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1. Abstract 

Η νοηματική γλώσσα αποτελεί ένα ζωτικής σημασίας εργαλείο επικοινωνίας για άτομα 
με προβλήματα ακοής ή ομιλίας. Ωστόσο, η έλλειψη ευρείας κατανόησης της νοηματικής 
γλώσσας συχνά δημιουργεί ένα κενό στην επικοινωνία. Η παρούσα έρευνα 
επικεντρώνεται στην ανάπτυξη ενός συστήματος αναγνώρισης νοηματικής γλώσσας σε 
πραγματικό χρόνο, χρησιμοποιώντας το MediaPipe για την εξαγωγή χαρακτηριστικών 
σημείων (landmarks) και τον αλγόριθμο Random Forest για την αναγνώριση 
χειρονομιών. Ο πρωταρχικός στόχος είναι να γεφυρωθεί το χάσμα επικοινωνίας μέσω 
της αυτόματης ερμηνείας της νοηματικής γλώσσας. 

 
Το έργο αυτό είναι δομημένο σε τέσσερα βασικά στάδια: συλλογή δεδομένων, 
δημιουργία συνόλου δεδομένων, εκπαίδευση του μοντέλου και δοκιμή/συμπεράσματα. 
Τα δεδομένα για τη νοηματική γλώσσα συλλέχθηκαν χειροκίνητα μέσω μιας κάμερας 
web, καταγράφοντας διάφορες χειρονομίες όπως "γειά," "ευχαριστώ" και "αυτοκίνητο." 
Το MediaPipe χρησιμοποιήθηκε για την εξαγωγή 21 χαρακτηριστικών σημείων από τις 
εικόνες, μειώνοντας τη διαστατικότητα και εστιάζοντας σε βασικά χαρακτηριστικά για 
την ταξινόμηση. Τα επεξεργασμένα δεδομένα αποθηκεύτηκαν ως αριθμητικές 
συντεταγμένες σε συνδυασμό με τις αντίστοιχες ετικέτες. Ο αλγόριθμος Random Forest 
επιλέχθηκε λόγω της ερμηνευσιμότητας, της ανθεκτικότητας και της υψηλής 
αποδοτικότητάς του σε μικρού έως μεσαίου μεγέθους σύνολα δεδομένων. 

 
Το σύστημα παρουσίασε ενθαρρυντικά αποτελέσματα, με ακρίβεια που ξεπερνά το 90% 
στο σύνολο δοκιμών, αποδεικνύοντας την προοπτική του για εφαρμογές στον 
πραγματικό κόσμο. Οι δοκιμές σε πραγματικό χρόνο επιβεβαίωσαν την ικανότητα του 
μοντέλου να προβλέπει χειρονομίες με ακρίβεια, βασιζόμενο σε ζωντανή 
βιντεοσκόπηση. Παρά τις προκλήσεις, όπως η ποικιλομορφία των χειρονομιών και οι 
συνθήκες φωτισμού, η μελέτη αυτή παρέχει μια βάση για μελλοντικές βελτιώσεις, όπως 
η αναγνώριση δυναμικών χειρονομιών και η ενσωμάτωση επιπλέον χαρακτηριστικών 
του σώματος. 

 
Η έρευνα υπογραμμίζει τη σημασία των εξατομικευμένων συνόλων δεδομένων, των 
ανθεκτικών μοντέλων μηχανικής μάθησης και των συστημάτων εξαγωγής 
συμπερασμάτων σε πραγματικό χρόνο για την αντιμετώπιση ζητημάτων 
προσβασιμότητας. Μελλοντικές εργασίες στοχεύουν στην επέκταση του συνόλου 
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δεδομένων, στην ενσωμάτωση χρονικών δεδομένων για δυναμικές χειρονομίες και 
στην ανάπτυξη του συστήματος σε φορητές συσκευές για αυξημένη χρηστικότητα 

 

 

Sign language is a vital communication tool for individuals with hearing or speech 
impairments. However, the lack of widespread understanding of sign language often 
creates a communication gap. This research focuses on developing a real-time sign 
language recognition system using MediaPipe for landmark extraction and a Random 
Forest classifier for gesture recognition. The primary objective is to bridge the 
communication barrier by enabling automatic sign language interpretation. 

This project is structured into four key stages: data collection, dataset creation, 
model training, and testing/inference. Custom sign language data was collected 
manually using a webcam, capturing various gestures such as "hello," "thanks," and 
"car." MediaPipe was utilized to extract 21 hand landmarks from the images, reducing 
dimensionality and focusing on key features for classification. The processed data was 
stored as numerical coordinates paired with corresponding labels. A Random Forest 
algorithm was chosen due to its interpretability, robustness, and high efficiency for 
small to medium-sized datasets. 

The system achieved promising results, with an accuracy of over 90% on the test 
dataset, demonstrating its potential for real-world applications. Real-time testing 
confirmed the model's ability to predict gestures accurately based on live video input. 
While challenges such as variability in hand gestures and lighting conditions remain, 
this study provides a foundation for future enhancements, including dynamic gesture 
recognition and integration of additional body landmarks. 

This research emphasizes the importance of customized datasets, robust machine 
learning models, and real-time inference systems in addressing accessibility issues. 
Future work aims to expand the dataset, incorporate temporal data for dynamic 
gestures, and deploy the system on portable devices for enhanced usability. 
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2. Introduction 

Background and Motivation 

Communication is a fundamental aspect of human interaction, enabling individuals to 
express thoughts, emotions, and ideas. However, for those who are part of the Deaf and 
Hard of Hearing (DHH) community, this process can present significant challenges, 
particularly in environments where sign language is not widely understood. Observing 
these challenges up close, I was deeply inspired to undertake this project. 

My cousin, who is Deaf, has faced numerous struggles in communicating with others 
who are unfamiliar with sign language. Witnessing her frustration when simple 
conversations became barriers sparked my determination to create a system that could 
bridge the gap between sign language users and the broader community. This personal 
connection provided a powerful motivation to pursue the development of a Sign 
Language Recognition System, an application aimed at enhancing accessibility and 
understanding. 
 

Objectives of the Project 

The primary objectives of this project are as follows: 

1. To develop a real-time sign language recognition system using machine 
learning and computer vision technologies, specifically leveraging the Random 
Forest algorithm for gesture classification. 

2. To facilitate communication between sign language users and non-signers 
by converting hand gestures into meaningful text representations. 

3. To contribute to the accessibility of sign language technologies by creating a 
modular system that can be easily expanded to include more gestures. 

4. To provide a practical demonstration of artificial intelligence’s potential to 
solve real-world accessibility problems. 
 

Significance of the Study 

The significance of this study lies in its potential to impact lives in the Deaf and Hard of 
Hearing community. By cutting communication gaps, the project aims to: 
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• Enhance inclusivity: Enable sign language users to interact more effectively in 

environments where their primary language is not understood. 

• Raise awareness: Highlight the importance of sign language as a tool for 
communication and promote the adoption of accessible technologies. 

• Contribute to technology for good: Demonstrate the potential of machine 
learning and computer vision to address social challenges. 

• Lay a foundation for further research: Provide a framework for future 
advancements in sign language recognition systems, encouraging the 
development of more sophisticated and inclusive solutions. 
 

In essence, this project is not merely a technical endeavor but a personal mission to 
create tools that empower individuals like my cousin. By developing this system, I hope 
to bring us one step closer to a world where communication barriers are minimized, and 
inclusivity becomes the norm. 

 

 

 

3. Relevant Literature Review 

Overview of Existing Sign Language Recognition Systems 

Sign language recognition systems have been a subject of research for decades, driven 
by the need to improve accessibility for the Deaf and Hard of Hearing (DHH) community. 
Many of these systems rely on vision-based techniques to interpret hand gestures and 
convert them into text or speech. For instance, early studies focused on static image 
recognition, where gestures were captured as still images and classified based on 
shape and orientation. However, these systems lacked the ability to process dynamic 
gestures, which are essential for recognizing continuous sign language. 

Recent advancements in computer vision and deep learning have enabled the 
development of more sophisticated systems. The use of frameworks such as MediaPipe 
by Google has revolutionized gesture recognition by providing robust real-time hand 
landmark detection. These frameworks facilitate the extraction of features such as hand 
positions, joint angles, and movement trajectories, which are crucial for accurate 
recognition. Despite these advancements, existing systems often face limitations in 
scalability, adaptability to regional sign language variations, and real-time performance. 
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Machine Learning Algorithms in Gesture Recognition 

Machine learning plays a pivotal role in sign language recognition, offering the ability to 
classify gestures based on extracted features. Various algorithms have been explored in 
the field: 

• Support Vector Machines (SVM): SVMs were among the first machine learning 
techniques used for gesture classification due to their effectiveness in binary 
and multi-class classification tasks. However, their performance deteriorates 
with large datasets and high-dimensional features. 

• K-Nearest Neighbors (KNN): This algorithm is simple and effective for small 
datasets but struggles with scalability and real-time applications. 

• Neural Networks (NN): Deep learning models such as Convolutional Neural 
Networks (CNNs) have demonstrated state-of-the-art performance in gesture 
recognition. They excel at feature extraction and classification but require 
substantial computational resources and large datasets for training. 

• Random Forest (RF): Random Forest has gained attention for its balance of 
simplicity, accuracy, and robustness. It performs well on small-to-medium-sized 
datasets and offers interpretability, making it suitable for sign language 
recognition projects like this one. 
 

Comparative Studies on Classifiers (e.g., Random Forest vs Neural Networks) 

Several comparative studies have evaluated the effectiveness of different classifiers in 
gesture recognition tasks. These studies typically compare factors such as accuracy, 
computational efficiency, and suitability for real-time applications: 

• Accuracy: Neural Networks, particularly CNNs, often outperform other 
classifiers in terms of accuracy due to their ability to learn complex patterns. 
However, Random Forest achieves competitive accuracy with significantly lower 
computational requirements. 

• Efficiency: Random Forest is computationally efficient and faster to train 
compared to Neural Networks, which require iterative optimization processes 
like backpropagation. 

• Interpretability: Unlike Neural Networks, which are often referred to as "black 
box" models, Random Forest provides insights into feature importance, enabling 
researchers to understand the decision-making process. 
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• Scalability: Neural Networks excel with large datasets, while Random Forest is 

better suited for small-to-medium datasets, making it a practical choice for this 
project. 

For this project, the Random Forest classifier was chosen due to its balance of 
accuracy, efficiency, and interpretability. While Neural Networks are ideal for large-
scale, highly complex systems, Random Forest aligns with the project's objectives. 

 

 

 

 

4. Sign Language Recognition 

History and Importance of Sign Language 

Sign language has been a fundamental mode of communication for the Deaf and Hard 
of Hearing (DHH) community for centuries. Its origins date back to the 17th century, 
with documented signs used in education and daily communication. Over time, various 
regional sign languages have evolved, each with unique grammar, syntax, and 
vocabulary. For example, American Sign Language (ASL), British Sign Language (BSL), 
and Greek Sign Language (GSL) reflect cultural differences in their structure and 
expression. 

Sign language is not merely a replacement for spoken language; it is a full-fledged 
linguistic system. It conveys complex ideas, emotions, and narratives through hand 
gestures, facial expressions, and body language. Despite its rich history and 
significance, sign language remains underrepresented in mainstream technologies, 
leading to communication barriers between the DHH community and the hearing 
population. Bridging this gap is critical to promoting inclusivity and accessibility. 
 

Challenges in Automatic Recognition 

Developing systems for automatic sign language recognition poses several challenges: 

1. Gesture Complexity: 

o Sign language gestures are intricate and involve not only hand 
movements but also facial expressions and body posture. 

o Variations in speed, trajectory, and starting position of gestures add 
complexity to recognition. 
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2. Individual Variability: 

o Different users perform the same gesture differently, influenced by 
factors such as hand size, movement style, and signing fluency. 

3. Environmental Factors: 

o Background noise, lighting conditions, and occlusion can degrade the 
performance of recognition systems. 

4. Real-Time Performance: 

o For practical use, systems must process gestures in real-time without 
significant delays, requiring efficient algorithms and hardware 
optimization. 

5. Regional and Contextual Variations: 

o Unlike spoken languages, sign languages are not universally 
standardized. A system trained on one regional sign language may not 
work well for another. 

6. Lack of Comprehensive Datasets: 

o Building extensive datasets with diverse gestures, users, and contexts is 
resource-intensive but essential for robust recognition. 

 

 

Applications in Real-World Scenarios 

Automatic sign language recognition has transformative potential in various domains: 

1. Education: 

o Tools can help educators bridge the gap with DHH students, enabling 
better inclusion in mainstream classrooms. 

o Interactive applications can aid in teaching sign language to hearing 
individuals. 

2. Healthcare: 

o Sign language recognition can facilitate doctor-patient communication in 
hospitals, where interpreters may not always be available. 

3. Customer Service: 
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o Companies can integrate sign language recognition into kiosks and 

chatbots, offering DHH-friendly customer service solutions. 

4. Media Accessibility: 

o Automatic sign recognition can improve captioning and translation 
services, making media content accessible to the DHH community. 

5. Public Services: 

o Government offices, airports, and other public facilities can use 
recognition systems to provide inclusive services. 

6. Personalized Assistance: 

o Sign language-enabled virtual assistants can empower DHH users in 
managing daily tasks. 

7. Social Integration: 

o By breaking communication barriers, these systems can foster stronger 
relationships between the DHH and hearing communities. 

 

 

 

5. Data Collection and Preparation Process 

Manual Data Collection 

The foundation of any machine learning project is high-quality data, and for this project, 
the dataset was manually collected to ensure specificity and relevance to the task of 
recognizing sign language gestures. Using a webcam and a custom-built script 
(collect_img.py), we captured multiple images for each sign language gesture. The 
dataset encompasses 22 distinct words, such as "hello," "thanks," and "car," with 200 
samples per word (100 samples per session “hand” across two sessions ”Left and right 
hand”). Each gesture was performed by a single user to maintain consistency in the 
initial phase of development. 

The manual collection approach allowed me to directly control the quality of the data. 
This ensured that gestures were performed correctly and aligned with the model's 
requirements for subsequent processing. 
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Challenges in Data Collection 

Several challenges arose during the data collection process, which needed to be 
addressed to create a robust dataset: 

1. Lighting Conditions: 

o Variability in lighting caused shadows and reflections, which could affect 
landmark detection. 

o To mitigate this, we performed data collection in a well-lit environment 
with consistent lighting across sessions. 

2. Background Noise: 

o Complex or cluttered backgrounds posed a risk of interfering with hand 
detection. 

o We used plain, neutral backgrounds to enhance the accuracy of the 
MediaPipe model during landmark extraction. 

3. User Variability: 

o While gestures were performed by a single user in this phase, real-world 
usage would involve multiple users with varying hand sizes, movement 
styles, and speeds. 

o Future iterations of the project will address this by expanding the dataset 
to include diverse users. 

4. Gesture Complexity: 
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o Some gestures involve two hands or rapid movements, making them 

harder to capture and process accurately. 

o The recording process included multiple takes to ensure gesture clarity. 

5. Fatigue: 

o Repeating gestures for multiple sessions caused fatigue, potentially 
impacting consistency. Breaks were taken to reduce variability caused by 
user fatigue. 

6. Similarity Between Gestures: 

o Certain gestures, such as "phone" and "wrong," appeared visually similar, 
making them harder to distinguish. 

o Careful adjustments were made to the angle and positioning of the hands 
for each gesture to create distinct visual differences. 

o For example, the gesture for "phone" was performed with a more upright 
posture, while "wrong" was executed at a slightly tilted angle to minimize 
overlap. 

 

 

Dataset Structure and Organization 

The dataset was organized into a hierarchical directory structure for ease of access and 
processing. The structure followed this pattern: 

/data 

    /word_1 

        /collection_0 

            0.jpg 

            1.jpg 

            ... 

        /collection_1 

            0.jpg 

            1.jpg 

            ... 

    /word_2 
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        ... 

 

Each folder represents a specific word (e.g., "hello"), with subfolders for individual 
collection sessions. This structure ensures that the data is easily accessible for both 
training and validation purposes. 

 

Landmark Extraction Using MediaPipe 

Once the images were collected, the next step was to extract meaningful features from 
them. MediaPipe, an advanced framework for machine learning pipelines, was used for 
this purpose. Specifically, the MediaPipe Hands module detected and extracted 21 key 
landmarks for each hand. 
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1. Hand Detection: 

o Each image was processed through MediaPipe to locate the hands within 
the frame. The model outputs normalized (x, y) coordinates for each 
landmark, representing positions relative to the image dimensions. 

2. Landmark Extraction Process: 

o For single-hand gestures, 21 landmarks were extracted. 

o For dual-hand gestures, 42 landmarks (21 for each hand) were extracted. 

o These landmarks were then flattened into a single array for each image. 

3. Data Formatting: 

o Extracted landmarks were saved in the form of arrays, each containing 42 
values (21 points × 2 dimensions). This ensures consistent input size for 
the machine learning model. 

o If no hands were detected in an image, placeholder zeros were added to 
maintain consistent array size. 

4. Advantages of Using Landmarks: 
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o Dimensionality Reduction: Landmarks significantly reduce the amount 

of data compared to using raw images, making the training process more 
efficient. 

o Invariance to Scale and Rotation: Normalized coordinates ensure that 
the model remains robust to variations in hand size and orientation. 

o Improved Generalisation: By focusing on the relative positions of 
landmarks rather than raw pixel data, the model learns to generalize 
better across different scenarios. 

 

 

 

 

6. Mathematical Background of Random Forest Algorithm 

Decision Tree Basics 

A Random Forest is built upon the foundation of decision trees. To understand Random 
Forests, it is essential to grasp the mechanics of decision trees: 

• What is a Decision Tree? 

o A decision tree is a flowchart-like structure used for classification or 
regression tasks. Each internal node represents a question about the data 
(a feature), each branch represents the outcome of the question, and 
each leaf node represents a final decision or prediction. 

• Example of a Decision Tree: Consider a decision tree for recognizing a gesture: 

o Node 1: Is the x-coordinate of landmark 5 greater than 0.5?  

▪ Yes → Go to Node 2 

▪ No → Go to Node 3 

o Node 2: Is the y-coordinate of landmark 8 less than 0.3?  

▪ Yes → Gesture is "hello" 

▪ No → Gesture is "thanks" 

The tree grows by repeatedly splitting the dataset based on the feature (e.g., x or y 
coordinates of landmarks) that best separates the classes. The goal is to make the data 
at each leaf node as homogeneous as possible (pure). 
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Gini Impurity and Information Gain 

To decide the best feature for splitting the data at each node, measures like Gini 
Impurity or Information Gain are used. 

• Gini Impurity: 

o Gini Impurity measures the probability of misclassifying a randomly 
chosen data point if it were assigned a class based on the distribution at 
the node. 

o Formula: G= 1−∑(pi^2) 

  

where pi is the probability of class i at a given node 

 

o Example: If a node contains 100 samples: 

▪ 40 belong to class "hello" 

▪ 60 belong to class "thanks" 

▪ phello=0.4p_{hello} = 0.4, pthanks=0.6p_{thanks} = 0.6 

G=1−(0.42+0.62)=1−(0.16+0.36)=0.48G = 1 - (0.4^2 + 0.6^2) = 1 - (0.16 + 0.36) = 0.48  

A lower Gini Impurity indicates a more "pure" node. 

• Information Gain: 

o Information Gain measures the reduction in entropy (disorder) after 
splitting a dataset. 

o Formula: IG = 𝐻parent − ∑ (
samples in child

samples in parent
× 𝐻child)

child
 

Where: 

H is the entropy of a node. 

Entropy (H) 

o The formula for entropy is: 𝐻 = − ∑ 𝑝𝑖𝑙𝑜𝑔₂(𝑝𝑖)
𝐶

i=1
 

Where: 

C is the number of classes. 
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pi is the proportion of samples belonging to class i in the node. 

 

 

Both Gini Impurity and Information Gain help select the feature and threshold that most 
effectively separates the classes. 

 

Random Forest Ensemble Technique 

Random Forest extends the concept of decision trees by creating an ensemble of 
multiple trees and aggregating their predictions. 

• How It Works: 

1. Bootstrapping:  

▪ Each tree is trained on a random subset (with replacement) of the 
dataset. This introduces diversity among the trees. 

2. Random Feature Selection:  

▪ At each split, a random subset of features is considered for 
splitting, further ensuring tree diversity. 

3. Aggregation:  

▪ For classification tasks, the final prediction is determined by 
majority voting among all trees in the forest. 

▪ For regression tasks, the average prediction from all trees is used. 

• Why It Works: 

o By combining multiple diverse trees, Random Forest reduces overfitting 
and improves generalization. Each tree contributes to the overall 
prediction, but no single tree dominates. 

 

Advantages of Random Forest for Gesture Recognition 

Random Forest is particularly well-suited for gesture recognition tasks for the following 
reasons: 

1. Robustness to Noise: 
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o Even if some trees make errors due to noisy data, the ensemble approach 

minimizes the impact of these errors. 

2. Feature Importance: 

o Random Forest provides insights into the importance of each feature 
(e.g., which landmarks contribute most to recognizing gestures). 

3. Efficiency: 

o Random Forest is computationally efficient for training on medium-sized 
datasets like ours. 

4. Flexibility: 

o It works well with both numerical (landmark coordinates) and categorical 
data. 

5. Handling Multiclass Problems: 

o Our dataset contains 22 classes (one for each word). Random Forest 
effectively handles this multiclass classification problem. 

 

Example of Random Forest in Our Project 

1. Input Data: 

o Each training sample is a flattened array of 42 numerical values (21 
landmarks × 2 dimensions). 

o The label for each sample corresponds to a word (e.g., "hello," "thanks"). 

2. Training Process: 

o Trees are built by splitting the dataset based on landmark coordinates 
that maximize class separation (using Gini Impurity). 

o Example split: "Is the x-coordinate of landmark 5 > 0.5?" 

3. Prediction: 

o During real-time inference, a flattened array of landmarks is passed to the 
forest. 

o Each tree independently predicts a class, and the final prediction is made 
based on majority voting. 

4. Output: 
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o The system outputs the word corresponding to the predicted class (e.g., 

"thanks") along with visual feedback on the screen. 

 

 

 

 

7. Experimental Setup 

Hardware and Software Specifications 

To implement the sign language recognition system, the following hardware and 
software were utilized: 

• Hardware: 

o Laptop: Apple Macbook  Pro (Mid 2015) 

o Processor: Intel Core i7 2.2 GHz 

o RAM: 16 GB 

o Graphics Card: AMD Radeon HD 6770M 

o Storage: 1 TB HDD 

o Camera: Built-in iMac webcam 

• Software: 

o Operating System: macOS Monterey 

o Development Environment: Python 3.9 in a virtual environment 

o Integrated Development Environment (IDE): Visual Studio Code 

 

Libraries and Tools Used  

Several Python libraries and tools were employed to streamline the development 
process: 

1. OpenCV: 

o Purpose: Real-time video capture, frame processing, and visualization. 



 

 
Mohamed Nemri P19201 

   
o Role: Used for capturing video input from the webcam and displaying the 

live feed with annotations such as bounding boxes and predictions. 

2. MediaPipe: 

o Purpose: Extract 21 hand landmarks per hand for gesture recognition. 

o Role: MediaPipe's pre-trained deep learning model detects and tracks 
hand keypoints. 

3. Scikit-Learn: 

o Purpose: Training the Random Forest Classifier. 

o Role: Handles the classification task, model evaluation, and predictions. 

4. NumPy: 

o Purpose: Efficient numerical operations. 

o Role: Processes and manipulates landmark arrays (padding, reshaping, 
etc.). 

5. Pickle: 

o Purpose: Serialization and deserialization of Python objects. 

o Role: Saves the processed dataset (data.pickle) and trained model 
(model.p) for reuse. 

6. Other Tools: 

o Matplotlib/Seaborn: Used for visualizing the confusion matrix during 
evaluation. 

o Terminal/Command Prompt: Runs Python scripts and monitors logs. 

 

Step-by-Step Guide for Implementation 

This section outlines the step-by-step procedure to replicate the project: 

1. Setting Up the Environment: 

o Install Python 3.9 and create a virtual environment:  

o python3 -m venv .venv 

o source .venv/bin/activate 

o Install required libraries:  
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o pip install opencv-python mediapipe scikit-learn numpy matplotlib 

2. Data Collection: 

o Use the collect_img.py script to manually collect gesture data for each 
word:  

▪ Run the script to capture 100 images per word in two separate 
sessions. 

▪ The images are stored in a structured directory format under 
./data. 

3. Dataset Creation: 

o Process the collected images using create_dataset.py:  

▪ MediaPipe extracts hand landmarks from each image. 

▪ The extracted landmarks and corresponding labels are saved in 
data.pickle. 

4. Model Training: 

o Train a Random Forest Classifier using train_classifier.py:  

▪ The dataset is split into training and testing sets. 

▪ The model is trained to classify gestures based on the landmarks. 

▪ Accuracy is calculated, and the model is saved as model.p. 

5. Real-Time Inference: 

o Perform real-time gesture recognition using inference_classifier.py:  

▪ The webcam captures live frames. 

▪ MediaPipe detects hand landmarks. 

▪ The trained model predicts the gesture, displaying the result on the 
video feed. 

6. Evaluation and Testing: 

o Evaluate the model using the confusion matrix generated during training. 

o Test the system in varying conditions:  

▪ Different lighting setups 

▪ Background clutter 
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▪ Multiple users performing gestures 

7. Visualization: 

o Visualize key performance metrics:  

▪ Accuracy 

▪ Confusion matrix 

▪ Real-time predictions on the live feed 

 

8. Code Implementation and Explanation 

This section presents a detailed breakdown of the implementation process for the Sign 
Language Recognition System, including all critical code components. The modular 
structure of the code ensures a clear flow from data collection to real-time inference. 

 

1. collect_img.py – Data Collection 

Purpose: 
This script collects image data from a webcam to create a dataset for training a sign 
language recognition model. The images are labeled according to the word being 
performed. 

Code Breakdown: 

import os 
import cv2 
 

• os: Manages directories and file paths to save collected data. 

• cv2 (OpenCV): Captures webcam input, displays the video feed, and overlays 
text/graphics. 

 

DATA_DIR = './data'  # Path to store collected data 
if not os.path.exists(DATA_DIR): 
    os.makedirs(DATA_DIR) 

• Creates a directory (data) to store images if it doesn’t already exist. 

 

words_to_collect = [ 
    'phone', 'please', 'thanks', 'wrong', 'yes', 'car', 'drink', 'eat-food', 



 

 
Mohamed Nemri P19201 

   
    'father', 'fine', 'finish', 'forget', 'go', 'hello', 'help', 'i-me', 
    'iloveyou', 'like', 'more', 'mother', 'need', 'no' 
] 

• Defines the list of words (signs) for which image data will be collected. 

 

dataset_size = 100  # Number of images per collection 
collections_per_word = 2  # Collect data twice for each word 

• 100 images per word per session (200 total images for each word). 

 

cap = cv2.VideoCapture(0)  
• Opens the webcam to begin capturing video. 

 

Main Loop (Data Collection Per Word): 

for word in words_to_collect: 
    for collection_idx in range(collections_per_word): 
        word_dir = os.path.join(DATA_DIR, word, f'collection_{collection_idx}') 
         
        # Skip collection if data already exists 
        if os.path.exists(word_dir) and len(os.listdir(word_dir)) >= dataset_size: 
            print(f"Skipping collection for {word} (Collection {collection_idx + 1}), already exists.") 
            continue 

• Loops through each word and checks if data already exists. If the collection 
already has 100 images, it skips to the next word. 

 

  if not os.path.exists(word_dir): 
            os.makedirs(word_dir) 
 

• Creates directories to store images for each word if they don’t exist. 

 

Get Ready Message (Before Capturing): 

           print(f'Collecting data for word: {word} (Collection {collection_idx + 1})') 

        print('Press "Q" to start collecting...') 
         
        # Wait for the user to get ready 
        while True: 
            ret, frame = cap.read() 
            cv2.putText(frame, f'Get Ready: Collecting {word} (Collection {collection_idx + 1})',  
                        (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3) 
            cv2.imshow('frame', frame) 
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Displays the live video feed with a "Get Ready" message prompting the user to prepare 
for data collection. 

 

Start Collecting Images: 

cv2.imshow('frame', frame) 
            key = cv2.waitKey(25) 
            if key == ord('q'): 
                break 

• Waits for the user to press 'Q' to start collecting images. 

 

Image Collection Loop (100 Images): 

            counter = 0 

        while counter < dataset_size: 
            ret, frame = cap.read() 
            cv2.putText(frame, f'Collecting: {word} (Image {counter + 1}/{dataset_size})',  
                        (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2) 
            cv2.putText(frame, f'Label: {word}', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)  
Displays the live video feed while collecting and saves images with the label (word). 

 

cv2.imwrite(os.path.join(word_dir, f'{counter}.jpg'), frame) 
            counter += 1 

• Saves each captured frame as an image (e.g., 1.jpg, 2.jpg). 

 

Pause and Resume Option: 

key = cv2.waitKey(25) 
            if key == ord('q'): 
                break 
            elif key == ord('p'):  # Pause functionality 
                print("Paused. Press 'r' to resume.") 
                while True: 
                    key = cv2.waitKey(1) 
                    if key == ord('r'):  # Resume after pause 
                        print("Resuming...") 
                        break 

• Allows the user to pause ('P') and resume ('R') during image collection. 

 

Release Webcam: 
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cap.release() 
cv2.destroyAllWindows() 

• Closes the webcam and destroys OpenCV windows after data collection. 

 

 

 

 

 

2. create_dataset.py – Dataset Creation 

Purpose: 
This script processes collected images to extract hand landmarks using MediaPipe and 
stores the data in data.pickle for model training. 

 

Code Breakdown: 

import os 
import pickle 
import cv2 
import mediapipe as mp 
import numpy as np 

• pickle: Serializes the dataset to save and load later. 

• MediaPipe: Detects and tracks hand landmarks. 

 

mp_hands = mp.solutions.hands 
mp_drawing = mp.solutions.drawing_utils 
 
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3) 

•  MediaPipe leverages CNNs (Convolutional Neural Networks) to detect hand 
landmarks. 

•  A CNN predicts 21 hand keypoints by regressing their x, y, and z coordinates 
directly from the input image.

 

DATA_DIR = './data' 
OUTPUT_FILE = 'data.pickle' 
 
# All words: Existing + New 
words = [ 
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    'phone', 'please', 'thanks', 'wrong', 'yes', 'car', 'drink', 'eat-food', 
    'father', 'fine', 'finish', 'forget', 'go', 'hello', 'help', 'i-me', 
    'iloveyou', 'like', 'more', 'mother', 'need', 'no' 
] 

• Specifies the directory for collected data and defines the output file. 

 

if os.path.exists(OUTPUT_FILE): 
    # Load existing dataset if it exists 
    with open(OUTPUT_FILE, 'rb') as f: 
        dataset = pickle.load(f) 
    data = dataset['data'] 
    labels = dataset['labels'] 
    print(f"Loaded existing dataset with {len(data)} samples.") 

• If the dataset already exists, it loads and appends new data. 

 

Processing Each Image: 

for collection_folder in os.listdir(word_dir): 
        collection_path = os.path.join(word_dir, collection_folder) 
        if os.path.isdir(collection_path): 
            for img_file in os.listdir(collection_path): 
                img_path = os.path.join(collection_path, img_file) 
                img = cv2.imread(img_path) 
                if img is None: 
                    continue 
                img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
                results = hands.process(img_rgb) 

• Each image is processed to extract landmarks. 

•  Converts the image to RGB and detects hand landmarks using the MediaPipe 
model. 

• OpenCV reads images in BGR format. CNNs require RGB input, so color 
conversion is applied:  

R=B×0.299+G×0.587+B×0.114 

 

 

if results.multi_hand_landmarks: 
                    for hand_landmarks in results.multi_hand_landmarks: 
                        landmarks = [] 
                        for lm in hand_landmarks.landmark: 
                            landmarks.append(lm.x) 
                            landmarks.append(lm.y) 
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                        data.append(landmarks) 
                        labels.append(label) 

• Stores normalized (x, y) coordinates for each landmark. 

• Normalized coordinates provide robustness to hand size and distance variations. 

 

with open(OUTPUT_FILE, 'wb') as f: 
    pickle.dump({'data': data, 'labels': labels}, f) 
 

• The extracted landmarks are stored in a .pickle file for efficient loading during 
model training. 

 

3. train_classifier.py – Model Training 

Purpose: 
This script trains a machine learning model (Random Forest Classifier) to recognize sign 
language gestures based on hand landmarks extracted from images. 

 

Code Breakdown: 

import pickle 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
import numpy as np 

• pickle: Loads the processed dataset (data.pickle). 

• scikit-learn (sklearn): 

o RandomForestClassifier: Trains the model using the Random Forest 
algorithm. 

o train_test_split: Splits the dataset into training and testing sets. 

o accuracy_score: Evaluates model performance. 

• numpy: Efficient numerical operations on arrays of landmark data. 

 

with open('data.pickle', 'rb') as f: 
    dataset = pickle.load(f) 

• Loads the dataset that contains landmark data (data) and corresponding labels 
(labels). 
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data = np.array(dataset['data']) 
labels = np.array(dataset['labels']) 

• Converts the dataset into NumPy arrays for efficient processing. 

 

Splitting Data (Training and Testing): 

x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, stratify=labels, shuffle=True) 
 

• Splits the dataset: 

o 80% for training (x_train, y_train) 

o 20% for testing (x_test, y_test) 

o stratify=labels: Ensures each class is proportionally represented in both 
training and testing sets. 

o shuffle=True: Randomizes data to avoid bias. 

o The classifier minimizes Gini impurity during training:  

G= 1−∑(pi^2)  

where pi is the probability of class i at a given node. 

 

Model Training (Random Forest): 

model = RandomForestClassifier() 
model.fit(x_train, y_train) 

• Initializes and trains a Random Forest Classifier. 

• Each tree in the forest predicts a class, and the majority vote is chosen. 

 

Model Evaluation: 

y_pred = model.predict(x_test) 
• Tests the model on unseen data (x_test). 

• Compares predictions (y_pred) to ground truth (y_test). 
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Performance Metrics: 

accuracy = accuracy_score(y_test, y_pred) 
precision = precision_score(y_test, y_pred, average='weighted') 
recall = recall_score(y_test, y_pred, average='weighted') 
f1 = f1_score(y_test, y_pred, average='weighted') 
print("\nPerformance Metrics:") 
print(f"Accuracy: {accuracy:.2f}") 
print(f"Precision: {precision:.2f}") 
print(f"Recall: {recall:.2f}") 
print(f"F1-Score: {f1:.2f}") 
 

1. Accuracy: 
Measures the overall correctness of predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

2. Precision: 
Evaluates how many of the predicted gestures are correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

3. Recall (Sensitivity): 
Measures how well the model identifies gestures: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

4. F1-Score: 
A harmonic mean of precision and recall: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   

 

 

Saving the Trained Model: 

with open('model.p', 'wb') as f: 
    pickle.dump({'model': model}, f) 
 
print('Model saved as model.p') 
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• Saves the trained model as model.p for future use in real-time prediction 

(inference). 

 

Input and Output: 

• Input: Processed landmark data from data.pickle. 

• Output: A trained machine learning model (model.p). 

 

 

 

 

 

4. inference_classifier.py – Real-Time Inference 

Purpose: 
This script uses the trained model to perform real-time sign language recognition 
through the webcam. 

 

Code Breakdown: 

import pickle 
import cv2 
import mediapipe as mp 
import numpy as np 

• pickle: Loads the trained model. 

• OpenCV: Accesses webcam, overlays predictions, and displays results. 

• MediaPipe: Detects and tracks hand landmarks in real time. 

 

Load the Model: 

with open('model.p', 'rb') as f: 
    model_dict = pickle.load(f) 
model = model_dict['model'] 

• Loads the trained Random Forest model saved during the training phase. 

 

Initialize MediaPipe Hands: 
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mp_hands = mp.solutions.hands 
mp_drawing = mp.solutions.drawing_utils 
 
hands = mp_hands.Hands(static_image_mode=False, min_detection_confidence=0.3) 

• Initializes the MediaPipe Hands module to detect hand landmarks in the live 
video feed. 

 

Define Word List: 

words = [ 
    'phone', 'please', 'thanks', 'wrong', 'yes', 'car', 'drink', 'eat-food', 
    'father', 'fine', 'finish', 'forget', 'go', 'hello', 'help', 'i-me', 
    'iloveyou', 'like', 'more', 'mother', 'need', 'no' 
] 

• Lists the words the model can recognize. 

 

Start Webcam (Real-Time Inference): 

cap = cv2.VideoCapture(0) 
• Starts capturing video from the webcam. 

 

Main Loop (Real-Time Prediction): 

while True: 
    ret, frame = cap.read() 
    if not ret: 
        break 

• Continuously captures frames from the webcam. 

 

Hand Landmark Detection: 

frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
    results = hands.process(frame_rgb) 
 

• Converts the frame to RGB format (required by MediaPipe). 

• Processes the frame to detect hand landmarks. 

 

Extract and Draw Landmarks: 

if results.multi_hand_landmarks: 
        for hand_landmarks in results.multi_hand_landmarks: 



 

 
Mohamed Nemri P19201 

   
            # Draw landmarks on the frame 
            mp_drawing.draw_landmarks( 
                frame, hand_landmarks, mp_hands.HAND_CONNECTIONS 
            ) 

• If hand landmarks are detected, draws them on the video feed. 

 

Extract Landmark Coordinates: 

     landmarks = [] 

            x_coords, y_coords = [], [] 
            for lm in hand_landmarks.landmark: 
                landmarks.append(lm.x) 
                landmarks.append(lm.y) 
                x_coords.append(lm.x * W) 
                y_coords.append(lm.y * H) 
Extracts the (x, y) coordinates of the 21 landmarks from each detected hand. 

• These coordinates are normalized and scaled to the frame dimensions (W, H). 

 

Ensure Correct Input Size for Model: 

  if landmarks: 
                # Ensure landmarks match the model's input size 
                landmarks = np.pad(landmarks, (0, 42 - len(landmarks)))[:42] 
 

• Pads the landmarks to ensure the model always receives exactly 42 values. 

• This prevents errors when fewer landmarks are detected. 

 

Make Prediction (Sign Recognition): 

prediction = model.predict([landmarks]) 
                predicted_word = words[int(prediction[0])] 

• The model predicts the class (word) based on the detected landmarks. 

 

Overlay Prediction on Video Feed: 

x_text = int(min(x_coords)) - 10 
                y_text = int(min(y_coords)) - 10 
 
                # Visualize prediction with a bounding box 
                x1, y1 = int(min(x_coords)) - 10, int(min(y_coords)) - 10 
                x2, y2 = int(max(x_coords)) + 10, int(max(y_coords)) + 10 
                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) 
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                cv2.putText( 
                    frame, predicted_word, (x_text, y_text), 
                    cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA 
                ) 

• Draws a bounding box and displays the predicted word above the hand. 

 

Display and Exit on 'Q': 

cv2.imshow('Sign Language Translator', frame) 
    if cv2.waitKey(1) & 0xFF == ord('q'):  # Exit on 'q' 
        break 
 
cap.release() 
cv2.destroyAllWindows() 

• Exits when 'Q' is pressed. 

 

Input and Output: 

• Input: Live video from the webcam. 

• Output: Real-time recognition of sign language, overlaid on the video feed. 

 

 

 

 

9. Model Training and Validation  

The model training and validation process is a crucial stage in the Sign Language 
Recognition System. This section elaborates on the strategies and techniques 
employed to train, tune, and validate the Random Forest Classifier, ensuring its 
effectiveness for gesture recognition.  

 

 

Dataset Preparation 

• The dataset, containing hand landmarks extracted using MediaPipe, is divided 
into features (data) and labels (labels). 

• The features (data) represent the (x, y) coordinates of the hand landmarks for 
each sample. 
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• The labels (labels) correspond to the gesture class (e.g., hello, car, thanks). 

 

Data Splitting Strategy 

To evaluate the model's performance effectively, the dataset is split into: 

• Training Set (80%): Used to train the Random Forest model. 
• Testing Set (20%): Used to validate the model’s performance on unseen data. 

Implementation: 

x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, 

stratify=labels, shuffle=True) 

 

Key Points: 

o Stratification: Ensures the class proportions are maintained in both 
training and testing sets to prevent class imbalance issues 

o Shuffling: Randomizes the data before splitting, avoiding bias introduced 
by data ordering. 

o Test Set for Validation: The test set is kept separate to assess the 
model's performance realistically on unseen data, reducing the risk of 
overfitting. 

 

Random Forest Training 

The Random Forest Classifier is trained using the x_train (features) and y_train (labels). 

Implementation: 

model = RandomForestClassifier() 

model.fit(x_train, y_train) 

o The Random Forest algorithm grows multiple decision trees using subsets 
of the training data and features. Each tree votes, and the majority 
decision determines the final class prediction. 

o This ensemble technique ensures robustness, reduces overfitting, and 
handles noisy data effectively. 
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Performance Metrics 

To evaluate the model's effectiveness, several performance metrics are used: 

5. Accuracy: 
Measures the overall correctness of predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

6. Precision: 
Evaluates how many of the predicted gestures are correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

7. Recall (Sensitivity): 
Measures how well the model identifies gestures: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

8. F1-Score: 
A harmonic mean of precision and recall: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   

 

 

 

 

 

 

10. Testing and Experimental Results 

The testing phase evaluates the effectiveness of the trained Random Forest model in 
recognizing sign language gestures. This section details real-time inference 
demonstrations, examples of both correct and incorrect predictions, and case studies 
involving complex gestures. 
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Real-Time Inference Demonstrations 

Objective: 
To assess the model's performance in a live environment using real-time webcam input. 
This phase ensures the system's robustness and usability in real-world scenarios. 

Setup: 

1. The webcam captures live video frames. 

2. MediaPipe detects hand landmarks in real time. 

3. The trained Random Forest model predicts the gesture based on the extracted 
landmarks. 

4. The predicted word is displayed on the video feed alongside a bounding box 
highlighting the detected hands. 

Demonstration Results: 

• The system successfully recognized common gestures such as "Hello," "Thanks," 
and "Yes" with high accuracy. 

• Gesture recognition was immediate, with predictions appearing within 
milliseconds of performing the gesture. 

Example: 

• When the user performed the "Thanks" gesture:  

o Landmarks Detected: Hand landmarks accurately captured the shape 
and orientation of the gesture. 

o Prediction: The model displayed "Thanks" with a bounding box around 
the hand. 



 

 
Mohamed Nemri P19201 

   

 

 

Examples of Correct and Incorrect Predictions 

Correct Predictions: 

• Example 1:  

o Input Gesture: "Father" 

o Detected Landmarks: Consistent with the training data. 

o Prediction: Correctly classified as "Father." 
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• Example 2:  

o Input Gesture: "Hello" 

o Prediction: Successfully classified as “Hello”. 

 

Incorrect Predictions: Despite the model's high accuracy, some errors were observed, 
particularly with gestures that have subtle differences. 

• Example 1: 

o Input Gesture: "Phone" 

o Prediction: Misclassified as "Wrong." 

o Reason: Overlapping landmark patterns in similar gestures caused 
confusion. 
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• Example 2: 
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o Input Gesture: "Car" 

o Prediction: Misclassified as "Eat" and “More” 

o Reason: The "Car" gesture involves two hands with movement, making it 
more challenging to predict accurately. Variability in hand orientation and 
movement during the gesture introduced noise, leading the model to 
mistakenly predict it as two different gestures, "Eat" and "More," due to 
their overlapping features during the motion. 

 

 

 

• Example 3: 
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o Input Gesture: "No" 

o Prediction: Misclassified as "Finish"  

o Reason: The "No" gesture involves movement, and issues such as a dark, 
cluttered ("dirty") background and the hand being too close to the camera 
led to misclassification. However, when the hand was moved slightly to a 
position with a lighter background, the model correctly predicted the 
gesture as "No." 
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Insights: 

1. Most errors occurred in gestures with overlapping or ambiguous landmark 
patterns. 

2. The system performed better in controlled lighting and backgrounds compared 
to noisy environments. 

 

Case Studies: Complex Gestures 

Objective: 
Evaluate the system's ability to recognize gestures with intricate hand movements or 
multiple hand interactions. 

Case Study 1: Multi-Hand Gestures 

• Gesture: "Car" (involving two hands forming a steering wheel). 

• Result: Successfully detected and classified the gesture when both hands were 
slowly moving. 

• Challenge: Misclassified when doing the movement fast. 

Case Study 2: Dynamic Gestures 

• Gesture: "Phone" (requires a specific angle for accurate recognition). 
• Result: Correctly classified in 90% of the trials. 
• Challenge: The "Phone" gesture shares similarities with the "Wrong" gesture, 

causing occasional misclassifications. To ensure accurate detection, the gesture 
needs to be performed at a specific angle, minimizing overlaps with other 
gestures. 

 

Performance Summary: 

Metrics on Testing Data: 

• Accuracy: 98% 

• Precision: 98% 

• Recall: 98% 

• F1-Score: 98% 
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Confusion Matrix Insights: 

• High precision in gestures like "Thanks" and "Finish." 

• Misclassifications primarily occurred between gestures with similar landmark 
patterns. 

 

Improvements Identified: 

• Augment training data with more samples for complex gestures. 

• Fine-tune the model to handle dynamic gestures and occlusions. 
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11. Future Work 

The current project lays the foundation for a robust and scalable sign language 
recognition system. However, several areas remain for improvement and expansion to 
make the system more versatile, accurate, and practical for real-world applications. 
This section outlines the potential directions for future work. 

 

Expanding Dataset and Adding New Gestures 

Current Limitation: 

• The dataset includes a limited set of gestures primarily focused on single-hand 
movements. While effective for basic communication, it does not encompass 
the full breadth of sign language vocabulary. 

Future Goal: 

• Expanding Vocabulary: Collect data for a larger variety of signs, including 
complex gestures and multi-word phrases, to make the system more 
comprehensive. 

• Collaborative Data Collection: Partner with sign language communities and 
experts to gather data that reflects diverse regional and cultural variations. 

Impact: 
A more extensive dataset will improve the system’s versatility, enabling it to support 
broader communication needs and cater to different sign language dialects. 

 

Dynamic Gesture Recognition (Incorporating Temporal Data) 

Current Limitation: 
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• The system focuses on static gestures, which limits its ability to recognize 

dynamic signs involving continuous hand movements over time. 

Future Goal: 

• Temporal Modeling: Incorporate models like Long Short-Term Memory (LSTM) 
networks or Transformer-based architectures to handle sequential data 
effectively. 

• Video-Based Recognition: Train the model to analyze video streams instead of 
individual frames to capture the temporal patterns inherent in dynamic gestures. 

Impact: 
Dynamic gesture recognition would enable the system to interpret more complex 
phrases, improve accuracy, and better mimic real-world sign language usage. 

 

Integrating Facial Expressions and Body Postures 

Current Limitation: 

• The system solely focuses on hand gestures, ignoring other critical components 
of sign language, such as facial expressions and body movements, which convey 
emotions and additional context. 

Future Goal: 

• Facial Expression Detection: Integrate tools like MediaPipe Face Mesh to 
capture and analyze facial landmarks, such as eyebrow movement or mouth 
shapes. 

• Full-Body Analysis: Extend the system to include body posture and movement 
using MediaPipe Pose or similar frameworks. 

Impact: 
Incorporating facial expressions and body posture would enhance the system's ability 
to interpret nuanced communication and emotional context, making it closer to natural 
sign language interpretation. 

 

Deploying on Mobile and Edge Devices 

Current Limitation: 

• The system operates on desktop platforms, limiting its accessibility and real-
world usability for on-the-go scenarios. 
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Future Goal: 

• Mobile Deployment: Optimize the system for mobile platforms using 
frameworks like TensorFlow Lite or ONNX to reduce resource consumption and 
latency. 

• Edge Computing: Deploy the model on edge devices like Raspberry Pi or NVIDIA 
Jetson Nano for localized processing, enabling offline functionality. 

Impact: 
Mobile and edge deployment would make the system portable, accessible, and capable 
of functioning in low-connectivity environments, broadening its application scope. 

 

 

12. Appendices 

This section provides supplementary materials to support the main body of the thesis, 
including the full source code, examples of raw data and extracted landmarks, and 
sample outputs with insights into error cases. 

 

12.1 Full Source Code 

The full source code of the project. 

1. Data Collection Code (collect_img.py) 

import os 
import cv2 
 
# Define constants 
DATA_DIR = './data'  # Path to store collected data 
if not os.path.exists(DATA_DIR): 
    os.makedirs(DATA_DIR) 
 
# Words to collect 
words_to_collect = [ 
    'phone', 'please', 'thanks', 'wrong', 'yes', 'car', 'drink', 'eat-food', 
    'father', 'fine', 'finish', 'forget', 'go', 'hello', 'help', 'i-me', 
    'iloveyou', 'like', 'more', 'mother', 'need', 'no' 
] 
 
dataset_size = 100  # Number of images per collection 
collections_per_word = 2  # Collect data twice for each word 
 
# Initialize webcam 
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cap = cv2.VideoCapture(0)  # Change the camera index if needed 
 
for word in words_to_collect: 
    for collection_idx in range(collections_per_word): 
        word_dir = os.path.join(DATA_DIR, word, f'collection_{collection_idx}') 
         
        # Skip collection if data already exists 
        if os.path.exists(word_dir) and len(os.listdir(word_dir)) >= dataset_size: 
            print(f"Skipping collection for {word} (Collection {collection_idx + 1}), already exists.") 
            continue 
 
        if not os.path.exists(word_dir): 
            os.makedirs(word_dir) 
 
        print(f'Collecting data for word: {word} (Collection {collection_idx + 1})') 
        print('Press "Q" to start collecting...') 
         
        # Wait for the user to get ready 
        while True: 
            ret, frame = cap.read() 
            cv2.putText(frame, f'Get Ready: Collecting {word} (Collection {collection_idx + 1})',  
                        (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3) 
            cv2.imshow('frame', frame) 
            key = cv2.waitKey(25) 
            if key == ord('q'): 
                break 
            elif key == ord('p'):  # Pause functionality 
                print("Paused. Press 'r' to resume.") 
                while True: 
                    key = cv2.waitKey(1) 
                    if key == ord('r'):  # Resume after pause 
                        print("Resuming...") 
                        break 
 
        # Collect images 
        counter = 0 
        while counter < dataset_size: 
            ret, frame = cap.read() 
            cv2.putText(frame, f'Collecting: {word} (Image {counter + 1}/{dataset_size})',  
                        (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2) 
            cv2.putText(frame, f'Label: {word}', (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)  
# Display the word 
            cv2.imshow('frame', frame) 
            cv2.imwrite(os.path.join(word_dir, f'{counter}.jpg'), frame) 
            counter += 1 
            key = cv2.waitKey(25) 
            if key == ord('q'):  # Stop early 
                break 
            elif key == ord('p'):  # Pause functionality 
                print("Paused. Press 'r' to resume.") 
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                while True: 
                    key = cv2.waitKey(1) 
                    if key == ord('r'):  # Resume after pause 
                        print("Resuming...") 
                        break 
 
cap.release() 
cv2.destroyAllWindows() 
2.  

 

2. Dataset Creation Code (create_dataset.py) 

import os 
import pickle 
import cv2 
import mediapipe as mp 
import numpy as np 
 
# Initialize MediaPipe Hands 
mp_hands = mp.solutions.hands 
mp_drawing = mp.solutions.drawing_utils 
 
hands = mp_hands.Hands(static_image_mode=True, min_detection_confidence=0.3) 
 
DATA_DIR = './data' 
OUTPUT_FILE = 'data.pickle' 
 
# All words: Existing + New 
words = [ 
    'phone', 'please', 'thanks', 'wrong', 'yes', 'car', 'drink', 'eat-food', 
    'father', 'fine', 'finish', 'forget', 'go', 'hello', 'help', 'i-me', 
    'iloveyou', 'like', 'more', 'mother', 'need', 'no' 
] 
 
# Initialize data and labels lists 
if os.path.exists(OUTPUT_FILE): 
    # Load existing dataset if it exists 
    with open(OUTPUT_FILE, 'rb') as f: 
        dataset = pickle.load(f) 
    data = dataset['data'] 
    labels = dataset['labels'] 
    print(f"Loaded existing dataset with {len(data)} samples.") 
else: 
    # Start fresh if no dataset exists 
    data = [] 
    labels = [] 
    print("No existing dataset found. Creating a new one.") 
 
# Process each word folder 
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for label, word in enumerate(words): 
    word_dir = os.path.join(DATA_DIR, word) 
    if not os.path.exists(word_dir): 
        print(f"Skipping {word}, no data collected.") 
        continue 
    for collection_folder in os.listdir(word_dir): 
        collection_path = os.path.join(word_dir, collection_folder) 
        if os.path.isdir(collection_path): 
            for img_file in os.listdir(collection_path): 
                img_path = os.path.join(collection_path, img_file) 
                img = cv2.imread(img_path) 
                if img is None: 
                    continue 
                img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
                results = hands.process(img_rgb) 
 
                # Extract hand landmarks 
                if results.multi_hand_landmarks: 
                    for hand_landmarks in results.multi_hand_landmarks: 
                        landmarks = [] 
                        for lm in hand_landmarks.landmark: 
                            landmarks.append(lm.x) 
                            landmarks.append(lm.y) 
                        data.append(landmarks) 
                        labels.append(label) 
 
# Save processed data to a pickle file 
with open(OUTPUT_FILE, 'wb') as f: 
    pickle.dump({'data': data, 'labels': labels}, f) 
 
print(f"Dataset updated and saved to {OUTPUT_FILE}. Total samples: {len(data)}.") 
 

 

3. Model Training Code (train_classifier.py) 

import pickle 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score 
import numpy as np 
 
# Load the dataset 
with open('data.pickle', 'rb') as f: 
    dataset = pickle.load(f) 
 
data = np.array(dataset['data']) 
labels = np.array(dataset['labels']) 
 
# Split the dataset 
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x_train, x_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, stratify=labels, shuffle=True) 
 
# Train the Random Forest Classifier 
model = RandomForestClassifier() 
model.fit(x_train, y_train) 
 
# Evaluate the model 
y_pred = model.predict(x_test) 
 
# Calculate Performance Metrics 
accuracy = accuracy_score(y_test, y_pred) 
precision = precision_score(y_test, y_pred, average='weighted')  # Handles class imbalance 
recall = recall_score(y_test, y_pred, average='weighted') 
f1 = f1_score(y_test, y_pred, average='weighted') 
 
# Display the metrics 
print("\nPerformance Metrics:") 
print(f"Accuracy: {accuracy:.2f}") 
print(f"Precision: {precision:.2f}") 
print(f"Recall: {recall:.2f}") 
print(f"F1-Score: {f1:.2f}") 
 
# Save the model as modelversion2.p 
with open('model.p', 'wb') as f: 
    pickle.dump({'model': model}, f) 
 
print('\nModel saved as model.p') 
 

 

4. Inference Code (inference_classifier.py) 

import pickle 
import cv2 
import mediapipe as mp 
import numpy as np 
 
# Load the trained model 
with open('model.p', 'rb') as f: 
    model_dict = pickle.load(f) 
model = model_dict['model'] 
 
# Initialize MediaPipe Hands 
mp_hands = mp.solutions.hands 
mp_drawing = mp.solutions.drawing_utils 
 
hands = mp_hands.Hands(static_image_mode=False, min_detection_confidence=0.3) 
 
# Updated list of words for predictions 
words = [ 
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    'phone', 'please', 'thanks', 'wrong', 'yes', 'car', 'drink', 'eat-food', 
    'father', 'fine', 'finish', 'forget', 'go', 'hello', 'help', 'i-me', 
    'iloveyou', 'like', 'more', 'mother', 'need', 'no' 
] 
 
# Start webcam for real-time inference 
cap = cv2.VideoCapture(0) 
 
while True: 
    ret, frame = cap.read() 
    if not ret: 
        break 
 
    H, W, _ = frame.shape 
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 
    results = hands.process(frame_rgb) 
 
    if results.multi_hand_landmarks: 
        for hand_landmarks in results.multi_hand_landmarks: 
            # Draw landmarks on the frame 
            mp_drawing.draw_landmarks( 
                frame, hand_landmarks, mp_hands.HAND_CONNECTIONS 
            ) 
 
            # Extract and normalize landmarks 
            landmarks = [] 
            x_coords, y_coords = [], [] 
            for lm in hand_landmarks.landmark: 
                landmarks.append(lm.x) 
                landmarks.append(lm.y) 
                x_coords.append(lm.x * W) 
                y_coords.append(lm.y * H) 
 
            if landmarks: 
                # Ensure landmarks match the model's input size 
                landmarks = np.pad(landmarks, (0, 42 - len(landmarks)))[:42] 
 
                # Make prediction 
                prediction = model.predict([landmarks]) 
                predicted_word = words[int(prediction[0])] 
 
                # Determine the position to display the word 
                x_text = int(min(x_coords)) - 10 
                y_text = int(min(y_coords)) - 10 
 
                # Visualize prediction with a bounding box 
                x1, y1 = int(min(x_coords)) - 10, int(min(y_coords)) - 10 
                x2, y2 = int(max(x_coords)) + 10, int(max(y_coords)) + 10 
                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) 
                cv2.putText( 
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                    frame, predicted_word, (x_text, y_text), 
                    cv2.FONT_HERSHEY_SIMPLEX, 1.3, (0, 255, 0), 3, cv2.LINE_AA 
                ) 
 
    # Display the frame 
    cv2.imshow('Sign Language Translator', frame) 
    if cv2.waitKey(1) & 0xFF == ord('q'):  # Exit on 'q' 
        break 
 
cap.release() 
cv2.destroyAllWindows() 
 

 

 

12.2 Examples of Raw Collected Data and Extracted Landmarks 

1. Raw Data Samples: 

o Captured images for gestures like hello, thanks, car, etc. 

o Stored in directories such as ./data/hello/collection_0. 

Example Structure: 

./data/ 

    hello/ 

        collection_0/ 

            0.jpg 

            1.jpg 

            ... 

        collection_1/ 

            0.jpg 

            1.jpg 

            ... 

    thanks/ 

        collection_0/ 

            ... 

2. Extracted Landmarks: 
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o Numerical arrays containing (x, y) coordinates of 21 landmarks for each 

hand. 

o Example of a single frame's landmark data:  

o [0.1234, 0.5678, 0.2345, 0.6789, ..., 0.9123, 0.4567] 

o Corresponding label for this frame: 0 (e.g., representing the gesture hello). 

 

12.3 Real-Time Inference Video 

https://drive.google.com/drive/folders/1abzLFpaxX116Jj9JCKHlfejTRh8ozZE5?usp=
drive_link 

 

13. References 

This section cites all the resources and materials used throughout the research and 
development of this project, including papers, books, and open-source libraries. 

 

13.1 Research Papers and Articles on Random Forest and MediaPipe 

1. Zhang, Z., & Zhang, X. (2020). Hand Gesture Recognition Using Deep Learning 
Models: A Review. International Journal of Human–Computer Interaction, 
36(12), 1081–1092. 

o Provides an overview of modern gesture recognition systems, including 
landmark-based methods. 

2. Lugaresi, C., et al. (2019). MediaPipe: A Framework for Building Perception 
Pipelines. 

o Details the design and functionality of MediaPipe, the key library used for 
hand landmark extraction. 

 

13.2 Books on Machine Learning and Gesture Recognition 

1. Geitgey, A. (2021). Machine Learning is Fun!. 

o Provides accessible examples of machine learning applications, including 
classification tasks. 

 

https://drive.google.com/drive/folders/1abzLFpaxX116Jj9JCKHlfejTRh8ozZE5?usp=drive_link
https://drive.google.com/drive/folders/1abzLFpaxX116Jj9JCKHlfejTRh8ozZE5?usp=drive_link
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13.3 Links to Relevant Open-Source Tools and Libraries 

1. MediaPipe Hands: 

o https://google.github.io/mediapipe/solutions/hands 

o Official documentation for MediaPipe Hands, used to extract 21 hand 
landmarks. 

2. Scikit-Learn: 

o https://scikit-learn.org/stable/ 

o Documentation for Scikit-Learn, including Random Forest Classifier and 
performance evaluation tools. 

3. NumPy: 

o https://numpy.org/ 

o Official site for NumPy, used for numerical processing and matrix 
manipulation. 

4. OpenCV: 

o https://opencv.org/ 

o Computer vision library used for image capture, frame processing, and 
visualization. 

5. Python Official Documentation: 

o https://docs.python.org/3/ 

o Reference for Python programming language and its ecosystem. 

6. English Sign Language Learning Resource 

• Learn How to Sign YouTube Channel 

• This YouTube channel was a valuable resource for learning and verifying 
English sign language gestures, helping ensure the dataset accurately 
represented real-world gestures. 

 
 

 

 

https://google.github.io/mediapipe/solutions/hands
https://scikit-learn.org/stable/
https://numpy.org/
https://opencv.org/
https://docs.python.org/3/
https://www.youtube.com/channel/UCaq-zmK0ShGKkCm6h3ptGrg

