

UNIVERSITY OF
PIRAEUS

THESIS

DIVING INTO WINDOWS MEMORY

FORENSICS
By

Chatzis – Vovas Vasileios

A.M. : E/08179

Thesis Advisor: Xenakis Christos
Second Reader: Lamprinoudakis Konstantinos

June 2012

 - 2 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 3 -

Title

DIVING INTO WINDOWS MEMORY FORENSICS

Author: Chatzis – Vovas Vasileios
A.M. : E/08179

Thesis Advisor: Xenakis Christos

Abstract

During a forensic investigation of a computer system, the ability to retrieve volatile
information can be of critical importance. The contents of RAM could reveal malicious code
running on the system that has been deleted from the hard drive or, better yet, that was never
resident on the hard drive at all. RAM can also provide the programs most recently run and
files most recently opened in the system.

 However, due to the nature of modern operating systems, these programs and files
are not typically stored contiguously—which makes most retrieval efforts of files larger than
one page size futile. To date, analysis of RAM images has been largely restricted to searching
for ASCII string content, which typically only yields text information such as document
fragments, passwords or scripts.

This thesis explores the memory management structures in a Windows system
(Mainly Windows Xp and Windows 7) to make sense out of the chaos in RAM and facilitate
the retrieval of files/programs larger than one page size. The analysis includes methods for
incorporating swap space information for files that may not reside completely within physical
memory.

 The results of this thesis will become the basis of later research efforts in RAM
forensics. This includes the creation of tools that will provide forensic analysts with a clear

map of what is resident in the volatile memory of a system.

 - 4 -

ACKNOWLEDGMENTS

I would like to thank everyone who contributed in the production of this

undergraduate thesis, which proved to be one of the most important parts of my whole studies
by giving me the chance to enrich my knowledge and experience on the general area of
Forensics.

I would also like to thank Dr. Christos Xenakis for his input and constructive

criticism because it helped improve my comprehension of the subject and technical writing
and, therefore, any reader’s comprehension of this thesis.

Last but not least I would like to thank my family for the psychological and material

support throughout my studies.

 - 5 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 6 -

TABLE OF CONTENTS

ABSTRACT…………………………………………………….…………………3
ACKNOWLEDGMENTS…………………………………………………...……4
TABLE OF CONTENTS…………………………………………………………6

 I. INTRODUCTION..9
 A. RAM FORENSICS BACKGROUND...10
 B. PURPOSE OF STUDY...10
 C. THESIS ORGANIZATION...11

II. BACKGROUND…..13
 A. PARAMETERS OF INVESTIGATION..13
 B. TOOLS USED IN THE INVESTIGATION……………………………13

III. CURRENT STATE OF RAM FORENSICS...16

IV. ANALYSIS…..18
 A. OVERVIEW…………..18
 B. ANALYZING A ZEUS BOT INFECTED SYSTEM.............................19

 C. ANALYZING A STUXNET INFECTED SYSTEM.............................28
 D. PULLING PASSWORDS FROM A MEMORY DUMP.......................31
 E. CARVING FILES FROM A MEMORY DUMP....................................33

V. CONCLUSION...34
 A. SUMMARY...34
 B. PROBLEMS..34
 C. FUTURE WORK..34

LIST OF REFERENCES..36

 - 7 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 8 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 9 -

I. INTRODUCTION

Computer-aided crime has been a significant problem for industry in recent years.
The FBI estimated the financial losses related to computer incidents in the United States at
72.2 billion for the year 2011.

These incidents included (but were not limited to): viruses, worms, financial fraud,
network intrusion, and the sabotage of data or networks. Computer crime has also posed a
threat to national security.

 Credit card information stolen from compromised systems might have been used to
fund terrorist activities. As criminals become more adept at breaking laws through the use of
computers, law enforcement agents must hone their ability to investigate these types of cases.
Computer Forensics can be used to establish who committed the crime and to reconstruct
how the crime was executed.

One specific branch of forensics gaining momentum concerns itself with RAM
analysis. Traditionally, when a forensic investigation is performed on a computer of interest,
one of the first things done is to gather any volatile information that can be gleamed from the
victim system. Sometimes this includes making a copy of the system’s RAM content, which
is analyzed with simple searches for ASCII or Unicode string content because few tools exist
and few people are trained to perform a more in-depth analysis of the memory dump [Ref. 1].

Some of the key pieces of volatile information that a forensic analyst is looking for
are the currently running processes of a system and the files most recently used. An educated
investigation of a RAM dump could yield this information. Some might ask why it is a good
idea to use such a technique if there are programs available (such as ps1) that will enumerate
running processes. The answer is that these programs can be subverted if the system they are
running on is compromised with a loadable kernel module rootkit—a piece of malware that
can manipulate the execution of system commands.

In addition, advanced malware techniques allow for the injection of malicious code
directly into running processes such that no new process is visible to standard tools. A
forensic exploration of physical memory can look at kernel structures directly and,
consequently see through any such deceptions.

Recent worms do not write any data to disk. All data remains in physical memory.
This renders standard disk forensics useless and becomes yet another reason why thoroughly
inspecting RAM is a growing necessity. It may be the only way to directly detect the
presence of malware and give an investigator an opportunity to retrieve full and accurate
information from a compromised system.

 - 10 -

A. RAM FORENSICS BACKGROUND

The field of computer forensics is young. The FBI created a Computer Analysis and
Response team (CART) in 1984—which did not become fully functional until 1991—to
supplement its well-established investigation protocols for terrorism and violent. Since then,
other public and private organizations have followed suit and now, years later, forensics is
beginning to take shape.

Within the forensics community, a large share of attention has been paid to analyzing
non-volatile media such as hard drives or storage peripherals. More recently the rise of
networks has created an interest in the study of network-based evidence as well. Both of
these subjects have existing, extensive bodies of knowledge. This is not the case for RAM
analysis. The analysis of volatile memory is such a young area, in fact, that one is hard
pressed to find more than one paper directly addressing analysis of Linux RAM contents. As
an example of the lack of attention to this critical need, the popular book Incident Response
& Computer Forensics devotes 7 lines of coverage to RAM analysis in a twenty-two-page
chapter devoted to live data collection from Unix systems.

RAM analysis, like all other forensic endeavors, is concerned with the retrieval of
information that can serve as evidence in criminal investigations. More specifically, it is the
attempt to use memory management structures in computers as maps to extract files and
executables resident in a computer’s physical memory. These files/executables can be used to
prove that a crime has transpired or to trace how it came to pass. The usefulness of this type
of investigation lies in the fact that any information found in RAM is known to have been
recently running on the victim system. Additionally, volatile memory examination can stand
up to conventional attempts at thwarting forensic efforts—such as function hooking which is
a way to attach a chosen function to the normal flow of control in a computer system. For
example, if a rootkit has hooked itself into the Linux kernel and is intercepting calls to ps, it
can exclude whatever process it wants to hide from the returned list of processes.

 B. PURPOSE OF STUDY

The immediate purpose of this research is to discover what forensic techniques can be
used effectively on the physical memory of a Windows system running the XP or 7 edition.
Some techniques for volatile memory forensics have been developed for the XP but they
have not yet been tested successfully in the Windows7 version in which some of the
fundamental structures involved in memory management have been modified.
 The more general goal of this research is to improve the methods of analyzing RAM
dumps. Currently, the typical way to analyze physical memory on a computer is to run a
string search on the entire memory image in the hopes of finding information such as
passwords, the cleartext of a recently typed encrypted message, or the contents of a file.
 Unfortunately, during this type of search, valuable context information is lost. For example,
it becomes impossible to determine whether recovered string fragments represent the
contents of executable files, data files, or runtime program data. This is an unsophisticated
“stab in the dark” type of analysis that can only yield a small amount of useful information—

 - 11 -

an unfortunate result when the contents of physical memory are a rich source of forensic
evidence. As criminals become more adept at creating malware that can elude current
methods of digital forensic investigation, forensics methods must evolve to meet the
challenge.
 When the author of a piece of malware decides to design it to reside exclusively in
physical memory—and thereby evade any hard drive investigation—the forensic analyst
must have a way to detect it. The goal of this research is to provide the basis for the
development of tools that the forensic analyst can use in a detailed analysis of Windows
memory images.

 C. THESIS ORGANIZATION

This paper will present forensic techniques and the usage of tools that will be able to
extract files and executables stored in a computer’s physical memory.

Chapter II will detail the programs used in the process of acquisition on the memory
images.

 Chapter III will discuss the current state of RAM forensics.

 Chapter IV will provide a description of the analysis performed on a Windows
system.
 The analysis consists of two parts. The first is placing specific files in memory,
imaging the memory, and seeing if the file in question can be retrieved. The second is to see
what other useful information can be extracted from the memory image using tools on a linux
system to analyze our pre-acquired memory image.

 Chapter V will summarize the results of this thesis and problems encountered along the way.
Additionally, the chapter will describe what future work can be performed in the field of
RAM forensics.

 - 12 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 13 -

II. BACKGROUND

This section describes all of the major components of the Linux virtual
memory management system. A short description of each component is
provided—as are the locations of the corresponding definitions in the Linux
source code. The base directory location assumed throughout is
/usr/src/Linux-2.6.13-15. This was the default location created by the SUSE
10 distribution used in this thesis
Please note that depending on the version of the Linux kernel used, the
version number will vary.

 A. PARAMETERS OF INVESTIGATION
 The research conducted in this paper was performed on Windows XP
and 7 system pre-acquired memory images.
 The amount of RAM was deliberately chosen to ease the burden of
translating from virtual to physical memory addresses by avoiding high
memory (> 896 MB) translations. Use of high memory would not allow for
the simple memory conversion scheme outlined in section C of this chapter.
 Additional tools used during the course of this research are as outlined
below.

B. TOOLS USED IN THE INVESTIGATION

 1. DumpIt
MoonSols DumpIt is a fusion of win32dd and win64dd in one executable,
no options is asked to the end-user. Only a double click on the executable is
enough to generate a copy of the physical memory in the current directory.

 2. Foremost
Foremost is a console program to recover files based on their headers,
footers, and internal data structures. This process is commonly referred to as
data carving. Foremost can work on image files, such as those generated by
dd, Safeback, Encase, etc, or directly on a drive. The headers and footers can
be specified by a configuration file or you can use command line switches to
specify built-in file types. These built-in types look at the data structures of a
given file format allowing for a more reliable and faster recovery.

 - 14 -

3. Volatility
The Volatility Framework is a completely open collection of tools,
implemented in Python under the GNU General Public License, for the
extraction of digital artifacts from volatile memory (RAM) samples. The
extraction techniques are performed completely independent of the system
being investigated but offer unprecedented visibilty into the runtime state of
the system.

 4. Strings
 For each file given, GNU strings prints the printable character sequences
that are at least 4 characters long (or the number given with the options
below) and are followed by an unprintable character. By default, it only
prints the strings from the initialized and loaded sections of object files; for
other types of files, it prints the strings from the whole file.

5. Graphviz
Graphviz is an open source graph visualization software. It basically takes
an (textual) input file (for example this dot file) that declaratively describes
the graph and converts it into a viewable output format (such as bmp, gif, ps
etc).

6. DD
DD is a common unix program whose primary purpose is the low-level
copying and conversion of raw data. Here it is used to copy or convert
memory images (for example from bin to raw or from vmem to dmp).

 - 15 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 16 -

III. CURRENT STATE OF MEMORY FORENSICS

Ram forensics is a blossoming field and, as such, has not yet reached

maturity. In fact, it can be safely said that this field is in its infancy stage.
 More and more scientific documents start to describe the collection

procedure for volatile memory in the most general of terms. They all agree
that an investigator handling an incident should begin by collecting volatile
data, which includes physical memory.

Unfortunately, they don’t specify how an investigator should
approach the analysis of a system’s memory. Just a handful of books
mentions some useful programs such as ps that can be used to extract
volatile data from a system. One incident response text only goes as far as
mentioning that few people go further than running a string search of a
memory image.
 On the Windows side, the latest demonstrations of physical memory
forensics techniques can be found in the solutions to the 2005 Memory
Analysis Challenge presented by the Digital Forensic Research Workshop
website. .
 They distributed two memory images and asked researchers to
answer a number of questions about a security incident. The challenge
produced two seminal works. The first, by Chris Betz, introduced a tool
called memparser. Second, by George Garner and Robert-Jan Mora
produced KnTList.

 Some of the theory discussed by the two winning answers can be
applied to a Linux investigation and some cannot.

 At the Blackhat Federal conference in March 2007, Aaron Wlaters
and Nick Petroni released a suite called volatools.

 Although it only worked on Windows XP Service Pack 2 images, it
was able to produce a number of useful data. Volatools was updated and re-
released as Volatility in August 2007, and is now maintained and distributed
by Volatile Systems.

 - 17 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 18 -

IV. ANALYSIS

 A. OVERVIEW

The next few sections go through specific examples of how to perform certain
analysis methods on the physical memory of a Windows system. However, this section offers
the reader a blueprint of those methods so that s/he can better understand them when they are
explained in detail.

 The first thing we need to do when we want to perform a memory acquisition of a
Windows or Linux System is to dump the memory of the system to a memory image so that
we can examine it using a number of tools.
 DumpIt by Moonsols is a pretty automated memory dumper that works on all
versions of Windows. It’s pretty straight forward since it’s a one- click version of the general
Moonsols project.

 Now we have our system memory image in .raw extension, something we can
change if we convert it to another desirable extension with the DD program in a linux
environment.

 So we move our acquired image to a linux box for further analyzing and testing,
using the tools we listed on chapter 3.

 - 19 -

 B. ANALYZING A ZEUS BOT INFECTED SYSTEM

 The developers of Volatility project have provided a sample image that’s
infected with Zeus for us to practice on.

So we navigate to volatility folder and run volatiliy.py (python written program)
And we specify the image file we want to examine with the (-f) argument and we use the
(ImageInfo) plugin, so that we can extract information about the image.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem imageinfo
Volatile Systems Volatility Framework 2.1_alpha
Determining profile based on KDBG search...

 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86 (Instantiated with
WinXPSP2x86)
 AS Layer1 : JKIA32PagedMemoryPae (Kernel AS)
 AS Layer2 : FileAddressSpace (/root/Desktop/zeus.vmem)
 PAE type : PAE
 DTB : 0x319000
 KDBG : 0x80544ce0L
 KPCR : 0xffdff000L
 KUSER_SHARED_DATA : 0xffdf0000L
 Image date and time : 2010-08-15 19:17:56 UTC+0000
 Image local date and time : 2010-08-15 15:17:56 -0400
 Number of Processors : 1
 Image Type : Service Pack 2

Alright, so we can see that this is a XP SP2 image on a 32-bit system, so lets move
further along by using the (pslist) plugin to determine the processes that were running on
the system.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 pslist
Volatile Systems Volatility Framework 2.1_alpha
 Offset(V) Name PID PPID Thds Hnds Time
---------- -------------------- ------ ------ ------ ------ -------------------
0x810b1660 System 4 0 58 379 1970-01-01 00:00:00
0xff2ab020 smss.exe 544 4 3 21 2010-08-11 06:06:21
0xff1ecda0 csrss.exe 608 544 10 410 2010-08-11 06:06:23
0xff1ec978 winlogon.exe 632 544 24 536 2010-08-11 06:06:23
0xff247020 services.exe 676 632 16 288 2010-08-11 06:06:24
0xff255020 lsass.exe 688 632 21 405 2010-08-11 06:06:24
0xff218230 vmacthlp.exe 844 676 1 37 2010-08-11 06:06:24
0x80ff88d8 svchost.exe 856 676 29 336 2010-08-11 06:06:24
0xff217560 svchost.exe 936 676 11 288 2010-08-11 06:06:24
0x80fbf910 svchost.exe 1028 676 88 1424 2010-08-11 06:06:24

 - 20 -

0xff22d558 svchost.exe 1088 676 7 93 2010-08-11 06:06:25
0xff203b80 svchost.exe 1148 676 15 217 2010-08-11 06:06:26
0xff1d7da0 spoolsv.exe 1432 676 14 145 2010-08-11 06:06:26
0xff1b8b28 vmtoolsd.exe 1668 676 5 225 2010-08-11 06:06:35
0xff1fdc88 VMUpgradeHelper 1788 676 5 112 2010-08-11 06:06:38
0xff143b28 TPAutoConnSvc.e 1968 676 5 106 2010-08-11 06:06:39
0xff25a7e0 alg.exe 216 676 8 120 2010-08-11 06:06:39
0xff364310 wscntfy.exe 888 1028 1 40 2010-08-11 06:06:49
0xff38b5f8 TPAutoConnect.e 1084 1968 1 68 2010-08-11 06:06:52
0x80f60da0 wuauclt.exe 1732 1028 7 189 2010-08-11 06:07:44
0xff3865d0 explorer.exe 1724 1708 13 326 2010-08-11 06:09:29
0xff3667e8 VMwareTray.exe 432 1724 1 60 2010-08-11 06:09:31
0xff374980 VMwareUser.exe 452 1724 8 207 2010-08-11 06:09:32
0x80f94588 wuauclt.exe 468 1028 4 142 2010-08-11 06:09:37
0xff224020 cmd.exe 124 1668 0 ------ 2010-08-15 19:17:55

Nothing immediately stands out as they all look legitimate processes that are running on
the box. Let’s see if any of the are hiding with a new command out of 2.1 Alpha
volatility version which is psxview.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 psxview
Volatile Systems Volatility Framework 2.1_alpha
Offset Name Pid pslist psscan thrdproc pspcid csrss
0x06499b80 svchost.exe 1148 1 1 1 1 1
0x04b5a980 VMwareUser.exe 452 1 1 1 1 1
0x05f027e0 alg.exe 216 1 1 1 1 1
0x0655fc88 VMUpgradeHelper 1788 1 1 1 1 1
0x0211ab28 TPAutoConnSvc.e 1968 1 1 1 1 1
0x04c2b310 wscntfy.exe 888 1 1 1 1 1
0x061ef558 svchost.exe 1088 1 1 1 1 1
0x06945da0 spoolsv.exe 1432 1 1 1 1 1
0x05471020 smss.exe 544 1 1 1 1 0
0x069d5b28 vmtoolsd.exe 1668 1 1 1 1 1
0x06384230 vmacthlp.exe 844 1 1 1 1 1
0x010f7588 wuauclt.exe 468 1 1 1 1 1
0x066f0da0 csrss.exe 608 1 1 1 1 0
0x010c3da0 wuauclt.exe 1732 1 1 1 1 1
0x06238020 cmd.exe 124 1 1 0 1 0
0x06015020 services.exe 676 1 1 1 1 1
0x04a065d0 explorer.exe 1724 1 1 1 1 1
0x049c15f8 TPAutoConnect.e 1084 1 1 1 1 1
0x0115b8d8 svchost.exe 856 1 1 1 1 1
0x01214660 System 4 1 1 1 1 0
0x01122910 svchost.exe 1028 1 1 1 1 1

 - 21 -

0x04be97e8 VMwareTray.exe 432 1 1 1 1 1
0x05f47020 lsass.exe 688 1 1 1 1 1
0x063c5560 svchost.exe 936 1 1 1 1 1
0x066f0978 winlogon.exe 632 1 1 1 1 1
0x069a7328 VMip.exe 1944 0 1 0 0 0

This command (psxview) uses multiple methods for looking at processes artifacts in
memory. If any process has (0’s) for psscan, pslist and thrdproc it’s an attempt to hide
the process by DKOM (Direct Kernel Object Manipulation). Unfortunately nothing stand
out here either so we move on testing some internet connections with the (connections)
plugin.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 connections
Volatile Systems Volatility Framework 2.1_alpha
 Offset(V) Local Address Remote Address Pid
---------- ------------------------- ------------------------- ------

No active connections at the time the dump was taken. So lets scan for connections that
may have brrn previously closed with the (connscan) plugin.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 connscan
Volatile Systems Volatility Framework 2.1_alpha
 Offset(P) Local Address Remote Address Pid
---------- ------------------------- ------------------------- ------
0x02214988 172.16.176.143:1054 193.104.41.75:80 856
0x06015ab0 0.0.0.0:1056 193.104.41.75:80 856

 - 22 -

There it is! We have 2 connections here that look to be listed to PID 856, which is
SVChost something that is odd. Let’s see where these connections are located. A whois
report reveals that the IP is located in Moldova.

IP Address 193.104.41.75

Host 193.104.41.75

Location MD, Moldova, Republic of

City -, – -

Organization PE Voronov Evgen Sergiyovich

ISP PE Voronov Evgen Sergiyovich

It’s well known that a lot of malware calls Eastern Europe and Asia home. So this is
pretty suspicious but since it looks like all our processes appear legitimate we might be
facing some malware that utilizes code injection.
To detect these type of processes MHL has released a plugin called (Malfind). It will
detect injected processes so lets run that on our target image.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 malfind –D ~/Desktop/zeusmalfind

Process: System Pid: 4 Address: 0x1a0000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 38, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x001a0000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x001a0000 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x001a0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x001a0000 00 00 00 00 00 00 00 00 00 00 00 00 d0 00 00 00

0x1a0000 4d DEC EBP
0x1a0001 5a POP EDX
0x1a0002 90 NOP
0x1a0003 0003 ADD [EBX], AL
0x1a0005 0000 ADD [EAX], AL
0x1a0007 000400 ADD [EAX+EAX], AL
0x1a000a 0000 ADD [EAX], AL
0x1a000c ff DB 0xff
0x1a000d ff00 INC DWORD [EAX]
0x1a000f 00b800000000 ADD [EAX+0x0], BH
0x1a0015 0000 ADD [EAX], AL
0x1a0017 004000 ADD [EAX+0x0], AL
0x1a001a 0000 ADD [EAX], AL
0x1a001c 0000 ADD [EAX], AL

 - 23 -

0x1a001e 0000 ADD [EAX], AL
0x1a0020 0000 ADD [EAX], AL
0x1a0022 0000 ADD [EAX], AL
0x1a0024 0000 ADD [EAX], AL
0x1a0026 0000 ADD [EAX], AL
0x1a0028 0000 ADD [EAX], AL
0x1a002a 0000 ADD [EAX], AL
0x1a002c 0000 ADD [EAX], AL
0x1a002e 0000 ADD [EAX], AL
0x1a0030 0000 ADD [EAX], AL
0x1a0032 0000 ADD [EAX], AL
0x1a0034 0000 ADD [EAX], AL
0x1a0036 0000 ADD [EAX], AL
0x1a0038 0000 ADD [EAX], AL
0x1a003a 0000 ADD [EAX], AL
0x1a003c d000 ROL BYTE [EAX], 0x1
0x1a003e 0000 ADD [EAX], AL

 [snip] (about 40 pages)

There is a lot of output so it looks like a lot of our processes are injected with malcode.
The reason this plugin can find it, is due to the fact of looking for kernel memory
structures that work very closely with VirtualAlloc. These memory structures are in a
Vad tree and work closely with memory management aspects if the kernel. Also the
plugin outputs hexdumps as well as assembly code at the base location of where the
injected code was detected.
With all this output from our plugin lets visit the (pstree) plugin so we can get a
heurarchical view on how the code injection may have cascaded.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 pstree
Volatile Systems Volatility Framework 2.1_alpha
WARNING : psyco.support : Deprecation warning: A plugin is making use of
profile.add_types
Name Pid PPid Thds Hnds Time
 0x810B1660:System 4 0 58 379 1970-01-01 00:00:00
. 0xFF2AB020:smss.exe 544 4 3 21 2010-08-11 06:06:21
.. 0xFF1EC978:winlogon.exe 632 544 24 536 2010-08-11 06:06:23
... 0xFF255020:lsass.exe 688 632 21 405 2010-08-11 06:06:24
... 0xFF247020:services.exe 676 632 16 288 2010-08-11 06:06:24
.... 0xFF1B8B28:vmtoolsd.exe 1668 676 5 225 2010-08-11 06:06:35
..... 0xFF224020:cmd.exe 124 1668 0 ------ 2010-08-15 19:17:55
.... 0x80FF88D8:svchost.exe 856 676 29 336 2010-08-11 06:06:24
.... 0xFF1D7DA0:spoolsv.exe 1432 676 14 145 2010-08-11 06:06:26
.... 0x80FBF910:svchost.exe 1028 676 88 1424 2010-08-11 06:06:24
..... 0x80F60DA0:wuauclt.exe 1732 1028 7 189 2010-08-11 06:07:44

 - 24 -

..... 0x80F94588:wuauclt.exe 468 1028 4 142 2010-08-11 06:09:37

..... 0xFF364310:wscntfy.exe 888 1028 1 40 2010-08-11 06:06:49

.... 0xFF217560:svchost.exe 936 676 11 288 2010-08-11 06:06:24

.... 0xFF143B28:TPAutoConnSvc.e 1968 676 5 106 2010-08-11 06:06:39

..... 0xFF38B5F8:TPAutoConnect.e 1084 1968 1 68 2010-08-11 06:06:52

.... 0xFF22D558:svchost.exe 1088 676 7 93 2010-08-11 06:06:25

.... 0xFF218230:vmacthlp.exe 844 676 1 37 2010-08-11 06:06:24

.... 0xFF25A7E0:alg.exe 216 676 8 120 2010-08-11 06:06:39

.... 0xFF203B80:svchost.exe 1148 676 15 217 2010-08-11 06:06:26

.... 0xFF1FDC88:VMUpgradeHelper 1788 676 5 112 2010-08-11
06:06:38
.. 0xFF1ECDA0:csrss.exe 608 544 10 410 2010-08-11 06:06:23
 0xFF3865D0:explorer.exe 1724 1708 13 326 2010-08-11 06:09:29
. 0xFF374980:VMwareUser.exe 452 1724 8 207 2010-08-11 06:09:32
. 0xFF3667E8:VMwareTray.exe 432 1724 1 60 2010-08-11 06:09:31

We did noticed that services.exe looked to have some code injected into it. Let’s take the
parent process (winlogon.dmp that was dumped by the malfind) and submit it to
VIRUSTOTAL as PID 676 seems to be where the code injection is originated from a
hierarchical sence.

 - 25 -

24/42 says it’ malicious. Seems most of the scans detect it as Zbot. So let’s Google
around to find some reports and see if we can verify it’s presence elsewere.

“The install function searches for the winlogon.exe” process, allocates some memory
within it and decrypts itself into the process”

So it looks like a Zbot/Zeus injects it’s code int winlogon.exe . This was apparent after
we did our malfind as it detected injected injected code into other processes.

“The bot executable is written to the jand drive as
“C:\WINDOWS\system32\sdra64.exe”.”

So we will use Volatility plugin (filescan) that allows us to identify the file handles that
are still hanging around in memory.
root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 filescan
Offset(P) #Ptr #Hnd Access Name
0x00096ca0 1 0 R--r-d \Documents and Settings\Administrator\Start
Menu\Programs\Windows Media Player.lnk
0x00353ad0 1 0 R--rwd \WINDOWS\system32\crypt32.dll
0x00353cb8 1 0 R--rwd \WINDOWS\system32\apphelp.dll
0x003f34f8 3 0 RWD--- \$Directory
0x003f3f08 1 0 R--r-d \WINDOWS\system32\ipconf.tsp
[snip]
0x029d9b40 1 1 R----- \WINDOWS\system32\sdra64.exe
0x029d9cf0 1 0 -WD--- \WINDOWS\system32\sdra64.exe
[snip]

‘The directory “C:\WINDOWS\system32\lowsec\” is created. This directory is not visible
in Windows explorer but can be seen from the command line, It’s purpose is to contain
the following files:
-local.ds: Contains the most recently downloaded DynamicConfig File.
-user.ds: Contains logged information.
-user.ds.lll: temporally created if transmission of logs to the drop server fails. “

These artifacts can also be found in the above file scan to further bolster the case that this
is definitely Zeus.
“The Winlogon
(“HKLM/SOFTWARE/Microsoft/WindowsNT/CurrentVersion/Winlogon”)
Registry key’s value is appended with the path of the bot executable:
C:\WINDOWS\system32\sdra64.exe. This will cause the bot to execute when the
computer restarts.”

 - 26 -

Volatility sure enough has a feature to allow us to investigate registry entries. Namely the
(printkey) plugin.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 printkey -K "Microsoft\Windows NT\CurrentVersion\Winlogon"
Volatile Systems Volatility Framework 2.1_alpha
Legend: (S) = Stable (V) = Volatile

Registry: \Device\HarddiskVolume1\WINDOWS\system32\config\software
Key name: Winlogon (S)
Last updated: 2010-08-15 19:17:23

Subkeys:
 (S) GPExtensions
 (S) Notify
 (S) SpecialAccounts
 (V) Credentials

Values:
REG_DWORD AutoRestartShell : (S) 1
REG_SZ DefaultDomainName : (S) BILLY-DB5B96DD3
REG_SZ DefaultUserName : (S) Administrator
REG_SZ LegalNoticeCaption : (S)
REG_SZ LegalNoticeText : (S)
REG_SZ PowerdownAfterShutdown : (S) 0
REG_SZ ReportBootOk : (S) 1
REG_SZ Shell : (S) Explorer.exe
REG_SZ ShutdownWithoutLogon : (S) 0
REG_SZ System : (S)
REG_SZ Userinit : (S)
C:\WINDOWS\system32\userinit.exe,C:\WINDOWS\system32\sdra64.exe,
REG_SZ VmApplet : (S) rundll32 shell32,Control_RunDLL "sysdm.cpl"
REG_DWORD SfcQuota : (S) 4294967295
[snip]
Well the key is certainly apparent and this is our persistence mechanism. So the
Zeus/Zbot injector process is called at start-up to insert it’s hooks and malicious code in
our legitimate looking process to evade detection. This would be something you’d want
to clean up if you were re-mediation the system as well.

“The Windows XP firewall is disabled. This causes a Windows Security Center warning
icon to appear in the system tray, the only visible indication that the computer has been
infected.”

So lets see if the firewall is up or its has been disabled.

 - 27 -

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 printkey -K
"ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile"
Volatile Systems Volatility Framework 2.1_alpha
Legend: (S) = Stable (V) = Volatile

Registry: \Device\HarddiskVolume1\WINDOWS\system32\config\system
Key name: StandardProfile (S)
Last updated: 2010-08-15 19:17:24

Subkeys:
 (S) AuthorizedApplications

Values:
REG_DWORD EnableFirewall : (S) 0

So the firewall is currently disabled and if you notice the timestamp on the key as well it
looks like this was last updated at 2010-8-15 at 19:17:24.

“ A closer look at its binary file reveals that the spyware was designed to monitor know
ZBOT mutexes, _AVIRA_and_SYSTEM_.”

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/zeus.vmem --profile
WinXPSP2x86 mutantscan
Volatile Systems Volatility Framework 2.1_alpha
Offset(P) #Ptr #Hnd Signal Thread CID Name
0x000962c0 1 1 1 0x00000000
[snip]
0x06735dc0 2 1 1 0x00000000 _AVIRA_2109
[snip]

Well there is certainly a mutex that has been recent in memory for AVIRA which
ironically enough is the name of an antivirus engine.

So there we have it, using Volatility we can get a look at a zeus bot infection and
determine steps here for possible remediation just based on a memory dump.

 - 28 -

C. ANALYZING A STUXNET INFECTED SYSTEM

 The developers of Volatility project have provided a sample image that’s
infected with Zeus for us to practice on.

So we navigate to volatility folder and run volatiliy.py (python written program)
And we specify the image file we want to examine with the (-f) argument and we use the
(ImageInfo) plugin, so that we can extract information about the image.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/stuxnet.vmem imageinfo
Volatile Systems Volatility Framework 2.1_alpha
Determining profile based on KDBG search...

 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86 (Instantiated with
WinXPSP2x86)
 AS Layer1 : JKIA32PagedMemoryPae (Kernel AS)
 AS Layer2 : FileAddressSpace (/root/Desktop/stuxnet.vmem)
 PAE type : PAE
 DTB : 0x319000
 KDBG : 0x80545ae0L
 KPCR : 0xffdff000L
 KUSER_SHARED_DATA : 0xffdf0000L
 Image date and time : 2011-06-03 04:31:36 UTC+0000
 Image local date and time : 2011-06-03 00:31:36 -0400
 Number of Processors : 1
 Image Type : Service Pack 3

Alright, so we can see that this is a XP SP3 image on a 32-bit system, so lets move
further along by using the (pslist) plugin to determine the processes that were running on
the system.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/stuxnet.vmem --profile
WinXPSP3x86 pslist
Volatile Systems Volatility Framework 2.1_alpha
 Offset(V) Name PID PPID Thds Hnds Time
---------- -------------------- ------ ------ ------ ------ -------------------
0x823c8830 System 4 0 59 403 1970-01-01 00:00:00
0x820df020 smss.exe 376 4 3 19 2010-10-29 17:08:53
0x821a2da0 csrss.exe 600 376 11 395 2010-10-29 17:08:54
0x81da5650 winlogon.exe 624 376 19 570 2010-10-29 17:08:54
0x82073020 services.exe 668 624 21 431 2010-10-29 17:08:54
0x81e70020 lsass.exe 680 624 19 342 2010-10-29 17:08:54
0x823315d8 vmacthlp.exe 844 668 1 25 2010-10-29 17:08:55
0x81db8da0 svchost.exe 856 668 17 193 2010-10-29 17:08:55
0x81e61da0 svchost.exe 940 668 13 312 2010-10-29 17:08:55
0x822843e8 svchost.exe 1032 668 61 1169 2010-10-29 17:08:55

 - 29 -

0x81e18b28 svchost.exe 1080 668 5 80 2010-10-29 17:08:55
0x81ff7020 svchost.exe 1200 668 14 197 2010-10-29 17:08:55
0x81fee8b0 spoolsv.exe 1412 668 10 118 2010-10-29 17:08:56
0x81e0eda0 jqs.exe 1580 668 5 148 2010-10-29 17:09:05
0x81fe52d0 vmtoolsd.exe 1664 668 5 284 2010-10-29 17:09:05
0x821a0568 VMUpgradeHelper 1816 668 3 96 2010-10-29 17:09:08
0x8205ada0 alg.exe 188 668 6 107 2010-10-29 17:09:09
0x820ec7e8 explorer.exe 1196 1728 16 582 2010-10-29 17:11:49
0x820ecc10 wscntfy.exe 2040 1032 1 28 2010-10-29 17:11:49
0x81e86978 TSVNCache.exe 324 1196 7 54 2010-10-29 17:11:49
0x81fc5da0 VMwareTray.exe 1912 1196 1 50 2010-10-29 17:11:50
0x81e6b660 VMwareUser.exe 1356 1196 9 251 2010-10-29 17:11:50
0x8210d478 jusched.exe 1712 1196 1 26 2010-10-29 17:11:50
0x82279998 imapi.exe 756 668 4 116 2010-10-29 17:11:54
0x822b9a10 wuauclt.exe 976 1032 3 133 2010-10-29 17:12:03
0x81c543a0 Procmon.exe 660 1196 13 189 2011-06-03 04:25:56
0x81fa5390 wmiprvse.exe 1872 856 5 134 2011-06-03 04:25:58
0x81c498c8 lsass.exe 868 668 2 23 2011-06-03 04:26:55
0x81c47c00 lsass.exe 1928 668 4 65 2011-06-03 04:26:55
0x81c0cda0 cmd.exe 968 1664 0 ------ 2011-06-03 04:31:35
0x81f14938 ipconfig.exe 304 968 0 ------ 2011-06-03 04:31:35

Looking at this list you can see one of the signs of a Stuxnet infection. There are three
copies of lsass.exe running, there should only be one. The lsass process authenticates
users for the Winlogon service.

Let’s do a process tree list and see if all three instances of lsass correspond to Winlogon:

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/stuxnet.vmem --profile
WinXPSP3x86 pstree
Volatile Systems Volatility Framework 2.1_alpha
WARNING : psyco.support : Deprecation warning: A plugin is making use of
profile.add_types
Name Pid PPid Thds Hnds Time
 0x823C8830:System 4 0 59 403 1970-01-01 00:00:00
. 0x820DF020:smss.exe 376 4 3 19 2010-10-29 17:08:53
.. 0x821A2DA0:csrss.exe 600 376 11 395 2010-10-29 17:08:54
.. 0x81DA5650:winlogon.exe 624 376 19 570 2010-10-29 17:08:54
... 0x82073020:services.exe 668 624 21 431 2010-10-29 17:08:54
.... 0x81FE52D0:vmtoolsd.exe 1664 668 5 284 2010-10-29 17:09:05
..... 0x81C0CDA0:cmd.exe 968 1664 0 ------ 2011-06-03 04:31:35
...... 0x81F14938:ipconfig.exe 304 968 0 ------ 2011-06-03 04:31:35
.... 0x822843E8:svchost.exe 1032 668 61 1169 2010-10-29 17:08:55
..... 0x822B9A10:wuauclt.exe 976 1032 3 133 2010-10-29 17:12:03
..... 0x820ECC10:wscntfy.exe 2040 1032 1 28 2010-10-29 17:11:49

 - 30 -

.... 0x81E61DA0:svchost.exe 940 668 13 312 2010-10-29 17:08:55

.... 0x81DB8DA0:svchost.exe 856 668 17 193 2010-10-29 17:08:55

..... 0x81FA5390:wmiprvse.exe 1872 856 5 134 2011-06-03 04:25:58

.... 0x821A0568:VMUpgradeHelper 1816 668 3 96 2010-10-29 17:09:08

.... 0x81FEE8B0:spoolsv.exe 1412 668 10 118 2010-10-29 17:08:56

.... 0x81FF7020:svchost.exe 1200 668 14 197 2010-10-29 17:08:55

.... 0x81C47C00:lsass.exe 1928 668 4 65 2011-06-03 04:26:55

.... 0x81E18B28:svchost.exe 1080 668 5 80 2010-10-29 17:08:55

.... 0x8205ADA0:alg.exe 188 668 6 107 2010-10-29 17:09:09

.... 0x823315D8:vmacthlp.exe 844 668 1 25 2010-10-29 17:08:55

.... 0x81E0EDA0:jqs.exe 1580 668 5 148 2010-10-29 17:09:05

.... 0x81C498C8:lsass.exe 868 668 2 23 2011-06-03 04:26:55

.... 0x82279998:imapi.exe 756 668 4 116 2010-10-29 17:11:54

... 0x81E70020:lsass.exe 680 624 19 342 2010-10-29 17:08:54
 0x820EC7E8:explorer.exe 1196 1728 16 582 2010-10-29 17:11:49
. 0x81C543A0:Procmon.exe 660 1196 13 189 2011-06-03 04:25:56
. 0x81E86978:TSVNCache.exe 324 1196 7 54 2010-10-29 17:11:49
. 0x81E6B660:VMwareUser.exe 1356 1196 9 251 2010-10-29 17:11:50
. 0x8210D478:jusched.exe 1712 1196 1 26 2010-10-29 17:11:50
. 0x81FC5DA0:VMwareTray.exe 1912 1196 1 50 2010-10-29 17:11:50

Looking at the PPID column, you can see that two of the processes connect to PPID 668
and on connects to 624. Looking at the PID you can see that the third instance does in
fact tie to Winlogon (624). But the two other instances connect to Services.exe (628).
Something is not right.

Let’s run the plugin command “malfind” and see what it detects. According to
the Volatility Wiki Command Reference, malfind can find hidden or injected code or
DLLs in user mode memory. We will run malfind against the whole memory dump and
see if it can find any suspicious code.

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/stuxnet.vmem --profile
WinXPSP3x86 malfind -D ~/Desktop/stuxnetmalfind/
Volatile Systems Volatility Framework 2.1_alpha
Process: explorer.exe Pid: 1196 Address: 0x2550000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 1, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x02550000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x02550000 00 00 55 02 00 00 00 00 00 00 00 00 00 00 00 00 ..U.............
0x02550000 10 00 55 02 00 00 00 00 00 00 00 00 00 00 00 00 ..U.............
0x02550000 20 00 55 02 00 00 00 00 00 00 00 00 00 00 00 00 ..U.............

0x2550000 0000 ADD [EAX], AL
0x2550002 0000 ADD [EAX], AL

 - 31 -

0x2550004 0000 ADD [EAX], AL
0x2550006 0000 ADD [EAX], AL
0x2550008 0000 ADD [EAX], AL
0x255000a 0000 ADD [EAX], AL
0x255000c 0000 ADD [EAX], AL
0x255000e 0000 ADD [EAX], AL
0x2550010 0000 ADD [EAX], AL
0x2550012 55 PUSH EBP
0x2550013 0200 ADD AL, [EAX]
0x2550015 0000 ADD [EAX], AL
0x2550017 0000 ADD [EAX], AL
0x2550019 0000 ADD [EAX], AL
0x255001b 0000 ADD [EAX], AL
0x255001d 0000 ADD [EAX], AL
0x255001f 0010 ADD [EAX], DL
0x2550021 005502 ADD [EBP+0x2], DL
0x2550024 0000 ADD [EAX], AL
0x2550026 0000 ADD [EAX], AL
0x2550028 0000 ADD [EAX], AL
0x255002a 0000 ADD [EAX], AL
0x255002c 0000 ADD [EAX], AL
0x255002e 0000 ADD [EAX], AL
0x2550030 2000 AND [EAX], AL
0x2550032 55 PUSH EBP
0x2550033 0200 ADD AL, [EAX]
0x2550035 0000 ADD [EAX], AL
0x2550037 0000 ADD [EAX], AL
0x2550039 0000 ADD [EAX], AL
0x255003b 0000 ADD [EAX], AL
0x255003d 0000 ADD [EAX], AL
0x255003f 00 DB 0x0

 It finds something it didn’t like in explorer.exe right away, but continued to run for
quite a while and kicked out two more. Something suspicious in the two copies of
lsass.exe – surprise, surprise!
 Going to the output directory you see all three suspicious files stored as .dmp files.
You can take these files and upload them to VirusTotal to see if it detects anything
suspicious.The first explorer.exe file when run against Virus Total did not return anything
malicious. But uploading the two lsass files to virus total returns some interesting
results.Two virus scanners detected something they don’t like in the files. Comodo
detects it as a Packed.Win32.MUPX. Gen and VirusBuster detects a Trojan. And indeed
there is something fishy there. The real lsass.exe does not have an executable section in
its data region, but both of these files do.

That’s a very common sign of stuxnet infection.

 - 32 -

D. PULLING PASSWORDS FROM A MEMORY DUMP

So lets see how we can find and pull passwords on a windows system from a memory
image. We will use the stuxnet image from the example above and try to fetch the admin-
guest passwords.

Now, we need the hive list so we can get the starting location in memory of where the
registry information resides:

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/stuxnet.vmem hivelist
Volatile Systems Volatility Framework 2.1_alpha
Virtual Physical Name
0xe1069008 0x14b8d008 \Device\HarddiskVolume1\Documents and
Settings\Administrator\Local Settings\Application Data\Microsoft\Windows\UsrClass.dat
0xe1077758 0x152b7758 \Device\HarddiskVolume1\Documents and
Settings\Administrator\NTUSER.DAT
0xe1bdb9e8 0x0e1959e8 \Device\HarddiskVolume1\Documents and
Settings\LocalService\Local Settings\Application Data\Microsoft\Windows\UsrClass.dat
0xe1bd5b60 0x0e027b60 \Device\HarddiskVolume1\Documents and
Settings\LocalService\NTUSER.DAT
0xe1bc26d8 0x0de626d8 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat
0xe1bb5758 0x0df10758 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\NTUSER.DAT
0xe1628b60 0x0a768b60
\Device\HarddiskVolume1\WINDOWS\system32\config\software
0xe16386b8 0x0a7a06b8
\Device\HarddiskVolume1\WINDOWS\system32\config\default
0xe1638b60 0x0a7a0b60
\Device\HarddiskVolume1\WINDOWS\system32\config\SAM
0xe1628008 0x0a768008
\Device\HarddiskVolume1\WINDOWS\system32\config\SECURITY
0xe13feb60 0x02e6ab60 [no name]
0xe1035b60 0x02a9eb60
\Device\HarddiskVolume1\WINDOWS\system32\config\system
0xe102e008 0x02a98008 [no name]
0x80670a0c 0x00670a0c [no name]
root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/stuxnet.vmem hashdump -y
0xe1035b60 -s 0xe1638b60 > ~/Desktop/hashstux.txt

We now have a list of where several key items are located in the memory dump. Next, we
will extract the password hashes from the memory dump. To do this we need to know the
starting memory locations for the system and sam keys.

 - 33 -

We look in the dump above and copy down the numbers in the first column that
correspond to the SAM and SYSTEM locations. Then output the password hashes into a
text file called hashs.txt:

root@bt:/pentest/forensics/volatility# ./vol.py -f ~/Desktop/stuxnet.vmem –y 0xe1035b60
–s 0xe1638b60 > ~/Desktop/stuxhash.txt
Administrator:500:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b
7586c:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:
::
HelpAssistant:1000:22d8685792cd2df8392f2d3ec8648d7e:bdedd3a3893c938a7fff9e4e1
234f08a:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:4698b5e815592ec8a1
a8d0073f04320b:::
ASPNET:1003:1b6866646ec27ffe7ac71aa7a7e181b1:3e3397d960245d178c307f19d813a
638:::
Now we have the hashes of the Windows Admin, Guest, HelpAssistant, Support and
ASPNET password, and by using on them a password cracking tool sush as John The
Ripper we can find the precise password of the targeted system!

E. CARVING FILES FROM A MEMORY DUMP

We can use the linux program Foremost on our pre-acquired images to “carve” out the
files we need or if we want we can make the search general and Foremost will get us All
the file that can be extracted from the memory image.

 - 34 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 35 -

V. CONCLUSION

 A. SUMMARY

The memory management changes in the new Windows7 have not adversely affected
the forensics techniques developed for the Windows Xp. The discovery of data belonging to
a process is possible—as shown in the previous chapter—and should add value to the full
exploration of processes that reside in physical memory. The techniques outlined in this
paper, or programs based on them should now be integrated into any in-depth forensic
analysis of a computer system.

There is a new breed of malware based on the concept that physical memory is
largely out of the hands of an examiner. The effects of this insidious software can be
mitigated by the application of the findings in this paper. However, unless these analysis
techniques are properly automated, many investigators will shy away from performing
detailed analysis of physical memory and potentially miss many pieces of evidence vital to
such an investigation.

B. PROBLEMS

 Throughout the course of the analysis, a few problems were encountered. The first
presented itself in the early stages of project development when the assumption was made
that the tool were up to date with windows 7 images something that proved to be wrong.
 Aside of that we encountered some problems mapping the connections on the
memory images we had, something that took quite some time to overcome.

 C. FUTURE WORK

The most obvious extension to the work in this paper would be to write a tool that
could automate the techniques discussed. This work would include the fine-tuning of the
concepts presented here so that they can be translated into the specific language of a program.
Such a tool would be a powerful asset to an investigator because tracing hex dumps is not
something that many investigators will want to do. That is, the exploration of physical
memory would often be skipped in the absence of a good tool to do automate it elegantly and
efficiently.
 Another future focus of research would be to perform similar analyses on systems
with different characteristics. This could take the form of research on other operating systems
such as Windows or Solaris. It could also take the form of research on systems running on
non-x86 platforms such as PowerPC or 64-bit systems. Systems with more than 896MB of
physical memory should be explored as well. Unraveling the process of translating virtual
addresses in ZONE_HIGHMEM to physical addresses and back would be very useful as the
number of systems with memory in excess of this limit is increasing daily.

 - 36 -

THIS PAGE INTENTIONALLY LEFT BLANK

 - 37 -

LIST OF REFERENCES

[1] Prosise, Chris, and Mandia, Kevin, and Pepe, Matt. Incident Response and Computer
Forensics, Second Edition. McGraw-Hill Osborne Media

[2] Federal Bureau of Investigation. “History of the FBI, Rise of International Crime:
1980’s,” http://www.fbi.gov/libref/historic/history/rise.htm, 2006

[3] Burdach, Mariusz. Digital Forensics of the Physical Memory.

[4] – http://www.fortiguard.com/analysis/zeusanalysis.html

[5] – http://www.dfrws.org/2007/proceedings/p62-dolan-gavitt.pdf

[6] – http://www.eptuners.com/forensics/contents/examination.htm

[7] – http://www.sans.org/reading_room/whitepapers/malicious/clash-titans-zeus-
spyeye_33393

[8] – http://www.symantec.com/connect/blogs/brief-look-zeuszbot-20

[9] Gorman, Mel. Understanding the Linux Virtual Memory Manager (Bruce Perens Open
Source). Prentice Hall PTR

[10] Grance, Tim, and Kent, Karen, and Kim, Brian. NIST Special Publication 800-61:
Computer Security Incident Handling Guide.

[11] Brezinski, D., and Killalea, T. RFC 3227: Guidelines for Evidence Collection and
Archiving.

[12] Burdach, Mariusz. “Finding Digital Evidence in Physical Memory.” 2006 Black Hat
Federal Conference. Sheraton Crystal City, Washington DC. 25 January 2006.

[13] Garner, George M. Jr., and Mora, Robert-Jan “Response to Specific Questions Posed by
the DFRWS 2005 Memory Challenge,” http://www.dfrws.org/2005/challenge/index.html. 6
August 2005.

[14] Betz, Chris. “DFRWS 2005 Challenge Report,”
http://www.dfrws.org/2005/challenge/ChrisBetz-DFRWSChallengeOverview.html. August
2005.

