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Abstract

In this dissertation our main purpose was to exainine the reIatrve eff|C|ency of
the double-exponential mean-reverting process (MRDEJP) cOmpared to two
others, the simple mean- revert|ng (MRP) and the mean-reverting with
Gaussian jump (MRGJP), in a contrnuous time settlng The idea came up
from Lucia and Schwartz (2002) whe. actuaHy used data from the same area,
the Nord Pool market, but onIy est1mated the mean reverting process in
discrete time, testing also |ts eff|C|enCy 4n the futures market. Escribano et al.
(2002) had estimated the: Gau35|an jump process but only in a discrete time
setting. We just tried tq’ go further to-that by.incorporating a new jump model,
the mean- revert|ng double exponentlal Jump process (MRDEJP) and also test
the other two in/ contlnuous t|me The performance of the models was
estimated under both econometrlc and financial metrics. The estimation of the
parameters was made with-the MaX|mum Likelihood Estimation method. We
then tried ta. compare the three models by comparing the root mean—squared

errors of varlous futures and ‘forward prices of different m

estlmated the |mpILC|t market price of risk for each

sian or h/{\\,s)
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VERSION
ADDS NO

@%aus

found ‘that-the: Use of judp models is necessary. Wigs

doulole;exponent'ia] jump is generally better is a
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2 Introduction

In this dissertation our main aim will be to asses the efficiency:of- three popular
diffusion models in a continuous time setting. The data set that WI|| be used
will be the average hourly spot price of eIectr|C|ty taken by Nord PooI the
Nordic Power Market. This assessment will be done under both econometrlc
and financial metric. This approach has already beer] done by Dotsis,
Psychoyios and Skiadopoulos (2007) in their effort to. capture the dynamlcs of
various volatility indices as well as by Lucia and Schwartz:_(__:2002) using data

from the Nordic power market. \ (=

The aim of this dissertation was actuaﬂy |nsp|red by the paper of Lucia and
Schwartz (2002) and Escnnbano et aJ (26@2) who used data from Nord Pool,
although earlier ones, and assessed the peerrmance of the mean-reverting
and the Gaussian-jump process for the spot pr1ce "and the natural logarithm of
the spot price in d|screte tlme In thls paper we will try to expand the research
in a way. We will f|rst try to |ncorporate the double exponential jump-diffusion
models in the data set and secondIy apply the mean-reverting and the
Gaussian jump process agaln s|nce our approach will be a continuous time
setting. We Wt” then compare the resuIts that Lucia and Schwartz (2002)
came up with- srnce they arso tr|ed to price futures and forwards whereas

Escribana: Pena and V|IIapIana (2002) did not. The reason we will do that is

double: F|rstIy the perjod that ‘their data were taken is only a

we WI|| exarmne and secondIy their estimation of the p4

\
assumlng =i dlscrete “fime setting. So it will be & Qg to look at theé\'ﬁ)

§ REGISTERED O)
VERSION

eff|C|ency of the cont|nuous time model in a bra
Schwartz (2092_) used.

The models we are going to use will all have

mean-reversion of the spot prices. The first
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reverting model which will be notated from now on as MRP (mean-reverting
process). The second model will be a mean-reverting Gaussian jump process
(MRGJP) and the third one will be a mean-reverting double expdnentlal jump
process (MRDEJP). Initially there was a thought of using a stochasttc volatlllty
model. The reason this did not go further was the fact that: |n that casel the-”
parameters would become numerous and the modeIs— Would be unstable
Besides, the aim of this dissertation is to find the Idest f|tt|ng model W|th as
less parameters as possible, in order not to lose |ts Credltablhty

Now let’s have a look at the former blbllography conpernlng Nord Pool market.
As we said before, Lucia and Schwartz (2002) made an attempt to catch the
dynamics of the spot electricity price usmg the S|mple mean revertlng model in
a continuous time setting. They also Caqulated the I\/Iean Errors of the pricing
models. They did that in two ways They |n|t|aIIy made the simplifying
assumption that the market prlce of szk ts zere and then after estimating the
market price of risk they re- calculated the ME They came up with some
interesting results which we are actually gomg 40 compare and extend in the
chapters to follow. Another a'ttempt to! modeI Nord Pool data set was made by
Escribano, Pefa and Vlllaplana (2002) These researchers used the discrete
time approach. Amdng the modeIs they used, it was the simple mean-
reverting model and the mean revertlng with Gaussian jump model. For the
parameter estlmatlon they used the MILE and their effort was focused to find
the best flttlng model usmg onIy the econometric method. So they actually
didn’t use the|r conclusmns fer the futures market. Only Villaplana (2003) tried

to |nclude a dOub]e~eXQonent|aI jump model in his research_but

was dlfferent : . .

With'in the eddhdmetric-framework, maximum likelg@oQ-€stimation is used to
estimate‘the parameters. In case that the conditij §enRt€fgt{§ol—%D
be directly caledlated, we use the characteristi®qg@nction to gMER&I(QNn
solution being followed by a Fourier inversiongilorder to ggfl P BeN@-

function which we are trying to maximize.
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Within the financial metric, we compare the effectiveness of the three models.
Under the objective probability measure the futures price equals the expected
value of the spot price. This could stand in the case that we* assume that the
objective measure is the same with the risk-neutral measure We WI|| see- 4
further in the text what has been said about this assumptlon and |f actually
stands in our case. Under the assumption of the eX|stence of- market prlce of
risk the futures price equals the expected value of the spot pr|ce under .a risk
adjusted metric. The prices in both cases are compared W|th the market price
of futures for different maturities. This latter approach__ h_ejps us_.compare our

results with the ones of Lucia and Schwartz (2002)..,

Before doing all these we first get to"know: 'the speCiaI features of the
electricity market in Section 3. The Nord Poot power market is fully presented
in Section 4. Apart from the spot market We also descnbe the financial market
and explain the main contracts whlch are berng traded In Section 5 we make
a short review of the prevuous b{bllography that has to do with attempts to
model electricity prices.. In Sectlon 6 we present some basic statistical
functions that help us |nterpret their evqut|on through time and make their
understanding eaS|er In SeCtIOI‘] 7 we actuaIIy get into the main part of the
dissertation by deScr1b|ng the processes that will be used for our research and
the features they are- try|ng to capture Section 8 describes the parameter
estimation procedure and Sectlon 9 demonstrates the results and discusses
them. In Sectlon 10 we present the relative efficiencies of the models in their

effort to calculate the dlfferent futures/forwards prices. Fipally,

sectlon we conclude and 'séim up the work done. In the

can f_lnd some mathem__a,tlcal proofs.
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3 Characteristics of Electricity Price_/s__

Developing predictive models for electricity prices is a reIatlyer neW area of
application. Until recently, electricity was a monopoly |n most Countrles ofte

government owned, and if not, highly regulated. As such eleotrlc:|ty prlces
reflected the government’s social and industrial polley That |s why any price
forecasting had no scientific interest since the prtces had nothlng te do with
the free market. In this respect, it tended to be over the Ionger term taking a
view on fuel prices, technological |nnovat|on and generatron efflc:lency This
changed dramatically, however, during the 1990 'S, FoItowmg the examples of
structural reforms and market I|beraI|zat|ons In the U. S Britain, Norway,
Chile, Argentina and Australasia in the earty 90’s, other European countries

such as Spain, Germany, F|nIand Sweden and Denmark followed suit a few

years later, as well as var|ous regrons |""‘North and South America and this
trend has continued so that power secter reform has now become a major
issue worldwide. ' )

Ownership in the seotor has generaIIy ‘become private rather than public,
competitive markets have been |ntroduced for wholesale trading and retail
markets gradually I|beraI|zed to erode local franchises. Typically the industry
has been splfit up |nte séparate companles for generation, transmission, local

distributior and retall supply of eIectrlc:lty power. Transmission and distribution

gaﬁm :
@esale market an§'ﬁ)

number of oompanles Reta|I suppliers buy from

sell to customers Industr|aI and commercial cu

o i?ié"k?id?@”

d in some cases not at all.

All of this structural change has been motiva

competitive forces to create a more efficient a
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either the public sector or regulated monopolies could deliver. Of course, it is
the prospect of business risk that should drive the efficiency gains, and the
major new element of risk is wholesale price uncertainty.

One of the important consequences of this restructuring is that brices .a:r‘e now 4
determined according to the fundamental economic —rule of supply arrd
demand. Supply, as mentioned above, is provided by, generators and demand
is represented by industrial consumers, power marketers and dlstrrbutors
buying electricity in the pool to sell it to end- users There is: a market pool”
where bids and offers are placed by consumers to buy electr|C|ty and
generators to sell it for the next day. The equ|I|br|um prlces are deflned as the
intersection of the aggregate demand and supply curves for each hour (or
half-hour) of the day. These new deregulated prlces have Been characterized
in all markets by having an extremely hlgh volatlllty Even when compared
with financial markets (stocks, bonds) or- Wlth other commodltles the behavior
of electricity prices is still regarded as qulte complex and volatile. The
deregulating processes have been accompanred by the introduction of
competitive wholesale elet:trlcﬂy markets and: power derivative contracts, both
OTC and exchange- traded prowdlng a varlety of contract provisions to meet
the needs of the electrIC|ty market partlclpants In fact the more experienced
markets now |nclude futures and optlons markets (for instance, electricity
futures contracts are traded rn dlfferent markets, Sidney Futures Exchange,
New Zealand Futures and Optlons Exchange, Eltermin (Nord Pool), NYMEX

and others). ™

At the same tlme -:derejgutétion of the energy industry h

and denvatk@Q

s e ED O

. This pncMER&IQNd
hedging, ADIDEIN@=

con:s__ider:abLe:'afno'uﬁt;?of trading activity, both i

marl{et'ss It ha‘s:'ioirﬂpj'.vi,ded utilities with new opportyg

The volume Fisk th"-ey have been used to anal

revenue projections IS Nnow augmented by price

the industry to go into financial practices sucl

contracts and, quite importantly, to identify and pg
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energy contracts that have been written for decades. Accordingly, the
scheduling of plant operation and maintenance has become the subject of
even increased scrutiny and concern.

Electricity may be considered as a flow commodity strongty characterlzed by ~f
its very limited storability and transportability. Both I|m|ts—te the pos5|b|I|t|es of
“carrying” electricity across time and space turn out to be crucral in explatmng
the behavior of electricity spot and derivative prrces as compared 19 other
commaodities. In other words arbitrage across t|me and space Whlch is based
on storability and transportation, is serlously Ilmlted if ndt completely
eliminated, in electricity markets. If the links acrass t|me and space provided
by arbitrage break down, we would expect spot prlces t0 be hlghly dependent
on temporal and local supply and demand condltlons The limits of the
arbitrage are also expected to affect deC|swer the relatlonshlp between spot

and derivative prices. A MR ""

The non-storability of eIectrtclty makes electrtcrty deI|vered at different times
and on different dates to: be percelved by users as distinct commodities. In
other words, prices are strongly dependent on the electricity needs (demand)
and their determlnants |n every preC|se moment (this is to say, business
activity, temporal. weather cond|t1ons Aand the like). Distinguishing between
on-peak and off—peak eIectrlelty prldes or among prices corresponding to
different time.. perlods such as seasons IS indeed important in power markets
(such d|strnct|ons determlne for instance, derivative contractual terms). The

non- storablllty of eJec;tncrty is also likely to affect

S|gn|f1c:ant‘ry netab[y |nfluenc:|ng on the shape of the

behaV|or

S Rls'a@ﬁf ﬁRﬁD
hich can MER@LQNe
ong certanﬂt@@ts N

Transportatron constralnts for electricity come in JF

the transm|SS|on lines and transportation losse

or uneconomical the transmission of electricity

limitations make electricity contracts and prj
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4 Nord Pool-The Nordic Power Market

During the 90’s, the Nordic European countries started a graddal-rdi'e:__r:_e_:ggtating
process in their respective electricity sectors based on openino them as"'mdoh .,
as possible to competition. In the resulting Nordic eIectrlotty system the
transmission network is owned and operated by a number of mdependent
transmission system operators, whose activity |s subject tQr regulatlon and
control by public authorities. This guarantees a non dlscrlmlnatory access to
the grid to all market participants in the new eIectncnty* market The new
Nordic wholesale electricity market comblnes both over the counter bilateral
contracting and trading via the Nordic Po_\/ver:Exoange_, ,Nord Pool ASA.

Established in January 1993, and ﬂrst coverlng ony the Norweglan market,
the Nord Pool is currently the world’s on]y common muItJnatlonaI market which

also includes Sweden since January 1996 Frnland since June 15, 1998 and

the western part of Denmark (Jutland a _"Funen) since July 1, 1999. It is
owned by the two nat|onat grld companles Statnett SF in Norway (50%) and
Affarsverket Svenska Kraftnat |n Sweden (50%) These companies, as
implied by their names are the owners of the electricity networks in Norway
and Sweden. At, present Nord PooI has more than 70 employees with
headquarters |n Oslo and branoh offuces in Stockholm, Sweden in Fredricia,
Denmark and Helsmkl F|nIand In 2006 representative offices were opened in
Amsterdam and Berlln Basrcally, Nord Pool organizes two markets, a
“physical marKet” (Etspot) and a “financial market” (Eltermin ang Elgption),

and aIso prowdes olearlng serV|ces

4.'1""El_ectriojt_y soot market

¥

Elspot is Nord P:ool’s physical day-ahead marke
Denmark and North Eastern Germany. This

way which we will thoroughly explain.
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Before explaining the procedure we should clear out a couple of notations that
might come up. First of all a NOK is a Norwegian Krown the currency of
Norway, the SEK is the Swedish Krown and the DKK is the Danlsh Krown.
Additionally, a MWh (Megawatt-hour) is a measurement of electrlcrty power
For example one kilowatt-hour is the power that a 40-watt Ilght buIb produces ~f
if it is on for 25 hours (1 Megawatt-hour = 1.000 K|Iowatt hours = 1 OOO OOO

watt-hours).

Now let’'s get into the market and see how it works Every day unt|I 12:00 at
noon there is a “pool” open, where market part|01pants place thelr b|ds and
offers for electricity power for the next day start|ng at- GO 00 and ending at
23:00. A bid and an offer have three parts -2 prlce a Ioad |n eIectrlc power
and a time period. So, every part|C|pant that needs eIectrlolty makes a bid to
buy a specific load in MWh at a specrﬂc -price- durlng a specific hour of the
following day. On the other hand eaoh electr|0|ty suppher makes his offer to
sell a specific load of electric power at a speolfrc prlce during a specific hourly
period of the day. The hourIy perlods- are set to be the sharp hours, e.g.
11:00-12:00, 17:00-18:00. eto

r

All these happen untﬂ 12 00 at. foon, when the ‘pool” is closed. After that the
price calculation fOr eac:h orte. of the 24 hours of the following day is made.
These are actdaI!_y the/equmbri_u_m. prlées between the demand and supply. So
for each hour.‘a’ijema_nd; and a sopply curve are drawn, according to the bids
and offers: Th'e" pd’rht of the- Intersection is the fair price where the electric

power WI|| be" sold at thrs speolflc hour on the following day. This

@%re is done bc!(l@,s)

QY/sell a spec:|f|c load /

@M@’ JERED S
d of a few AéERSION
ADDS NO

caIIed the system prrce and its average for each day ig

prlce at the Nor‘d Poot s financial market. So after tjg
counterpartles of the deal have a contract that

of MWh, at aspecn‘lc price and at a specific hour

like having a forwards contract with expiration p%
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In order to make clear the way the spot market works let's illustrate an
example: Let’'s assume that today is Monday and that we belong to a big
company which wants to buy 100 MWh of electricity power for the tlme period
14:00-15:00 on Tuesday. So, before 12:00 at noon of Monday. we submrt our
bid that we want to buy 100 MWh, at the price of 300 NOK/MWh for the perlod-”
14:00-15:00. After 12:00 all bids are aggregated and dependlng on the
demand and supply level at that specific time period an equnhbrlum prlce |s
set. Afterwards we sign a contract with the suppller that he WIH deI|\fer to us
100 MWh from 14:00-15:00 at the price that is agreed We should of course
make clear that the final delivery price might be A blt dlfferent from the system
price due to cost of carry or other fees. However from now on We will simply
forget this detail in order to make our research cIearer The process
mentioned above can also take pIace on weekends

In order for the market to be protected Nord Pool Sprot=/|3\S has set a technical
upper limit for the bids which is known as the max price. The max prices per
MWh are 2,000 EUR/16, 500 NOK/15 OOO DKK/18 OOO SEK.

The respective national s:ystem operators have established different methods
for handling bottIeneoks S|tuattons (i. e. S|tuat|ons when the required electricity
flow between any tWO. ._g__lven ar_e_as__ ‘exceeds the capacity limits of the
transmission Ilnes) depend'fno"dn tr‘ie specific involved areas. Bottlenecks
between any.. two oountrles as wetl as internal bottlenecks in Norway are all
managed ; usmg the pncnng mechanlsm in the spot market, implying price

adJustments fer the lnvolved dreas. In essence, when the reguire

between two .. more areas exceeds the capacity i

prlpe_s are oaloulated._peS|des the system price.

otheri:c:'oontries are ,_r_nanaged directly by the naiog Brgﬁ:lg fEcll?trED
VERSION
blanced. INABHDES WGe

cost of the regulat'ion is financed through tariffs fo

An electric power system must be continuous

any unpredictable differences between the pla
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during delivery, once the Elspot market is closed, the national system
operators have additionally set up regulating or balance markets from which

the required upward or downward regulation is obtained on short.hetice.

4.2 Electricity financial market

—

The Nord Pool’s financial market is also known as tne Eltermln and EIoptlon
The products traded at Nord Pool’s financial market oomprlse of Nordlo
German and Dutch power derivatives and are used tor tradlng and risk
management purposes. Besides its cIearlng functlon WhICh IS currently
conducted by a separate business area caIIed the Nordlc Electrlolty Clearing
(NEC), Nord Pool guarantees settlement and deI|very of aII trades made at
the market, by entering into the Contracts as a IegaI counterparty for both the
buyer and the seller. NEC also offers:. olearrng serV|ces. of standardized OTC

bilateral financial contracts reglst_eregjzln the ma_rke_t for that purpose.

The derivatives which are, traded i Nord Pool f|nanc:|aI market are futures,
forwards, contracts for dn‘ference (Cst) and European options. But before
presenting all these produots anaIytlcaIIy, we should first clear out some terms

that will be presented below

u,

421 Pavoff.-fon'ction offutures and forward contracts

Since September 1995 none of the above mentioned contracts entails

phyS|caI dellvery of eleotrlc:|ty power, a cash settle

Let us now make a gmall pause and explain ho
Let's assume that we have a futures/forward cqg
the one in figure 1. The hypothetical futures/fo

time r=0.
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Figure 1: Timeline of a life of a futures/forward contract. Date 7 is the startlng date. of -the

contract, /' is the maturity date, and [ i 2] is the delivery period of the contract |

—

r ‘.:

At time 7' this contract finishes trading. So date 7' is, thé maturlty date of the
contract. How big 7' will be depends on the type of contract and it varies from

one day to five years.

The period from ¢ to 7' is called the trad|ng perlod of the contract As we
already said, there is a cash settlement that - taklng place when the contract

expires. This cash settlement starts on tlme and ends on‘time 7,. The time

period [ . 2] is called the delivery penod of the contract which is most of the

time smaller than the trading perlod The [engths of both periods depend, of

course, on the kind of the Cdntract We Shdurd also note that 7, usually starts

immediately after 7. Thls |s not atways the case and we will see in which
cases this does not happen

We will next desc":[_:i-b"e-._zthe pa'&/pff_func::tion of the electricity futures and
forwards. First, 'ef" all \ii/:e: s:h“oul'd‘ Boint out to the reader that these
futures/forwards have a speC|aI feature which changes their payoff function
compared to the one of‘ the commodlty futures. The payoff of usual commodity

or index futures/forwards ends at their maturity date. From thatgdategon no

that we descrlhed— above. We should keep that i «. I@&@éﬁ%ﬁ&&D /O¢
function. e VERSION
ADDS NO

We assume that the interest rates are non-stClehagtic
| e ?E dﬁeK
assumption helps us ignore the differences in ‘sl ure and forwar
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Suppose we stand at time ¢ and we take a long position in an electricity

futures/forward contract with price F(7,7,), where [7,,7,] is the delivery

period of the contract. Let's assume that the maturity date of th:at:_-_:.jcontract IS

T'. This means that at this date the trading of the contract stops and that a

final price is settled. Its delivery period [ . 2] usually starts the next day atter '

the maturity date. At the maturity date of the contract the owner reahzes ra
payoff, either a profit or a loss. This payoff at the maturtty date X is glven by

the following equation:
o =5 (L LY~k (BB (4.1)

where F,(7,1,) is the purchase prlce of the contract at tinie / and F(1,15)

is the final price at time 7', the maturlty date

- Yy e, e
oy, Vi,

As we said before, aIthough the contract has~ a Tlnal price at time 7', it still
provides a payoff during the dellvery perlod [ ¥ 2] and seizes to exist at time
7, . We will now descrlbe_.the Concept of-the total payoff which is realized at
the end of the deIivery;‘:oer.iod, using:-a :eimple example. We will provide
mathematical notati'o_n'af_tengvarde._j

g

The general | ruIe about the payoff of every contract is that after every hour of

the deI|very perlod the owner, of the contract is credited or debited the

below, a daycontract is a futures contract wit delivery pe{fF R STON -
So in our case the delivery period [7,7,] jafhe 24-houn IS oY
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assume that the closing price of the contract was 42 €. So at the maturity date
we had a profit of 42-30 = 12 €. This is what we explained mathematically
above. Suppose the spot price for the time period of 00:00-01:60: a,m. of the
1/2/2006 is 35 €. At 01:00 we get an extra payoff, which equals 35 42 =, €.
Totally, counting from the time of the purchase of the contract on the .
25/1/2006 we have a total payoff of (42-30)+(35-42) -’35 30 5 € So we
have a profit of 5 € in total. After each hour we make the same caIcuIattohs
Let's have a look at table 1 where we see the total _payoff _st[ucture of-a day
contract. We conclude that, typically, the payoff o‘t e"very hédf ie the. difference
between the spot price of that hour (35 € for the flrst Kour of the delivery
period) and the price of the contract at its purchase date (42 €) The total
payoff at the end of the day is the sum of the payoff at the maturlty date (12 €)
and the payoff at the delivery perlod (- 7 €) for the»flrst hour of the delivery
period): N

fT ,firfT1~ :

7 42(13/ F( > ,2)) (4.2)

. 5= Tl

LL Spetnnon

’ =T

where P is the-[f)_ri'Ce at tifme s ﬁthe payoff of the contract at time 7" and
frr the pay_etf"—'ef the-:gpntract atthe delivery period., [7,,7,] is the delivery
period (O:-QQ::df:'—1:/272§506 u_htiJ “0:00 of 2/2/2006), translated in days, and

F (T T2) is theprleeef the':qehtract at the purchase timer.

{“ERED L
£’ Cﬁlghesm we assum 6@

Q.
S REGISTERED )
VERSION
ADDS NO

The above payoft. 1s truetf we assume a discrete time sef
a continueus tim:e':-set_ti:_ng and so equation 4.2 become

fo=ti+Fuy
Ty
=) (BB 0L
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IBHSUPRperiods  Spot price at each hourly period of 1/2/2006  Payoff realized at end of cAGIPEHOAN
0:00  1:00 35€ (42-30)+(35-42) = 35-30 = 5
1:00  2:00 36 € (42-30)+(36-42) = 36-30 = 6-
2:00  3:00 33 € (42-30)+{38-42) = 33-30 = 3
3:00  4:.00 30€ (42- 3Q)J%\“ -=.30-30 = 0 -
4:.00  5:00 31€ (42-30)(31-42 = 31°30.= 1
500  6:00 25¢€ (42:30)+(25:42) =.25°30"=: -
6:00 7:00 39€ (42-3G+(39- 42)» ‘grso 9
7:00  8:00 41€ ; (5240)-?24\4? 30= 11-
8:00  9:00 44 € <, {42-30)+ 4 :h:gt’) =14
9:00  10:00 45 € o (42 30)+(45- 4-2} 45-30 = 15.
10:00  11:00 48 € x/,}' %-30)_?"(48 42)“:::48 30=18 _
11:00  12:00 50 € AL (4‘2 0)#(88-42) = 50-30 = 20
12:00  13:00 52 € s -30)#(5242) = 52-30 = 22 €

13:00  14:00 46 € F o ( [2-30)+(48-42) = 46-30 = 16 €-

14:00  15:00 47 € b “"x.x4“2—30 (47-42) = 47-30 =17 €

15:00  16:00 48€ N (2; 30)+(48-42) = 48-30 = 18 € -

16:00 17:00 51€ —e o (42- -30)+(51-42) = 51-30 = 21 €

17:00  18:00 45€ { "“51':;_-.._~ - (42 30)+(45-42) = 45-30 = 15 € -

18:00  19:00 40 ‘~; A M, (42230)+(40-42) = 40-30 =10 €

19:00  20:00 33 2&&“\‘3‘:\“ \ % (42-30)+(33-42) = 33-30 =3 € -

20:00 21:00 1€ K a._ } (42-30)+(31-42) = 31-30 = 1 € -

21:00 22:00 £ o N *»*x (42-30)+(30-42) =30-30 =0 €

22:00 23:00 i R-k\ti “F o (42-30)+(22-42) = 22-30 = -8 €

23:00 0:00 o, 31 (42-30)+(31-42) =31-30 =1 € .
Total payoff ; ,s“ o, f ;"-»‘;QH"*’ 213 € e

Table 1: Payoff of a day contract, which was'initially boughi:Jr at 30 € and its final price was 42 €.
We can see the payoff of each hour separately arid’in total“at the end of the day. At the end of the
day the buyer has a profit of 213 € Wlthout taklng intg account the time value of money.

or to make it look bét_:i;é_r:._' .

:(r P (1) 44

where P( [, z)*——f Pds is the average of the spot pricg
.2

dellvery perrod { 15 2}

In the;néxt pér::'é'gr:é__ghs we will see a thorough

”ﬁ@@f@”‘?‘%ﬁﬁD
VERSION
ADDS NO

investor will%ﬁnt_:l:in Nord Pool financial market.
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4.2.2 Futures day contracts

These contracts refer to a delivery period of one day. Th'e :differences
between these contracts and the ones mentioned in spot market are two The
first one is that these refer to a whole day period and not just:te an hourly one. F
The second difference is that most of them trade for more than one day ahead
the delivery period. More specifically, every Fr|day nlne day contracts are
being traded. Every day a contract expires it is not replaced by any other until
the following Friday. So depending on the day somebody enters ‘tiie market,
he could see nine contracts, six or even three on Thursdays, Examples of
some day contracts that an investor could see on the 20/1;‘2006 are the ones
illustrated in table 2. Seven of those contracts start tradlng oh that date. We
should note that the observation date JS on Fr|day SO the number of day

contracts is the maximum that one coutd see at any day.of the week.

'w._ '-_ e

1 oy g,

4.2.3 Futures week contr_acts:'

These futures have a deflvery perlod of one week and a time to maturity of six
weeks. In table 2 we; can see the week contracts which were traded on the
20/1/2006.The dellvery perlod of the erst one is the following week of the one
we stand (21/1/2006 27/1/2006) The delivery period of the second contract
is the second week (28/1/2006 - 3/2/2006) and so on. Every time a week
contract explres there |s another one that takes its place. So anytime we enter

the market we can -§6¢’ SIX different week contracts being traded

S|multaneously The maturlty day of the futures is the lag

week mostly Frlday, and the trading period starts on

%
Q& $
S REGISTERED Q)

S
VERSION
ADDS NO

The delivery period of this contract is one calea al month and the time to

and ends on next Fr|day

4.2 4 For\/\;ard month contracts

KS

e"

maturity is six months. Every time a month contrs es anotzt-er onMakes
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its place. So every time an investor enters the financial market he can see six
different month contracts being traded simultaneously. The maturity date of
these contracts is always the last weekday of each month and the|r flrst day of
the delivery period is the first day of the following month. Examples of some
month contracts that an investor could see on the 20/1/2006 are the ones "t
illustrated in table 2. The first one for example is the— forward contract of
February-06, because it has a delivery period that expands from 1/2/2006 to
28/2/2006. As we can see it started trading ory the 1/8/2006 six “months
before the beginning of the delivery period, as we sald before

4.2.5 Forward quarter contracts

A forward quarter contract, as can be- easny concluded by its name has a
delivery period of three months. At- the beglnnlng of each year there are
eleven open quarter contracts Ln the market Each Gontract corresponds to
each quarter of the next three years except the one that starts and its
contract has expired. The dates for ea‘ch quarter contract are 1/1-31/3, 1/4-
30/6, 1/7-30/9 and 1/10- 31/12 Durlng the year every time a quarter contract
expires it is not replaced by any other ~So till the 31/3 we have eleven
contracts, till the 30/6 We have ten contracts, till the 30/9 we have nine
contracts and t|II the 31/12 we have elght contracts. At the beginning of the
year the contract that corresponds to the first quarter of that year, expires and
four other contracts sfart negotlatlng with delivery periods of two years after. If
we take a¢ Iook at table 2 we, Wl|| see the eleven contracts that were traded on
the 20/T/2006 The f1rst three of them have delivery period
other four haVe del1very perlods during 2007 and the
pe’rlods durfng 2008

©)
&
§ REGISTERED
VERSION

ones. Unﬁlt:hpnﬁdMle

4.2.6 Forv\‘/’ard ve‘ar contracts

The longer lasting forward contracts are the %

2006 these contracts had three years time to g
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Table 2;: Examples of futures day ai : ‘ , as we can see by the first column. The
second column indicates the closing 1d { lunins-she e start and the maturity date of each
contract whereas the last columns sl

Observation dates at Delivery period
20/1/2006 ' 21/1/2006
20/1/2006 22/1/2006
20/1/2006 ‘ 23/1/2006
20/1/2006 24/1/2006
20/1/2006 ) 25/1/2006
20/1/2006 (11 26/1/2006
20/1/2006 ; ) 27/1/2006
20/1/2006 20 3 28/1/2006
20/1/2006 ' 0, 29/1/2006

Observation dates

20/1/2006

20/1/2006 28R

20/1/2006 {,4@ 006

20/1/2006 QM 12/2006

20/1/2006 & > 1

20/1/2006 6 ‘ 25/2/2006 4/3/2006

_ _VERSION

ADDS NO
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Table 2 (continued): Examples of fc > \ ng on the 20/1/2006, as we can see by the
first column. The second column ini ‘ $ , olumns show the value (date that the
contracts starts being negotiated) ar ~ ' 1 of each contract.

Delivery period

Observation dates f First day Last day
20/1/2006 : 1/2/2006 28/2/2006
20/1/2006 1/3/2006 31/3/2006
20/1/2006 1/4/2006 30/4/2006
20/1/2006 1/5/2006 31/5/2006
20/1/2006 112 1/6/2006 30/6/2006
20/1/2006 2/ 1420 1/7/2006 31/7/2006

Delivery period

Observation dates First day Last day
20/1/2006 1/4/2006
20/1/2006
20/1/2006 , v
20/1/2006 e 31/ VRS S
20/1/2006 Q{ 30/4/260‘7;’®
20/1/2006 17/2007 31/7/2007 Mz
20/172006 -. Y 0] N
20/1/2006 38, 1/1/2008 31/1/2008 Z
20/1/2006 ' g i mﬁﬁf@v 008
20/1/2006 : 1/7/12008 31/7/2008
20/1/2006 1/10/28%, 84702008
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Table 2 (continued): Examples of for vl 06, as we can see by the first column.
The second column indicates the closi ; 1e value (date that the contracts starts
being negotiated) and the maturity dz

Delivery period

Observation dates tart-dat First day Last day
20/1/2006 2T 1/1/2007 31/12/2007
20/1/2006 171420 1/1/2008 31/12/2008
20/1/2006 : 1/1/2009 31/12/2009

Sl
& 1
> REGISTERED %
VERSION
ADDS NO
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Cfd-name and reference area Cfd definition

Norway Oslo area price minus system price

Sweden Stockholm area price minus system price
Finland Helsinki area price minus system._}or_i:oe
Denmark West Aarhus area price minus systern pr'l’i-:-'é__ g 9
Denmark East Copenhagen area price minus sys_tem- pﬁ'oe:
SYGER Phelix price Germany min[rs_'_s._yste:m prio e;': s,

——

Table 3: Cfd names and definition in Nord Pool financial market

4 .2.7 Contracts for Difference (CfDs)

The reference price for the Nordic forward and futures oontracts |s the system
price. Actual physical-delivery purchase Costs are determlned by actual area
prices. An area price differs from the system price. whert there are constraints

in the transmission grid.

CfDs allow investors to hedge agatnst th|s area prlce risk. A perfect hedge
using forward or futures |nstruments 18- possrb]e onIy in situations when there
IS no transmission grid Congestlon 4n the market area, that is, area prices are
equal to the system prloe Hedglng In forwards or futures therefore implies a
basis risk equal to the ‘dlﬁ‘erenoe between the area price at the member’s
physical location and the system prlce Contracts for Difference were
introduced to prowde the pOSSLbIhty for a perfect hedge even when the

markets are spllt |nto one or more prlce areas.

A CfD |s a forward contract thh reference to the difference between the area

the futures and forward contracts. The cocept |

only dlfference-that the settlement price is not tj
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Suppose we stand at time ¢ and we take a long position in a CfD with price
D,(7,,1,), where [7,,7,] is the delivery period of the contract. Let's assume

that the maturity date of that contract is 7'. This means that at this-date the

trading of the contract stops and that a final price is settled. Its deIiv"e"ry period
[7,,7,] usually starts the next day after the maturity date. At the maturlty date

of the contract the owner realizes a payoff. This payoff at the maturlty date

is given by the following equation:

=D (LG /Ry @)

1>72

where D,(7,,7,) is the purchase price offthe-centract-at timé~# and D.(1.,1;)

is the final price at time 7", the maturity. date.

In spite of the fact that the contract hae‘a:eles:iniéj;ﬁ;ice at time 7, it still
provides a payoff during the deI|very perled [ZI*TZ] and seizes to exist at time
7,. Suppose P* and P |s the area and system price in time s respectively
and D, (7,,7,) is the CfD prlce at'the time:to maturity 7', d, the payoff of the
CfD at time 7 and d the payoff of the CfD at the delivery period. The

payoff function of a CfD is descrlbed by the following equation:

1>72

where P(7; T)—LTITTZ(QA—Q)ds is the avera
—7

area spot price and the system price during the dd
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The market price of a CfD during the trading period reflects the market’s
prediction of the price difference during the delivery period. The market price
of a CfD can be positive, negative or zero. CfDs trade at positive’ prlces when
the market expects a specific area price to be higher than the. system prlce
(that is, the selected market area is in a net import s|tuat|on) CfDs WI|| trade -
at negative prices if the market anticipates an area prloe below the system

price.

4 2.7 European options

Underlying assets of the European optlons in Nord PooI are the forward
quarter and year contracts. The maturity of the optlon is before the start of the
delivery period of the electricity forvvards The ™ payoff of an option is
dependent only on the price of the™ electr|C|ty forward contract. European
options are actually futures optlons S N :
Electricity forward contraots; are trad'abfi:e"asszet:s and SO it is easy to create a
replicating portfolio for the European opt1ons Suppose we have a European
call forward option wrth strjke prlce y and maturity at 7'. The payoff at the

time of its maturlty rs the foIIowmg

o~

S max(F, (1,1,)- K, 0) (4.7)

172

T(T Tz) fs: the forward contract price at time 7' with dejs

1>

where £

The payoff of a Eu_ropean put forward option 4

following:

VERSION
ADDS NQ
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5 Literature Review

Due to the fact that the majority of the new wholesale spot- markets are
imperfect and inefficient and the emergent power exchanges incom:p"le"te*in -
the financial sense, and insufficiently liquid, the need for careful and detaued
modeling of prices has become an essential aspect of: rlsk management n- the
industry. If competition were so efficient that prices., reflected marglnal costs,
even in peak periods of demand, then there would be a complete price
convergence of electricity with the underlylng fueJ costs (gas etc) and spot
price modeling would be relatively stra|ghtforward to specrfy If the futures
market were liquid and complete, as wekl- then forward prtces would have a
simple dynamic structure similar to other, f|nancral products from the forward

markets. Neither of these S|tuat|ons prevalls Ig! most electricity markets,

however, with the result that price modeIs are conS|derany richer in structure

w.

than is seen in most other commodjttes

In the last few years a great vanety of pulollcatlons concerning electricity
prices modeling and valuatlon of eIectr|C|ty derivatives has been written. In
this section we will try to gtve a short reV|ew of the models considered so far
in the literature. \

Since, due to the non- storablllty of electricity, spot products cannot be used

for hedg|ng purposes the eIectr|C|ty market is a highly incomplete market and

) 7 Stochasti-c-m_ooels based on spot prices REGISTERED /O¢
N VERSION

ADDS NO
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5.1 Stochastic models based on futures prices

This group of models has a special feature. Instead of modezljir:j_g;the spot
prices and deriving the futures prices, the futures prices themselves"'elreibeing
modeled. This approach has its routes in Black’s methodology (1976) whlch '
in the case of electricity was used by Deng- Johnson Sogomoman (1998)
Their aim was to evaluate spark spread and Ioca°t|onal optlons For fhls
reason they assume that the relevant price processes foHow geometrlc
Brownian motion processes and then under the’ more reasonabfe assumptlon
that they follow mean reverting processes. These models are mostly bivariate.
The first variable is, of course, the eIectr|C|ty futures prlce Whlle the second
one is the futures price of the generating fher: By the tetm generatlng fuel we

mean the fuel that is used to produce eIect_r|ZC|ty, malnily gas and coal.

d‘F/F udt+a dBl (5.1)

dF /F = u dz+a dB* (5.2)

e

where B' and B* are iwo Wlener processes with instantaneous correlation p

and F,, F, are the futures prlce processes of electricity and the appropriate

g

generating fuel. ug, ug, o and a are assumed to be constants.

a‘Fg/Fe: k,(¢,—InF))dt+o,(t)dB' (5.3)

o2 ng/Fg =x, (1, ~InF,)dt+o,(t)dB’

’(ERED
ég%re the long- terrﬁss)

eé’ REEISTEPED )
s VERSION
ADDS NO

% WATRRMARK £

wh"ere"- ée(t),_'er‘rd"o;(}.)_:are functions of time t, s,

means, “&. and 'k-g;fere the mean-reverting cod

two Wiener proegsses with instantaneous corre

Such models have the advantage that the market

complete making it possible to construct replicatim
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neutral asset for the option valuation procedure. Consequently, there is only
one fair price for this derivatives and does not depend on the assumptions
made. On the other hand futures prices cannot reveal informatiof:about price

behavior on an hourly or even daily basis.

5.2 Stochastic models based on spot Pl’zk'l‘ce_s_j"";-..‘__.’ o :

These models aim at capturing the hourly or even da|Iy prlce behaV|or by
fitting their model to historical spot price data trylng 1o f|r1d the: best one for
each dataset. Obviously, in this case we cannot use ne aertrage arguments

and so additional assumptions have to bg made The mair assumptlon is the

existence of an equivalent martingale meas,ure o=

(5.5)

This can be achieved after":eatibratiné :a-méa;a price of risk which will allow
for the change of the drlft &f.. the™ stochastlc process according to the
Girsanov’s theorem. Sugh an approach is-done by Burger, Klar, Muller and
Schindimayr (2004) V|1Iaplana (2003) Cértea and Figueroa (2004) etc. Due
to the unique feature of: electrlc:lty prlce there is not a unique probability
measure, under whlch there WI|-| be a fair pricing of the electricity derivatives.
That's why the market prlce of r|sk always depends on the assumptions

authors will make o

There are also cases where a zero market price of risk

Schwartz (2002) actuaTty assume that when they

<¢<,=/€I2mate the MSE o’é\ﬂ)
S REBISTERED O

f risk this assum tion

the futures and fer_w_ard contracts. This is done

easy and since thére is not a unique market g

ity like the M)r ool.

ADDS NO

could stand for certain markets with sufficient lig
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5.2.1 One—factor and two-factor models

One way to distinguish models based on spot prices is by Idjdf[{lng at the
factors that are being used. So, we have one-factor and two—ta:cte'rl'lmpd_els:.

Examples of one-factor models are the ones below:

S, =g(1)+X, .
InS, :g(t)fs)h i

where X, is a non-observable variable wherea‘:s g(})- Ts{e' deter"r‘r_tinistic: factor
which, as will be analyzed later, includes-the-behavieral tr:e'rfd-:o'ic the historical

spot data using various functions.

Apart from the above mentioned models thlaptana {2003), Schwartz and
Smith (2000) and Burger et al. ( 2004) lntreduce the ‘two-factor models:

| :'S;f . g (Z )+X [+,

g S, =)+ X, +¢& (57)

The factor (.X,) dt__e'-qUéti:Qh (5:75_ce'gtures the short-term variations mostly

characterized _.b"y:-r'neén revers*‘ie:r]_/:éncal very high volatility. The second factor,
g, represent's-the Ioné—:’term:dyner'znics observed in the spot market. Although
these factors: are not dlrectly dbserved they can be estimated by the use of

spot and futures prlces Intumvely, movements in prices

futures contracts prowde information about the equil

contracts provide '?’

%Q- REGISTERED 2

: VERSION
Because it is not quite clear what the authors Jght mean% s d"sg “Ion
term factor” let us think of an example. In the“Sgse ;hat we taNrom

dlfferences between he prices for the short- and I3

informatien about:short term variations in price.

oWNeEMBK £

Nord Pool market we must always have in min
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hydroelectric. This means that prices are highly correlated to the level of water
reservoirs. The more water there is in the reservoir the more electricity can be
produced. This means a greater supply and consequently a Iower prlce So if
one year the level of raindrops is much different from the average of aII years
the equilibrium price will be higher or lower than usual. Th|s change that- 4
might not be a part of a deterministic trend, could be medeled by the long—

term factor we saw above.

5.2.1.1 Modelling the short-term factor

The mean reversion characteristic and the very'high yoilatt.lity_i-of _the short-term
factor were easily observable by the ma]'o|r-it§/ of-the re’searche‘%rs who actually
studied the spot price data for eIectri_c-ity,;A.:_s a result there have been various

stochastic models in the literature.

" |
5 , M T,
w0

The simplest model of all was |ntroduced by Johnson Barz (1999), Bhanot
(2000), Karesen-Husby (2@00) Kntttet—Roberts 42001) and Lucia-Schwartz
(2002) that studied the slmplest approach of a mean-reverting short-term

factor:

UK, £ kX dt v dZ, (5.8)

with (k> 0)° the mean reverS|on speed coefficient and dZ, is a Wiener

process. T'hey tested thlS app.roach using Nord Pool data. They managed to

get cIosed—form solutrens for forwards and futures but thei

exptaln the eX|stence Qf splkes in the spot data. The

actuaily abndrmal prlce changes have their source

of eIectr|C|ty WhICh does not allow excess or lo and R EEGISTERED %

normal way. So_ they suggested that jumps e InClWRmN)t
bano, Pena V la

&

price models to capture this phenomenon. Es
(2002), Villaplana (2003), Geman and RoncOlSai

Figueroa (2005) were among the researchers

3) and Cartea and

%‘L%&UJ\BK &
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model the spikes of the spot data. The two different approaches concerning

the jump factor had to do with the distribution of the jump intensity process:

dX, = ~kXdi +vydZy +J,(n,)dN (2, )-J (ﬂd)dN( td) (5 10) '

-

where dIl(4,), dN(4,) and dN(4,) are three Polsson processes with
probability of occurrence of jumps given by /1 l and ,1 respectlvely

J,(n), J,(n,) is a double exponential process and J(;/,§2) |s ‘a random
variable normally distributed with mean % and standard dev1at|on o all trying

to capture the jump intensity process. The Gausslan assumptlon imposes
symmetry in the jump distribution, whlle the exponentlal assumption allows for
asymmetry and separates positive and nega_tlve:Jumps._,.-

A further diversification at these klndsofmodels Is about the assumption

made about4,. There are two trends one sopportlng the fact that jump
intensity coefficient shou]d be constant through time (4 ) and another

supporting the necesS|ty of modellng a tlme -dependent coefficient. Knittel and
Roberts (2001), Escrlbano Pena and Villaplana (2002) and Villaplana (2003)

tried to capture’ the seasonaIrty 4n the Jump intensity modeling 4, with the help

of dummy vanabtes

ess for the jumps 'S)

Th|s Iast equatlon modeIs the time-dependent inte
by mearis:of four dummles winter, is @ dumm
the observatlon 1s in December, January and
fall, takes value 1 if the observation is in Septeg

and zero otherwise; spring, takes value 1 if the g
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and May and zero otherwise; summer, takes value 1 if the observation is in

June, July and August and zero otherwise. On the other hand Cartea and
Figueroa (2005), Lucia and Schwartz (2002) etc decided to assd_me that the

jump intensity 4 would be constant. Escribano et al. (2002) 'com'ﬁared the

two approaches used data from five different power exchange markets They '
concluded that if we assume that the jump intensity/is-time- dependent we
don’t actually improve the model fithess and so it would be better if-we made

the simple assumption that 4 remains constant tthugh t|me 4

5.2.1.2 Modelling the long-term factor |

Apart from the different views for the sh'ort term ‘factor a lot of argument has
been made about the proper mode1|ng of the long- term factor of the above
two-factor model although the aIternatlves are not 0. many as in the case of
the short-term factor. Lucia and Schwartz (2002) and Villaplana (2003)
modeled the long-term factOr as foltoyvlng an arithmetic Brownian motion,

N

meaning:

dErs . di +v,dZ, (5.12)

An aIternative__,-appreac;h of ‘-rrtoid:eltng* this factor is to consider that it might
follow a mean _reverting_:-process which in the case of electricity seems to have
more sense—.::A:s.a": re_st,JIt the, process modeled by Villaplana (2003) looks like
that: S

REGIS TERED 2
with «, beinglthe mean-reversion speed cod t and yEngmn

equilibrium price. ADDS NO

Master in Banking and Fluancial Management
University of Piraeus




Modeling electricity prices in continuous time & pricing electricity derivatives

5.2.1.3 Modeling the seasonality factor

At these kinds of models, especially in the case of eIectricity:prieefmodeling,
the above mentioned factors are always accompanied by afdet'e':rﬁrtinjsti:c
factor which tries to capture the seasonality of the spot price process 'Th.is is
manly achieved with the use of sinusoidal functlons and dummy varlables
which distinguish the prices between weekdays and weekends So for

example Escribano, Pena and Villaplana (2002) [nodetled %g(t) in the way

presented below:
g(t)=c,+b-1+¢- sin((l +c,)- 272'/365) +ecy- sin((l {re4) -/472'/3:65): erw/t'dZ (5.14)

where wkd, is a dummy variable that takes value orienjf the observation is in

weekday and zero otherwise (weekend) Wrth thls general formulation for the
sinusoidal function they allow for the posSrbmty of-. haV|ng two cycles per year,

with one year and haIf—year perlod In the case ef one annual cycle we should

have ¢, =c, =0.

Fy

Nomikos and Soldatos (2007) usmg Nord Pool data proposed a slightly
different determlnlstrc cemponent than the previous one excluding the linear

o~

and the constant factor

g()=c¢ -s‘i.n_((z/’%'cf; )_'-27}:-/365).4?_:@3- sin((1+¢,)-47/365)+d - wkd, (5.15)

On the othef hand Luc:|a and Schwartz (2002), who als @’YI’%RE&&
in Nord Pool,. gave two alternatives of the dete | function. So the 4)&5‘
& ra

RIREGISTFERED C)
n n_Workl‘?Elﬁ%Ne

Their first suggestion was
ADDS NO

add|t|onal,terms, ;e__xoludlng the constant, try ¢

variation in thezleve‘I of prices between working
seasonal evolution of prices throughout the yes

about the model:
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12
g(t):co+d-wkdl+Z,BiMn (5.16)
i=2

where wkd, is a dummy variable that takes value one if the obser\ration IS in
weekday and zero otherwise (weekend) and A, is a dummy vanable that'

takes value one if the observation belongs to the i- th fmenth of the calendar
and zero otherwise. In this case the d parameters try to capture the changes
on the level of the variable for holidays and weekends and fOr the different
months of the year, respectively, with respect; to the general tong tun mean
(assumed constant) for the working days durlng January .

Their second suggestion of the deterministi_'c :fu:nc:tlon takes th-e':/following form:

g()=c, +d wkdr+c -cos((t+c 272'/365) (5.17)

- w.: o, e,
oy, Vi,

S,

where wkd, is a dummy varlable that takes value 1 if the observation is in

weekday and zero otherWJse (weekend) Here the coefficient tries to capture
the changes on the Ie\/el of the varlable for holidays and weekends. The
cosine function is supposed to. reflect the .Seasonal pattern in the evolution of
the relevant varlabte throughout the year hence it has annual periodicity.

g

5.2.2 More sephlstlcated models

5221 Assum/ng sz‘ochast/c volatility

1999, Escrlbano-20Q—1, Escribano, Pefia and Vill
as indicated from their name, have a second
from the time—dependent volatility since the Bla
loosened due to the fact of volatility clustering ™

spot price t-plots. One of the most popula
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conditional volatility is the GARCH model and its extensions. A GARCH(1,1)

model used is like the following:
h=ota-e +fh, S N (B48)

The nonnegative parameters o, «, f characterlze the dynamcs of the
volatility following a GARCH(1,1) process (o >0,« ,B>O) The nonnegat|V|ty

restrictions are needed to guarantee that the cond;tlonal varlance IS posmve
and also » has to be strictly positive for the/ process not to degenerate If

a+ =1 then the variance reverts back to |ts_ .zunccn_dltlonal mean

o’=o/(1-a-pB).

In continuous time the above model |s called Mean Revertlng Square-Root

Process (MRSRP) and its mathematlcal specmcatlon i

B

I :%éy"g-\%')dz Y ovdZ, (5.19)

where 6, is a Iong run average to WhICh volatility reverts and £, is a
parameter that determlnes how fast N reverts to 6. Small £, means fast

mean- reverS|on-Accord|ng ‘tO:thIS model the probability density function of

volatility is the non centraI ch| square 27 (2¢V,;;2q +2,2u) with 2g+2 degrees

of freedom and & parameter of non-centrality 2u . The advantage of the latter

model |n comparrson W|th a’simple mean-reverting model is }

accordlng to that volatlllty =cannot take negative valug

true i
f &

§Q' REGISTERED /QL
VERSION

best way AﬂDsSoM@e

5.2.2.2 Regime-switching models

There has always been a lot of argument abou

modeled. The main effort of modeling these abyg
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above, has been made with the use of jump diffusion processes which
present some limitations. Firstly, it is assumed that all shocks affecting the
price series die out at the same rate. In reality, however, two types of shocks
exist implying different reversion rates; large disturbances; whlch dlmrnlsh
rapidly due to economic forces, and moderate ones, which mlght perslst for &
while. This happens because the return to the long- run mean after a Jump rs
motivated by the mean reversion coefficient that stands for the rest o the
process. Secondly, the model assumptions for Jump |ntenS|ty (constant or
seasonal) are convenient for simulating the d|str|but|on of prlces Qver several
periods of time but restrictive for actual short—terrrt predlctlons for a partlcular
time. The Poisson assumption for jumps may be vaI|d emplrlcally, but only

provides the average probability of jumps for,partlcular transmc}ns.

Therefore an alternative modeling framework has been suggested by many
authors the so-called regime- sthchlng modet Th|s can replicate the price
discontinuities, observed in practtce ahd ceuld detach the effects of mean-
reversion and spike reversal aI|ased |n jump dlfquIon

Ethier and Mount (1999) assume two Iatent -market states and an AR(1) price
process under both the regular and“the abnormal regime and constant

transition probabllltles

1

N o Pz_ Hs = ¢(])l—l _/ust,l)—h% (5-20)

where Ze:f»N(@ as) ThJS retalns however the misspecif

|mposes statlonarlty tn the |rregular spike process.

The rhodel sugéje_s_ted by Huisman and Mahieu

é@éhﬁ@sﬁ%go

: uIar s E
spike and y a Jump

reversal regime that ensures with certainty ersion of%gSoNrgr

previous normal level.

¢

the two effééts :ass{uming three market regimeg,

reverting price, a jump regime that creates ff
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Deng (1999) introduced this kind of model using U, a continuous-time two-

state Markov chain:
dU, =1, -8 (U,)aN{ +1,, - (U G 21)

where N is a Poisson process with arrival inte‘n:s:ity ﬂ(” (I = 01) and
0(0)=-0(1)=1. He next defines the correspondi_rfé _.c‘iompe'n:satéd continuous-
time Markov chain M(t) as "y :

dM, = A (NS (U, i dU, (5.22)
Another regime-switching model th_at::hés: been proposed by Nomikos-
Soldatos (2007) is the following: £~ R -

)

/trmg ) Rekptd )
~dX, =kie — XYd* o dW, (5.23)
dYy==kYdt+J(u, 0, )dq()

=g, If water resé[voii'levels are above seasonal average regime, R, =w

=g, If water,f"e:servoir levels-are below seasonal average regime, R, =d

where X and Y are noA- observable variables and g() IS a seasonal

for iE W The varlable R, determines the currg
varlable that follovyg a Markov chain with twq

which are assumea to be observable based Qg

reservoirs are above or below their seasonal ave
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5.3 Estimation of parameters

The estimation of parameters has always been the most |mportant part of
model analysis since, whether a model is proper for each dataset |s

determined by the prices of parameters.

—

The most popular approach followed by Escrlbano Pena—VllIapIana (2002)
and Villaplana (2003) is the use of Maximum erehhood Estlmators ‘tucia-
Schwartz (2002) estimated the parameters W|th the heIp of nenllnear least
square methods. Although the latter method:, g1ves - geod apprOX|mat|on of
the parameters it is generally admitted that MLE glves better estlmators in the
sense of efficiency and consistency. Thé spot @arice data were used for these
methods and the parameters that Were est|mated were the ones under the
objective probability measure. The r+sk~neutra[ para.meters were calibrated
using the futures market after |mplement|ng the aIready estimated parameters

(Burger et al. (2004), V|IIapIana—2003)

g

Finally a really |nterest|ng but questlonable approach of estimation is the one
used by Cartea- Flgueroa (2005) There were many different algorithms used
in order to est|mate the mean reverS|on ‘speed and the various parameters
concerning the Jumps The mean reverS|on was estimated using a linear
regression. More speC|f|caIIy they regressed the returns on the price series. In

order to estlmate the parameters of the jump component they filtered the data

using an |nterest|ng Code W|th the help of which they gradually took filtered out
the Jumps from the senes of the returns. The problem with i

the parameters mlght not be the best approximation S Q&R&DT

Q@Jlatlon We have 'S)

Q-“F#ﬁ(?ISETEfR’ED
VERSION

ADDS NO

advantage of th|s process Is its simplicity and its &

actuaIIy used thrs method in order to estima

parameters. ™
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6 Data Set Description
6.1 Spot data description

The Elspot data set was obtained from the Nord Pool’s F1P- ser\/er fil'es and
consisted of twenty-four hour time series, one for each hour durlng a day, of
daily system prices, in Norwegian Kroner (NOK) per, MWh for the flfteen year
period starting 1/1/1993 and ending 31/12/2007. An example of this sample IS
displayed in table 3. There we can see, for example that the prlce that
electricity was sold at 09:00 on 22/05/1998 was 123 83 Norweglan Crowns
(NOK). This price was settled the preV|ous day, 21/05/1998 at 12 00 at noon.

The twenty-four hour price time series torr!ied oot ‘to be hiohly correlated pair-
wise. The linear correlation coefflc:lents between any two hourly series during
the sample period lie all above O 85 (Wlth a mean-value of 0.97), and are

always above 0.96 for any two Conseoutjv hours ‘The 24 x 24 correlation

matrix for our sample is dlsptayed graphloally in Flgure 1. The cells in the
grids each correspond tQ: an eIement -of the: Correlatlon matrix. The shade of
the cell indicates the strength of the correlatlon the whiter the grid gets, the
stronger the correIatlon between the two hourly periods, which this grid stands
for, is. Looking af the graph we observe that all trading periods fall naturally
into groups: the pnces in dn"ferent tradlng periods within each group are highly
correlated W|th eaoh other yet the correlations between prices in different

groups are- Iower

07:00  08:00 09:00 10:00

22/05/1998

%S i %mh electr1c1ty was sold at

that specific day and those specific hours and was settled the Hay e?; WATERMARK S
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Figure 2: Intra-day correlation structure of the-spot (systemi price seriés.for the period 1/1/1993
— 31/12/2007. The brighter the grid gets, the stronger the correlatlen between the corresponding
hours. The data were taken from Nord Pool electr1c1ty market

Another special feature of eIectriclty prtces lS the fact that the departure from
normality is extreme. Flgure 24 shows a normallty test for the electricity spot
price from 1/1/1993 to _31[.1 2[2007_: If the ) returns were indeed normally
distributed the graph wefq:ld- be alstraightiline.a We can clearly observe this is

not the case, as evide‘ne_e‘ifl Hrom, the fat taite.

The Nord Pool us;eérthe:a:ri:thrhe‘tic'étrerage of all hourly prices for a given day
as the reference prlce |n the cash- -settlement calculations at expiration for the
derlvatlves market The way thls happens is thoroughly described from
equation (4: 11 In accordance to this practice, we generated a nevtime_gseries
for thls underlylhg varlable by calculating the arithmetic clEglel~We1Mi(a[Syp2<

' g@'&ttﬁs@@ tt\%\

s@sand 3 plot them for

Q.
§ REGISTERED 2

VERSION
ADDS NO

aveﬂable data.,tor___-e_gc_::h .day. Table 1 shows the descylys
averege price e_hd,oth'e"r related time series and Fig¥g

the complete sarmple period.
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QQ Plot of Sample Data versus Standard Normal
25 T T T

0.5

Quantiles of spot retums

0.5

Standard Normal, Quantiles

Figure 3: Normal probability test for returns- of electrlclty prices; from 1/1/1993 to 31/12/2007.
The data were taken from the Nord Pool electnclty market. e

)

A first look to the average prlce series |n Flgure 2 reveals a quite erratic
behavior of the system prlce Wlth a mean value of 191.43 NOK it reached
maximum and minimum, values ef 831 4% and 14.80 NOK, respectively, during
the sample period. Nonetatlonarlty tesis have been conducted for both the
price and the log- prlce serles usmg the augmented Dickey-Fuller t-test for a
unit root (see Table 1) The presence ef a unit root is rejected in both cases at

the 1% S|gn|f|eant:e IeveI

EIectr|C|ty prlces are hlghly volatlle as measured by standard volatility

whlch trans’rates |nto an annuallzed volatility of 191%. @]efs @@B&’@ W
could say that there eX|sts a significant differenc ev&é}n cold and warm @

season$:-More specn‘lcally standard deviations o{lefs é- W@@Wﬁ@D

¢
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Table 4: This table displays descr
Market for the period 1/1/1993-31,
seasons include observations for ar
April 30. Under the heading ADF, t

he data were taken from Nord Pool Spot
sons and panel C for cold seasons. Warm
vations for any date 7/ from October 1 to
ull hypothesis of a unit root, using twenty
one lags in the relevant model, i.e. ti ‘.l_ Ay, +u, withp=21and Ay, =y, -y,

where y, stands for P,and InP,, alte;

level.
Series 1 2 | 28 35 ADF
P, 0.984 0.972 o O ) 0.853 0.813 -4.849
P - P, -0.121 -0.177 ) ; 0.287 0.235
InP, 0.984 0.969 ).952 0.858 0.825 -4.452
InP; - InP.;  -0.047 -0.180 ‘ 0.4 0.341 0.324

Number of
Series Observations
P 5,475 {
P; - P 5,474 & 731 106. 74)
InP; 5,475 Y 0,645 4219 §),
InP; - InP, 4 5,474 >

REGISTERED %

P 2,295 1 0 [8.800 1%;‘ SIC £.£15
P -P. 2,294 ) - @ qu45
P, 2,295 . ] 05 DS 3318

InP; - InPy4 2,294 (
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Table 4 (Continued): This table dis
Pool Spot Market for the period 1/1
Warm seasons include observations {
to April 30. Under the heading AD

root, using twenty one lags

p-l B
Ayz::u+¢yz—l+z¢jAyz—j+ut Wlth
j=1

at the 5% and -2.594 at the 10% lev

Number of
Series Observations
P, 3,180
P - P4 3,179
InP; 3,180
InPs - InP;4 3,179

Master in Banking and Financial Mana
University of Piracus

> series. The data were taken from Nord
'm seasons and panel C for cold seasons.
ervations for any date / from October 1
istic for the null hypothesis of a unit

e ¢ coefficient in the model:

values are: -3.458 at the 1%, -2.871

Skewness Kurtosis
1.668 7.954
3.193 113.410

0.094 3.153
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Daily System Price Time Series (1993-2007)
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Figure 4: The figure plots the average hourly ;sysfgm:’pg‘ice series, (above) as well as its average
daily changes for the period 1/1/1993-31/12/2007. (below).. The left ) -axis corresponds to the

system prices whereas the right ) -axis coi'responds 1_::() th"e"dail‘y éhanges of them,

e,

7. Daily*tog Systen‘ﬁ_Pn'ca 'I'|}ne~.S‘eri‘e'§'(1Q93-2097)
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Figure 5: The figure plots the natural log of the average dailh@system pricz%ﬁ Q‘Sel ( Qd
1/1/1993-31/12/2007 (above) together with its average daii@shanges (belgw). t ") -dxis
corresponds to the logarithm of the system prices whereas th{dvi
daily changes of them.
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Extreme electricity prices are relatively frequent in Elspot. This fact is reflected

in the kurtosis coefficient, which is 6.663 for the whole sample. This is
significantly different from three which is the kurtosis for a normal dlstrlbutlon
This practically means that extreme high and low values® have a greater
probability to occur than that dictated by a normal d|str|but|on W|th the same ~f
variance. The kurtosis estimates are similar between cotd and warm seasons
(7.954 and 5.515 respectively). The positive sign of, the skewness est|mates
for the price series reveals that high extreme values are mere probable than
low ones. The log-price series shows a Iower IeptokurtOS|s than the price
series (the kurtosis estimate is 4.219). e
An interesting question to be answered; |s whether such extreme values are
results of jumps in prices. By the notion. ofjump we mean the abnormally large
variations in price. Looking at the kurtOS|s ceefflc;lent of changes in prices and
changes in log-prices we notlce that extreme Varratlons are quite frequent
especially during cold seasons. Specmcatly the kurtOS|s coefficient for daily
price changes and da|Iy Iog prlce changes are 106.27 and 20.649,
respectively, showing extremely Ieptokurtlc chstrlbutlons for both changes.

The kurtosis in chanées‘:dﬂ-rijng.cold seasons is higher than the one of the
whole sample. Théle&ééss__:kurtests_is more than one and a half times higher
in cold season_stllftanzin warim /s.e_z'asens:-for absolute changes in prices and it is
about three :an_dfia half times higher for changes in log-prices. All these facts
probably have fo. elo \/vith the shape of the supply curve which exacerbates the

jumps |n prlces as a result of Jumps in demand which canngt bg

equat supp‘ry jumps due to the inelastic nature of it. Mg

((i@??eturn rapidly ,{‘Sﬁ)

, Qﬁces We should also /

oFYRQISIERED %
VERSION
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due to temporary shooks in demand and as a re

preV|ous Ievels causmg spikes in the behavior g

notice that there isa significative degree of asym
log-prices (—0.645).
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Looking at the system price we observe that it displays some signs of

predictability. For instance, note that changes in spot prices and log-spot

prices are positively autocorrelated at several lags multiples of seven (Table

3), meaning that there is a weekly pattern that spot prices and. I=og spot prlces

follow. This means that we could predict the electricity price; from one Week to-”
another taking advantage of this pattern. o, h '
Figure 6 shows that there exists a regular intra- day pattern whloh IS repeated
every day with slight differentiations depending, on the day we are Iooklng at.
More specifically, as can be easily seen by Flgure 7 the prlce curve has a
slightly different form for weekdays and weekends Th|s lS absolutely logical if
we remember that prices mainly depend -On demand of " electrlc:|ty which
changes depending on the business act|V|ty of that day What Is strange about
this graph is that there seem to* Ioe hrgher prlces for specific hours at
weekends, which based on demand and supply rules-s-hould not happen. This
might be an indication that pr|ces are not totally determlned by a supply and

demand curve and that there are- other factors:that determine the equilibrium
h e

price.

There seems to be a éeneral'frule o:f-'SeasonaI fluctuations, which can be
noticed by Iooklng at thures 4 and 5 IVIore specifically, with the exception of
a couple of years the mean ~the mlrﬂmum the maximum and the skewness
coefficient are blgger for cold seasons than warm seasons. The latter one
means that.in wrnter vve have a‘greater chance of having bigger price jumps.

This regular pattern has maln[y to do with seasonal change

the year Whlch strongly -determine heating needs aga
Iength Wthh |nfluences lighting needs. We sho
exoept from demand climate changes influence ~

le

S|de This ha pens

mgrsr 3’%0
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We should also note the fact that except from demand, climate changes
influence supply side. This happens because most of the electricity is
produced from hydroelectric power plants. A large part of |nflows in the
reservoirs of these power plants is comes from snow melting® durlng the Warm
seasons so it is predictable that electricity prices will sustarn_ more _der__nand ~f

shocks during the summer than winter. -

F e

6.2 Futures/forwards data description .

In this dissertation we used futures and forvvards data from Nord PooI financial
market in our effort to evaluate our models it terms ot futures and forward
pricing. So the prices we used were from the. per|od 1/1/2096 31/12/2006.
The prices were from futures day and week contracts and forward month,
quarter and year contracts. Some descrtptlve statlstlcs from all these contracts

are illustrated in table 5. £ R e =y

As we can see the mean ,orlce of the quarter and year contracts is much
smaller than the mean prloe iA the other contracfs with shorter delivery period.
We assume that this happened bec:ause the market might have thought that in

the longer term the e!_eotrlolty prl_c_:es wouIc_:I_ be lower than in the near future.

Month contractg’ seem to be the most voIat|Ie of all forward contracts since it
was in the month oontraots that the minimum and the maximum prices of all
forwards were observed The same thing happens with the day futures which

are the most volatﬂe among aJr the futures.

g gl

than the one" |n futures This might mean that the 2y &S‘

closer to the fa|r -prices. This remains to be see

price each contract separately according to our g
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Table 5: This table illustrates some
delivery period. Every descriptive st

Number of Ci
pel

Type of Contract Mean Minimt

Futures
Day 543 2.00
Week 6.00 6.00
All 572 2.00
Forwards
Month 6.00 6.00
Quarter 9.50 8.00
Year 411 3.00
All 6.54 3.00
All contracts 6.21 2.00

Master in Banking and Financial Mana
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- 31/12/2006. The contracts are separated according to t

Daily Trading Volume (in GWh)

Mean Minimum Maximum

30.99 0.00 200.04

_453:.18 0.00 9,1%\5,%@,
& A
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7 Models Specifications

As it has been previously said we will use three diffusion and jtJn;-;i‘:pz—diffusion
models in order to evaluate the dynamics of the electricity spot prlces "L8oKing -
at Lucia and Scwartz (2002), Villaplana (2003), Elliot et al. (2D_QO) Escrlbano
et al (2002) and others, who used a deterministic seasdndl f:unc-tiron along_\_/\_/__rth
a stochastic process, we will follow the same way for;.:o:nr rnedelling 'pUrpos.es
The first one will try to catch the weekly and yearly trend that obV|oust exists
in spot prices and the second one will try to explaln the mean reverS|on and
the spikes in spot prices. The general model WhICh we are gomg to use in this

dissertation will be the following: .

p Sk Ny 71)

M T,

where P is the electricity prlce at the; g( ) Js:'tne seasonal function, which

represents the absolutely predlctable part of the process and X, is the non-

observable part of the process WhICh we-are gomg to model. The form of the

seasonal function will,; beLthe followmg
g{r).=c, B 1, sin [(l+cz)7}rc3 sin [(t+c4)%j (7.2)

where the flrst S|nu30|dal faetor WI|| try to explain the weekly seasonality and

the secend one wm try te capture the yearIy trend. The id

this factor :has not_:b_een widely used for this purp
we wanted to: do ‘something more than Lug

assumed an annual and semiannual period.

ADDS NO

%@_ WATERMARK £
O

The processes which will be tested in this dissert
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7.1 Mean-reverting process (MRP)
dX, = —kX di +vdZ, S (73)

Here we assume that the diffusion stochastic process X, follows ) statlonary

mean-reverting process, or Ornstein-Uhlenbeck process “with: a 2&rQ Iong—run

mean and a speed of adjustment £ and that dZ, is-a Brp_wnlar]__ motian, If we

substitute (7.2) and (7.3) in (7.1) we get the dyna_miés of t_he_:'s:pp't_ price:

dp = k(a(z)—é)dz+§Jz (7.4)

where a(1)=

14g(1)
k

dt

reverts. The extraction of the preV_ious_ equatiop::is prBViéed in Appendix A.

+g(1) is the :’Ier]_g:—te:’_rmrmeah:to which the process

i T

We will also consider the case in Wh1ch there |s a market price of risk. In that
case we switch from the objectlve measure that governs the real world to an
equivalent risk- adjusted rheasure Accordlng to Girsanov’s theorem, we may
change the probablllty measure by S|mpIy changing the drift of the process.
The formulas |n Whlch we are. golng to conclude will be used for
futures/forwards pr|C|ng purposes Taklng into account the non-tradable

nature of Xg: standard__ arbitrage arguments with two derivative assets allow

us to obtain the ri:/s_K_—rJ'e:utraI prgéess for X,. This is given by the equation:

variable X, . In this dissertation we assume tha

could be a function of variable X, and r.

Master in Banking and Fluancial Management
University of Piraeus




Modeling electricity prices in continuous time & pricing electricity derivatives

We can now derive the process of the spot price 7. If we substitute (7.2) and

(7.5) in (7.1) we get the dynamics of the spot price:
dP, = k(a' (1)~ P)dt +vdzZ] . (7.6)

where a’(¢) = l—dg(t)

i +a*+g(l).

The derivation of the market price of risk and..t'her equaﬁpn (77.6):i,s shown in

Appendix B.

7.2 Mean-reverting proces's; with Gaussian jumps
(MRGJP)

dX —kXdl+vdZ +Ja’c]Z (7.7)

where J ~ N(;x, 52). Let aZ; be-a.Brownian meétion and dq, a Poisson process

with intensity 4 which:sh'ows the number of jump arrivals per year and J is

the jump amplitudes ThejPoissdn process can be explained as follows:

o~

o Pridg, Z1y= Adi

e Pr{dg, S0h=1L Jar

o Peldg FHEO=

'(ERED
%@\processes ,/é\,s)
%Q- REGISTERED 2
VERSION

ADDS NO
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7.3 Mean-reverting process with double exponential
jumps (MRDEJP)

dX, = —kX dt +vdZ, + Jdg, o W (7B

-

where the jump size is drawn from an asymmetr & doUbIe:‘“exeehér:ﬁ.'ia
distribution, according to Kou (2002): . .

F(v)=pne 14 Fame1 s, o (7.9)

where p.g>0 and p+qg=1 represent '_th‘efprobabill‘ties ot the upward and
downward jump, respectively, and %T%] w.are the'mean sizes of the upward

and downward jumps, respectivel;y._ o % il

S,

The dynamics of the prlce for the two Jump models the MRGJP and the

"

MRDEJP are given by the equat|on

Fy

dP k( ( Yo B)dt +vdZ, + Jdg, (7.10)
with a(7) being-the sarhe Idhg{term rmean as previously.

We should also |IJustrate the I\/IRGJP and the MRDEJP in the case that we

assume. the eoﬂstence of a’ market price of risk. For both jump pgg

assume that the market prtee of jump risk is zero. So thglug BPCTLCTC
£ %’gssumptlon,'(@@
é/prlce of risk in their &S‘
@oﬁﬁ%}'ﬁﬁED

nof change when We SW|tch to a risk-adjusted me
madé-by, most: afthe authors who tried to include g
research: like yi-llabiana (2003) Carte and Figue
They assumed that the jump risk premia are &

and so the initially estimated parameter 1 cg

be the SHDDYNE-

O%fWETE’R?WA*RK OS
% o

adjusted measure. This is something which makg
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futures and forward time series much easier. Besides the more parameters

we need to estimate the more unstable the model could become.

So the only change will be again in the drift of the processes. The dyﬁa_rr!ics of

the variable X, can be described in this case by the following equ:ation: 3

dx, = k(o' X, )di + vdZp Tl ) o (7A1)

with a*5—¢% where ¢ stands for the mar-k'e_:tﬁ- price’ of risk-finkéd to the

variable X, .

So the spot price dynamics for the MRG\}F?:and the:MRDEJP if we switch to a

risk-adjusted measure is described Idy,:the i‘o!l@wing eq__u’ation:

dP k( P) dt+vdZ +.Jdg,

ldg()
k dt,

were done foIIowmg the approach from Lucia and Schwartz (2002), Cartea

where o' (1)=— +a +g( )~Fhe transformation of the price dynamics

and Figueroa (2_QO4) and V_|IIapIana (-2003). Their results will also be used

when we iIIustra;e the futures:/fo'mia’rd formulas.

As it can’'bg easny observed from figure 4 there is a mean-reverting trend.

That explalns the. use 'of- a mean- reverting model. Mean-re

characterlstrc of the eIectr|C|ty spot prices. As a resul

models used were among others, mean-reverti
(1999), “Bhanot -(2900), Karesen-Husby (2000)

Lucia-Schwartz (2062) have used these kinds Qfg

\
@,w Johnson-Barz 'ﬁ)

S R SFERED O
*AEREION
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........................................

l M )

rJ

~ 2/04/01 ‘1’3‘15

Figure 8: Averaged hourly electricity prices in Power E)fchatlge Mar:ket of ﬁngland and Wales
from 2/04/2001 to 3/03/2004. This diagram was taken by Cartea and Figueroa (2004).

Nord Pool, Argentina, Australia, New Z:ealanct:and_Spai:r__a ranging from 1993 to

The reason that we use the S|mple mean revertlng model is to get a full
picture of the contrlbutlon of the- Jump components It is also the nature of the
price series from Nord Pool that encourages us to do so. By just looking at
figures 4 and 8 and/ comparlng the pr|ce series from Nord Pool and England &
Wales market We can see that the splkes in the first market do not so intense
compared to the ones “In. the second As we have mentioned before this is
absolutely normal due {o the eX|stence of hydroelectric factories which can

sustain abnormal |ncreases of demand of electricity. But this initial guess is

left to be. seen in. the estlmatlon process.

PN QTERED ,/
Fina”llyz beca:u_'se; ofthe outliers observed in thellle e@(%lata pattern it |s'$)
essentiat-that a Jump diffusion process is include ]
Jump diffusion processes have been widel
fla and Villaplana 200g

Villaplana (2003), Geman and Roncoroni (20\. an CartéanQ'ngu
WATERMARK G
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8 The Econometric Methodology

8.1 Empirical parameter estimation

—

In this section we will use empirical estimation technlques to estlmate SGme of
the parameters of the proposed model as Dafas (2004) and Carlea and
Figueroa (2004) did with their models. In partlquar in the flrst sectlon we will
estimate the parameters of the seasonal funct}on WJth curve flttlng rmethod. In
the second section we will use Ordinary Least Squares (OLS) to estimate the
mean reversion rate. Finally, in the last sectlon we WIH use ah lteratlve method
to estimate the parameters of the Jump process It is |mportant to note that
these methods are just attempts to estl_r_nate__ the pararp__eters of the model and

act as a prologue to the Maximum L|keI|heod "estjjmat_ic_i!g..‘technique.
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Figure 9: Fitting a seasonal function to the average hourly price series for the period 1/1/1993-
31/12/2007. This function is given by the formula g(f):Co +h-t+ sin[(t+cz)2—7zj+c3 sin[(t+c4)2—ﬂj
7 365

and the parameters were estimated with the help of Ordinary Least Squares method

8.1.1 Estimation of the seasonal function

The estimation of the seasonal function parameters IS. done by f|tt|ng the
seasonal function on the time series of electricity spet prlces usmg the: OLS
method. This function has the form given from Flgure 8: JThe! |n|t|aI est|mates
of the parameters with their t-statistics are glven 1n Table 2 As we can see all

the initial parameters are statistically S|gn|flcant

8.1.2 Estimation of the mean-revergion-+rate

The mean-reversion rate can be easity_-estimated via simple linear regression
of AP and P, according to Cartea—Figueroa': %2004)’and Dafas (2004), who

used it. Before doing so, we WI|| assume that the mean is constant and that

there is no jump in the process Thls cpnttnuous 'time model in discrete form

r

will be of the form presented in equatlon (8 1)

W Sk (m-P)Arve, (8.1)

where ¢, is:':r.]'ermally'__:distritputed? with zero mean and variance At, more
precisely él '_Ts/a'\;yhiteinoise "p__rdzcess. For performing OLS we transform (8.1)

into:
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The diffusion parameter initial estimate v is found as a standard deviation of
residuals. After using the above mentioned method we extract the initial

parameters of our estimation procedure. The results are showna.in Tab[e 15}

8.1.3 Estimation of the jump parameters b s

The most difficult part of the estimation of the initial';par:arnet‘e'r_s was the one
for the jump models. The objective of the algorithrn ';used Was to separate the
Brownian increments from the jump part of: the data ser|es The algorithm
which will follow has also been used by Cartea and Flgueroa (2005) and
Dafas (2004).

So we extract the jumps from the‘ bri(;i]inal" series:pf returns by writing a
numerical algorithm that filters returns Wlth values greater than three times the
standard deviation of the returns of the serres at that specific iteration. On the
second iteration, the standard dewatron of the remalnlng series (stripped from
the first filtered returns).is; agaln calculated those returns which are now
greater than three t|mes =th|s last standard deviation are filtered again. The
process is repeated untll no- further returns can be filtered. This algorithm
allows us to estlmate the cumulatl_ve frequency of jumps, the mean and the
standard deV|at|on ‘of- Jumps In': order to estimate the parameters of the
double- exponentlal mddel we separate the upward and the downward jumps.
We calculate the: probablllty ef upward and downward jumps by dividing the

number;: of upward and dewnward jumps, respect|ver to th

dlffu_slon part, Wlthout__t_he jumps this time. The reg

aIso-:p'res:ente:d. iR table 4.

REGISTERED /QL
VERSION
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Table 6: In this table we present the initial
models are the average hourly system pric:

model (MRP:  dP, =k (a(r)—P,)dt+
dP, = k(a(t)~P,)dt +vdZ,+Jdg,)- The x

The jump size for the last two models is J a

Parameters

Master in Banking and Financial Mana
University of Piracus

accurate. The data we used for the estimation of the
ng t-statistics in parentheses for the mean-reverting

double-exponential jump model (MRDEJP:

b t+¢ sin((t+cz)272'/7)+c3 sin((t+c4)27r/365) .

jump diffusions
MRDEJP
0,03
(48,53)

97,53
(43,69)

-5,60
(-3,59)

148,40
(484,78)

31,33
(19,84)

(6.55)

%
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Table 6 (Continued): In the MRGJP |n.J ~ A\ ¢ 1 i 7 e*ﬂlyl{po} + qnze’hy l(ygo} where D, { are the

probabilities of an upward and downward jum

Parameters
imp diffusions
MRDEJP
m 0,02
Q]
n, 0,02
p

V

(\\,%}
REGISTERED %
VERSION
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8.2 Maximum Likelihood Estimators

The parameters of the various models are estimated by cond[tiohelfMaximum
Likelihood Estimation. The reason we are using this method is the fé'ét-that for.
large samples, MLE is the best method of estimation, because the esttmeted '
parameters are consistent, asymptotically normal and asymptotlcally efflc:lent
However the MLE requires a complete specification of the condltlonal denS|ty

function, which for nonlinear models may not have art expllmt expressmrt

The log-likelihood function, which we want 4o/ maximizé;.is given from the

expression:

L= Zlog( (P|P-1,®)) : (8.4)

\‘.

where f(P |P ) is the condltlonal densﬂy functlon of the process £, and ©®

is the set of parameters. We should note that dlscretlzatlon of continuous-time
stochastic differential equatlons mlght |ntroduce an estimation bias. However
this is small in our case Where the data eX|st in a daily frequency. In the case
of the mean- revertlng model the denS|ty function can be extracted easily.
However in the, case: of thej ]ump models the density function can be derived

via the correspondlng condltlonal eharacteristic function.

afﬂne structure on the on the coeff|C|ents More specifi

sto__chastrc dlfferer__1t|aJ; e_qpatlon.

IS REGIS TE(gg,D
VERSION

ADDS NO

imposing an affine structure means that:
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u(P,t)=K,(t)+K (1)F, (8.6)
o (P.0)o (Pot) = H, (1) + S HE (1) P, (8.7)

A(P.0) =1, (1)+1,(1)-P o . /(88)

t

Notice that given an initial condition X,, the vectors /= (KO,I:<1',HG-,H};rlb:,z_ll')
can be used to determine a transform ¥, :C”x[o,yo)/xz[o,go)'xD—)C of X,

conditional on (3,),__. defined by:

0=t<T

Y, (u,t,T,R) =L’ [exp(uPT)|Sl}

:exp(A(u,t,T)JrB(u,t,T)-Pl) (8.9)

where A(.),B(-) satisfy the compléx ordiﬁléry ,d:iffe:rent:ial equations:

IS g e Lo
M:—Kl(z)'c—%C'Hl(l)c—ll(Cﬂ(c)_l) |

Db,

with boundary cohdiiions AL T);Q;B(u, T,T)=u. By setting u=is we get

the conditional ch'aracteristic fljhctipn:

- /1._’._,_?@ :(g,.X;]XZ):Ee[exp(is-XT)|XJ:‘Pe (is,2,T

ERED
@6}1e conditior’éﬁ?
\Y

REGISTERED /QL
VERSION
(2.0 7.5.9ADDS NO)

Thé Folirier. inversion of the characteristic functio

densityfunction: 1{R|P.,.0):

S (B]R,.0)=—[Re[c g
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with Re denoting the real part of complex numbers. Afterwards we try to

maximize the conditional likelihood function to get the estimators.
8.3 Estimation of the mean-reverting process

Under the mean-reverting process the electricity spot pric_‘;e at ti:'rﬁez:_, givejr]lthe

price at time 7—1 is distributed normally:

2 Yo, :

BJB = NGa(e)+k(a(-1)- B, Jexp(—kan), S (epCakah) 5T ©13)

As a result, the conditional density functionfor-this process is the following:

(Pz —Cl(f)—(PH :—a%(li —4)_)?@)2‘ _ 1

TN O=ew - o7 e A T (8.14)
7(1_641%1) * o, \/ﬁa(l_ezkm)

which we will use to cohstri)ct the 1ag-likelihood function which takes the form:

K(@) _:.j_zlog[mz j WP 0)-2(0) n2—l (1-exp(~24a0))

2 k. Y
el b A exp (A (7, g (1)) ) (8.15)

k=1 o Ve
e fgl—exp(—ZkAt))

wit’r{-:.’:@:(b,co',él,c;é;,c:dkv) being the set o

. BRG]

annualized volatllity::

VERSION
ADDS NO
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8.4 Estimation of the mean-reverting Gaussian jump

process

In this process we assume that the spot price follows.a mean—revecting:
process augmented by jumps, whose size is Iog—norrgalIy-f'Qi_etripgfed:' yvith
mean y and variance ¢°, according to Merton (1976f):. The pQrfditiehél spot

price is distributed normally as follows:
BIB, ~IN(B, +k{a(t)- B ) Ay, +8) +(1- DN (BT RK G- B )A)  (8.16)

and thus the conditional density function js;—

F(B B, )=A-At-exp e k(z() J: )Al~ ) = U
Adekdn S | (A 8?)
( s )) o
B =B —kfalt)= B ) M) o]y
+(l—/I-AZ) exp| — ._-f%vg‘Al }g 7.72":722‘-\;2Az

Equation (8.17) approxmates ‘the true Poisson-Gaussian density with a
mixture of normal dlstrlbutlons Prev;ous evidence by Ball and Torous (1983),
and Escribano et al. (2002) have shown that the approximation of a Poisson
process witha, Bernoulll -prasess Ieads to similar results and is much easier to
estimate. Actually the assumptlon made here is that in each time interval (day)

either onty orie. Jump oc:curs of no jump occurs. Since the ling

process s governed by~ 4 Poisson distribution, we
|Ike|lh00d functlon for: the Poisson-Gaussian mode

of the normal d—|s_t[|but|ons governing the diffusio

éa“pﬁf:“’fﬁs TERED O )

VERSION
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8.5 Estimation of the mean-reverting double-

exponential jump process

The difference of this process with the latter is that this time thé-jump:sizé& s
drawn from an asymmetric double exponential distributi_onr described by the
equation (7.7). In this case we cannot directly take a defnsi'fy funptib‘n :.o';‘ :c;iteis;éd
form. Therefore we will use the Duffie et al. (2000) gp-p:)r’oach as was described
in section 7.1. So, the conditional density function'talzes th:e: fol!bwing form, as

was calculated by Psychoyios (2005):

o0

f(B|P.,;0)= %! Ref-e: (B s, é)]ds (8.18)
F(P, At S,G));:: e:?cp(A(Al;s)+B(At;s)])l) (8.19)
A(At5) :gz(At;-s:) + le(-Al‘, ) i‘éz (At,s) (8.20)
B(Af ;q‘)?;f‘is;'kéf (8.21)

4 S " y ] g2
a}(Aij:s) Y +isa(l)(l - ’e’km) — 5%’ { i j (8.22)

o RN 7o)
zz(m,s)%q[z_m_}m[ % 2)+21ArcTca?[e%” % 2)—1n[1+82 nzzjﬂn[ew 5 77§D

(8.23)
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9 DMLE Results

Table 6 shows the MLE results for the Nordic system price serleson the left
and the initial parameter estimation, as described in the previous'seétiohfon -,
the right. For each one of the processes we can see the t~stat|st|c;s the
maximised log-likelihood function values (unstandardtsed and stahdardlsed)
the Akaike Information Criterion and the Bayes Informatlon Crlterion

Now let’s filter some interesting results from the parameter estlmatlons Firstly
almost all of the parameters are stat|st|caIIy S|gn|f|c.:ant at A 4% level of
significance. The only parameters that are- stat|st|caHy |nS|gn|t'cant are some
of them related to the deterministic seasonal function. At that point we should
note that we assume that in case the I\/I[.E are S|gn|flcant the same holds for
the initial estimation. Besides this |s not the mam |ssue of the dissertation
because we have already said’ that the MLE method IS much more reliable
than any other and so smce the flnal est rrtated parameters are statistically
significant we should not bother from where we started. To end this discussion
we should notice that |n splte of the fact that there were some initial
estimations made, we a‘lso trled some other initial values especially in the
case of the two Jump deeIs By keeplng a couple of parameters constant we
changed all the'__ot_hers: In aIt_the eases the fit was not as good as the one we

got using the bar;ameter_s estirriate:qz'with the OLS and other methods.

Secondly we Could observe that the mean-reverting process (

worst fit for both serres wh|Ie the mean-reverting double
process (MRDEJP) |s the best one. We can be drive ¥ t@‘:&a@&

aiahe smaller the AIC 4)
< REGIS TERED 2

VERSION
" e RIS RO
becomes a bit smaller if we include jumps in theYRogel. Moreover the mean-

% WATERMARK £
O

Iookrngz at the {Q_g tlkellhood values, the AIC and the
and BIC theﬁ/best i's';the fit of the corresponding m¥

Another important conclusion is the fact thgj

el
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reverting speed is smaller if we assume that the jumps are being produced by

a double-exponential rather than a Gaussian process.

The volatility of the prices, which is explained by the Browniah motleh |s also
affected by the choice of the model. With the addition of Jumps the voIat|I|ty .
becomes smaller whereas between the two jump models-the MRDEJP Ieaves
less volatility explained by the Brownian motion. In, alI the cases the |mt|al
estimations was much different than the final ones.s ol

The jump intensity parameter, which notifies the number ofJumps per year, Is
bigger than the one which we initially estlmated for bdth I\/IRGJP and
MRDEJP. Also, by comparing the two Jump medels we can see that the jump
intensity in the case of the MRDEJP |s much blgger than in the case of
MRGJP. ~

M T,

Another interesting result is the fact that Ln the MRDEJP the mean of the

upward and downward Jumps are equaI We remlnd that the mean sizes of

them are given by the formulas / / Anether remark we could make is

the fact that the probabthty of an upward Jump (p=0.62) is bigger than the
probability of a downward ane (q ] oD 0.38 ).

Moreover, we":cduld c;zompare‘ th'ermean and the standard deviation of the
jumps in the case of the MRGJP and the MRDEJP. This will be done by using
the formulas tntroduced by Kou (2002) Let's just repeat that thga projas
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Table 7: This table displays a compari:
which was used for the estimation of

corresponding t-statistics in parenthes

and the double-exponential jump mode

1al estimation using the MLE method. The data
/12/2007. Under each parameter there are the

el MRGJIP: dp, =k (a(t)-P,)dt +vdZ,+Jdq,)

th OLS and other methods

Parameters
Simple mean-revertin
MRP
b 0.03
(-14.07)
Gy 97.37
(35.95)
G -5.62
(-7.80)
¢, 148.40
(1,541.78)
Cs 31.37
(22.87)
¢, 102.48
(19.02)
k 6.87
(3.97)
y 42571
(28.31)
A -
¥ .
o -

Mean-reverting jump diffusions

MRGJP MRDEJP
0.03 0.03
(48.53) (48.53)
97.53 97.53
43.69) (43.69)
-5.60 -5.60
-3.55) (-3.55)
48.40 148.40

34.78) (484.78)
1,33 31,33
),84) (19,84)

2.50

‘1@ 18&.176\’?@

) 7
" REGISTE}(?ED G
s  VERSION

ADDS NO
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Table 7 (Continued): The mean-level h: l-funetig 7 . sin ((ch)z,,n)Jrc3 sin ((t+c4)272'/365) . The

jump size for the last two models is J 1 ¥ th renc ARGJP InJ ~ N ( v, 8 ) while in the MRDEJP

the probability density function of the ] \ ] bilities of an upward and downward jump

respectively and 1 y are the mea S ¢ ness of fit are the maximized log-likelihood
/M

functions [, (standardised and unstand I has been performed using the conditional

Maximum Likelihood Estimation.

Parameters I '  _ OLS and other methods
Simple mean-reverting ns.- Simpl lean-reverting jump diffusions
MRP | RGJP MRDEJP
7 . § 0.02
()
m, - 0.02
()
P -
L -28.534 O\
L/n-1 -5.21 ', -
v Q
AIC 57,085 1

VERSION
ADDS NO
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10 Pricing performance

In this section we will estimate the pricing performance,-dfi th;e__ivaridus
processes estimated above. This estimation will be done by:c':alculat'iri'g the -,
mean errors (ME) and the root mean squared errors (_RMSE) between the
pricing models and the actual prices for futures/forwards of dlfferent trme to
maturity. This will be initially done assuming a zero market prlce of risk,
following the methodology of Lucia and Schwartz (2002) Afterwards we will
make the same calculations under an equwalent prebablﬂty measure under
which we estimate a mean market price of rlsk for each model separately.
Lucia and Schwartz (2002) do the same thmg Ig! therr paper V\fe then look at
each contract separately, and caIcuIate the ‘errors for: each one using a

different model each time.

For every process there is a dlfferen-t prlclng model [The data we are going to
use are from the electricity frnanc:|a| market g nd they are futures and forward
prices from 1/1/2006 — 31/12/2006 We shoufrd denote that the year was
chosen randomly. The obServatlon dates were the last working day of each
week. In our research we conslder Al the cIosmg prices of the futures and
forward contracts, that were belng traded at that date. No differentiation is
made between the etectrlc:|ty futures and forwards when we try to price them
because we __as__syme t_hat We are::l._._mder a constant interest rate environment,

where their br‘iéeis_;are" :_e'qualz. i

10.1 Forwardprlcmg models

The-'p:‘rice at time".z. of the forward expiring at tizg r Eerlod /
s, T (FD
[7,,7,] is obtained Using the expected value of t exp|ry un

an equivalent Q-martingale measure conditioggl on the |nFrma§on set

ADDS NO
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available up to time ¢. This expected value is denoted by E?[ |3, |, where

3, =0(P,:s<t) is the natural filtration until time 7.

t

So we have to calculate the expectation under an equivalent':Q’—mé‘rt‘i'ng:ale ol

measure. In a complete market this measure is unlque ensurlng only ene
arbitrage-free price of the forward. However, in |ncomplete markets (such as
the electricity markets) this measure is not unlque Thus We- are Ieft thh the
difficult task of selecting an appropriate measure for the parthutar market in

question.

We are going to make two assumptiogs: jhitiallzyl\ive W|II 'assume that the
market price of risk is zero. This means that we: assame {hat the market is
liquid enough to provide us with an apprepﬁate probablllty measure. Cartea
and Figueroa (2004) actually mehtloned that Ifa market is liquid enough one
could assume, not necessarily wrongtyl that the objectlve probability measure
is the right one to price the- varlous fn‘ranclat -eontracts. Lucia and Schwartz
(2002) also tested this poss1b|I|ty for Nord Pool’ by initially making the same
assumption as we do. The perlod we are testlng Is eight years after the one

they tested and so |t |s not pomtless to test the same hypothesis.

Afterwards, we, W1|| make the assumptlon that there is a market price of risk
and we will see what ohanges i any, take place in the pricing performance of
our models. Lu0|a and Schwartz (2002) did exactly the same thing. They

found that there was ho b1g dlfference between the two assurggtio

moder thh the zero market price of risk approacheg t

prlpes almost as goed as the ones with the implicit gz

Table 8 shows the:expected values of the spot §acB&@I§ g;ERED O¢
different modets: which we estimated earlid{@ilihe expe\¢fE RSEOMNe
illustrated under the objective probability mea which wemgsnpoe

that is risk-neutral, and the risk-adjusted probabili]
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the MRP were derived in the appendices. The formulas for the two jump

models were taken from Villaplana (2003).

The contracts which are negotiated in Nord Pool finangial market are
separated, as we saw in Section 4 according to their delivgry period. 'S:_o:" we™

have day, week, month, quarter and year contracts. ~ —

Now, let's assume that 3, =o (P, :s<t) is the natural fl’lt(atién:-'generated by

the price process and 7, (B; 1,7,

1,,T,) is the futures/forward _pr‘i,Ce where'# and 7,

represent, respectively, the first day and the Iésf day 6f.tﬁ§ deliy:e"ry period. So

the futures/forward price will be:

1

Fl(zz;Tl,Tz)zEQ{T

2 2

T, ~ _' _: 1 Toy 0 N
. ITI PTdT|‘sl} 37 L J:EZZ(PT)a;T (10.1)

)

where FE (F) is the expetted va]_jt'je“,]z.c'j"_f'ffh_e spot price for each model

calculated in table 8 undér.fte risk adjustéél :ﬁrabability measure. In order to

avoid confusion we vv__iI}'{d_’éthe by E{L.) the expected value under the zero-

market—price—of—ris[vaigssm_imptibh probability measure. We repeat that this
assumption seer_r_i'é wrong and th:e:réas'on we are making it, is to denote the
difference that;i_’_th.e change :(Sf'z:drift }would make in the case of electricity
futures/forwaf'rio{-s:._ The-‘é_B'ove fo_rmufa was taken by Lucia and Schwartz (2002),
who used’itin-a c{i_st_éné}e tirr}e"'ge";ting and Burger (2004) who also provided the

formula“ia theﬁc:?é;sésai?.fh'e- Coritinuous time setting.

-
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Table 8: Expected value of the spot p
dP, =k (a(t)~F,)dt +vdZ,+Jdg,-

g(t)=c,+b-t+¢ sin((t+cz)27r/7)+c3 sir
jumps. In the MRGJP [n.J ~N(7/,5)v

the probabilities of an upward and dow;

the pricing formulas assuming a zero ma

¢ is the market price, V is the spot pric

Models

1. MRP
Ez(PT):g(T)

2.MRGJP E (B )=g(T)-

3.MRDEJP E(P)=g(T)+

Models

1. MRP
EZ () =g(T)+

2.MRGJP EZ (B )=g(T)+|

3.MRDEJP E2(P)=g(T)+(4
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University of Piracus

P, =k(a(t)-P)dt+vdZ,+Jdg, and MRDEJP:
there the seasonal function is
tandard Poisson counter for the occurrence of

= pie g +qm,e™ 1, Where D, g are
, respectively. The upper half of the table has

ure. The drift adjustment ,* — _% where

measure
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10.2 Pricing performance: Results and discussion

Our next step will be to calculate the mean errors (ME) and the&=foot mean
squared errors (RMSE). If we assume that we stand on date ¢"the fd?mula for.

the ME is the following:

o

N M . A
wp = L3 F (BT 1) ” (T T)_
= F (TI,T)

t

where F(P;T,,1,) is the model price, with z_MRP MRGJP MRDEJP are the

t>71>72

three models we are investigating and F (Tsz) is the:markat (actuaI) futures

and forward price for five different dellvery peridds These are day, week,
month, quarter and year. We also remmd that date 't varles from 1/1/2006 to
31/12/2006. A S

)

The formula for the caIcuIati"oﬁ of the"t%l\'/ISI:f_j"s -t:he'following:

e [ e T T F (T}
s J%Z[ L) G »} o

The above fQFm'UIas yve_re the ohés for the percentage estimation of the ME

and RMSE. We alee:c;a"lculate.d the errors in NOK for each model.

The parameters we used Were the ones estimated i
The résuits, of- the pﬂcmg performance of the mode

contragt-to Luc:1a and Schwartz (2002) who estimatg

[Swe %L%@!%EEGR@D
VERSION

ADDS NO

of the MRP for Nerd Pool forward/futures cont
performance of the MRGJP and the MRDEJP.
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Looking at the results we extract some really interesting conclusions. First of
all looking at each line we can see that the two jump models are better in
predicting the daily futures price with one day to delivery and get.warse as the
delivery period expands going to extreme levels of error.
This is not the case for the mean-reverting process. H=ere the forward year
contract seems to be a lot better than the forward quarter contract estlmatlon
Let us remind that Lucia and Schwartz (2002) found that the year ‘cpntract
pricing was better for the MRP than any other, oontract We aotuaIIy found,
that the MRP is better in approaching the aotual futures and forward prices
looking at the average of the ME of each contract Speo|f1cally, the ME of the
MRP for all the models is about -15%, whereas for the MRGJP the ME is -
40% and for the MRDEJP IS -46%. Se, |f we assume that-the market price of
risk is zero, the metrics estimation shows somethlng oompletely different from
the econometrics estimation. We remrnd that under the econometrics
estimation we found that the MRDEJP s the best ﬂt in the spot data.

For the estimation of thg: day futures seems that it is irrelevant whether we
use the Gaussian Jump =or the double exponentlal jump model since their
pricing performanoe I.S very cIose to each: ether.

Another interesti'n:d part of Gt estimaf lon, as we have already seen, is the fact
that the ME for every madel and every contract are negative, meaning that our

models tend to underestlmate the price behavior of the futures/forwards of our

In g-e:n:eral :our:--_o_rfjci_ng results are much worsg 4 rQ{fﬁe ones lLucia and /
Schwartz (2—0@2) fotind using a discrete time setti .§e !a%ﬁtg! aéRED

a zero market orice of risk should not affect the

Schwartz did the same thing. So, either our
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setting might have helped them to approach the futures/forward curve in a
better way. Of course it is always the case of the seasonal function which is

slightly different.

So, after looking at the pricing results of all the models we. con‘clzude:th‘at"th:e -
assumption of a zero market price of risk does not stand The errors are
sometimes quite big and so the change of the drift of the processes seems
necessary. R

So, after looking at the pricing results of all the rnod-els We conclude that the
assumption of a zero market price of risk does not stand The errors are
sometimes quite big and so the change of the drlft of the processes seems

necessary.

This time we will use the formulas that are at the lovverhalf of table 8. We will
now calibrate the futures formulas: 1n order to frnd the implicit market price of
risk, ¢, by minimizing the percentage RI\/ISE for each observation date. We
then calculate the mean, of All obserVatlon dates for each model and we find

the market price of rlsk. yve:make the slmpllfylng assumption that ¢ remains

constant throughout the sarnpie:period. =

The implicit ¢__j"'s-_tor:a1I}the dell’-ver_g/ip:e}riods and models negative in contrast to
Lucia and Sch\}i/artz ('2-‘(502)ZWho tound in all cases a positive market price of
risk. For the whoIe sampIe |t takes value -3.86 for the MRP, -8.00 for the
MRGJP- and 10 QO for the MRDEJP. We should here remi

the market prlce of r|sk |s considered as compensa

Q/C?e?a‘tlve shows ue'?(?

£ REGISTERED O
e Iower&gk? Iiﬁﬁl
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deV|at|on. The_‘fact that- the market price of risk is Y

that forWard price_s_ are upward-biased predicto

¢

more specific-the expected mean of the spot L&

futures price.
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Table 9: The table displays the 1«

squared errors (RMSE) using the f

price of each futures at date 7 whei

respectively. The delivery period is

according to the Nord Pool financial
RMSE estimation whereas the lower |

RMSE (percentag:
Day Week Mc¢

MRP 0.10 0.28 0.
MRGJP 0.09 0.22 0.
MRDEJP  0.08 0.18 0.

ME (percentage) v
Day Week Mor

MRP -0.04 -0.24 -0.5
MRGJP -0.03 -0.18 -0.4
MRDEJP -0.02 -0.15 -0.4

Master in Banking and Financial Mana
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and the root mean

of risk. F) (Pl, 1; Tz) is the calculated

1>

st and the last day of the delivery period

ual price for the same futures/forwards

¢ upper half of the table is used for the

1 zero Market Price of Risk
Quarter Year Total
239.33 214 .69 173,02
242.20 246.37 165,51
283.80 338.57 183,52

ro Market Price of Risk
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Table 10: The table displays the impli

market price of risk it also shows the r¢

(RMSE) using the formula RAJSE = \/ .

i = MRP, MRGJP, MRDEJP is th

week, one month, one quarter and one ye

models are the estimated ones of Section ¢

RMSE (in percei
Day Week Mc

MRP 0.082  0.093 0.2
MRGJP 0.083  0.083 0.1
MRDEJP 0.081 0.071 0.1

ME (in percenta(
Day Week Mon

MRP 0.014 -0.050 -0.13
MRGJP 0.015 -0.038 -0.09
MRDEJP 0.016  -0.027  -0.05:

Master in Banking and Financial Mana
University of Piracus

006-31/12/2006. Assuming the existence of a

FAT.T)

%)

»s at date 7 where

and the root mean squared errors

:ly. The delivery period is of one day, one

1ancial market. The parameters used for the

P 8724 4914 DA
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This last conclusion can also be seen in the ME of our models which are
mostly negative. This actually shows that the expected futures price is lower
than the actual and since the expected futures price in a rlsk adjusted
measure equals the expected mean value of the spot price of the same t|me

period then we see what we expected according to the prevLous paragrap_h .

—

It is also worth noticing that jump models experience- the Iargerpercentage
reduction (MRDEJP about 79% and MRGJP about 75%) and the MRP-has a
reduction of 70%. More accurately the RMSE’ for thes MRP rn the whole
sample is 13%, for the MRGJP is 10.6% and for the MRDEJP |s about 10.5%.
The last two fits were better than the ones LuC|a and Schwartz (2002) found,
using their discrete time models, WhICh. only assumed & S|mple mean-
reversion of the spot price without | Jumps The RMSE for the two jump models
is almost the same but the big |mprovement S obV|ous if we compare them
with the errors of the simple mean; revertrng modeJ So from that point of view
the need to incorporate jumps in our modets I.S unquestlonable Whether we
use one jump model or the other depends on the contracts we would like to

"

price.
Looking at the RMS_:Eiof:the'-m:’odels we'éan now see that the error of all three
models day contrafcts“ |s a]most the same It is also worth noticing that in the
case of MRP year contracts are much better approached than medium-term
contracts I|ke month and quarter ‘@nes. This conclusion was one of the basic
conclusions. that t_uC|a and Schwartz came up with. It is also interesting that
the month cont‘racts strJI have qu|te big errors (21.7% for the NIRPAS %#r the
MRGJP and 1, 3% for the MRDEJP) compared to tjga.g

@% the onIy onké\,s)

the MRDEJP d
§e REGISTERED © /¢
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typ_e_s of contracts. V\te_._,also notice that the year cq
wheré-the MRGJP:fits the best whereas in the othe
the best jobi-.,
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11 Conclusions

In this dissertation we tried to capture the special features of the‘:”___electricity
prices. These are basically the existence of spikes, the seas:on:ai_ity :'ain'd..-»the -,
mean-reversion. We then tried to indicate those characteristtds in:ou:r -’dat"a'set
The first two were obvious by simply looking to the spot pﬂCe tlme serles
whereas the third one was not distinguishable because of the 'nori- constant

mean-reversion level. g

In this paper our goal was to test the eff|C|ency of the two Jump modeIs along
with the mean-reverting characteristic compared to the S|mpte ‘Mean-reverting
model. This comparison was done in a cont|nuous time sett|ng Lucia and
Schwartz (2002) and Escribano ety aI (2004) estlmated the MRP and the
MRGJP in a discrete time setting: We' made g small “change in the seasonal

function by incorporating a smusoldal factor whlch tried to capture the weekly

seasonality. We evaluated the modeIs |n.7_c-_o;ways firstly with econometric
methodology and secondly by comparlng thelr pricing performance in five
different futures and forwar*d contracts

The three models that We used Were E S|mple mean-reverting model, a mean-
reverting with GaUSS|an Jump model ‘and a mean- reverting with a double-
exponential Jump modet ~At f|rst by comparing the Likelihood function we
conclude that the IV[RDEJP has a better fit comparing to the other two and the

MRGJP is better than the 5|mple MRP. This makes sense by logkingat the

data graphs Whlch are fuII ,6f jJumps. It is also obvious by
parameters that the mean reverting speed becomezg® @Eﬁ'ﬁeﬁ@

&{_(es prices. It is also 4)@/
?r REGISTERED %
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oassumptlons Imhallk S
%‘io/&ls go onMa K

e"

|ncIude Jumps |n the model both for the spot and]

|nterest|ngf tﬁolook a_t ‘the great number of jumps

into upward arid-downward ones.

We then tried to evaluate the pricing formulas unOg t

we assumed that the market price of risk is ze N
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close in the case of day futures. In general the MRDEJP was better
explaining the futures and forward curve but the errors were too big to be

ignored.

So our next step was to calibrate the models under. the risk- adjuéted:

probability measure in order to find the market of risk, ¢ for each modeJ and
every delivery period. We made the simplifying assumptlon that ¢ remalned

constant throughout the investigating period. The_-results were more' than
encouraging. The errors became very mino_r»;-:-i::h most gases. tfie models
approached the futures and forward cur\'/e_": mth;h';ISetter _:than it was

approached by Lucia and Schwartz who also did the same th_inij_;‘:

Unlike the econometrics approach, MRBEJP proved.as good as the MRGJP
in the explanation of the futures/forward b-eha\{ior./ The final conclusion which
seemed quite interesting was the-fact.that the hrar'R?et";price of risk for every
model was negative, maybe |mplyrng that the futures prices are actually

bigger than the expected ayerage spot prloe of the same period.

REGISTERED © 2
VERSION

ADDS NO

Master in Banking and Fluancial Management
University of Piraeus




Modeling electricity prices in continuous time & pricing electricity derivatives

gand rinancial Management
University of Piraeus




Modeling electricity prices in continuous time & pricing electricity derivatives

gand rinancial Management
Unive