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Abstract

T he goal of this thesis is to explore the generation of electronic music through

the utilization of Deep Learning techniques.

The challenge of algorithmically generating music lies in creating authentic and
aesthetically pleasing compositions that resonate with listeners. Music is deeply
human, rooted in emotion and culture, while algorithms lack this understanding.
This project aims to bridge technology and art by providing musicians with tools
to explore new expressions and spark creativity. By finding a balance between
technology and human emotion, it seeks to enrich musical innovation and inspire

new compositions.

To do that, the path we have chosen is by making our own dataset which consists
of images that represent the original music. These images are called spectrograms
and they are a 2D representation of a sound, essentially a graph, where the horizontal
axis represents time and the vertical axis represents frequency. To address this
challenge, Generative Adversarial Networks (GANs) are employed as the modeling
approach. GANs are a class of deep learning algorithms that have shown promise
in generating realistic images and, by extension, spectrograms. The methodology
involves training DCGANSs on the dataset of spectrograms to learn the underlying

patterns and structures of electronic music.

Generative Adversarial Networks (GANs) consist of two networks, the Gener-
ator and the Discriminator, engaged in a competitive, zero-sum game. Known as
minimax in game theory, each network aims to outperform the other: the Gener-
ator generates "fake” images, while the Discriminator discerns between ”real” and
"fake” ones. As the Generator seeks to deceive the Discriminator and the Discrim-
inator tries not to be fooled, both networks improve, resulting in the generation of

increasingly realistic images.

The methods under examination revolve around the training and optimization of
Deep Convolutional Generative Adversarial Networks (DCGANS), which are essen-
tially GANs whose both the Generator and the Discriminator have Convolutional

layers in their architectures.




These spectrograms are then converted back into audio, which was the goal
all along. To evaluate how realistic the generated sound is, a questionnaire was
distributed for people to answer, where participants are asked to find which one of

the songs they heard is Al-generated.

In conclusion, this thesis showcases the potential of DCGANs in the domain
of electronic music generation. Despite the inherent limitations that GANs can
have, our experimental results demonstrate that our models successfully generated
music closely resembling the compositions in our dataset, achieving a realistic sound

output.

-10 -



Contents

[List of Tables iii
[List of Figures| iv
[List of Abbreviationsl vii
(1__Introductionl 1
(1.1 Problem description| 1
(.2 Related Workl 2
(L3 Motivation 4
(L.4 _Thesis outlinel 4

2" Background| 7
[2.1 Machine Learning 7
[2.2 Deep Learning] 9
2.3 Convolutional Neural Networks| 12
2.4 Generative Adversarial Networks 13
[2.4.1 Deep Convolutional Generative Adversarial Networks| 14

[2.5  Denoising Diftusion Probabilistic Models| 16
[B_Datasetl 17
[3.1  Spectrograms| 17
(3.2 Electronic musid 21
[3.2.1  Why did we choose electronic music?| 23

3.2.2  What are D.J sets?l 23

(3.3 Making our Dataset] 24

29




CONTENTS

4.1 First modell
[4.1.1  Hyperparameters|
4.2 Second modell
4.3 Third modell
4.4 Forth modell
4.5  Comments|

[4.6  From spectrograms to actual sound|

[4.7  Evaluation with People’s Opinions|

5 Conclusions and Future Work|
(.1 Conclusions

30
34
37
39
42
44
47
48

53
53
23




List of Tables

0T T C y I |
7 Fist DEcr . I |

[4.3  Generator Layer sizes|

[4.4  Discriminator Layer sizes|

31
32
39
40







List of Figures

2.1 Convolution example, source]

[3.1 Signal Amplitude vs Time|

[3.2  Signal Magnitude vs Frequency|

[3.3  Spectrogram|

3.4 The Theremin|

[3.5 64 non-normalized spectrograms.|

[3.6 64 normalized spectrograms.|

[4.1  First Generator’s architecture - Figure|

[4.2  First Discriminator’s architecture - Figure|

[4.3  First model’s Real vs Fake images.|
0T TsT T 5]
4.5 Second model’s Loss Functions.

[4.6  Second model’s Real vs Fake images.|

[4.7  Example 1

[4.8  Example 2|

09 Thd TS 1 o

[4.10 Third model’s Real vs Fake images.|

411 Forth model’s Loss Functions)

[4.12 Forth model’s Loss Functions for the first 100 epochs.|

[4.13 Forth model’s Real vs Fake images.|

[4.14 Forth model’s Example - Zoomed in|
015 Varan Fortl e E o
[4.16 Variation ot Forth model - Fake images.|

[4.17 Variation of Forth model Example - Zoomed in|

13
18
20
20
22
26
27
30
32
36
37
38
38
39
39
41
41
42
43
43
44
45
45
45



https://linux-blog.anracom.com/tag/filter-kernel/

LIST OF FIGURES

4.18 Mode collapse example. |1|

[4.19 Question 1 - Percentages.|
[4.20 Question 1 - Scores.|

[4.21 Question 2 - Percentages.|

[4.22 Question 2 - Scores.|

[4.23 Question 3 - Percentages.|

[4.24 Question 3 - Scores.|

4.25 Total scores|

(5.1 Fake images generated by DDPM]|

47
49
49
50
50
51
51
51
54

-vi -



List of Abbreviations

Al
ANN
API
BCE
CNN
DCGAN
DFT
DJ
DL
FFT
GAN
GPU
LSTM
MIDI
ML
NN
ReLU
RGB
RNN
SGD
TPU

Artificial Intelligence

Artificial Neural Network
Application Programming Interface
Binary Cross Entropy
Convolutional Neural Network Deep Convolutional Gen-
erative Adversarial Network
Discrete Fourier Transform

Disc Jockey

Deep Learning

Fast Fourier Transform

Generative Adversarial Network
Graphics Processing Unit

Long Short-Term Memory

Musical Instrument Digital Interface
Machine Learning

Neural Network

Rectified Linear Unit

Red Green Blue

Recurrent Neural Network
Stochastic Gradient Descent

Tensor Processing Unit

- vii -



Chapter 1
Introduction

From the very beginning of the world, it’s undeniable that the Big Bang generated
sound. Since then, sound has not only been intertwined with every natural function
but has also become inherent to each function. It transformed into music when
humans, equipped with structurally and functionally essential sound properties (like
speech), chose to arrange sound in ways and systems that defined it as "music”.
Throughout the historical evolution as we understand it, the artistic progression
or evolution of music has consistently interwoven with parallel technological and

scientific advancements, often serving as a catalyst for them.

1.1 Problem description

The challenge of creating music through algorithmic generation is a complicated
task that extends beyond the technical side of writing code. The challenge lies in
not only achieving the generation of music through algorithms but, more crucially in
making sure that the generated music also resonates as authentic and aesthetically

pleasing to listeners.

This challenge is really about the convergence between technology and art. Music
at its core is a deeply human and emotional form of expression, that carries its own
history and culture. Algorithmic generation, on the other hand, is incapable of

understanding the complex aspects of musical expression.

This project is an effort to find a balance between these two, and provide a useful
tool to musicians that can help them express themselves and unravel new aspects of
their expression. Sometimes a musician needs just a spark of inspiration, or a small

stepping stone in order to create something new.




1.2 : Related Work

1.2 Related Work

Al generated music is a field that has gained popularity in recent years. While
the concept of using computers to generate music has been around for decades,
advancements in machine learning have finally brought us to a point where Al
can produce music indistinguishable from human compositions, blurring the lines

between artificial and artistic creation.

There are many methods one can follow in order to generate music, each with

its strengths and limitations:

Traditional methods often rely on MIDI (Musical Instrument Digital Interface)
datasets, where music is represented symbolically in terms of notes, chords and
durations. This form of representation captures the core musical structure, making
it an attractive choice for training machine learning models. MIDI data simplifies
the learning process by abstracting away complexities such as timbre and audio
effects, allowing models to focus solely on pitch, rhythm, and harmony. For example,
models like those based on Autoencoders [2] are frequently trained on MIDI datasets
to learn compressed representations of musical patterns. The encoder compresses
musical input into a latent space, while the decoder reconstructs the music. These
models are great at generating music that resembles the original dataset but they
often don’t perform that well when generating music beyond their learned latent

space, as they struggle with creativity.

Recurrent Neural Networks (RNNs) RNNs [3] are another popular technique
due to their ability to process sequential data, making them well-suited for tasks
like music generation. RNNs are designed to capture dependencies between musical
notes, allowing them to generate coherent sequences based on previous outputs.
However, RNNs face limitations when it comes to long-term coherence. As the length
of a sequence grows, RNNs often suffer from the vanishing gradient problem, causing
them to lose track of earlier context and resulting in repetitive or disconnected

outputs, especially in longer compositions.

LSTMs [4] were introduced to address the shortcomings of standard RNNs. With
their memory cells, LSTMs are better equipped to capture long-term dependencies,
which is essential for generating longer and more structured pieces of music. They
are commonly used for tasks such as predicting the next note or chord in a sequence
or composing music in the style of a specific genre or composer. Despite their ad-
vantages over RNNs, LSTMs are still constrained by their reliance on symbolic data,
often producing music that, while coherent, can feel formulaic or overly predictable

over time.
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More advanced models like Jukebox [5] take a different approach, by working
directly with raw audio rather than symbolic representations. Using a combination
of convolutional neural networks (CNNs) and autoregressive models, Jukebox can
generate high-fidelity music from user-specified prompts such as genre, artist style,
or even specific instruments. This model can generate music that is more expressive
and detailed than what is possible with MIDI data, but at the cost of significantly
higher computational demands. Additionally, while the quality of the music is high,
Jukebox can still struggle with maintaining innovation and structural coherence,

particularly over extended compositions.

MusicLM [@] is a state-of-the-art model that represents a leap forward in text-
to-music generation. Instead of requiring musical notes or predefined structures,
MusicLLM allows users to describe the type of music they want, such as ”a relaxing
jazz piece with a mellow piano,” and the system generates matching audio. Musi-
cLLM relies on transformer architectures and language modeling techniques adapted
to music data. Like Jukebox, however, MusicLM demands large datasets and signif-
icant computational resources. However, MusicLM is still evolving when it comes

to precisely controlling detailed aspects of the music it generates.

Combining symbolic (notes, chords) and audio (waveforms) representations is
another area of research where both aspects of music lead to Al-generated music
[7]. Those models first generate symbolic music, like a sequence of MIDI notes,
and then convert these symbolic representations into audio using a separate neural
network. However, transforming symbolic music into convincing audio is not without
challenges. The process often introduces imperfections, leading to outputs that may

sound robotic or lack the expressive qualities of naturally composed music.

Beyond the core methods, the boundaries of AI music are pushed through var-
ious ways. Generative pre-training models like GPT, while primarily focused on
text, show promise in generating musical elements like lyrics and song structures
[8]. Audio style transfer utilizes deep learning models, like Convolutional Neural
Networks (CNNs), to transfer the stylistic features between audio samples. For ex-
ample, transforming a pop song into a classical orchestral arrangement [9]. Also,
evolutionary Al music generation utilizes genetic algorithms to ”breed” neural net-
works, creating music that evolves towards specific characteristics over generations
[10].

In the context of music generation, GANs offer a novel approach. Unlike the
sequential methods described earlier, GANs such as SpecGAN [11] focus on gen-
erating spectrograms, like us, which are visual representations of audio in terms

of time, frequency, and amplitude. Once the spectrogram is generated, it can be
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converted back into an audio waveform using techniques like inverse Short-Time
Fourier Transform (STFT), as we will talk about later. This approach allows GANs
to capture detailed timbral information and audio nuances, making them capable of
generating realistic-sounding music. However, GANs face challenges such as main-
taining coherent long-term sequences, as their training is not inherently designed for
modeling temporal dependencies. Additionally, GANs often suffer from mode col-
lapse, where the generator produces limited variations, making the generated music

sound repetitive or lacking diversity.

Despite these challenges, GANs have distinct strengths. Unlike sequential models
such as RNNs and LSTMs, GANs can generate entire spectrograms or waveforms
in one go, potentially resulting in more fluid and coherent short segments of music,
especially for shorter segments of music. However, the lack of explicit temporal
modeling in GANs can make longer compositions disjointed or lose their musical

flow over time.

WaveGAN [I1], for instance, generates raw waveforms directly instead of working
with spectrograms. By operating in the time domain, it can create realistic audio
clips, particularly suited for generating sound effects or short pieces of music. While
effective for short audio generation, WaveGAN struggles to scale this approach for
longer compositions. This limitation highlights the need for ongoing research in

GAN-based music models, particularly in addressing long-range temporal coherence.

1.3 Motivation

As an amateur singer and a potential Al researcher, I was fascinated to find out
how the world of music and the world of Artificial Intelligence, two seemingly very
different worlds, can not only coexist but but also learn from each other. Through
this study I am taking my first step into finding a convergence between the unpre-

dictability of human creativity and the precision of artificial intelligence.

1.4 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2 we talk about
Artificial Intelligence, Machine Learning, Deep Learning, Convolutional Neural Net-
works, Generative Adversarial Networks and other notions that we will be using in
the next chapters. In Chapter 3 we introduce the concept of spectrograms, how they
are made and their necessity, how we chose our songs to convert to spectrograms
and made our dataset and why we chose to make it the way we did. In Chapter

4 we present the model architectures we used for our experiments, we describe the
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training process and talk about the hyperparameters we chose, we present our re-
sults and we comment on them based on metrics and based on people’s opinions.
Finally, in Chapter 5 we discuss about the results and the ways we, as well as others

can expand and improve the specific project.




1.4 : Thesis outline




Chapter 2
Background

Artificial Intelligence (Al) is a branch of computer science that deals with the devel-
opment of intelligent machines that can perform tasks that typically require human
intelligence, such as visual perception, speech recognition, decision-making, and lan-

guage translation.

AT algorithms use a combination of machine learning, natural language process-
ing, and deep learning techniques to analyze and understand complex data, learn

from past experiences, and make predictions or decisions based on that learning.

AT has many applications, including virtual assistants, self-driving cars, facial
recognition systems, fraud detection, healthcare diagnosis, and more. It is a rapidly

evolving field that is poised to revolutionize the way we live and work.

2.1 Machine Learning

Machine learning is a subfield of artificial intelligence (AI) that involves the
development of algorithms that enable computer systems to automatically learn
from data and improve their performance on a specific task without being explicitly

programmed.

Machine learning algorithms are trained on large datasets to identify patterns
and relationships in the data. This training process involves feeding the algorithm
with labeled or unlabeled data and allowing it to learn from the data to make

predictions or decisions on new data.

There are three main types of machine learning: supervised learning, unsuper-

vised learning, and reinforcement learning.

e Supervised learning: This type of machine learning involves providing the

algorithm with labeled data and teaching it to make predictions or decisions

- 7-
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based on that labeled data. For example, a supervised learning algorithm
can be trained to identify spam emails based on a set of labeled spam and

non-spam emails.

Unsupervised learning: This type of machine learning involves providing the
algorithm with unlabeled data and allowing it to find patterns and relation-
ships on its own. For example, an unsupervised learning algorithm can be used
to identify clusters of similar customers in a dataset based on their purchasing

behavior.

Reinforcement learning: This type of machine learning involves teaching the
algorithm through trial and error, where the algorithm learns to make decisions
based on rewards and punishments. For example, a reinforcement learning
algorithm can be trained to play a game by rewarding it for making successful

moves and punishing it for making unsuccessful moves.

Machine learning has many practical applications, such as image recognition,

natural language processing, autonomous vehicles, recommendation systems, fraud

detection, and more.

In order to complete any of these tasks, one would follow the listed steps:

a.

Data collection: This step involves gathering relevant data for the problem
at hand. The data can be collected from various sources, such as databases,

APIs, or web scraping.

. Data preprocessing: Once the data is collected, it needs to be processed to en-

sure that it is in a format that can be used by the machine learning algorithm.
This step can include cleaning the data, handling missing values, encoding

categorical variables, and more.

. Data splitting: After preprocessing, the data is split into two sets: a training

set and a testing set. The training set is used to train the machine learning

algorithm, while the testing set is used to evaluate its performance.

. Model selection: The next step is to choose an appropriate machine learning

algorithm that can solve the problem at hand. This decision can depend on
various factors, such as the type of problem, the size of the dataset, and the

available computational resources.

. Model training: With the algorithm selected, the next step is to train the

model on the training set. This involves feeding the training data into the

model and adjusting its parameters to minimize the error or loss.
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f. Model evaluation: After training, the model is evaluated on the testing set to
assess its performance. This step can involve calculating various metrics, such

as accuracy, precision, recall, and F'1 score.

g. Model tuning: If the model performance is not satisfactory, it may be neces-
sary to tune its hyperparameters, which are settings that control the behavior
of the model. This step involves experimenting with different values of the
hyperparameters and selecting the combination that yields the best perfor-

mance.

h. Prediction: Finally, once the model has been trained and tuned, it can be

deployed to make predictions on new, unseen data.

These steps are iterative and may require going back and forth between them

until an acceptable level of performance is achieved.

2.2 Deep Learning

Deep learning is a sub-field of machine learning that is concerned with training
Artificial Neural Networks, or just Neural Networks, with multiple layers to learn
and make predictions on complex datasets. It is called "deep” because it involves
training neural networks with many layers, which enables them to learn increasingly
complex representations of the input data. Neural networks are called "neural”
because they are modeled after the structure and function of the human brain’s
neural networks, which are made up of interconnected neurons. The goal of neural
networks is to simulate the learning process of the brain, where each neuron receives
input from other neurons, processes that input, and produces an output that is sent

to other neurons.

Artificial neural networks (ANNSs) are composed of interconnected nodes or ”neu-

Y

rons,” which are organized into layers. The input layer receives the raw input data,
such as an image or a piece of text, and the output layer produces the final predic-
tion or output. In between, there can be multiple hidden layers that perform various
transformations of the input data, allowing the network to learn increasingly com-

plex representations of the input.

The field of deep learning has rapidly grown in recent years due to several factors.
One of the main factors is the availability of large amounts of data, which enables
the training of deep neural networks with millions of parameters. This has been
made possible by the increasing digitization of various industries, such as healthcare,
finance, and transportation, which generate massive amounts of data that can be

used to train deep learning models.




2.2 : Deep Learning

Another factor is the availability of powerful computational resources, such as
graphical processing units (GPUs) and specialized hardware such as tensor process-
ing units (TPUs), which enable the training and inference of deep learning models

at a much faster rate than was previously possible.

In addition, the development of new deep learning architectures, such as convolu-
tional neural networks (CNNs) for image and video data, recurrent neural networks
(RNNs) for sequential data such as text and speech, and transformer models for
natural language processing, has enabled the application of deep learning to a wide
range of problems, including image recognition, speech recognition, natural language

processing, and more.

The rapid growth of the field of deep learning has also been fueled by the avail-
ability of open-source software libraries, such as TensorFlow and PyTorch, which
make it easier for researchers and practitioners to develop and deploy deep learn-
ing models. This has led to a proliferation of research and applications in the field,
making deep learning one of the most exciting and rapidly evolving areas of artificial

intelligence.

Deep learning, explores basic ideas that form the foundation of its complex sys-
tems. The perceptron, an essential component of neural networks, is where the
adventure starts. The complex network of connections that characterizes these
artificial brain networks is made possible by the perceptron, which serves as the

fundamental unit.

The perceptron is composed of four essential components. Firstly, there are in-
put values, which form the input layer of the perceptron. These values serve as the
initial information fed into the system. Secondly, the perceptron involves weights
and biases, influencing the importance of each input. These parameters are adjusted
during the learning process to optimize the network’s performance. The net sum is
the third component, calculated by multiplying the inputs with their corresponding
weights, adding them together and adding a bias. Finally, the activation function
determines whether the perceptron should activate or not based on the net sum,
introducing non-linearity to the system. Together, these four elements form the
foundational structure of a perceptron in artificial neural networks. It’s important
to note that multiple perceptrons, each with its own set of weights, biases, and acti-
vation functions, are interconnected to create a neural network. In this collaborative

arrangement, the output of one perceptron becomes the input for others.

The non-linearity provided by the activation functions is crucial for the success-
fulness of a neural network. Without non-linear activation functions, the network

would essentially be reduced to a linear model, limiting its ability to understand
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complex relationships amongst data, which is, in fact, the type of relationships en-
countered in real-world problems. Some of the most common activation functions

that we will be using are listed below:

o f(x) = 5 é_x. Sigmoid activation function, characterized by its S-shaped

curve, squashes the output between 0 and 1. Widely used in the output layer

for binary classification tasks. But very small values become almost 0 and
very large values become almost 1, so changes in weight mean no changes in
the output which could lead to neuron saturation, where the neuron becomes

less responsive and struggles to learn from different inputs.

o f(x)= Ez;z:z Tanh activation function squashes the output between -1 and
1. The output is zero centered so when used as input for next layers, neuron
saturation becomes less likely. It is often used instead of the sigmoid activation

function in hidden nodes.

e f(z) = max(0,z). ReLu (Rectified Linear Unit) activation function, a widely
used activation function that allows positive inputs to pass through unaltered,
setting negative inputs to zero. Its simplicity and efficiency make it very
popular in deep neural networks, promoting faster learning than the Sigmoid

and Tanh functions.

o f(z) = max(cx,x),c < 1. Leaky ReLu is a variant of the ReLU function.
The key distinction of Leaky ReLU is that it allows a small, positive slope for
negative inputs, allowing them to contribute to the learning process, unlike

the traditional ReLLU, which sets negative inputs to zero. Usually ¢ = 0.01.

Before we continue, we have to additionally mention a few more concepts related
to the functioning of neural networks. We can’t possibly dive into everyone of them,

but we are going to mention the ones we will be using later on.

The loss function is the way to measure how well our model is doing by com-
paring the predicted output and the actual target. The goal of the model is to
minimize this function. There are a lot of loss functions as Binary Cross Entropy

loss, Mean Average Error, L1 loss, L2 loss etc just to name a few.

Backpropagation utilizes the loss function to calculate gradients, determining
how much each weight contributed to the prediction error. This backward propaga-
tion of errors guides the adjustment of weights during training, aiming to minimize
the gap between predicted and actual outcomes. These gradients are then used by

the optimizer to change the weight’s values, resulting in better predictions over
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time. The learning rate, a crucial parameter, determines the size of the weight
adjustments made during optimization. A higher learning rate accelerates the con-
vergence process but risks overshooting optimal weights, while a lower learning rate,
despite slowing down convergence, enhances precision in reaching the optimal con-
figuration. Another parameter we can modify is the batch size. The batch size is
the number of training examples processed in one iteration. During each training
iteration, the neural network processes a set of training examples, and then the
model’s weights are updated. When all the training data has been processed, that

is called an epoch. A neural network is usually trained for multiple epochs.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of deep learning model specif-
ically designed for processing and analyzing visual data, such as images and videos.
CNNs perform incredibly well in tasks such as image recognition, object detection,

and image classification.

An image is composed of pixels, and each pixel is assigned a numerical value
that represents its color or intensity. In a grayscale image, each pixel is typically
represented by a single value ranging from 0 (black) to 255 (white). In a color image,
each pixel is often represented by three values corresponding to the intensities of the
red, green, and blue (RGB) color channels. So a grayscale image is actually a matrix

and a color image actually consists of 3 matrices.

What differentiates CNNs from other neural networks is the use of convolutional
layers, which employ small learnable filters, or kernels. The values within these
filters are the weights that are updated during the training process. These filters
slide across the input data, performing convolutions to capture specific features, like
edges, textures, or more complex patterns. We can see a convolution example in
Figure 2.7]

Let f be our input image, and h be our kernel. Then, m and n will be the

dimensions of our output image, which is given by the following formula:

Glm,n] = (f+ )m.n] = D> hlj, k1 flm = j.n — k]

A CNNs is actually a sequence of many convolutions, with each convolution’s

output acting as the input for the next one.

In parallel to the filters, there are more tools we can use when building a CNN.

For example, the concept of stride. Just as the filters in convolutional layers slide
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Figure 2.1: Convolution example, source.

across the input data, the stride determines how much these filters move at each step.
A larger stride means skipping more pixels, leading to an output of less dimensions.
In Figure a stride of two is being used, which means that the filter is skipping
one column every time. There is also the concept padding. When we don’t want
information at the edge of an image get lost, we add an extra layer of values all

around the image so the filter can get closer to the edges.

2.4 Generative Adversarial Networks

The idea of creating a Generative Network is to train a model over a training
set, in our case spectrograms, so that it can generate new images that look like
the original ones, but are different. That way, we will have new images that seem
realistic. Generative Adversarial Networks (GANs) consist of two different networks,
the Generation and the Discriminator. Those two work together but competitively.
They are actually playing a zero-sum non-cooperative game. Each one’s goal is to
get better at the game to win the other one, and if one wins, the other one loses. In
game theory, this game is also called minimax. The Generator is generating ”fake”
images and the Discriminator is trying to tell if the images given are ”"real” or ”fake”.
So as the Generator is trying to fool the Discriminator, and the Discriminator tries
not to be fooled, they both get better and better and we end up with more realistic
looking images. This model converges when the Discriminator and the Generator
reach a Nash equilibrium, that is when the Generator generates images that resemble
very much the images from the original dataset, and the Discriminator guesses at

50 per cent confidence that the generated images are real or fake.

Let x be a matrix representing an image, D(z) the Discriminator output whose
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2.4 : Generative Adversarial Networks

values are the probability that x is a real image. Let z be a latent space vector
and the function G(z) symbolizes the generator’s operation, where it transforms the
latent vector z into new images. The objective of G is to approximate the distribution
from which the training data originates pg.:q, allowing it generate fake images based
on this estimated distribution p,. So now the composite function D(G(z)) is the
probability that the that the output of the Generator is a real image. As mentioned,
the Generator and the Discriminator are playing a minimax game, where D aims to
maximize the probability of correctly classifying real and fake samples (log D(x)),
while G tries to minimize the likelihood of D predicting that its generated outputs
are fake (log (1 — D(G(z)))). As presented in [12] our value function will be:

min max V(D, G) = By, )08 D(#)] + Eerp o log(1 — D(G(2))]

2.4.1 Deep Convolutional Generative Adversarial Networks

Deep Convolutional Generative Adversarial Networks (DCGANs) were first intro-
duced by Alec Radford, Luke Metz and Soumith Chintala in 2015 [I3]. A DCGAN
is a specific type of GAN architecture designed for generating high-quality images.
DCGANSs are particularly well-suited for tasks such as image generation, style trans-
fer, and image-to-image translation. They were introduced as an improvement over
traditional GANs, which struggled to generate coherent and visually appealing im-

ages.

Here are some key characteristics and features of DCGANS:

a. Deep Convolutional Layers: DCGANS use convolutional neural networks (CNNs)

for both the Generator and Discriminator networks.

b. Strided Convolutions and Fractional Strided Convolutions: DCGANSs typically
employ strided convolutions in the Generator to upsample the input noise vec-
tor into larger images and fractional strided convolutions in the Discriminator

to downsample the images, helping to identify features at multiple scales.

c. Batch Normalization: Batch normalization is often applied to stabilize and
accelerate training. It normalizes the activations within each mini-batch, re-

ducing issues related to vanishing or exploding gradients.

d. ReLU Activation: Rectified Linear Unit (ReLU) activation functions are com-
monly used in DCGANSs for hidden layers to introduce non-linearity into the

networks.
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e. No Fully Connected Layers: Unlike some earlier GAN architectures, DCGANs
typically do not use fully connected layers in the hidden layers of the Generator

and Discriminator, which helps maintain spatial information.

f. Generator Input Noise: The Generator network takes random noise as input,
usually from a simple distribution like a Gaussian or uniform distribution.

This noise is then transformed into images through the generator’s layers.

g. Discriminator Output Activation: The Discriminator produces a single scalar
output value for each input image, which is typically passed through a sigmoid
activation function to represent the probability of the input image being real

(as opposed to generated).

h. Loss Functions: DCGANSs typically use the Binary Cross-Entropy loss for

training.

This is the Binary Cross Entropy loss function:
g(ib’,y) =L= {lla B 7lN}T7 ln = _[yn loga:n+ (1 _yn) log (1 - .%'n)] (21)

where NN is the batch size.

Observe how this function computes both logarithmic components within the
value function, namely log (D(z)) and log (1 — D(G(2))). The choice of the specific
part of the BCE equation to use is determined by the input y. Although the training
loop, which will be discussed later on, handles this specification, it’s crucial to grasp

the flexibility of selecting the component to calculate by simply modifying y.
The adoption of the Binary Cross Entropy loss (BCELoss) function as the eval-

uation method for both the discriminator and the generator in the GAN training
loop is grounded in its compatibility with the nature of the adversarial framework.
Binary Cross-Entropy Loss is a well-suited metric for tasks involving binary clas-
sification, precisely the role of the discriminator in a GAN. For the discriminator,
this loss function assesses the dissimilarity between its predictions and the ground
truth labels, which are binary (real or fake). By optimizing the discriminator using
BCELoss, the model is steered towards effectively distinguishing between genuine

and generated data.

Similarly, the use of BCELoss for the generator aligns with the adversarial ob-
jective. The generator’s purpose is to create synthetic data that is convincingly
indistinguishable from real data, prompting the discriminator to struggle in mak-

ing accurate classifications. By employing BCELoss for the generator, the training
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process guides the generator to adjust its parameters in a way that minimizes the

difference between the discriminator’s predictions and the desired output labels.

Unfortunately, GANs are very quirky during training. Sometimes they can never
reach the desirable equilibrium point and the Generator just generates images that
kind of look like realistic ones, but not quite. Other times, the Generator collapses
entirely and generates pure static gray images while the Discriminator classifies these
images as fake. Other times the Generator gives us images that are original, but
not so distinct from one another. Twitching the hyper-parameters just a little bit

can make a huge difference in the outcome.

DCGANSs have been widely used in various applications, including image syn-
thesis, image super-resolution, style transfer, and more. DCGANs have played a
significant role in improving the quality of generated images and have become a

foundational model in the field of deep generative modeling.

2.5 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) are also a type of Generative
Network and we use them in order to generate new realistic images. This process
begins with a simple probability distribution, such as the Gaussian distribution or
the uniform distribution. The forward diffusion process is applied to an image from
the dataset. This process iteratively adds noise to the image, while also preserving
some of the important features of the image, over a series of discrete time steps. The
key characteristic of these transformations is that they are typically designed to be
reversible, meaning we can both apply the transformation and reverse it. Then we
give this noisy image to the model along with the quantity of the time steps. This
process iteratively removes noise from the image, while also trying to preserve the
important features of the image. Then, the loss function is calculated between the
original noisy image and the image generated by the reverse diffusion process. Last,
we update the weights of the DDPM in order to minimize the loss function. This

process repeats until the loss function converges to a small value. [14]

Diffusion models have gained attention for their ability to generate high-quality,
realistic images and samples, particularly in the context of image synthesis. They
have been used in applications such as image denoising, inpainting, and uncondi-
tional image generation. One of the advantages of diffusion models is their ability to
capture complex, multi-modal distributions. They have been part of advancements

in the field of generative modeling, alongside Generative Adversarial Networks.

- 16 -



Chapter 3

Dataset

3.1 Spectrograms

So far, we have mentioned that our goal is to generate new original sound. But
how are we going to do that using the methods described above? We are going to

use spectrograms. But what are spectrograms? Let’s see.

In just one sentence, a spectrogram is a 2D representation of a sound. A spec-
trogram is usually shown as a graph, where the horizontal axis represents time and
the vertical axis represents frequency. Sometimes it is even shown as a heat map,
where the color or brightness indicates the amplitude of a particular frequency at a
particular time [15]. Spectrograms are useful for identifying different sounds, such
as speech, music, or environmental noise. Spectrograms can also be used to analyze
the structure of sounds, such as the harmonics of a musical instrument. Research-
wise they are used for speech emotion recognition [15], music genre recognition [16],
speaker identification [I7], animal species detection [I8] and so much more. Let’s

see now how we make spectrograms.

First of all, let’s load one song into our work space using the librosa library.

° 1 samples, sampling_rate = librosa.load(song_path, sr=8000)
2 len(samples), sampling_rate

(32400, 8000)

We have chosen to downsample our songs to 8000 Hz. That means that our song
now has 8000 samples (amplitudes) captured every second. So if we want to get the

duration of our song we can just divide the number of samples by the sampling rate.

So we see our duration is 4.05 seconds. Usually when imagining a 2D represen-
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° 1 duration=len(samples)/sampling rate
2 print(duration, "seconds")

4.85 seconds

tation of a sound, we often picture a waveform as we can see in Figure [3.1
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Figure 3.1: Signal Amplitude vs Time

But this is not what we want. Here we actually see a graph where the hori-
zontal axis represents time and the vertical axis represents loudness, so loudness=0
represents silence. This amplitude is really the amplitude of air particles that are
oscillating owing to the pressure shift in the atmosphere caused by sound, according
to the concept of sound waves. So we see that this is not very didactic as we need to
an image that shows the frequencies of our song. We are going to get that by using
the Fast Fourier Transform (FFT). The basic idea behind the FFT is to divide the
signal into smaller subsequences, and then compute the Fourier transform of each
subsequence. The Fourier transform of each subsequence can be computed using the
Discrete Fourier Transform (DFT), which is a simpler operation than the Fourier
transform. Let x be a finite duration discrete time signal with N samples. The we
can compute the DFT like so [19]:
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And the code looks like this:

° 1 from scipy.fft import fft
2 def fft_plot(audio, sampling_rate):
3 n=len(audio)
T=1/sampling_rate
yf=fft(audio)
xf=np.linspace(©.0,1.8/(2.8*T), n//2)
fig, ax=plt.subplots()
ax.plot(xf, 2.e/n*np.abs(yf[:n//2]))
plt.grid()
16 plt.xlabel("Frequency --->"
11 plt.ylabel("Magnitude")
12 return plt.show()

L Uo T+ TR o T ¥ 3 B 8

This will return a list of complex-valued amplitudes representing the frequencies
present in the input audio signal. The resulting list is symmetric, with the first half
corresponding to positive-frequency terms and the second half to negative-frequency
terms, mirroring the positive ones. To visualize the frequency content, we plot the
magnitude-frequency graph in Figure (3.2l By taking the absolute values and scaling
them appropriately, the graph reveals the magnitudes of different frequencies in the

signal.

First let’s mention that our Frequencies range from 0 to 4000Hz as our song is
sampled at 8000Hz, so based on the Nyquist sampling theorem [20] we only have

8000/2 frequencies in our song.

So now we have our frequencies but we still need time information. After ap-
plying the DFT to our song, we only took the frequency values and not the time
information, which is essential to a song, otherwise we would just have noise on top
of noise. The way we are going to do that, is to split our song in small segments and
calculate the DFT for each segment, so that we will get all the frequencies for each
segment and the segment itself will represent the time information, because we will
know the series of the segments. In general it is a good practice to have overlapping
segments, to make sure that we only lose as little information as possible. For our
problem we have chosen segments of 30ms that are overlapping with each other.

Our spectrogram will look like as shown in Figure |3.3f

So now we can finally see our Frequencies as a function of time. In this graph,

brightness represents magnitude, that is, the brighter the colors, the strongest the
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frequency, while darker colors represent lower magnitudes. Of course the colors are
used only for visualization purposes. A ”true” spectrogram in grayscale still contains
the same information but may be less intuitive for our eyes to analyze, especially
when dealing with complex signals. Our eyes are better at distinguishing variations
in color and brightness than variations in grayscale. But the spectrograms we will

be making are going to be grayscale.

3.2 Electronic music

What is electronic music? It’s a big change in how we express music. It shows
how people always want to be more creative and innovative. Even though it might
seem like something recent, electronic music has deep roots in history. To figure out
how we went from the natural, nature-inspired beginnings of music to the exciting
world of electronic sounds, we have to travel through time. We need to look at the
big changes in technology, culture, and human imagination that made this special

kind of music possible.

Since the beginning of time, music has been produced analogously. From the
singing of birds, rivers flowing, trees rustling, to woodpeckers pecking, music has
always been a part of nature’s symphony. These natural rhythms and sounds served
as both inspiration and instruments for early humans. As our ancestors started to
understand how to use these natural things to make music, they found simple ways
to do it. Clapping hands, beating drums made from animal skins on hollowed-out
logs, and whistling wind through reeds were the first things used to make early

percussion, wind, and melodic instruments.

As people changed and developed over time, our musical instruments also changed.
The careful making of stringed instruments like the harp and lyre took ideas from
the flexibility and tightness of natural fibers. Wind instruments, like flutes and
panpipes, copied the soft sounds of the wind in the trees. These early changes were

important steps toward having more complex and different kinds of music.

However, things really changed when people learned how to use electricity, start-
ing the electronic age. In the 1800s and 1900s, inventors and musicians got more and
more interested in electronic technology. The telegraph and telephone, which could
send sounds far away, and the phonograph, which could record and play music, got
everyone excited. These things set the stage for trying out different ways to change

electronic sounds.

One of the most iconic pioneers in this journey was Leon Theremin, who in 1920

invented the Theremin, an electronic musical instrument controlled without physical
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contact. This invention marked a profound departure from traditional instruments,
as it allowed musicians to create ethereal and otherworldly sounds simply by moving
their hands through the air.

Figure 3.4: The Theremin

The mid-20th century witnessed the emergence of musique concrete and elec-
tronic music studios, where composers like Pierre Schaeffer and Karlheinz Stock-
hausen experimented with recorded and synthesized sounds. These new kinds of

music laid the groundwork for the electronic music we have today.

At the same time, synthesizers, drum machines, and MIDI (Musical Instrument
Digital Interface) technology were being created, changing how we make music.
Genres like techno, house, trance, and hip-hop came out of electronic music, making

music in ways that were never thought possible before.

In recent years, big improvements in computer programs and digital tools have
made it possible for just about anyone to dive into electronic music creation. You
don’t need to be a professional - if you have a computer, you can start trying
your hand at producing and composing. DJs and electronic musicians are taking
their performances to new levels with the help of controllers, laptops, and advanced
synthesizers. This has opened up the world of electronic music production to a
broader audience, giving people from all walks of life the chance to explore their
musical creativity. Now, electronic music is a mix of lots of different voices and

ideas, creating a lively and always changing world of sound for everyone to enjoy.

In conclusion, electronic music represents a fascinating journey from the organic
origins of music in nature to the electrifying possibilities of the digital age. It shows
how creative humans are and how we always want to push the limits of artistic
expression. As technology keeps getting better, electronic music is a symbol of new
ideas and a tribute to how limitless our imagination can be when it comes to sound

and music.
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3.2.1 Why did we choose electronic music?

Electronic music, particularly in its various subgenres like techno, house, and trance,
often features distinct and repetitive melodic loops, rhythmic patterns, and struc-
tured arrangements. These characteristics make electronic music an excellent choice
for an Al music generation project. Melodic loops, in particular, offer a clear and
repetitive structure that facilitates learning for an AI model. The consistent pat-
terns within electronic music provide a predictable framework for the algorithm to

understand and replicate.

The repetitiveness of melodic loops in electronic music not only simplifies the
learning process for the AI but also allows for the exploration of variations and
permutations. Al models can be trained to recognize the patterns within these
loops and generate new sequences or variations based on the learned structures.
This aligns well with the iterative and generative nature of Al, enabling the system

to produce music that is both coherent and innovative.

Moreover, the modular nature of electronic music composition, with its discrete
elements like beats, basslines, and synthesizer patterns, lends itself well to the mod-
ular architecture of AI models. By training on a dataset rich in electronic music, the
AT can learn how different components interact and contribute to the overall com-
position, leading to the creation of music that adheres to the genre’s conventions
while introducing novel elements. In essence, electronic music’s melodic loops and
structured components provide a fertile ground for AI music generation, fostering
the development of models capable of producing compelling and genre-appropriate

musical pieces.

3.2.2 What are DJ sets?

DJ sets are like musical journeys created by disc jockeys, or DJs who mix and blend
different songs to make a continuous and seamless flow of music. In electronic music,
this is a big part of the culture. DJs choose songs that go well together in terms of

speed, key, and mood, so the music feels like a story.

In electronic music DJ sets, DJs use a technique called beatmatching, where
they sync up the speeds of two songs to smoothly switch from one to the other.
This keeps the rhythm and energy going for people dancing. DJs also use tricks like
crossfading and adjusting the sound to make sure the music doesn’t stop, creating

a non-stop experience.

DJ sets can be different, some DJs make long sets that slowly build up, while
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others focus on quick changes to keep the energy high. The skill of a DJ isn’t just
about the technical stuff, it’s also about understanding what the crowd likes and

creating an exciting experience.

For an Al music project, looking at DJ sets helps understand how electronic
music is put together, how different songs fit, the ups and downs in the music, and
the overall feel of the performance. DJ sets are like a puzzle, and studying them
can help Al learn how to create music that captures the vibe and excitement of a
DJ set.

3.3 Making our Dataset

To create a good dataset for our model, we focused on capturing the essential
elements that define electronic music. Here are key elements that contribute to a

robust dataset:

e Melodic Loops and Patterns: We included a variety of melodic loops and
patterns commonly found in electronic music. These can range from simple

repeating sequences to more complex and evolving melodies.

e Rhythmic Elements: We included diverse rhythmic elements, like drum pat-
terns, percussion loops, and other rhythmic structures commonly used in elec-

tronic music. The dataset covers different tempos and styles within the genre.

e Structural Components: We made sure that our dataset includes individual
components such as beats, basslines, synth sequences, and effects. This allows
the AI model to understand how these elements can be combined to form a

cohesive composition.

e Diversity of Subgenres: We included a variety of subgenres within electronic
music, such as techno, house, ambient, and trance. This diversity ensures that
the AI model learns the nuances and stylistic differences present across the

electronic music spectrum.

e We included instances of dynamic changes in intensity, mood, and energy
within tracks. Electronic music often features builds, drops, and climaxes,
and these dynamic shifts are crucial for creating engaging and compelling

compositions.

By curating a dataset that encompasses these elements, our model can learn
the fundamental structures and characteristics of electronic music, enabling it to

generate music that aligns with the genre’s aesthetics and appeal.
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Now on a practical level, to make our Dataset first of all we chose three different
DJ sets that include all the characteristics described above. The first one has a
duration of 1 hour and 54 minutes, the second one is 1 hour and 11 minutes long
and the third one is 56 minutes long. All these add up to a duration of 241 minutes
or 4 hours and 1 minute. After that, we cut each DJ set into smaller songs that
durate 4.05 seconds each. Our goal was to have a dataset of 100000 small songs. To

achieve that we applied the following steps.

e For the first DJ set

— Downsample the whole DJ set to 8000Hz
— Extract the first 4.05 seconds

— While imagining the song’s duration in a straight line, slide 136.55 ms to

the right and extract another 4.05 seconds

— Repeat sliding and extracting until the end of the DJ set.
e For the second DJ set

— Downsample the whole DJ set to 8000Hz
Extract the first 4.05 seconds

— While imagining the song’s duration in a straight line, slide 172.51 ms to

the right and extract another 4.05 seconds

— Repeat sliding and extracting until the end of the DJ set.
e For the third DJ set

— Downsample the whole DJ set to 8000Hz
Extract the first 4.05 seconds

— While imagining the song’s duration in a straight line, slide 134.21 ms to
the right and extract another 4.05 seconds

— Repeat sliding and extracting until the end of the DJ set.

This process produced 49958 small songs from the firs DJ set, 24694 small songs

from the second one and 25035 small songs for the third one respectively.

Now we have a total of 99687 small songs that are 4.05 seconds long each. To
continue making our dataset we need to make the corresponding spectrograms of
these small songs. To do that we cut our small songs into 30ms segments that

overlap with each other by 0.9%, as described earlier. This produces a total of
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99687 images and their size is 128x128. As we mentioned earlier, the spectrograms
we will be using are going to be grayscale. The reason why we tend to visualize
spectrograms using colors is because it is easier for our eyes to understand what it
shows. A grayscale 128x128 image is actually a 128x128 matrix that takes values
from the range [0,255]. If we were to look at the spectrograms exactly the way
they are produced with our naked eye, we would be looking at completely black
images, as their values are really close to 0. For example, in Figure we can see

64 spectrograms from our dataset.

Figure 3.5: 64 non-normalized spectrograms.

But this is not true for a computer. The computer of course doesn’t ”see” images,
it simply reads numbers. So just for visualization purposes we are going to normalize

the images in a wider range, so we can see what they look like in Figure [3.6]

That looks better. For our task which is generating new original music, we are

going to use our whole dataset as the training set.
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Figure 3.6: 64 normalized spectrograms.
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Chapter 4
Pipeline

In this chapter we present the model architectures we used for our experiments. We
are going to present four experiments with various results and we are going to show

our evaluation for them.

Let’s begin from our Generators architectures. In summary, all of our Generators
take a random noise vector of size 100 as input and gradually upscale it through a
series of transposed convolution layers with Batch Normalization and ReLLU activa-
tions which help in stabilizing the training process and improving the performance
of the network. Batch Normalization and ReLLU activations play crucial roles in

stabilizing the training process and enhancing the performance of neural networks.

During training, Batch Normalization normalizes the inputs of each layer, help-
ing to control changes in the data distribution known as internal covariate shift.
This adjustment works like a stabilizer, keeping the optimization process on a more
even and predictable path. By reducing dependency on careful weight initializa-
tion, stabilizing gradients, and implicitly introducing regularization through the
normalization process, it contributes to more stable and efficient training. On the
other hand, ReLU activations introduce non-linearity to the model, making easier
the learning of complex, non-linear relationships in the data. Together, the com-
bination of Batch Normalization and ReLU creates a stable and efficient training
environment, enabling neural networks to converge faster and generalize better [12],
[21], [22].

Let’s continue with our Discriminators architectures. Beginning with a 128x128
input image, the network utilizes a sequence of convolutional layers with Leaky
ReLU activations and Batch Normalization to progressively downscale the input

aiming to make a binary classification (real or fake) in the final layer.

Leaky ReLU adds a slight slope to the negative part of the function, which
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means it doesn’t shut down completely when the input is negative. This small
slope prevents what’s called ”dead neurons,” which are units in the network that
stop learning because they always output the same value. By allowing a small
flow of information for negative inputs, Leaky ReLU ensures that no parts of the
discriminator don’t become inactive, promoting continuous learning and making it
easier for training signals (gradients) to pass through the network during the training
process. Essentially, it helps the discriminator stay more alert and responsive to
different patterns in the data, contributing to more effective training [I3]. Finally,
the sigmoid activation function is used in the last layer to allow the discriminator to
output a probability between 0 and 1, which represents the likelihood that an input

image is fake or real.

In total, our Generators and our Discriminators architectures use 6 layers, which
is just enough in order to strike a balance between having enough capacity to capture
complex patterns in the data and maintaining stability during training. The final
output is a 128x128 grayscale image. Architectures similar to these have shown

empirical success in various GAN applications [12], [23], [24].

4.1 First model

Now let’s look at our first Generator’s architecture:

Figure 4.1: First Generator’s architecture - Figure
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Generator’s architecture

Input Size: z, a random noise vector of size 100.
ConvTranspose2d (100, 2048, kernel size=4, stride=1,
Layer 1 - Input Layer padding=0)

Batch Normalization

ReLU Activation

Output Size: (2048, 4, 4)

Input Size: (2048, 4, 4)

ConvTranspose2d (2048, 1024, kernel size=4, stride=2,
Layer 2 padding=1)

Batch Normalization

ReLU Activation

Output Size: (1024, 8, 8)

Input Size: (1024, 8, 8)

ConvTranspose2d (1024, 512, kernel size=4, stride=2,
Layer 3 padding=1)

Batch Normalization

ReLU Activation

Output Size: (512, 16, 16)

Input Size: (512, 16, 16)

ConvTranspose2d (512, 256, kernel size=4, stride=2,
Layer 4 padding=1)

Batch Normalization

ReLU Activation

Output Size: (256, 32, 32)

Input Size: (256, 32, 32)

ConvTranspose2d (256, 128, kernel size=4, stride=2,
Layer 5 padding=1)

Batch Normalization

ReLU Activation

Output Size: (128, 64, 64)

Input Size: (128, 64, 64)

ConvTranspose2d(128, 1, kernel size=4, stride=2,
Layer 6 - Output Layer .
padding=1)
Tanh Activation

Output Size: (1, 128, 128)

Table 4.1: First Generator’s architecture

Let’s continue with our first Discriminator’s architecture.
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Figure 4.2: First Discriminator’s architecture - Figure

Discriminator’s architecture

Input Size: (1, 128, 128), a grayscale image.
Conv2d(1, 32, kernel size=4, stride=2, padding=1)
Layer 1 - Input Layer
Leaky ReLLU Activation with a negative slope of 0.2
Output Size: (32, 64, 64)

Input Size: (32, 64, 64)

Conv2d(32, 64, kernel size=4, stride=2, padding=1)

Layer 2 Batch Normalization

Leaky ReLU Activation with a negative slope of 0.2
Output Size: (64, 32, 32)

Input Size: (64, 32, 32)

Conv2d(64, 128, kernel size=4, stride=2, padding=1)

Layer 3 Batch Normalization

Leaky ReLU Activation with a negative slope of 0.2
Output Size: (128, 16, 16)

Input Size: (128, 16, 16)

Conv2d (128, 256, kernel size=4, stride=2, padding=1)

Layer 4 Batch Normalization

Leaky ReLU Activation with a negative slope of 0.2
Output Size: (256, 8, 8)

Input Size: (256, 8, 8)

Conv2d(256, 512, kernel size=4, stride=2, padding=1)

Layer 5 Batch Normalization

Leaky ReLLU Activation with a negative slope of 0.2
Output Size: (512, 4, 4)

Input Size: (512, 4, 4)

Conv2d(512, 1, kernel size=4, stride=1, padding=0)

Layer 6 - Output Layer
Sigmoid Activation

Output Size: 1

Table 4.2: First Discriminator’s architecture
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Describing the Training Process

We are now going to present the training process of our Generative Adversarial
Network and see how the generator tries to get better at fooling the discriminator

and how the discriminator gets better at distinguishing between fake and real images.

a. Training Loop: An outer loop runs for a specified number of epochs. A inner

loop iterates over batches of data.
b. Discriminator Update (Step 1):

e For real data:

— Gradients are initialized.

The batch of real data and labels are prepared. Our real label will be
1 and our fake one will be 0. These will be used for loss calculation

purposes.
— Forward pass through the discriminator with real data.
— Discriminator loss is calculated based on the output and real labels.

Gradients are calculated.

— The mean of the discriminator output for real data is calculated.
e For fake data:
— Random noise is generated.

— Fake data is generated using the generator.

— Fake data is labeled as fake.

Forward pass through the discriminator with fake data.

— Discriminator loss is calculated based on the output and fake labels.

Gradients are calculated.

— The mean of the discriminator output for fake data is calculated.
e The total discriminator loss is calculated and the discriminator is up-
dated.
c. Generator Update (Step 2):

e Gradients for the generator are initialized.
e Fake data is labeled as real.
e Forward pass through the discriminator with the generated fake data.

e Generator loss is calculated based on the output and real labels.
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o Gradients are calculated.

e The mean of the discriminator output for the generated fake data is

calculated.

e The generator is updated.

d. Go back to Step 1

Now let’s talk about how we calculate our loss function. For the discrimina-
tor, we want to maximize log(D(x)) + log (1 — D(G(2))) [12]. To achieve that, we
calculate it in two steps. First step is to calculate the Discriminator’s loss for real
data/labels by substituting by y = 1 and = D(x) in function ({2.1)) which gives us
log(D(x)). The second step is to calculate the Discriminator’s loss for fake data/la-
bels by substituting by y = 0 and = D(G(z)) in function which gives us
log (1 — D(G(2))).

For the Generator, we want to minimize log (1 — D(G(2))). But as described in
[12], to get better results we are instead going to try to maximize log D(G(z)). In
order to do so, we are going to calculate the Generator’s loss for real data/labels
by substituting by y = 1 and x = D(G(z)) in function (2.1)) which gives us exactly
log D(G(2)).

Our goal when training our GAN is not to necessarily minimize the loss func-
tions as much as possible, but reach convergence. Convergence is often evaluated
by tracking how the generator and discriminator losses change over the training
process. Convergence is specifically thought to have occurred when the discrimina-
tor and generator losses stabilize and show little variability. In terms of numbers,
this is frequently seen as a plateau or a recurrent oscillation around certain values,
signifying that the generator and discriminator have both reached a point where
further training doesn’t result in significant advancements. The challenging part
is to find a balance between believing we have reached convergence and stopping
the training process far too soon which results in a model that is not as good, and
having reached convergence but continuing to train the model which might lead to

training and using up unnecessary compute units, or even losing convergence.

4.1.1 Hyperparameters

We now need to specify the parameters used for this model.
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Data Normalization

First of all, before feeding our data to this model, we normalized them. In the
context of image processing, data normalization is a technique used to scale the
pixel values of an image to a specific range. The goal is to ensure that the pixel
values lie within a standardized range, making it easier for the model to learn and
improving the convergence of the training process. In our case we have used the
MinMaxScaler found in the scikit-learn library, to normalize our data in the range
of [0,1]. The Min-Max scaling, also known as feature scaling or normalization, is a
simple linear transformation that scales the input values to a specified range. So let
x be a pixel value from one of our images, that is actually a value from our 128x128
matrix. Then:
T — Tpin

Tscaled = P — x (feature_range.. — feature_range.,)+ feature_range,,
max — “min

where:

x is the original pixel value

Tmin 1S the minimum pixel value in the image

Tmae 18 the maximum pixel value in the image

feature_range,,;, is the minimum value of the desired range, 0 in our case

feature_range,,,., is the maximum value of the desired range, 1 in our case

Tseated 18 the scaled pixel value.

Training Hyperparameters

Now for the other parameters we have to specify, we set our batch size to be 100, our
learning rate to be 0.0002, our optimizer is the Stochastic Gradient Descent, and
our latent vector is filled with random numbers sampled from a univariate “normal”
(Gaussian) distribution of mean 0 and variance 1 (randn), and we train our model

for 180 epochs.
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Results

Now let’s look at our results in Figure [4.3] First, let’s look side by side a bunch of
real images from our dataset and a bunch of generated or ”fake” images from our
model. Like mentioned earlier, even with this normalization that we have performed,

the real images still look almost totally black with some white-gray elements.

Parameters

Epochs 180

Batch size 100

Learning rate 0.0002

Optimizer SGD

Noise randn

Now let’s look at the corresponding loss functions for the Generator and the
Discriminator in Figure[4.4] This is a graph that shows the loss as it progresses with
respect to the epochs of the model. In this case, we can see that the loss functions
start converging a little bit after the 50th epoch, the generator loss oscillates around
5 and the discriminator loss oscillates around 2.5, while intertwining with each other.
For this model, we ascertained that if trained for more epochs, it doesn’t generate

better results and if trained for less epochs, the results are not as good.

Figure 4.3: First model’s Real vs Fake images.
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Generator and Discriminator Loss During Training
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Figure 4.4: First model’s Loss Functions.

4.2 Second model

For our second model, the architecture we used is exactly the same as the previous
one so we are not going to repeat it. The key difference in this model, is not in the
training process, but in the data. This time, we decided against normalizing our

data and to leave them as-is.

We run our model for 150 epochs with the same exact hyperparameters as before.

Parameters

Epochs 150
Batch size 100
Learning rate 0.0002
Optimizer SGD

Noise randn

As we can see from the corresponding graph of our losses in Figure they
started converging at the 70th epoch and they continued to do so, the generator
oscillates around 9 and the discriminator oscillates around 2 and they are again
intertwining with each other. We again made sure that training the model for less
epochs does not generate good enough results, and training it for more epochs does

not make a difference in the quality of the results, they are even a little worse.
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Generator and Discriminator Loss During Training
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Figure 4.5: Second model’s Loss Functions.

Now let’s look at some images from this generator in Figure [£.6] As mentioned

before, the real images that are not normalized, will look pure black to our eyes.

Real Images Fake Images

Figure 4.6: Second model’s Real vs Fake images.

And if we zoom in to look at a couple of images we can see clearer the results in

Figure 4.7| and Figure 4.8
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100 100

120 120

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Figure 4.7: Example 1 Figure 4.8: Example 2

Generator Layer sizes
Layers 1st and 2nd model 3rd and 4th model
Input 100 100
Layer 1 - Output (2048, 4, 4) (1024, 4, 4)
Layer 2 - Output (1024, 8, 8) (512, 8, 8)
Layer 3 - Output (512, 16, 16) (256, 16, 16)
Layer 4 - Output (256, 32, 32) (128, 32, 32)
Layer 5 - Output (128, 64, 64) (64, 64 64)
Layer 6 - Output (1, 128, 128) (1, 128, 128)

Table 4.3: Generator Layer sizes

4.3 Third model

For our third model and for our forth one, we changed a little bit the architecture
of both the Generator and the Discriminator. This Generator again takes a random
noise vector of size 100 as input and gradually upscales it through a series of trans-
posed convolution layers with batch normalization and ReLU activations. It also
totally uses 6 layers, same as before. The final output is again a 128x128 grayscale
image. What is different is the size of the feature maps in our layers and thus the
input and output size in each layer. Choosing to reduce the number of feature maps
in our model intends for our model to get better at figuring out big-picture ideas and
important details. It also helps in making the generated images look more realistic
and connected. [13] In table we can see side by side the input/output sizes of

the first two generators’ architecture with the third and forth ones.

Let’s continue with our Discriminator’s architecture. Beginning with a 128x128
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Discriminator Layer sizes

Layers 1st and 2nd model 3rd and 4th model
nput (1, 128, 128) (1, 128, 128)
Layer 1 - Output (32, 64, 64) (16, 64, 64)

Layer 2 - Output (64, 32, 32) (32, 32, 32)

Layer 3 - Output (128, 16, 16) (64, 16, 16)

Layer 4 - Output (256, 8, 8) (128, 8, 8)

Layer 5 - Output (512, 4, 4) (256, 4, 4)

Layer 6 - Output 1 1

input image, same as before, this network utilizes a sequence of convolutional layers
with Leaky ReLU activations and batch normalization to progressively downscale
the input aiming to make a binary classification in the final layer. The difference
again is in the size of the feature maps in our layers which change the input and
output size in each layer. This is the architecture: In Table we can see side by

side the input/output sizes of the first two discriminator’ architecture with the third

and forth ones.

It is worth noting that now that the whole size of our model is smaller, it will
have much faster training time. For this model we are going to normalize our data

in the range of [0, 1] using the Min-Max scaling as we did before, we are going to

Table 4.4: Discriminator Layer sizes

train it for 250 epochs, using the same hyperparameters.

Looking at the graph of our losses (Figure we can see that they started

converging at epoch 60, kept their balance for a little, then disconverged and then

Parameters
Epochs 250
Batch size 100
Learning rate 0.0002
Optimizer SGD
Noise randn

met again and kept their balance after epoch 125.

And now we can look at some generated images side by side with the images

from our dataset in Figure [4.10]
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Loss

Generator and Discriminator Loss During Training
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Figure 4.9: Third model’s Loss Functions.

Fake Images

Real Images

Figure 4.10: Third model’s Real vs Fake images.
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4.4 Forth model

For our forth and final model we used the same architecture as the third model
and this time we decided against normalizing our data. We first run our model for

300 epochs with the same exact hyperparameters as before.

Parameters

Epochs 300
Batch size 100
Learning rate 0.0002
Optimizer SGD

Noise randn

As we can see from the corresponding graph of our losses in Figure [£.11] they did
converge at around epoch 100 but then they lost their balance and diverged from

each other.

Generator and Discriminator Loss During Training
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Figure 4.11: Forth model’s Loss Functions.

So let’s look at the graph of the first 100 epochs in Figure [4.12

This time they are not converging for as long as they did in the previous models,
but they are both converging around 4. Let’s look at some images from this gener-
ator. As mentioned before, the real images that are not normalized, will look pure

black to our eyes.
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Generator and Discriminator Loss During Training
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Figure 4.12: Forth model’s Loss Functions for the first 100 epochs.

Real Images Fake Images

Figure 4.13: Forth model’s Real vs Fake images.
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And if we zoom in and look at one of the generated images, we can see clearer
the details in Figure [4.14]

20

60
80
100

120

0 20 40 60 80 100 120

Figure 4.14: Forth model’s Example - Zoomed in

The last variation we have for this model, is one where we chose to change the
distribution from which the latent vector takes its values. This time our latent
vector is filled with random numbers sampled from a uniform distribution on the
interval [0,1). We trained it for 80 epochs.

Parameters

Epochs 80
Batch size 100
Learning rate 0.0002
Optimizer SGD

Noise rand

As we can see from the graph of our losses in Figure they have not exactly
reached convergence for a long period of time. Despite that, the generator was still

able to generate good looking images.

4.5 Comments

To properly comment on our results, we need to define what mode collapse is.

Several challenges commonly afflict GAN models, including:
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Generator and Discriminator Loss During Training
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Figure 4.15: Variation of Forth model - Loss Functions.

Fake Images

0O 20 4 60 80 100 120
Figure 4.16: Variation of Forth Figure 4.17: Variation of Forth
model - Fake images. model Example - Zoomed in
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e Non-convergence: This issue occurs when model parameters continually oscil-

late, destabilize, and fail to reach a state of convergence. [25]

e Diminished gradient: In this scenario, the discriminator becomes overly pro-
ficient, causing the generator gradient to vanish, impeding its ability to learn
effectively. [26] [25]

e Mode collapse: Another prevalent problem involves the collapse of the gener-

ator, resulting in the production of a limited range of sample varieties. [27]

In the context of mode collapse in Generative Adversarial Networks (GANs), the
generator’s attempt to outsmart the discriminator results in a focused set of gener-
ated samples. We can picture it as the generator finding quick tricks or strategies
to create samples that the discriminator has difficulty distinguishing from real data.
Yet, this smart maneuver comes with a drawback, the generator becomes fixated on
a limited set of patterns or modes, overlooking the broader diversity that one would

expect in the generated samples.

Mode collapse in GANs, also known as the Helvetica scenario, is like a scenario
where an artist, instead of drawing various types of trees in a landscape, keeps
drawing the same kind over and over. Similarly, in GANs, the generator gets stuck
creating a limited set of outputs and doesn’t explore the full range of possibilities
in the data it’s supposed to generate. It’s like missing out on all the different kinds
of trees and features in the landscape because the generator is fixated on just a few
patterns. This happens when the generator doesn’t learn to represent the entire
diversity of the data distribution, making it less effective in creating a wide variety
of samples. [28] [29] For example, in Figure [4.18] we can see generated images from
two GANs whose goal was to generate all single digit numbers. In the first row, we
see a GAN that has managed to do that successfully and in the second row, we see

a GAN that suffers mode collapse and only generates one single shape. [I]

Partial mode collapse is a nuanced variation of mode collapse where the collapse
is not absolute, meaning that the generator does produce diverse samples, but there’s
still a noticeable deficiency in capturing certain modes or variations within the data
distribution. In simpler terms, while the generator might be successful in creating
a range of different samples, it may not fully cover every possible type of sample.
Some modes or patterns in the data distribution might be underrepresented or even
absent in the generated samples. This results in a partial loss of diversity, where the

generator falls short of capturing the entirety of the target distribution. [2§]

So in our case, we have reached convergence in all our models, we do not have

diminished gradients, but we do have a partial mode collapse. While each model
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Figure 4.18: Mode collapse example. [I]

generates a diverse set of images, it becomes apparent that these images can be
grouped into subsets that share common characteristics. This means that although
the generator is producing a variety of outputs, there are certain patterns or styles

that are repeated within each subset of generated images.

4.6 From spectrograms to actual sound

Now is the time to describe how our generated spectrograms were used to produce

sound.

First of all, if we have a song and find its corresponding spectrogram, reversing
that process to get back the exact original song is tricky. The spectrogram is like
a detailed snapshot of the song’s frequencies and when they happen. But, when we
transform the song into a spectrogram, we lose some important details, especially
about how the different frequencies relate to each other over time. It’s like taking a
detailed picture of a landscape and then trying to recreate the exact 3D scene from

just the picture. We might get close, but some details will be off.

The process of transforming an audio signal into a spectrogram and then at-
tempting to reverse it back into the original audio is not a perfect one-to-one func-
tion. A one-to-one function would mean that each unique input (audio signal) has
a unique output (spectrogram) and vice versa. However, due to the nature of the
transformation involved, as explained earlier, some information is lost during the

creation of the spectrogram.

As mentioned earlier, creating a spectrogram involves dividing the input time-
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domain signal into overlapping chunks, applying a window function, and performing
a Fast Fourier Transform (FFT) to obtain complex vectors representing amplitude
and phase for each frequency bin. The spectrogram’s columns are formed by tak-
ing the absolute values of these FFT results, discarding the negative frequencies
ones. However, due to the symmetric nature of the process, which discards phase
information, accurately reconstructing the original time-domain signal becomes im-
possible. While recreating the exact signal is not achievable because of this loss of
phase information, there is an opportunity to generate a signal that sounds very
similar. Reversing the process involves attempting the described steps in reverse,

introducing a random phase for the FFT.

So this is what we have done. We initialize random phases for each frequency
component. This randomization accounts for the loss of phase information during
the original spectrogram creation. In the absence of precise phase details, which are
crucial for recreating the original time-domain signal accurately, we introduce this
randomness to simulate various possibilities. It’s like trying out different starting
points for each musical note without knowing the exact timing. By doing so, we
acknowledge the uncertainty and attempt to capture the overall character of the

original signal.

The next step involves iterating through time intervals and frequency compo-
nents. For each time step, we calculate the contribution of each frequency by com-
bining sinusoidal components with the randomized phases and magnitudes obtained
from the spectrogram. The summation of these components at each time point
reconstructs the signal in the time domain. Although the exact starting points of
the frequencies remain unknown, the process aims to approximate what the audio

would sound like.

4.7 Evaluation with People’s Opinions

Well it is music after alll So we have to get people and the actual sounds

generated involved! So, we made a form that we distributed for people to answer.

The objective of this form was to see how many participants would be able to
to distinguish between Al-generated and non-Al-generated songs. To achieve this,
we presented a set of three questions. Initially, we chose four generated songs, each
lasting about 4 seconds. Then, we selected two additional 4-second segments from
our original dataset, extracted their corresponding spectrograms and reverted them
to sound using the same process employed for the generated songs. This approach
ensured uniform quality across all the presented songs, minimizing potential biases

among participants.
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The first and the second question featured one "real” song and one Al-generated
song, for participants to compare and decide which could be Al-generated. In con-
trast, the third question involved two Al-generated songs for assessment. The form
also included demographic questions concerning the participants’ age, their musical
background, their familiarity with Al-generated music and lastly, how often they

listen to music.

In total, 137 people participated. In all of the questions, a participant could
either select Option 1, Option 2, None, or both Option 1 and Option 2. In the first
question the Al-generated one was Option 1 and the question was ”Which of the
above, if any, sound like Al-generated?”. In Figure we can see the percentages

of the choices people made.

Option 1

Option 2

None

0 20 40 60 80 100

Figure 4.19: Question 1 - Percentages.

We can see that about 60% managed to find the right answer, but this method
of evaluation for this form is not very representative, as someone could have chosen
more than one answer. This is why we decided to use a Likert-type scale, giving
scores to the participants’ answers’. For this question, we will say that a participant
scored 2 if only the correct answer was chosen, scored 0 if the wrong answer or the
”None” option was chosen, and scored 1 if the right answer was chosen along with
the wrong answer. In Figure we see the percentage of each score, along with

their corresponding 95% confidence intervals.

N Percent Confidence
Interval
Score 0 55 40.15% (31.94, 48.35)
Score 1 14 10.22% (5.15, 15.29)
Score 2 68 49.63% (41.26, 58.01)

Figure 4.20: Question 1 - Scores.

So now we notice that while about 50% of the participants managed to score 2,
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another 40% scored 0.

In the second question, which was expressed in the same way, the Al-generated
one was Option 2. In Figure we see that again about 60% of the participants

manages to chose the right answer.

Option 1 —44 (32,1%)

Option 2 82 (59,9%)

None 17 (12,4%)

0 20 40 60 80 100

Figure 4.21: Question 2 - Percentages.

In Figure we can see the percentages of the scores, which were once again
assigned in the same manner as before, and we notice again that while 55% of the

participants scored 2, another 40% scored 0.

N Percent Confidence
Interval
Score 0 55 40.15% (31.94, 48.35)
Score 1 6 4.38% (0.95, 7.80)
Score 2 76 55.47% (47.15, 63.80)

Figure 4.22: Question 2 - Scores.

And finally, in the third question, which was expressed in the same way, both Op-
tion 1 and Option 2 were Al-generated. In Figure [4.23| we see that the participants’

responses were nearly evenly split among the two options.

This time, to use the Likert scale, we are going to say that a participant scored
0 if the ”None” option was chosen, scored 1 if only one of the two correct options
were chosen, and scored 2 if both of the right options were chosen. In Figure
we can see that only 10% of the participants scored 2, while the 82% scored 1.

Finally, we calculated the total score for each participant by summing the scores
of each of their answers. We can see how they did in Figure [£.25]

We notice that a very small percentage managed to score 6, about 31% scored

5, and both scores 1 and 3 were obtained by 23% of the participants.
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Option 1 69 (50,4%)
Option 2 71 (51,8%)
None 11 (8%)
0 20 40 80
Figure 4.23: Question 3 - Percentages.
N Percent Confidence
Interval
Score 0 11 8.03% (3.48, 12.58)
Score 1 112 81.75% (75.28, 88.22)
Score 2 14 10.22% (5.15, 15.29)
Figure 4.24: Question 3 - Scores.
N Percent Confidence
Interval
Score 0 1 0.73% (0, 2.16)
Score 1 32 23.36% (16.27, 30.44)
Score ? 11 8.03% (3.48, ]258)
Score 3 32 23.36% (16.27, 30.44)
Score 4 13 2.49% (4.58, 14.40)
Score 5 43 31.39% (23.62, 39.16)
Score 6 5 3.65% (0.51, 6.79)

Figure 4.25: Total scores
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Overall, the study results align with the goal of creating Al-generated music that

is challenging to distinguish from real songs.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, to make our dataset, we chose DJ sets of electronic music, cut them
into small segments and made their corresponding spectrograms-images. Using this
dataset, two main models have been trained, each of them with many variations
in their hyperparameters. Although they all do suffer from partial mode collapse,
as this is a very common phenomenon in GANSs, they all can successfully generate
images that look like the ones from the original dataset. We then proceeded to

reverse the images back to sound which was the original goal of this work.

We evaluated our models by using people’s opinions to see if they can distinguish

between human made and Al-generated music.

5.2 Future work

Training GANs can be very time consuming based on the instability that char-
acterizes them. Besides the fact that our models did generate new images, for future
work, and interesting path would be to look further into what Denoising Diffusion
Probabilistic Models (DDPMs) have to offer.

Denoising Diffusion Probabilistic Models can be trained with far less data, for
fewer epochs, therefore using less computing power. Although it was not in the
subject of this project, we did train a DDPM to see how it would perform with our

dataset.

The first thing to notice is that when using our whole dataset, the training
process takes too much time. Besides, based on relevant literature we can train our
model with only 1000 images and trust that we will get realistic looking results. We

will not get into the details of this model, but we would like to share a result from
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5.2 : Future work

training a DDPM for 50 epochs with only 1000 images, evenly derived from our
dataset, in Figure 5.1}

Figure 5.1: Fake images generated by DDPM

While we don’t have the corresponding sound, we can see that these results ap-
pear highly promising. So concerning future work, exploring this way seems worth-
while to find out the potential offerings of these models. This exploration may
involve training for longer, train with different parts of the dataset, or even with
a new dataset in which the spectrograms are created differently so they are bigger

thus more detailed.
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