
 
 

 
ΤΙΤΛΟΣ  ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ 

 
“Pervasive Computer Systems and Applications: Digital Signage” 

 
 
 
 
 
 

 

 
 
 

Η εργασία επιμελήθηκε από τον: 
Όνομα                       : ΓΕΩΡΓΙΟΣ 
Επώνυμο                   : ΣΙΓΑΛΑΣ 
 
Επιβλέπων Καθηγητής : 
Δρ. Νικήτας-Μαρίνος Σγούρος  

 

 

 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ 
ΤΜΗΜΑ 

Διδακτική της Τεχνολογίας και Ψηφιακών Συστημάτων 



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

1

1 Table of Contents 
1 Table of Contents ........................................................................................................... 1 
2 Table of Figures.............................................................................................................. 4 
3 Project Title .................................................................................................................... 7 
4 Introduction .................................................................................................................... 8 
5 Terminology.................................................................................................................... 9 
6 Digital Signage ............................................................................................................. 11 

6.1 What is Digital Signage? ..................................................................................... 11 
6.2 Making Digital Signage Work .............................................................................. 11 
6.3 Choosing the Right Digital Signage Technology .................................................. 12 
6.4 Key Markets........................................................................................................ 13 

7 Pervasive Computing .................................................................................................... 15 
7.1 The Disappearing Computer ............................................................................... 15 
7.2 Future Visions on Disappearing Computer .......................................................... 16 
7.3 Pervasive Display Systems (PDS) ....................................................................... 17 
7.4 A Taxonomy of Pervasive Display Systems Usage Models.................................. 18 
7.5 Touch Screens Application Tips .......................................................................... 19 

8 Peer to Peer Computing ............................................................................................... 21 
8.1 Goals of Peer to Peer Computing ........................................................................ 21 
8.2 Peer to Peer Taxonomies.................................................................................... 23 

9 Tools and Technologies ................................................................................................ 24 
10 Requirements Analysis .............................................................................................. 25 

10.1 Requirements from the aspect of Network Manager ............................................ 25 
10.2 Requirements from the aspect of the player ........................................................ 28 
10.3 Requirements from the aspect of Calendar ......................................................... 28 
10.4 Requirements from the aspect of Schedule Server .............................................. 29 
10.5 Requirements from the aspect of P2P Server ...................................................... 29 

11 Database Design ...................................................................................................... 30 
11.1 Database relationship diagram ............................................................................ 30 
11.2 Database table definition ..................................................................................... 31 

11.2.1 Table “players”................................................................................................ 31 
11.2.2 Table “softwareversions” ................................................................................. 32 
11.2.3 Table “contentsupdates” ................................................................................. 32 
11.2.4 Table “forms” .................................................................................................. 32 
11.2.5 Table “labels” .................................................................................................. 32 
11.2.6 Table “textboxes” ............................................................................................ 33 
11.2.7 Table “buttons” ............................................................................................... 34 
11.2.8 Table “pictureboxes” ....................................................................................... 34 
11.2.9 Table “webbrowsers” ...................................................................................... 35 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

2

11.2.10 Table “videoplayers” ................................................................................... 35 
11.2.11 Table “tasks” .............................................................................................. 36 
11.2.12 Table “activities” ......................................................................................... 36 

12 Implementation ......................................................................................................... 37 
12.1 System Architecture ............................................................................................ 37 
12.2 Smart Clients ...................................................................................................... 40 

12.2.1 What is a Smart Client? .................................................................................. 40 
12.2.1.1 Rich Client Applications .......................................................................... 40 
12.2.1.2 Thin Client Applications .......................................................................... 41 
12.2.1.3 Smart Client Applications ........................................................................ 41 
12.2.1.4 Choosing Between Smart Clients and Thin Clients ................................. 42 

12.2.2 Deploying Smart Clients ................................................................................. 44 
12.2.2.1 Introduction ............................................................................................ 44 
12.2.2.2 Why Is Client Deployment So Hard? ....................................................... 44 
12.2.2.3 Limitations of Browser-Based Applications.............................................. 45 
12.2.2.4 ClickOnce Provides the Best of Both Models .......................................... 45 
12.2.2.5 Existing Deployment Improvements Under .NET .................................... 46 
12.2.2.6 Basic ClickOnce Concepts ..................................................................... 47 
12.2.2.7 Deployment Options ............................................................................... 47 
12.2.2.8 Updating the Application ......................................................................... 47 
12.2.2.9 Manifest Files ......................................................................................... 48 
12.2.2.10 Security Concepts .................................................................................. 48 
12.2.2.11 Visual Studio Integration ......................................................................... 49 

13 System Presentation – User Manual.......................................................................... 51 
13.1 Basic Functionality of System Components ......................................................... 51 

13.1.1 Network Manager ........................................................................................... 51 
13.1.2 Calendar ......................................................................................................... 66 
13.1.3 Schedule Server ............................................................................................. 67 
13.1.4 P2P Server ..................................................................................................... 68 
13.1.5 Players ........................................................................................................... 69 

14 Project in Action ........................................................................................................ 71 
14.1 Designer/Developer implements the first software update of a Player (Player2) ... 71 
14.2 Network Manager’s administrator adds the new Player (Player2) ........................ 74 
14.3 Installation of Player2’s software (software version: 1.0.0.0) ................................ 80 
14.4 Starting / Using Player (Player2) ......................................................................... 81 
14.5 On demand real-time update on content update on Player2 (from ContentUpdate1 

to ContentUpdate2) .......................................................................................................... 85 
14.6 Edit on content update (Contentupdate2) of Player (Player2) and real-time update

 88 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

3

14.7 Scheduled real-time update on content update on Player2 (from Contentupdate1 to 

Contentupdate2) .............................................................................................................. 90 
15 Summary – Conclusion ............................................................................................. 91 
16 References ............................................................................................................... 92 
 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

4

2 Table of Figures 
Figure 6-1 : Key Markets...................................................................................................... 14 
Figure 8-1 : Taxonomy of P2P systems................................................................................ 23 
Figure 8-2 : Hybrid Peer-to-Peer Model. (1) Initial communication with a server, e.g., to obtain 

the location/identity of a peer, followed by (2) direct communication with a peer. .................. 23 
Figure 11-1 : Database relationship diagram ........................................................................ 30 
Figure 11-2: Table "players"................................................................................................. 31 
Figure 11-3 : Table "softwareversions" ................................................................................. 32 
Figure 11-4 : Table "contentupdates" ................................................................................... 32 
Figure 11-5 : Table "forms" .................................................................................................. 32 
Figure 11-6 : Table "labels" .................................................................................................. 33 
Figure 11-7 : Table "textboxes" ............................................................................................ 33 
Figure 11-8 : Table "buttons" ............................................................................................... 34 
Figure 11-9 : Table "pictureboxes" ....................................................................................... 34 
Figure 11-10 : Table "webbrowser" ...................................................................................... 35 
Figure 11-11 : Table "videoplayers" ..................................................................................... 35 
Figure 11-12 : Table "tasks" ................................................................................................. 36 
Figure 11-13 : Table "activities"............................................................................................ 36 
Figure 12-1 : System Architecture ........................................................................................ 37 
Figure 12-2 : Smart Client definition diagram ....................................................................... 43 
Figure 12-3 : Features of Smart Clients and Thin Clients ..................................................... 43 
Figure 12-4 : Comparing Web, ClickOnce and MSI .............................................................. 46 
Figure 12-5: The manifest files work together to enable the installation and update of your 

ClickOnce application. ......................................................................................................... 48 
Figure 12-6: You can specify the location your files should be published to (and accessed 

from) either in this property dialog or as part of the wizard that runs when you publish your 

application. .......................................................................................................................... 49 
Figure 13-1 : Network Manager – “Home” page ................................................................... 51 
Figure 13-2:  Network Manager - "Activity" page .................................................................. 52 
Figure 13-3 : Network Manager - "Jobs" page’s Players’ details panel .................................. 53 
Figure 13-4 : Network Manager - "Jobs" page's "Add a new version" panel (Step 1) ............. 54 
Figure 13-5 : Network Manager - "Jobs" page's "Add a new version" panel (Step 2) ............. 55 
Figure 13-6 : Network Manager - "Jobs" page's "Add a new version" panel (Step 3) ............. 55 
Figure 13-7: Network Manager - "Jobs" page's "Add a new version" panel (Step 4) .............. 56 
Figure 13-8: Network Manager - "Jobs" page's "Add a new version" panel (Step 5) .............. 56 
Figure 13-9: Network Manager - "Jobs" page's "Add a new content update" panel ............... 59 
Εικόνα 13-10: Network Manager - "Jobs" page's "Edit content updates" panel ..................... 59 
Figure 13-11: Network Manager - "Jobs" page's "Edit content updates" panel ...................... 60 
Figure 13-12: Network Manager - "Jobs" page's "Edit content updates" panel ...................... 60 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

5

Figure 13-13 : Network Manager - "Jobs" page's "Edit content updates" panel ..................... 61 
Figure 13-14 : Network Manager - "Jobs" page's "Manage content updates" panel .............. 61 
Figure 13-15 : Network Manager - "Jobs" page's "Manage content updates" panel .............. 62 
Figure 13-16 : Network Manager - "Jobs" page's "Manage content updates" panel .............. 62 
Figure 13-17: Network Manager - "Players" page's "Players’ details" panel .......................... 63 
Figure 13-18 : Network Manager - "Players" page's "Add a new Player” panel ..................... 64 
Figure 13-19 :  Network Manager - "Players" page's "Remove a Player” panel ..................... 64 
Figure 13-20 : Network Manager -  “Detect on-line Players and update” panel ..................... 65 
Figure 13-21:  Calendar - user interface ............................................................................... 66 
Figure 13-22: Schedule Server – user interface (a) .............................................................. 67 
Figure 13-23: Schedule Server – user interface (b) .............................................................. 67 
Figure 13-24: P2P Server – user interface ........................................................................... 68 
Figure 13-25: Player – Player2 user interface ...................................................................... 70 
Figure 14-1: Publishing Player’s application (a) .................................................................... 71 
Figure 14-2: Publishing Player’s application (b) .................................................................... 72 
Figure 14-3: Publishing Player’s application (c) .................................................................... 72 
Figure 14-4: Publishing Player’s application (d) .................................................................... 73 
Figure 14-5: Publishing Player’s application (e) .................................................................... 73 
Figure 14-6: Network Manager - "Players" page's "Players’ details" panel before the creation 

of the new Player (Player2) .................................................................................................. 74 
Figure 14-7: Network Manager - "Players" page's "Add Player" panel. Adding Player2 ......... 75 
Figure 14-8: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (1/5) ............................................................................................ 75 
Figure 14-9: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (2/5) ............................................................................................ 76 
Figure 14-10: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (3/5) ............................................................................................ 76 
Figure 14-11: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (4/5) ............................................................................................ 77 
Figure 14-12: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (5/5) ............................................................................................ 77 
Figure 14-13: Network Manager - "Jobs" page's "Edit content updates" panel. Editing the 

default content update (Contentupdate1) of Player2 software version 1.0.0.0 (1/2) ............... 78 
Figure 14-14: Network Manager - "Jobs" page's "Edit content updates" panel. Editing the 

default content update (Contentupdate1) of Player2 software version 1.0.0.0 (2/2) ............... 78 
Figure 14-15: Network Manager - "Jobs" page's "Add a content update" panel. Adding the 

second content update (Contentupdate2) of Player2 software version 1.0.0.0 ...................... 79 
Figure 14-16: User interface of the web site from which we are able  to install Player2’s 

software .............................................................................................................................. 80 
Figure 14-17: Player2’s software installation ........................................................................ 80 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

6

Figure 14-18: Starting Player2 by browsing Windows’ “Start” menu ...................................... 81 
Figure 14-19: Player2 1.0.0.0 Contentupdate1 : Basic user interface.................................... 81 
Figure 14-20: Player2 1.0.0.0 Contentupdate1 : Pressing “Who” button ............................... 82 
Figure 14-21: Player2 1.0.0.0 Contentupdate1 : Pressing “Where” button ............................ 82 
Figure 14-22: Player2 1.0.0.0 Contentupdate1 : Pressing “Join guest list” button .................. 83 
Figure14-23: P2P Server : Player2 hasn’t  been connected yet ............................................ 83 
Figure 14-24: P2P Server : Player2 is now connected .......................................................... 84 
Figure14-25: Player2 1.0.0.0 Contentupdate1 : Activity panel after connecting to P2P Server

............................................................................................................................................ 84 
Figure 14-26: Network Manager - "Jobs" page's "Manage content updates" panel ............... 85 
Figure 14-27: Network Manager - "Players" page's "Detect online Players and update" panel

............................................................................................................................................ 86 
Figure 14-28: P2P Server – activity panel ............................................................................ 86 
Figure 14-29: Player2 – activity panel .................................................................................. 86 
Figure 14-30: Player2 1.0.0.0 Contentupdate2: Basic user interface..................................... 87 
Figure 14-31:  Network Manager - "Activity" page ................................................................ 87 
Figure 14-32: Network Manager - "Jobs" page's "Edit content updates" panel: editing label1 88 
Figure 14-33: Player2 1.0.0.0 Contentupdate2: Basic user interface after editing label1 ....... 89 
Figure 14-34: Calendar application: The update is now scheduled ....................................... 90 
 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

7

3 Project Title 
Pervasive Computing Systems are focusing on the development of applications that can be 

an integrated part of our environments without using classical types of computer hardware 

and where the user can interact with them by natural way and without using computer 

equipment (e.g. keyboard, mouse).  

Project will focus on the development of a completed environment of editing and distributing 

digital signage content. The output devises for the content will be rear projection screens 

where the user can interact through touch (rear projection touch screens). 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

8

4 Introduction 
Project approach will focus on both the marketing and the technology aspect of digital 

signage.  In chapter 6 the term “Digital signage” will be determined and analyzed thoroughly. 

The main factors of a successful digital signage approach will be examined. 

In chapter 7, a detailed introduction on pervasive systems will focus in the future visions on 

“Disappearing of Computing”. Information on pervasive display systems and touch screens 

will be provided in this chapter, since the output devices of the implementation of this project 

will be rear projection screens where the user can interact through touch. 

In the following chapters there will be information about the emerging technologies. Our 

approach used specific architecture and technologies. This does not mean that there are not 

alternative solutions. The alternative solutions have been recorded and evaluated. 

Some of the factors that have been taken under consideration are: 

• Productivity 

• Design 

• Scalability 

• Interoperability 

• Security 

• Maintenance  

• Deployment 

Database design is presented in chapter 11. Basic functionality is presented in chapter 13 

and finally in chapter 14, this functionality is presented in action via a test case, where 

screenshots illustrate the components and the way that they interoperate with each other. 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

9

5 Terminology 
Calendar (Windows Form Application: Calendar.exe ): Calendar is a tool that allows user 

to schedule updates for the Players. 

 

ClickOnce: ClickOnce deployment allows you to publish Windows-based applications to a 

Web server or a network file share for simplified installation. Visual Studio provides full 

support for publishing and updating applications deployed with ClickOnce. ClickOnce 

deployment is available for projects created with Visual Basic, Visual C#, and Visual J#, but 

not for Visual C++. 

 

Controls: The System.Windows.Forms namespace provides a variety of control classes that 

you can use to create rich user interfaces. Some controls are designed for data entry within 

the application, such as TextBox and ComboBox controls. Other controls display application 

data, such as Label and ListView. The namespace also provides controls for invoking 

commands within the application, such as Button. The WebBrowser control and managed 

HTML classes, such as HtmlDocument, let you display and manipulate HTML pages within 

your managed Windows Forms application. 

 

Designer/Developer: Designer is the specialist who is responsible for the implementation of 

the Software Version of a Player.  

 

Digital Signage: Digital signage is a name given to any number of methods used to display 

multimedia content in public venues. Alternatively known as dynamic signage, electronic 

signage or narrowcasting, networks of digital signs have been deployed across numerous 

retail chains, banks, travel hubs and corporate headquarters to deliver informative and 

entertaining content to captive audiences and passers by. 

 

Network Manager (Windows Form Application: Network_Manager.exe): Network 

Manager manages Players, Content Updates and Software Updates. 

 

P2P Server (Windows Form Application: P2P_Server.exe): P2P Server broadcast 

messages (requests) to peers (Players). 

 

Peer-to-peer (P2P): The term “peer-to-peer” (P2P) refers to a class of systems and 

applications that employ distributed resources to perform a critical function in a decentralized 

manner. The critical function can be distributed computing, data/content sharing, 

communication and collaboration, or platform services. 

 



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

10

Pervasive Systems: Pervasive computing is a cross-disciplinary area of research that 

extends the application of computing to diverse usage models [1]. It is viewed as the next 

generation computing environment with information and communication technology 

everywhere, for everyone, at all times. Information and communication technology will be an 

integrated part of our environments: from toys, milk cartons and desktops to cars, factories 

and whole city areas - with integrated processors, sensors, and  actuators connected via 

high-speed networks and combined with new visualization devices ranging from projections 

directly into the eye to large panorama displays. 

 

Player (Windows Form Application: PlayerX.exe): Player is the application on the remote 

machine that presents content to users. 

 

Publishing Location: Publishing Location could be a Web Server, a File Server or a File 

Share. 

 

Schedule Server (Windows Form Application: Schedule_Server.exe): Schedule Server 

checks if there is a request for a scheduled update to commit it. 

 

Smart clients: Smart clients are easily deployed and managed client applications that 

provide an adaptive, responsive and rich interactive experience by leveraging local resources 

and intelligently connecting to distributed data sources.  

A smart client: 

Ø has local resources and user experience  

Ø is connected  

Ø is offline capable  

Ø has intelligent deployment and update 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

11

6 Digital Signage 

6.1 What is Digital Signage? 
Digital signage is a name given to any number of methods used to display multimedia content 

in public venues. Alternatively known as dynamic signage, electronic signage or 

narrowcasting, networks of digital signs have been deployed across numerous retail chains, 

banks, travel hubs and corporate headquarters to deliver informative and entertaining content 

to captive audiences and passers by. 

In its most basic implementation, a digital sign consists of a playback device (such as a 

computer, VCR or DVD player) connected to a display. Depending on the application, the 

display might be a small LCD screen, a plasma display panel, or even a video wall composed 

of a number of connected screens. With a number of affordable options available, anybody 

with a message to send to their out-of-home audience can benefit from a digital signage 

installation. [11] 

 

6.2 Making Digital Signage Work 
The concept of out-of-home messages is not new. Billboards, window treatments and point-

of-purchase displays are widely used for out-of-home advertising, while bulletin boards (both 

traditional and electronic), flyers, faxes, memos, and email have been used to send corporate 

communications and educate employees for decades. However, true dynamic signs first 

came into popular use with the advent of in-store closed circuit television networks in the 

1970s. With the widespread availability of affordable VCRs, retail stores and corporate 

headquarters were able to play back pre-recorded content to their patrons and employees, 

providing timely information and entertaining content. Soon, closed circuit networks would be 

augmented (and in some cases, supplanted) with affordable TV/VCR combination units for 

smaller displays, and projection screens and video walls for eye catching, large format 

presentations. With satellite distribution, it even became (relatively) affordable to syndicate 

the same content to thousands of sites at once. 

In recent years, several factors have combined to make digital signage a more powerful, eye-

catching, and affordable display medium than ever before, contributing to its widespread 

adoption. Key factors include the nearly ubiquitous availability of high-speed Internet access, 

new large format displays like plasma screens and LCD panels, and new compression 

formats that can compress large amounts of content into small file sizes. A modern digital 

sign adds several additional components to the traditional setup described above. The 

controller, typically a powerful computer or media playback appliance, uses a digital 

connection to deliver a crisp output signal to a digital display, like a plasma screen or LCD 

panel. The playback device uses a digital storage medium (such as a hard drive or solid-state 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

12

flash disk) to store digital content locally, ensuring smooth playback. In many cases, the 

device can be remotely managed over the Internet to allow for content updates, schedule 

changes, and compliance reporting. In its simplest implementation, a digital signage 

installation includes a content stream (from a CD, DVD or the Internet), a playback device, 

and a display (e.g. a television, plasma display, or LCD panel). 

Even the smallest digital signage networks can benefit from remote management. Aside from 

offsetting the costs of producing, replicating and distributing VHS tapes or DVDs, Internet 

connected signage devices provide network administrators with the ability to closely monitor 

playback, ensuring that the desired content is being displayed. Delivering content over the 

Internet ensures that the content arrives and is displayed according to the proper schedule, 

eliminates errors in shipping and handling, and removes reliance upon on-site personnel to 

change tapes or DVDs (since these individuals are typically not very motivated to perform 

such tasks). 

Additionally, compliance reporting gives network owners a complete record of what every 

screen has displayed. Finally, user-friendly management tools mean that people throughout 

the organization - from advertising and creative services to operations and general 

management - are empowered to change content and generate reporting metrics. 

More sophisticated remote management suites also give network operators the ability to 

perform near real-time adjustments to every display’s playback schedule, enabling real-time 

marketing experiments, emergency announcements, and even live content feeds. [11] 

 

6.3 Choosing the Right Digital Signage Technology 
Choosing the right digital signage technology depends on the intended application. For 

example, a digital signage application for internal corporate communications would probably 

benefit from large, eye catching plasma displays placed in common areas such as cafeterias 

and break rooms. Depending on the size of the deployment, the network owner might opt for 

either local or remote management. On the other end of the spectrum, a manufacturer looking 

to improve their point-of-purchase advertising displays might choose to employ small, 

lightweight LCD panels in conjunction with traditional product displays in an aisle or end cap 

fixture, managing the content centrally via a web-based interface.  

Of course, budget constraints must also be taken into consideration. Digital signage 

applications that require large displays have a number of options to choose from, including 

rear projection TVs, LCDs, plasmas, DLPs, wall projectors, and traditional CRTs. Smaller 

signs are typically either small LCD or CRT displays. Touch screens are available for virtually 

any sized display, and can add an interactive component to an otherwise non-interactive 

display medium. 

Finally, though many digital sign networks start modestly, it is important to plan for the future. 

A network of a few screens may be easy to manage by shipping and swapping DVDs. 

However, if that network grows to 25, 50 or 100 screens, this type of content management 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

13

becomes much more cumbersome. Additionally, features that may not seem relevant during 

the early stages of a deployment might prove to be essential later on. For example, the ability 

to add or delete a piece of content on short notice might not seem important to a small sign 

network owner until the necessity arises, often at the insistence of a large advertiser.  

Similarly, other business opportunities may rely on advanced features like real-time 

scheduling or live content insertions. What’s more, the availability of turnkey, hosted digital 

signage software can actually make it cheaper to deploy the initial systems with full remote 

management capability - providing a solution that is affordable for today and scalable for 

tomorrow. [11] 

 

 

6.4 Key Markets 
Digital Signage can be found in a variety of key market segments including: 

Ø Retail Stores: Increase revenue potential with dynamic eye-catching ads for 

plasmas, video walls, billboards or interactive kiosks. Easily broadcast or narrowcast 

national or local scheduled messages. Interface with POS systems and RS-232 

devices. Monitor playback status and measure ad run times for billing. 

Ø Corporate Communications: Improve company communications with the power of 

television in work areas, lobbies and offices. Easily create and customize in-house TV 

channels, presentations or training programs. Boost morale and maximize 

productivity by getting the right message to the right people at the right time. 

Ø Hospitality and Entertainment: Improve your guests’ experience by helping them 

find and enjoy everything your location has to offer. Distribute video and multimedia 

messages to multiple locations or target a specific screen to deliver valuable updates, 

directions or schedules directly to the people who need it. 

Ø Cable TV Channels: Create your own high quality TV channels with text, graphics 

and video that can be scheduled and updated even while on the air. Enhance your 

local programming or photo advertising with data, weather and news feeds, and show 

digital video or live input via remotely controlled switchers and decks. 

Ø Government Communications: Quickly update visually impactful messages for 

public information, emergency management or military communications. Target your 

communications wherever and whenever you need. Instantly display important 

updates as full screen displays or crawls.  

Ø Education: Create powerful educational media for TV and interactive applications 

with ease and speed. Combine full screen effects, animation and video to 

communicate with impact.  

Ø Transportation: Provide real-time scheduling and directions to people waiting for 

trains or airplanes. Create airport and railway control systems that provide 

scheduling, On-Time/Late messages, availability and directions.  

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

14

Ø Hospitals & Medical Offices: Inform the public of the latest innovations in medical 

technology, provide directions using interactive Way finder maps, educate patients 

about the latest medicines and healthy lifestyles. 

Ø Financial Centers & Banks: Advertise products and services provided by your 

financial institution while your customer waits in line for a teller or an ATM machine. 

Provide real-time stock information to investors in remote offices from a central 

location. 

Ø Casinos & Gambling Venues: Locate restaurants, entertainment venues, hotel 

rooms, and casino services by strategically placing large-format plasma or LCD 

screens or interactive kiosks.  

Ø Cinemas: Increase the revenue from your snack bars by using dynamic menu boards 

that display snack choices and pricing to entice customers to spend more while they 

enjoy their cinema experience. Display movie listings, schedules and availability of 

tickets. [10] 

 

 
Figure 6-1 : Key Markets 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

15

7 Pervasive Computing 
Pervasive computing is a cross-disciplinary area of research that extends the application of 

computing to diverse usage models [1]. It is viewed as the next generation computing 

environment with information and communication technology everywhere, for everyone, at all 

times. Information and communication technology will be an integrated part of our 

environments: from toys, milk cartons and desktops to cars, factories and whole city areas - 

with integrated processors, sensors, and  actuators connected via high-speed networks and 

combined with new visualization devices ranging from projections directly into the eye to large 

panorama displays. [2] 

 

7.1 The Disappearing Computer 
It seems like a paradox but it will soon become reality: The rate at which computers disappear 

will be matched by the rate at which information technology will increasingly permeate our 

environment and our lives. 

Computers are with us everywhere and we are aware of their increasing significance for our 

lives. In parallel, the spread of computers caused a shift in our activities: away from real, 

physical objects in the environment as the sources of information toward computer monitors 

as the interfaces to information. 

This shift had implications for the design of information systems. Computers became primary 

objects of our attention resulting in an area called “human computer interaction.” Today, 

however, we must ask: Are we actually interested in interacting with computers? Isn’t our goal 

rather to interact with information, to communicate and to collaborate with people? Shouldn’t 

the computer move into the background and disappear? 

This disappearance can take different forms: physical and mental disappearance. Physical 

disappearance refers to the miniaturization of devices and their integration in other everyday 

artefacts as, for example, clothes. In the case of mental disappearance, the artefacts can still 

be large but they are not perceived as computers because people discern them as, say, 

interactive walls or interactive tables. This leads us to the core issue: How can we design 

human-information interaction and support human-human communication and cooperation by 

exploiting the affordances of existing objects in our environment? And in doing so, how do we 

exploit the potential of computer based support augmenting these activities? 

The increasing ubiquity of computers and related devices (such as sensors) and their 

diffusion into our environment requires reconsidering of the complex interplay between 

technology and the human. One early view was expressed by Mark Weiser, who observed 

“that the most profound technologies are those that disappear” [6], arguing for a vision of an 

unobtrusive computer technology called “calm technology.” 

Ubiquitous computing (also known as pervasive computing, proactive computing, ambient 

computing, and, in related contexts, ambient intelligence) is now an area of significant 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

16

research activities worldwide both commercially and in academia; and is central to the 

research strategies of many national and transnational organizations [2–5]. Within this 

significant and emerging field of research, agendas have been evolving highlighting different 

aspects. 

Within Europe, the proactive research initiative “The Disappearing Computer” 

(www.disappearing-computer.net) was envisaged to explore how daily life can be supported 

and enhanced through the use of collections of interacting artefacts. 

Together, these artefacts will create new people friendly environments where the “computer-

as-we know-it” has no role.  

7.2 Future Visions on Disappearing Computer 
This special section presents a collection of different perspectives, reflections, and future 

visions on the disappearing computer. They were especially inspired by discussions and 

debates at the April 2004 EU-NSF joint advanced research workshop [1] in Vienna. Indeed, 

strong themes emerged from the workshop. They cover basic technology and infrastructure 

issues, the role of sensors, and the pressing issues of privacy and security, as well as how to 

design the interaction of humans with computers that disappear. 

The recurring themes throughout this section and these efforts include: 

Ø Interaction design. As computers disappear from the scene, become invisible, and 

disappear from the perception of the users, a new set of issues is created concerning 

the interaction with computers embedded in everyday objects resulting in smart 

artefacts: How can people interact with invisible devices? How can we design implicit 

interaction for sensor-based interfaces? How do people migrate from traditional 

explicit to future implicit interaction? How can we design for transparency and 

coherent experiences? Returning to the real world as the starting point for design and 

trying to exploit the affordances of what real-world objects provide seems to be one 

way of tackling these problems. Therefore, a major approach in this domain is and 

will be to combine the best of real and virtual worlds resulting in hybrid worlds. 

Ø Sensing and context. How can we sense and capture the world around us, the 

parameters of our external physical and internal (for example, body) environments 

that inform and guide human behaviour? What are the relevant parameters that can 

be used by the systems to support us in our activities? Location is certainly central, 

but it is one parameter of a larger set determining the overall context. If context is 

key, what constitutes context and how can it be captured, processed, and exploited 

for providing the services appropriate in a given situation? How do we arrive at 

context-aware systems? Does the collection of every facet of the sensed world, 

storage of every bit of information, and predicting user behaviour point in the right 

direction? Are the underlying mental models of interaction and perception sufficient? 

It seems there are still gaps toward solutions for real-world situations, not only in 

terms of scale but also regarding open questions and decisions such as: How much 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ

http://www.disappearing-computer.net


PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

17

should the system (or the infrastructure) remember? When does the system or the 

infrastructure) try to predict the user’s intentions and when are the users presented 

with choices? 

Ø Essential infrastructure. Any infrastructure deployed to support ambient and 

ubiquitous computing must, by definition, be long lived and robust. Consequently new 

approaches to the evolution of the infrastructure, in situ upgrade and update, will be 

required. Given the potentially vast collection of devices, sensors, and personalized 

applications, this update problem is significantly more complex than previously 

encountered. Additionally, since the infrastructure is meant to be invisible it will be 

necessary to develop an understanding of what failure means and how 

malfunctioning is communicated to the users. Consequently, new approaches to 

developing robust systems and applications will be required; ones that are fault 

tolerant, highly available, and that degrade gracefully. 

Ø Discovery. One of the key requirements to the provision of any disappeared 

computing infrastructure is an approach or service capable of assimilating and 

filtering information from various sources and determining relevance. This is essential 

to allow the user and the application to discover the necessary information from the 

environment to achieve a defined goal or complete an activity.  

Ø Privacy, trust, and security. The vast amounts of personal information collected by 

ubiquitous systems has led to growing concerns about the security, privacy, and 

trustworthiness of such systems and the data they hold. The areas of security, 

privacy, and trust are critical components for the next stages of research and 

deployment of ubiquitous systems. Moreover, it was identified that these observations 

are not merely an amplification of the current concerns of Internet users with desktop 

computers. New approaches are required that take even more into account regarding 

both the social and technical aspects of this problem to ultimately determine the 

acceptance of this  technology by the general public.[3-8] 

 

7.3 Pervasive Display Systems (PDS) 
A PDS is made up of public displays, i.e. displays that are not under the control of a single 

user. This is probably the main conceptual difference between PDS and Distributed Displays 

Environments (DDE) research, where the focus is on supporting computer systems that 

present output to more than one physical display. 

A PDS is multi-purpose, and thus is not tailored at the needs of any application in particular. It 

provides generic support to an open-ended set of applications that may require display 

services. The main function of the PDS is to manage display requests and arbitrate display 

resources. A direct consequence of being multi-purpose is the need to provide some control 

interface where the behaviour of the system can be programmed. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

18

Finally, a PDS is assumed to support coordination between multiple displays. Even if 

individual displays may control their own level of integration with a shared infrastructure, and 

in some cases be operated in isolation, the assumption is that the system is able to support 

the integration of multiple displays into an infra-structure that is perceived by users as a single 

coordinated display system. Furthermore, those multiple displays are potentially dispersed 

across many sites spanning a vast geographical area and they are typically placed at such a 

distance from each other that a user is only able to interact with one display at each point in 

time. Again, this differentiates PDS from Distributed Display Environments where displays are 

assumed to be co-located. [9] 

 

7.4 A Taxonomy of Pervasive Display Systems Usage Models 
The central issue when considering multi-purpose display systems is how to identify the 

potential requirements that an open-ended set of applications may impose on those systems. 

This may prove to be an unfeasible task given the broad variety of scenarios in which 

pervasive displays systems have been used, and, since this is an area in which we are just 

starting to explore its many possibilities, all the new usage types that are yet to be identified. 

Still, as an incremental step, we can identify at large what are the main usage models and 

their key requirements. Such categorisation of the main usage models from the perspective of 

the requirements imposed upon the infrastructure can help us clustering the multiple 

requirements posed by individual applications, and inform the design of pervasive display 

systems so that they can be targeted at their main usage. Furthermore, it may also help to 

guide user expectations on display systems and manage their perceived affordances. From 

our literature survey, we have grouped existing applications into the following five usage 

models: 

Ø Experience oriented - Experience oriented displays are typically part of a media and 

sensor rich installation conceived for providing some sort of strong and engaging user 

experience, e.g. interactive art installations or games. The displays are normally 

interactive, but all the interactions are directly related with the narrative of the 

experience itself. A very important point for these systems is the ability of the 

experience creators to maintain a strong control over the behaviour of the displays so 

that they can know exactly what the experience is going to be like. 

Ø Content oriented - Content oriented displays are focused on the dissemination of 

content to people passing-by. Content can be controlled centrally in a one-to-many 

broadcast model, as in the digital signage networks that control most of the displays 

that we can find today in public places, or created locally, as in the plasma Poster 

network, in which community shared multimedia content is displayed. In either case, 

the main role of the system is to arbitrate content presentation by separating it in time 

or space. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

19

Ø Sign oriented - Sign oriented displays are primarily used as digital replacements for 

traditional signs, e.g. room numbers or directional signs. Their objective is thus to 

present specific and short pieces of information concerning things such as directions 

to some nearby event, the name of the place, the current status of a meeting room, or 

an occasional location-based announcement. Even if we admit that a sign oriented 

display may alternate its presentation between a small set of different views, they are 

not expected to change as often as content oriented systems. An appropriate space 

model may enable displays to generate dynamic directions that are location and 

orientation specific as in. 

Ø Ambient oriented - Ambient oriented displays are mainly used for promoting 

awareness through the periphery of attention. They are expected to change smoothly, 

providing a continuous, but distraction-free, output of background information. 

Examples may include GUI-based approaches such as informative art and Info 

Canvas, or displays based on light and sound patterns. 

Ø Personal oriented - Personal oriented displays are mainly designed to support 

individual access to digital services. An individual may approach the display and use 

it at its own convenience for the time needed to complete a particular service. They 

differ from typical information kiosks in that the display is public, and thus visible to 

other proximate people. If the system is able to support multiple users simultaneously 

interactions may be longer, otherwise interactions should be short in order to avoid 

pre-emption of the display by a single user. Another major concern is handling user 

data which may be private and thus not shown on the display. Examples of multi-user 

systems designed for personal services are the Dynamo and Blue Board systems. 

More common examples include the store assistance displays in which customers 

may approach the barcode of a product and obtain further information about that 

product. [9] 

 

7.5 Touch Screens Application Tips 
Ten simple pointers that can make your touch-enabled application a success.  

1. Run your application full screen.  

Remove title bars and menu bars so your application can take full advantage of the entire 

display area. 

2. Use bright background colours (not black).  

Bright backgrounds in your application will hide fingerprints and reduce glare. Dithering or 

other patterned backgrounds (for example, the "crumpled paper look") help the eye focus on 

the screen image instead of reflections, even in areas where there are no icons or menu 

choices. 

3. Use a simple point-and-click interface with large buttons.  

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

20

Dragging, double-clicks, scroll bars, drop-down menus, multiple windows, or other elements 

can confuse the typical user and detract from user-friendliness and efficiency. 

4. Turn the cursor off so your user will focus on the entire screen instead of the arrow.  

A cursor on the screen makes the user think, "How do I get the arrow to do what I want?" 

Remove the cursor, and the user's thinking and actions become direct instead of indirect—

thereby unlocking the true power of touch screens. 

5. Always give your users feedback as soon as they touch the screen.  

Immediate feedback is critical to reassure the user that a touch has registered. Responses 

can be visual, such as 3-D button effects similar to those found on a standard Windows 

button. Or you can provide an audio response, such as a "click" or other sound output 

whenever a user touches the screen. 

6. Make your application fun and fast.  
Users will walk away from a sluggish system. You can keep their attention with a quick 

response to touches. Speedy systems also reduce vandalism. Avoid graphics modes offering 

excessive colours or high resolution—these will only slow down your system. 

7. Make the application intuitive, limit choices, and guide the user as much as possible.  

Test your application with users. If they pause in confusion—even for a moment—you've 

identified the areas than need improvement. 

8. Digitized speech can talk users through your application.  

Because the human brain can simultaneously process a voice and absorb an image, there is 

something almost magical about a user interface that provides voice prompts and touch 

response. The better kiosk applications exploit this knowledge for maximum effect. For 

example: "Touch the first letter of the company you are looking for." Click. "Now touch OK." 

Click. 

9. Make your application part of an attractive package.  

Animation and large fonts help attract users to kiosk applications. The actual design of the 

kiosk cabinet should also be attractive and sturdy. 

10. Keep the following in mind when designing a kiosk cabinet.  

Are you using forced-air ventilation? Put your fan at the top, near the monitor's vents. To 

minimize the airborne dust from footsteps, keep the intake away from the floor. Keep air from 

entering around the monitor face. Point your speakers in the direction of your user's ears. 

Allow for variations in the physical dimensions of monitor models, as they change frequently. 

The display should also be mounted securely or have a steady base so it feels solid to the 

touch. Finally, choose a finish that does not show fingerprints—avoid polished stainless steel, 

chrome, or glossy black paint. [27] 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

21

8 Peer to Peer Computing 
The term “peer-to-peer” (P2P) refers to a class of systems and applications that employ 

distributed resources to perform a critical function in a decentralized manner. The critical 

function can be distributed computing, data/content sharing, communication and 

collaboration, or platform services. Decentralization may apply to algorithms, data, and meta-

data, or to all of them. This does not preclude retaining centralization in some parts of the 

systems and applications if it meets their requirements. Typical P2P systems reside on the 

edge of the Internet or in ad-hoc networks. 

With the pervasive deployment of computers, P2P is increasingly receiving attention in 

research, product development, and investment circles. This interest ranges from enthusiasm, 

through hype, to disbelief in its potential. Some of the benefits of a P2P approach include: 

improving scalability by avoiding dependency on centralized points; eliminating the need for 

costly infrastructure by enabling direct communication among clients and enabling resource 

aggregation. [12] 

8.1 Goals of Peer to Peer Computing 
As with any computing system, the goal of P2P systems is to support applications that satisfy 

the needs of users. Selecting a P2P approach is often driven by one or more of the following 

goals. 

Ø Cost sharing/reduction. Centralized systems that serve many clients typically bear 

the majority of the cost of the system. When that main cost becomes too large, a P2P 

architecture can help spread the cost over all the peers. For example, in the file-

sharing space, the Napster system enabled the cost sharing of file storage, and was 

able to maintain the index required for sharing. In the end, the legal costs of 

maintaining the index became too large, and so more radical P2P systems such as 

Gnutella were able to share the costs even further. Much of the cost sharing is 

realized by the utilization and aggregation of otherwise unused resources (e.g. 

SETI@home), which results both in net marginal cost reductions and a lower cost for 

the most costly system component. Because peers tend to be autonomous, it is 

important for costs to be shared reasonably equitably. 

Ø Improved scalability/reliability. With the lack of strong central authority for 

autonomous ears, improving system scalability and reliability is an important goal. As 

a result, algorithmic innovation in the area of resource discovery and search has been 

a clear area of research, resulting in new algorithms for existing systems, and the 

development of new P2P platforms (such as CAN, Chord, and PAST). 

Ø Resource aggregation and interoperability. A decentralized approach lends itself 

naturally to aggregation of resources. Each node in the P2P system brings with it 

certain resources such as compute power or storage space. Applications that benefit 

from huge amounts of these resources, such as compute-intensive simulations or 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

22

distributed file systems, naturally lean toward a P2P structure to aggregate these 

resources to solve the larger problem. Distributed computing systems, such as 

SETI@Home, distributed.net, and Endeavours are obvious examples of this 

approach. By aggregating compute resources at thousands of nodes, they are able to 

perform computationally intensive functions. File sharing systems, such as Napster, 

Gnutella, and so forth, also aggregate resources. In these cases, it is both disk space 

to store the community’s collection of data and bandwidth to move the data that is 

aggregated. Interoperability is also an important requirement for the aggregation of 

diverse resources. 

Ø Increased autonomy. In many cases, users of a distributed system are unwilling to 

rely on any centralized service provider. Instead, they prefer that all data and work on 

their behalf be performed locally. P2P systems support this level of autonomy simply 

because they require that the local node do work on behalf of its user. The principle 

example of this is the various file sharing systems such as Napster, Gnutella, and 

FreeNet. In each case, users are able to get files that would not be available at any 

central server because of licensing restrictions. However, individuals autonomously 

running their own servers have been able to share the files because they are more 

difficult to find than a server operator would be. 

Ø Anonymity/privacy. Related to autonomy is the notion of anonymity and privacy. A 

user may not want anyone or any service provider to know about his or her 

involvement in the system. With a central server, it is difficult to ensure anonymity 

because the server will typically be able to identify the client, at least by Internet 

address. By employing a P2P structure in which activities are performed locally, users 

can avoid having to provide any information about themselves to anyone else. 

FreeNet is a prime example of how anonymity can be built into a P2P application. It 

uses a forwarding scheme for messages to ensure that the original requestor of a 

service cannot be tracked. It increases anonymity by using probabilistic algorithms so 

that origins cannot be easily tracked by analyzing network traffic. 

Ø Dynamism. P2P systems assume that the computing environment is highly dynamic. 

That is, resources, such as compute nodes, will be entering and leaving the system 

continuously. When an application is intended to support a highly dynamic 

environment, the P2P approach is a natural fit. In communication applications, such 

as Instant Messaging, so-called “buddy lists” are used to inform users when persons 

with whom they wish to communicate become available. Without this support, users 

would be required to “poll” for chat partners by sending periodic messages to them. 

Likewise, distributed computing applications such as distributed.net and SETI@Home 

must adapt to changing participants. They, therefore, must re-issue computation jobs 

to other participants to ensure that work is not lost if earlier participants drop out of 

the network while they were performing a computation step. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

23

Ø Enabling ad-hoc communication and collaboration. Related to dynamism is the 

notion of supporting ad-hoc environments. By ad hoc, we mean environments where 

members come and go based perhaps on their current physical location or their 

current interests. Again, P2P fits these applications because it naturally takes into 

account changes in the group of participants. P2P systems typically do not rely on 

established infrastructure — they build their own, e.g., logical overlay in CAN and 

PAST. [12] 

 

8.2 Peer to Peer Taxonomies 
All computer systems can be classified into centralized and distributed. Distributed systems 

can be further classified into the client-server model and the P2P model. The client-server 

model can be flat where all clients only communicate with a single server (possibly replicated 

for improved reliability), or it can be hierarchical for improved scalability. In a hierarchal 

model, the servers of one level are acting as clients to higher level servers. Examples of a flat 

model include traditional middleware solutions, such as object request brokers and distributed 

objects. Examples of a hierarchical model include DNS server and mounted file systems. The 

P2P model can either be pure or it can be hybrid. In a pure model, a centralized server does 

not exist. [12] 

 
Figure 8-1 : Taxonomy of P2P systems 
 

 
Figure 8-2 : Hybrid Peer-to-Peer Model. (1) Initial communication with a server, e.g., to obtain 

the location/identity of a peer, followed by (2) direct communication with a peer. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

24

9 Tools and Technologies 
Tools and technologies that were used for the implementation are: 

Ø For the database design : Visual Database Designer of Visual Studio 2005 

Ø For the database Implementation : Microsoft SQL Server (Express) 

Ø For the implementation of the system’s applications (Windows forms) : Visual Studio 

2005, Visual C# 

Ø Web Server : Internet Information Services (IIS) version 5.1 

Ø Operational system : Windows XP, Service Pack2 with .Net framework 2.0 

Ø For system architecture design : Microsoft Visio 2003 

Ø For content creation and editing : Adobe Photoshop CS  

 

Further details on the implementation’s concept and enabling technologies are described in 

Chapter 12. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

25

10 Requirements Analysis 
Requirements will be examined from the aspect of each application: 

Ø Network Manager 

Ø Player 

Ø Calendar 

Ø P2P Server 

Ø Schedule Server 

 

10.1 Requirements from the aspect of Network Manager 
Ø Network Manager can report “activities”. “Activities” represents actions that refer in 

the whole distributive system. They are categorized in three categories according to 

their derivation. Time of the activity is always recorded. Activities messages includes : 

o From Network Manager 

§ Network Manager added PlayerX 

§ Network Manager removed PlayerX 

§ Network Manager set as current content update ContentUpdateX of 

PlayerX softwareversionX 

§ Network Manager added contentupdateX of PlayerX versionX 

§ Network Manager deleted ContentupdateX of PlayerX versionX 

§ Network Manager added VersionX of PlayerX 

§ Network Manager triggered a content update on PlayerX 

§ Network Manager triggered software version update on PlayerX 

o From Players 

§ PlayerX started 

§ PlayerX stopped 

§ PlayerX have been updated (content update) 

§ PlayerX have been updated (software version update)  

o From Calendar 

§ A new schedule have been added (PlayerX, ContentupdateX, TIME)  

Ø Network Manager can create activity messages (the messages are listed above) 

Ø Network Manager can present Players and its details 

Ø Network Manager can present Players’ current software version and its details 

Ø Network Manager can present Players’ available content updates (of the current 

software version) and its details 

Ø Network Manager can add a new Player 

Ø Network Manager can delete an existing Player 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

26

Ø Network Manager can add a new software version on an existing Player. This task 

includes several steps as the generation of the default content update and the 

determination (registration) of its available controls. 

Ø Network Manager can add a new content update. The new content update will be a 

replication of the default content update. After the creation of the new content update 

user can edit the controls. 

Ø Network Manager can present all the available content updates, its details and the 

available controls. The editor panel allows controls’ editing. Each control type has 

different editable properties. The properties of each control type are listed below: 

o Forms (This control has properties that represent the properties of the main 

form player’s application) 

§ BackColor : Background color of the form 

§ BackgroundImageUrl : Background image url of the form 

§ BackgroundImageLayout : Background image layout of the form 

o Labels 

§ Text : Text of the label 

§ BackColor : Background color of the label 

§ BorderStyle : Border style of the label 

§ Enabled : Enable status of the label 

§ Font : Font of the label (includes font name, font size, etc) 

§ ForeColor : Foreground color of the label 

§ Size : Size of the label 

§ TextAlign : Text align of the label 

§ Visible : Visible status of the label 

§ AutoSize : Autosize status of the label 

§ Location : Location of the label 

o Textboxes 

§ Text : Text of the textbox 

§ BackColor : Background color of the textbox 

§ BorderStyle : Border style of the textbox 

§ Enabled : Enable status of the textbox 

§ Font : Font of the textbox (includes font name, font size, etc) 

§ ForeColor : Foreground color of the textbox 

§ Size : Size of the textbox 

§ TextAlign : Text align of the textbox 

§ RedaOnly : Read only status of the textbox 

§ Visible : Visible status of the textbox 

§ MultiLine :  Multiline status of the textbox 

§ ScrollBars : Scrollbars of the textbox 

§ Location : Location of the textbox 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

27

o Buttons 

§ Text : Text of the button 

§ BackColor : Background color of the button 

§ Enabled : Enable status of the button 

§ Font : Font of the button (includes font name, font size, etc) 

§ ForeColor : Foreground color of the button 

§ Size : Size of the button 

§ TextAlign : Text align of the button 

§ FlatStyle : Flat style of the button 

§ AutoSize : Autosize status of the button 

§ Visible : Visible status of the button 

§ Location : Location of the button 

o Pictureboxes 

§ BackColor : Background color of the picturebox 

§ BorderStyle : Border style of the picturebox 

§ Enabled : Enable status of the picturebox 

§ Size : Size of the picturebox 

§ SizeMode : Sizemode of the picturebox 

§ Visible : Visible status of the picturebox 

§ Location : Location of the picturebox 

o Webbrowser 

§ Url : Url of the web browser 

§ AllowNavigation : Allow navigation status of the web browser 

§ ScrollBarsEnabled : Scroll bars enabled status of the web browser 

§ Visible : Visible status of the web browser 

§ Size : Size of the web browser  

§ Location : Location of the web browser 

o Videoplayers 

§ URL : Url of the media file of the video player 

§ Size : Size of the video player 

§ Visible : Visible status of the video player 

§ UiMode : Uimode of the video player (specifies if the videoplayers 

buttons are visible) 

§ StretchToFit : Stretch to fit status of the video player 

§ Location :  Location of the video player 

Ø Network Manager can manage content updates. Available controls can be previewed 

in the preview panel. An available content update can be selected to become the 

current one. 

Ø Network Manager can delete a content update 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

28

Ø Network Manager can connect with P2P Server and ask for a list of the online 

connected Players (Connected Players are active). Network Manager can select an 

active Player and triggers a content update or a software version update 

 

10.2 Requirements from the aspect of the player 
Ø Player can be published and then installed in the remote location by three ways. 

Installation should be triggered from the remote location manually. (An alternative 

way can be to install Player’s application remotely by using remote desktop 

application)  

1. publish Player to  the web 

2. publish Player to a file share 

3. publish Player to a cd-rom or dvd-rom 

Ø Player start up should be made from the remote location manually (An alternative 

way can be to start Player’s application remotely by using remote desktop 

application) 

Ø When the Player starts should try to connect to P2P Server. If this is not possible 

Player will try to connect to P2P Server till connection will be established. P2P Server 

connection ensures that the player will be updated when Network Manager or 

Schedule Server triggers an update 

Ø Player can be updated on demand remotely 

Ø Player should create and inform Network Manager with activity messages 

Ø Player should interact with users. Interaction will be performed without keyboard. 

Touch screen is the input devise for the Player 

Ø Player should disconnect with P2P Server on closing 

Ø Player can offer services according to the case that is being developed 

 

10.3 Requirements from the aspect of Calendar 
Ø The user of calendar application can select an available Player and schedule an 

update of content update. 

Ø The user of calendar application can select a date or a period and see all the 

scheduled updates, which ones are active and the details of each one 

Ø Calendar should create activity messages and inform Network Manager when a 

scheduled update is added. 

 ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

29

10.4 Requirements from the aspect of Schedule Server 
Ø When Schedule Server application loads should try to connect to P2P Server. If the 

connection is not possible, it will try to establish connection every 10 seconds. When 

the connection is established the Schedule Server can be started. 

Ø Schedule Server will check for scheduled updates every 10 seconds. 

Ø If Schedule Server locate an scheduled update will trigger the update 

Ø In case where Connection with P2P Server is lost, Schedule Server will track it and 

stop running till it reconnects. 

Ø Messages that are related with all these states informs Schedule Server’s user 

Ø Schedule Server should be disconnected with the  P2P Server on closing 

(automatically) 

 

10.5 Requirements from the aspect of P2P Server 
Ø P2P Server can understand if an application (peer) is connected 

Ø P2P Server can send a list of the connected peers if it is requested 

Ø P2P Server can broadcast a message of a peer to the other peers 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

30

11 Database Design 
 Visual Database Designer of Visual studio 2005 is the tool that has been used for the 

database design and database implementation. 

 

11.1 Database relationship diagram  

activities
activity_id

activity_description

activity_creationdate

buttons
button_id

button_name

button_description

button_text

button_backcolor

button_enabled

button_font

button_forecolor

button_size

button_textalign

button_flatstyle

button_autosize

button_visible

button_location

contentupdate_id

contentupdates
contentupdate_id

contentupdate_name

contentupdate_description

contentupdate_creationdate

contentupdate_isdefault

contentupdate_iscurrent

softwareversion_id

FK_buttons_contentupdates forms
form_id

form_backcolor

form_backgroundimageurl

form_backgroundimagelayout

contentupdate_id
FK_forms_contentupdates

labels
labels_id

label_name

label_description

label_text

label_backcolor

label_borderstyle

label_enabled

label_font

label_forecolor

label_size

label_textalign

label_visible

label_autosize

label_location

contentupdate_id

FK_labels_contentupdates

pictureboxes
picturebox_id

picturebox_name

picturebox_description

picturebox_backcolor

picturebox_borderstyle

picturebox_enabled

picturebox_imagelocation

picturebox_size

picturebox_sizemode

picturebox_visible

picturebox_location

contentupdate_id

FK_pictureboxes_contentupdates

players
player_id

player_name

player_description

player_creationdate

softwareversions
softwareversion_id

softwareversion_name

softwareversion_description

softwareversion_creationdate

softwareversion_iscurrent

player_id

FK_softwareversions_players

FK_contentupdates_softwareversions

tasks
task_id

task_description

task_creationdatetime

task_player_id

task_player_name

task_contentupdate_id

task_contentupdate_name

task_datetime

task_isactive

FK_tasks_players

FK_tasks_contentupdates

textboxes
textbox_id

textbox_name

textbox_description

textbox_text

textbox_backcolor

textbox_borderstyle

textbox_enabled

textbox_font

textbox_forecolor

textbox_size

textbox_textalign

textbox_readonly

textbox_visible

textbox_multiline

textbox_scrollbars

textbox_location

contentupdate_id

FK_textboxes_contentupdates

videoplayers
videoplayer_id

videoplayer_name

videoplayer_description

videoplayer_url

videoplayer_size

videoplayer_visible

videoplayer_uimode

videoplayer_stretchtofit

videoplayer_location

contentupdate_id

FK_videoplayers_contentupdates

webbrowsers
webbrowser_id

webbrowser_name

webbrowser_description

webbrowser_url

webbrowser_allownavigation

webbrowser_scrollbarsenabled

webbrowser_visible

webbrowser_size

webbrowser_location

contentupdate_id

FK_webbrowsers_contentupdates

 
Figure 11-1 : Database relationship diagram 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

31

11.2 Database table definition 
The tables that have been created are: 

Ø players 
Ø softwareversions 
Ø contentupdates 
Ø forms 
Ø labels 
Ø textboxes 
Ø buttons 
Ø pictureboxes 
Ø webbrowsers 
Ø videoplayers 
Ø tasks 
Ø activities 

 

Detailed description is presented below : 

Column Name   : The name of the column 

Condensed Type  : The condensed type of the column 

Allow Nulls   : Specifies if null values are allowed 

Identity   : Specifies if the value is auto increment one 

Description  : Description of the column 

Key image   : Primary Key (PK)  

Foreign Keys (FK) are not presented in the tables but are referenced in the description of the 

table 

 

11.2.1 Table “players” 

 Table “Players” stores data of the Players 

players

player_id int id of the player

player_name varchar(50) name of the  player

player_description varchar(MAX) description of the player

player_creationdate datetime creation datetime  of the player

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-2: Table "players" 

 

 ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

32

11.2.2 Table “softwareversions” 

Softwareversions : Stores data of Player’s software versions (FK : player_id) 

softwareversions

softwareversion_id int id of the software version

softwareversion_name varchar(50) name of the software version

softwareversion_description varchar(MAX) description of the software version

softwareversion_creationdate datetime creation datetime of the software version

softwareversion_iscurrent bit flag that shows if the software version is the current one

player_id int player's id

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-3 : Table "softwareversions" 

 

11.2.3 Table “contentsupdates” 

Contentupdates : Stores data of software versions’ content updates (FK : softwareversion_id) 

contentupdates

contentupdate_id int id of the content update

contentupdate_name varchar(50) name  of the content update

contentupdate_description varchar(MAX) description of the content update

contentupdate_creationdate datetime creation date time  of the content update

contentupdate_isdefault bit flag that show if the content update is the default one

contentupdate_iscurrent bit flag that shows if the content update is the current one

softwareversion_id int id of the software version that the content update belongs to

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-4 : Table "contentupdates" 

 

11.2.4 Table “forms” 

Forms : Stores data of the main form of the content update (FK : contentupdate_id) 

forms

form_id int id of the main  form

form_backcolor varchar(MAX) background color of the main  form

form_backgroundimageurl varchar(MAX) background image url  of the main  form

form_backgroundimagelayout varchar(MAX) background image layout of the main  form

contentupdate_id int id of the content update that the main form belongs to

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-5 : Table "forms" 

11.2.5 Table “labels” 

Labels : Stores data of the labels of the content update (FK : contentupdates_id) 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

33

 

labels

labels_id int id of the label

label_name varchar(50) name of the label

label_description varchar(MAX) description of the label

label_text varchar(MAX) text of the label

label_backcolor varchar(MAX) bachground color of the label

label_borderstyle varchar(MAX) border style  of the label

label_enabled varchar(MAX) enable status of the label

label_font varchar(MAX) font of the label

label_forecolor varchar(MAX) foreground color of the label

label_size varchar(MAX) size of the label

label_textalign varchar(MAX) text align of the label

label_visible varchar(MAX) visible status of the label

label_autosize varchar(MAX) autosize status of the label

label_location varchar(MAX) location of the label

contentupdate_id int id of the content update that the label belongs to

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-6 : Table "labels" 

 

11.2.6 Table “textboxes” 

Textboxes : Stores data of the textboxes of the content update (FK : contentupdate_id) 

textboxes

textbox_id int id of the textbox

textbox_name varchar(50) name of the textbox

textbox_description varchar(MAX) description of the textbox

textbox_text varchar(MAX) text of the textbox

textbox_backcolor varchar(MAX) background color of the textbox

textbox_borderstyle varchar(MAX) border style of the textbox

textbox_enabled varchar(MAX) enabled status of the textbox

textbox_font varchar(MAX) font of the textbox

textbox_forecolor varchar(MAX) foreground color of the textbox

textbox_size varchar(MAX) size of the textbox

textbox_textalign varchar(MAX) textalign of the textbox

textbox_readonly varchar(MAX) read only status of the textbox

textbox_visible varchar(MAX) visible of the textbox

textbox_multiline varchar(MAX) multiline status of the textbox

textbox_scrollbars varchar(MAX) scrollbars of the textbox

textbox_location varchar(MAX) location of the textbox

contentupdate_id int id of the content update that the textbox belongs to

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-7 : Table "textboxes" 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

34

11.2.7 Table “buttons” 

Buttons : Stores data of the buttons of the content update (FK : contentupdate_id) 

buttons

button_id int id of the button

button_name varchar(50) name of the button

button_description varchar(MAX) description of the button

button_text varchar(MAX) text of the button

button_backcolor varchar(MAX) background color of the button

button_enabled varchar(MAX) enabled status of the button

button_font varchar(MAX) font of the button

button_forecolor varchar(MAX) foreground color of the button

button_size varchar(MAX) size of the button

button_textalign varchar(MAX) text align of the button

button_flatstyle varchar(MAX) flat style of the button

button_autosize varchar(MAX) autosize status of the button

button_visible varchar(MAX) visible status of the button

button_location varchar(MAX) location of the button

contentupdate_id int id of the content update that the button belongs to

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-8 : Table "buttons" 

11.2.8 Table “pictureboxes” 

Pictureboxes : Stores data of the pictureboxes of the content update (FK : contentupdate_id) 

pictureboxes

picturebox_id int id of the picturebox

picturebox_name varchar(50) name of the picturebox

picturebox_description varchar(MAX) description of the picturebox

picturebox_backcolor varchar(MAX) background color of the picturebox

picturebox_borderstyle varchar(MAX) border style of the picturebox

picturebox_enabled varchar(MAX) enabled status of the picturebox

picturebox_imagelocation varchar(MAX) image location of the picturebox

picturebox_size varchar(MAX) size of the picturebox

picturebox_sizemode varchar(MAX) size mode of the picturebox

picturebox_visible varchar(MAX) visible status of the picturebox

picturebox_location varchar(MAX) location of the picturebox

contentupdate_id int id of the content update that the picturebox belongs to

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-9 : Table "pictureboxes" 

 

 ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

35

11.2.9 Table “webbrowsers” 

Webbrowsers : Stores data of the web browsers of the content update (FK : 

contentupdate_id) 

webbrowsers

webbrowser_id int id of the web browser

webbrowser_name varchar(50) name of the web browser

webbrowser_description varchar(MAX) description of the web browser

webbrowser_url varchar(MAX) url of the web browser

webbrowser_allownavigation varchar(MAX) allow navigation  of the web browser

webbrowser_scrollbarsenabled varchar(MAX) scrollbars enabled of the web browser

webbrowser_visible varchar(MAX) visible status of the web browser

webbrowser_size varchar(MAX) size of the web browser

webbrowser_location varchar(MAX) location of the web browser

contentupdate_id int id of the content update that the web browser belongs to

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-10 : Table "webbrowser" 

 

11.2.10 Table “videoplayers” 

Videoplayers : Stores data of the video players of the content update (FK : contentupdate_id) 

videoplayers

videoplayer_id int id of the video player

videoplayer_name varchar(50) name of the video player

videoplayer_description varchar(MAX) description of the video player

videoplayer_url varchar(MAX) url of the video player

videoplayer_size varchar(MAX) size of the video player

videoplayer_visible varchar(MAX) visible of the video player

videoplayer_uimode varchar(MAX) uimode of the video player

videoplayer_stretchtofit varchar(MAX) stretch to fit of the video player

videoplayer_location varchar(MAX) location of the video player

contentupdate_id int id of the content update that the video player belongs to

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-11 : Table "videoplayers" 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

36

11.2.11 Table “tasks” 

Tasks : Stores data of the tasks. Tasks are managed from the calendar and the schedule 

server  (FK : task_player_id) 

tasks

task_id int id of the task

task_description varchar(MAX) description of the task

task_creationdatetime datetime creation datetime of the task

task_player_id int player id of the task

task_player_name varchar(MAX) player name of the task

task_contentupdate_id int content update id of the task

task_contentupdate_name varchar(MAX) content update name of the task

task_datetime datetime date time of the task

task_isactive bit flag that shows if the task is active

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-12 : Table "tasks" 

 

11.2.12 Table “activities” 

Activities : Stores data according to the use of the whole platform 

activities

activity_id int id of the activity

activity_description varchar(MAX) description of the activity

activity_creationdate datetime creattion datetime of the activity

Column Name Condensed Type Allow Nulls Identity Description

 
Figure 11-13 : Table "activities" 

 

 

 

 

 

 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

37

12 Implementation 

12.1 System Architecture 

 
Figure 12-1 : System Architecture 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

38

The components of the systems are: 

1. Database Server (CentralDB.mdf, CentralDB_log.ldf.): All applications (Network 

Manager, Players, Schedule Server, Calendar) have remote access to Database 

Server (Chapter 11). 

2. Network Manager (Windows Form Application: Network_Manager.exe): Network 

Manager manages Players, Content Updates and Software Updates. Activity 

Monitoring System gives an easy way to track of the status of all the Players and 

monitor previous actions. It is the first line of defense against unscheduled Player 

outages and network malfunctions. Any changes of Players, its Software Versions or 

its Content Updates are stored in the central database. Players will recognize the 

changes only on start or if P2P Server triggers them to do so. Network Manager can 

make a real time request to P2P Server to trigger a Player that is active (on-line). A 

wizard will allow user of Network Manager to add a new Software Version. During 

this task he will be asked to add (register) the necessary editable controls of the 

software version and the default Content Update will be automatically generated. 

Afterwards he can add new Content Updates and edit their control with an easy to 

use editor panel. A preview Panel is also available so he can preview the controls of 

Content Updates and decide which one should be the current. A number of other 

facilities are available and messages informs user if an action was committed 

successfully or not.(Chapter 10.1) 

3. Publishing Location (It can be one or more): Publishing Location could be a Web 

Server, a File Server or a File Share. For the need of the implementation we create a 

Web server. When the designer creates a software version of a Player publish it to 

this Web Server. The software version can be installed or updated to the remote 

machine of the Player through World Wide Web. Furthermore we stored all media 

files (images and video files) in this Web Server. The user of Network Manager 

should upload all files to the appropriate folder of the server and ensure that he uses 

the right Urls. 

4. Designer/Developer: Designer is the specialist who is responsible for the 

implementation of the Software Version of a Player. He is obligated to use Visual 

Studio .NET 2005 to implement the application. ClickOnce technology (Detailed 

description will be given in the next chapter 12.2) is available only in this software, 

since we have not implemented this facility in this study.  When the application is 

ready, designer publishes it to the Publishing Location. Then Network Manager has 

to take action and add this software version. 

5. Calendar (Windows Form Application: Calendar.exe ): Calendar is a tool that allows 

user to a schedule updates of Players. User can select an available Player, a Content 

Update and pick date and time for the update. Update details are stored in database 

and Schedule Server will take over to commit the update. Scheduled tasks are 

presented to the user as active or inactive if has already committed. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

39

6. Schedule Server (Windows Form Application: Schedule_Server.exe): Schedule 

Server checks if there is a request for a scheduled update to commit it.  Schedule 

Server could have been implemented as a Windows Service. We preferred Windows 

Form Application option so that we can track changes and events by using the 

activity panel of the application. Schedule Server recognizes automatically if P2P 

Server is active. Messages inform user if something fails. A failure on P2P Server will 

be distinguished and faced. The application will be stopped when P2P Server is 

down and will prompt user for restart when P2P Server is back again. Two treads are 

running. The first one checks the state of P2P Server and the second checks 

database for scheduled updates. Checkpoint time circle is hard-coded to 10 seconds.   

7. P2P Server (Windows Form Application: P2P_Server.exe): P2P Server broadcasts 

messages (requests) to peers (Players). P2P Server could have been implemented 

as a Windows Service. We preferred Windows Form Application option so that we 

can track changes and events by using the activity panel of the application. 

8. Player (Windows Form Application: PlayerX.exe): Player is the application on the 

remote machine that presents content to users. Players’ applications have been 

designed as smart clients (see Chapter 12.2). Players can be one to many. There 

isn’t any upper limit that restricts the number of the overall Players. A player has 

Software Versions (1.0.0.1, 1.0.0.2, ..) and every Software Version  has Content 

Updates. Content Updates can be managed from Network Manager (add, delete, 

edit, make current). There isn’t any limitation on the designing of the application’s 

user interface. Developer can implement Player as he desires but he should 

determine which of the controls (labels, textboxes, buttons, pictureboxes, web 

browsers, video players) of the application will be the editable ones. Components that 

have to do with Player’s update operations should be implemented in every Player. 

 

 

 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

40

12.2 Smart Clients 
The overall design of the system and particular the design of the Players was based on Smart 

clients. Smart client applications are a powerful alternative to thin client applications. They 

can provide users with a rich and responsive user interface, the ability to work offline, and a 

way to take advantage of local hardware and software resources. In addition, they can be 

designed to run on a broad spectrum of client devices, including desktop PCs, Tablet PCs, 

and handheld mobile devices such as Pocket PCs and Smart phones. 

Smart clients give users access to information and remote services within a powerful and 

intuitive client environment, and are an effective solution for flexible user-oriented applications 

and for increasing user productivity and satisfaction. Smart client applications can be 

designed to combine the traditional benefits of a rich client application with the manageability 

benefits of a thin client application. 

12.2.1 What is a Smart Client? 

To fully understand how smart clients combine the benefits of rich clients and thin clients, it is 

useful to examine the history and underlying principles behind the rich and thin client 

application models, and review some of the advantages and disadvantages associated with 

each. 

12.2.1.1 Rich Client Applications 

In the mid-1990s, the number of rich client applications developed for the Microsoft® 

Windows® operating system increased dramatically. These clients were designed to take 

advantage of the local hardware resources and the features of the client operating system 

platform. 

Despite the impressive functionality of many of these applications, they have limitations. Many 

of these applications are stand-alone and operate on the client computer, with little or no 

awareness of the environment in which they operate. This environment includes the other 

computers and any services on the network, as well as any other applications on the user’s 

computer. Very often, integration between applications is limited to using the cut or copy and 

paste features provided by Windows to transfer small amounts of data between applications. 

There are technologies to help increase the connectivity of rich client applications. For 

example, two-tier applications allow multiple users to access common data residing on the 

network, and DCOM allows applications to become more distributed. (With DCOM, logic and 

state are no longer tied to the client computer, and instead are encapsulated within objects 

that are then distributed across multiple computers.) However, connected applications are 

considerably more complex to develop. As the size and complexity of these distributed 

applications grows, any tight coupling between client applications and the services they 

consume becomes increasingly difficult to maintain. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

41

While rich clients typically provide a high-quality, responsive user experience and have good 

developer and platform support, they are very difficult to deploy and maintain. As the 

complexity of the applications and the client platform increases, so do the difficulties 

associated with deploying the application to the client computer in a reliable and secure way. 

One application can easily break another application if an incompatible shared component or 

library is deployed, a phenomenon known as application fragility. New versions of the 

application are typically made available by redeploying the entire application, which can 

increase an application fragility problem. 

 

12.2.1.2 Thin Client Applications 

The Internet provides an alternative to the traditional rich client model that solves many of the 

problems associated with application deployment and maintenance. Thin client, browser-

based applications are deployed and updated on a central Web server; therefore, they 

remove the need to explicitly deploy and manage any part of the application to the client 

computer. 

This model allows companies to very efficiently expose their applications to a large and 

diverse external audience. Because thin clients have proven to be effective at solving some of 

the deployment and manageability problems, they are now used to provide access to many 

line-of-business (LOB) applications to users within an organization, as well as access to 

externally facing applications to customers and partners. This is despite the fact that the 

needs and expectations of these two types of users are often radically different.  

Thin client applications have some disadvantages. The browser must have a network 

connection at all times. This means that mobile users have no access to applications if they 

are disconnected, so they must re-enter data when they return to the office. Also, common 

application features such as drag-and-drop, undo-redo, and context-sensitive help may be 

unavailable, which can reduce the usability of the application. 

Because the vast majority of the application logic and state lives on the server, thin clients 

make frequent requests back to the server for data and processing. The browser must wait for 

a response before the user can continue to use the application; therefore, the application will 

typically be much less responsive than an equivalent rich client application. This problem is 

exacerbated in low bandwidth or high latency conditions, and the resulting performance 

problems can lead to a significant reduction in application usability and user efficiency. An 

LOB application that requires heavy data entry and/or frequent navigation across multiple 

windows can be particularly affected by this problem. 

12.2.1.3 Smart Client Applications 

Smart client applications can be designed to combine the benefits of a rich client application 

with the deployment and manageability strengths of a thin client application, although the 

precise nature of the balance between the two approaches depends on the exact scenario. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

42

Smart client applications often have very diverse requirements, and so vary greatly in design 

and implementation. However, all smart clients share some or all of the following 

characteristics: 

Ø Make use of local resources 

Ø Make use of network resources 

Ø Support occasionally connected users 

Ø Provide intelligent installation and update (ClickOnce) 

Ø Provide client device flexibility 

Many applications do not need all of these characteristics. As you design your smart clients, 

you will need to carefully consider your application scenario and decide which of these 

characteristics your smart client application requires. Incorporating all of these characteristics 

into your application will require very careful planning and design, and in many cases you will 

need significant implementation resources. 

12.2.1.4 Choosing Between Smart Clients and Thin Clients 

To choose the right application architecture for your situation, you must consider a number of 

factors. To determine whether a smart client approach is the most suitable for your 

application, carefully consider your current and future business application needs. If your 

application is based on an unsuitable architecture, it may fail to meet the requirements and 

expectations of the users and the business as a whole. Changing the architecture later to 

meet new requirements or to take advantage of new opportunities may be extremely 

expensive. 

A thin client architecture is often the most appropriate if you need to make an externally facing 

application available to a diverse external audience, while a smart client architecture is often 

the most suitable for an internal application that needs to integrate with or coordinate other 

client-side applications or hardware, or that is required to work offline or provide specific high-

performance functionality through a responsive user interface. 

In reality these two approaches overlap to a great extent, and each has distinct advantages 

and disadvantages. You will only be able to choose the right approach after you carefully 

consider your requirements and understand how each approach would apply in your situation. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

43

 
Figure 12-2 : Smart Client definition diagram  

 
Figure 12-3 : Features of Smart Clients and Thin Clients 

 ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

44

12.2.2 Deploying Smart Clients 

12.2.2.1 Introduction 

Web applications are limited in many ways, yet a large number of Web applications have 

been built over the last few years and more will continue to be developed going forward. Why 

do companies choose a Web-based solution over a rich client experience? There are a few 

good reasons, but the number one reason I hear is deployment. 

When a company decides to create a new application for their employees, regardless of the 

type of system being designed, the discussion eventually moves to the issue of deployment. 

The system will need to be rolled out to the target users, and there needs to be a plan in 

place to handle ongoing updates (bug fixes, new feature releases, and so on). Years of 

experience with rolling out desktop applications have left most developers and IT staff with a 

good idea of the pain involved in client deployments, and a Web application ends up being 

the easier path. Of course, there are some tradeoffs in going with a browser-based Web 

application versus a rich-client application, but the fear of deployment usually makes those 

compromises acceptable. What we really need is a model for deploying client applications 

that is as easy and as safe as deploying a Web application, removing the need to 

compromise on the functionality of our applications. That is what "ClickOnce" brings to the 

table. 

"ClickOnce" is a code name for a set of functionality in the next version of Microsoft® Visual 

Studio® .NET and the Microsoft® .NET Framework. It will allow us to create desktop 

applications that are deployed with a safe, system-controlled installation, and are 

automatically updated as needed from a central location.  

12.2.2.2 Why Is Client Deployment So Hard? 

ClickOnce exists to simplify client deployment, but what does that mean? What problems is 

ClickOnce going to enable us to avoid? Client deployment is hard because it happens on 

each of many clients, potentially at many locations, and your code and all of the associated 

components have to work on all of the target machines. 

Consider a medium-sized application deployment of 10,000 seats (not all that unusual for a 

business application within a corporation). For a desktop application, that is 10,000 different 

machines that could each contain a slightly different mix of software configurations. In the 

case of a Web application, there may be anywhere from 1 server to a small "Web garden'"' of 

machines—an extreme difference in scope for your deployment. So, in each case, you will 

need to ensure that your code will:  

Ø Run on each target machine.  

Ø Not break any existing software by being installed.  

Ø Not be broken by the installation of any future software.  

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

45

Quite a daunting task if you are dealing with 10,000 machines. What impact will it have on 

your testing to include all of the possible software combinations? The last two items on my list 

are affectionately known as "DLL Hell," where the installation or removal of a DLL for one 

application can break another. While there are many ways to reduce the likelihood of a 

conflict between applications, it is still a possibility when deploying onto client machines. All of 

these issues can make a Web application look very appealing. After all, when was the last 

time a Web application broke your desktop? 

The act of installing your software the first time, or of installing any future updates, is also a 

challenge. For the Web server case, you could just handle the installation manually, assigning 

someone to go to each machine and run the setup program—a process that isn't feasible for 

10,000 clients. When dealing with a large number of clients, you will likely need to rely on the 

user to take some action to run the initial installation, and to run a new install program for 

each update over the life of the application. While this approach has already been used 

successfully on countless occasions, it adds complexity to the release and to each update of 

the application. 

Security is an issue for application installation as well. Depending on the policies of the 

company in question, a regular user may not have sufficient permission to run a traditional 

application installation. 

12.2.2.3 Limitations of Browser-Based Applications 

Web-based applications have their limits. There are some obvious issues with browser-based 

systems. The lack of offline support alone means that a Web-version of Microsoft® Outlook® 

isn't enough, and many issues with Web applications can be seen in even the most popular of 

sites. 

Consider the act of clicking "checkout" or "submit" on an online shopping site once you've 

entered your credit card info. Right at that exact point on many occasions you may have 

received a browser error of "page not found" or "server is not responding." What does that 

mean for your order? Did it go through or not? This type of confusion is hard to avoid in a 

Web application—although it can be mitigated with e-mail confirmations and other methods—

because it is not a mistake on the part of the developer. Rather, it is a side effect of the thin-

client architecture of the Web. 

Client applications can suffer from such issues as well, but in most cases these should be 

seen as a limitation or a bug; it can be done better. The developer of a client application has 

the option of saving your order locally and periodically retrying the transaction or querying for 

the state of the transaction after a loss of network connectivity—choices that are unavailable 

in a Web application. I'm not going to spend any more time discussing Web applications. 

12.2.2.4 ClickOnce Provides the Best of Both Models 

There are two main reasons to develop for the Web instead of for the client machine:  

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

46

The first reason is a need to limit your application to the lowest common denominator (the 

Web browser) in an effort to reach almost any device that can access the network. Web 

applications aim for "reach" not "rich," supporting the widest number of clients at the cost of 

some functionality.  

The second reason is the ease of installation and ongoing updates. The ability to apply a bug 

fix onto a single machine or a small set of machines, instead of requiring the new code to be 

applied on every single client, is an amazing time saver in the maintenance of an application.  

Going for reach is critical when your goal is to ensure availability to almost any device that 

can connect to the Web, but if you are dealing with a slightly narrower target audience, such 

as "employees and partners of my company," then reach isn't as much of an issue. Once 

you've reduced your target audience to something a little bit less than everything and 

everyone, you can constrain the target platform (Windows machines capable of supporting 

the .NET Framework) and then take advantage of that platform by building a full desktop 

application. ClickOnce allows you to do this by providing the second part of the equation: 

easy installation and automatic updates for your applications. 

The table below illustrates the features of each deployment model and shows how ClickOnce 

bridges the gap between the traditional Web and client worlds. 

 
Figure 12-4 : Comparing Web, ClickOnce and MSI 

 

12.2.2.5 Existing Deployment Improvements Under .NET 

Although ClickOnce is a new feature in the next version of the CLR and the .NET Framework, 

it is made possible by many existing aspects of managed code. Even in the initial version 1.0 

release of .NET, managed applications were designed for application isolation and zero-

impact deployment (often described as xcopy deployment), making it easier than ever to 

install and update your applications.  

With the first release of .NET, applications could also be run directly from a Web site 

(http://mysite/myapp.exe) ensuring that they were always up-to-date. Nevertheless, the 

technical limitations of this approach were significant. Href-exes (as applications run from a 

HTTP address are known) often required security policy changes on the client (which meant 

that an .MSI had to be run before the application would work). They also ran slower than the 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ

http://mysite/myapp.exe)


PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

47

same application installed locally, the user experience was lacking (when a new assembly 

needed loading from the Web server, the UI would freeze for a few moments), and they had 

no real offline model. 

The availability of two auto-updating solutions, Jamie Cool's "AppUpdater" and the Updater 

Application Block released on MSDN, provided a better experience for the developer and the 

end user. With both solutions, applications were installed to the local machine, so they didn't 

have the performance or security issues of href-exes, and it was possible for an application to 

support offline use. 

12.2.2.6 Basic ClickOnce Concepts 

ClickOnce is a combination of a set of features in the .NET runtime (the CLR) and integrated 

design-time support in Visual Studio .NET. Together, the feature and the IDE tools allow you 

to create an application that can be automatically installed and updated. You have a great 

deal of flexibility as to how your application is deployed, launched, and updated. 

12.2.2.7 Deployment Options 

ClickOnce applications can be deployed to a client machine from a Web location, a UNC 

share, or even from a file location such as a CD. When an application is deployed in this 

fashion from a Web location, the user will click on a link on a Web page, which will cause the 

application to download and install itself on the client machine (complete with Start Menu 

shortcuts and a line in the Add/Remove Programs dialog). Once the installation completes, 

the application will then appear, having been downloaded and installed over the course of a 

few moments. 

Alternatively, ClickOnce applications can be run without deploying them to the client machine; 

they can be launched directly from a network location (such as an UNC path or an http URL), 

with no impact to the client. Applications launched in this fashion are cached locally, but they 

are not installed in the traditional sense. 

If you need an install that impacts the client machine (to create file associations, install 

MSDE, or perform other similar actions) then you still have the ability to handle that side of 

the installation through an .MSI file. Of course, everything you do outside of the regular 

ClickOnce deployment process can reduce the ClickOnce functionality, but if required then it 

is certainly possible. 

For either launched or deployed applications to work, the .NET Framework is required on the 

target machine. Depending on your particular situation, there are a variety of ways to get the 

Framework onto a machine in advance of your install or as a part of the install itself.  

12.2.2.8 Updating the Application 

Updates are as flexible as deployment options, allowing you to update at certain times (such 

as the start of the application), or whenever the application developer chooses to call the 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

48

appropriate update APIs. It is also possible to specify that a certain update is required, 

removing the user's ability to ignore an available update. This required update feature is 

critical for managing ongoing updates and ensuring that the entire user-base can be moved 

up to a new version in a timely fashion. 

Other key features of the update process include the ability to do rollbacks of an application 

release on either the client or the server. In the case of server rollbacks, this administrative 

feature allows for the quick removal of a flawed update and the automatic downgrade of your 

clients to the previous version. The client side of the rollback is a critical feature for 

occasionally connected clients; if they connect, update, and disconnect, only to find that the 

new application version fails on their machine, they can rollback to the previous version 

without having to reconnect. With all of the options that are available, you will be able to 

achieve whatever specific update functionality you require. 

12.2.2.9 Manifest Files 

The deployment and update activities can be controlled through the use of a pair of XML 

manifest files that describe the components of the system and the deployment activities that 

should occur. The application manifest is authored by the developer (with the help of Visual 

Studio .NET) and details the files, dependencies, and base security requirements of the 

application. The deployment manifest is intended to be created by the administrator (although 

the developer will certainly be creating this manifest during the early phases of development), 

and it details how the application is supposed to be deployed and updated.  

 
Figure 12-5: The manifest files work together to enable the installation and update of your 

ClickOnce application. 
 

12.2.2.10 Security Concepts 

Prior to ClickOnce, security was one of the biggest hurdles in getting an href exe to run 

correctly on the client's machine, and it is still a critical concept for ClickOnce applications. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

49

Thankfully, the security "sandbox" that your application is allowed to play in has been 

increased in size, and the boundaries of this sandbox are much easier to understand and 

explore. Due to the auto-install and auto-update functionality of ClickOnce applications, they 

are intended to support a safe deployment model. Deployed or automatically downloaded 

code is limited as to what information it can access and what actions it can take. Whether an 

application is launched from a URL or deployed from a CD, it is not assumed to have full trust 

on the target machine. 

Although the limitations of the default sandbox for auto-updating applications have been 

decreased, it has been difficult to troubleshoot a problem that only occurs in a reduced 

security situation, until now. The Whidbey release of Visual Studio .NET allows you to run 

your application in a reduced security situation from within the IDE, and with the debugging 

tools attached. This new feature will allow you to simulate various security settings and 

restrictions while developing your application, instead of having to deploy your application to a 

test machine to view any security issues. 

12.2.2.11 Visual Studio Integration 

ClickOnce is a key feature of Whidbey, which means that, in addition to being documented 

and supported, it is tightly integrated into the Whidbey version of Visual Studio .NET. Using 

the property dialogs, you can specify a variety of ClickOnce information (that will be used to 

create the two manifest files discussed earlier), including the publishing details. 

 

 
Figure 12-6: You can specify the location your files should be published to (and accessed 

from) either in this property dialog or as part of the wizard that runs when you publish your 

application. 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

50

The Visual Studio .NET integration extends to more than just configuring your publishing and 

updating details inside the IDE. You can also publish the application directly from within the 

IDE by clicking Publish from the Project menu, and then walking through a quick wizard of 

options. I will walk through this process a little later in this chapter, but it is quite simple to use.  

Although not only aimed at ClickOnce users, another powerful Visual Studio .NET feature 

allows you to run your application in the IDE (with a debugger attached) under whatever 

security context you wish. This feature will really help you to understand the security 

restrictions your application will be running under. It will also help you to properly debug 

security-related issues using the full tools of the Visual Studio .NET IDE. [19], [21], [22] 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

51

13 System Presentation – User Manual 

13.1 Basic Functionality of System Components 

13.1.1 Network Manager 

 
Figure 13-1 : Network Manager – “Home” page 
 

Figure 13-1 present the user interface of the home page of Network Manager. User can 

navigate through the basic Menu on the top left corner of the application. The available 

buttons are: 

Ø Home: It returns user to the “Home” page of the application  

Ø Activity: It navigates user to the “Activity” page of the application 

Ø Jobs: It navigates user to the “Jobs” page of the application 

Ø Players: It navigates user to the “Players” page of the application 

Ø Locations: Not available 

Ø Accounts: Not available 

Ø Configuration : Not available 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

52

 
Figure 13-2:  Network Manager - "Activity" page 

 

Activity Monitoring page (Figure 13-2) lets user view messages that Network Manager, 

Players and all the others system components output as they are performing job–related 

activity. 

“Activities” represents actions that refer in the whole distributive system. They are categorized 

in three categories according to their derivation. Time of the activity is always recorded. 

Activities messages include : 

Ø From Network Manager 

o Network Manager added PlayerX 

o Network Manager removed PlayerX 

o Network Manager set as current content update ContentUpdateX of PlayerX 

softwareversionX 

o Network Manager added contentupdateX of PlayerX versionX 

o Network Manager deleted ContentupdateX of PlayerX versionX 

o Network Manager added VersionX of PlayerX 

o Network Manager triggered a content update on PlayerX 

o Network Manager triggered software version update on PlayerX 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

53

Ø From Players 

o PlayerX started 

o PlayerX stopped 

o PlayerX have been updated (content update) 

o PlayerX have been updated (software version update)  

Ø From Calendar 

o A new schedule have been added (PlayerX, ContentupdateX, TIME) 

A navigator helps user to navigate through recorded activities. There is also a “refresh” 

buttons that refresh activity panel. 

 
Figure 13-3 : Network Manager - "Jobs" page’s Players’ details panel 

 

“Jobs” page’s “Player’s details” panel (Figure 13-3) allow user to have an overall view of all 

Players. He can see how many Players are available and further details for each Player 

(name, description, current software version details and current content updates details). 

“Jobs” page’s “Add a new version” panel enables user to ad a new software version of a 

registered Player (a player that has been added).  

There is a wizard of five steps (Figures 13-4 – 13-9): 

1. STEP1: The user has to select an available Player 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

54

2. The user has to fill the name and the description of the software update 

3. The user has to fill the name and the description of the default content update 

4. The user has to specify the properties of the main form of the default content update 

5. The user has to register which controls will be the editable ones and fill their names 

and descriptions 

If user will stop the wizard manually or step out by navigating of the main menu, the wizard 

and all the actions, since then, will be rolled-back.  

 

 

 

 
Figure 13-4 : Network Manager - "Jobs" page's "Add a new version" panel (Step 1) 

 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

55

 
Figure 13-5 : Network Manager - "Jobs" page's "Add a new version" panel (Step 2) 

 
Figure 13-6 : Network Manager - "Jobs" page's "Add a new version" panel (Step 3) 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

56

 
Figure 13-7: Network Manager - "Jobs" page's "Add a new version" panel (Step 4) 

 
Figure 13-8: Network Manager - "Jobs" page's "Add a new version" panel (Step 5) 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

57

“Jobs” page’s “Add a content update” panel (Figure 13-9) enables user to add a new content 

update. First he selects an available Player and then he fills new content update’s name and 

description. The new content update inherits controls from the default content update.  

After, the user can edit the new content update in the “Edit content updates” panel (Figure 13-

10 – 13-13). “Edit content updates” panel allows user to delete an available content update 

too. The editor panel allows controls’ editing. Each control type has different editable 

properties. The properties of each control type are listed below: 

Ø Forms (This control has properties that represent the properties of the main form 

player’s application) 

§ BackColor : Background color of the form 

§ BackgroundImageUrl : Background image url of the form 

§ BackgroundImageLayout : Background image layout of the form 

Ø Labels 

§ Text : Text of the label 

§ BackColor : Background color of the label 

§ BorderStyle : Border style of the label 

§ Enabled : Enable status of the label 

§ Font : Font of the label (includes font name, font size, etc) 

§ ForeColor : Foreground color of the label 

§ Size : Size of the label 

§ TextAlign : Text align of the label 

§ Visible : Visible status of the label 

§ AutoSize : Autosize status of the label 

§ Location : Location of the label 

Ø Textboxes 

§ Text : Text of the textbox 

§ BackColor : Background color of the textbox 

§ BorderStyle : Border style of the textbox 

§ Enabled : Enable status of the textbox 

§ Font : Font of the textbox (includes font name, font size, etc) 

§ ForeColor : Foreground color of the textbox 

§ Size : Size of the textbox 

§ TextAlign : Text align of the textbox 

§ RedaOnly : Read only status of the textbox 

§ Visible : Visible status of the textbox 

§ MultiLine :  Multiline status of the textbox 

§ ScrollBars : Scrollbars of the textbox 

§ Location : Location of the textbox 

Ø Buttons 

§ Text : Text of the button 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

58

§ BackColor : Background color of the button 

§ Enabled : Enable status of the button 

§ Font : Font of the button (includes font name, font size, etc) 

§ ForeColor : Foreground color of the button 

§ Size : Size of the button 

§ TextAlign : Text align of the button 

§ FlatStyle : Flat style of the button 

§ AutoSize : Autosize status of the button 

§ Visible : Visible status of the button 

§ Location : Location of the button 

Ø Pictureboxes 

§ BackColor : Background color of the picturebox 

§ BorderStyle : Border style of the picturebox 

§ Enabled : Enable status of the picturebox 

§ Size : Size of the picturebox 

§ SizeMode : Sizemode of the picturebox 

§ Visible : Visible status of the picturebox 

§ Location : Location of the picturebox 

Ø Webbrowser 

§ Url : Url of the web browser 

§ AllowNavigation : Allow navigation status of the web browser 

§ ScrollBarsEnabled : Scroll bars enabled status of the web browser 

§ Visible : Visible status of the web browser 

§ Size : Size of the web browser  

§ Location : Location of the web browser 

Ø Videoplayers 

§ URL : Url of the media file of the video player 

§ Size : Size of the video player 

§ Visible : Visible status of the video player 

§ UiMode : Uimode of the video player (specifies if the videoplayers buttons are 

visible) 

§ StretchToFit : Stretch to fit status of the video player 

§ Location :  Location of the video player 

 

 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

59

 
Figure 13-9: Network Manager - "Jobs" page's "Add a new content update" panel 

 
Εικόνα 13-10: Network Manager - "Jobs" page's "Edit content updates" panel 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

60

 
Figure 13-11: Network Manager - "Jobs" page's "Edit content updates" panel 

 
Figure 13-12: Network Manager - "Jobs" page's "Edit content updates" panel 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

61

 
Figure 13-13 : Network Manager - "Jobs" page's "Edit content updates" panel 

 
Figure 13-14 : Network Manager - "Jobs" page's "Manage content updates" panel 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

62

 
Figure 13-15 : Network Manager - "Jobs" page's "Manage content updates" panel 

 
Figure 13-16 : Network Manager - "Jobs" page's "Manage content updates" panel 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

63

"Manage content updates" panel (Figure 13-14 – 13-16) enables user to manage efficiently 

Players’ content updates. He can preview all the editable controls of all content updates and 

he can select a content update to make it current. Then he has to navigate to “Players” Page 

where he can connect with P2P Server to trigger the updates. 

“Players” includes “Players details” panel (Figure 13-17) which is exactly the same as the one 

of the “Jobs” page. There is also “Add a new Player” panel (Figure 13-18) which enables user 

to add a new Player after filling its name and description.  

“Remove a Player” panel (Figure 13-19) enables user to remove a player. When he removes 

one all the software versions, related content updates will be also removed.  

Finally “Detect on-line Players and update” panel (Figure 13-20) enables user to connect with 

P2P Server, to get a list including active Players and if it is necessary to trigger a content’s or 

a software version’s update of a Player. 

In addition, messages (errors, warnings,) accompany every action which a user can perform. 

By this manner user guidance is being succeeded. 

 

 

 
Figure 13-17: Network Manager - "Players" page's "Players’ details" panel 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

64

 
Figure 13-18 : Network Manager - "Players" page's "Add a new Player” panel 

 
Figure 13-19 :  Network Manager - "Players" page's "Remove a Player” panel 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

65

 
Figure 13-20 : Network Manager -  “Detect on-line Players and update” panel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

66

 

13.1.2 Calendar 

 
Figure 13-21:  Calendar - user interface 

 

Figure 13-21 presents the user interface of the calendar application. Calendar could have 

been a component of Network Manager application, but we preferred to develop it as a 

separated stand alone application. Calendar allows user to select an existing Player and one 

of its available Content Updates in order to schedule a future update on a desired future date. 

When user selects a date of the past, the application informs him to reselect another date 

(error control).   

Programmatically the user entry is stored to the central database. Schedule Server then will 

be responsible to trigger the update at the right moment. 

Beside the “add new task” capability, user can also monitor all previous scheduled tasks. He 

can check which of them are active or inactive for a specific day, period of days or from the 

whole of entries.  

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

67

13.1.3 Schedule Server 

 
Figure 13-22: Schedule Server – user interface (a)   

 

 
Figure 13-23: Schedule Server – user interface (b)   

 

Figures 13-22 and 13-23 present the user interface of the Schedule Server. Schedule Server 

requires P2P Server. If P2P Server is not running, the user interface will not allow user to start 

Schedule Server. As you can see the status bar informs user about both the P2P Server 

connection status and the Schedule Server status. In case of failure on P2P Server 

connection, Schedule Server will automatically be stopped and will try to reconnect with P2P 

Server. All the activity is recorded in the status panel so that the user can understand what is 

going wrong and take action at the appropriate time.  

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

68

13.1.4 P2P Server 

 
Figure 13-24: P2P Server – user interface 

 

Figure 13-24 presents the minimal user interface of the P2P Server. P2P Server could have 

been implemented as window service. We implemented as window form so that we can 

monitor server’s activity. P2P Server’s activity panel records all the activity about status, 

connections, messages etc. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

69

13.1.5 Players   

A number of Players have been implemented during project’s development. Some of them 

implemented with minimal functionality and others with more complex one, in order to test 

project’s requirements and capabilities. Finally we decide to implement a Player that 

integrates a number of capabilities and a scalable functionality. 

The scenario is based on a DVD club. Both the output and the input devise will be the glass 

window of the DVD shop. A USB membrane will stimulate the mouse and will turn the glass to 

a touch screen. A projector will turn the glass to a rear projection screen.  

Client/user can step over the shop-window and browse the application. The service will be 

available 24 hours per day, 7 days per week (24/7).  

The implemented Player (Player2.exe): 

Ø On start will try to connect with P2P Server. If the connection could not be established 

will try again, till it succeeds.  

Ø Can give useful information about store’s history, services, timetable, items prices, 

location, contact information etc 

Ø Allows user to preview trailers of films 

Ø Allows user to become a member of the guest list so that the store can communicate 

with him (send him offers, news) 

Ø Allows administrator remotely change the user interface (background, logos, images, 

text, buttons) 

Ø Allows administrator remotely remove or add services (by setting the visibility of the 

buttons or by updating the software version) 

Ø Allows administrator to change trailers that are available for previewing 

Ø Allows administrator to change information content 

Ø This is a demo Player and it includes a panel with detailed information about the 

Player, the current software version, the current content update. The messages that 

player receive are also monitored. Any trigger for software update or content update 

will be monitored too. Finally activity panel of the Player records every error and 

failure. 

Ø Updates Network Manager’s Activity Panel, so that the administrator can remotely 

understand if an action completed successfully or failed      

In this section we will present just one screen shot of the Player (Figure 13-25). More screen 

shots that will show the whole functionality of the Player will be presented on the next chapter 

(13.2). 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

70

 
Figure 13-25: Player – Player2 user interface 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

71

14 Project in Action 
In this chapter we will give an example of using the whole project. We will cover the 

functionality of all system components from the creation of Player application till the Player in 

action. Screen shots will be presented according to the logical timeline. 

14.1 Designer/Developer implements the first software update 

of a Player (Player2) 
After developing the application of the Player, developer has to prepare application for 

deployment. The developer will choose to publish Player’s application via a web server. 

During this procedure he will be prompt to give a version name, to specify web server’s URL, 

to declare the prerequiresite components (.NET Framework 2.0, SQL Server Express 

Edition), and to edit the properties that are available and determine the details for publishing. 

 

 
Figure 14-1: Publishing Player’s application (a) 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

72

 
 

 

Figure 14-2: Publishing Player’s application (b) 

 
Figure 14-3: Publishing Player’s application (c) 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

73

 
Figure 14-4: Publishing Player’s application (d) 

 
Figure 14-5: Publishing Player’s application (e) 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

74

14.2 Network Manager’s administrator adds the new Player 

(Player2) 
Before publishing the software for the Player Network Manager’s administrator should add the 

new Player (Player2) and the first software version. Then he can edit the default content 

update and add as much content updates he desires. For our example we will create Player2, 

add the first software version 1.0.0.0,  then we will edit the default content update 

(Contentupdate1) that have automatically created during the procedure of adding the software 

version and finally we will create a second content update (Contentupdate2). All these actions 

are required the full demonstration of all system components. 

 

 
Figure 14-6: Network Manager - "Players" page's "Players’ details" panel before the creation 

of the new Player (Player2) 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

75

 
Figure 14-7: Network Manager - "Players" page's "Add Player" panel. Adding Player2  

 

 
Figure 14-8: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (1/5) 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

76

 
Figure 14-9: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (2/5) 
 

 
Figure 14-10: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (3/5) 

 ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

77

 
Figure 14-11: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (4/5) 

 

 
Figure 14-12: Network Manager - "Jobs" page's "Add a new version" panel. Adding software 

version 1.0.0.0 of Player2 (5/5) 

 ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

78

 
Figure 14-13: Network Manager - "Jobs" page's "Edit content updates" panel. Editing the 

default content update (Contentupdate1) of Player2 software version 1.0.0.0 (1/2) 

 

 
Figure 14-14: Network Manager - "Jobs" page's "Edit content updates" panel. Editing the 

default content update (Contentupdate1) of Player2 software version 1.0.0.0 (2/2) 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

79

 
Figure 14-15: Network Manager - "Jobs" page's "Add a content update" panel. Adding the 

second content update (Contentupdate2) of Player2 software version 1.0.0.0 

 

After adding the second content update (Contentupdate2) we have to edit it. Adding a content 

update programmatically means the generation of a replica of the default content update. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

80

14.3 Installation of Player2’s software (software version: 

1.0.0.0) 
After publishing Player’s application and registering it with Network Manager, The software is 

ready to play. In chapter 14.1 we saw that developer have chosen publication via a web 

server. This means if we want to install the software to a host, we have to browse to the 

specified URL. Figure 14-16 shows the user interface of the web site from which we are able  

to install Player2’s software.  

 
Figure 14-16: User interface of the web site from which we are able  to install Player2’s 

software 

 
Figure 14-17: Player2’s software installation 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

81

14.4 Starting / Using Player (Player2) 
After installing the software we can run the application like any other program of Windows 

operating system (Figure 14-18). 

 

 
Figure 14-18: Starting Player2 by browsing Windows’ “Start” menu  

 

Figures 14-19 – 14-22 shows a part of the basic functionality of the Player (software version 

1.0.0.0 content update: Contentupdate1). Among contents updates functionality remains as 

is, but this does not happen after an upgrade of software version. 

We should remind that Player2 is a demo version of Player. Using black as background color 

will cause transparency if the output devise is a rear projection screen. 

 

 
Figure 14-19: Player2 1.0.0.0 Contentupdate1 : Basic user interface 

  

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

82

 
Figure 14-20: Player2 1.0.0.0 Contentupdate1 : Pressing “Who” button 

 

 
Figure 14-21: Player2 1.0.0.0 Contentupdate1 : Pressing “Where” button 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

83

 
Figure 14-22: Player2 1.0.0.0 Contentupdate1 : Pressing “Join guest list” button 

 

In the bottom – left corner we have add a button “details”. This button should exist only in a 

demo Player. This button shows an activity panel which informs us about the activity. For 

example, when we start Player2, the application will try to connect to P2P Server. Figure 14-

23 and 14-24 shows P2P Server before and after Player2 is connected.  Figure 14-25 shows 

changes in the activity panel of the Player2.  

 

 
Figure14-23: P2P Server : Player2 hasn’t  been connected yet 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

84

 
Figure 14-24: P2P Server : Player2 is now connected 

 

 
Figure14-25: Player2 1.0.0.0 Contentupdate1 : Activity panel after connecting to P2P Server 
 

    

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

85

14.5 On demand real-time update on content update on 

Player2 (from ContentUpdate1 to ContentUpdate2) 
Changing Content Update of Player2 requires just two “clicks” in Network Manager’s 

application. These “clicks” trigger a number of actions in different components of the system. 

Figure 14-25 and 14-26 show the required actions of the administrator. First he should select 

the desired content update of Player2 as current and then he has just to connect with P2P 

Server and trigger the update. Figure 14-27 shows P2P Server’s activity panel, Figure 14-28 

shows Player2’s activity panel and finally Figure 14-29 shows the result changes on the 

Player’s User Interface. Everything is now different, except from functionality. In addition, this 

activity has been recorded in “activity” page of Network Manager (Figure 14-30).  

 

 
Figure 14-26: Network Manager - "Jobs" page's "Manage content updates" panel 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

86

 
Figure 14-27: Network Manager - "Players" page's "Detect online Players and update" panel 

 

 
Figure 14-28: P2P Server – activity panel 

 

 
Figure 14-29: Player2 – activity panel 

 ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

87

 
Figure 14-30: Player2 1.0.0.0 Contentupdate2: Basic user interface 

 

 
Figure 14-31:  Network Manager - "Activity" page 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

88

14.6  Edit on content update (Contentupdate2) of Player 

(Player2) and real-time update 
Supposing Player2 application is running (Figure 14 32) and Network Manager’s administrator 

wants to change the label “View Trailers..” to “View Movie Trailers..”. He should browse 

Network Manager’s application to “Jobs” page and select “Edit content updates” panel. Then 

he has to select the label and make the appropriate changes (Figure 14-33). Finally he has to 

connect to P2P Server and trigger the update (Figure 14-27). Figure 14-34 shows the result 

on the user interface of the Player. 

 

 
Figure 14-32: Network Manager - "Jobs" page's "Edit content updates" panel: editing label1 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

89

 
Figure 14-33: Player2 1.0.0.0 Contentupdate2: Basic user interface after editing label1 
 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

90

14.7 Scheduled real-time update on content update on Player2 

(from Contentupdate1 to Contentupdate2) 
Supposing Player2 is running with Contentupdate1. Network Manager’s administrator wants 

to schedule an update on content update (from Contentupdate1 to Contentupdate2). First he 

has to ensure that both P2P Server and Schedule Server are running. Then he has to open 

the Calendar application. After he has to select Player2 among players, then he has to 

choose the desired content update and finally to select the date-time for the update. Figure 

14-34 presents the user interface of the calendar. The scheduled task will be saved in the 

database and Schedule Server will commit the update at the right time. 

 
Figure 14-34: Calendar application: The update is now scheduled  

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

91

15  Conclusion  
After more that one year of research and development, a fully functional system was created. 

The system should not be considered as commercial product. The first intention was to create 

a prototype with basic functionality. The creativeness and novelty of the project were the 

inspiration point that leaded in an enrichment solution. The implementation will be useful for a 

starting point of a commercial product. Documentation, functionality, user interface and 

architectural components and technology tips can be adopted in a more sophisticated and 

accomplished solution. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

92

16 References 
[1] Mattern, F. and Naghshineh, M. (ed) (2002) Pervasive Computing. Berlin, Heidelberg: 

Springer Verlag. 

[2] Pervasive and Ubiquitous Public Map Displays, Michael P. Peterson, Department of 

Geography/Geology, University of Nebraska at Omaha Omaha, 2004  

[3] Grand Challenges in Computer Science and Engineering, U.S. Initiative. Computing 

Research Association; www.cra.org/reports/gc.systems.pdf. 

[4] Information Society Technologies Advisory Group. Working Group Grand Challenges in 

the Evolution of the Information Society. July 6, 2004, 

(ftp://ftp.cordis.lu/pub/ist/docs/istag_draft_report_grand_challenges_wahlster_06_07_04.pdf ) 

[5] IST-FET: EU- funded proactive initiative The Disappearing Computer, (www.disappearing-

computer.net)  

[6] ISTAG Report on Scenarios for Ambient Intelligence in 2010, 

(ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf)  

[7] Weiser, M. The computer for the 21st century. Scientific American (Sept. 1991), 94–104 

[8] Norbert Streitz AND Paddy Nixon, March 2005/Vol. 48, No. 3 COMMUNICATIONS OF 

THE ACM 

[9] Rui José, Beyond Application-Led Research in Pervasive Display Systems, 2005 

[10] Scala White Paper: How InfoChannel Works – A bridged By: Richard F. Trask, Marketing 

Director, Scala Inc. 2006 

[11] WireSpring, An Introduction to Digital Signage, 2005 

[12] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja1, Jim Pruyne, Bruno 

Richard, Sami Rollins 2 ,Zhichen Xu, Peer to Peer Computing, 2002 (HP) 

[13] Microsoft Patterns and Practices : Smart Clients architecture and design goals 

[14] MSDN Library for visual studio 2005 

[15] http://www.theserverside.net 

[16] http://www.cimtec.dk/dot-net  

[17] http://www.windowsforms.net  

[18] http://dotnetjunkies.com 

[19] http://www.ondotnet.com  

[20] http://www.codeproject.com 

[21] http://msdn.microsoft.com/smartclient/ 

[22] .NET Show: Episode: NETShow45_300k.wmv (Video about Smart Clients’ 

implementations and techniques) 

[23] http://www.scala.com  

[24] Microsoft application Blocks for .NET: 

Ø Data Access V2 

Ø Offline 

Ø User Interface process 2.0 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ

http://www.cra.org/reports/gc.systems.pdf
ftp://ftp.cordis.lu/pub/ist/docs/istag_draft_report_grand_challenges_wahlster_06_07_04.pdf
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf
http://www.theserverside.net
http://www.cimtec.dk/dot-net
http://www.windowsforms.net
http://dotnetjunkies.com
http://www.ondotnet.com
http://www.codeproject.com
http://msdn.microsoft.com/smartclient/
http://www.scala.com


PPeerrvvaassiivvee  SSyysstteemmss  aanndd  AApppplliiccaattiioonnss::  DDiiggiittaall  SSiiggnnaaggee         
 

93

[25] Microsoft Patterns & Practices : 

Ø Enterprise Library 

Ø Enterprise Library June 2005  

Ø Updater Application Block V2 

Ø Composite UI Application Block December 2005 C# 

 

[26] Scala Infochannel Designer 3 Trial (Software for Digital Signage) 

[27] http://www.elotouch.com 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ

http://www.elotouch.com

