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ABSTRACT 

We discuss about option pricing with jump-diffusion models as well as their 

parameters effect on option prices through implied volatility figures. After 

introducing, the reasons about using these models, we discuss two more widely used 

jump-diffusion models. As amplification, we consider a stochastic volatility model 

which we compare with them, including their advantages and limitations.  

Key words: jump-diffusions models, stochastic volatility, incomplete market, change 

of measure, model parameters, implied volatility. 
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SECTION 1  

INTRODUCTION 

 

Most of the standard literature in Finance, in particular for pricing and hedging of 

contingent claims, is based on the assumption that the prices of the underlying assets 

follow diffusion type process, in particular a geometric Brownian motion (GBM). 

Documentation from various empirical studies shows that such models are 

inadequate, both in relation to their descriptive power, as well as for the mispricing 

that they might induce. One of the reasons is the total change in the stock price 

depends on two types of changes. The first one is the fact that we may have 

fluctuations in the price due to general economic factors such as supply and demand, 

changes in economic outlook, changes in capitalization rates or other information. 

These factors cause small movements in the price and are modeled by a geometric 

Brownian motion with a constant drift term as we have already referred. The 

instantaneous part of the unanticipated return due to the normal price vibrations is the 

case of an arrival of important information into the market that will have an abnormal 

effect on the price. This information could be industry specific or even firm specific. 

By its very nature important information only arrives at discrete points in time and 

will be modeled by a jump process. Thus, there will be ‘active’ times in the 

underlying asset when the information arrives and ‘quiet’ when it does not. Both, of 

course are random.  

Furthermore, someone could think, why we derive models with jumps. To begin with, 

in a model with continuous paths like a diffusion model, the price process follows a 

Brownian motion and the probability that the stock moves by a large amount over a 

small period is very small, unless one fixes an unrealistically high value of volatility. 

Also, in such models the prices of short term out of the money options should be 

much lower than what one observes in real markets. On the other hand if stock prices 

are allowed to jump, even when the time to maturity is very short, there is non-

negligible probability that after a sudden change in the stock price the option will 

move in the money. Another reason that using jump diffusion models is very 
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important emerges from the point of view, hedging. In continuous models of stock 

price behavior generally lead to a complete market, which can be made complete by 

adding one or two additional instruments, like in stochastic volatility models which 

we will describe below. In that case, options are redundant since every terminal 

payoff can be exactly replicated. Unfortunately, in real markets perfect hedging is 

impossible due to the presence of jumps. So an important case which is provided in 

our investigation is how the jump risk is eliminated according to the different models. 

For these reasons, several jump diffusion models have been introduced to the finance 

literature in order to explain how they provide an adequate description of stock price 

fluctuations and market risks. In the last decade, also the research departments of 

major banks started to accept jump-diffusions as a valuable tool in their day to day 

modeling. A first approach developing further the basic Black and Scholes model 

with the inclusion of jumps appears to be that of Merton. Since the introduction of 

jumps in the Black and Scholes implies that derivative prices are no longer 

determined by the principle of absence of arbitrage alone, Merton solved the pricing 

problem, by making some assumptions. One of our purposes, here, is showing these 

assumptions for Merton’s model and for Kou’s model where the average jumps size 

follows a different distribution. In essence, each model makes some assumptions, in 

order to achieve having a riskless portfolio. Otherwise, there is not another way for 

eliminating the source of randomness which is appeared. The analytical refer is made 

in other section for each model separately.  

Moreover, during the last decade, there has been an increasing interest in modeling 

the dynamic evolution of the volatility of high frequency series of financial returns 

using stochastic volatility models. One of the most popular equity option pricing 

models is Heston’s volatility model. It provides a closed-form solution for the price of 

a European option when the spot asset is correlated with volatility.  

 The main purpose of this dissertation is to code the closed form solutions of 

Merton’s, Kou’s and Heston’s model by Matlab and investigate the effects which are 

emerged on the European option prices due to the different values of each model 

parameters through implied volatility figures.  
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The reason which we provide implied volatility figures, is that a first requirement for 

an option pricing model is to capture the state of the options market at a given instant. 

To achieve this, the parameters of the model are chosen to fit the market prices of 

options or at least to reproduce the main features of these prices, a procedure known a 

calibration of the model to the market prices. The notion of model calibration does not 

exist, since after observing a trajectory of the stock price, the pricing model is 

completely defined. On the other hand, since the pricing model is defined by a single 

volatility parameter, the parameter can be reconstructed from a single option price (by 

inverting the Black-Scholes formula). This value is known as the implied volatility of 

this option. In essence equate the theoretical price with the market price in Black-

Scholes formula.  

The Black Scholes formula is not used as a pricing model for options but as a tool for 

translating market prices into a representation in terms of implied volatility. The 

implied volatilities are better from historical volatilities for the purpose of option 

pricing, as historical volatilities may not reflect the current situation. For example 

suppose an extreme event happens to the Wall Street e.g, a financial crisis or a 

terrorist attack then it is hard to find similar events in the historical database, thus 

making historical volatilities unsuitable. A plot of the implied volatility of an option 

as a function of its strike price is known as a volatility smile. In the Black-Scholes 

setting, the only model parameter to choose is the volatility σ, originally defined as 

the annualized standard deviation of logarithmic stock returns. According to the 

Black-Scholes model, we should expect options that expire on the same date to have 

the same implied volatility regardless of the strikes. However empirical studies show 

that this is not the case: the implied volatility actually varies among the different 

strike prices. This discrepancy is known as the volatility skew. At-the-money options 

tend to have lower volatilities that in- or out-of-the-money options Black-Scholes is 

technically inaccurate because implied volatility should be constant according to this 

model. Secondly, implied volatility graph should be a horizontal straight line and 

when implied volatility is graphed, it is presented in volatility skew. Black-Scholes 

does not consider certain aspects that may alter the price, such as: liquidity or supply 

and demand. The Black-Scholes model performs a sort of regulation of the market 

itself, with traders adapting themselves to it which causes the volatility skew. 
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Stochastic volatility models require a negative correlation between movements in 

stock and movements in volatility for the presence of a skew. While this can be 

reasonably interpreted in terms of a leverage effect, it does not explain why in some 

markets such as options on major foreign exchange rates the skew becomes a smile. 

Since the instantaneous volatility is unobservable, assertions about its correlation with 

the returns are difficult to test but it should be clear from these remarks that the 

explanation of the implied volatility skew offered by stochastic volatility models is no 

more structural than the explanation offered by local volatility models. 

Models with jumps, by contrast, not only lead to a variety of smile or skew patterns 

but also propose a simple explanation in terms of market anticipations: the presence 

of a skew is attributed to the fear of large negative jumps by market anticipants. This 

is clearly consistent with the fact that the skew/smile features in implied volatility 

patterns have greatly increased since the 1987 crash. Jump processes also allow 

explaining the distinction between skew and smile in terms of asymmetry of jumps 

anticipated by the market. For example for index options, the fear of a large 

downward jump leads to a downward skew while in foreign markets where the market 

moves are symmetric, jumps are expected to be symmetric thus giving rise to smiles. 

There is a large body of literature on skewness across various markets and asset 

classes. Evidence of skewness in assets has existed for more than three decades to 

name a few. More recently, suggested Harvey (2000) that investors require payment 

for negative skew and expected return increases with negative skewness. Their results 

showed skewness exists in asset prices and that a pricing model incorporating 

skewness helps explain expected returns in assets beyond beta, size and book to 

market. As was mentioned found that the majority of developed markets have 

negative skew. The primary reason skew is important is that analysis based on normal 

distributions incorrectly estimates expected returns and risk. Moreover, negative 

skewness can result from the distribution of good and bad news from companies. 

Companies release more good news than bad news and bad news tends to be released 

in clumps. 
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The rest of the dissertation is structured as follows. The following section describes 

some of the papers which were useful for my investigation. In Section 3, include the 

dataset. Section 4, explores pricing and hedging in incomplete markets as well as the 

change of measure. In continuity, Section 5 and 6 examines Merton’s and Kou’s 

models, respectively. In Section 7 we describe the stochastic volatility Heston’s 

model. Comparison between such models is appeared in Section 8. The final section 

concludes. 
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SECTION 2 

 LITERATURE REVIEW: 

 

In this part, we provide a review of the normative literature. More specifically, all the 

material that helped us to examine and carry out jump-diffusion models.  

First of all, Merton (1975), explains how we can estimate and derive an option 

pricing formula when the underlying stock returns are generated by a mixture of both 

continuous and jump processes. Moreover, he shows the features of the original 

Black-Scholes that his model keeps but has demonstrated that their model of analysis 

obtains even when the interest rate is stochastic, the stock pays dividends or the 

option is exercisable before the maturity. Of course, the paper is based on the fact that 

the total change in the stock price is posited to be normal, which means that produces 

a marginal change in the price or abnormal which is modeled by a jump process 

reflecting the non-marginal impact of the information. Jumps follow log-normally 

distribution and the probability if a jump occurs or not is described from a Poisson 

process. 

Furthermore, as this model has the extra source of randomness through the jumps 

which cannot be eliminated, this means that we are in incomplete market. So, the 

return on the portfolio which we have created will not be riskless and equal to the risk 

free rate. Merton for attaining the elimination of jump risk made some assumptions. 

To begin with, the first assumption is that the jumps are not correlated with the 

market, so as the jump component of the stock’s return will represent non-systematic 

risk. The other assumption is that the Capital Asset Pricing Model holds and the 

expected return on all securities which have zero-beta must be equal to the risk-free 

rate. 

To conclude, in this paper is considered the fact that ceteris paribus, an option stock 

with jumps is more valuable than a stock without jumps. For deep out of the money 

options, there is relatively little probability that the stock price will exceed the strike 

price before the maturity if the underlying process is continuous. However, the 
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possibility of a large, finite jump in price significantly increases this probability, and 

hence makes the option more valuable. Similarly, for the deep in the money options, 

there is a little probability that the stock would decline below the strike price before 

the maturity. And in this case the underlying process is continuous and ergo the 

insurance value of the option would be nil. Then, this need not be the case with jump 

possibilities. Furthermore, these differences will be larger as one goes to short-

maturity options. Analytical review is considered below. 

Kou (2002) has created a double exponential jump diffusion model. One of the 

occasions that made Kou doing research for this model, was the leptokurtic feature 

that the return distribution of assets may have a higher peak and two heavier tails than 

those of the normal distribution. Another one was the empirical phenomenon called 

volatility smile in option markets. In the Black and Scholes, the implied volatility 

should be constant, but in reality is a convex curve of the strike price, like a smile. To 

illustrate that the model can produce implied volatility smile Steven Kou consider real 

data set which were used for two year and nine year caplets in the Japanese LIBOR 

market. Here, the jump sizes are double exponentially distributed and the logarithm of 

the asset price is assumed to follow a Brownian motion. Moreover, as in Merton’s 

model the probability if a jump occurs follows a Poisson process. Steven Kou 

explains and proves the change of the probability measure to risk-neutral measure 

where the endowment process and the price of the underlying asset have the same 

jump diffusion form, which is very convenient for analytical calculation.  

The difficulty with hedging is not applicable in this paper. The riskless hedging is 

impossible when someone wants to do it in discrete time and Kou follows 

investigations that have already done as Merton’s occasions for hedging.  

Lastly, the difficulties of pricing options used this model, except from hedging are the 

integral that appears in the model and the fact that assumes that the increments are 

independent. The only way to incorporate the dependence of these increments is to 

use another point process, replacing Poisson process. In the line of our dissertation, 

we do not examine this case, so as Steven Kou in his paper. 
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Moreover, Ball and Torous (1985) paper investigate whether Merton’s call option 

pricing model can eliminate the systematic biases which Black and Scholes call 

option pricing is subjected. These biases have been documented with respect to the 

call option’s strike price, it’s time to the maturity and the underlying’s stock’s 

volatility. To find if there were differences between Black and Scholes and Merton, 

Ball and Torous implement the maximum likelihood estimation procedure on the 

basis of a sample of daily returns to 30  NYSE listed common stock’s return process. 

The result of this research is that there are not operationally significant differences 

between them. Also, the discrepancies between Black-Scholes and Merton model 

prices of the call prices do not occur if the underlying stock return process is 

predominated by large jumps which occur infrequently. However, to the other 

financial securities, such as foreign exchange may be accurately modeled as a Poisson 

jump diffusion process characterized by infrequent but very large jumps.  Another 

important fact from this paper is that might not be demonstrable the differences 

between these two models. That because statistical analysis will have difficulty 

discriminating between security return data characterized by a jump intensity 

parameter close to zero and Merton’s call formulation when the jump intensity 

parameter is equal to zero. 

To conclude, Ball and Torous have investigated through the statistical estimation of 

the Poisson Jump diffusion process, the fact of the numerical calculation of the 

infinite sum for a single Poisson jump diffusion density. The infinite sum shall be 

truncated at N=10, provided double precision computer accuracy. It must be pointed 

out that for small values of λ, one could truncate at much smaller value for N and still 

provide full computer accuracy.  

A paper which shows that the jump diffusion models are an essential and easy to learn 

tool for option pricing and risk management is Tankov and Voltchkova (2005). First 

of all, they describe the two basic buildings of every jump diffusion model which are 

the Brownian motion, for the diffusion part and the Poisson process, for the jump part. 

As Brownian motion is a familiar object to every option trader since it appears to the 

Black-Scholes model, they provide the description of Poisson process. The specific 

part, of this investigation is hedging jump’s risk. Our authors emphasize that the 
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hedging is an approximation problem, as we are in incomplete market. So, instead of 

replicating an option, one tries to minimize the residual hedging error. In essence, the 

expected squared residual hedging error is minimizing the squared norm of the market 

price minus the theoretical price which emerges from the estimation that we have 

made. Finally, hedging with stock only in the presence of jumps eliminates a large 

part risk but still leads to an important residual hedging error.  

Another published paper which helped my investigation is Heston (1993) who 

derives a closed form solution for a price of European options on an asset with 

stochastic volatility. This model is one of the most popular option pricing models due 

to the fact that produces option prices up to an integral that must evaluated 

numerically. It is versatile enough to describe stock options, bond options and 

currency options. The Black and Scholes (1973) model shows that the mean spot 

return does not affect option prices at all, while the variance has a substantial effect. 

The pricing analysis of this paper controls for the variance when comparing option 

models with different skewness and kurtosis. The Black Scholes formula produces 

options prices virtually identical to the stochastic volatility models for at the money 

options.  For at the money options all option models with the same volatility are 

equivalent. This happen because options are usually traded near the money. Another 

characteristic of Heston’s model is that allows arbitrary correlation between volatility 

and spot asset returns. This fact captures important skewness effects that arise from 

such correlation. Skewness in the distribution of spot returns affects the pricing of in 

the money options relative to out of the money options. Without this correlation, 

stochastic volatility only changes the kurtosis. Kurtosis affects the pricing of near the 

money versus far from the money options. To transform to the risk neutral probability 

measure, Heston uses the characteristic functions because the probabilities are not 

available immediately in the closed form solution, but this we will analyze it below. 

Moreover, hedging is possible according to Heston by making zero the sources of 

randomness which are appeared. Finally, the stochastic volatility can be very flexible 

and promising description of option prices, in the case which we choose the 

appropriate parameters. 
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For stochastic volatility models, Henderson, Hobson, Howison and Kluge (2003) 

have investigated option prices in an incomplete stochastic volatility model with 

correlation. In general, they analyze the role of the market price of volatility risk and 

the choice of pricing measure on the prices of options. Also, they compare under 

various changes of measure option prices in Heston model.  The most important 

observation which comes from this paper is that stochastic volatility models have 

some typical features. The correlation is negative so the smiles are skewed to the left.  

Furthermore, Bates (2000) have done a research which is based on the derivation the 

appropriate characterization of asset market equilibrium when asset prices follow 

jump diffusion processes. They also provide the problem that stochastic volatility and 

jump risk option pricing models introduce forms of risk embodied in option prices 

that are not directly priced by any instrument currently traded in financial markets. 

One result that Bates considers is that even if the jumps in the underlying asset price 

are independent, the fact that the jumps occur at the same time implies that jump risk 

on the asset is no diversifiable and systematic. Only if the jumps are truly firm-

specific and do not affect aggregate wealth as is assumed in Merton. A second result 

from their investigation is that, insofar as jumps in the underlying asset price are 

positively correlated with jumps in the market, the effect is to bias downwards the 

mean expected jump would be negative, leading to negative asymmetries relative to 

Black-Scholes option prices of the sort found in recent years in stock options.  
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SECTION 3  

DATASET 

 

We are interested in pricing options on S&P 500 with different types of models, like 

jump diffusion and stochastic volatility models. For this purpose we need first of all to 

choose a run date for all the options. For our investigation this day was 20/09/2012. 

The price of the underlying asset that day was taken from BLOOMBERG. Moreover, 

another data is the interest rate which is constant in both cases which we investigated. 

The data comes from BLOOMBERG for one, three, nine months and for one year 

respectively. For this reason, we made an exponential interpolation for fitting these 

rates with our time to maturity for each case. For the volatility estimation, data comes 

from BLOOMBERG. We take the 75 previous S&P 500 daily prices from the run 

date and implement exponential weighted moving average method. For adapting the 

volatility per year, we multiplied with the root of 252.  

For the parameters estimation we made an investigation in the literature which gave 

us the opportunity to use some values of them. To begin with, in Merton’s model we 

have three parameters. The first one is the jump intensity λ which shows us how many 

jumps happen per unit of time on average and causes the asset price to jump 

randomly. Jump intensity can take any positive value. In specific    . In the case 

which is equal to zero, we do not have jumps so we follow Black and Scholes model. 

According to the literature, we have observed that the maximum value which intensity 

takes was 100. The values which we have used are representative from the literature.  

Furthermore, the second Merton’s parameter is the percentage change in the asset 

price caused by the jump. Specifically is the average of the relative jump size μ.  

When μ is negative, this means that we expect more negative jumps from positive. 

How much more depends on how far from the zero we are. When the relative jump 

size is positive, we expect the reverse. In the special case where the jump size of 

positive and negative jumps is equal, the value of this parameter is zero. In the 

literature, we have found prices from -1 until 1 which means from -100% until 100%.  

Realistic, in our investigation we have used the values -0,5, 0, 0,5 respectively for the 
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different figures so as showing what happened to the skew and to the option prices, in 

its case. To be more specific, when we say that the relative jump size is -0,5, this 

means that the underlying’s price will decrease at the half of its value. The last 

parameter for Merton’s model is the standard deviation of the jump size δ which takes 

positive values and is measured by percentage. For this parameter, we have taken 

some representative values from the literature.  

Kou’s model has some parameters, too. The first one is p which is the probability of 

upward jumps. As a concomitant q=1-p is the probability of downward jumps. The 

values which we have taken for these probabilities are from zero up to one. For 

example when p=0,4 there is 40% probability to happen upward jumps. Moreover, as 

in Merton’s model the average number of jumps which will happen per year are 

described from the jump intensity λ of the Poisson’s distribution. Consequently, takes 

the same values. Any longer, the average size of the upward jumps 
 

  
 takes values 

less from one. This happens because      to ensure that the average upward jump 

cannot exceed 100%, which is quite reasonable. Respectively, 
 

  
 is the average size of 

the downward jumps which is positive. We take three pairs of values, which include 

the case that the average size for the upward jumps is bigger from the respective for 

the downward jumps, the conversely and the case where these are equal. The prices 

that we have found in the literature are fluctuated from 5 until 15.  

Finally, in Heston’s model we consider four parameters, the correlation between 

volatility of the asset and the log-returns (ρ), the volatility of the variance (σ), the 

mean reversion speed for the variance (κ) and the long-run variance (θ). The first one, 

always takes a value between -1 and 1. This means that a positive indicates a positive 

association between the volatility of the asset and the log-returns, while a negative 

correlation indicates a negative association between them. In our investigation we 

have taken the values -0,5, 0 and 0,5  for showing the effects on option prices in each 

case, respectively. The volatility of the variance is always positive and is measured as 

a percentage. According to the literature we have chosen the most representative 

values like 10% or 20%. Similarly, the long-run variance is positive but because is 

appertains a big interval of time is smaller than the volatility of the variance.  
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SECTION 4 

 

4.1 PRICING AND HEDGING IN INCOMPLETE MARKETS 

 

Complete market means that any option can be perfectly replicated by a self-financing 

strategy involving the underlying and cash. In such markets, options are redundant. 

For that reason they are perfectly substitutable by trading in the underlying so the very 

existence of an options market becomes a mystery. Of course, in real markets hedging 

is not possible and options enable market participants to hedge risks that cannot be 

hedged by trading in the underlying only. Options thus allow a better allocation and 

transfer of risk among market participants, which was the purpose for the creation of 

derivatives market in the first place. 

The Black-Scholes arbitrage portfolio under continuous trading has zero-risk due to 

continuous hedging. However under discrete trading conditions we introduce some 

risk since the market moves between trades. The portfolio risk has the order of the 

trading interval length and thus the risk will be to zero as the interval tends to zero. 

Therefore provided the time interval between trades is not too large, the error between 

the Black-Scholes price and the realistic discrete trading price will not differ by much. 

The Black-Scholes model is not valid though, even if we trade in the continuous limit, 

if the stock price dynamics do not have a continuous sample path. The Black-Scholes 

formula is valid if the stock price can only change by a small amount over a small 

interval of time and if one uses upper bounds for volatility to price and hedge 

contingent claims. Again empirical studies show that this is not the case and a more 

sophisticated model of the underlying stock price is required. Market returns are 

generally leptokurtic meaning the market distribution has heavier tails than a normal 

distribution. The model should permit large random fluctuations such as crashes or 

upsurges. The market distribution is generally negatively skewed since downward 

outliers are usually larger than upward outliers. On the other hand, the upper bound 

for volatility in a model with jumps is infinity. In other words, the only way to 

perfectly hedge a call option against jumps is to buy and hold the underlying asset. 

This remark, shows that when you move from diffusion-based on complete market 
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models to more realistic models, the concept of replication, which is the central in 

diffusion models, does not provide the right framework for hedging and risk 

management. 

In discontinuous price models, the nonexistence of a perfect hedge is not a market 

imperfection but an imperfection of complete market models. In model with jumps, 

riskless replication is an exception rather than the rule. Any hedging strategy has a 

residual risk which cannot be hedged away to zero and should be taken into account 

in the exposure of the portfolio. This offers a more realistic picture of risk 

management of option portfolios.  

On the other hand, in stochastic volatility models there exists the impossibility of 

perfectly hedging options with the underlying. However in diffusion-based stochastic 

volatility models completeness can be restored by adding a single option to the set of 

available hedging instruments. After that, stochastic volatility models recommend 

setting up a perfect hedge by trading dynamically in the underlying and one option.  

4.2 CHANGE OF MEASURE 

 

To begin with the Girsanov theorem provides the general framework for transforming 

one probability measure into another equivalent. The theorem covers the case of 

Brownian motion. Hence, the state space is continuous and the transformations are 

extended to continuous-time stochastic processes. The probabilities so transformed as 

equivalent because they assign positive probabilities to the same domains. Although 

the two probability distributions are different, with appropriate transformation one can 

always recover one measure from the other. Since such recoveries, are always 

possible, we may want to use the convenient distribution for our calculations, and 

then if desired, switch back to the original distribution. Accordingly, if we have to 

calculate an expectation and if this expectation is easier to calculate with an 

equivalent measure may not be the one that governs the true states of nature. After all, 

the purpose is not to make a statement about the odds of various states of nature. The 

purpose is to calculate a quantity in an convenient fashion. So, the general method can 

be summarized as follows: (1) We have an expectation to calculate. (2) We transform 
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the original probability measure so that the expectation becomes easier to calculate. 

(3) We calculate the expectation under the new probability. (4) Once the result is 

calculated and if desired, we transform this probability back to the original 

distribution. In our investigation we have observed that in diffusion processes change 

only the drift. A simple example which we can provide is with a Wiener process in a 

fixed time horizon T. Let φ is an adapted process and define the process L by 

 
           

    
   (4.1) 

Assume that          and define a new measure Q on    by 

                     . Then Q<<P and the process   , defined by 

                (4.2) 

  
            

 

 
 is Q-Wiener. We can also write this as            

  . 

Reliant on this suppose that you have a process X with P dynamics 

where μ and σ are adapted and W is P-Wiener. We now do a Girsanov transformation 

as above, and the question is what the Q-dynamics look like. From Girsanov’s 

theorem we have:  

            
     (4.3) 

And substituting this into the P dynamics we obtain the Q dynamics as   

                      
     (4.4)  

So, now we can observe, clearly that the drift changed but the diffusion is unaffected. 

Furthermore, we consider one more example, in order to show how we get from the 

one probability measure to another. Fix t and consider a normally distributed random 

variable          . Denote the density of    by f(    and the implied probability 

measure by P such that 

       
 

   
  

 
 
    

 

          

In this example, the state space is continuous, although we are still working with a 

single random variable, instead of a random process. Next, define the function  

           
 

 
  

 (4.6) 
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When we multiply       by       , we obtain a new probability, This can be seen 

from the following: 

                
 

   
  

 

 
    

      
 

 
      (4.7) 

After grouping the terms in the exponent, we obtain the expression  

        
 

   
  

 

 
      

 

   (4.8) 

Clearly,         is a new probability measure, defined by  

 

                    (4.9) 

By sampling reading from the density, we see that        is the probability associated 

with a normally distributed random variable mean μ and variance 1. It turns out that 

by multiplying        by the function       and then switching to    , we succeeded 

in changing the mean of   . Note that in this particular case the multiplication by 

      preserved the shape of the probability measure. In fact  

        
 

   
  

 

 
      

 

   (4.10) 

is still a bell-shaped, Gaussian curve with the same variance. But       and        are 

different measures. They have different means and they assign different weights to 

intervals on the z-axis. Under the measure       the random variable    has mean 

zero,          and the variance,      
    . However, under the new probability 

measure,        ,    has mean         . The variance is unchanged. What we have 

just shown is that there exists a function       such that if we multiply a probability 

measure by this function, we get a new probability. The resulting random variable is 

again normal but has a different mean. Finally the transformations of measures,  

                    (4.11) 

Which changed the mean of the random variable     is reversible: 
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                 (4.12) 

The transformation leaves the variance of    unchanged and is unique, given μ and σ.  

 

The left side shows a Wiener process with negative drift under a canonical measure P. 

On the right side each path of the process is colored according to its likelihood under 

the martingale measure Q. The density transformation from P to Q is given by the 

Girsanov theorem. 

 

 

 

  

http://en.wikipedia.org/wiki/Wiener_process
http://en.wikipedia.org/wiki/Likelihood
http://en.wikipedia.org/wiki/Martingale_%28probability_theory%29
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SECTION 5 MERTON’S MODEL 

5.1 THE FORMULA 

 

The first Jump Diffusion model (MJD) was introduced by Robert Merton in 

1976. In MJD model, changes in the asset price consist of normal (continuous 

diffusion) component that is modeled by a Brownian motion with a drift process and 

abnormal (discontinuous, i.e. jump) component that is modeled by a compound 

Poisson process. Asset price jumps are assumed to occur independently and 

identically as we have already reported above. The probability that an asset price 

jumps during a small time interval can be written using a Poisson process     as:  

Pr {an asset price jumps once in dt} = Pr{        =λdt+O(dt)  

Pr {an asset price jumps more than once in dt} = Pr{      }=0+O(dt)   

Pr {an asset price does not jump in dt} = Pr{      }=1-λdt+O(dt)  (5.1) 

where the parameter λϵR
+
 is the intensity of the jump process (the mean number of 

jumps per unit of time) which is independent of time t and O(dt) is the asymptotic 

order symbol defined by ψ(dt)=O(dt) if                  . 

Suppose in the small time interval dt the asset price jumps from   to      (we call   as 

absolute price jump size). So the relative price jump size (i.e. percentage change in 

the asset price caused by the jump) is 

   

  
 

       

  
      (5.2) 

where Merton assumes that the absolute price jump size    is a nonnegative random 

variables drawn from lognormal distribution, i.e. ln(               
  . This in turn 

implies that Ε(        
 

 
  

 and E          
        

 
   

 
    (5.3) 
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 This is because if lnx~N(α,β) then x~Lognormal(   
 

 
        

 
   

 
     (5.4) 

Merton Jump Diffusion dynamics of asset price which incorporates the above 

properties takes the SDE of the form:  

   

  
                             (5.5) 

where α is the instantaneous expected return on the asset, σ is the instantaneous 

volatility of the asset return conditional on that jump does not occur,     is a standard 

Brownian motion process, and is an Poisson process with intensity λ. The proof of 

equation (5.5) is presented in Appendix A2. Standard assumption is   ,    and     are 

independent. The relative price jump size of   ,      is lognormally distributed with 

the mean E            
 

 
       and the variance Ε                  

     
 
   

 
   . Merton assumes that the absolute price jump size   is a lognormal 

random variable such that:  

                      
  

 
 
        

 
   

 
      

This is equivalent to saying that Merton assumes that the relative price jump size is a  

     lognormal random variable such that:  

                             
 
 
          

 
   

 
      

This is equivalent to saying that Merton assumes that the log price jump size is a 

normal random variable such that:  

                        
   



Πα
νε
πι
στ
ήμ
ιο 
Πε
ιρα
ιώ
ς23 

 

This is equivalent to saying that the log-return jump size ln(
    

  
) is a normal random 

variable such that: 

ln(
    

  
)=                         

   

It is extremely important to note that: 

E            
 

 
        E            (5.6) 

because ln E          E          = E         

The expected relative price change E[
   

  
] from the jump part    , in the time interval 

dt is λκdt since E           = E              =κλdt. This is the predictable part 

of the jump. This is why the instantaneous expected return on the asset αdt is adjusted 

by –λκdt in the drift term of the jump-diffusion process to make the jump part an 

unpredictable innovation: 

E[
   

  
]=E[(α-λκ)dt]+E[σd                  (5.7) 

E[
   

  
]=(α-λκ)dt+0          (5.8) 

If    =0, then the return dynamics would be identical to those posited in Black and 

Scholes(1973). The model described to (1.1) can be rewritten and expands as follows: 

  

 
  

                                                               
                                               

 (5.9) 

If there is a jump (        then S immediately goes to the value JS. We can model 

a sudden 10% fall in the asset price by J=0,9.  
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5.2 PDE Approach by hedging 

 

Merton derived a pricing formula for a European option on the asset S under the 

Merton jump diffusion model. He used a delta-hedging argument similar to that used 

by Black and Scholes in the derivation of the call option pricing formula under 

geometric Brownian motion. When the underlying can jump to any level, the market 

is not complete, since there are more states than assets. In incomplete market there are 

many possible choices for a risk-neutral measure, but Merton choose    obtained as 

in the Black Scholes model by changing the drift of the Wiener process but leaving 

the other ingredients unchanged. Also, proposed that the risk-neutral process be 

determined by two considerations: 

i. it has the same volatility and jump statistics 

ii. under the risk-neutral       is a martingale. 

A process (  ) is said to be a martingale if X is nonanticipating (adapted to   ), E     

is finite for any t       and for any s                 In other words, the best 

prediction of a martingale’s future value is its present value.  

Merton justified this choice by assuming that jump risk is diversifiable, therefore, no 

risk premium is attached to it. In other words, assume that the extra randomness due 

to jumps can be diversified away. If no jump occurs in the asset price then the only 

risk in the asset evolution comes from the Wiener process     Consider a portfolio P 

of the one long option position V(      on the underlying asset S written at time t and 

a short position of the underlying asset in quantity Δ to derive option pricing formula 

in the presence of jumps: 

                        (5.10) 

Portfolio value changes by in very short period of time: 
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                      (5.11) 

Merton jump diffusion model dynamics of an asset price is given the equation in the 

differential form as: 

   

  
                         (5.12) 

                                     (5.13) 

It   formula for the jump-diffusion process is given as (Cont and Tankov (2004)): 

         
        

  
     

        

  
 

  
 

 

         

   
     

        

  
                              (5.14) 

Where the    corresponds to the drift term and     corresponds to the volatility term of 

a jump-diffusion process          
 

 
         

 

 
     

  
    Apply this to our 

case of option price function       : 

d         
  

  
           

  

   
   

  
   

 

 

   

   
       

  

   
                             (5.15)                                                                                               

The term                        describes the difference in the option value when 

a jump occurs. Now the change in the portfolio value can be expressed as by 

substituting (1.5) and (1.6) into (1.4): 

                                     (5.16) 

    
  

  
           

  

   
   

  
   

 

 

   

   
       

  

   
               

                                                (5.17) 

     
  

  
         

  

   
 

  
   

 

 

   

   
                   

  

   
          

                                                                 (5.18)                                    
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If there is no jump between time 0 and t (i.e.         the problem reduces to Black-

Scholes case in which setting Δ=
  

   
 makes the portfolio risk-free leading to the 

following (i.e. the randomness     has been eliminated): 

     
  

  
         

  

   
 

  
   

 

 

   

   
  

  

   
                

  

   
 

  

   
                 (5.19) 

     
  

  
 

  
   

 

 

   

   
      (5.20) 

This in turn means that if there is a jump between time 0 and t (i.e.       , setting 

Δ=
  

   
, does not eliminate the risk. Suppose we decided to hedge the randomness by 

diffusion part    , in the underlying asset price and not to hedge the randomness 

caused by jumps    (which occur infrequently) by setting Δ=
  

   
 . Then the change in 

the value of the portfolio is given from equation: 

     
  

  
         

  

   
 

  
   

 

 

   

   
  

  

   
                

  

   
 

  

   
                           

  

   
                     (5.21)  

     
  

  
 

  
   

 

 

   

   
                         

  

   
                      (5.22) 

In Merton’s model an approach that is presented is that if the source of jumps is such 

information, then the jump component of the stock’s return will represent non-

systematic risk. I.e. the jump component will be uncorrelated with the market. Merton 

makes the assumption that the risk associated with the jumps in the asset is 

diversifiable since the jumps in the individual asset price are uncorrelated with the 

market as a whole, in other words the risk is diversifiable (non-systematic) therefore 

the beta of this portfolio is zero. Hence, Merton’s model has not risk premium. 

Furthermore, another approach to the pricing problem in Merton’s model is that we 

assume that the Capital Asset Pricing model was a valid description of equilibrium 

security returns. For that reason if the Capital Asset Pricing model holds, then the 
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expected return on all zero-beta securities must equal the riskless rate. Merton’s 

formula was deduced from the twin assumptions that we have already depicted. 

Although, there have been no empirical studies of the correlation between the jump 

component of stocks returns and the market return. So one can hardly claim strong 

empirical evidence to support these assumptions. If this is the case then the Capital 

Asset Pricing Model (CAPM) says the jump terms offer no risk premium and the asset 

still grows at the risk free rate: 

E[   ]=r                                                                                  (5.23) 

After substitution by setting Δ=
  

   
: 

E[ 
  

  
 

  
   

 

 

   

   
                        

  

   
            ]=r              dt  

 
  

  
 

  
   

 

 

   

   
                          

  

   
              ]= 

r         
  

   
    dt 

 
  

  
 

  
   

 

 

   

   
                          

  

   
            = 

r         
  

   
    dt 

  

  
 

  
   

 

 

   

   
                        

  

   
         = 

r         
  

   
     

Thus, the Merton’s jump-diffusion model counterpart of Black-Scholes PDE is: 
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      (5.24) 

where the term                      involves the expectation operator and 

E            
 

 
       (which is the mean of relative asset price jump size). 

Obviously, if jump is not expected to occur (i.e. λ=0), this reduces to Black-Scholes 

PDE: 

  

  
 

  
   

 

 

   

   
   r         

  

   
      (5.25) 

The assumption of diversifiability of jump risk that Merton’s does is not justifiable if 

we are pricing index options, because a jump in the index is not diversifiable. 

All these, show that in models with jumps, contrarily to diffusion models, a pricing 

measure cannot be simply obtained by adjusting the drift coefficient μ. This choice 

means that we are not pricing the risk due to jumps and has implications that are not 

difficult to justify in terms of risk premia and hedging.  

Merton’s simple assumption that the absolute price jump size is log normally 

distributed makes it possible to solve the jump-diffusion PDE to obtain the following 

price function of European options as a quickly converging series of the form: 

 
 

  
 
      

      
         

 
              (5.26) 

where  

                                             (5.27) 

  
     

   

   
                                         (5.28) 
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 (5.29) 

and VBS is the Black-Scholes formula for the option value in the absence of jumps. 

Thus, Merton’s jump-diffusion model can be interpreted as the weighted average of 

the Black-Scholes price conditional on that the underlying asset price jumps i times to 

the expiry with weights being the probability that the underlying jumps i times to the 

expiry. To perform Merton’s jump-diffusion model we have to make a numerical 

issue. The infinite sum in equation is truncated to j=10 following standard practice. 

Ball and Torous (1985) have found that this truncation provides accurate maximum-

likelihood estimates.  

5.3 EFFECT OF PARAMETERS 

 

As we have already mentioned jump diffusion models provide an explanation of the 

implied volatility smile phenomenon since in these models the implied volatility is 

both different from the historical volatility and changes as a function of strike and 

maturity. Below figures, show possible implied volatility patterns (as a function of 

strike) in the Merton jump diffusion model. 
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Figure 1: implied volatilities of call options on S&P 500 as a function of their strikes 

for different values of the mean jump size in Merton jump diffusion model. Other 

parameters: volatility=0,22%, jump intensity λ=0,09 jump standard deviation δ=0,7, 

option maturity=1 month. 

 The mean jump is the expected average value of jump’s size and as we can 

observe determines the sign of skewness. When the mean jump is negative, the 

skewness is negative.  

 When the mean jump size is positive the pitch of the straight’s line is positive.  

 The mean jump size is zero, then we have a volatility smile. This happens 

because in that case we expect that the size of the positive jumps will be equal 

with the size of negative jumps.  

 In the money option’s price decrease as jump size increases, because in this 

case the volatility decreases.  

 For at the money options when jump size is -0,5 or zero, the volatility does not 

change, so as does not affect and the call option’s price. But, as the jump size 

increases from zero the call price increases too, for the at the money options.  

 Finally, for out of the money options as the average jump size increases, out of 

the money options become more expensive.   

The figure below show the effects of jump’s intensity different prices to the options 

pricing with implied volatility graph. 
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Figure 2: implied volatilities of call options on S&P 500 as a function of their strikes 

for different values of the jump intensity in Merton jump diffusion model. Other 

parameters: volatility=11%, jump size μ=-0,5, jump standard deviation δ=0,7, option 

maturity=1 month. 

 In figure 2, because the mean jump size is negative, we have negatively 

skewness as we can observe. Also, the in the money call options depict that 

they have large sensitivity to the jump intensity. As the probability to occur a 

jump is bigger the volatility increases. This happens because as the probability 

increases, the underlying’s variance gets bigger, so the volatility increases. 

  The large volatility for in the money options increases their price.  

 At the money options have smaller sensitivity to jump intensity and at out of 

the money options we expect big volatility, so the impact of the jump 

intensity’s it is not important and does not change the effect. 

The figure below show the impact of jump’s size different prices to the options 

pricing with implied volatility graph.  
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Figure 3: implied volatilities of call options on S&P 500 as a function of their strikes 

for different values of the jump standard deviation in Merton jump diffusion model. 

Other parameters: volatility=11%, jump intensity=0,09, jump size μ=-0,5, option 

maturity=1 month. 

 Jump standard deviation does not affect neither of the straight line’s pitch and 

skewness. It changes the smile’s deepness.  

 As jump standard deviation increases, the figure is closer to volatility smile. 

 In the money and out of the money options are both more expensive when 

jump standard deviation increases due to the fact that implied volatility 

increases. The effect at the out of the money options is bigger.  
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SECTION 6 KOU MODEL 

6.1 THE FORMULA 

 

We have already seen how are changed the prices on Merton’s model with the 

different values of the parameters, where jumps size are normally distributed. Now we 

consider the case where jumps size is double exponential distributed with Steven’s 

Kou model. All the models in finance world are rough approximations of reality. We 

can refer that they are all wrong. For these reasons, we will consider the cause for 

choosing Steven’s Kou model. In general, a model must be internally self-consistent. 

This means that a model must be arbitrage-free and can be embedded in an 

equilibrium setting. Some alternative models may have arbitrage opportunities, and 

thus are not self-consistent. The double exponential jump-diffusion model can be 

embedded in a rational expectations equilibrium setting. Moreover, Steven’s Kou 

model is able to reproduce the leptokurtic feature of the return distribution and the 

volatility smile observed in option prices. In addition, the empirical tests performed in 

Ramezani and Zeng (1999) suggest that the double exponential jump-diffusion model 

fits better than the normal jump-diffusion model. However, we should emphasize that 

empirical tests should not be used as the only criterion to judge a model good or bad. 

Empirical tests tend to favor models with more parameters. However, models with 

many parameters tend to make calibration more difficult and tend to have less 

tractability. This is a part of the reason why practitioners still like the simplicity of the 

Black-Scholes model. A model must be simple enough to be amenable to 

computation. Like the Black-Scholes model, the double exponential jump-diffusion 

model not only yields closed-form solutions for standard call and puts options, but 

also leads to a variety of closed-form solutions for path-dependent options, such as 

barrier options, lookback options, and perpetual American options. At last, a model 

must have some interpretation. One motivation for the double exponential jump-

diffusion model comes from behavioral finance. It has been suggested from extensive 

empirical studies that the markets tend to have both overreaction and underreaction to 

various good or bad news. One may construe the jump part of the model as the market 

response to outside news. More precisely, in the absence of outside news the asset 

price simply follows a geometric Brownian motion. Good or bad news arrives 

according to a Poisson process, and the asset price changes in response according to 
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the jump size distribution. The double exponential has a high peak and heavy tails. 

For that reason, it can be used to model both the overreaction (attributed to the heavy 

tails) and underreaction (attributed to the high peak) to outside news. We can also 

refer, that the model suggests that the fact of markets having both overreaction and 

underreaction to outside news can lead to the leptokurtic feature of asset return 

distribution. The model is simple. The logarithm of the asset price is assumed to 

follow a Brownian motion plus a compound Poisson process with jump sizes double 

exponentially distributed. For that reason the parameters in the model can be easily 

interpreted, and the analytical solutions for option pricing can be obtained. The 

behavior of the asset    under the risk-neutral probability is modeled as follows: 

     

     
                  

    
       (6.1) 

where W(t) is a standard Brownian motion, N(t) is a Poisson process with rate λ, and 

     is a sequence of independent identically distributed (i.i.d) nonnegative random 

variables such that Y=log(V) has an asymmetric double exponential distribution with 

the density 

           
                

                          (6.2) 

where p,q          represent the probabilities of upward and downward jumps. 

In other words, 

log(V)=Y  
                     

                      
  

where    and    are exponential random variables with means 1/   and 1/  , 

respectively, and the notation = means equal in distribution. In the model, all sources 

of randomness, N(t), W(t), and Y are assumed to be independent. For notational 

simplicity and in order to get analytical solutions for various option-pricing problems, 

the drift μ and the volatility σ are assumed to be constants and the Brownian motion 
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and jumps are assumed to be one dimensional. If we solve the stochastic differential 

equation gives the dynamics of the asset price: 

                
 

 
              

    
   (6.3) 

Note that E(Y)=
 

  
 

 

  
, Var(Y)=pq(

 

  
 

 

  
    

 

   
 

 

   
             

E(V)=E(  )=q
  

    
  

  

    
,                   

The requirement      is needed to ensure that E(V)<  and E(S(t))<.  It 

essentially means that average upward jump cannot exceed 100% which is quite 

reasonable. There are two interesting properties of the double exponential distribution 

that are crucial for the model. First, it has the leptokurtic feature of the jump size 

distribution which is inherited by the return distribution. Also, as we have already 

referred before this distribution has a unique feature of the double exponential 

distribution. This special property explains why the closed-form solutions for various 

option-pricing problems, including barrier, lookback, and perpetual American options, 

are feasible under the double exponential jump-diffusion model while it seems 

impossible for many other models, including the normal jump-diffusion model 

(Merton’s model). 

The expected price of a European option, with the payment    at the maturity T, is 

given by  

                                    (6.6) 

To compute one has to know the sum of the double exponential random variables. 

Fortunately, this distribution can be obtained in closed form in terms of the Hh 

function, a special function of mathematical physics. 

For every n≥0, the Hh function is a no increasing function defined by: 
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 (6.7) 

          
  

                                    (6.9) 

The Hh function can be viewed as a generalization of the cumulative normal 

distribution function. The integral in the above relation can be evaluated very fast by 

many software packages as Matlab. 

A three-term recursion is also available for the Hh function as below: 

                                        

Therefore, one can compute all           , by using the normal density function 

and normal distribution function. For any given probability P, define: 

                                               (6.11) 

where                 
    
    , Y has a double exponential distribution with 

density            
                

           and N(t) is a Poisson process 

with rate λ. The pricing formula of the call option will be expressed in terms of Y, 

which in turn can be derived as a sum of Hh functions. An explicit formula for Y is 

                               
 
     

  
 

     
   
 
               

  
    

               
 

   
         

 
     

  
 

     
   
 
               

  
    

               
 

   
              

    

   
                           (6.12) 

where             
   

    
     

 
   

  

     
 
   

 
  

     
               (6.13) 

            
   

    
     

 
   

  

     
 
   

 
  

     
           (6.14) 



Πα
νε
πι
στ
ήμ
ιο 
Πε
ιρα
ιώ
ς37 

 

   
      

  
 (6.15) 

1                       and   
 
  is defined to be one. 

Moreover, for option pricing it is important to evaluate the integral  

                                
 

 
 for arbitrary constants a, c and β. 

We have two cases. The first is if β           then for all n      

            
   

 
  

 

 
 
   

 
              

 

 
 
      

 
 
  

 
 

  

           
 

 
  (6.16) 

If β          , then for all n      

            
   

 
  

 

 
 
   

 
              

 

 
 
      

 
 
  

 
 

  

          
 

 
 (6.17) 

So a European call price is given from the equation above: 

          
 

 
                          

 

    
               

 

 
                      

 

    
     

(6.18) 

where    
 

   
 

  

    
                              

               
   

    
 

   

    
   (6.19) 

The price of the corresponding put option can be obtained by the put-call parity: 

               under risk-neutral measure. 
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6.2 CHANGE OF MEASURE 

 

As we have already referred, Girsanov theorem helps us to transform one probability 

measure into another probability measure in more complicated issues. In general, a 

representative investor tries to solve a utility maximization 

problem                   
 

 
 , where           is the utility function of the 

consumption process c(t). The investor has the opportunity to invest in a security 

which pays no dividends. Moreover, there is an exogenous endowment process, 

denoted by δ(t), which is available to the investor. If δ(t) follows Markovian process, 

the rational expectation equilibrium price p(t) must satisfy the Euler equation 

     
                    

          
                        (8) where    is the partial derivative 

of U with respect to c. At this price p(t), the investor will never change his/her current 

holdings to invest in (either long or short) the security, even though he/she has the 

opportunity to do so. The fact that we are interested in is when the endowment 

process δ (t) follows a general jump-diffusion process under the physical measure P: 

     

     
                             

        (6.20) 

where the       any independent identically distributed, nonnegative random 

variables. In addition, all three sources of randomness, the Poisson process N(t), the 

standard Brownian motion      , and the jump sizes    are assumed to be 

independent. The most important part of this situation is that the asset price p(t) and 

the δ(t) must follow the same jump-diffusion process and that because may not have 

the similar jump dynamics. Steven Kou thinks that the asset pays no dividends and 

there is an outside endowment process contrary with Naik and Lee who require that 

the asset pays continuous dividends and there is not an outside endowment process. 

Moreover, Steven Kou for showing the rational equilibrium price of a European 

option and the change of probability measure used a simple utility function of the 

special forms            
  

 
 if 0<α<1, and                    if α=0, where 

θ>0. Even though Kou chose a simple utility function, most of the results below hold 

for more general utility functions. So, in this case the rational expectations 

equilibrium price of (1) becomes  
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         (6.21) 

An assumption that Kou makes is that the discount rate θ should be large enough so 

that  

           
 

 
  

               
     (6.22) 

where the notation   
    means   

              . This assumption guarantees 

that in equilibrium the term structure of interest rates is positive. Below we consider 

the reason which this happen. Suppose that   
       . In this economy the risk-free 

interest rate is constant. B(t,T) be the price of a zero coupon bond with maturity T, the 

yield r:=-(1/(T-t))log(B(t,T)) is a constant independent of T, 

            
 

 
  

               
        (6.23) 

Also, let                                    . Then     is a martingale under 

P, 

     

     
     

                             
   

       
    (6.24) 

Using     , one can define a new probability measure   : 
   

  
          . Under 

  , the Euler equation holds if and only if the asset price satisfies  

                         (6.25) for any T        

Furthermore, the rational expectations equilibrium price of a European option, with 

the payoff   (T) at the maturity T, is given by 

  (t)=  
                    for any t       (6.26) 
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Now, if we have the endowment process δ(t), it must be decided what stochastic 

processes are suitable for the asset price S(t) to satisfy the equilibrium requirement . 

According to Steven Kou we take a special jump-diffusion form for S(t)  

     

     
                                          

           
  (6.27) 

Where      is a Brownian motion independent of        In other words, the same 

Poisson process affects both the endowment δ(t)  and the asset price S(t), and the 

jump sizes are related through a power function, where the power β        is an 

arbitrary constant. The diffusion coefficients and the Brownian motion part of δ(t) and 

S(t), though, are totally different. It remains to determine what constraints should be 

imposed on this model so that the jump-diffusion model can be embedded in the 

rational expectations equilibrium requirement (6.23) or (6.25).  

Now, suppose that   
                 

       . The model (6.27) satisfies the 

equilibrium requirement (6.26) if and only if  

                  
          

                  
 

 
  

                
        

(6.28) 

If (14) is satisfied, then under    

     

     
             

 
                     

 
       

     (6.29) 

Here, under   ,       is a new Brownian motion, N(t) is a new Poisson process with 

jump rate          
   

      
          and       are independent identically 

distributed random variables with a new density under   : 

   
     

 

  
       

             For the proof see Appendix A. □ 
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6.3 EFFECT OF PARAMETERS 

 

 

Figure 4: implied volatilities of call options on S&P 500 as a function of their strikes 

for different values of the jump intensity in Kou’s jump diffusion model. Other 

parameters: volatility=11%, p=0,4              and option maturity=1 month. 

As we can observe the implied volatility graph is very close to the implied volatility 

graph of Merton’s model. This is true and expected, as both models are jump 

diffusion models and λ is the jump intensity of Poisson’s distribution.  

 As λ increases, we can observe that is assigned the kurtosis. The implied 

volatility increases in all cases but at out of the money the effect is smaller 

than in the money options. However, since the implied volatility increases, the 

price of the options increases, too. 
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Figure 5: implied volatilities of call options on S&P 500 as a function of their strikes 

for different values of the jump intensity in Kou’s jump diffusion model. Other 

parameters: volatility=11%, p=0,4  λ=1, and option maturity=1 month. 

 These parameters change the skewness similarly with the average jump size 

which have already considered in Merton’s model. 

 When       the average upward jumps size seems to be smaller than the 

average downward jumps size. So, this case corresponds negative skewness 

like as μ<0 in Merton’s model. 

 When          the average upward jumps size seems to be bigger than the 

average downward jumps size. So, this case corresponds positive skewness 

like as μ>0 in Merton’s model. 

 When       the average upward jumps size is equal to the average 

downward jumps size. So, this case corresponds volatility smile like as μ=0 in 

Merton’s model. 
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SECTION 7 HESTON MODEL 

7.1 THE FORMULA 

In finance, the Heston model, named after Steven Heston is a mathematical model 

describing the evolution of the volatility of an underlying asset. It is a stochastic 

volatility model which means that the volatility of the asset is not constant, nor ever 

deterministic, but follows a random process. Today is one of the most widely used 

stochastic volatility models. 

The basic Heston model assumes that    , the price of the asset is determined by a 

stochastic process: 

                  
       

                     
       

   
    

           

where                     are the price and volatility processes, respectively, and 

   
  
   

,    
  
   

 are correlated Brownian motion processes. The six parameters of 

the model are: 

μ: the drift of the process of the stock 

κ: the mean reversion speed for the variance, κ>0 

θ: the long run variance, θ>0 

σ: the volatility of the variance, σ>0 

ρ: the correlation between volatility of the asset and log-returns 
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  : the initial (time zero) level of the variance (current variance) 

The reasons for choosing such a form for a detailed empirical analysis are 

mathematical, empirical and economic. 

Empirical studies have shown that an asset’s log-return distribution is non-Gaussian. 

It is characterized by heavy tails and high peaks (leptokurtic). Moreover, there are 

economic arguments and empirical evidence that suggest that equity returns and 

implied volatility are negatively correlated. This departure plagues the Black-Scholes-

Merton model with many problems.  

In contrast, Heston’s model can imply a number of different distributions. ρ, which 

can be interpreted as the correlation between the log-returns and volatility of the asset, 

affects the heaviness of the tails. Intuitively, if ρ>0, then volatility will increase as the 

asset price/return increases. This will spread the right tail and squeeze the left tail of 

the distribution creating a fat right-tailed distribution. Conversely, if ρ<0, then 

volatility will increase when the asset price/return decreases, thus spreading the left 

tail  and squeezing the right tail of the distribution creating a fat left-tailed distribution 

(emphasizing the fact that equity returns and its related volatility are negatively 

correlated). ρ, therefore, affects the skewness of the distribution. 

In the Black-Scholes-Merton model, a contingent claim is dependent on one or more 

tradable assets. The randomness in the option value is solely due to the randomness of 

these assets. Since the assets are tradable, the option can be hedged by continuously 

trading the underlying. This makes the market complete, every contingent claim can 

be replicated. 

In a stochastic volatility model, a contingent claim is dependent on the randomness of 

the asset           and the randomness associates with the volatility of the asset’s 

return         . Only one of these is tradable, the asset. Volatility is not a traded asset. 

This renders the market incomplete and has many implications to the pricing of 

options.  
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7.2 PDE APPROACH BY HEDGING 

 

Now we will explain how to derive the partial differential equation from the Heston 

model. This derivation is a special case of a PDE for general stochastic volatility 

models. Form a portfolio consisting of one option U=U(S,V,t) Δ units of the stock S, 

and φ units of another option U=U(S,V,t) that is used to hedge the volatility. The 

portfolio has value 

Π=U+ΔS+φu 

Where Π=  . Assuming the portfolio is self-financing, the change in portfolio value 

is  

dΠ=dV+ΔdS+φdU 

We use Ito’s Lemma to dV. We must differentiate with respect to the variables t,S,V. 

Hence, 

dV=
  

  
   

  

  
   

  

  
   

 

 
   

   

   
   

 

 
   

   

   
       

   

    
   (7.4) 

since             
                                     

   
  

      We have used the fact that      =0 and d  
       

       Applying 

Ito’s Lemma to dV produces the identical result, but in V 

dU=
  

  
   

  

  
   

  

  
   

 

 
   

   

   
   

 

 
   

   

   
       

   

    
  (7.5) 

Combining these two expressions, we can write the change in portfolio value, dΠ, as  

dΠ=dV+ΔdS+φdU 
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     = 
  

  
 

 

 
   

   

   
 

 

 
   

   

   
     

   

    
      

  

  
 

 

 
   

   

   
 

 

 
   

   

   
 

    
   

    

    

 
  

  
  

  

  
       

  

  
  

  

  
         (7.6) 

In order for the portfolio to be hedged against movements in the stock and against 

volatility, the last two terms in equation (7.6) involving dS and dV must be zero. This 

implies that the hedge parameters must be 

   

  
  
  
  

       

    
  

  
 

  

  
   (7.8) 

Moreover, the portfolio must earn the risk free rate r. Hence  

dΠ=rΠdt=r(V+ΔS+φV)dt. (7.9) 

Now with the values of φ and Δ from equation (7.6) the change in value of the riskless 

portfolio is dΠ = 
  

  
 

 

 
   

   

   
 

 

 
   

   

   
     

   

    
    

   
  

  
 

 

 
   

   

   
 

 

 
   

   

   
     

   

    
      (7.10) 

Which we write as dΠ=(Α+φB)dt   (7.11) 

Hence we have A+φΒ=r(V+ΔS+φV) 

Substituting for φ and re-arranging, produces the equality 
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The left-hand of equation (7.12) is a function of V only, and the right-hand side is a 

function of U only. This implies that both sides can be written as a function f(S,V,t) of 

S,V and t. According to Heston’s model, specify this function as f(S,V,t)=     

                            is the market price of volatility risk. Heston assumes 

that the market price of volatility risk is proportional to volatility, 

             for some constant k 

            =λ(S,V,t)    (7.13) 

say, λ(S,V,t)    therefore represents the market price of volatility risk and must be 

independent from the particular asset. This parameter appears in the pricing formula 

and hence needs to be approximated. This is no easy task as it well known that the 

market price of volatility risk is nearly impossible to estimate. This problem is 

overcome due to the parametric nature of the model and the existence of a closed-

form solution. 

Write the left-hand side of equation (7.12) as  

       
  

  
  

  

                  (7.14) 

Substitute for A and rearrange to produce the Heston PDE expressed in terms of the 

price S 

  

  
 
 

 
   

   

   
 
 

 
   

   

   
     

   

    
      

  

  
                  

  

  
          

The partial differential equation in (7.15) can be written  
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Where 

    
 

  
 
 

 
   

 

   
 

                  
 

  
 

 

 
   

  

   
     

 

    
 (7.16) 

The first line in equation (7.15) is the generator of the Black-Scholes model, while the 

second line adds the corrections for stochastic volatility. 

Before we consider the closed-form solution of Heston’s model, we will present the 

risk-neutral approach. Risk-neutral valuation is the pricing of a contingent claim in an 

equivalent martingale measure (EMM). The price is evaluated as the expected 

discounted payoff of the contingent claim, under the EMM  , say. So, 

Option Value=  
                (7.17) 

Where      is the payoff of the option at time T and r is the risk-free rate of interest 

over       (we are assuming, of course, that interest rates are deterministic and pre-

visible, and that the numeraire is the money market instrument). Moving from a real 

world measure to an EMM is achieved by Girsanov’s Theorem. In particular, we have 

   
  

    
       (7.18) 

   
  

    
             (7.19) 

  

  
      

 

 
    

                     
  

 
             

  

 

 

 
  (7.20) 
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  (7.21) 

Where   is the real world measure and    
  

 
   

 and    
  

 
   

 are  -Brownian 

Motions. Under measure  , (7.1), (7.2), (7.3), become, 

                   
 
       

                        
 
       

    
 
    

 
           

Where        

   
  

   
  (7.25) 

This is an important result. Under the risk-neutral measure, λ has effectively been 

eliminated.  

So, the closed-form solution of a European call option on a non-dividend paying asset 

for the Heston model is: 

                                      

where, 
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    (7.29) 

           
         

  
 
     

      
  (7.30) 

  
         

         
  (7.31) 

            
 
               (7.32) 

For j=1,2 where, 

   
 

 
,     

 

 
  α=kθ,                  

The only part that poses a slight problem is the limits of the integral in (7.27). This 

integral cannot be evaluated exactly, but can be approximated with reasonable 

accuracy by using some numerical integration, but can be approximated with 

reasonable accuracy by using some numerical technique. Under equivalent martingale 

measure    some parameter simplification takes place viz, 

α=    ,                

The parameter λ has been eliminated. A method to evaluate formulas in the form of  

(7.26) is using a numerical method for the said integrals. 

The basic Simpson’s Rule  for numerical integration of a function, f(x), over two 

equal subintervals, with partition points α, α+h, and α+2h (we choose this form of 

partition for ease of calculation and notation. A general formula will be given later), is 
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The error of the above approximate can be established with a basic Taylor series. 

Consider,  

                   
 

  
         

 

  
            

                               
 

 
            

So, 

(3.13) will be equal with:2hf+2     
 

 
      

 

 
       

  

    
                  

Now, define  

            
 

 

 

Again, using a Taylor series, 

                               
 

 
            

Noting, by the Fundamental Theorem of Calculus, that 

                          we have 
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 2hf(α)+2        
 

 
         

 

 
             (7.35) 

Subtracting (7.34) from (7.35), we get 

Error in approximation= 
  

  
                            We know state a 

general result for the basic Simpson’s Rule, 

        
   

 
         

   

 
       

 

 

 

       
 

  
 
   

 
 
 

                

An Adaptive Simpson’s Rule divides the interval of integration into more than 2 

subintervals. The number of subintervals is dependent on the required accuracy of the 

estimate. This is quantified by the error term given above. The function will, in 

general, behave differently over different parts of the interval and hence the intervals 

chosen will not be of uniform length. Adaptive Simpson’s Rule produces a result that 

has an error less than     . 

7.3 HESTON’S INTEGRAL 

In order to evaluate (7.27) we need to compute the integral in the below equation 

             
 

 
 

 

 
    

 
                    

  
   

 

 
 (7.36) 

We know that the integrand converges very quickly to zero. So, sufficiently large b, 

the integral can be evaluated with the required accuracy. I have put b=100 according 

to bibliography. 
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7.4 EFFECT OF PARAMETERS 

 

Heston’s model has five parameters which affect differently on option prices. Below 

we consider the effects of each parameter through implied volatility graphs. 

 

Figure 6: implied volatilities of call options on S&P 500 as a function of their strikes 

for different values of the correlation in Heston’s model. Other parameters: κ=4,9, 

θ=0,4, σ=4,9,   =0,11, the underlying price 1460,26 and option maturity=1 month 

 The correlation determines the direction of skew. This feature is extremely 

interesting as it is the only parameter to play such a role. The negative 

correlation corresponding negative skewness, in contrast with positive 

correlation which provides positive skewness. In special case, where 

correlation is zero, the implied volatility figure is close to volatility smile. 

 In the money options, are more expensive when the correlation is negative 

while out of the money options are cheaper. 

 When ρ=0, the smile is symmetric about the at the money volatility. 

 Non-zero correlation control’s the smile’s asymmetry which is important in 

equity markets. 
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Figure 7: implied volatilities of call options on S&P 500 as a function of their strikes 

for different values of the volatility of the volatility in Heston’s model. Other 

parameters: κ=4,9, θ=0,4, ρ=-0,5,   =0,11, the underlying price 1460,26 and option 

maturity=1 month 

 The main effect of the volatility of the volatility is that creates imbalance on 

the in the money options relatively with the out of the money options. This is 

considered especially from the first two graphs in figure 7. The third graph, is 

for a more extreme value of sigma, so affects all the type of options. 
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Figure 8: implied volatilities of call options on S&P 500 as a function of their strikes 

for different values of the long run variance in Heston’s model. Other parameters: 

volatility=11%, κ=2, ρ=-0,5, σ=0,1,   =0,11, the underlying price 1460,26 and option 

maturity=1 month 

 The long-run variance does not change the skewness or the straight pitch’s 

line. As it is constant for a long time horizon, the effect which we can 

observe is that as it increases, implied volatility gets bigger for all the 

types of options.  
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SECTION 8 COMPARISON BETWEEN MODELS 

8.1 MERTON AND KOU MODEL 

 

Let’s consider the relation between double exponential jump-diffusion model and 

Normal jump-diffusion model. In Merton’s paper (1976) Y are normally distributed. 

Both the double exponential and normal jump-diffusion models can lead to the 

leptokurtic feature (although the kurtosis from the double exponential jump-diffusion 

model is significantly more pronounced), implied volatility smile, and analytical 

solutions for call and put options, and interest rate derivatives. The main difference 

between the double exponential jump-diffusion model and the normal jump-diffusion 

model is the analytical tractability for the path-dependent options. Path-dependent 

options give the right, but not the obligation, to buy or sell an underlying asset at a 

predetermined price during a specified time period, where the price is based on the 

fluctuations in the underlying's value during all or part of the contract term. A path 

dependent option's payoff is determined by the path of the underlying asset's price.  

Now, we are going to explain why the double-exponential jump-diffusion model can 

lead to closed-form solutions for path-dependent options, while the normal jump-

diffusion model cannot. To price for example American options for general jump-

diffusion processes, it is crucial to study the first passage time of a jump-diffusion 

process to a flat boundary. When a jump-diffusion process crosses a boundary 

sometimes it hits the boundary and sometimes it incurs an ‘’overshoot’’ over the 

boundary. 

The overshoot presents several problems for option pricing. First, one needs to get the 

exact distribution of the overshoot. It is well known from stochastic renewal theory 

that this is only possible if the jump size Y has an exponential-type distribution, 

thanks to the special memoryless property of the exponential distribution. Moreover, 

we have to know the dependent structure between the overshoot and the first passage 

time. The two random variables are conditionally independent, given that the 

overshoot is bigger than 0, if the jump size Y has an exponential-type distribution, 

thanks to the memoryless property. This conditionally independent structure seems to 
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be very special to the exponential-type distribution and does not hold for other 

distributions, such as the normal distribution. 

8.2 JUMP DIFFUSION MODELS vs STOCHASTIC VOLATILITY MODELS 

 

The main problem with jump diffusion models is that they cannot capture the 

volatility clustering effects, which can be captured by other models such as stochastic 

volatility models. In finance, volatility clustering refers to the observation, that "large 

changes tend to be followed by large changes, of either sign, and small changes tend 

to be followed by small changes."Jump diffusion models and stochastic volatility 

models implement each other: the stochastic volatility model can incorporate 

dependent structures better, while the double exponential jump-diffusion model has 

better analytical tractability, especially for path-dependent options and complex 

interest rate derivatives. Some alternative models can compute only prices for 

standard call and put options, and analytical solutions for other equity derivatives and 

some most liquid interest rate derivatives are unlikely. On the other hand, the Black-

Scholes model can compute prices for all the derivatives. This makes it more difficult 

to persuade practitioners to switch from the Black-Scholes to more realistic 

alternative models. The double exponential jump-diffusion model attempts to improve 

the empirical implications of the Black-Scholes model while still retaining its 

analytical tractability. For example, one empirical phenomenon worth mentioning is 

that the daily return distribution tends to have more kurtosis than the distribution of 

monthly returns. As Das and Foreci (1996) point out, this is consistent with models 

with jumps, but inconsistent with stochastic volatility models. More precisely, in 

stochastic volatility models the kurtosis decreases as the sampling frequency increases 

while in jump models the instantaneous jumps are independent of the sampling 

frequency. This, in particular suggests that jump-diffusion models may capture short-

term behavior better, while stochastic volatility may be more useful to model long 

term behavior.  

In summary, there are many alternative models may give some analytical formula for 

standard European call and put options, but analytical solutions for interest rate 

derivatives and path-dependent options, such as perpetual American options, barrier 

http://en.wikipedia.org/wiki/Finance
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and lookback options are difficult, if not impossible. In the double exponential jump 

diffusion model analytical solution for path-dependent options are possible. However, 

the jump-diffusion models cannot capture the volatility clustering effect, Therefore, 

jump-diffusion models are more suitable for pricing short maturity options in which 

the impact of the volatility clustering effect is less pronounced. In addition, jump-

diffusion models can provide a useful benchmark for more complicated models. 
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SECTION 9 RESULTS AND DISCUSSION 

 

This dissertation has reviewed two jump diffusion models and a stochastic volatility 

model. The first jump-diffusion model, Merton’s model includes jumps which follow 

a log-normal distribution and a Brownian motion such as in the Black and Scholes 

model. However, due to the fact that mentions parameters in the model make it more 

difficult in pricing options and tend to have less tractability. This is a part of the 

reason why practitioner’s still like the simplicity of Black and Scholes model. 

Although reproduces volatility smile, such as Kou’s model, this is the second one. 

This model contains jumps which follow double exponential distribution. The 

empirical part was the option pricing with both models which have closed-form 

solutions. Upon implementing the two models we found that some of the parameters 

which describe the same part of each model have similar effects on options. 

Moreover, the double exponential jump-diffusion model fits stock data better than the 

normal jump-diffusion model, and both of them fit the data better than the classical 

geometric Brownian motion model. 

Furthermore, we have presented a stochastic volatility model without jumps. Due to 

the fact that it has much more parameters than Merton’s and Kou’s model, it is 

difficult on the option pricing, too. As we have no jumps, the parameters are not the 

same with these of jump-diffusion models. The most important is the correlation 

between volatility and the spot price is necessary to generate skewness. Without this 

correlation, stochastic volatility only changes the kurtosis. With proper choice of 

parameters, the stochastic volatility model appears to be a very flexible and promising 

description of option prices.  

Each model has its advantages and limitations. However, one of the most important 

facts which jump diffusion models and stochastic volatility models differ is the 

volatility clustering effect. Due to this fact, jump diffusion models are more suitable 

for short maturity options in which the volatility clustering effect is less pronounced. 

In contrast with stochastic volatility models which are more suitable for long maturity 

options. 
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APPENDIX A 

 

A1. From Girsanov’s theorem about jump diffusion processes, we know that under  , 

  
                    is a new Brownian motion and under     the jump 

rate of N(t) is             )=λ(  
       , and     has a new density  

   
     

 

  
       

            

Therefore, the dynamics S(t) is given by 
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Hence, to satisfy the rational equilibrium requirement S(t)=                    , we 

must have                 
          

          , from which (14) 

follows. If (14) is satisfied, under the measure   , the dynamics of S(t) is given by 

     

     
             

 
                             

        
 
   

    

   

  

For which (15) follows. 

A2. Let the price    of a risky asset jump at the random times T1, T2,…,Tn,… and 

suppose that the relative/proportional change in its value at a jump time is given by 

Y1, Y2,…,Yn,… respectively. We may then assume that, between two jump times, the 

price    follows a Black and Scholes model for a Wiener process wt that Tn are the 

jump times of a Poisson process  Nt with intensity λt and that Yn is a sequence of 

random variables with values in (-1,  . This description can be formalized by letting, 

on the intervals [Tn, Tn+1) , 

                    (1) 

While, at t= Tn, the jump is given by Δ                  so that 

               (2) 

Which, y the assumption that      , leads, always to positive values of the prices. 

Using the standard Ito formula to obtain the solution to (1) as well as a recursive 

argument based on (2) , it is easily seen that, at the generic time t,    can be given the 

following equivalent representations. 
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 (3) 

Where, as before, Yt is obtained from    by a piecewise constant and left continuous 

time interpolation. By the generalized Ito formula  

                             
 

 
        

   
                 

                                  (4) 

The process    in (3) is easily seen to be a solution of  

                          (5) 

This equation corresponds to (1) with the addition of a jump term and is a particular 

case of the general jump-diffusion model  (6) and (7) when          

                                    (6) 

Where we write     with t- because of the predictability requirement in the last 

coefficient and where       >-1. Notice that the last term in (6) can also be written as  

                            (7) 

In what follows we shall consider the more general version of (5)  given by 
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                               (8) 

That corresponds to (6) in the version of (7)and can thus equivalently be represented 

as                                     (9) 

If the marked point process is in particular a multivariate (or univariate) point process 

(             ), then (8) and (9)  takes the form 

                               
 
     (10) 

Occasionally, in the financial literature one finds model (8) and (9) written in the form 

                        

Where, in the specific case when (8) reduces to (5)       
  
   , while in the general 

case             
  
   . Furthermore, in models of the form (5) one may find the 

last term       written as (          . 
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