplified Mandatory Access Control Kernel”, Available:

http://schaufler-ca.com/yahoo_site_admin/assets/docs-

/SmackWhitePaper.257153003.pdf

[17] Bumjin Im, Ryan Ware, “Tizen Security Overview”, 2012, Available:

http://download.tizen.org/misc/media/conference2012/tuesday/ballroom-c/2012-05-

08-1600-1640-tizen_security_framework_overview.pdf

[18] TOMOYO Security Module, Available: http://tomoyo.sourceforge.jp/index.html.en

[19] YAMA Security Module, Available: https://www.kernel.org/doc/Documentation-

/security/Yama.txt

[20] Brad Spengler, “The Case for grsecurity”, 2012, Available: http://grsecurity.net-

/the_case_for_grsecurity.pdf

[21] Michael Fox, John Giordano, Lori Stotler, Arun Thomas , “SELinux and grsecurity: A Side-

by-Side Comparison of Mandatory Access Control and Access Control List

Implementations”, CS at U.Va, Available: http://www.cs.virginia.edu/~jcg8f-

/SELinux%20grsecurity%20paper.pdf

[22] Erik Karlsson, “Evaluation of Linux Security Frameworks”, 2010, Available:

http://www8.cs.umu.se/education/examina/Rapporter/ErikKarlsson.pdf

[23] James Morris, “Linux Kernel Security Overview”, Kernel Conference Australia, 2009,

Available: http://namei.org/presentations/linux-kernel-security-kca09.pdf

[24] The SELinux Userspace Repository, Available: http://userspace.selinuxproject.org/trac

[26] Frank Mayer, Karl MacMillan, David Caplan, “SELinux by Example: Using Security

Enhanced Linux”, Prentice Hall, 2006

[27] SELinux Kernel Config, Available: https://www.kernel.org/doc/menuconfig/security-

selinux-Kconfig.html

[28] SELinux Policy IDE (SLIDE), Available: http://oss.tresys.com/projects/slide

[29] Red Hat, “Red Hat Enterprise Linux 6 Security Guide”, 2011, Available:

https://access.redhat.com/site/documentation/en-

US/Red_Hat_Enterprise_Linux/6/pdf/Security_Guide/Red_Hat_Enterprise_Linux-6-

Security_Guide-en-US.pdf

[30] Michael Rash, “LINUX FIREWALLS, Attack Detection and Response with iptables, psad,

and fwsnort”, No Starch Press, 2007

[31] SELinux Networking Support, Available: http://selinuxproject.org/page/NB_Networking

http://schaufler-ca.com/yahoo_site_admin/assets/docs-/SmackWhitePaper.257153003.pdf
http://schaufler-ca.com/yahoo_site_admin/assets/docs-/SmackWhitePaper.257153003.pdf
http://download.tizen.org/misc/media/conference2012/tuesday/ballroom-c/2012-05-08-1600-1640-tizen_security_framework_overview.pdf
http://download.tizen.org/misc/media/conference2012/tuesday/ballroom-c/2012-05-08-1600-1640-tizen_security_framework_overview.pdf
http://tomoyo.sourceforge.jp/index.html.en
https://www.kernel.org/doc/Documentation-/security/Yama.txt
https://www.kernel.org/doc/Documentation-/security/Yama.txt
http://grsecurity.net-/the_case_for_grsecurity.pdf
http://grsecurity.net-/the_case_for_grsecurity.pdf
http://www.cs.virginia.edu/~jcg8f-/SELinux%20grsecurity%20paper.pdf
http://www.cs.virginia.edu/~jcg8f-/SELinux%20grsecurity%20paper.pdf
http://www8.cs.umu.se/education/examina/Rapporter/ErikKarlsson.pdf
http://namei.org/presentations/linux-kernel-security-kca09.pdf
http://userspace.selinuxproject.org/trac
https://www.kernel.org/doc/menuconfig/security-selinux-Kconfig.html
https://www.kernel.org/doc/menuconfig/security-selinux-Kconfig.html
http://oss.tresys.com/projects/slide
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security_Guide/Red_Hat_Enterprise_Linux-6-Security_Guide-en-US.pdf
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security_Guide/Red_Hat_Enterprise_Linux-6-Security_Guide-en-US.pdf
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security_Guide/Red_Hat_Enterprise_Linux-6-Security_Guide-en-US.pdf
http://selinuxproject.org/page/NB_Networking

 38

[32] The Open SCAP project, Available: http://www.open-scap.org/page/Main_Page

[33] The Bastille hardening program, Available: http://www.bastille-linux.org/

[34] The SELinux For Android Project, Available: http://selinuxproject.org/page-

/SEAndroid#What_is_SE_for_Android.3F

http://www.open-scap.org/page/Main_Page
http://www.bastille-linux.org/
http://selinuxproject.org/page-%20/SEAndroid#What_is_SE_for_Android.3F
http://selinuxproject.org/page-%20/SEAndroid#What_is_SE_for_Android.3F

 39

Appendices

Appendix A: Software Packages Description

 1

Appendix A

1. Software Packages Description

Autoconf

This package contains programs for producing shell scripts that can automatically configure

source code from a developer's template. It is often needed to rebuild a package after updates

to the build procedures.

Automake

This package contains programs for generating Make files from a template. It is often needed

to rebuild a package after updates to the build procedures.

Bash

This package satisfies an LSB core requirement to provide a Bourne Shell interface to the

system. It was chosen over other shell packages because of its common usage and extensive

capabilities beyond basic shell functions.

Bc

This package provides an arbitrary precision numeric processing language. It satisfies a

requirement needed when building the Linux kernel.

Binutils

This package contains a linker, an assembler, and other tools for handling object files. The

programs in this package are needed to compile most of the packages in an LFS system and

beyond.

Bison

This package contains the GNU version of yacc (Yet Another Compiler Compiler) needed to

build several other LFS programs.

Bzip2

This package contains programs for compressing and decompressing files. It is required to

decompress many LFS packages.

Check

This package contains a test harness for other programs. It is only installed in the temporary

toolchain.

Appendix A: Software Packages Description

 2

Coreutils

This package contains a number of essential programs for viewing and manipulating files and

directories. These programs are needed for command line file management, and are necessary

for the installation procedures of every package in LFS.

DejaGNU

This package contains a framework for testing other programs. It is only installed in the

temporary toolchain.

Diffutils

This package contains programs that show the differences between files or directories. These

programs can be used to create patches, and are also used in many packages' build

procedures.

E2fsprogs

This package contains the utilities for handling the ext2, ext3 and ext4 file systems. These are

the most common and thoroughly tested file systems that Linux supports.

Expect

This package contains a program for carrying out scripted dialogues with other interactive

programs. It is commonly used for testing other packages. It is only installed in the temporary

toolchain.

File

This package contains a utility for determining the type of a given file or files. A few packages

need it to build.

Findutils

This package contains programs to find files in a file system. It is used in many packages' build

scripts.

Flex

This package contains a utility for generating programs that recognize patterns in text. It is the

GNU version of the lex (lexical analyzer) program. It is required to build several LFS packages.

Gawk

This package contains programs for manipulating text files. It is the GNU version of awk (Aho-

Weinberg-Kernighan). It is used in many other packages' build scripts.

Gcc

This package is the Gnu Compiler Collection. It contains the C and C++ compilers as well as

several others not built by LFS.

GDBM

Appendix A: Software Packages Description

 3

This package contains the GNU Database Manager library. It is used by one other LFS package,

Man-DB.

Gettext

This package contains utilities and libraries for internationalization and localization of

numerous packages.

Glibc

This package contains the main C library. Linux programs would not run without it.

GMP

This package contains math libraries that provide useful functions for arbitrary precision

arithmetic. It is required to build Gcc.

Grep

This package contains programs for searching through files. These programs are used by most

packages' build scripts.

Groff

This package contains programs for processing and formatting text. One important function of

these programs is to format man pages.

GRUB

This package is the Grand Unified Boot Loader. It is one of several boot loaders available, but is

the most flexible.

Gzip

This package contains programs for compressing and decompressing files. It is needed to

decompress many packages in LFS and beyond.

Iana-etc

This package provides data for network services and protocols. It is needed to enable proper

networking capabilities.

Inetutils

This package contains programs for basic network administration.

IProute2

This package contains programs for basic and advanced IPv4 and IPv6 networking. It was

chosen over the other common network tools package (net-tools) for its IPv6 capabilities.

Kbd

This package contains key-table files, keyboard utilities for non-US keyboards, and a number of

console fonts.

Appendix A: Software Packages Description

 4

Kmod

This package contains programs needed to administer Linux kernel modules.

Less

This package contains a very nice text file viewer that allows scrolling up or down when

viewing a file. It is also used by Man-DB for viewing manpages.

Libpipeline

The Libpipeline package contains a library for manipulating pipelines of subprocesses in a

flexible and convenient way. It is required by the Man-DB package.

Libtool

This package contains the GNU generic library support script. It wraps the complexity of using

shared libraries in a consistent, portable interface. It is needed by the test suites in other LFS

packages.

Linux Kernel

This package is the Operating System. It is the Linux in the GNU/Linux environment.

M4

This package contains a general text macro processor useful as a build tool for other programs.

Make

This package contains a program for directing the building of packages. It is required by almost

every package in LFS.

Man-DB

This package contains programs for finding and viewing man pages. It was chosen instead of

the man package due to superior internationalization capabilities. It supplies the man program.

Man-pages

This package contains the actual contents of the basic Linux man pages.

MPC

This package contains functions for the arithmetic of complex numbers. It is required by Gcc.

MPFR

This package contains functions for multiple precision arithmetic. It is required by Gcc.

Ncurses

This package contains libraries for terminal-independent handling of character screens. It is

often used to provide cursor control for a menuing system. It is needed by a number of

packages in LFS.

Appendix A: Software Packages Description

 5

Patch

This package contains a program for modifying or creating files by applying a patch file typically

created by the diff program. It is needed by the build procedure for several LFS packages.

Perl

This package is an interpreter for the runtime language PERL. It is needed for the installation

and test suites of several LFS packages.

Pkg-config

This package provides a program to return meta-data about an installed library or package.

Procps-NG

This package contains programs for monitoring processes. These programs are useful for

system administration, and are also used by the LFS Bootscripts.

Psmisc

This package contains programs for displaying information about running processes. These

programs are useful for system administration.

Readline

This package is a set of libraries that offers command-line editing and history capabilities. It is

used by Bash.

Sed

This package allows editing of text without opening it in a text editor. It is also needed by most

LFS packages' configure scripts.

Shadow

This package contains programs for handling passwords in a secure way.

Sysklogd

This package contains programs for logging system messages, such as those given by the

kernel or daemon processes when unusual events occur.

Sysvinit

This package provides the init program, which is the parent of all other processes on the Linux

system.

Tar

This package provides archiving and extraction capabilities of virtually all packages used in LFS.

Tcl

This package contains the Tool Command Language used in many test suites in LFS packages. It

is only installed in the temporary toolchain.

Appendix A: Software Packages Description

 6

Texinfo

This package contains programs for reading, writing, and converting info pages. It is used in the

installation procedures of many LFS packages.

Udev

This package contains programs for dynamic creation of device nodes. It is an alternative to

creating thousands of static devices in the /dev directory.

Util-linux

This package contains miscellaneous utility programs. Among them are utilities for handling

file systems, consoles, partitions, and messages.

Vim

This package contains an editor. It was chosen because of its compatibility with the classic vi

editor and its huge number of powerful capabilities. An editor is a very personal choice for

many users and any other editor could be substituted if desired.

XZ Utils

This package contains programs for compressing and decompressing files. It provides the

highest compression generally available and is useful for decompressing packages XZ or LZMA

format.

Zlib

This package contains compression and decompression routines used by some programs.

Appendix B: A Sample SELinux Policy

 1

 Appendix B

1. A Sample SELinux Policy

This example shows the SELinux policy written for a webserver (InterNetNews server)[1]. After

the policy is saved, we run "make load" to apply it.

/etc/selinux/domains/program/innd.te:
#DESC INN - InterNetNews server

Author: Faye Coker <faye@lurking-grue.org>

X-Debian-Packages: inn

################################

Types for the server port and news spool.

type innd_port_t, port_type;

type news_spool_t, file_type, sysadmfile;

need privmail attribute so innd can access system_mail_t

daemon_domain(innd, `, privmail')

allow innd to create files and directories of type news_spool_t

create_dir_file(innd_t, news_spool_t)

allow user domains to read files and directories these types

r_dir_file(userdomain, { news_spool_t innd_var_lib_t innd_etc_t })

can_exec(initrc_t, innd_etc_t)

can_exec(innd_t, { innd_exec_t bin_t })

ifdef(`hostname.te', `

can_exec(innd_t, hostname_exec_t)

')

allow innd_t var_spool_t:dir { getattr search };

can_network(innd_t)

can_unix_send({ innd_t sysadm_t }, { innd_t sysadm_t })

allow innd_t self:unix_dgram_socket create_socket_perms;

allow innd_t self:unix_stream_socket create_stream_socket_perms;

can_unix_connect(innd_t, self)

allow innd_t self:fifo_file rw_file_perms;

allow innd_t innd_port_t:tcp_socket name_bind;

allow innd_t self:capability { dac_override kill setgid setuid

net_bind_service };

allow innd_t self:process setsched;

Appendix B: A Sample SELinux Policy

 2

allow innd_t { bin_t sbin_t }:dir search;

allow innd_t usr_t:lnk_file read;

allow innd_t usr_t:file { getattr read ioctl };

allow innd_t lib_t:file ioctl;

allow innd_t { etc_t resolv_conf_t }:file { getattr read };

allow innd_t { proc_t etc_runtime_t }:file { getattr read };

allow innd_t urandom_device_t:chr_file read;

allow innd_t innd_var_run_t:sock_file create_file_perms;

allow innd to read directories of type innd_etc_t (/etc/news/(/.*)?

and symbolic links with that type

etcdir_domain(innd)

allow innd to create files under /var/log of type innd_log_t and

have a directory for its own files that

it can write to

logdir_domain(innd)

allow innd read-write directory permissions to /var/lib/news.

var_lib_domain(innd)

ifdef(`crond.te', `

system_crond_entry(innd_exec_t, innd_t)

')

/etc/selinux/file_contexts/program/innd.fc

/usr/sbin/innd.* -- system_u:object_r:innd_exec_t

/var/run/innd(/.*)? system_u:object_r:innd_var_run_t

/etc/news(/.*)? system_u:object_r:innd_etc_t

/etc/news/boot -- system_u:object_r:innd_exec_t

/var/spool/news(/.*)? system_u:object_r:news_spool_t

/var/log/news(/.*)? system_u:object_r:innd_log_t

/var/lib/news(/.*)? system_u:object_r:innd_var_lib_t

/usr/sbin/in.nnrpd -- system_u:object_r:innd_exec_t

/usr/lib/news/bin/.* -- system_u:object_r:innd_exec_t

/usr/bin/inews -- system_u:object_r:innd_exec_t

/usr/bin/rnews --

system_u:object_r:innd_exec_t_r:innd_exec_t /usr/bin/rnews

-- system_u:object_r:innd_exec_t

make -C file_contexts/file_contexts

/net_contexts
ifdef(`innd.te', `portcon tcp 119 system_u:object_r:innd_port_t')

[1] Faye Coker, The Guide to Writing SELinux Policy, 2004, Available: http://www.linuxtopia.org-

/online_books/writing_SELinux_policy_guide/index.html

http://www.linuxtopia.org-/online_books/writing_SELinux_policy_guide/index.html
http://www.linuxtopia.org-/online_books/writing_SELinux_policy_guide/index.html

