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Abstract 

 

 

The goal of this thesis is to explore the challenges of the Sign Language Recognition (SLR) problem, and 

suggest an accurate Machine Learning (ML) model for SLR in video sequences of single words. SLR holds 

significant importance as it addresses the communication barriers between individuals with hearing 

impairments or speech impediments and the general population. However, the existing methods face 

various constraints. Many proposed solutions rely on image-based recognition, while others require the 

use of multi-colored/sensor-based gloves or specific cameras. This study proposes a straightforward 

system that does not require specific accessories, yet remains highly resilient to variations in test subjects 

such as skin tone, gender, and body size. This signer-independent system consists of four main steps. 

Firstly, a dataset was gathered for three target corpus sizes (20, 100 and 300 words) that is both balanced 

and with high variability. For that reason, the "WLASL: A large-scale dataset for Word-Level American Sign 

Language" was selected. Then arm and hand features were extracted from the videos using real-time 

optimized Computer Vision libraries, frameworks and Machine Learning (ML) solutions. The tools of 

choice are mainly Mediapipe and OpenCV. Afterwards, data augmentation and dynamic time wrapping 

techniques were applied to the data to improve performance and invariance. Finaly, a selection of 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and combinations of the two 

were trained. The experiments showed that the proposed approach wields excellent results especially for 

the CNN models, reaching up to 98% accuracy for a corpus size of 100 words or 97% for a corpus size of 

300 words.  
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Περίληψη 

 

 

Στόχος αυτής της διατριβής είναι να διερευνήσει τις προκλήσεις του προβλήματος Αναγνώρισης 

Χειρονομιών Νοηματικής Γλώσσας, και να προτείνει ένα ακριβές μοντέλο Μηχανικής Μάθησης για την 

Αναγνώριση Χειρονομιών Νοηματικής σε ακολουθίες βίντεο μεμονωμένων λέξεων. Η Αναγνώριση 

Χειρονομιών Νοηματικής έχει ιδιαίτερη σημασία καθώς αντιμετωπίζει τα εμπόδια επικοινωνίας μεταξύ 

ατόμων με αναπηρία ακοής ή δυσκολίες στο λόγο και τον γενικό πληθυσμό. Ωστόσο, οι υπάρχουσες 

μέθοδοι αντιμετωπίζουν αρκετούς περιορισμούς. Πολλές από τις προτεινόμενες λύσεις βασίζονται σε 

τεχνικές αναγνώρισης εικόνας, ενώ άλλες απαιτούν τη χρήση γαντιών πολλαπλών 

χρωμάτων/αισθητήρων ή καμερών με συγκεκριμένες προδιαγραφές. Η μελέτη αυτή προτείνει ένα απλό 

σύστημα που δεν απαιτεί εξειδικευμένο εξοπλισμό, αλλά παραμένει ανθεκτικό σε διακυμάνσεις των 

χαρακτηριστικών των ομιλητών, όπως η απόχρωση του δέρματος, το φύλο και το μέγεθος του σώματος. 

Το σύστημα αυτό, που δεν εξαρτάται από τον ομιλητή, αποτελείται από τέσσερα κύρια βήματα. Αρχικά, 

συλλέχθηκε ένα σύνολο δεδομένων, και δημιουργήθηκαν τρεις συλλογές λέξεων (20, 100 και 300 λέξεις) 

που είναι ισορροπημένο και με υψηλή ποικιλομορφία. Για αυτόν τον λόγο, επιλέχθηκε το "WLASL: A 

large-scale dataset for Word-Level American Sign Language ". Στη συνέχεια, εξήχθησαν χαρακτηριστικά 

χεριών από τα βίντεο χρησιμοποιώντας βιβλιοθήκες πραγματικού χρόνου βελτιστοποιημένης 

Υπολογιστικής Όρασης, και μεθόδων Μηχανικής Μάθησης. Τα εργαλεία που επιλέχθηκαν είναι κυρίως 

το Mediapipe και το OpenCV. Έπειτα, εφαρμόστηκαν τεχνικές data augmentation και αντιστοίχισης 

δυναμικού χρόνου (Dynamic Time Wrapping) στα δεδομένα για να βελτιωθεί η απόδοσή του. Τέλος, 

εκπαιδεύτηκαν μοντέλα Συνελικτικών Νευρωνικών Δικτύων (CNN), Αναδρομικών Νευρωνικών Δικτύων 

(RNN) και συνδυασμοί των δύο. Τα πειράματα έδειξαν ότι η προτεινόμενη προσέγγιση προσφέρει 

εξαιρετικά αποτελέσματα, ειδικά για τα μοντέλα CNN, φτάνοντας έως και 98% ακρίβεια για ένα σύνολο 

δεδομένων 100 λέξεων ή 97% για ένα σύνολο δεδομένων 300 λέξεων. 
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1. Introduction 
 

Speech is the cornerstone of human communication. With communication information is exchanged 

between individuals. In order for the communication between two parties to be effective, both parties 

should be able to comprehend and acknowledge the conveyed messages. There are about 75 million Deaf 

people worldwide [1, 2, 3]. Most of these people use sign languages as their primary or only means of 

communication. A communication gap exists when a Deaf person and a hearing person attempt to 

communicate [2].  

Despite common belief, sign languages are not the corresponding translation in signs of spoken languages. 

Sign languages are fully fledged languages with unique grammar and syntax. They were developed within 

Deaf communities to satisfy the need to communicate with each other with minimal influence from the 

spoken languages. Another misconception is that sign language is a single universal language. In reality, 

most countries have their own distinct sign language. For example, in the United States of America the 

Deaf communicate in American Sign Language and in Greece the Deaf communicate in Greek Sign 

Language. These languages may have a few common signs, but they are mostly distinct. Other examples 

of sign languages that are similarly distinct include the British Sign Language, Japanese Sign Language, 

German Sign Language, South African Sign Language, each unique to a specific country, and generally 

distinct from each other. Moreover, it is incorrectly assumed that the Deaf can read and write spoken 

languages. The primary language amongst the Deaf in Greece is Greek Sign Language (GSL). The ability for 

the Deaf to read and write in spoken languages requires special training, which may be expensive and 

unavailable to most of the Greek Deaf. State resources are limited, and skilled interpreters are scarce and 

their use has been limited to official applications rather than everyday common use.  

One of the main goals of the project is to make use of inexpensive commodity hardware such as 

monocular cameras, making use of computer vision to extract sign language semantic information from 

2D video, instead of using expensive hardware placed over the body to track the user’s hands and body. 
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1.1. Sign language basic structure 
 

Sign language includes different components of visual actions of the signer made by using the hands, the 

face, and the arms/torso, to convey the meaning. 

 

1.1.1. Manual components  

 

In sign language the information is mainly expressed by hand/arm gestures with various positions, 

orientation, configurations and movement of the hands. [Figure 1-1] shows sequential frames of the sign 

language sentence “WOMAN ARRIVE HERE” from the RWTH-BOSTON-104 dataset. Such gestures are 

called manual components of the signing and convey the main meaning of the sign. Manual components 

are integral, and are divided into two categories; glosses and classifiers.  

 

 

Figure 1-1 The key-point frames of the phrase “Woman Arrived Here” in ASL from the RWTH-BOSTON-104 dataset 

 

Glosses are the actual signs that are performed for a sign language word like dog or cat. On the other 

hand, classifiers are used in American Sign Language (ASL) to express movement, location, and 

appearance of a person, a subject, or an object. Signers use classifiers as nouns or pronouns to express a 

sign language word by describing its location and its movement, or its appearance. In a continuous signing 

of a sentence, not only the hand(s) moves from the ending position of one sign to the starting position of 

the next, but the hand(s) configuration also changes. This is what is called movement epenthesis and even 
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though it happens with every transition of a sign to another, it does not belong to the set of components 

of sign language. The fourth frame in [Figure 1-1] shows a frame of movement epenthesis which occurs 

between the sign “WOMAN” and the sign “ARRIVE”. 

 

1.1.2. Non-manual components 

 

The manual components of sign language are fundamental, so big part of the research in the field of sign 

language recognition focuses on their recognition. However, the non-manual components of sign 

language play a significant role also. These signals are conveyed through facial expressions such as eye 

gaze, movement of eyebrows, head movement and posture, and movements of signers’ torso. In [Figure 

1-1], for example, the signer moves the lips wide in the second and third frame in parallel of signing the 

manual component “WOMAN”. To effectively construct a system which is able to understand sign 

language, an analysis of non-manual signs and lexicons is required. 

 

1.1.3. Grammar 

 

There is no particular similarity between the grammar of a region’s sign language and that of a spoken 

one, even though sign language follows a number of general rules of spoken language. For instance, the 

spoken language has a specific syntax with nouns, pronouns, verbs and adjectives in a specific order. The 

same does not apply in sign language. In sign language there are words in a spoken language sentence 

that are ignored in the translation. In addition, there are changes in the sign appearance during continuous 

signing which affect the sign meaning. In particular, these changes concern the sign language grammar, 

and are not reflected in the spoken language. As previously stated, signers utilize multiple body parts such 

as hands, head, face and overall body configuration to perform a sign sentence. Consequently, sub-lexical 

components may be simultaneously signed by various parts of the body. This fundamental characteristic 

distinguishes sign language grammar from that of spoken language. 

Another unique characteristic of sign language grammar is indexing. The signer identifies individuals and 

objects by employing classifiers or by spelling their names using the sign language alphabet, positioning 

them within the signing space around themselves. Subsequently, they can easily reference them by simply 
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pointing to the previously designated location. This indexing technique also serves as a form of person 

agreement, distinguishing between first person, second person, or third person references. Additionally, 

when signing a verb, the direction of movement conveys information about both the subject and object 

of the action, through variations in starting and ending locations and hand orientation. Various methods 

of signing a verb can accommodate different types of agreements, indicating the number of individuals 

performing the action, the number of repetitions, or the number of objects or subjects involved. Emphatic 

inflections, used for emphasis, the derivation of nouns from verbs, numerical incorporation, and 

compound signs are further aspects of sign language grammar, resulting in systematic alterations. 

 

1.2. Sign Language Notation Systems 

 

Sign language diverges from spoken language in writing. Spoken languages are predominantly sequential, 

where phonemes form words, words construct sentences, and sentences comprise texts, all produced in 

a linear sequence. Thus, spoken languages can be written in sequence. However, sign language consists 

of manual and non-manual signs simultaneously executed by the hands, face, or head. As a result, unlike 

traditional writing systems, a notation system for sign language must capture the non-sequential nature 

of signs. 

While some notation systems have been devised and are employed within small communities, researchers 

typically utilize the following five unofficial notation systems: 

Glosses. Glosses serve as written representations of sign language words, offering a visual depiction of a 

sign. Each sign is substituted with a corresponding word in spoken language, with one sign replaced by 

one gloss. However, as glosses are not comprehensive translations of signs, additional transcriptions may 

include non-manual signs and classifiers alongside the main text. Glosses are commonly written in capital 

letters. 

Stokoe system. The Stokoe system, named after William Stokoe, who pioneered its development, brought 

sign language to the attention of linguists by introducing this notation system. It stands as the first 

phonological symbol system designed to represent the constituent elements of American Sign Language 

(ASL). Comprising 55 symbols grouped into three categories—location (tab), hand shape (dez), and 

movement (sig)—these symbols are utilized simultaneously. The location and movement symbols are 
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iconic, while hand shapes are represented by units derived from the number system and manual alphabet 

of ASL. Over time, various research teams have modified this notation to suit their specific needs, leading 

to the emergence of multiple variations. Consequently, the Stokoe system should be understood not as a 

singular notation but as a diverse family of related systems. 

HamNoSys. The Hamburg Sign Language Notation System (HamNoSys), S. Prillwitz [4], serves as a 

"phonetic" transcription system, offering a broader scope than the Stokoe system. It consists of 

approximately 200 symbols utilized to transcribe signs across four levels: hand shape, hand configuration, 

location, and movement. These symbols are designed to be easily recognizable, drawing upon iconic 

representations. While the system also aims to incorporate facial expressions, its development in this 

aspect remains ongoing. HamNoSys continues to evolve and grow as the need dictates. [Figure 1-2] 

illustrates examples of sign language sentences in HamNoSys symbols. 

SignWritting. SignWriting was introduced by Valerie Sutton in 1974 as an adaptation of a movement 

writing system known as Sutton "DanceWriting." This innovative system was developed to capture the 

intricate movements of sign languages. Sutton's groundbreaking work led to the publication of the first 

newspaper in history written in sign language using this notation system. However, it's important to note 

that Sutton herself did not have proficiency in the sign languages she transcribed. Consequently, 

SignWriting is unique in that it is not derived from or connected to any existing writing system. Instead, it 

records movements in a generic format, solely focusing on depicting the visual appearance of body 

movements. This universal approach enables SignWriting to represent any sign language worldwide, 

including detailed facial expressions and mimetic actions. [Figure 1-3] illustrates the sign for "quote" in 

various notation systems, including Glosses, Stokoe, HamNoSys, and SignWriting. 

Liddell and Johnson. The Movement-Hold notation system was developed by Scott Liddell and Robert 

Johnson [5]. Unlike the graphical symbols used in the Stokoe model, this system employs English words 

to describe the physical actions involved in signing. In the Movement-Hold model, signing is divided into 

sequential segments known as movements and holds. Movements represent the parts of the signing 

process where sign changes, while holds represent segments where all aspects remain consistent for a 

minimum of 1/10 second. All the necessary information required to describe a sign are in these 

segments, including hand shapes, locations, orientations, as well as non-manual components such as 

facial expressions and torso configuration. 
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Figure 1-2 Sample of sentences represented in the HamNoSys notation system. The HamNoSys symbols, and other 
corresponding meaning in English and facial expressions are ordered from the left to the right column. Source: 
http://www.signwriting.org/forums/linguistics/ling007.html 
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Figure 1-3 Sample of the sign “quote” presented in different systems; (a) shows the signing and (b), (c), (d) and (e) present it in 
Glosses, Stokoe, HamNoSys and SignWriting notation systems, respectively.  
Source: http://www.signwriting.org/forums/linguistics/ling001.html 

 

As previously noted, a sign language recognition system is the foundation for a communication system 

between the deaf and the hearing. This system typically consists of some hardware for data collection and 

feature extraction, and a decision-making component for sign language recognition. Many researchers 

use special hardware like data gloves, colored gloves, wearable cameras, or location sensors, in order 

perform feature extraction. However, the proposed system takes a different approach by aiming to 

recognize sign language words using landmark features of the signer, extracted directly from frames 

captured by standard cameras. Therefore, this system can be employed with ease in different 

environments. Even though we avoid many image-recognition issues when using landmark features, the 

sign language recognition system has to overcome other problems like visual variability of utterances of 

each sign language word, different pronunciations, and large amount of features extracted directly from 

the image frames. To address these issues, we are introducing an American Sign Language Recognition 

(ASLR) system which is based on existing lightweight Machine Learning models for hand, face and pose 

landmark detection; in this project we selected Google's Mediapipe. Since sign languages are sequences 

of features over the time, this system is hopefully able to utilize the insights gained from landmark 

detection and propose a robust ASLR system. 
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2. Scientific Goals 

 

The main goal of this work is to build a system for robust sign language recognition. A landmark-based 

sign language system contains different aspects and thus raises several problems. A major part of this 

work is performing Time Series Analysis on the videos of sign language words, and the rest is calibrating 

the hyperparameters of CNN and RNN models. Specifically: 

• Data Collection and Preprocessing 

Gather the videos of the WLASL dataset, where each video sequence represents a word sign.  

• Feature Extraction 

Extract hand and pose landmarks from the image frames of each video. The frames are selected 

using WLASL's proposed fps rate. 

• Time Series Representation 

Represent the extracted features of each video as time series data. Each video is a time series of 

frames, and each frame is a list of landmark features. 

• Modeling 

Apply machine learning models to recognize sign language gestures from the time series data. 

This involve techniques such as Recurrent Neural Networks (RNNs), Long Short-Term Memory 

(LSTM) networks, and Convolutional Neural Networks (CNN) applied to the time series data. 

• Training and Evaluation 

Train the chosen model on a training set of labeled sign language sequences and evaluate its 

performance on a separate validation or test set. 

• Post-processing 

Post-process the model outputs to improve accuracy and coherence. The refinement involves 

applying techniques such as sequence alignment (specifically Dynamic Time Wrapping) and data 

augmentation like sequence jittering, scaling, flipping or rotation. 

• Iterative Improvement 

Iterate on the model design, feature extraction methods, and preprocessing techniques based 

on evaluation results to continuously improve the recognition accuracy and robustness. 
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3. Scientific Review 
 

Sign language recognition can be categorized based on the physical attributes and intricacy of the 

gestures. These sign language gestures can be static hand signs, dynamic hand signs characterized by 

changes in hand shape or orientation, individual gestures involving hand movement (typically 

representing single words), and continuous sign language, where a series of gestures conveys a distinct 

meaning, often used for sentences or phrases. 

 

3.1. Static hand posture 
 

Research for static hand posture recognition proposes methods to recognize static hand postures or sign 

language alphabet by analyzing images of the hands and extract feature vectors based on the static 

information of the hand shape. Unfortunately, this approach fails to recognize letters of the sign language 

alphabet which contain local movement made by the wrist, the knuckles, or the finger joints; e.g. the sign 

for the letter ‘J’ in ASL.  

Cui & Swets [6] introduce a self-organizing framework designed to learn and recognize hand signs 

efficiently. This framework automatically selects the Most Discriminating Features (MDF) using a multi-

class, multivariate discriminant analysis, even when working with a limited number of training samples. 

Their system demonstrates the capability to effectively manage both simple and complex backgrounds. 

Notably, it achieves a recognition rate of 96% for identifying 28 distinct hand signs, even when these signs 

were not included in the training phase.  

F. Quek [7] propose an inductive learning system capable of deriving rules formulated in disjunctive 

normal form. The learning algorithm utilizes a feature vector comprising 28 features, including metrics 

such as the area of the bounding box, hand compactness, and normalized moments. Their results report 

a recognition rate of 94%. 

Triesch & von der Malsburg [8] introduce a view-based system for recognizing hand postures independent 

of the person in front of a complex background. They utilize an Elastic Graph Matching (EGM) method, 

previously used for object and face finding and recognition, to represent hand posture features as a graph. 

They claim a recognition rate of 92.9% for 12 static hand postures signed by 19 individuals against a simple 
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background, and 85.8% against a complex background. Some image frames of their dataset are shown in 

[Figure 3-1].  

 

 

Figure 3-1 Example images from Triesch & von der Malsburg [8] showing the 12 hand postures 

 

Deselaers, Keysers and Ney [9] present a new method for real-time hand pose and object localization and 

recognition They raise the simultaneous recognition of object classes, hand gestures, and detection of 

touch events as a unified classification problem. To optimize class discrimination in each image, they 

utilize a Random Forest algorithm, which dynamically selects and integrates a minimal set of appearance, 

shape, and stereo features. This streamlined approach not only ensures effective generalization but also 

enhances efficiency during runtime. 

 

3.2. Dynamic hand posture  
 

The dynamic hand posture and sign language alphabet recognition requires the collection of sequential 

feature vectors of the gestures. By utilizing dynamic information, they can identify letters that involve 

local movements. In such cases, local hand movements and changes in hand shape are crucial. These 

methods focus solely on hand posture changes, disregarding path movements (which involve the 

shoulder or elbow). Birk et al. [10] designed a system for the recognition of 25 dynamic gestures from 

the international hand alphabet. As shown in Figure 3-2, the dataset’s image frames capture only the 

signer’s hand, simplifying hand segmentation. Feature extraction was done with Principal Component 

Analysis (PCA), yielding an recognition rate of 99% for off-line hand posture recognition. 
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Figure 3-2 Example of sequential image frames in Birk et al. [10 which expresses “P”, “C”, and “A” 

 

Mehdi et al. [11] use a sensor glove for ASL signs feature extraction, and then Artificial Neural Networks 

(ANN) to recognize 24 letters of the ASL alphabet. 

Abe et al. [12] capture the user’s hand movements and hand poses by two cameras in a virtual 3D 

interface system which allows three-dimensional space maneuvering. The result is a recognition rate of 

93.1% for 15 dynamic hand postures. 

Malassiottis et al. [13] introduce a system that utilizes a 3D sensor to produce a dense range image of 

the scene. Unlike systems that rely on color sensors, this approach ensures reliable hand segmentation 

even under varying lighting conditions. 
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Hernandez-Rebollar et al. [14] introduce a system capable of recognizing all 26 hand shapes of the ASL 

alphabet, along with two additional signs: "space" and "enter." This allows users to construct sentences 

by inputting a sequence of letters and spaces and then submitting them to the system. The system 

utilizes special data gloves to capture the necessary features. Results show that 21 out of the 26 letters 

were recognized with 100% accuracy, with the lowest accuracy being 78% for the letter "U." 

The Chair of Technical Computer Science at RWTH Aachen (LTI) developed the LTI-Gesture database, 

which includes 14 dynamic gestures, with 140 training and 140 testing sequences (Akyol  et al. [15]). The 

videos were recorded in a car using an infrared camera, capturing the driver's hand as they performed 

14 commands for a media player. The LTI group achieved an error rate of 4.3% on this database 

(Pelkmann et al. [16]). However, the best error rate of 1.4% was achieved by using appearance-based 

features and modeling visual variabilities by Dreuw [17] and Dreuw et al. [18, 19]. 

 

3.3. Single gesture 
 

In gesture and isolated sign language recognition, both local hand movements and the path movements 

of the hands are important. As a result, most systems incorporate hand segmentation and tracking.  

One such system, described in M.W. Kadous [20] , uses instance-based learning and decision tree 

learning to recognize 95 isolated Australian sign language words with an 80% recognition rate. The 

system employs a special data glove called the Power-glove to extract features from the signing. 

Similarly, a system introduced in H. Matsuo [21] recognizes 38 isolated signs from Japanese sign 

language, utilizing a pair of stereo cameras to capture 3D movement information.  

C. Rigoll et al. [22] introduced a feature extraction method designed to capture dynamic features from 

sequences of image frames, avoiding the blend of spatial and sequential information, ensuring 

robustness against variations in gestures and the individuals performing them. An enhanced version of 

this system was presented in S. Eickeler et al. [23], which is independent of the user's position within the 

image frames, can reject undefined gestures, and supports continuous online gesture recognition.  

Last but not least, in C. Rigoll et al. [22], they introduced a real-time system for recognizing 24 complex 

dynamic gestures, such as "hand waving," "spin," "pointing," and "head movement." This system is both 

person and background independent, achieving a recognition rate of 92.9%. 
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3.4. Continuous sign language 
 

To address the problem of continuous sign language recognition, R. H. Liang et al. [24] developed a 

system using data gloves that employs a Hidden Markov Model (HMM). This system uses a time-varying 

parameter threshold of hand posture to identify the end-points of signs within continuous Taiwanese 

sign language sentences. For a database containing 250 signs, the system achieved an error rate of 

19.6%. 

C. Vogler and D. Metaxas [25, 26], introduced a framework for recognizing both isolated and continuous 

ASL sentences using three-dimensional data. This system employs a 3D tracking method with motion-

capturing sensors to provide input for a context-dependent HMM classifier. Additionally, the geometric 

properties of the signer's tracked hand are used to constrain the HMMs. By leveraging 3D features and 

context-dependent HMMs, the system achieved a recognition rate of 89.91% on a dataset containing 53 

ASL signs. 

T. Starner et al. [27] developed a real-time system for recognizing continuous ASL sentences using 

Hidden Markov Models (HMMs). Features are extracted through two methods: a desk-mounted camera 

and a wearable camera attached to a cap worn by the signer. Figure 3-3 illustrates their video recording 

setup, as shown in [27]. The system achieved a recognition rate of 92% using the desktop camera and 

97% using the wearable camera, on a dataset containing 40 signs. 

Bauer & Hienz  and Bauer et al. [28, 29] developed a video-based system for recognizing continuous 

German Sign Language sentences, using a HMM for each sign. The system extracts geometric features 

from the signers' hands and fingers based on frames captured by a color video camera. To simplify hand 

and finger segmentation, the signer wears basic colored cotton gloves, as shown in Figure 3-4. The 
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system achieved recognition rates of 94.0% and 91.8% on datasets containing 52 and 97 signs, 

respectively. By incorporating a language model, these rates improved to 95.4% and 93.2%. 

 

 

Figure 3-3 A wearable camera which is installed on to a cap worn by the signer is employed as video recording equipment in 
[Starner et al., 27] 

 

 

 

Figure 3-4 Sample frames from colored gloves used in [Bauer et al., 29]. The dominant hand glove is painted with seven different 
colors to indicate the areas of five fingers, palm and back, and the non-dominant hand glove has another sole color 
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R. Bowden et al. [30] proposed a two-stage classification process for SLR. In the first stage, a high-level 

description of hand shape and motion is extracted from the video, focusing on the linguistic aspects of 

sign language to describe actions at a conceptual level. In the second stage, the system models the 

temporal transitions of individual signs using a HMM combined with Independent Component Analysis 

(ICA). The system achieved a recognition rate of 97.67% on a dataset containing 43 signs, with the 

classifier trained using single-instance samples. 

Large vocabulary SLR presents unique challenges, and many researchers have tackled these. For 

example, Fang et al. [31] propose a fuzzy decision tree combined with heterogeneous classifiers to 

reduce recognition time without sacrificing accuracy. In large vocabulary recognition, the extensive 

search space due to numerous classes makes processing time a key concern. Their method, tested on a 

database of 5,113 signs, reduced recognition time by 11% and improved the recognition rate from 

82.9% (achieved by a self-organizing feature maps/Hidden Markov Model (SOFM/HMM) classifier) to 

83.7%. Vogler & Metaxas [26] also tackled scalability issues with increasing vocabulary size. Unlike 

spoken languages, in sign language, phonemes can occur simultaneously, leading to more complex 

combinations as the vocabulary grows. To address this, they proposed using parallel HMMs, which 

model these combinations independently during the training process. 

Non-manual signals play a crucial role in enhancing the accuracy and completeness of SLR systems, so 

much effort has been made to recognize the movement and posture of the signer's torso, as well as 

head movements, facial expressions (such as eye gaze and eyebrow movement), and lip movements. 

Erdem & Sclaroff [32] developed a system for detecting head movements in ASL videos, which labels 

relevant head gestures by analyzing the length and frequency of motion signal peaks and valleys. It is 

specifically designed to identify two key types of periodic head gestures used in sign language 

communication: "head nods" and "head shakes." H. Kashima et al. [34] introduced an iris detection 

method able to adapt to various face and eye movements. The system first segments the face region 

based on color differences from standard skin tone. Next, the eye and mouth regions are extracted 

using a hybrid template matching technique, and the iris is detected using the saturation and brightness 

from the eye regions. This system achieves a recognition rate of approximately 98% for eye region 

detection and 96% for iris detection. Canzler & Dziurzyk [34] analyze lip movements using point 

distribution models and active shape models, while Vogler & Goldenstein [35] presented a 3D 

deformable model tracking system capable of recognizing dynamic facial expressions without the need 

for prior training. For facial feature extraction, it is necessary to track the head of the signer without the 
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interference of things like occlusion of the signer’s hands and the face. Some approaches to head 

tracking are reported by Cascia et al. [36] and Akyol & Zieren [37].  

For all four categories of sign language recognition the use of specialized data acquisition equipment like 

data gloves, colored gloves, location sensors, or wearable cameras to capture features is a common 

practice. Although, there is research in the first two categories use simpler stationary cameras without 

specialized tools, like Triesch & von der Malsburg [8] and Birk et al. [10]. These studies focus on images 

that capture only the hands, allowing for easy segmentation based on skin color. On the other hand, 

segmentation becomes more challenging in the last two categories of sign language recognition due to 

occlusion between the hands and the signer's head, making skin color-based segmentation difficult. To 

address this, some researchers have explored alternative approaches. For instance, in Starner et al. [27], 

the camera is positioned above and in front of the signer to reduce occlusion, or in other cases the 

camera is mounted on a hat worn by the signer, completely avoiding the face. While these methods help 

to minimize occlusion, they, along with other specialized tools, can be impractical for real-world use. 

Automatic SLR has to be practical, as sign language is often the primary means of communication for 

deaf individuals. Unlike many existing systems, which rely on specialized data acquisition tools, the  

system proposed in this paper is designed to recognize sign language words and sentences using 

landmark-based features extracted directly from frames captured by standard cameras. This landmark-

based approach offers clear advantages over systems requiring specialized tools, as these tools may 

already have been used to develop the landmark recognition models. More importantly, it enables real-

world applications where the use of special equipment is not possible. A standard laptop with a fixed-

position camera could provide real-time sign language translation in stores, offices, and other everyday 

places. 
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4. Datasets 
 

All automatic SLR systems, particularly statistical ones, depend on sufficiently large corpora. A 

appropriate corpus of SL data is required for the training. To store and process sign language data, a 

textual representation of the signs is necessary. Although various notation systems exist to capture 

different linguistic aspects, we focus on gloss notation. Glosses are widely used to transcribe sign 

language video sequences and serve as a semantic representation of sign language, making them 

essential for training and analyzing recognition systems. 

In this project, a gloss is a word describing the content of a sign. Manually annotating sign language 

videos is challenging, often leading to inconsistencies in notation within a single corpus.  

 

 

4.1. Public word-level ASL datasets 
 

There are four publicly released word-level ASL datasets: WLASL [38], Boston ASLLVD [39], Purdue RVL-

SLLL ASL Database [40] and RWTH-BOSTON-50 [41].  

The Purdue RVL-SLLL ASL Database [40] includes 39 motion primitives with various hand shapes 

commonly used in ASL. Each of these primitives is performed by 14 native signers. It is worth mentioning 

that the primitives represent components of ASL signs but may not correspond directly to individual 

English words. 

The Boston ASLLVD [39] dataset contains 2,742 glosses (i.e., words) with 9,794 total examples. While it 

covers a broad vocabulary, over 2,000 of these glosses have three or fewer examples, making it less 

ideal for training large-scale classifiers with thousands of categories. 

The RWTH-BOSTON-50 [41] dataset features 483 samples of 50 different glosses signed by 2 signers. The 

RWTH-BOSTON-104 dataset includes 200 continuous sentences performed by 3 signers, covering 104 

signs. The RWTH-BOSTON-400, a sentence-level corpus, consists of 843 sentences containing 

approximately 400 signs, performed by 5 signers. 
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While all the previously mentioned datasets offer valuable contributions and distinct approaches to 

addressing the word-level sign recognition task, they fall short in fully capturing the complexities of the 

task. This is primarily due to the insufficient number of instances and the limited diversity of signers, 

which are critical for building robust and generalizable recognition systems. 

Existing word-level SLR models are predominantly trained and evaluated on either private datasets [42, 

43, 44, 45, 46] or small-scale datasets with fewer than 100 words [43, 44, 45, 46, 47, 48, 49]. These 

models typically consists of three stages: feature extraction, temporal-dependency modeling, and 

classification. Initially, various hand-crafted features are used to represent static hand poses, such as 

SIFT-based features [50, 51, 52], HOG-based features [53, 54, 55], and features in the frequency domain 

[56, 57]. To capture the temporal relationships in video sequences, HMM [58, 59] are used. Additionally, 

Dynamic Time Warping (DTW) [60] is used to address variations in sequence lengths and frame rates. 

Finally, classification algorithms like Support Vector Machines (SVM) [61] are applied to label the signs 

with their corresponding words. 

Following the action recognition methodology, some systems [62, 63] have employed Convolutional 

Neural Networks (CNNs) to extract holistic features from image frames, using these features for 

classification. Other approaches [64, 65] first extract body landmarks and then concatenate their 

locations into a feature vector, which is fed into a stacked Gated Recurrent Unit (GRU) to recognize 

signs. These methods highlight the effectiveness of leveraging human poses for word-level sign 

recognition tasks. Instead of handling spatial and temporal information separately, some recent 

methods use 3D CNNs [45, 66] to capture spatial-temporal features at the same time. However, these 

approaches have only been tested on small-scale datasets, leaving their generalization ability uncertain. 

Additionally, the absence of a standardized large-scale word-level sign language dataset makes it 

difficult to compare results across methods evaluated on different small datasets, which raises concerns 

about their practical applicability in real-world scenarios. 

To solve the previous problems in SLR, WLASL introduces a large-scale word-level American Sign 

Language (ASL) dataset, known as the WLASL database. Since this dataset contains only RGB videos, 

algorithms trained on it can be seamlessly applied to real-world situations with minimal equipment 

requirements, such as standard cameras. Furthermore, WLASL provides a set of baseline models using 

state-of-the-art sign recognition methods, which helps facilitate the evaluation and comparison of 

future SLR research efforts. 
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4.2. WLASL 
 

To create a large-scale, signer-independent ASL dataset, WLASL sourced videos from two primary 

internet sources. The first source was educational sign language websites, such as ASLU [67] and ASL-LEX 

[68], which offer accurate mappings between ASL glosses and signs, as the videos are reviewed by 

experts before being uploaded. The second source was ASL tutorial videos from YouTube, where WLASL 

selected videos with clear titles that describe the gloss of the sign being demonstrated. In total, the 

dataset compiled 68,129 videos covering 20,863 ASL glosses from 20 different websites. Each video 

features a signer performing a single sign (with single or multiple repetitions) in a nearly frontal view, 

but with varying backgrounds. 

After gathering the video resources, WLASL applied a filtering process to refine the dataset. Videos with 

gloss annotations consisting of more than two English words were removed to ensure the dataset 

focuses on individual words only. Additionally, glosses with fewer than seven video samples were 

excluded to ensure that there were sufficient examples for splitting into training and testing sets. 

Glosses with limited video samples likely represent less commonly used words, so their removal does 

not significantly impact the practical usefulness of the dataset. After this selection process, the dataset 

was reduced to 34,404 video samples covering 3,126 glosses, ready for further annotation. 

In addition to providing a gloss label for each video, the WLASL dataset includes various types of 

metadata, such as temporal boundaries, body bounding boxes, signer annotations, and sign 

dialect/variation annotations. 

Temporal boundary. Temporal boundaries indicate the start and end frames of each sign. For videos 

without sign repetitions, the boundaries are marked at the first and last frames of the sign. In cases 

where videos contain repeated signs, boundaries are labeled between repetitions. Only one instance of 

a repeated sign is kept to ensure that the same signer performing the same sign does not appear in both 

the training and testing sets. This prevents models from overfitting to the test set and improves 

generalization. 

Body Bounding-box. To minimize the impact of background and ensure that models focus on the signers, 

WLASL employed YOLOv3 [69] as a person detection tool to identify the body bounding boxes of signers 

in the videos. Since the size of the bounding box can vary as a person performs signs, WLASL used the 
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largest bounding box size throughout the video to crop the signer consistently. This approach ensures 

that the signer remains the focus of the video, regardless of variations in their movements during 

signing. 

Signer Diversity. A robust sign recognition model needs to handle variations between different signers, 

such as differences in appearance and signing pace, in order to generalize well in real-world scenarios. 

For example, as illustrated in Figure 4-1, two signers may perform the same sign with slightly different 

hand positions. To ensure that the dataset captures such diversity, WLASL identified the signers in its 

dataset and provided signer IDs as part of the video's metadata. To achieve this, WLASL used a face 

detector and FaceNet's [70] face embedding technique to encode the faces of the signers in the dataset. 

The Euclidean distances between the face embeddings were then compared. If the distance between 

two embeddings was below a predefined threshold (0.9), the system considered those videos to be 

signed by the same person. After the initial automatic labeling, a manual review was conducted to 

correct any mislabeling, ensuring accurate identification of the signers. 

  

 

 

Figure 4-1 Signers perform “Scream” with different hand positions and amplitude of hand movements. 
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Dialect Variation Annotation. Similar to spoken languages, ASL also has dialect variations [71], which 

may involve differences in hand shapes and motions. To ensure that dialect variations do not only 

appear in the testing dataset, WLASL manually labels these variations for each gloss. To achieve this, 

annotators receive training beforehand to understand the basics of ASL and to accurately differentiate 

between signer-specific variations and dialect variations. In order to make the annotation process faster 

and maintain quality, WLASL developed an interface where annotators compare signs from two videos 

shown side by side. This system automatically counted the number of dialects and assigned labels to 

each variation. After completing the dialect annotations, each video was given a corresponding dialect 

label. This process ensures that dialect-specific signs in the testing set have matching examples in the 

training set. Additionally, any sign variation with fewer than five examples was discarded, as these 

would not provide sufficient samples to split into training, validation, and testing sets. 
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5. Methodology 
 

This project aims to perform time series analysis on video sequences of isolated sign language words, 

and building a robust and accurate ML model for Sign Language Recognition of isolated sign language 

word gestures. The next chapters describe in detail the decisions and methodology followed to achieve 

this. 

 

5.1. Data Collection and Preprocessing 
 

WSAL, as described, proposes a method of creating the dataset locally. The proposed way, as described 

in [38], creates a balanced dataset. The source of the videos is the internet, and thus there is no 

guarantee that the links will be always available. WLASL has a total of 68,129 videos of 20,863 ASL 

glosses from 20 different websites that can be potentially downloaded. Li et al. fir their work [38] ended 

up with 34,404 video samples of 3,126 glosses, after the essential selection to keep the standards of the 

dataset. The time of this work 13,632 were available for 2,000 glosses.  

The pool for our experiments is a corpus of 20, one of 100 and one of 300 glosses. Each corpus contains 

different words (glosses) from another. During the selection of the glosses, an effort was made to get 

the ones with as many video instances as possible. For the largest corpus size of 300, the minimum 

number of video instances was 7, which is WLASL’s minimum to safeguard the datasets balance. For the 

20 and 100 ones the minmum number of instances was higher. 

The labels of each corpus were encoded using One-hot Encoding. One-hot encoding is a process used to 

represent categorical variables as binary vectors. It was used as the labels in SLR are categorical, and 

categorical variables need to be converted into a numerical format that can be used as input for 

training. 
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5.2. Features extraction and Time Series representation 
 

In sign language the message is expressed through movement of the hands, arms, shoulders and face. 

To extract a complete and descriptive set of features we will target the landmarks of the hands, and the 

upper body (arms and shoulders). An argument can be made that the face also participates in facial 

expressions. This project did not follow this direction, as the main focus of this work and isolated signing 

are the hands and arms, in contrast to continuous sign language recognition where facial expressions 

play a far more impactful role. 

To extract the desired features, Google Mediapipe’s Hand Landmarks Detection and Pose Landmarks 

Detection were used. 

Hand Landmarks Detection. The Hand Landmarker task lets you detect the landmarks of the hands in an 

image. This task is used to locate key points of hands and render visual effects on them. It operates on 

image data with a ML model as static data or a continuous stream and outputs hand landmarks in image 

coordinates, hand landmarks in world coordinates and handedness(left/right hand) of multiple detected 

hands.  

The hand landmark model bundle detects the keypoint localization of 21 hand-knuckle coordinates 

within the detected hand regions. The model was trained on approximately 30K real-world images, as 

well as several rendered synthetic hand models imposed over various backgrounds.  

The hand landmarker model bundle contains a palm detection model and a hand landmarks detection 

model. The Palm detection model locates hands within the input image, and the hand landmarks 

detection model identifies specific hand landmarks on the cropped hand image defined by the palm 

detection model. 

Since running the palm detection model is time consuming, when in video or live stream running mode, 

Hand Landmarker uses the bounding box defined by the hand landmarks model in one frame to localize 

the region of hands for subsequent frames. Hand Landmarker only re-triggers the palm detection model 

if the hand landmarks model no longer identifies the presence of hands or fails to track the hands within 

the frame. This reduces the number of times Hand Landmarker tiggers the palm detection model. 

In Figure 5-1 all the detected landmarks are shown. 
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Figure 5-1 The detected hand landmarks by Mediapipe 

 

The result of the detection contains the following basic info: 

• Handedness 

Handedness represents whether the detected hands are left or right hands. 

• Landmarks 

There are 21 hand landmarks, each composed of x, y and z coordinates. The x and y coordinates 

are normalized to [0.0, 1.0] by the image width and height, respectively. The z coordinate 

represents the landmark depth, with the depth at the wrist being the origin. The smaller the 

value, the closer the landmark is to the camera. The magnitude of z uses roughly the same scale 

as x. 

• World Landmarks 

The 21 hand landmarks are also presented in world coordinates. Each landmark is composed of 

x, y, and z, representing real-world 3D coordinates in meters with the origin at the hand’s 

geometric center. 

This works utilizes the Handiness and the normalized Landmarks, since the WLASL dataset has videos 

with various dimentions. Figure 5-2 shows the result of the Hand Landmarks Detection task on an image. 
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Figure 5-2 Example of landmark detection on images 

 

 

Pose Landmarks Detection. The MediaPipe Pose Landmarker task lets you detect landmarks of human 

bodies in an image or video. This task can be used to identify key body locations, analyze posture, and 

categorize movements. This task uses ML models that work with single images or video. The task 

outputs body pose landmarks in image coordinates and in 3-dimensional world coordinates.  

The Pose Landmarker uses a series of models to predict pose landmarks. The first model detects the 

presence of human bodies within an image frame, and the second model locates landmarks on the 

bodies.  

The following models are packaged together into a downloadable model bundle: 

• Pose detection model: detects the presence of bodies with a few key pose landmarks. 

• Pose landmarker model: adds a complete mapping of the pose. The model outputs an estimate 

of 33 3-dimensional pose landmarks. 

This bundle uses a convolutional neural network similar to MobileNetV2 and is optimized for on-device, 

real-time fitness applications. This variant of the BlazePose model uses GHUM, a 3D human shape 

modeling pipeline, to estimate the full 3D body pose of an individual in images or videos. 

The pose landmarker model tracks 33 body landmark locations, representing the approximate location 

of the body parts shown in Figure 5-3. 
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Figure 5-3 Mediapipe pose landmarks 

From theses landmarks a subset was selected, as shown in Figure 5-4. 

 

Figure 5-4 Selected pose landmarks for this project 

 

The model output contains both normalized coordinates (Landmarks) and world coordinates 

(WorldLandmarks) for each landmark. Once again, the normalized Landmarks were selected. 
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Initially, using OpenCV every video instance was parsed. While parsing the videos, the number of 

maximum detected hands was set to two. The frame rate, starting frame and ending frame were set 

according to WLASL’s specification. Then the video was read frame by frame. On every frame the 

Landmarkers extracted the desired landmarks, which we saved as lists in text files. The final output was 

a text file where every line is a list. Every such list is a 2D list, and contains as many list as the frames of 

that video. Every such sublist has the following structure: 

 [left_hand_landmarks, right_hand_landmarks, pose_landmarks] 

where   

left_hand_landmarks = [0.0]*3*21 

               right_hand_landmarks = [0.0]*3*21 

                pose_landmarks = [0.0]*3*12 

That is because every hand consists of 21 landmarks, and every landmark of 3 values x, y, and z with x, y, 

z ∈ [0, 1] 

Respectively, 12 pose landmarks were chosen for our experiments with 3 values x, y, z each and x, y, z ∈ 

[0, 1] 
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6. Modeling 
 

6.1. Proposed model architectures 
 

For SLR some of the most common and efficient models that are used are Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), combined models like Convolutional Recurrent 

Neural Networks (CRNNs), or hybrid architectures. In this work CNNs and RNNs were utilized either on 

their own or as a hybrid.  

CNN model. CNNs are widely used for image-based recognition tasks, making them suitable for SLR from 

video frames. They excel at learning spatial patterns and hierarchies of features, which are crucial for 

recognizing hand gestures.  

CNN is designed for optimal performance by a proper selection of convolution layers and the number of 

neurons. The selection of the number of neurons and convolution layers vary depending the task, the 

dataset, and the pre-processing that was performed. The proposed CNN architecture maximizes the 

recognition accuracy. It consists of one masking layer, six convolution layers, three pooling layers, a 

dropout layer, and a fully connected (dense) layer. The steps of the proposed CNN model are described 

in the Figure 6-1. 
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Figure 6-1 CNN model architecture 

 

 

RNN model. RNNs are suitable for sequential data processing, making them valuable for capturing 

temporal dependencies in sign language sequences. Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) are common RNN variants used in SLR. RNNs are effective for modeling the 

temporal dynamics of sign language gestures over time. 

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) architecture designed to 

address the vanishing gradient problem encountered in traditional RNNs. LSTM networks are 

particularly well-suited for sequence prediction and time-series analysis tasks due to their ability to 

capture long-term dependencies in data. 

LSTMs utilize three types of gates to regulate the flow of information within the network: 
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• Forget Gate: Decides what information to discard from the cell state. 

• Input Gate: Determines what new information to store in the cell state. 

• Output Gate: Controls the information to be output based on the current input and the previous 

state. 

LSTMs are trained using Back-Propagation Through Time (BPTT), a variant of Back-Propagation suitable 

for sequence data. Gradient descent algorithms are used to update the weights of the network based on 

the error between predicted and actual outputs. The steps of the proposed LSTM model are described in 

the Figure 6-2. 

 

 

Figure 6-2 LSTM model architecture 

 

CNN – LSTM Hybrid model. A hybrid CNN-LSTM model combines the strengths of CNNs and LSTM 

networks to effectively capture spatial and temporal features in sequential data. This architecture is 

particularly well-suited for tasks involving sequential data with both spatial and temporal dependencies, 

such as video analysis, action recognition, and time-series forecasting. 

The output of the CNN layers is fed into the LSTM layers, which sequentially process the spatial features 

extracted from the input data. The LSTM layers capture the temporal relationships between the spatial 

features across different time steps, allowing the model to learn long-term dependencies and temporal 

dynamics. The steps of the proposed LSTM model are described in the Figure 6-2. 
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Figure 6-3 CNN-LSTM hybrid model architecture 

 

 

6.2. Model hyperparameters 
 

As far as the configuration of the basic NN layers go (number of neurons, filters, or kennels), the 

decision was made based on experience and experimentation. However, for the following 

hyperparameters the logic behind the decision is as follows: 

Activation Function. In a CNN architecture, the activation function decides which node should be fired at 

a time. The ReLU activation function was chosen as it substitutes all negative values to 0 and remains 

identical with the positive values. The selection of ReLU is a common choice in SLR models both for its 

speed and effectiveness. ReLU tends to be accelerate the training process, in comparison to other 

functions (e.g sigmoid), and it can diminish the problem of gradient vanishing. The ReLU function is 

expressed by the following formula (1) :  
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ReLU(y) =  max(0, y), where y refers to the input to a neuron (1) 

 

Pooling Layer. Pooling also speeds up the training process, but more importantly it reduces the memory 

requirements of the network by reducing the links between the convolutional layers. Specifically, the 

Max Pooling, which was used, downsamples feature maps, reducing their spatial dimensions while 

retaining important information. Here a pool size of 2 was selected. The output dimension of the max-

pooling operation can be calculated by the following formula:  

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �𝑁𝑁𝑖𝑖𝑖𝑖−𝐹𝐹
𝑆𝑆

� + 1  (2) 

where Nin, F and S refer to the size of the input image, kernel, and stride, respectively. 

 

Dropout. Dropout is a form of regularization that aims to reduce overfitting by preventing complex co-

adaptations of neurons. It does this by randomly setting a fraction of input units to zero during each 

update of the network parameters. The selected dropout in this study is 0.2.  

 

Output Layer. The output layer of a neural network is the final layer that produces the predictions or 

outputs of the model. Its structure and activation function depend on the type of task the neural 

network is designed for. For multi-class classification tasks with N classes, the output layer typically 

consists of N neurons, each representing the probability of belonging to a specific class. The activation 

function is usually softmax, which ensures that the probabilities sum up to 1 across all classes. The 

mathematical formula for the Softmax function is given by:  

𝜎𝜎(𝑋𝑋)𝑖𝑖 =  𝑒𝑒𝑥𝑥𝑗𝑗

∑ 𝑒𝑒𝑥𝑥𝑘𝑘𝐾𝐾
𝑘𝑘=1

 for i = 1, 2, 3, …K  (3)  

where, xi are the inputs from the previous layer used to each Softmax layer node and K is the number of 

classes. 

 

Batch normalization. Batch normalization is a technique used to normalize the inputs of each layer in a 

neural network, aiming to stabilize and accelerate the training process. It was introduced by Sergey Ioffe 
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and Christian Szegedy in [72]. 

 

Flatten. The Flatten layer is a Tensorflow Keras class that is used to flatten the input into a one-

dimensional array. It is typically used to transition from a multidimensional input, such as the output of 

convolutional layers in a CNN, to a fully connected (dense) layer in a neural network. 

 

 

6.3. Dynamic Time Wrapping and Data Augmentation 
 

Dynamic Time Warping (DTW) is a technique used to align and compare sequences of varying lengths in 

a robust and flexible manner. It is commonly applied in fields such as speech recognition, gesture 

recognition, and time-series analysis, where the temporal structure of the data may vary. 

For the purpose of this work, the first video of every gloss of the corpus is used as reference. The rest of 

the video instances of that gloss are aligned based on that reference. For the implementation of DTW 

the python library FastDTW was used. FastDTW is an approximation algorithm for DTW that provides a 

computationally efficient solution for aligning and comparing sequences with varying lengths. FastDTW 

aims to significantly reduce the computational complexity of DTW while still producing reasonably 

accurate alignments. 

The DTW was applied first on the raw extracted landmark sequences. Next, four different data 

augmentations techniques were applied on the sequences.  

Data augmentation is a technique used to artificially increase the size of the dataset by applying various 

transformations to the existing data samples. Data augmentation helps improve the generalization 

ability of models by exposing them to a wider range of variations in the input data, thereby reducing 

overfitting and improving performance on unseen data. The transformations that were applied are the 

following: 

• Spatial jittering, also known as spatial augmentation or geometric transformation, is a technique 

commonly used to introduce variations in the spatial structure of images (landmark sequences 

in this case). It involves applying geometric transformations to the original images to create 

new, slightly modified versions. 
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• Rotation is a common data augmentation technique particularly when working with image 

datasets. It involves rotating the original images by a certain angle to introduce variations and 

enhance the model's ability to generalize.  

• Scaling is a technique that helps introduce variations in the scale or size of images. It involves 

resizing the original images to different dimensions, either larger or smaller, to augment the 

dataset and improve the model's ability to generalize. 

• Flipping is used to introduce variations in the orientation or direction of images. It involves 

flipping the original images horizontally, vertically, or both to augment the dataset and improve 

the model's ability to generalize. 

The previous techniques refer to image datasets, but the same principles apply for landmark sequences 

extracted from video frames. 
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7. Experimental Results 
 

In this chapter the results of our experiments are presented. As mentioned before, this work uses as it’s 

the WLASL dataset. From this dataset we produce three corpuses of 20, 100 and 300 glosses. On these 

corpuses we will train the proposed ML models. Each model will be trained on the dataset with DTW 

applied and without. The data that are fed to the model are randomly split into training and test data 

with ratio of 0.2.  

In every training Early Stopping has been applied, monitoring the validation loss. Early stopping is a 

technique used to prevent overfitting and improve the generalization ability of models. It works by 

monitoring the performance of the model on a validation dataset during training and stopping the 

training process when the performance stops improving or starts deteriorating. This is done to prevent 

the model from continuing to learn the training data too well and memorizing noise or outliers, which 

can lead to poor performance on unseen data.  

In the following three sub-chapters, we present the results of the training for each corpus. In the final 

chapter, we compare those results to conclude how the corpus size affects the efficiency of the 

proposed models. 

 

 

 

 

7.1. Corpus 20 
 

This corpus consists of the first 20 glosses of the WLASL dataset. On average every gloss has 15 video 

instances assigned to it. The following tables present the progression of each model during epochs. 
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Table 1 CNN (corpus 20) model progression for the first 40 epochs 

CNN – 20 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.1642 2.9850 0.1551 2.8203 

2 0.3969 1.8989 0.1089 2.7394 

3 0.6493 1.0770 0.1155 3.1821 

5 0.9315 0.2276 0.1353 3.6691 

8 0.9926 0.0371 0.2937 2.3827 

10 0.9893 0.0531 0.7129 1.0299 

20 0.9439 0.2154 0.8020 0.6121 

30 0.9975 0.0165 0.9868 0.0276 

40 1.0000 0.0039 1.0000 0.0039 

 

 

 

Figure 7-1 CNN (corpus 20) training & validation accuracy through epochs 
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The CNN reached high accuracy (93.15%) by the fifth epoch, but the validation accuracy was too low 

(13.53%). This indicates heavy overfitting. However, from there the model got significantly better every 

10 epochs, until epoch 30 where the model achieved 99% accuracy on both training and validation 

accuracy. At later epochs there is some small drops, but they still remain above 90%. 

 

 

Table 2 CNN with DTW (corpus 20) model progression for the first 40 epochs 

CNN with DTW – 20 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.3787 2.2304 0.3069 2.6703 

2 0.7104 0.8889 0.2805 2.3561 

3 0.8828 0.3656 0.3894 2.1107 

5 0.9538 0.1533 0.5314 1.6431 

8 0.9884 0.0419 0.7360 0.8831 

10 0.9942 0.0249 0.9769 0.1288 

20 0.9802 0.0540 0.9109 0.3413 

30 0.9901 0.0248 0.9538 0.1587 

40 0.9959 0.0169 0.9934 0.0111 
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Figure 7-2CNN with DTW (corpus 20)  training & validation accuracy through epochs 

 

 

DTW helped the CNN achieve three times faster high training and validation accuracy. By epoch 10, the 

CNN has hit the 95% threshold; 97% to be exact. 

On the other hand, the LSTM architecture for the given time frame of 200 epochs did not perform so 

well. The best it achieved was a 60% accuracy. Even when left to train for more epochs (up to 500), the 

results did not improve. The exact picture of the model is shown at Table 3. In Figure 7-3, it is evident 

that the validation accuracy is about 5% lower than the training accuracy. Even though this does not 

indicate overfitting, it shows that even this low accuracy the model will perform even worse than 

expected. 

The DTW did not help the final accuracy of the model, as shown in Figure 7-4. It helped the model to 

have consistently almost equal validation accuracy. That means that the LSTM model did not learn to 

recognize the 20 words well, but the 60% accuracy will actually recognize 6 out of 10 word-signs 

correctly. 
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Table 3 LSTM (corpus 20) model progression for the first 200 epochs 

LSTM – 20 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0512 2.9930 0.0858 2.9741 

10 0.2896 2.1966 0.2838 2.1520 

20 0.3861 1.8878 0.3630 1.8716 

30 0.4183 1.7576 0.4422 1.7856 

40 0.4381 1.6614 0.4719 1.6094 

50 0.4158 1.6593 0.4851 1.5404 

60 0.4686 1.4868 0.4554 1.5142 

70 0.4563 1.5200 0.4851 1.5937 

80 0.4868 1.4333 0.4653 1.5069 

90 0.4827 1.3828 0.5380 1.3378 

100 0.4967 1.3369 0.5413 1.2997 

110 0.5116 1.3072 0.5248 1.3369 

120 0.5512 1.1952 0.5380 1.3129 

130 0.5602 1.1867 0.5479 1.2528 

140 0.5627 1.1596 0.4851 1.4833 

150 0.5701 1.1656 0.5182 1.3138 

160 0.5932 1.0744 0.5941 1.1081 

170 0.5941 1.0362 0.6172 1.0774 

180 0.5990 1.0316 0.5545 1.2169 

190 0.4686 1.5142 0.3795 1.8888 

200 0.6469 0.9444 0.6139 1.0243 
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Figure 7-3 LSTM (corpus 20) training & validation accuracy through epochs 

 

Table 4 LSTM with DTW (corpus 20) model progression for the first 200 epochs 

LSTM with DTW – 20 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0512 2.9930 0.0858 2.9741 

10 0.2896 2.1966 0.2838 2.1520 

20 0.3861 1.8878 0.3630 1.8716 

30 0.4183 1.7576 0.4422 1.7856 

40 0.4381 1.6614 0.4719 1.6094 

50 0.4158 1.6593 0.4851 1.5404 

60 0.4686 1.4868 0.4554 1.5142 

70 0.4563 1.5200 0.4851 1.5937 

80 0.4868 1.4333 0.4653 1.5069 

90 0.4827 1.3828 0.5380 1.3378 

100 0.4967 1.3369 0.5413 1.2997 

110 0.5116 1.3072 0.5248 1.3369 
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120 0.5512 1.1952 0.5380 1.3129 

130 0.5602 1.1867 0.5479 1.2528 

140 0.5627 1.1596 0.4851 1.4833 

150 0.5701 1.1656 0.5182 1.3138 

160 0.5932 1.0744 0.5941 1.1081 

170 0.5941 1.0362 0.6172 1.0774 

180 0.5990 1.0316 0.5545 1.2169 

190 0.4686 1.5142 0.3795 1.8888 

200 0.6469 0.9444 0.6139 1.0243 

 

 

Figure 7-4 LSTM with DTW (corpus 20) training & validation accuracy through epochs 

 

The hybrid CNN-LSTM model had an equally good accuracy with the CNN model, if not slightly better. 

The DTW did not affect the model’s efficiency. In particular, the were more spikes and drops compared 

to CNN or to the hybrid without DTW, as shown in Figure 7-6. 
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Table 5 CNN-LSTM hybrid (corpus 20) model progression for the first 60 epochs 

CNN LSTM Hybrid – 20 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.1304 2.6965 0.1881 2.6802 

2 0.1774 2.4264 0.1716 2.4525 

3 0.2690 2.1858 0.2343 2.3837 

5 0.3630 1.8250 0.2376 2.0783 

8 0.5223 1.3445 0.4059 1.5990 

10 0.6980 0.9177 0.5380 1.3368 

15 0.8870 0.3305 0.8878 0.3566 

20 0.9513 0.1580 0.8515 0.5254 

30 0.9744 0.0758 0.9769 0.1059 

40 0.9983 0.0072 0.9967 0.0116 

50 0.9926 0.0240 0.9736 0.0851 

60 0.9901 0.0292 0.9868 0.0631 

 

 

Figure 7-5 CNN-LSTM (corpus 20) training & validation accuracy through epochs 
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Table 6 CNN-LSTM hybrid with DTW (corpus 20) model progression for the  first 60 epochs 

CNN LSTM Hybrid with DTW – 20 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.2294 2.3891 0.0891 3.6053 

2 0.4356 1.6404 0.2343 2.5832 

3 0.5404 1.3523 0.3696 2.3280 

5 0.7442 0.7723 0.5380 1.7241 

8 0.8465 0.4507 0.6172 1.3059 

10 0.8927 0.3140 0.5215 2.4957 

20 0.0814 0.9711 0.9637 0.0900 

30 0.9455 0.1534 0.9670 0.0780 

40 0.9901 0.0306 0.9868 0.0404 

50 0.9389 0.2451 0.7393 1.1305 

60 0.9959 0.0169 1.0000 0.0043 

 

 

Figure 7-6 CNN-LSTM with DTW (corpus 20) training & validation accuracy through epochs 
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7.2. Corpus 100 
 

This corpus consists of the first 100 glosses of the WLASL dataset. On average every gloss has 13 video 

instances assigned to it. The following tables present the progression of each model during epochs. 

The results follow the same patter with the previous corpus. Specifically, the CNN models preformed 

outstandingly, as they reached 97% accuracy 3 epochs faster and with very few drops (Figures 7-7 & 7-

8), while the hybrid models had smoother progressions in their training (Figures 7-11 & 7-12). 

The LSTM model was affected most by the increased size of glosses. Despite, the low accuracy of 60% of 

the LSTM model without DTW, the LSTM on data with DTW reached 97% accuracy (Figures 7-9 & 7-10). 

Its learning curve was steeper, but after the 110th epoch the accuracy increased dramatically. The CNN 

ones are still performing better, but at least it is an acceptable high performing model. 

From the above, it is obvious that the increased number of available sequences helped the models to 

better recognize the differences between gestures, and become more robust. 

 

 

Table 7 CNN (corpus 100) model progression for the first 80 epochs 

CNN – 100 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0362 4.4799 0.0398 4.2844 

2 0.1210 3.6951 0.0934 3.8359 

3 0.3549 2.5370 0.4342 2.2566 

5 0.8871 0.4292 0.9051 0.3667 

8 0.9778 0.0829 0.9701 0.1159 

10 0.9770 0.0856 0.9655 0.1396 

20 0.9812 0.0611 0.9793 0.0701 

30 0.9759 0.0907 0.9655 0.1514 
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40 0.9855 0.0606 0.9648 0.1699 

50 0.9900 0.0236 0.9870 0.0633 

60 0.9872 0.0320 0.9870 0.0465 

70 0.9858 0.0408 0.9617 0.1599 

80 0.9879 0.0394 0.9908 0.0427 

 

 

 

 

 

Figure 7-7 CNN (corpus 100) training & validation accuracy through epochs 
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Table 8 CNN with DTW (corpus 100) model progression for the first 40 epochs 

CNN with DTW – 100 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.2132 3.4716 0.0881 4.2459 

2 0.6558 1.2564 0.3484 2.4963 

3 0.8947 0.3708 0.7496 0.8102 

5 0.9753 0.0991 0.9832 0.0826 

8 0.9908 0.0375 0.9877 0.0744 

10 0.9902 0.0425 0.9832 0.0894 

20 0.9883 0.0446 0.9732 0.0828 

30 0.9952 0.0274 0.9900 0.0193 

40 0.9939 0.0285 0.9778 0.1113 

 

 

 

Figure 7-8 CNN with DTW (corpus 100) training & validation accuracy through epochs 
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Table 9 LSTM (corpus 100) model progression for the first 200 epochs 

LSTM – 100 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0115 4.6029 0.0207 4.5898 

10 0.0165 4.5618 0.0214 4.5495 

20 0.0188 4.5713 0.0245 4.5702 

30 0.0193 4.5682 0.0253 4.5695 

40 0.0190 4.5719 0.0260 4.5705 

50 0.0205 4.5208 0.0299 4.5095 

60 0.0310 4.4033 0.0337 4.4030 

70 0.0394 4.1466 0.0314 4.1003 

80 0.0725 3.7432 0.0574 3.7668 

90 0.1083 3.5351 0.0735 3.6223 

100 0.1575 3.2926 0.1279 3.4206 

110 0.2127 2.9832 0.1769 3.1373 

120 0.2693 2.7142 0.2297 2.9218 

130 0.3063 2.5454 0.2274 2.7904 

140 0.3524 2.3103 0.3101 2.5152 

150 0.3991 2.1346 0.3446 2.3725 

160 0.4453 1.9503 0.3859 2.1674 

170 0.5036 1.7233 0.4495 1.9785 

180 0.4966 1.7061 0.4250 2.0050 

190 0.5549 1.4765 0.4296 2.1668 

200 0.5570 1.4833 0.5138 1.7210 
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Figure 7-9 LSTM (corpus 100) training & validation accuracy through epochs 

 

Table 10 LSTM with DTW (corpus 100) model progression for the first 200 epochs 

LSTM with DTW – 100 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0126 4.6095 0.0130 4.6011 

10 0.0741 3.8015 0.0819 3.7586 

20 0.1453 3.4181 0.1577 3.4072 

30 0.2085 2.9780 0.2228 3.0019 

40 0.2996 2.2986 0.3055 2.3851 

50 0.4391 1.7638 0.4089 1.8624 

60 0.5572 1.3379 0.4740 1.7107 

70 0.7081 0.8792 0.6302 1.0868 

80 0.7841 0.6709 0.7511 0.7458 

90 0.8645 0.4277 0.8162 0.5694 

100 0.8834 0.3524 0.8645 0.3934 
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110 0.8756 0.3713 0.8806 0.3321 

120 0.9213 0.2550 0.9227 0.2263 

130 0.9378 0.1999 0.9311 0.1963 

140 0.9755 0.0793 0.9640 0.1273 

150 0.9537 0.1519 0.9502 0.1627 

160 0.9889 0.0449 0.9832 0.0610 

170 0.9839 0.0588 0.9479 0.1574 

180 0.9598 0.1281 0.9502 0.1565 

190 0.9366 0.1887 0.9510 0.1399 

200 0.9617 0.1351 0.9525 0.1644 

 

 

Figure 7-10 LSTM with DTW (corpus 100) training & validation accuracy through epochs 
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Table 11 CNN LSTM Hybrid (corpus 100) model progression for the first 80 epochs 

CNN LSTM Hybrid – 100 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0366 4.1836 0.0268 4.5083 

2 0.0963 3.6325 0.1179 3.5407 

3 0.1771 3.1573 0.1662 3.1150 

5 0.4772 1.8091 0.4548 1.8315 

8 0.8520 0.4589 0.8499 0.4832 

10 0.9229 0.2566 0.8744 0.3858 

15 0.9611 0.1346 0.9250 0.2359 

20 0.9357 0.2166 0.9579 0.1108 

30 0.9726 0.0862 0.9518 0.1629 

40 0.9786 0.0661 0.9900 0.0619 

50 0.9941 0.0142 0.9900 0.0432 

60 0.9922 0.0165 0.9900 0.0436 

70 0.9950 0.0102 0.9923 0.0448 

80 0.9966 0.0077 0.9916 0.0360 
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Figure 7-11 CNN-LSTM (corpus 100) training & validation accuracy through epochs 

 

 

 

Table 12 CNN LSTM Hybrid (corpus 100) model progression for the first 40 epochs 

CNN LSTM Hybrid with DTW – 100 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.1501 3.5693 0.1194 4.1306 

2 0.3742 2.2424 0.3277 2.2880 

3 0.5630 1.4627 0.4931 1.6392 

5 0.8248 0.5393 0.7680 0.6915 

8 0.9521 0.1581 0.9372 0.2435 

10 0.9468 0.1537 0.9686 0.1097 

15 0.9590 0.1398 0.9686 0.1315 

20 0.9941 0.0245 0.9832 0.0805 

30 0.9914 0.0297 0.9709 0.1062 

40 0.9920 0.0264 0.9954 0.0105 
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Figure 7-12 CNN-LSTM with DTW (corpus 100) training & validation accuracy through epochs 
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7.3. Corpus 300 
 

This corpus consists of the first 300 glosses of the WLASL dataset. On average every gloss has 9 video 

instances assigned to it. The following tables present the progression of each model during epochs. 

In the largest corpus, the effect of DTW diminishes even more for the CNN models. In particular, DTW 

helps the validation accuracy, and makes the learning curve smoother; it does not actually affects the 

accuracy or how fast the CNN models learn. 

The only exception is the LSTM model. For 300 different words, the LSTM model never actually 

converged. The best accuracy it achieved was 25%. However, DTW tripled the LSTM accuracy as shown 

in Figure 7-16. The LSTM with DTW had 70% accuracy with an almost linear leaning progression. 

 

Table 13 CNN (corpus 300) model progression for the first 80 epochs 

CNN – 300 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0096 5.552 0.0148 5.2515 

2 0.0296 4.953 0.0464 4.8157 

3 0.0752 4.4433 0.1088 4.2116 

5 0.3211 2.783 0.3523 2.6685 

8 0.8302 0.5699 0.7832 0.7752 

10 0.9093 0.2958 0.935 0.197 

15 0.9551 0.1368 0.9636 0.1173 

20 0.9552 0.139 0.9651 0.0969 

30 0.9698 0.0954 0.9729 0.0691 

40 0.9734 0.0905 0.9592 0.1523 

50 0.9787 0.0615 0.9762 0.0905 

60 0.9813 0.0499 0.984 0.0418 

70 0.9817 0.0526 0.9837 0.0605 

80 0.9866 0.0318 0.9833 0.0329 
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Figure 7-13 CNN (corpus 300) training & validation accuracy through epochs 

 

Table 14 CNN with DTW (corpus 300) model progression for the first 40 epochs 

CNN with DTW – 300 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0512 5.0026 0.1125 4.172 

2 0.294 3.0437 0.3255 2.8904 

3 0.6085 1.5075 0.703 1.0886 

5 0.9275 0.2597 0.9532 0.1649 

8 0.9692 0.111 0.9662 0.1066 

10 0.9578 0.1492 0.9666 0.1112 

20 0.9752 0.0845 0.9755 0.0627 

30 0.9847 0.0547 0.9829 0.0706 

40 0.9878 0.0399 0.9777 0.0618 
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Figure 7-14 CNN with DTW (corpus 300) training & validation accuracy through epochs 

 

Table 15 LSTM  (corpus 300) model progression for the first 200 epochs 

LSTM – 300 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0031 5.7042 0.0030 5.7035 

10 0.0114 5.4124 0.0122 5.4596 

20 0.0289 4.7915 0.0234 4.8842 

30 0.0361 4.4683 0.0256 4.5956 

40 0.0417 4.3417 0.0312 4.4222 

50 0.0542 4.1069 0.0397 4.2604 

60 0.0738 3.8977 0.0538 4.0627 

70 0.0924 3.709 0.0824 3.8237 

80 0.109 3.5007 0.0883 3.7162 
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90 0.1242 3.3671 0.0820 3.6693 

100 0.1332 3.2355 0.1229 3.3472 

110 0.1334 3.1953 0.1225 3.2488 

120 0.1594 2.9878 0.1173 3.2438 

130 0.1637 2.9535 0.1180 3.2894 

140 0.1747 2.8658 0.1600 2.9622 

150 0.1779 2.8504 0.1299 3.0088 

160 0.191 2.7154 0.1615 2.8746 

170 0.2059 2.6227 0.1704 2.7938 

180 0.2167 2.5551 0.1578 2.8011 

190 0.2106 2.5854 0.1711 2.7232 

200 0.2447 2.3978 0.1960 2.6141 

 

 

 

Figure 7-15 LSTM (corpus 300) training & validation accuracy through epochs 
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Table 16 LSTM  with DTW (corpus 300) model progression for the first 300 epochs 

LSTM with DTW – 300 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0042 5.7054 0.0071 5.7036 

10 0.0491 4.5179 0.0627 4.5584 

20 0.1358 3.3169 0.1177 3.4997 

30 0.192 2.801 0.1663 3.0356 

40 0.2296 2.5199 0.1975 2.7066 

50 0.3038 2.1407 0.2398 2.4226 

60 0.337 1.9513 0.2635 2.2273 

70 0.3765 1.8151 0.333 1.9893 

80 0.4303 1.6076 0.376 1.771 

90 0.4552 1.5202 0.4176 1.8267 

100 0.4698 1.4744 0.4621 1.4912 

110 0.5445 1.248 0.4402 1.5521 

120 0.5586 1.2004 0.5434 1.2858 

130 0.5793 1.1439 0.5568 1.2143 

140 0.5326 1.3556 0.5431 1.2827 

150 0.5961 1.1325 0.5798 1.1615 

160 0.614 1.0638 0.5805 1.1494 

170 0.6346 0.9918 0.6121 1.0539 

180 0.6687 0.9065 0.585 1.1499 

190 0.6851 0.8656 0.6414 0.9961 

200 0.7276 0.7268 0.6247 1.0445 
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Figure 7-16 LSTM with DTW (corpus 300) training & validation accuracy through epochs 

 

Table 17 CNN LSTM Hybrid (corpus 300) model progression for the first 40 epochs 

CNN LSTM Hybrid – 300 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0097 5.2716 0.0119 5.1137 

2 0.0454 4.6703 0.0646 4.3555 

3 0.1463 3.7019 0.1381 3.6195 

5 0.5098 1.7577 0.5427 1.636 

8 0.786 0.688 0.6626 1.1552 

10 0.848 0.4716 0.8422 0.5226 

15 0.9166 0.2469 0.9143 0.2483 

20 0.9395 0.1755 0.9529 0.1494 

30 0.9669 0.0988 0.9681 0.091 

40 0.9754 0.0704 0.977 0.0668 
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Figure 7-17 CNN-LSTM (corpus 300) training & validation accuracy through epochs 

 

 

Table 18 CNN LSTM Hybrid  (corpus 300) model progression for the first 40 epochs 

CNN LSTM Hybrid with DTW – 300 glosses 

Epoch Accuracy Loss Validation 

Accuracy 

Validation 

Loss 

1 0.0428 4.9058 0.0857 4.2725 

2 0.2227 3.3235 0.3129 2.7486 

3 0.4552 2.0214 0.5019 1.7927 

5 0.8118 0.5962 0.8523 0.4612 

8 0.9442 0.1848 0.9495 0.1581 

10 0.9545 0.1451 0.9699 0.1033 
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15 0.9759 0.0734 0.9837 0.0503 

20 0.9773 0.0679 0.9774 0.0942 

30 0.9907 0.0303 0.9918 0.021 

40 0.9846 0.0493 0.9807 0.0764 

 

 

Figure 7-18 CNN-LSTM with DTW (corpus 300) training & validation accuracy through epochs 
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7.4. Comparative Results 
 

In this chapter we compare the accuracy of the proposed models for every corpus to better visualize the 

performance of the different architectures. The following diagrams present the accuracy of the model 

across 200 epochs. 

 

 

 

Figure 7-19 Corpus 20 all models validation accuracy through epochs 
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Figure 7-20 Corpus 100 all models validation accuracy through epochs 

 

Figure 7-21 Corpus 300 all models validation accuracy through epochs 
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Finally, we selected the best performing models across all corpuses based on the best achieved accuracy 

and the minimum number of epochs required to hit 90% accuracy. The following figure shows the 

progression of accuracy for the first 50 epochs. 

 

Figure 7-22 Best performing models by  validation accuracy the first 50 epochs 
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8. Conclusion and Future Scope 
 

Sign Language Recognition is a research topic with both social and academic interest. Every region has 

its own Sign Language, with different gestures and meanings. Machine Learning can help decode these 

sings and sequences of signs with a common methodology. 

In this project we proposed a robust SLR model that can accurately predict sign language words without 

the need for specific equipment. For that purpose, we processed the video sequences by applying 

various data augmentation techniques, and then extracted hand and pose landmarks. The landmarks 

were extracted from a corpus of 20, 100 and 300 glosses. Each of these sets of landmarks were used as 

input into three proposed architectures; a Convolutional Neural Network, a Long Short-Term Memory 

Recurrent Neural Network, and a hybrid of those two. Additionally, a Dynamic Time Wrapping technique 

was used to attempt synchronization between the gestures of the same gloss in an effort to help our 

models perform better.  

The CNN and CNN-LSTM hybrid architectures performed exceptionally reaching 98% accuracy across all 

corpuses. DTW assisted the aforementioned models to reduce the training time. On the other hand, the 

proposed LSTM architecture did not perform well, except for the LSTM model with DTW for the corpus 

of size 100. Nonetheless, we achieved our goal of performing time series analysis and producing an 

accurate SLR model which only requires a camera and some computational power. 

In the future, continuous sign language recognition will be considered. The challenge there is threefold. 

Firstly, a large enough dataset must be created, where the same words are used in different sentences, 

and the number of instances of each sequence are evenly distributed. Secondly, the model should be 

able to recognize accurately these sentences. Thirdly, the model should be able to recognize the 

individual components-words. This can be achieved by splitting the video instances per word, or ideally 

create an architecture where that is not needed. 
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Appendix 
 

 Code for extracting feature landmarks from the available videos. 
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Code for Dynamic Time Warping. 
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Code for various data utilities like landmark transformation or sequences padding.
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Code for training the CNN model.
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Code for training the CNN-LSTM hybrid model.
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Code for training the LSTM model.
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Code for drawing the diagrams for the models’ accuracy through epochs.
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Code for predicting the gesture from a video using a trained model.
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Code for extracting the features and training the proposed models for a given corpus size. 

 


	Abstract
	Περίληψη
	List of Figures
	List of Tables
	1. Introduction
	1.1. Sign language basic structure
	1.1.1. Manual components
	1.1.2. Non-manual components
	1.1.3. Grammar

	1.2. Sign Language Notation Systems

	2. Scientific Goals
	3. Scientific Review
	3.1. Static hand posture
	3.2. Dynamic hand posture
	3.3. Single gesture
	3.4. Continuous sign language

	4. Datasets
	4.1. Public word-level ASL datasets
	4.2. WLASL

	5. Methodology
	5.1. Data Collection and Preprocessing
	5.2. Features extraction and Time Series representation

	6. Modeling
	6.1. Proposed model architectures
	6.2. Model hyperparameters
	6.3. Dynamic Time Wrapping and Data Augmentation

	7. Experimental Results
	7.1. Corpus 20
	7.2. Corpus 100
	7.3. Corpus 300
	7.4. Comparative Results

	8. Conclusion and Future Scope
	References
	Appendix

