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1. Introduction 

Implied volatility is a theoretical measure which comes from option pricing 

models such as Black-Scholes, rather than using historical data and it is affected by 

the option’s strike price, the riskless rate of return, the time to maturity and the price 

of the option. Options are wonderfully powerful tools for managing risk. When used 

in a prudent, risk-controlled fashion, they can reduce portfolio volatility. So, this 

measure is important as it allows funds to develop trading and hedging strategies 

based upon it. Many studies have tried to model implied volatility indices in order to 

produce useful forecasts for the traders. 

In this paper, in an effort to differentiate, we are going to explore the dynamics of 

the implied volatility spread, meaning the difference between two implied volatility 

indices, by studying two US implied volatility indices, the CBOE VIX and VXD. We 

will see the predictable power of two models- an economic variables model and an 

AR(1) model-, form point and interval forecasts and counting on these forecasts of the 

models we will employ trading strategies based on VIX and VXD volatility futures. 

The trading rule will concern the simultaneously taking position in VIX and VXD 

volatility futures. 

In the next section, in retrospect, we put forward different studies based upon 

implied volatility and its dynamics. In section 3, we describe the data set. In section 4, 

we present the models to be used for forecasting. Section 5 shows the in-sample 

evidence. In sections 5 and 6, we assess the out-of-sample performance of the models 

and examine whether the trading strategies generate economic profits, respectively. 

Finally, in section 8, we present our results. 
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2. Literature review 

Last years, we see an attempt to model the implied volatility, by using different 

models and subsequently a variety of trading strategies, mainly for profitable reasons. 

In the following, we cite some interesting studies. 

Ahoniemi (2006) models the implied volatility of the S&P 500 index in order to 

forecast the future direction of implied volatility, useful for option traders. According 

to the study, VIX index is high persistent, seems to be skewed to the right and exhibits 

excess kurtosis. ARIMA models are augmented with GARCH errors and exogenous 

regressors so as to model VIX. Among the regressors are the returns in the S&P 500 

index, the historical volatility of the S&P500, the trading volume of the S&P 500 

index, the MSCI EAFE index, the three-month USD LIBOR interest rate, the 10-year 

U.S. government bond yield and the price of crude oil from the next expiring futures 

contract. The study proves that negative shocks have a greater impact on VIX than the 

positive ones. Apart from ARIMA models, binary probit models are estimated but the 

first outperformed the latter both in in-sample performance and out-of-sample. In 

oreder to assess the economic significance of the VIX forecasts, option trading 

strategies are formed. More specifically, volatility spreads, such as straddles are used 

(buy or sell an equal amount of call and put options – care only for the volatility of the 

underlying asset price and not for its direction) and yield positive profits, without, 

though, taking into account transaction costs. There is a certain degree of 

predictability in the direction of change of the VIX index that can be exploited 

profitably by option traders. 

Konstantinidi et al. (2008) examine whether the evolution of implied volatility can 

be forecasted by using a number of European and US implied volatility indices, such 

as VIX, VXO, VXN, VXD (American implied volatility indices) and VDAX-New, 

VCAC and VSTOXX (European implied volatility indices). They use different 

models in order to evaluate the in-sample, out-of-sample performance and economic 

significance. Among the models are the economic variables model, univariate 

autoregressive and VAR models, the principal components model and 

ARIMA/ARFIMA models. The VAR and the PCA models perform best. The changes 

in the implied volatility index do not exhibit long memory. In the out-of-sample 

performance, they form both point and interval forecasts. At point forecasts, in 28% 

of the cases one of the models performs better than the random walk, indicating a 
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statistically predictable pattern (stronger for European indices). At interval forecasts, 

there is also observed a predictable pattern (especially for the US indices) but no 

single model yields accurate forecasts. The economic significance is tested by 

forming trading strategies based on VIX and VXD futures. However, the generated 

point and interval forecasts are not economically significant.  

Goncalves and Guidolin (2006) study whether the resulting predictability in the 

implied volatility surface1 can be exploited. They model jointly the cross-sectional 

features and the dynamics of the implied volatility surface of S&P 500 index options. 

Firstly, they fit daily cross-sectional models that describe implied volatilities as a 

function of moneyness and time to maturity and secondly, they fit time-series models 

of a VAR type to capture the presence of time variation in the first step estimated 

coefficients. Comparing their model with other benchmarks (such as random walk and 

NGARCH(1,1) of Heston and Nandi (2000)), they find that the forecast accuracy of 

the model is good, the forecasts ability to support portfolio decisions display 

satisfactory performance and that simulated delta-hedged trading strategies generate 

positive out-of-sample returns when low transaction costs are taken into account. 

Moreover, their strategy is more profitable in out-of-the-money and short to medium 

term contracts. However, when transaction costs are raised to higher levels, all profits 

disappear.  

Poon and Pope (2000) examine whether there are common components in the 

volatilities on S&P 100 and S&P 500. They support that if two assets share common 

factors, the respective volatilities of the two assets will be related. Among their 

findings is that volatility on those indices exhibits strong persistence, long memory. 

They use options written on the S&P 100 (OEX) and S&P 500 (SPX), whom find the 

implied standard deviation (isd), in order to create the volatility spread, which in this 

case defines as the quotient of isdOEX to isdSPX. The volatility spread has thin tails, 

pointing out that volatilities of the two indices share common factors. In an effort to 

test the joint efficiency of the two markets, they adopt a trading rule which includes 

vega-delta-neutral2 hedge positions. When the volatility spread (as defined above) is 

too high, the investor sell OEX calls and buys SPX calls and conversely. The strategy 
                                                 
1 Implied volatility surface is a plot which depicts the relation of implied volatility with time to 
maturity and the strike price. In index options, its is observed the volatility smile, meaning that implied 
volatility is lower for at-the-money options and higher for in- or out-of the money options. 
 
2 Vega neutrality protects against variations in volatility σ . Delta neutrality provides protection 
against relatively small stock price moves between hedge rebalancing. 

 6



based upon the volatility spread seems to generate profits even if transaction costs are 

taken into account. However, the trading rule concludes that OEX and SPX markets 

are not jointly efficient. 

Aboura (1999) examine whether there are interactions between returns and 

implied volatility and between volatilities belonging to different markets. The implied 

volatility indices under consideration are the US VIX, the German VDAX and the 

French VX1. Causality tests are used in order to investigate if the markets are 

integrated and if there is a lead-lag relation among the markets. The German market 

influence the French market and US market for 1 day lag and the US market can 

predict the German and French market for 1 day lag. They also show that implied 

volatility and future realized volatility do not always move in the same way and that 

volatility is more sensitive to negative shocks than positive ones. Another test they 

employ is that use model to assess the reaction of the implied volatility indices around 

an extreme event. The French VX1 is more sensitive to shock and the influence of 

events which raise volatility on this index is less persistent than VIX and VDAX. 

Finally, the study confirms that VIX is dominant upon the other two European 

indices. 

Fernandes, Medeiros and Scharth (2007) exploit the time series properties of VIX 

resulting in the long range dependence in the VIX time series. They use ARMA, 

ARFIMA3, several HAR-type processes and smooth transition autoregressive trees 

for modeling and forecasting purposes. They found a strong, negative, asymmetric 

relation between VIX and contemporaneous index returns. In addition, VIX time 

series seem to be skewed to the right, leptokurtic and far from Gaussian. As far as the 

ou-of-sample performance is concerned, ARMA and ARFIMA models are better in 

the short run, rather than nonlinear START model which outperform for their 

predictive ability in the long run. 

 Franks and Schwartz examine the time series properties of volatility, various 

economic variables and if they are significant with expected volatility and explore if 

there is any relationship between capital structure and changes in volatility. They find 

that leverage is a significant explanatory variable, as inflation too. 

Harvey and Whaley (1991) study the time variation in implied volatility of S&P 

100 option prices (OEX). They test the hypothesis that market volatility is 

                                                 
3 Models that are capable of dealing with long memory time-series such as VIX index. 
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unpredictable; however, according their results, it is statistically predictable. Based on 

this, by using the out-of-sample forecasts, they employ trading strategies, which do 

not generate abnormal profits when transaction costs are taken into account. The 

trading rule concern delta-hedged strategies (i.e. in order to become delta neutral we 

buy an amount of call options equal to the reciprocal of the delta4 value and sell a unit 

of the underlying index). The non-existence of abnormal profits indicates market 

efficiency. 

 

 

 

3. The data set 

In this study we use daily data on the spread of two implied volatility indices, the 

CBOE volatility futures (settlement prices) and a set of economic variables. The first 

volatility index is the CBOE volatility index (VIX) which is based on real-time prices 

of options on the S&P500 index. The second is CBOE DJIA volatility index (VXD) 
which is based on real-time prices of options on the Dow Jones Industrial Average. 

Both volatility indices reflect market sentiment of future expected stock market 

volatility over the next 30-days. The sample period will be January 4, 2000 to 21 

November, 2008. The subset January 4, 2000 to January 4, 2006 will be used for the 

in-sample evaluation and the remaining data will be used for the out-of-sample one.  

 

3.1 Description of implied volatility by B-S model 

The implied volatility of an option contract is the volatility implied by the market 

price of the option based on an option pricing model. An ordinary pricing model is the 

one of Black-Scholes, which uses a variety of inputs to derive a theoretical value of an 

option. The Black-Scholes implied volatility is the annualized volatility that equates 

the Black-Scholes formula value to the options market quote.  

The following formula shows the B-S model for a call option: 

                                                 
4 Delta is defined as the rate of change of the option price ( )c  with respect to the price of the 

underlying asset : )(S
S
c

∂
∂

=Δ  
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Ct denotes the price of a European call option, St is the spot price of the underlying 

index, X is the strike price of the option, r is the risk-free interest rate, (T-t) is the time 

to maturity of the option, N is the cumulative normal distribution function and v is the 

volatility in the returns of the underlying index during the life of the option.  

There are several assumptions underlying the Black-Scholes model. The most 

significant is that volatility, a measure of how much the price of an underlying index 

can be expected to move in the near-term, is a constant over time. However, volatility 

does not remain constant; creating problem to the proper valuation of options. The 

Black-Scholes model also assumes that the logarithmic returns of the underlying 

index are normally distributed, in comparison to what is observed in financial markets 

where returns exhibit skewness and kurtosis. 

 

3.2 Description of VIX & VXD 

 
Both CBOE Volatility Index (VIX) and DJIA Volatility Index (VXD) are 

designed to reflect investors' consensus view of expected volatility over the next 30 

days in the S&P 500 Index and Dow Jones Industrial Average, respectively, and as 

such, can be used as benchmarks of investor sentiment. VIX was introduced in 1993 

and was originally designed to measure the market’s expectation of 30-day volatility 

implied by at-the-money S&P 100 Index (OEX) option prices. Since 2003, VIX is 

based on the S&P 500 Index (SPX), the core index for U.S. equities, and estimates 
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expected volatility by averaging the weighted prices of SPX puts and calls over a 

wide range of strike prices. By supplying a script for replicating volatility exposure 

with a portfolio of SPX options, this new methodology transformed VIX from an 

abstract concept into a practical standard for trading and hedging volatility. CBOE has 

listed derivatives on VIX since 2004, and with the trading of these new products there 

has been increasing demand for other VIX-based calculations. 

VIX is a volatility index comprised of options rather than stocks, with the price of 

each option reflecting the market’s expectation of future volatility. The generalized 

VIX formula5 has been modified as follows: 
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In the above formula, σ is the value of the VIX divided by 100, T is time to 

expiration of the option contract, F is the forward index level derived from index 

option prices, K0 is the first strike below the forward level F, Ki is the strike price of 

ith out-of-the-money option (call if Ki>F and put if Ki<F), ΔKi is the interval between 

strike prices ⎟
⎠
⎞

⎜
⎝
⎛ −

= −+

2
11 ii

i
KK

K , R is the risk-free interest rate to expiration and 

Q(Ki) is the midpoint of the bid-ask spread for each option with strike Ki. The 

contribution of a single option to the VIX value is proportional to  K and the price of 

that option, and inversely proportional to the square of the option’s strike price. 

The components of VIX are near- and next-term put and call options, usually in 

the first and second SPX contract months. “Near-term” options must have at least one 

week to expiration; a requirement intended to minimize pricing anomalies that might 

occur close to expiration. When the near-term options have less than a week to 

expiration, VIX “rolls” to the second and third SPX contract months. 

As volatility rises and falls, the strike price range of options with nonzero bids 

tends to expand and contract. As a result, the number of options used in the VIX 

calculation may vary from month-to-month, day-to-day and possibly, even minute-to-

minute. 
                                                 
5 www.cboe.com/micro/vix/vixwhite.pdf
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For the CBOE DJIA volatility index (VXD), the selection of component options 

and calculation are identical to the method applied for the VIX index. 

VIX can be considered as variance swap (Carr, 2006). The latter is actually a 

contract where the buyer receives the difference between the realised variance of the 

returns and pays a fixed variance rate, which is the variance swap rate. So, VIX2 

approximates the 30-day variance swap rate. This concept stands for VXD volatility 

index, too. 

Figure1 shows the daily level of VIX and VXD for the whole sample period. Clear 

spikes in the value of both indices coincide with the internet bubble burst in 2000, the 

9/11/2001 terrorist attack, the corporate scandals in 2002 and of course with the 

contemporaneous crisis at the mid of 2008. This comment is consistent with the view 

that VIX index reflects investor’s sentiment, fear and risk aversion. 

 

 

Figure 1: VIX & VXD indices 3/1/2000-21/11/2008 
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Similar to figure 1, at figure 2, we observe fluctuations of the implied volatility 

spread, especially the last period and the so called mean reversion. Taking spread first 

differences, we see points of heteroskedasticity. 

 

 

Figure 2: Implied volatility spread (VIX-VXD) and first differences 
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3.3 Other data 

The set of the economic variables consists of the returns of the S&P 500 and the 

DJIA, which are the stock indices of the underlying asset to the options that are used 

to construct VIX and VXD respectively, (the S&P 500 is a value weighted index 

published since 1957 of the prices of 500 large-cap common stocks actively traded in 

the United States, one-month US interbank interest rate for the US market and the 

USD monthly LIBOR, the Euro/USD exchange rate, the WTI (brent crude oil) price 

for the American market, the volume of the futures contract of the S&P 500 index 
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(high trading volume may be considered as a signal of e.g. panic selling, linked to 

rising implied volatility), the slope of the yield curve calculated as the difference 

between the yield of the ten year government bond and the one-month interbank 

interest rate. The data of the economic variables were downloaded from Datastream 

and the time series of implied volatility indices and futures from the CBOE site. 

On March 26, 2004, the CBOE launched a new exchange, the Chicago Futures 

Exchange, and started trading futures on the new volatility index. In less than five 

years, the combined trading activity in VIX options and futures has grown to more 

than 100,000 contracts per day. Among the other data, we will use the CBOE VIX 

and VXD volatility futures which were listed in March 26, 2004 and April 25, 2005, 

respectively. The contract size of the volatility futures is $1000 times the volatility 

index. The final settlement day is the Wednesday that is thirty days prior to the third 

Friday of the calendar month immediately following the month in which the contract 

expires. In line with, Konstantinidi et al. (2008) we construct three time series of 

future prices by ranking the data according to their expiry date: the shortest, the 

second shortest and third shortest series. In case where the shortest contract has less 

than five days to maturity, we roll to the second shortest series. Moreover, we discard 

prices that their trading volume is less than five contracts. 

Prior to March 26, 2007, the underlying asset of the VIX (VXD) futures contract 

was an ‘‘Increased-Value index” termed VBI (DVB) that was 10 times the value of 

VIX (VXD) at any point in time. The contract size of the volatility futures was $100 

times the value of the underlying index, so our series have been rescaled accordingly. 

Table 1 shows the summary statistics of the implied volatility spread in full 

sample, in-sample and out-of-sample respectively, in levels (Panel A) and in daily 

differences (Panel B). It also exhibits volatility futures, VIX and VXD in levels and 

daily differences (Panel C & D respectively) for the period January 5, 2006 to 

November 21, 2008. We can see the volatility spread in levels exhibits strong positive 

autocorrelation, in contrast to first difference which is weak. According to the 

augmented Dickey-Fuller test for unit roots the implied volatility spread is not 

stationary in the levels, but stationary in daily differences.  

The economic variables, we use in forecasting models, are examined whether they 

are stationary or not. We can observe that all of them have a unit root in levels, 

whereas in daily differences, they are stationary.  
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The implied volatility spread exhibits excess kurtosis both in levels and first 

differences, meaning that the distribution is leptokurtic, with fatter tails, and extreme 

values happen with higher probability. The volatility spread is skewed to the right in 

levels and in daily differences it is left-skewed, the left tail is longer. 

As far as the volatility futures are concerned, both VIX and VXD show positive 

autocorrelation in levels, in contrast to first differences where they display negative 

autocorrelation. In all the three series, VIX and VXD are skewed to the right. In first 

differences they exhibit excess kurtosis, whereas in levels the kurtosis is lower for the 

3rd shortest series. 

 

 

Table 1 
 

Summary statistics 
 

VIX-VXD 
Panel A: Summary statistics for implied volatility spread (levels) 

 
January 4, 2000 to 
November 21, 2008 

January 4, 2000 to 
January 4, 2006 

January 5, 2006 to 
November 21, 2008 

 Mean 1.02 0.84 1.40 
 Median 0.96 0.87 1.13 
 Maximum 12.54 8.38 12.54 
 Minimum -4.02 -3.75 -4.02 
 Std. Dev. 1.34 1.29 1.34 
 Skewness 1.16 0.21 3.08 
 Kurtosis 11.35 5.85 20.02 
ρ1 0.84 0.86 0.78 
 Jarque-Bera 6991.47 521.56 9925.43 
 Probability 0.00 0.00 0.00 
 Observations 2237 1510 727 
    
    
Panel B: Summary statistics for implied volatility spread (daily differences) 

 
January 4, 2000 to 
November 21, 2008 

January 4, 2000 to 
January 4, 2006 

January 5, 2006 to 
November 21, 2008 

 Mean 0.00 0.00 0.01 
 Median 0.00 0.00 -0.01 
 Maximum 6.45 4.90 6.45 
 Minimum -10.48 -5.76 -10.48 
 Std. Dev. 0.75 0.69 0.87 
 Skewness -1.43 -0.81 -2.00 
 Kurtosis 34.02 14.10 46.68 
ρ1 -0.24 -0.24 -0.25 
 Jarque-Bera 90387.84 7908.93 58281.55 
 Probability 0.00 0.00 0.00 
 Observations 2236 1509 727 
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Panel C: Summary statistics for VIX futures: January 5, 2006 to November 21, 2008 

 
LEVELS     DAILY 

DIFFERENCES   

 Shortest 2nd shortest 3rd shortest Shortest 2nd 
shortest 

3rd 
shortest

 Mean 192.69 185.97 188.10 0.00 0.00 0.00 
 Median 163.20 160.40 167.20 0.00 0.00 0.00 
 Maximum 637.10 427.00 275.60 0.26 0.14 0.11 
 Minimum 105.40 118.50 128.10 -0.31 -0.13 -0.12 
 Std. Dev. 85.59 54.32 46.83 0.05 0.03 0.02 
 Skewness 2.24 0.65 0.23 0.14 0.72 0.29 
 Kurtosis 9.87 2.85 1.40 10.09 5.92 5.92 
ρ1 0.96 0.96 0.95 -0.11 -0.09 -0.13 
 Jarque-Bera 2011.50 49.43 69.22 1496.68 301.49 214.18 
 Probability 0.00 0.00 0.00 0.00 0.00 0.00 
 Observations 716 689 602    

       
Panel D: Summary statistics for VXD futures: January 5, 2006 to November 21, 2008 

 
LEVELS 

    

DAILY 
DIFFERENCES   

 Shortest 2nd shortest 3rd shortest Shortest 2nd 
shortest 

3rd 
shortest

 Mean 183.70 186.70 188.00 0.00 0.00 0.00 
 Median 163.50 186.80 196.90 0.00 0.00 0.00 
 Maximum 571.20 474.90 327.50 0.30 0.18 0.12 
 Minimum 103.90 113.20 121.60 -0.30 -0.15 -0.13 
 Std. Dev. 78.32 58.11 44.29 0.05 0.04 0.03 
 Skewness 2.22 1.17 0.08 0.26 0.53 0.30 
 Kurtosis 10.13 5.90 1.84 8.85 5.67 5.33 
ρ1 0.80 0.73 0.71 -0.11 -0.09 -0.10 
 Jarque-Bera 1895.00 320.44 25.53 846.35 154.12 83.46 
 Probability 0.00 0.00 0.00 0.00 0.00 0.00 
 Observations 643 550 446    

 

Table 1 reports the summary statistics of the volatility spread and VIX and VXD 
futures in levels and first differences, in full sample, in-sample and out-of-sample 
period. The Jarque-Bera test values and the first order autocorrelation ρ1 are also 
presented. The null hypothesis for the Jarque-Bera test is that the series are normally 
distributed.  
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4. The forecasting models 

4.1 The economic variables model 

We use a set of lagged economic variables to forecast the evolution of the implied 

volatility spread (VIX-VXD) (see Konstantinidi et al. 2008 and Ahoniemi, 2006). We 

estimate the following regression: 
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where Δ(VIX-VXD)t denotes the daily changes of the implied volatility spread, c1 is 

a constant, it denotes the one-month US interbank interest rate for the US market, fxt 

the Euro/USD exchange rate, oilt the WTI (brent crude oil) price for the American 

market, ΔHVt  the historical volatility of DJIA and S&P 500 respectively and volt the 

volume of the futures contract of the S&P 500 index; all these six variables are 

measured in log-differences. R+, R- denote the underlying stock index positive and 

negative log-returns (e.g., R+ is filled with positive returns and zeroes elsewhere). Δyst 

denotes the changes of the slope of the yield curve as the difference between the yield 

of the ten year government bond and the one-month interbank interest rate. The 

historical volatility is calculated as a 30-days moving average of equally weighted 

past squared returns (Figlewski, 1994). Positive and negative returns of both 

underlying indices are separated as negative shocks have the tendency of raising 

volatility more than positive shocks (Ahoniemi, 2006). Returns on S&P 500 and DJIA 

are lagged as traders open their position at the start of the day, without knowing how 

the stock market will develop during the day, so the best available information come 

from the previous day. 
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4.2 Univariate autoregressive 

Univariate autoregressive model is a tool to explore whether past volatility values 

can be used for predictive purposes. In this study, we employ an AR(1) model   

 

 

111 )()( −−Δ+=−Δ tt VXDVIXacVXDVIX      (5) 
 
 

and the choice of one lag is based on the BIC criterion (minimum value within a range 

of ten lags). 

 
 
 
 

5. In-sample evidence 

Table 2 and 3 presents the in-sample evaluation of the economic variables model 

and AR(1) model, respectively. In both tables are reported the estimated coefficients, 

the t-statistics in parentheses and the adjusted R2. For the economic variables model, 

the regressors that are found to have statistically significant coefficients are the 

returns on brent crude oil, the returns on the historical volatility for both underlying 

indices, S&P 500 and Dow Jones Industrial Average, and the lagged term of implied 

volatility spread. The latter is also statistically significant for the AR(1) model (see 

Table 3). The adjusted R2 is almost 7% for both models. As in Franks (1991) the 

volume of the futures contract of the S&P 500 index cannot be considered as a 

significant explanatory variable. Moreover, despite the past literature, none of the 

returns on underlying indices (S&P 500 and DJIA) are statistically significant. 

Figure 3 and 4 display the residuals of the two models under consideration. Points 

of heteroskedasticity are observed, and this fact is corroborated by the tests for 

heteroskedasticity, which show rejection of the null hypothesis of homoskedasticity of 

the residuals. 
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Table 2 

 
Forecasting with the economic variables model 

 
 Dependent variable: Δ(VIX-VXD)t 
Included observations: 1395 
  Coeff.(t-statistic) 
C1 0.040 
 (-1.404) 
It-1 2.549 
 (1.249) 
Oilt-1 1.442*

 (2.041) 
R(DJIA)t-1

+ -5.071 
 (-0.685) 
R(DJIA)t-1

- 2.680 
 (0.344) 
R(S&P500)t-1

+ 4.116 
 (0.565) 
R(S&P500)t-1

- 7.132 
 (0.929) 
Δyst-1 0.419 
 (1.431) 
Fxt-1 -2.342 
 (-0.817) 
  
ΔHV(DJIA)t-1 -1.329*

 (-2.365) 
ΔHV(S&P500)t-1 1.525*

 (2.675) 
Volt-1 -0.095 
 (-1.533) 
Δ(VIX-VXD)t-1 -0.193*

 (-7.111) 
Adj.R2 0.069 

Table 2 reports the results from the regression of the volatility spread. The estimated 
regression is Δ(VIX-VXD)t = c1 + a1it-1 + b1fxt-1 + d+

1 R+
t-1(DJIA) + d-

1R-
t-1(DJIA) + 

f+
1 R+

t-1(S&P500) + f-
1R-

t-1(S&P500) + g1Δyst-1 + h1oilt-1 + j1ΔHV(DJIA)t-1 + 
k1ΔHV(S&P500)t-1 + l1volt-1 + m1Δ(VIX-VXD)t-1 + εt where Δ(VIX-VXD): the changes 
of the implied volatility spread, i: the one-month US interbank interest rate for the US 
market, fx: the Euro/USD exchange rate, R+(.): the positive stock return of DJIA and 
S&P 500 respectively, R-(.): the negative stock return of the underlying indices, Δys: 
the changes of the slope of the yield curve as the difference between the yield of the 
ten year government bond and the one-month interbank interest rate, oil: the WTI 
(brent crude oil) price for the American market, ΔHV(.): the historical volatility of 
DJIA and S&P 500 and vol: the volume of the futures contract of the S&P 500 index. 
The estimated coefficients, t-statistics in parentheses, and the adjusted R2 are 
presented. One asterisk denotes rejection of the null hypothesis of a zero coefficient at 
5% level. The model has been estimated for the period January 4, 2000 to January 4, 
2006.  
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Figure 3: Residuals for economic variables model 
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Table 3 
 
Forecasting with the univariate autoregressive 
 AR(1) model 
  

 
Dependent variable: Δ(VIX-
VXD)t 

Included 
observations: 1453 
  Coeff.(t-statistic) 
C -0.009 
 (-0.663) 
Δ(VIX-VXD)t-1 -0.252*

 (-0.269) 
Adj.R2 0.066 
  

 

Table 3 reports the results from the univariate autoregressive model. The estimated 
specification is Δ(VIX-VXD)t = c + Δ(VIX-VXD)t-1 + εt. The estimated coefficients, t-
statistics in parentheses, and the adjusted R2 are presented. One asterisk denotes 
rejection of the null hypothesis of a zero coefficient at 5% level. The model has been 
estimated for the period January 4, 2000 to January 4, 2006. 
 
 
 

 19



 
 

Figure 3: Residuals for AR(1) 
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6. Out-of-sample performance 

In order to assess the out-of-sample performance of the two models we have 

already analyzed, we form point and interval forecasts for each model. As mentioned 

above, the out-of-sample period is January 5, 2006 to November 21, 2008. So, to 

construct the point forecasts, we use an expanding window, in other words, we re-

estimate the models by adding each observation, without dropping any, to the in-

sample data. As far as the construction of interval forecasts is concerned, for every 

day (out-of-sample period), we generate 10.000 simulation runs. 
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6.1 Point forecasts 

 
In this study, in line with Konstantinidi et al.(2008) and Goncalves and Guidolin 

(2006) we use three measures to assess the out-of-sample performance of the fitted 

models. The root mean squared prediction error (RMSE), the mean absolute 

prediction error (MAE) and the mean correct prediction (MCP). The RMSE is 

calculated as the square root of the average squared deviations of actual prices 

(spread) from the models’ forecast prices. The MAE is computed as the absolute 

differences between the realized spread of the two IV indices and the models’ 

forecasts spread. The MCP is the average frequency for which the change in the 

forecasted spread by the models has the same sign as the actual change in spread. 

 To this point, we have to say that random walk model is going to be used as the 

benchmark model. The forecasts for the random walk model are based on that today’s 

implied volatility is the best forecast of tomorrow’s implied volatility. So, the 

forecasts of each model will be compared to those from the random walk model. To 

perform these comparisons, we use the modified Diebold-Mariano test (see Harvey et 

al., 1997) for the RMSE/MAE metrics and a ratio test for the MCP metric. The null 

hypothesis for both tests is that the models under consideration perform equally the 

random walk model. These test are used because sometimes one set of forecasts 

appears more successful than the other, however, we do not know if this outcome is 

random. 

For the modified Diebold-Mariano test, the null hypothesis is 

( ) ( )[ ] 0: =− t
rw

t
i

o egegEH , where ( )i
teg  and ( )rw

teg  are the loss functions and { }  

and  are the forecasts error for the ith model specification and the random 

walk model, respectively. We also define, the loss differential 

n
t

i
te 1=

{ }n
t

rw
te 1=

( ) ( ) ntegegd rw
t

i
t

i
t ,....,1; =−= . The alternative hypothesis we test is that the random 

walk outperforms each of the models ( )( )0:1 >i
tdEH  or that each of the models we 

examine outperform the random walk ( )( )0:1 <i
tdEH . Here, we suppose one-step 

ahead forecasts, so the modified Diebold-Mariano (S1) test statistic is the following: 
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where  
n

d
d

n

t

i
t

i
t

∑
== 1  and ( )i

tdvar  the variance of i
td . The modification of the 

Diebold-Mariano test statistic is compared to critical values from the Student’s t 

distribution with (n-1) degrees of freedom. At 5% significance level, we reject the 

null hypothesis if S1>ST (=1,645) (where ST is Student’s t t-statistic) and then we 

accept that the models under consideration perform better than the random walk. 

As we have already mentioned, we use a ratio test to compare the MCP metric of 

the respective models and we consider random walk model as a naïve model with 

MCP=50%. So, the null hypothesis is that the models under consideration perform 

equally well with the naïve rule ( %50: =MCPH o ). The alternative one is that the 

models perform better than the naïve rule ( ). The test statistic is: %50:1 >MCPH

 

n

n
X

TR 5.05.0

5.0

×

−
=           (7) 

 

where  X is the number of times that the forecasting model predicts correctly the 

sign of the price change, n is the number of the observations (the number of forecasts) 

and 
n
X  is the MCP. The test statistic follows approximately a normal distribution 

N(0,1), so at 5% significance level, we reject Ho in the cases where TR>TN (=1,645) 

(where TN is t-statistic of standardized normal distribution). 

Table 4 presents the results of the out-of-sample performance of the random walk 

model, the economic variables model and AR(1) model for the implied volatility 

spread. None of the combinations of implied volatility spread and predictability 

metrics show that any of the models outperform the random walk model. So, at 5% 

significance level, we cannot observe any statistically predictable pattern in the 

implied volatility spread. 
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Table 4 
 

Out-of-sample performance of the model specifications 
 VIX-VXD 
Panel A: Random Walk  
RMSE 1,37 

MAE 0,62 

  
Panel B: Economic variables model 
 
RMSE 0,81 

MAE 0,37 
MCP 54,67% 

  
  

Panel C: AR(1) Model  
RMSE 0,839 
MAE 0,366 
MCP 61,95% 

 

Table 4 reports the root mean squared prediction error (RMSE), the mean absolute 
prediction error (MAE) and the mean correct prediction (MCP) for the random walk 
model (Panel A), the economic variables model(Panel B) and AR(1) model (Panel C). 
The null hypothesis is that the random walk and the model under consideration 
perform equally well, against the alternative that the model under consideration 
performs better, have been tested via the Modified Diebold-Mariano test (for RMSE 
and MAE) and the ratio test (for MCP). The models have been estimated for the 
period January 5, 2006 to November 21, 2008. 
 
 

6.2 Interval forecasts 

Apart from point forecasts, we form interval forecast, as recently financial market 

participants have shown increasing interest in interval forecasts as measures of 

uncertainty. Christoffersen’s (1998) likelihood ratio test of unconditional coverage is 

used to assess the constructed interval forecasts. The procedure is the following: 

observe a sample path, { } , of the time series of the implied volatility spread and 

a corresponding sequence of out-of-sample constructed interval forecasts, 

T
tty 1=

( ) ( )({ T
ttttt aUaL 11/1/ , =−− )} , at a% significance level. ( )aL tt 1/ − and  are the 

lower and upper limits of the interval forecasts for time t made at time t-1. 

( )aU tt 1/ −
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We set an indicator variable, , for a given interval forecast, 

as, 

tI

( ) ( )( )aUaL tttt 1/1/ , −−

 

( ) ( )( )[ ]
( ) ( )( )[⎩

⎨
⎧

∉
∈

=
−−

−−

aUaLy
aUaLy

I
ttttt

ttttt
t

1/1/

1/1/

,,0
,,1

]               (8) 

 
To test the unconditional coverage, the hypothesis that [ ] aIE t =  should be tested 

against the alternative . The likelihood under the null hypothesis is [ ] aIE t ≠

 

( ) ( ) 11,....,,; 21
nn

T aaIIIaL o−= ,          (9) 

 

and under the alternative 

 

( ) ( ) 11,.....,,; 21
nn

T
oIIIL πππ −= .         (10) 

 

The likelihood ratio unconditional test (LRunc) can be formulated as: 

( ) ( )[ ]
( ) ( )[ ] 2

1

2
12121

11 1/1ln2

,.....,,;/,....,,;ln2

χππ

χπ

≈−−−=

≈−=
nnnn

unc

TTunc

oo aaLR

IIILIIIaLLR
))

)

  

Where )/( 11 nnn o +=π)  is the maximum likelihood estimate of π and χ1
2 is the 

distribution with one degree of freedom. Furthermore,  and are the numbers of 

1s and 0s in the sample, respectively, so 

1n on

π)  is the observed fraction of violations in the 

sequence, which we report in table 5.  

In table 5 we also provide the p-value associated with the test statistic which is 

calculated as  

 

)(1 2
1

uncx
LRFvaluep −≡−       (11) 

If the P-value is below the desired significance level, then we reject the null 

hypothesis. As we observe, p-value is less than 5% significance level, so the null 

hypothesis that the percentage of times that the actually realized index value falls 

outside the constructed 5%-intervals is 5% is rejected. 

 24



According to table 5, as in the case of point forecasts, none of the models yield 

accurate forecasts. So, there cannot be observed any predictable pattern in the implied 

volatility spread based on interval forecasts formed by the economic variables model 

and the AR(1) model. 

 

 
Table 5 

 
Statistical accuracy of the interval forecasts 

VIX-VXD 
Panel A: Regression model based on economic variables - interval forecasts 

 
#Violations 5.35% 

p-value(LRunc) 0.00*

  
Panel B: AR(1) Model- interval forecasts 

#Violations 3.86% 
p-value(LRunc) 0.00*

Table 5 presents the percentage of observations that fall outside the constructed 
intervals and the p-value of Christoffersen’s likelihood ratio test of unconditional 
coverage for the implied volatility spread. The null hypothesis is that the percentage 
of times that the actually realized index value falls outside the constructed a -
intervals is .The results are reported for daily 5% - interval forecasts over the 
period January 5, 2006 to November 11, 2008. 

%
%a

 
 
 
 

7. Economic significance 

In this section, we evaluate the economic significance of the point and interval 

forecasts formed already for the implied volatility spread and in contrast to other 

studies, we construct trading strategies based on intercommodity spread (same time-

to-maturity, different underlying). In other words, we take simultaneously position in 

VIX and VXD futures for each maturity series. To employ the strategy, three futures 

series have been constructed according to their expiry date. Even if the two models 

under consideration do not generate statistically significant forecasts, we apply the 

trading rule to both of them separately. 
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To assess the economic significance of the point and interval forecasts, we 

calculate two measures: Sharpe ratio (SR) and Leland’s (1999) alpha (Ap). Sharpe 

ratio shows the excess return per unit of risk in a trading strategy. Sharpe takes into 

account only the first two moments of the distribution, supposing that the mean and 

standard deviation of the distribution of returns are sufficient statistics for the 

assessment of the prospects of an investment portfolio. The SR is defining as: 

 

D

DSR
σ

≡               (12) 

Where  is the differential return in period t, is the return on the 

index in period t and  the return on the risk-free interest rate. 

ftItt RRD −= ItR

ftR ∑
=

≡
T

t
tD

T
D

1
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average value of  over the period from t=1 through T and tD
1

)(
1

2

−

−
≡
∑
=

T

DD
T

t
t

Dσ  is 

the standard deviation of the differential return. 

Instead of using Jensen’s alpha, Ap is preferred since it takes into account the non-

normality of the distribution of the returns. Leland’s alpha is given by the following 

equation: 

 

( ) ( ) ( ) ( )[ ] ffmppppp rrrEBMrErEMrEA −−−=−= //           (13) 
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= . In order to 

obtain Ap, we regress the following specification: 

 

 

[ ] [ ] tpftmtpftpt ArrBrr ε+=−−−
)

                (14) 

 

pr  are the returns from the trading strategy, are the returns on the risk-free interest 

rate and are the returns of the market portfolio. As risk-free interest rate we use 

fr

mr
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one-month Libor interest rate and as the market returns, we consider returns on S&P 

500 and DJIA, separately. To assess the economic significance of Sharpe ratio and 

Leland’s alpha, for point and interval forecasts, 95% confidence interval have been 

bootstrapped and are reported within parentheses. 

 

 

7.1 Trading strategy based on point forecasts 

To evaluate the economic significance of the point forecasts, we employ the 

following strategy. The investor goes long in VIX and short in VXD volatility futures 

when the forecasted value of the implied volatility spread is greater than its current 

value. Correspondingly, the investor goes short in VIX and long in VXD volatility 

futures in the case where the forecasted value of the implied volatility spread is 

smaller than its current value. Table 6 and 8 present the annualized Sharpe ratio and 

Leland’s (1999) alpha obtained for each of the three series (shortest, 2nd shortest, 3rd 

shortest) for point forecasts formed by economic variables model (Panel A) and the 

AR(1) model (Panel B). At first, we set the trading rule taking into account the 

transaction costs (see Table 8), however Sharpe ratio and Leland’s alpha are 

statistically insignificant for both models and these models cannot generate abnormal 

profits.  Subsequently, under a theoretical viewpoint, we employ the same trading 

strategy, ignoring the transaction costs, in order to see whether the models under 

consideration, although they offer no statistically significant forecasts, can generate 

profits. The results coincide with the first case (table 6), as we accept the null 

hypothesis of a zero Sharpe ratio and Leland’s alpha, at 5% level of significance. The 

results for Leland’s alpha remain the same, whether we use S&P 500 or DJIA as 

market returns.  

 

 

7.2 Trading strategy based on interval forecasts 

To assess the economic significance of the constructed interval forecasts, the 

following trading strategy is employed: 
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t
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−

+
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Table 7 and 9 report the annualized Sharpe ratio and Leland’s (1999) alpha 

obtained for each of the three series (shortest, 2nd shortest, 3rd shortest) for interval 

forecasts formed by economic variables model (Panel A) and the AR(1) model (Panel 

B). At first, as in the case of point forecasts, we employ the trading strategy by taking 

into account the transaction costs (see Table 9), however Sharpe ratio and Leland’s 

alpha are statistically insignificant for both models and these models cannot generate 

abnormal profits.  Subsequently, we employ the same trading strategy, ignoring the 

transaction costs, in order to see whether the models under consideration, although 

they offer no statistically significant forecasts, can generate profits. The results (Table 

7) are at the same direction with the first case, as the models do not generate 

economic significant profits. The results for Leland’s alpha remain the same, whether 

we use S&P 500 or DJIA as market returns.  
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Table 6 

 
 

Trading strategies with VIX-VXD spread based on point forecasts from January, 
5, 2006 to November 21, 2008 (without transaction costs) 

       
  shortest 2nd shortest 3rd shortest 
Panel A: Economic variables model point forecasts 
        
Sharpe Ratio 0.01 0.01 -0.02 
95% CI (-0.02, 0.03) (-0.02, 0.05) (-0.07, 0.03) 
Ap(S&P 500) 0.03 0.03 -0.06 
95% CI (-7.37, 6.32) (-7.08, 7.57) (-8.05, 7.86) 
Ap(DJIA) 0.03 0.03 -0.06 
95% CI (-7.43, 5.80) (-8.71, 7.69) (-10.34, 7.32) 
 
Panel B: AR(1) point forecasts 
 
Sharpe Ratio 0.01 0.00 -0.00 
95% CI (-0.02, 0.04) (-0.04, 0.05) (-0.03, 0.04) 
Ap(S&P 500) 0.03 0.00 -0.01 
95% CI (-5.34, 6.02) (-6.67, 8.06) (-10.23, 8.23) 
Ap(DJIA) 0.03 0.00 -0.01 
95% CI (-5.47, 6.15) (-6.82, 8.24) (-10.47, 8.42) 

 
Table 6 reports the annualized Sharpe ratio and Leland’s alpha and their respective 
bootstrapped 95% confidence intervals (CI). The trading strategy is based on point 
forecasts obtained from the economic variables model (Panel A) and AR(1) model 
(PanelB), without taking into account transaction costs. The Sharpe ratio for the S&P 
500 and the Dow Jones Industrial Average is 0.0536 [95% CI=(0.05, 0.15)] and 
0.0693 [95% CI=(0.06,  0.16)]. 
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Table 7 
 

Trading strategies with VIX-VXD spread based on interval forecasts from 
January, 5, 2006 to November 21, 2008 (without transaction costs) 

    VIX-VXD   
  shortest 2nd shortest 3rd shortest 
Panel A: Economic variables model point forecasts 
        
Sharpe Ratio -0.03 -0.00 -0.07 
95% CI (-0.08, 0.03) (-0.07, 0.06) (-0.11, -0.02) 
Ap(S&P 500) -0.11 -0.00 -0.18 
95% CI (-5.58, 6.47) (-7.62, 7.36) (-9.22, 7.72) 
Ap(DJIA) -0.11 -0.00 -0.18 
95% CI (-6.11, 7.08) (-8.33, 8.06) (-10.10, 8.46) 
 
Panel B: AR(1) point forecasts 
 
Sharpe Ratio -0.00 -0.02 -0.01 
95% CI (-0.08, 0.08) (-0.09, 0.04) (-0.07, 0.04) 
Ap(S&P 500) -0.02 -0.04 -0.04 
95% CI (-7.04, 6.55) (-8.02, 7.40) (-10.26, 7.76) 
Ap(DJIA) -0.02 -0.04 -0.04 
95% CI (-7.70, 7.17) (-8.78, 8.11) (-11.24, 8.49) 

 

Table 7 reports the annualized Sharpe ratio and Leland’s alpha and their respective 
bootstrapped 95% confidence intervals (CI). The trading strategy is based on interval 
forecasts obtained from the economic variables model (Panel A) and AR(1) model 
(PanelB), without taking into account transaction costs. The Sharpe ratio for the S&P 
500 and the Dow Jones Industrial Average is 0.0536 [95% CI= (0.05, 0.15)] and 
0.0693 [95% CI= (0.06, 0.16)]. 
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Table 8 
 

 

Trading strategies with VIX-VXD spread based on point forecasts from 
January, 5, 2006 to November 21, 2008 (with transaction costs) 
       
  shortest 2nd shortest 3rd shortest 
Panel A: Economic variables model point forecasts 
        
Sharpe Ratio -0.01 -0.01 -0.05 
95% CI (-0.05, 0.00) (-0.07, 0.01) (-0.11, 0.01) 
Ap(S&P 500) -0.03 -0.03 -0.14 
95% CI (-8.45, 7.26) (-9.39, 8.07) (-8.64, 8.98) 
Ap(DJIA) -0.03 -0.03 -0.14 
95% CI (-9.25, 7.95) (-10.26, 8.84) (-9.45, 9.83) 
 
Panel B: AR(1) point forecasts 
 
Sharpe Ratio 0.00 -0.02 -0.02 
95% CI (-0.04, 0.03) (-0.07, 0.02) (-0.06, 0.02) 
Ap 0.00 -0.05 -0.07 
95% CI (-6.78, 7.79) (-7.54, 8.99) (-8.63, 8.49) 
Ap(DJIA) 0.00 -0.05 -0.07 
95% CI (-7.38, 7.78) (-9.06, 9.15) (-11.64, 12.11) 

 

Table 8 reports the annualized Sharpe ratio and Leland’s alpha and their respective 
bootstrapped 95% confidence intervals (CI). The trading strategy is based on point 
forecasts obtained from the economic variables model (Panel A) and AR(1) model 
(PanelB), by taking into account transaction costs. The Sharpe ratio for the S&P 500 
and the Dow Jones Industrial Average is 0.0536 [95% CI=(0.05, 0.15)] and 0.0693 
[95% CI=(0.06,  0.16)]. 
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Table 9 
 
 

Trading strategies with VIX-VXD spread based on interval forecasts from 
January, 5, 2006 to November 21, 2008 (with transaction costs) 
    
  shortest 2nd shortest 3rd shortest 
Panel A: Economic variables model point forecasts 
        
Sharpe Ratio -0.06 -0.05 -0.11 
95% CI (-0.12, 0.00) (-0.12, -0.01) (-0.16, -0.07) 
Ap(S&P 500) -0.21 -0.12 -0.31 
95% CI (-6.35, 6.18) (-8.70, 7.64) (-10.14, 9.22) 
Ap(DJIA) -0.21 -0.12 -0.31 
95% CI (-6.95, 6.77) (-9.51, 8.38) (-11.09, 10.10) 
 
Panel B: AR(1) point forecasts 
 
Sharpe Ratio -0.02 -0.04 -0.05 
95% CI (-0.08, 0.05) (-0.12, 0.02) (-0.10, 0.00) 
Ap -0.07 -0.10 -0.13 
95% CI (-7.62, 7.33) (-8.89, 8.33) (-11.82, 10.50) 
Ap(DJIA) -0.07 -0.10 -0.13 
95% CI (-8.15, 7.86) (-9.72, 9.14) (-12.93, 11.52) 

 

Table 9 reports the annualized Sharpe ratio and Leland’s alpha and their respective 
bootstrapped 95% confidence intervals (CI). The trading strategy is based on interval 
forecasts obtained from the economic variables model (Panel A) and AR(1) model 
(Panel B), by taking into account transaction costs The Sharpe ratio for the S&P 500 
and the Dow Jones Industrial Average is 0.0536 [95% CI=(0.05, 0.15)] and 0.0693 
[95% CI=(0.06,  0.16)] 
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8. Conclusion 

In this paper, we have examined the dynamics of the implied volatility spread. We 

have investigated the predictability of two models, an economic variables model and 

an AR(1) model, by forming point and interval forecasts. The out-of-sample 

performance of the models has been compared with the random walk model. Based on 

forecasts, we have developed trading strategies which concern the simultaneous 

taking position on two different volatility futures, VIX and VXD, with the same time 

to maturity.  

None of the models display statistically significant forecasts, as the naïve rule of 

random walk model outperforms in all out-of-sample performance metrics. Moreover, 

there seems to be no predictable pattern in the implied volatility spread, according to 

the two models under consideration. 

Furthermore, as far as the economic significance is concerned, point and interval 

forecasts, for both models, do not generate abnormal profits, even if transaction costs 

are not taken into account. This signifies that CBOE volatility futures market are 

informational efficient, as prices in this markets embody any new information and 

investors have no margins to make abnormal profits. 
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