UNIVERSITY OF PIRAEUS

School of Information and Communication Technologies

Department of Informatics

Thesis

Thesis Title:

TitAog AlatpBAc:

Sign Language Recognition System Using
MediaPipe and Random Forest

2uotnua Avayvwplong Nonpatiking Nwaooag
pe Xpnon tou MediaPipe kat tou
AAyopiBuou Random Forest

Student’s name-surname:

MOHAMED NEMRI

Father’s name:

MUNIR

Student’s ID No:

Mn19201

Supervisor:

DIONISIOS SOTIROPOULOS

January 2025/ lavoudplog 2025

W
7R\
b UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

NMANEMIZTHMIO NEIPAIQZ

1 Copyright ©

The copying, storage, and distribution of this work, in whole or in part, is
prohibited for commercial purposes. Reprinting, storage, and distribution are
permitted for non-profit, educational, or research purposes, provided that the
source is acknowledged and this notice is preserved. The views and
conclusions expressed in this document are those of the author and do not
represent the official positions of the University of Piraeus. As the author of
this paper, | declare that this paper does not constitute a product of plagiarism

and does not contain material from unquoted sources.

NMANEMIZTHMIO NEIPAIQZ

4 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Table of Contents

IV« 13 1 - T o SN 4
2 1117 Yo [72 1 Lo Y o B 6
Background and Motivationccciieiiieiiiiiiiiiieiiiieieierieteierteceressaseressasersssesessssasessssesess 6
Objectives Of the ProjecCtcciiiiiiiiiiiiiiieiiiietietieiieiietestescescescsssassasssssscessescescsssnsonsonses 6
Significance of the StUAYccccviiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiietiitetetietateteasetersasesessasessssasessnss 6
3. Relevant Literature REVIEW..........ceceeureieieieieieiiieieceieieieeretesasessesesesesssssssseseseses 7
Overview of Existing Sigh Language Recognition Systems......c.cccceveieiiieiiieieieinieiniennnene. 7
Machine Learning Algorithms in Gesture Recognition.......cccccceveieieinininininininiecncncecncnnnes 8
Comparative Studies on Classifiers (e.g., Random Forest vs Neural Networks).............. 8
4. Sign Language RECOZNItION......cccuieiieieiiriesaiaiecierersssasesececesesersssssssssscesessssssasases 9
History and Importance of Sigh Language.......cccceeieieiiieieiriaceierseceresseserossasessssasessssesess 9
Challenges in Automatic ReCOoOgNitioN.....ccciiiiieiiiieieiiiieieiieteierieteierseseresseceressecessssesessess 9
Applications in Real-World SCEeNArioscccceeieieiiiiieiiiereieriecetersatersssesersssasessssesesssseses 10
5. Data Collection and Preparation ProOCESS.......cceeeeereecereecareacareecencocancocancocancnces 11
Manual Data ColleCtioN.....ccccvuierinieiiienieieieieiuieitieieitteieiteceieiteceteteececeseecscescncssescnnes 11
Challenges in Data ColleCtionccccieiieieiniieieieiiereierieseterseseressasesessacessssasessssesessasesess 12
Dataset Structure and Organizationcccceiieieiiieieieiiereierieceterseceressacersssacessssasessaseses 13
Landmark Extraction Using MediaPipecccciieieiiiiieiiieieirieceiersecetessacersssecersssecesssseses 14
6. Mathematical Background of Random Forest AlOrithmccececeieiieienenecacnne 16
DecCiSioN Tre@ BasiCS ..cccvuiuieiiieieiiieieiiiieiiiiiiiiiiiiiiieiieieteteteteteteterecesentecsseneecesessases 16
Gini Impurity and Information Gaincccieiiiieiiiiiieiiiieieiieieieiieseteriesetessesesessasesessasesens 17
Random Forest Ensemble TEChNIQUEccuieiiiiiiiiiieiiiieieieiieteieeieceteeseceressecersssacessaseses 18
Advantages of Random Forest for Gesture Recognitionccccceveieiiiieieiieieciiececeriennees 18
Example of Random Forest in Our Project.......ccccciieieieiiiiiiiieiieiietereeteceresseceressacesssases 19
7. EXperimental SETUPccuceiieiiiiiieieiaiiiieiiiietetacacetesessssssssscscesessssssssssssesssassnss 20
Hardware and Software SpecificationS.....ccccciieiiiiiiiiiiiiiieiiiiiieieiceiecereesecereesecessesees 20
Libraries and TOOUIS USedccceuiuieiininieiiiiieiiiiiiiiiiiiieiiirieieireteterecetetececentececensanes 20

Step-by-Step Guide for Implementationccccioiiiiiiiiiiiiiiiiiiiiiiieiitterietteriececessecesens 21

NMANEMIZTHMIO NEIPAIQZ

4 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

8. Code Implementation and EXplanationccceceieieieiiiieinieieiecirercrcacesecececens 23
1. collect_img.py — Data ColleCtioncccccvuiiiiiiiiiiiiiiiiiiiininenisesesesesesesesesasesssssssssssssases 23
2. create_dataset.py — Dataset Creationcccccieiiiiiiiiiiiiieiiiiieiiiiiiiietietiecescescescescnsnse 26
3. train_classifier.py —Model TraiNiNngcccccieieiiiiiieiiiiiiiiiieieriireieriesetersesesersasesessacesens 28
4. inference_classifier.py — Real-Time INferencCe.....c.cccciieiiiiiiiiiiieiieiieceecerccscssessanens 31
9. Model Training and ValidatioN............c.ceieiieiniieiiieiatieiarieceseecesescososcossscassscesens 34
Dataset Preparation . .ccccciiiiiiiieiiiiiieiieieeiieteteetietietiatescescoscsscsssssssssssssssscessesssssnssnsens 34
Data Splitting Strategy «.ccceieiiiiiiiiiiiiiiiiiieiieteietieseiersesetersaseressasessssesessasssessasesssasesssse 35
Random FOrest TrainNiNg...ccceieiieieiiiiiieiirieieiircaieriesetersaseressasesessasessssesessssssesssssssssasesssss 35
Performance MetriCscccuvuinieieiiniiiiiiiiiiiiiiiiiiiiceieitnceietacetetecesetecasantecasassacasensaces 36
10. Testing and Experimental RESUILLScccuceieiiiiieiaiainiiercrsasesecececesersssasesacecens 36
Real-Time Inference Demonstrationsccccceceieieieieiiiiieiieieiiceieiiceieitceienencecenenees 37
Demonstration REeSULES:ccccuveieiiiiiiiiiiiiiiiiiiiiiiiiieiiceieitceteitecetettececetecececncesencnces 37
Case Studies: CoOMPLeX GeSTUIES....ccieiiiieiiiereieiieretersesetersasetessasessssasessssasessssssessssssess 43
L I V1 77 = T o s 45
Expanding Dataset and Adding New GesStUrescccceeieieiiiieieiiiieieiiecetersecererseceressesesonss 45
Dynamic Gesture Recognition (Incorporating Temporal Data)ccccceeveieieiniinnecernncnees 45
Integrating Facial Expressions and Body POStUrescccceveieiiiieiniieieieiiecniersecercnsecenenss 46
Deploying on Mobile and Edge DevViCes.....ccciieieiiieieiiieieierieceiersecetessaceressacersssecesssseses 46
(Vo] o T=T1 o [1oT-X- TR 47
12.1 FULLSOUICE COAE ...cucuunrinininninininienieinieteieieteteientecetestecesentecesescecssescncssescncssascnses 47
12.2 Examples of Raw Collected Data and Extracted Landmarks......ccccceeeveieiinnecnrnnnnees 53
12.3 Real-Time Inference Video.......cccceuruieenieiiiinieieieiiieieiiieieiiieieiieceietceceeececenennes 54
LR TR 0= =T = o Lo X N 54
13.1 Research Papers and Articles on Random Forest and MediaPipe......cccccccevevennnen. 54
13.2 Books on Machine Learning and Gesture Recognition.......cccccceveeieieiieiecrinnecerennnes 54

13.3 Links to Relevant Open-Source Tools and Libraries.......ccccceveieiiiieiiieiecerieneccrnennnes 55

NMANEMIZTHMIO NEIPAIQZ

,.:a\\
L.!":_'____"}_..___: UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

1. Abstract

H vonuatikn yh\wooa amoteAel eva JWTIKNG onuaciag epyaAeio emikowvwyviag yla dtopa
pe poBAfpata akong N opliacg. Qotdco, n EMeldn eupeiag KATavonong Tthe VONUATIKAG
yAwooag ocuxva dNUIoUPYEL Eva Kevo oTny eTtikolvwyvia. H mapovoa €psuva
ETUKEVTPWVETAL OTNV AVATTITUEN EVOC CUCTHHATOC AVayVWPLoONG VONUATIKAC YAWooag oe
TIPAYHATLKO XPOVO, Xpnotyotiowwvtag to MediaPipe yia tnv e€aywyn xapaktnpLloTikwy
onpeiwv (landmarks) kat tov aAyoptBpo Random Forest yia tnv avayvwplon
XElpovoplwy. O TIpWIAPXLKOC oTOX0C eival va yedupwBei To xdopa emikowvwyviag HEow
TNC autopang epunveiag tng vonuatiknig y\wooac.

To €pyo auto eival dounuEVo oe TEcoepa PACIKA 0TASLA: GUAAOYR JEOOUEVWY,
dnploupyia cuvoAou dedoUEVWY, EKTIAIOEVGCT TOU HOVTEAOU Kal OOKLUR/cupTIEpPACHATA.
Ta dedopéva yia Tn vonUATtikn YAWooa CUAEXBnKav xelpoKivnta HECW HLAC KAPEPACG

web, kataypdadovtag dlddopeg Xelpovopieg oTtwe "yeld," "evxaplotw" Kat "avtokivnto."
To MediaPipe xpnolpomolidnke yla tnv e€aywyn 21 XapakTneLoTIKWY onueiwy amo Tig
ELKOVEC, HelwvovTac th dlaotatikotnta Katl eoTiddovtac oe BACLKA XAPAKTNPLOTIKA yla
tnv taélvounon. Ta emteepyacpéva dedopeva amoBnKeVTNKAY WC APLOPNTIKEC
OUVTETAYHEVEC O€ CUVOUACHO UE TIC avtioTtolxeg eTiketeg. O aAyoplBuog Random Forest
ETUAEXONKE AOYW TNC EPUNVEVCLIHOTNTAG, TNC AVOEKTIKOTNTACG Kal TG VYNAAC

ATTOJOTIKOTNTAC TOU O€ PIKPOU EWC Peoaiov peyeBoug cuvoAa dedopEVWV.

To cVUoTnua Tapouvciace evBappPUVTLKA antoteAEopata, He akpifela tou Eemepvd to 90%
O0TO CUVOAO JOKIPWY, ATTOOEIKVUOVTAC TNV TIPOOTITIKA TOU yld epapUOYEC OTOV
TIPAYHATLKO KOOHO. Ol JOKIUECG OE TIPAYHATIKO XPOVO eTtReBaiwaoav TNV IKavoTnTa Tou
HOVTEAOUL va TIPOoBAETIEL XELPOVOUIEC HE akpiBela, Baollopevo o wvtavi)
Bwteookomnon. Mapd Tig TPOKANCELG, OTIWC N TIOIKIAOHOPd I TWV XELPOVOULWY KAl Ol
oLVONKEG GWTIOHPOU, N HEAETN AUTH TTAPEXEL hla BAoN yla HEANOVTIKEC BEATIWOELG, OTIWG
N avayvwpLlon SUVARLKWY XELPOVOULWY KAl N EVOWHATWON ETUTAEOV XAPAKTNPLOTIKWY
TOU CWHATOC.

H €peuva utoypappidel Tn onPAcia Twv EEATOPLKEUHEVWY CUVOAWY JEDOPEVWY, TWV
AVOEKTIKWY HOVTEAWY UNXAVIKAC HABNOoNC KAl TWY CUCTNHATWY e§aywyng
OUUTIEPACHATWY OE TIPAYHATIKO XPOVO yla TNV avTiheTwTion {NTNHATwyY
TpooBaciyotnTac. MeAAOVTIKEG EpPYACiEC OTOXEVOUV GTNV ETIEKTACH TOU CUVOAOU

NMANEMIZTHMIO NEIPAIQZ

b 4 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

0edOUEVWY, OTNV EVOWHATWON XPOVIKWY dEDOUEVWY YLla OUVAULKEC XELPOVOUIEC Kal
OTNV QVATITUEN TOU CUCTAHATOC 0 GOPNTEC CUCKEVEC YIA AUENHEVN XPNOTIKOTNTA

Sign language is a vital communication tool for individuals with hearing or speech
impairments. However, the lack of widespread understanding of sign language often
creates a communication gap. This research focuses on developing a real-time sign
language recognition system using MediaPipe for landmark extraction and a Random
Forest classifier for gesture recognition. The primary objective is to bridge the
communication barrier by enabling automatic sign language interpretation.

This project is structured into four key stages: data collection, dataset creation,
model training, and testing/inference. Custom sign language data was collected
manually using a webcam, capturing various gestures such as "hello," "thanks," and
"car." MediaPipe was utilized to extract 21 hand landmarks from the images, reducing
dimensionality and focusing on key features for classification. The processed data was
stored as numerical coordinates paired with corresponding labels. ARandom Forest
algorithm was chosen due to its interpretability, robustness, and high efficiency for
small to medium-sized datasets.

The system achieved promising results, with an accuracy of over 90% on the test
dataset, demonstrating its potential for real-world applications. Real-time testing
confirmed the model's ability to predict gestures accurately based on live video input.
While challenges such as variability in hand gestures and lighting conditions remain,
this study provides a foundation for future enhancements, including dynamic gesture
recognition and integration of additional body landmarks.

This research emphasizes the importance of customized datasets, robust machine
learning models, and real-time inference systems in addressing accessibility issues.
Future work aims to expand the dataset, incorporate temporal data for dynamic
gestures, and deploy the system on portable devices for enhanced usability.

NMANEMIZTHMIO NEIPAIQZ

,.:.a\\
[*.!;:_‘:_M‘L..m; UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

2. Introduction

Background and Motivation

Communication is a fundamental aspect of human interaction, enabling individuals to
express thoughts, emotions, and ideas. However, for those who are part of the Deaf and
Hard of Hearing (DHH) community, this process can present significant challenges,
particularly in environments where sign language is not widely understood. Observing
these challenges up close, | was deeply inspired to undertake this project.

My cousin, who is Deaf, has faced numerous struggles in communicating with others
who are unfamiliar with sign language. Witnessing her frustration when simple
conversations became barriers sparked my determination to create a system that could
bridge the gap between sign language users and the broader community. This personal
connection provided a powerful motivation to pursue the development of a Sign
Language Recognition System, an application aimed at enhancing accessibility and
understanding.

Objectives of the Project

The primary objectives of this project are as follows:

1. To develop areal-time sign language recognition system using machine
learning and computer vision technologies, specifically leveraging the Random
Forest algorithm for gesture classification.

2. To facilitate communication between sign language users and non-signers
by converting hand gestures into meaningful text representations.

3. To contribute to the accessibility of signh language technologies by creating a
modular system that can be easily expanded to include more gestures.

4. To provide a practical demonstration of artificial intelligence’s potential to
solve real-world accessibility problems.

Significance of the Study

The significance of this study lies in its potential to impact lives in the Deaf and Hard of
Hearing community. By cutting communication gaps, the project aims to:

NMANEMIZTHMIO NEIPAIQZ

b 4 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

e Enhance inclusivity: Enable sign language users to interact more effectively in
environments where their primary language is not understood.

 Raise awareness: Highlight the importance of sign language as a tool for
communication and promote the adoption of accessible technologies.

¢ Contribute to technology for good: Demonstrate the potential of machine
learning and computer vision to address social challenges.

e Lay afoundation for further research: Provide a framework for future
advancements in sign language recognition systems, encouraging the
development of more sophisticated and inclusive solutions.

In essence, this project is not merely a technical endeavor but a personal mission to
create tools that empower individuals like my cousin. By developing this system, | hope
to bring us one step closer to a world where communication barriers are minimized, and
inclusivity becomes the norm.

3. Relevant Literature Review

Overview of Existing Sign Language Recognition Systems

Sign language recognition systems have been a subject of research for decades, driven
by the need to improve accessibility for the Deaf and Hard of Hearing (DHH) community.
Many of these systems rely on vision-based techniques to interpret hand gestures and
convert them into text or speech. For instance, early studies focused on static image
recognition, where gestures were captured as still images and classified based on
shape and orientation. However, these systems lacked the ability to process dynamic
gestures, which are essential for recognizing continuous sign language.

Recent advancements in computer vision and deep learning have enabled the
development of more sophisticated systems. The use of frameworks such as MediaPipe
by Google has revolutionized gesture recognition by providing robust real-time hand
landmark detection. These frameworks facilitate the extraction of features such as hand
positions, joint angles, and movement trajectories, which are crucial for accurate
recognition. Despite these advancements, existing systems often face limitations in
scalability, adaptability to regional sign language variations, and real-time performance.

,.:.q\\
L.!"% UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

NMANEMIZTHMIO NEIPAIQZ

Machine Learning Algorithms in Gesture Recognition

Machine learning plays a pivotal role in sign language recognition, offering the ability to

classify gestures based on extracted features. Various algorithms have been explored in
the field:

Support Vector Machines (SVM): SVMs were among the first machine learning
techniques used for gesture classification due to their effectiveness in binary
and multi-class classification tasks. However, their performance deteriorates
with large datasets and high-dimensional features.

K-Nearest Neighbors (KNN): This algorithm is simple and effective for small
datasets but struggles with scalability and real-time applications.

Neural Networks (NN): Deep learning models such as Convolutional Neural
Networks (CNNs) have demonstrated state-of-the-art performance in gesture
recognition. They excel at feature extraction and classification but require
substantial computational resources and large datasets for training.

Random Forest (RF): Random Forest has gained attention for its balance of
simplicity, accuracy, and robustness. It performs well on small-to-medium-sized
datasets and offers interpretability, making it suitable for sign language
recognition projects like this one.

Comparative Studies on Classifiers (e.g., Random Forest vs Neural Networks)

Several comparative studies have evaluated the effectiveness of different classifiersin

gesture recognition tasks. These studies typically compare factors such as accuracy,

computational efficiency, and suitability for real-time applications:

Accuracy: Neural Networks, particularly CNNs, often outperform other
classifiers in terms of accuracy due to their ability to learn complex patterns.
However, Random Forest achieves competitive accuracy with significantly lower
computational requirements.

Efficiency: Random Forest is computationally efficient and faster to train
compared to Neural Networks, which require iterative optimization processes
like backpropagation.

Interpretability: Unlike Neural Networks, which are often referred to as "black
box" models, Random Forest provides insights into feature importance, enabling
researchers to understand the decision-making process.

NMANEMIZTHMIO NEIPAIQZ

,.:.q\\
L.!"% UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

e Scalability: Neural Networks excel with large datasets, while Random Forest is
better suited for small-to-medium datasets, making it a practical choice for this
project.

For this project, the Random Forest classifier was chosen due to its balance of
accuracy, efficiency, and interpretability. While Neural Networks are ideal for large-
scale, highly complex systems, Random Forest aligns with the project's objectives.

4. Sign Language Recognition

History and Importance of Sign Language

Sign language has been a fundamental mode of communication for the Deaf and Hard
of Hearing (DHH) community for centuries. Its origins date back to the 17th century,
with documented signs used in education and daily communication. Over time, various
regional sign languages have evolved, each with unique grammar, syntax, and
vocabulary. For example, American Sign Language (ASL), British Sign Language (BSL),
and Greek Sign Language (GSL) reflect cultural differences in their structure and
expression.

Sign language is not merely a replacement for spoken language; itis a full-fledged
linguistic system. It conveys complex ideas, emotions, and narratives through hand
gestures, facial expressions, and body language. Despite its rich history and
significance, sign language remains underrepresented in mainstream technologies,
leading to communication barriers between the DHH community and the hearing
population. Bridging this gap is critical to promoting inclusivity and accessibility.

Challenges in Automatic Recoghnition

Developing systems for automatic sign language recognition poses several challenges:
1. Gesture Complexity:

o Sign language gestures are intricate and involve not only hand
movements but also facial expressions and body posture.

o Variations in speed, trajectory, and starting position of gestures add
complexity to recognition.

NMANEMIZTHMIO NEIPAIQZ

b 4 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

2. Individual Variability:

o Different users perform the same gesture differently, influenced by
factors such as hand size, movement style, and signing fluency.

3. Environmental Factors:

o Background noise, lighting conditions, and occlusion can degrade the
performance of recognition systems.

4. Real-Time Performance:

o For practical use, systems must process gestures in real-time without
significant delays, requiring efficient algorithms and hardware
optimization.

5. Regional and Contextual Variations:

o Unlike spoken languages, sign languages are not universally
standardized. A system trained on one regional sign language may not
work well for another.

6. Lack of Comprehensive Datasets:

o Building extensive datasets with diverse gestures, users, and contexts is
resource-intensive but essential for robust recognition.

Applications in Real-World Scenarios

Automatic sign language recognition has transformative potential in various domains:
1. Education:

o Tools can help educators bridge the gap with DHH students, enabling
better inclusion in mainstream classrooms.

o Interactive applications can aid in teaching sign language to hearing
individuals.

2. Healthcare:

o Sign language recognition can facilitate doctor-patient communication in
hospitals, where interpreters may not always be available.

3. Customer Service:

NMANEMIZTHMIO NEIPAIQZ

,.:.q\\
L.!"% UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o Companies can integrate sign language recognition into kiosks and
chatbots, offering DHH-friendly customer service solutions.

4. Media Accessibility:

o Automatic sign recognition can improve captioning and translation
services, making media content accessible to the DHH community.

5. Public Services:

o Government offices, airports, and other public facilities can use
recognition systems to provide inclusive services.

6. Personalized Assistance:

o Sign language-enabled virtual assistants can empower DHH users in
managing daily tasks.

7. Social Integration:

o By breaking communication barriers, these systems can foster stronger
relationships between the DHH and hearing communities.

5. Data Collection and Preparation Process

Manual Data Collection

The foundation of any machine learning project is high-quality data, and for this project,
the dataset was manually collected to ensure specificity and relevance to the task of
recognizing sign language gestures. Using a webcam and a custom-built script
(collect_img.py), we captured multiple images for each sign language gesture. The
dataset encompasses 22 distinct words, such as "hello," "thanks," and "car," with 200
samples per word (100 samples per session “hand” across two sessions ”Left and right
hand”). Each gesture was performed by a single user to maintain consistency in the
initial phase of development.

The manual collection approach allowed me to directly control the quality of the data.
This ensured that gestures were performed correctly and aligned with the model's
requirements for subsequent processing.

Mohamed Nemri P19201

Challenges in Data Collection

Several challenges arose during the data collection process, which needed to be
addressed to create a robust dataset:

1. Lighting Conditions:

o

Variability in lighting caused shadows and reflections, which could affect
landmark detection.

To mitigate this, we performed data collection in a well-lit environment
with consistent lighting across sessions.

2. Background Noise:

o

Complex or cluttered backgrounds posed a risk of interfering with hand
detection.

We used plain, neutral backgrounds to enhance the accuracy of the
MediaPipe model during landmark extraction.

3. User Variability:

o

While gestures were performed by a single user in this phase, real-world
usage would involve multiple users with varying hand sizes, movement
styles, and speeds.

Future iterations of the project will address this by expanding the dataset
to include diverse users.

4. Gesture Complexity:

NMANEMIZTHMIO NEIPAIQZ

,.:.q\\
f!!-‘:_—____‘?_‘____: UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o Some gestures involve two hands or rapid movements, making them
harder to capture and process accurately.

o Therecording process included multiple takes to ensure gesture clarity.
5. Fatigue:

o Repeating gestures for multiple sessions caused fatigue, potentially
impacting consistency. Breaks were taken to reduce variability caused by
user fatigue.

6. Similarity Between Gestures:

o Certain gestures, such as "phone" and "wrong," appeared visually similar,
making them harder to distinguish.

o Careful adjustments were made to the angle and positioning of the hands
for each gesture to create distinct visual differences.

o Forexample, the gesture for "phone" was performed with a more upright
posture, while "wrong" was executed at a slightly tilted angle to minimize
overlap.

Dataset Structure and Organization

The dataset was organized into a hierarchical directory structure for ease of access and
processing. The structure followed this pattern:

/data

/word_1
/collection_0
0.jpg

1.jpg

/collection_1
0.jpg

1.jpg

/word_2

NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS

v data
> car
> drink
> eat-food
> father
> fine
> finish
> forget
Sleo
v hello
> collection_0
> collection_1
> help

> i-me

> iloveyou
> like
> more

> mother
> need
> no

> phone
> please
> thanks
> wrong

> yes

Mohamed Nemri P19201

Each folder represents a specific word (e.g., "hello"), with subfolders for individual

collection sessions. This structure ensures that the data is easily accessible for both

training and validation purposes.

Landmark Extraction Using MediaPipe

Once the images were collected, the next step was to extract meaningful features from
them. MediaPipe, an advanced framework for machine learning pipelines, was used for
this purpose. Specifically, the MediaPipe Hands module detected and extracted 21 key

landmarks for each hand.

2D Landmarks for Word: eat-food

Sample 2 Sample 3 Sample & Sample 5
o o st

/ . o, - iy SN el %,
. ., .

v e T e —te
.

sample 1

2D Landmarks for Word: please

sample 2 sample 3 sample ¢
. .
P
. ' N
- - -
o .
s . 4
o - . " .
- -
¢ - y
- v . v
-
- - -
. -
d
[-t * L

sample 7 samp mpls 3
.
+ .
.
. .
- . *
. d - J -
» p - .
e . .
. 1 L . 9 L4
. - -
—* - -
. . ¥
o ¢ O —r

g MANEMIZTHMIO NEIPAIQE

UNIVERSITY OF PIRAEUS

Mohamed Nemri P19201

2D Landmarks for Word: car

samale 1 samgle 2 sample 3 sampl mele sampls 1 Sample 2 Sample 3 Sample sample 5
. N
to? .-. » e\
ok y o 4l .&y Le b
» % D
' . -~ f ./ . L gh».. Ha e Mmoo K
. ” . \
/ . ’ / . g bas - \ P i
” - - ” » ” . f" . ;o‘i 14 L ;\ .\‘a 13 | . |
- " - " ¢é:4 I \‘f. :U') Y 400 Il
4 3 1 1 ¢ & ¥ g %1 + ‘-“ * w M i > |+
Y e . . - 1 I ’ |/
| . | oo i J— \ \ (| ‘ 3.‘
4 | ;
¢ - e ¢ - ? ¢ L i L i \ \ JI/‘ ! \
sample 6 Samgle 7 Sample 8 sample 9 sample 10 Semple 6 ol Sl Somple e 10
. , . . N . ' R '
.
08 o /by 1. o 1 t
! i i : R A O3 B 1 1 [t WI” :
J . o . . . 54 ik MW ¢ o] - |
. - - . L4 { % ey _{ e\)
/ . J . J - J P LA [13 (1008 .ﬁ.:I \
.)/ ey * ¥ 1 0.5 1 s
o . . » - - . o [Tt 1] 1 Y l i |
- . . . /8 s o . “‘, v ‘
4 . ¢ s .9 . % \ { v o |
. J— - — - x 1Y ‘\ “ ‘."‘ It ‘| ! ;
IS 3 ’ ’ h | \ I /
) +
2D Landmarks for Word: yes
Sample 1 Sample 2 Sample 3 Sample &
- T * A pe * . . + . + .
5 - M T T L
- - - - - -
N ¥ o ! .t . ey
LSS 1 1 IR R s $ow] N ': 1 A
r H o
P Py ‘ t .
- . . - -
somple 6 Sample 7 sample & sample 9 Sampie 10
. T i 1 N 1 + + r . T N
L3 hat | L3 i L4
" -
. . . }
e | T e . »s ? * ’ .
Suld v ow L ooy Sty
s . -
p ¢ <
« - - . .

1. Hand Detection:

o Eachimage was processed through MediaPipe to locate the hands within
the frame. The model outputs normalized (x, y) coordinates for each
landmark, representing positions relative to the image dimensions.

2. Landmark Extraction Process:

o Forsingle-hand gestures, 21 landmarks were extracted.

o Fordual-hand gestures, 42 landmarks (21 for each hand) were extracted.

o These landmarks were then flattened into a single array for each image.

3. Data Formatting:

o Extracted landmarks were saved in the form of arrays, each containing 42

values (21 points x 2 dimensions). This ensures consistent input size for
the machine learning model.

o Ifnohands were detected in an image, placeholder zeros were added to
maintain consistent array size.

4. Advantages of Using Landmarks:

NMANEMIZTHMIO NEIPAIQZ

,.:.q\\
L.!"% UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o Dimensionality Reduction: Landmarks significantly reduce the amount
of data compared to using raw images, making the training process more
efficient.

o Invariance to Scale and Rotation: Normalized coordinates ensure that
the model remains robust to variations in hand size and orientation.

o Improved Generalisation: By focusing on the relative positions of
landmarks rather than raw pixel data, the model learns to generalize
better across different scenarios.

6. Mathematical Background of Random Forest Algorithm

Decision Tree Basics

A Random Forest is built upon the foundation of decision trees. To understand Random
Forests, it is essential to grasp the mechanics of decision trees:

e Whatis a Decision Tree?

o Adecision tree is a flowchart-like structure used for classification or
regression tasks. Each internal node represents a question about the data
(a feature), each branch represents the outcome of the question, and
each leaf node represents a final decision or prediction.

o Example of a Decision Tree: Consider a decision tree for recognizing a gesture:
o Node 1:Is the x-coordinate of landmark 5 greater than 0.5?
*» Yes~> Goto Node?2
» No-~>GotoNode3
o Node 2: Is the y-coordinate of landmark 8 less than 0.37?
* Yes - Gestureis "hello"
= No ~> Gestureis "thanks"

The tree grows by repeatedly splitting the dataset based on the feature (e.g., xory
coordinates of landmarks) that best separates the classes. The goal is to make the data
at each leaf node as homogeneous as possible (pure).

NMANEMIZTHMIO NEIPAIQZ

,.:.q\\
L.!“_'.wml‘v UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Gini Impurity and Information Gain

To decide the best feature for splitting the data at each node, measures like Gini
Impurity or Information Gain are used.

e Gini Impurity:

o Gini Impurity measures the probability of misclassifying a randomly
chosen data pointif it were assigned a class based on the distribution at

the node.

o Formula: G=1-) (pi*2)

where pi is the probability of class i at a given node

o Example: If a node contains 100 samples:
= 40 belongto class "hello"
= 60 belong to class "thanks"
= phello=0.4p_{hello} = 0.4, pthanks=0.6p_{thanks} = 0.6
G=1-(0.42+0.62)=1-(0.16+0.36)=0.48G =1 - (0.4"2 +0.6"2)=1-(0.16 + 0.36) = 0.48
A lower Gini Impurity indicates a more "pure" node.
¢ Information Gain:

o Information Gain measures the reduction in entropy (disorder) after
splitting a dataset.

samples in child

o Formula: IG = Hparent — Z X Henilg)

child samples in parent

Where:

His the entropy of a node.
Entropy (H)
o The formula for entropyis: H = — Ziczl pilog.(p;)

Where:

Cisthe number of classes.

NMANEMIZTHMIO NEIPAIQZ

,.:.q\\
L.!"% UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

piis the proportion of samples belonging to class i in the node.

Both Gini Impurity and Information Gain help select the feature and threshold that most
effectively separates the classes.

Random Forest Ensemble Technique

Random Forest extends the concept of decision trees by creating an ensemble of
multiple trees and aggregating their predictions.

¢ How It Works:
1. Bootstrapping:

= Eachtreeistrained on a random subset (with replacement) of the
dataset. This introduces diversity among the trees.

2. Random Feature Selection:

= Ateach split, a random subset of features is considered for
splitting, further ensuring tree diversity.

3. Aggregation:

= For classification tasks, the final prediction is determined by
majority voting among all trees in the forest.

= Forregression tasks, the average prediction from all trees is used.
¢ Why It Works:

o By combining multiple diverse trees, Random Forest reduces overfitting
and improves generalization. Each tree contributes to the overall
prediction, but no single tree dominates.

Advantages of Random Forest for Gesture Recognition

Random Forest is particularly well-suited for gesture recognition tasks for the following
reasons:

1. Robustness to Noise:

NMANEMIZTHMIO NEIPAIQZ

,.:.a\\
[*.!;:_‘:_M‘L..m; UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o Evenif some trees make errors due to noisy data, the ensemble approach
minimizes the impact of these errors.

2. Feature Importance:

o Random Forest provides insights into the importance of each feature
(e.g., which landmarks contribute most to recognizing gestures).

3. Efficiency:

o Random Forestis computationally efficient for training on medium-sized
datasets like ours.

4. Flexibility:

o Itworks well with both numerical (landmark coordinates) and categorical
data.

5. Handling Multiclass Problems:

o Our dataset contains 22 classes (one for each word). Random Forest
effectively handles this multiclass classification problem.

Example of Random Forest in Our Project

1. Input Data:

o Each training sample is a flattened array of 42 numerical values (21
landmarks x 2 dimensions).

o Thelabel for each sample corresponds to a word (e.g., "hello," "thanks").
2. Training Process:

o Trees are built by splitting the dataset based on landmark coordinates
that maximize class separation (using Gini Impurity).

o Example split: "Is the x-coordinate of landmark 5 > 0.5?"
3. Prediction:

o Duringreal-time inference, a flattened array of landmarks is passed to the
forest.

o Eachtree independently predicts a class, and the final prediction is made
based on majority voting.

4. Output:

NMANEMIZTHMIO NEIPAIQZ

7\
T

P9 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o The system outputs the word corresponding to the predicted class (e.g.,

"thanks") along with visual feedback on the screen.

7. Experimental Setup

Hardware and Software Specifications

To implement the sign language recognition system, the following hardware and
software were utilized:

e Hardware:
o Laptop: Apple Macbook Pro (Mid 2015)
o Processor: Intel Corei7 2.2 GHz
o RAM:16 GB
o Graphics Card: AMD Radeon HD 6770M
o Storage: 1TBHDD
o Camera: Built-in iMac webcam
o Software:
o Operating System: macOS Monterey
o Development Environment: Python 3.9 in a virtual environment

o Integrated Development Environment (IDE): Visual Studio Code

Libraries and Tools Used

Several Python libraries and tools were employed to streamline the development
process:

1. OpenCV:

o Purpose: Real-time video capture, frame processing, and visualization.

NMANEMIZTHMIO NEIPAIQZ

,.:.a\\
[*.!;:_‘:_M‘L..m; UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o Role: Used for capturing video input from the webcam and displaying the
live feed with annotations such as bounding boxes and predictions.

2. MediaPipe:
o Purpose: Extract 21 hand landmarks per hand for gesture recognition.

o Role: MediaPipe's pre-trained deep learning model detects and tracks
hand keypoints.

3. Scikit-Learn:

o Purpose: Training the Random Forest Classifier.

o Role: Handles the classification task, model evaluation, and predictions.
4. NumPy:

o Purpose: Efficient numerical operations.

o Role: Processes and manipulates landmark arrays (padding, reshaping,
etc.).

5. Pickle:
o Purpose: Serialization and deserialization of Python objects.

o Role: Saves the processed dataset (data.pickle) and trained model
(model.p) for reuse.

6. Other Tools:

o Matplotlib/Seaborn: Used for visualizing the confusion matrix during
evaluation.

o Terminal/Command Prompt: Runs Python scripts and monitors logs.

Step-by-Step Guide for Implementation

This section outlines the step-by-step procedure to replicate the project:
1. Setting Up the Environment:
o Install Python 3.9 and create a virtual environment:
o python3-mvenv .venv
o source .venv/bin/activate

o Installrequired libraries:

NMANEMIZTHMIO NEIPAIQZ

,.:a\\
@!;% UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o pipinstall opencv-python mediapipe scikit-learn numpy matplotlib
2. Data Collection:

o Usethe collect_img.py script to manually collect gesture data for each
word:

= Runthe script to capture 100 images per word in two separate
sessions.

= Theimages are stored in a structured directory format under
./data.

3. Dataset Creation:
o Processthe collected images using create_dataset.py:
= MediaPipe extracts hand landmarks from each image.

= The extracted landmarks and corresponding labels are saved in
data.pickle.

4. Model Training:
o Train a Random Forest Classifier using train_classifier.py:
= The datasetis splitinto training and testing sets.
= The modelis trained to classify gestures based on the landmarks.
= Accuracy is calculated, and the model is saved as model.p.
5. Real-Time Inference:
o Perform real-time gesture recognition using inference_classifier.py:
= The webcam captures live frames.
= MediaPipe detects hand landmarks.

= Thetrained model predicts the gesture, displaying the result on the
video feed.

6. Evaluation and Testing:
o Evaluate the model using the confusion matrix generated during training.
o Testthe system in varying conditions:
= Different lighting setups

= Background clutter

NMANEMIZTHMIO NEIPAIQZ

,.:.q\\
f!!-‘:_—__-_‘itm___: UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

= Multiple users performing gestures
7. Visualization:
o Visualize key performance metrics:
= Accuracy
» Confusion matrix

= Real-time predictions on the live feed

8. Code Implementation and Explanation

This section presents a detailed breakdown of the implementation process for the Sign
Language Recognition System, including all critical code components. The modular
structure of the code ensures a clear flow from data collection to real-time inference.

1. collect_img.py — Data Collection

Purpose:

This script collects image data from a webcam to create a dataset for training a sign
language recognition model. The images are labeled according to the word being
performed.

Code Breakdown:

¢ o0s: Manages directories and file paths to save collected data.

e c¢cv2(OpenCV): Captures webcam input, displays the video feed, and overlays
text/graphics.

DATA_DIR ="./data'

if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
o Creates a directory (data) to store images if it doesn’t already exist.

words_to_collect = [

'phone’, 'please’, 'thanks', 'wrong', 'yes', 'car', 'drink’, 'eat-food’,

W NMANEMIZTHMIO NEIPAIQZ

%M UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

‘father', 'fine', 'finish', 'forget’, 'go’, 'hello’, 'help’, 'i-me’,
'iloveyou’, 'like', 'more’, 'mother’, 'need', 'no'

e Defines the list of words (signs) for which image data will be collected.

dataset_size = 100
collections_per_word = 2

¢ 100 images per word per session (200 total images for each word).

cap = cv2.VideoCapture(0)

e Opensthe webcam to begin capturing video.

Main Loop (Data Collection Per Word):

for word in words_to_collect:
for collection_idx in range(collections_per_word):
word_dir = os.path.join(DATA_DIR, word, f'collection_{collection_idx}")

if os.path.exists(word_dir) len(os.listdir(word_dir)) >= dataset_size:
print(f'Skipping collection for {word} (Collection {collection_idx + 1}), already exists.")
continue
e Loops through each word and checks if data already exists. If the collection

already has 100 images, it skips to the next word.

os.path.exists(word_dir):
os.makedirs(word_dir)

o Creates directories to store images for each word if they don’t exist.

Get Ready Message (Before Capturing):

print(f'Collecting data for word: {word} (Collection {collection_idx + 1})")

print('Press "Q" to start collecting...")

while
ret, frame = cap.read()
cv2.putText(frame, f'Get Ready: Collecting {word} (Collection {collection_idx + 1})’,
(50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)

cv2.imshow('frame’, frame)

‘\l} NMANEMIZTHMIO NEIPAIQZ
I

"":'_ﬁ UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Displays the live video feed with a "Get Ready" message prompting the user to prepare
for data collection.

Start Collecting Images:

cv2.imshow('frame', frame)
key = cv2.waitKey(25)

if key == ord('q"):
break
e Waits for the user to press 'Q' to start collecting images.

Image Collection Loop (100 Images):

counter =0

while counter < dataset_size:
ret, frame = cap.read()
cv2.putText(frame, f'Collecting: {word} (Image {counter + 1}/{dataset_size})',
(50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2)
cv2.putText(frame, f'Label: {word}', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
Displays the live video feed while collecting and saves images with the label (word).

cv2.imwrite(os.path.join(word_dir, f'{counter}.jpg’), frame)
counter += 1
e Saves each captured frame as an image (e.g., 1.jpg, 2.jpg).

Pause and Resume Option:

key = cv2.waitKey(25)
if key == ord('q"):
break
elif key == ord('p"):
print("Paused. Press 'r' to resume.")
while

key = cv2.waitKey(1)
if key == ord('r'"):
print("Resuming...")

break
¢ Allows the userto pause ('P') and resume ('R') during image collection.

Release Webcam:

‘\l} NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

cap.release()
cv2.destroyAllWindows()
¢ Closes the webcam and destroys OpenCV windows after data collection.

2. create_dataset.py — Dataset Creation

Purpose:
This script processes collected images to extract hand landmarks using MediaPipe and
stores the data in data.pickle for model training.

Code Breakdown:

import os

import pickle

import cv2
import mediapipe as mp

import numpy as np
e pickle: Serializes the dataset to save and load later.

¢ MediaPipe: Detects and tracks hand landmarks.

mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils

hands = mp_hands.Hands(static_image_mode= , min_detection_confidence=0.3)
e MediaPipe leverages CNNs (Convolutional Neural Networks) to detect hand
landmarks.

e ACNN predicts 21 hand keypoints by regressing their x, y, and z coordinates
directly from the input image.

DATA_DIR ="/data’
OUTPUT_FILE = 'data.pickle’

W NMANEMIZTHMIO NEIPAIQZ

%M UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

'phone’, 'please’, 'thanks', 'wrong', 'yes', 'car', 'drink’, 'eat-food’,
‘father', 'fine', 'finish', 'forget’, 'go’, 'hello’, 'help’, 'i-me’,
'iloveyou’, 'like', 'more’, 'mother’, 'need', 'no'

¢ Specifies the directory for collected data and defines the output file.

if 0s.path.exists(OUTPUT_FILE):

with open(OUTPUT_FILE, 'rb') as f:
dataset = pickle.load(f)
data = dataset['data]
labels = dataset['labels]
print(f"Loaded existing dataset with {len(data)} samples.")
¢ Ifthe dataset already exists, it loads and appends new data.

Processing Each Image:

for collection_folder in os.listdir(word_dir):
collection_path = os.path.join(word_dir, collection_folder)
if 0s.path.isdir(collection_path):
for img_file in os.listdir(collection_path):
img_path = os.path.join(collection_path, img_file)
img = cv2.imread(img_path)
if img
continue

img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(img_rgb)

¢ Eachimage is processed to extract landmarks.

e Converts the image to RGB and detects hand landmarks using the MediaPipe
model.

e OpenCVreadsimages in BGR format. CNNs require RGB input, so color
conversion is applied:

R=Bx0.299+G*0.587+B*0.114

if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
landmarks =]
for Im in hand_landmarks.landmark:

landmarks.append(Im.x)
landmarks.append(Im.y)

‘\l} NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

data.append(landmarks)
labels.append(label)
¢ Stores normalized (x, y) coordinates for each landmark.

¢ Normalized coordinates provide robustness to hand size and distance variations.

with open(OUTPUT_FILE, ‘wb') as f:

pickle.dump({'data": data, 'labels": labels}, f)

e The extracted landmarks are stored in a .pickle file for efficient loading during
model training.

3. train_classifier.py — Model Training

Purpose:
This script trains a machine learning model (Random Forest Classifier) to recognize sign
language gestures based on hand landmarks extracted from images.

Code Breakdown:

import pickle
from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

import numpy as np
e pickle: Loads the processed dataset (data.pickle).

¢ scikit-learn (sklearn):

o RandomForestClassifier: Trains the model using the Random Forest
algorithm.

o train_test_split: Splits the dataset into training and testing sets.
o accuracy_score: Evaluates model performance.

¢ numpy: Efficient numerical operations on arrays of landmark data.

with open('data.pickle’, 'rb') as f:

dataset = pickle.load(f)
¢ Loads the dataset that contains landmark data (data) and corresponding labels

(labels).

‘\l} NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

data = np.array(dataset['data")
labels = np.array(dataset['labels'])
e Converts the datasetinto NumPy arrays for efficient processing.

Splitting Data (Training and Testing):

x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, stratify=labels, shuffle=

¢ Splits the dataset:
o 80% for training (x_train, y_train)
o 20% for testing (x_test, y_test)

o stratify=labels: Ensures each class is proportionally represented in both
training and testing sets.

o shuffle=True: Randomizes data to avoid bias.
o The classifier minimizes Gini impurity during training:
G=1-) (pi*2)

where pi is the probability of classi at a given node.

Model Training (Random Forest):

model = RandomForestClassifier()
model.fit(x_train, y_train)
o Initializes and trains a Random Forest Classifier.

e Each treeinthe forest predicts a class, and the majority vote is chosen.

Model Evaluation:

y_pred = model.predict(x_test)
¢ Tests the model on unseen data (x_test).

e Compares predictions (y_pred) to ground truth (y_test).

Mohamed Nemri P19201

Performance Metrics:

accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average="'weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 =f1_score(y_test, y_pred, average='weighted")
print("\nPerformance Metrics:")
print(f"Accuracy: {accuracy:.2f}")
print(f'Precision: {precision:.2f}")
print(f'Recall: {recall:.2f}")
(

print(f"F1-Score: {f1:.2f}")

1. Accuracy:
Measures the overall correctness of predictions:

Total PredictionsCorrect

Accuracy = —
y Predictions

2. Precision:
Evaluates how many of the predicted gestures are correct:

True Positives

Precision = — —
True Positives + False Positives

3. Recall (Sensitivity):
Measures how well the model identifies gestures:

True Positives

Recall =
eca True Positives + False Negatives

4. F1-Score:
A harmonic mean of precision and recall:

Precision - Recall
F1—Score=2"-

Precision + Recall

Saving the Trained Model:

with open('model.p’, 'wb') as f:
pickle.dump({'model: model}, f)

print('Model saved as model.p')

.\‘l} NANEMIETHMIO MEIPAIQE
oy s .
BRF—""1 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

e Saves the trained model as model.p for future use in real-time prediction
(inference).

Input and Output:
e Input: Processed landmark data from data.pickle.

e Output: Atrained machine learning model (model.p).

4. inference_classifier.py — Real-Time Inference

Purpose:

This script uses the trained model to perform real-time sign language recognition
through the webcam.

Code Breakdown:

import pickle
import cv2
import mediapipe as mp

import numpy as np
e pickle: Loads the trained model.

e OpenCV: Accesses webcam, overlays predictions, and displays results.

e MediaPipe: Detects and tracks hand landmarks in real time.

Load the Model:

with open('model.p’, 'rb") as f:

model_dict = pickle.load(f)
model = model_dict['model]
o Loads the trained Random Forest model saved during the training phase.

Initialize MediaPipe Hands:

W NMANEMIZTHMIO NEIPAIQZ

%M UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils

hands = mp_hands.Hands(static_image_mode= , min_detection_confidence=0.3)
e Initializes the MediaPipe Hands module to detect hand landmarks in the live
video feed.

Define Word List:

words = [
'phone’, 'please’, 'thanks', 'wrong', 'yes', 'car', 'drink’, 'eat-food’,
‘father’, 'fine', 'finish’, 'forget’, 'go’, 'hello’, 'help’, 'i-me’,

'iloveyou’, 'like', 'more’, 'mother’, 'need', 'no'

e Liststhe words the model can recognize.

Start Webcam (Real-Time Inference):

cap = cv2.VideoCapture(0)

e Starts capturing video from the webcam.

Main Loop (Real-Time Prediction):

Wialll=

ret, frame = cap.read()

j ret:
break
¢ Continuously captures frames from the webcam.

Hand Landmark Detection:

frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

results = hands.process(frame_rgb)

e Converts the frame to RGB format (required by MediaPipe).

e Processes the frame to detect hand landmarks.

Extract and Draw Landmarks:

if results.multi_hand_landmarks:

for hand_landmarks in results.multi_hand_landmarks:

NMANEMIZTHMIO NEIPAIQZ

NIVERSITY OF PIRAEUS Mohamed Nemri P19201

mp_drawing.draw_landmarks(
frame, hand_landmarks, mp_hands.HAND_CONNECTIONS

+ If hand landmarks are detected, draws them on the video feed.

Extract Landmark Coordinates:

landmarks =[]

x_coords, y_coords =[], []
for Im in hand_landmarks.landmark:
landmarks.append(Im.x)
landmarks.append(Im.y)
x_coords.append(Im.x * W)
y_coords.append(Im.y * H)
Extracts the (x, y) coordinates of the 21 landmarks from each detected hand.

e These coordinates are normalized and scaled to the frame dimensions (W, H).

Ensure Correct Input Size for Model:

if landmarks:

landmarks = np.pad(landmarks, (0, 42 - len(landmarks)))[:42]

 Pads the landmarks to ensure the model always receives exactly 42 values.

e This prevents errors when fewer landmarks are detected.

Make Prediction (Sign Recognition):

prediction = model.predict([landmarks])

predicted_word = words][int(prediction[0])]
e The model predicts the class (word) based on the detected landmarks.

Overlay Prediction on Video Feed:

x_text = int(min(x_coords)) - 10
y_text = int(min(y_coords)) - 10

x1, y1 = int(min(x_coords)) - 10, int(min(y_coords)) - 10
x2, y2 = int(max(x_coords)) + 10, inf(max(y_coords)) + 10
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)

‘\l} NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

cv2.putText(
frame, predicted_word, (x_text, y_text),
cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA
)
¢ Draws a bounding box and displays the predicted word above the hand.

Display and Exit on 'Q":

cv2.imshow('Sign Language Translator', frame)
if cv2.waitKey(1) & OxFF == ord('q"):
break

cap.release()
cv2.destroyAllWindows()
e Exits when'Q'is pressed.

Input and Output:
e Input: Live video from the webcam.

e Output: Real-time recognition of sign language, overlaid on the video feed.

9. Model Training and Validation

The model training and validation process is a crucial stage in the Sign Language
Recognition System. This section elaborates on the strategies and techniques
employed to train, tune, and validate the Random Forest Classifier, ensuring its
effectiveness for gesture recognition.

Dataset Preparation

¢ The dataset, containing hand landmarks extracted using MediaPipe, is divided
into features (data) and labels (labels).

¢ The features (data) represent the (x, y) coordinates of the hand landmarks for
each sample.

NMANEMIZTHMIO NEIPAIQZ

7\
T

e The labels (labels) correspond to the gesture class (e.g., hello, car, thanks).

Data Splitting Strategy

To evaluate the model's performance effectively, the dataset is splitinto:

¢ Training Set (80%): Used to train the Random Forest model.
« Testing Set (20%): Used to validate the model’s performance on unseen data.

Implementation:
X_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2,

stratify=labels, shuffle=True)

Key Points:

o Stratification: Ensures the class proportions are maintained in both
training and testing sets to prevent class imbalance issues

P9 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o Shuffling: Randomizes the data before splitting, avoiding bias introduced

by data ordering.

o Test Set for Validation: The test set is kept separate to assess the
model's performance realistically on unseen data, reducing the risk of
overfitting.

Random Forest Training

The Random Forest Classifier is trained using the x_train (features) and y_train (labels).

Implementation:
model = RandomForestClassifier()

model.fit(x_train, y_train)

o The Random Forest algorithm grows multiple decision trees using subsets

of the training data and features. Each tree votes, and the majority
decision determines the final class prediction.

o This ensemble technique ensures robustness, reduces overfitting, and
handles noisy data effectively.

NMANEMIZTHMIO NEIPAIQZ

,.:.a\\
L.!I‘;ﬁli‘: UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Performance Metrics

To evaluate the model's effectiveness, several performance metrics are used:

5. Accuracy:
Measures the overall correctness of predictions:

Total PredictionsCorrect

Accuracy = —
Y Predictions

6. Precision:
Evaluates how many of the predicted gestures are correct:

True Positives

Precision = — —
True Positives + False Positives

7. Recall (Sensitivity):
Measures how well the model identifies gestures:

True Positives
Recall =

True Positives + False Negatives

8. F1-Score:
A harmonic mean of precision and recall:

Precision - Recall
F1—Score=2"-

Precision + Recall

10. Testing and Experimental Results

The testing phase evaluates the effectiveness of the trained Random Forest model in
recognizing sign language gestures. This section details real-time inference
demonstrations, examples of both correct and incorrect predictions, and case studies
involving complex gestures.

NMANEMIZTHMIO NEIPAIQZ

,.:.q\\
f!!-‘:_—____‘?_‘____: UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Real-Time Inference Demonstrations

Objective:
To assess the model's performance in a live environment using real-time webcam input.
This phase ensures the system's robustness and usability in real-world scenarios.

Setup:
1. The webcam captures live video frames.
2. MediaPipe detects hand landmarks in real time.

3. Thetrained Random Forest model predicts the gesture based on the extracted
landmarks.

4. The predicted word is displayed on the video feed alongside a bounding box
highlighting the detected hands.

Demonstration Results:

e The system successfully recognized common gestures such as "Hello," "Thanks,"
and "Yes" with high accuracy.

o Gesture recognition was immediate, with predictions appearing within
milliseconds of performing the gesture.

Example:
¢ When the user performed the "Thanks" gesture:

o Landmarks Detected: Hand landmarks accurately captured the shape
and orientation of the gesture.

o Prediction: The model displayed "Thanks" with a bounding box around
the hand.

‘\l} NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Examples of Correct and Incorrect Predictions
Correct Predictions:
¢ Example1:
o Input Gesture: "Father"
o Detected Landmarks: Consistent with the training data.

o Prediction: Correctly classified as "Father."

_\‘}} NANEMIETHMIO MEIPAIQE
oy s .
BRF—""1 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

e Example 2:

o Input Gesture: "Hello"

o Prediction: Successfully classified as “Hello”.

Incorrect Predictions: Despite the model's high accuracy, some errors were observed,
particularly with gestures that have subtle differences.

¢ Example1:
o Input Gesture: "Phone"
o Prediction: Misclassified as "Wrong."

o Reason: Overlapping landmark patterns in similar gestures caused
confusion.

‘\l} NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

¢ Example 2:

_\ii} NANEMIETHMIO MEIPAIQE
i A
Q"’“% UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o Input Gesture: "Car"
o Prediction: Misclassified as "Eat" and “More”

o Reason: The "Car" gesture involves two hands with movement, making it
more challenging to predict accurately. Variability in hand orientation and
movement during the gesture introduced noise, leading the model to
mistakenly predict it as two different gestures, "Eat" and "More," due to
their overlapping features during the motion.

Example 3:

‘\l} NMANEMIZTHMIO NEIPAIQZ

By

o

o

o

=] UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Input Gesture: "No"
Prediction: Misclassified as "Finish"

Reason: The "No" gesture involves movement, and issues such as a dark,
cluttered ("dirty") background and the hand being too close to the camera
led to misclassification. However, when the hand was moved slightly to a
position with a lighter background, the model correctly predicted the

gesture as "No."

NMANEMIZTHMIO NEIPAIQZ

,.:.a\\
[*.!;:_‘:_M‘L..m; UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Insights:

1. Most errors occurred in gestures with overlapping or ambiguous landmark
patterns.

2. The system performed better in controlled lighting and backgrounds compared
to noisy environments.

Case Studies: Complex Gestures

Objective:
Evaluate the system's ability to recognize gestures with intricate hand movements or
multiple hand interactions.

Case Study 1: Multi-Hand Gestures
e Gesture: "Car" (involving two hands forming a steering wheel).

o Result: Successfully detected and classified the gesture when both hands were
slowly moving.

e Challenge: Misclassified when doing the movement fast.
Case Study 2: Dynamic Gestures

e Gesture: "Phone" (requires a specific angle for accurate recognition).

e Result: Correctly classified in 90% of the trials.

e Challenge: The "Phone" gesture shares similarities with the "Wrong" gesture,
causing occasional misclassifications. To ensure accurate detection, the gesture
needs to be performed at a specific angle, minimizing overlaps with other
gestures.

Performance Summary:
Metrics on Testing Data:
e Accuracy: 98%

e Precision: 98%

e Recall: 98%

e F1-Score: 98%

NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS

Performance Metrics:
Accuracy: 0.98
Precision: 0.98

Recall: 0.98
F1-Score: 0.98

Mohamed Nemri P19201

Confusion Matrix Insights:

e High precision in gestures like "Thanks" and "Finish."

e Misclassifications primarily occurred between gestures with similar landmark

patterns.
phone -] [}]] 0]]]
please - 0 0]] 0]]]
thanks - 0 o 150 o o o] o o o
wrong - 0O o 0 o 1] o o o
yes - 0 o) o o] o o o

car- 0 0 0 0 0 144 0 0 0

drink - 0 o) o o o] o o

eat-food - 0 0 0 0 0 0 0 0

father - 0 0 0 0 0 0 0 0

fine - 0 o o o o o o o o

finish - 0 0 0 0 0 0 0 0 0

True Labels

forget - 0 o o o o o o o o
go- 0 [} 0 [} [} 0 [} [} [}
hello- 0 o 0 o o 0 o o o
help- 0 0 [} 0 0 0 0 0 0
Fme - 0 o) o o o] o o o
loveyou - 0] [}]] 0]]]
like - 0O o) o o o] o o o
more - 0 o]] o] o] 0 o] o] o]
mother - 0 o 0 o o 0 o o o
need - 0 [} [} [} [} 0 [} [} [}

no- 0 0 0 0 0 0 0 0 0

Improvements Identified:

Confusion Matrix

o

0

o

o

0

)

o

0

o

Predicted Labels

o

0

o

o 1 o @ o o ©o o o0
o o o o o o o 0 0 140
o o o o o o ©o ©0 0
o o o o o 0 0o 0 0
o o o o o o ©o ©0 0 120
o o o o o 0 0o 0 0
o o o o o 1 ©o o 0
0 0 0 0 0 0 0 0 0 100
o o o o o 0 0o 0 0
o o o @ o 0o ©o o 1
o o o o o 0o o o o0 80
o o o @ o 0o ©o o o0
o o o o o 0 0o 0 0

0 0 0o o 0o 0 0 0 [60
o i@ o o o o o o o0
o o o o o o o 0
-40
0o o o o o o o o0
o o o o o o o o0
o o o o o [BEEM o o o0
-20
o o o o o o0 o0
o o o o o 0o o 0
o o o o o 0 0 o0
. . | ! ! | . .) -0
& & & o O é\a‘?’ @@?’\ &’Z’b ®

¢ Augmenttraining data with more samples for complex gestures.

¢ Fine-tune the model to handle dynamic gestures and occlusions.

NMANEMIZTHMIO NEIPAIQZ

,.:.a\\
[*.!;:'_w,_ll— UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

11. Future Work

The current project lays the foundation for a robust and scalable sign language
recognition system. However, several areas remain for improvement and expansion to
make the system more versatile, accurate, and practical for real-world applications.
This section outlines the potential directions for future work.

Expanding Dataset and Adding New Gestures

Current Limitation:

e The datasetincludes a limited set of gestures primarily focused on single-hand
movements. While effective for basic communication, it does not encompass
the full breadth of sign language vocabulary.

Future Goal:

o Expanding Vocabulary: Collect data for a larger variety of signs, including
complex gestures and multi-word phrases, to make the system more
comprehensive.

e Collaborative Data Collection: Partner with sign language communities and
experts to gather data that reflects diverse regional and cultural variations.

Impact:
A more extensive dataset will improve the system’s versatility, enabling it to support
broader communication needs and cater to different sign language dialects.

Dynamic Gesture Recognition (Incorporating Temporal Data)

Current Limitation:

NMANEMIZTHMIO NEIPAIQZ

b 4 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

e The system focuses on static gestures, which limits its ability to recognize
dynamic signs involving continuous hand movements over time.

Future Goal:

e Temporal Modeling: Incorporate models like Long Short-Term Memory (LSTM)
networks or Transformer-based architectures to handle sequential data
effectively.

o Video-Based Recognition: Train the model to analyze video streams instead of
individual frames to capture the temporal patterns inherent in dynamic gestures.

Impact:
Dynamic gesture recognition would enable the system to interpret more complex
phrases, improve accuracy, and better mimic real-world sign language usage.

Integrating Facial Expressions and Body Postures
Current Limitation:
e The system solely focuses on hand gestures, ignoring other critical components

of sign language, such as facial expressions and body movements, which convey
emotions and additional context.

Future Goal:

o Facial Expression Detection: Integrate tools like MediaPipe Face Mesh to
capture and analyze facial landmarks, such as eyebrow movement or mouth
shapes.

¢ Full-Body Analysis: Extend the system to include body posture and movement
using MediaPipe Pose or similar frameworks.

Impact:

Incorporating facial expressions and body posture would enhance the system's ability
to interpret nuanced communication and emotional context, making it closer to natural
sign language interpretation.

Deploying on Mobile and Edge Devices

Current Limitation:

¢ The system operates on desktop platforms, limiting its accessibility and real-
world usability for on-the-go scenarios.

’;‘3} NMANEMIZTHMIO NEIPAIQZ
)

L.!"m UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

Future Goal:

e Mobile Deployment: Optimize the system for mobile platforms using
frameworks like TensorFlow Lite or ONNX to reduce resource consumption and
latency.

¢ Edge Computing: Deploy the model on edge devices like Raspberry Pi or NVIDIA
Jetson Nano for localized processing, enabling offline functionality.

Impact:
Mobile and edge deployment would make the system portable, accessible, and capable
of functioning in low-connectivity environments, broadening its application scope.

12. Appendices

This section provides supplementary materials to support the main body of the thesis,
including the full source code, examples of raw data and extracted landmarks, and
sample outputs with insights into error cases.

12.1 Full Source Code

The full source code of the project.
1. Data Collection Code (collect_img.py)

import os
import cv2

DATA_DIR = "./data’
if os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)

words_to_collect = [
'phone’, 'please’, 'thanks', ‘wrong', 'yes', 'car', 'drink’, 'eat-food',

‘father’, 'fine', 'finish', 'forget’, 'go’, 'hello’, 'help’, 'i-me’,

'iloveyou’, 'like', 'more’, 'mother’, 'need’, 'no’

dataset_size = 100
collections_per_word = 2

Mohamed Nemri P19201

cap = cv2.VideoCapture(0)

for word in words_to_collect:
for collection_idx in range(collections_per_word):
word_dir = os.path.join(DATA_DIR, word, f'collection_{collection_idx}")

if 0s.path.exists(word_dir) len(os.listdir(word_dir)) >= dataset_size:
print(f"Skipping collection for {word} (Collection {collection_idx + 1}), already exists.")
continue

os.path.exists(word_dir):
os.makedirs(word_dir)

print(f'Collecting data for word: {word} (Collection {collection_idx + 1})")
print('Press "Q" to start collecting...")

while
ret, frame = cap.read()
cv2.putText(frame, f'Get Ready: Collecting {word} (Collection {collection_idx + 1})’,
(50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
cv2.imshow('frame’, frame)
key = cv2.waitKey(25)
if key == ord('q"):
break
elif key == ord('p"):
print("Paused. Press 'r' to resume.")
while
key = cv2.waitKey(1)
if key == ord('r'):
print("Resuming...")
break

counter =0
while counter < dataset_size:
ret, frame = cap.read()
cv2.putText(frame, f'Collecting: {word} (Image {counter + 1}/{dataset_size})',
(50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2)
cv2.putText(frame, f'Label: {word}', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

cv2.imshow('frame’, frame)

cv2.imwrite(os.path.join(word_dir, f'{counter}.jpg'), frame)
counter += 1
key = cv2.waitKey(25)
if key == ord('q"):
break
elif key == ord('p"):
print("Paused. Press 'r' to resume.")

Mohamed Nemri P19201

key = cv2.waitKey(1)

if key == ord('r"):
print("Resuming...")
break

cap.release()
cv2.destroyAllWindows()
2.

2. Dataset Creation Code (create_dataset.py)

import os

import pickle

import cv2

import mediapipe as mp
import numpy as np

mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils

hands = mp_hands.Hands(static_image_mode= , min_detection_confidence=0.3)

DATA_DIR ="/data’
OUTPUT_FILE = 'data.pickle'

words = [
'phone’, 'please’, 'thanks', 'wrong', 'yes', 'car', 'drink’, 'eat-food’,
‘father’, 'fine', 'finish’, 'forget’, 'go’, 'hello’, 'help’, 'i-me’,
'iloveyou’, 'like', 'more’, 'mother’, 'need’, 'no’

if 0s.path.exists(OUTPUT_FILE):

with open(OUTPUT_FILE, 'rb") as f:
dataset = pickle.load(f)
data = dataset['data]
labels = dataset['labels']
print(f'Loaded existing dataset with {len(data)} samples.")
else:

data =]
labels =]
print("No existing dataset found. Creating a new one.")

Mohamed Nemri P19201

for label, word in enumerate(words):
word_dir = os.path.join(DATA_DIR, word)
if os.path.exists(word_dir):
print(f"Skipping {word}, no data collected.")
continue
for collection_folder in os.listdir(word_dir):
collection_path = os.path.join(word_dir, collection_folder)
if os.path.isdir(collection_path):
for img_file in os.listdir(collection_path):
img_path = os.path.join(collection_path, img_file)
img = cv2.imread(img_path)
if img
continue
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(img_rgb)

if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:

landmarks =[]

for Im in hand_landmarks.landmark:
landmarks.append(Im.x)
landmarks.append(Im.y)

data.append(landmarks)

labels.append(label)

with open(OUTPUT_FILE, 'wb') as f:
pickle.dump({'data’. data, 'labels": labels}, f)

print(f"Dataset updated and saved to {OUTPUT_FILE}. Total samples: {len(data)}.")

3. Model Training Code (train_classifier.py)

import pickle

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import numpy as np

with open('data.pickle’, 'rb') as f:

dataset = pickle.load(f)

data = np.array(dataset['data')
labels = np.array(dataset['labels'])

Mohamed Nemri P19201

x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, stratify=labels, shuffle=

model = RandomForestClassifier()
model.fit(x_train, y_train)

y_pred = model.predict(x_test)

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')

f1 =f1_score(y_test, y_pred, average='weighted")

print("\nPerformance Metrics:")
print(f"Accuracy: {accuracy:.2f}")
print("Recall: {recall:.2f}")
print(f"F1-Score: {f1)

(
(
print(f"Precision: {precision:.2f}")
(
(

with open('model.p’, 'wb') as f:
pickle.dump({'model": model}, f)

print("\nModel saved as model.p')

4. Inference Code (inference_classifier.py)

import pickle

import cv2

import mediapipe as mp
import numpy as np

with open('model.p', 'rb") as f:
model_dict = pickle.load(f)
model = model_dict['model]

mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils

hands = mp_hands.Hands(static_image_mode= , min_detection_confidence=0.3)

words = [

Mohamed Nemri P19201

'phone’, 'please’, 'thanks', 'wrong', 'yes', 'car', 'drink’, 'eat-food',
‘father', 'fine', 'finish', 'forget’, 'go’, 'hello’, 'help’, 'i-me’,
'iloveyou’, 'like', 'more’, 'mother’, 'need, 'no'

cap = cv2.VideoCapture(0)

Walll=
ret, frame = cap.read()
if ret:
break

H, W, _ = frame.shape
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = hands.process(frame_rgb)

if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:

mp_drawing.draw_landmarks(
frame, hand_landmarks, mp_hands.HAND_CONNECTIONS

landmarks =[]

x_coords, y_coords =[], []

for Im in hand_landmarks.landmark:
landmarks.append(Im.x)
landmarks.append(Im.y)
x_coords.append(Im.x * W)
y_coords.append(iIm.y * H)

if landmarks:

landmarks = np.pad(landmarks, (0, 42 - len(landmarks)))[:42]

prediction = model.predict([landmarks])
predicted_word = words][int(prediction[0])]

x_text = int(min(x_coords)) - 10
y_text = int(min(y_coords)) - 10

x1, y1 = int(min(x_coords)) - 10, int(min(y_coords)) - 10
x2, y2 = int(max(x_coords)) + 10, inf(max(y_coords)) + 10
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(

‘\l} NMANEMIZTHMIO NEIPAIQZ

UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

frame, predicted_word, (x_text, y_text),
cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA

)

cv2.imshow('Sign Language Translator', frame)
if cv2.waitKey(1) & OxFF == ord('q’):
break

cap.release()
cv2.destroyAllWindows()

12.2 Examples of Raw Collected Data and Extracted Landmarks

1. Raw Data Samples:
o Captured images for gestures like hello, thanks, car, etc.
o Storedin directories such as ./data/hello/collection_0.
Example Structure:
./data/
hello/
collection_0/
0.jpg

1.jpg

collection_1/
0.jpg

1.jpg

thanks/

collection_0/

2. Extracted Landmarks:

_\‘}} NANEMIETHMIO MEIPAIQE
oy s .
BRF—""1 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

o Numerical arrays containing (X, y) coordinates of 21 landmarks for each
hand.

o Example of a single frame's landmark data:
o [0.1234,0.5678,0.2345, 0.6789, ..., 0.9123, 0.4567]

o Corresponding label for this frame: 0 (e.g., representing the gesture hello).

12.3 Real-Time Inference Video

https://drive.google.com/drive/folders/1abzLFpaxX116Jj9JCKHlfejTRh80zZE5?usp=
drive_link

13. References

This section cites all the resources and materials used throughout the research and
development of this project, including papers, books, and open-source libraries.

13.1 Research Papers and Articles on Random Forest and MediaPipe

1. Zhang, Z., & Zhang, X. (2020). Hand Gesture Recognition Using Deep Learning
Models: A Review. International Journal of Human-Computer Interaction,
36(12), 1081-1092.

o Provides an overview of modern gesture recognition systems, including
landmark-based methods.

2. Lugaresi, C., et al. (2019). MediaPipe: A Framework for Building Perception
Pipelines.

o Details the design and functionality of MediaPipe, the key library used for
hand landmark extraction.

13.2 Books on Machine Learning and Gesture Recognition

1. Geitgey, A. (2021). Machine Learning is Fun!.

o Provides accessible examples of machine learning applications, including
classification tasks.

https://drive.google.com/drive/folders/1abzLFpaxX116Jj9JCKHlfejTRh8ozZE5?usp=drive_link
https://drive.google.com/drive/folders/1abzLFpaxX116Jj9JCKHlfejTRh8ozZE5?usp=drive_link

_\‘}} NANEMIETHMIO MEIPAIQE
oy s .
BRF—""1 UNIVERSITY OF PIRAEUS Mohamed Nemri P19201

13.3 Links to Relevant Open-Source Tools and Libraries
1. MediaPipe Hands:

o https://google.github.io/mediapipe/solutions/hands

o Official documentation for MediaPipe Hands, used to extract 21 hand
landmarks.

2. Scikit-Learn:

o https://scikit-learn.org/stable/

o Documentation for Scikit-Learn, including Random Forest Classifier and
performance evaluation tools.

3. NumPy:
o https://numpy.org/

o Official site for NumPy, used for numerical processing and matrix
manipulation.

4. OpenCV:
o https://opencv.org/

o Computer vision library used for image capture, frame processing, and
visualization.

5. Python Official Documentation:

o https://docs.python.org/3/

o Reference for Python programming language and its ecosystem.
6. English Sign Language Learning Resource

e Learn How to Sign YouTube Channel

¢ This YouTube channel was a valuable resource for learning and verifying
English sign language gestures, helping ensure the dataset accurately
represented real-world gestures.

https://google.github.io/mediapipe/solutions/hands
https://scikit-learn.org/stable/
https://numpy.org/
https://opencv.org/
https://docs.python.org/3/
https://www.youtube.com/channel/UCaq-zmK0ShGKkCm6h3ptGrg

