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ABSTRACT

In this thesis, we combine knowledge from two different topics: the first is computational

models of attention and free-viewing fixation prediction, and the second is transfer learning

and the generalization ability of deep learning models.

Inspired by human transfer learning abilities, we hypothesized that a fixation model

trained on fixation maps representing human free-viewing behavior would have increased

generalization abilities compared to a task-optimized model.

To test this hypothesis, we created different experimental scenarios that aimed to exten-

sively compare the generalization abilities of these two models or agents. In these scenarios,

we introduced two animal image segmentation tasks between the agents: one similar and

one dissimilar to that of the task-optimized agent.

We concluded that, for our experimental conditions, the fixation agent did exhibit in-

creased generalization abilities, both when direct training was applied to each task separately

and when retraining was performed successively.

viii



CHAPTER 1

INTRODUCTION

1.1 Overview

Each environment we find ourselves in is abundant with information. Our brain has to

undergo the strenuous task of controlling this information stream. The process of the brain

that ”controls and tunes information processing” [88] can be arguably called attention. A

subset of this process that deals with visual information is visual attention.

Visual attention researchers use different categorizations for attention. One of them

is the distinction between bottom-up and top-down attention. For example, when viewing

a scene, attention may be involuntarily guided by the most stimulating parts (bottom-up

mechanism) or be voluntarily guided according to a specific goal of a viewer (top-down

mechanism). Intuitively it may seem that ”everyone knows what attention is” [29], however,

how these mechanisms function and interact is not always apparent. Are these mechanisms

competitive, supplementary, or a mixture? How can researchers isolate and study them?

These questions have been extensively researched by cognitive and psychology scientists

who created well-thought experiments to address them.

A model of visual attention is a theory that aims to explain experimental observations or

make predictions by addressing possible patterns. Based on these models, researchers create

computational models of visual attention. Computational models are not simply a theory.

They are ”instances of models of visual attention” [88]. Given an input image, they can

produce output images reflecting the most prominent parts of an image. They are divided
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into many different categories [87] based on their initial hypothesis with one of the most

researched being the saliency map [36] branch.

The saliency map branch originates in the Feature Integration Theory (FIT). Feature

Integration Theory proposes that ”attention must be directed serially to each stimulus in a

display whenever conjunctions of more than one separable features are needed to characterize

or distinguish the possible objects presented” [86]. It was a hypothesis that aimed to explain

the results of experimental observations. The hypothesis suggested a serial scan of attention

to distinguish objects, especially when the objects have a similar ”conjunction of features”

[86].

This initial hypothesis led to two significant advancements. The first advancement was

the proposal of a computational mechanism based on FIT by Koch and Ulman [36] in which

the term ”saliency map” was first mentioned. The second advancement was the implementa-

tion of this proposal by Itti et al. [27]. These advancements aimed to ”explain covert shifts

of attention” [41]. However, after the sufficiently established connection between model pre-

dictions and eye gaze [37, 71], computational models of attention employing saliency maps

have begun to represent mostly overt attention bottom-up processes [6, 7, 69, 79].

The focus of these computational models was to make fixation predictions as accurate

as possible. However, due to small datasets, models trained only on fixation maps could not

achieve their full potential. A significant improvement in model accuracy was achieved when

the models began to utilize the generalization ability from models with deep architectures

trained on task-specific scenarios, ”loosely related” [41] to fixation prediction like object

recognition.

For example, Kümmerer et al. [43] used ImageNet [14], a pioneering model for object

recognition, as a base model and then retrained it on the MIT300 dataset [9]. Similarly, Pan

et al. utilized ImageNet and retrained on the MIT300 and Salicon datasets [32] while the

Salicon model [32] and the model by Kruthiventi et al. [40] employed the more advanced

VGG-19 [82] as their source before applying the retrain.
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This improvement is due to transfer learning, a phenomenon that arises when knowledge

from one domain is applied to another related domain. In the above cases saliency models,

exploit the knowledge gained from models trained with extensive datasets and very deep

architectures [14, 82] in a task loosely related to fixation prediction like object recognition.

However, according to our understanding, the opposite —meaning the generalization

ability of saliency computational models to task-specific scenarios— has never been studied

utilizing transfer learning. This is followed logically by the fact that until recently, the

fixation datasets [5, 9] did not contain a significant amount of images, and therefore the

focus was on improving accuracy with limited resources. Subsequently, testing the transfer

learning abilities of such models on new tasks was even more challenging.

To tackle the problem of small datasets, scientists introduced different techniques to

capture fixation-like data like mouse-clicking, which had a very high correlation with fixations

from observers [32] aiming to create low-cost techniques for extensive dataset creation. These

datasets are sufficient for training an agent on saliency map generation without pre-training.

This agent will possess the generic skill of creating bottom-up saliency maps for different

visual scenes.

Inspired by human transfer learning abilities, we hypothesize that a fixation agent trained

on general purpose human fixation data is more adaptable when trained in new tasks com-

pared to a task-specific one. To test this hypothesis, we will compare the performance of

this general-purpose agent with that of an agent specifically trained for an image segmen-

tation task. The general-purpose agent will be pre-trained to generate fixation predictions

and retrained on the same task as the segmentation agent. The segmentation agent will be

optimized on this task while the general-purpose agent won’t be.

Then, we will introduce common tasks between the agents that become more and more

dissimilar. By observing their adaptability and accuracy in common tasks, we expect valu-

able insights, especially for the general-purpose agent. In particular, we expect that the

general-purpose agent will prove to be more adaptable across tasks, while the segmenta-
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tion’s agent ability will be greatly influenced by the similarity between tasks.

This hypothesis will be extensively tested across different transitive [85] scenarios, as-

suming that there could be a difference in the acceptance or rejection of the hypothesis when

there is direct retraining, where the agents adapt to only one task at a time, compared to

successive retraining, where the agents adapt to each task one after the other.
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CHAPTER 2

BACKGROUND

2.1 Cognitive Science Background

2.1.1 The Visual Pathway

To understand the properties of attention, a basic background in the anatomy of the visual

pathway is required. For this reason, we will present a short description of its structure. For

a more detailed explanation that includes structural measurements, orientations, blood flow

details, and aging information, our main source of information was [76].

The visual pathway consists of a series of cells that are connected with synapses. A cell is

the basic building block of a living being and a synapse is a connection mechanism through

which an electrical or chemical flow passes. Scientists usually term this electrical or chemical

flow a ”signal”, ”message”, or ”information”.

The first type of cells that are encountered in the visual pathway are the photoreceptors.

They are located inside the retina. There are two types of photoreceptors, rods and cones.

The rods and cones convert the light entering the eye into a neuronal signal which is then

passed to the bipolar cells and then the amacrine cells. The bipolar cell and the amacrine

cell are interneuron cells connected with the ganglion cell.

All, the mechanisms described above are located inside the retina. The axons of the

ganglion cells transmit the electrical impulses outside of the retina via the optic nerve. The

optic nerve consists of the retinal nerve fibers, which are the extension of the ganglion cells,

and the glia cells. The glial cells hold the structure of the nerve fibers together. One optic
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nerve structure consisting of the retinal nerve fibers and the glial cells arises from each retina.

These two structures cross each other in the optic chiasm and then extend toward the Lateral

Geniculate Nucleus (LGN). The part of the nerve fiber-glia cell structure that connects the

optic chiasm with the LGN is called the optic tract.

The LGN is located inside the thalamus. All sensory systems, except the olfactory the

sensory system related with smell, pass through the thalamus. LGN is asymmetrical and

cone-like. This is the part where the structure originating from the ganglion cells terminates.

In the LGN complex processes occur. One of them is the regulation of information, ensuring

the most important are sent to the visual cortex. The fibers originating from the LGN project

to the primary visual cortex or striate cortex. These fibers are called optic radiations.

In the striate cortex (V1), the regulated information is processed and then transmitted

to higher visual association areas called the extrastriate cortex. These areas, which were

formerly called the Broadman areas 18 and 19, are located around the striate cortex and

contain the distinct sub-areas V2, V3, V4 and V5.

2.1.2 Defining Visual Attention

The brain, through the visual pathway, is not able to utilize all available information in

its environment. However, the brain can control and tune the information processing [88].

As mentioned in the introduction, this process can be arguably called attention and a sub-

process of attention is visual attention. The prioritization of certain stimuli against others

is called selective attention [74]. By studying the attention mechanism, scientists created

different categorizations based on the viewpoint and focus of the experiments. The two most

common categorizations are based on the existence of eye gaze focus, and the intentions or

prior knowledge [35] of an individual.

Overt vs Covert Attention: Attention that is connected with the physical direction of

the eye gaze is called overt attention. However, the focus of the eye gaze is not always the area

of interest in an attentive process. Although eye gaze and attention are highly correlated, we
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can focus our attention on areas of our peripheral vision without directly looking at them.

One can easily observe this phenomenon in the deep calculations of professional chess players

who are mentally focused on the position of the chess board without directly looking at it.

This phenomenon is described as covert attention [17]. Due to the creation and optimization

of eye trackers, mechanisms for recording overt attention are easier to obtain and use. For

that reason, overt attention is studied significantly more than covert attention.

Bottom-Up versus Top-Down Attention: Another categorization of attention is based

on the intentions or lack of in an individual. It is a categorization of the selective attention

processes. Bottom-up attention occurs when an individual is naturally attracted to a stimu-

lus in a scenery due to its properties. For example, the eye gaze is attracted to the moon in

an empty night sky. There is no intention behind this attraction. It just naturally occurs.

However, when a human has an intention, the intention biases the attention mechanism

to detect areas relevant to the goal. This process is called top-down attention. For example,

when an individual seeks his black dog in a field, his gaze will gravitate towards the black

areas.

Bottom-up attention data are much easier to produce than top-down data. For this

reason, scientists study bottom-up attention much more frequently than top-down attention.

How these two processes interact is an area of emerging scientific interest.

Comment on the term ”Attention”: There has been sufficiently established criticism

of the term. The main argument addresses the cyclical definitions used to describe what

attention is. In particular, the synopsis of the arguments is that the term is used to ”refer to

both the explanandum (the set of phenomena in need of explanation) and the explanans (the

set of processes doing the explaining)” [24]. Even early publications address the ambiguity of

the term, considering it a ”vague conceptualization” that is ”difficult to falsify empirically”

[33]. However, addressing these arguments and the questions that arise is outside the scope

of this thesis. Although criticism exists and is established, we still chose to use the term due
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to its deep background and categorizations.

2.1.3 Observing Visual Attention in Humans

Forming a basic understanding of how visual attention is studied in an experimental

setting can help us comprehend the reason visual models of attention are designed in a specific

way. Usually, the insights are derived from controlled experiments of visual search tasks.

During these experiments, scientists, using techniques like Magnetic Resonance Imaging that

can detect changes in blood flow, oxygenation, and neuronal activity [76], attempt to identify

the areas that are activated during the experimental process and spot possible patterns.

(a) A spatial cueing paradigm task. [75]
(b) A visual search task. The goal is to find
the T among distractors. [73]

Figure 2.1: The two most common attention experiments.

The two most common types of experiments are the spatial cueing paradigm [74] in which

a human is instructed to react when a stimulus is present in an image, and the visual search

task, in which a human is instructed to detect a stimulus among distractors [58]. Below

we present one of the most researched phenomena in visual attention to further expand

the understanding of the reader on conclusions made from observations in an experimental

setting.
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Efficient Search versus Inefficient Search: After conducting experiments on visual

search tasks, scientists observed that when a stimulus has a feature that is unique among

other elements, for example, a red square among yellow squares, the search is relatively quick.

The number of elements in an array of stimuli does not meaningfully influence the search

time. This is called the pop out phenomenon or efficient search. However, when the target

shares features with the distractors, search time is proportional to the number of distractors

in the array. This phenomenon is called inefficient search. However, it would be better to

imagine the above phenomena in a spectrum. Search time efficiency is directly related to

the number and shared features with distractors. So a search can be ”more efficient” and

”less efficient” [17].

Visual Pathway related observations: In this part, we present some of the most com-

mon observations through the combination of visual search tasks and fMRI imaging. In

particular, scientists observed that on bottom-up attention tasks, the V1 area was the major

activated area [49, 59, 65, 99], and top-down attention is mainly reflected in the V2 area of

the extrastriate cortex while other areas may contribute [18, 59].

Evidence for a hierarchical relationship has been presented by Melloni et al.[59]. In

particular, the author states that hV4 ”qualifies as the locus of convergence between saliency

processing and top-down guidance”. Before that, it was also considered an area that ”harbors

an overall saliency map” [59]. The term saliency map is a fundamental concept in our

endeavor and will be explained in detail in following sections.

2.1.4 Modeling Visual Attention

We have briefly presented the way scientists study attention in an experimental setting

the main categorizations and some insights. We did not get into extensive details, mainly

because our purpose was to paint a picture to the reader of how observations are made

in humans and primates and how they are construed and not to extensively explain the

experimental observations and interpretations.

9



A Model of Visual Attention ”addresses the observed and/or predicted behavior of human

and non-human primate visual attention”[87]. So a model of visual attention aims to address

the underlying biological and psychological phenomena observed in an experimental setting

or make predictions based on the observed patterns.

However, it is not only the biology and psychology communities that are interested in

studying the attention processes. A separate branch of research in attentive processes was

created in the computer vision field before even the appearance of the biological branch [87].

Its main interest was to reduce the computational load of visual information to create more

efficient machines.

The biological and computer vision branches intersect on computational models of at-

tention. Computational models do not only describe observed or predicted behaviors. They

also provide a testing mechanism by accepting image inputs so their performance can be

compared with the performance of humans [87]. One of the first and most influential theo-

ries for the creation of computational models that emerged from the field of psychology was

the Feature Integration Theory (FIT) [86].

The theory addressed the experimental observations of the time and was iteratively

adapted and revised when new information were observed or old beliefs were proven false

[17]. The synopsis of the theory was that “different features are registered early, automati-

cally and in parallel across the visual field, while objects are identified separately and only

at a later stage, which requires focused attention” [86].

Another pioneering model of attention for computational models was the Guided Search

Model [90]. It aimed to improve and build upon the criticism made to FIT while explaining

the observed phenomena in experiments [17] posing as ”an alternative to the feature inte-

gration model of visual search” [90]. This led to a ”competition” between the FIT and the

Guided Search model which created more efficient explanations in subsequent publications of

the authors [17]. It is worth mentioning that both of these models proposed a parallel com-

putation of features and a combination in a fused representation which at a later time was
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termed as a saliency map [17]. Saliency-based models are a main interest in our endeavor.

2.1.5 What is Visual Saliency?

Before attempting to present a formal definition of visual saliency, we will discuss some

thought experiments. A human is placed in front of a black screen without given instructions

on what to expect. Suddenly, a white circle pops out on the screen. His eye gaze naturally

shifts toward the white circle almost instinctively. In another scenario, a human overwhelmed

by thirst seeks water under the hot sun with no possible place to relieve his craving. His

gaze starts to shift toward the hands of the bystanders holding water bottles who had the

foresight not to be so inconsiderate of their needs.

In an empty scenery without apparent stimulants, it is almost certain that our gaze will

naturally gravitate to the white circle. Similarly, when we have a task in mind -which in our

example is to find water- our gaze will shift toward the water bottles much more frequently

than usual. The white circle and the bottles are called the salient parts in our scenery

and it is obvious by the descriptions we have already presented that saliency is affected by

bottom-up and top-down mechanisms.

Let’s now present a formal definition of visual saliency. ”Visual salience (or visual

saliency) is the distinct subjective perceptual quality which makes some items in the world

stand out from their neighbors and immediately grab our attention.” [26] The items that

stand out in our examples are the white circle and the water bottle. A representation of the

visual saliency of a scene is the Saliency Map.

To present a formal definition: ”The Saliency Map is a topographically arranged map

that represents visual saliency of a corresponding visual scene [62].” The saliency map is

strongly connected with selective attention and especially bottom-up processes.

Saliency Map as a Covert attentional selection mechanism: The earliest use of the

term was by Koch and Ulman [36]. They proposed that basic features like color, orientation,

etc. are represented in the brain as different ”elementary feature maps” [36] which have
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higher and lower activity depending on the visual scene. The information from all these

different maps was assumed to be merged in another topographical map termed the saliency

map whose purpose was to represent a combined representation of the elementary feature

maps. This representation was considered to be covert and computed at a pre-attentive stage.

Although the term ”saliency map” was proposed by Koch and Ulman the term ”master map”

proposed five years earlier by Treisman and Gelade [86] in FIT was very similar.

One of the first applied models using the term ”saliency map”, based on the paper of

Koch and Ulman was by Niebur and Koch [63]. This model added the different activities

of each feature map considering the same feature to have the same weight as the others

except for temporal change. This was computed as five times more important claiming that

changing stimuli are of greater significance to attention. The maximum of this map was

considered the most salient region and was computed by a Winner-Take-All (WTA) mecha-

nism. To represent the saccadic eye movements, a representation of sequential selections was

created starting from the maximum salient point in the saliency map and after suppressing

it, continuing to the second, third, etc. highest value. However, the model considered a

breakthrough was a refinement of the base model [62] based on FIT by Itti et al.[27].

Saliency Map for Overt attentional prediction: As mentioned, a saliency map is the

output of computational model of attention. The term saliency map was primarily used to

describe a covert attentional process [41] meaning attention that was expressed through an

”inner ’spotlight’” [28] and not through eye movements.
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Figure 2.2: An image of a puppy (left) and the corresponding saliency map (right)[32].

This shift in the meaning of the term occurred after a connection with covert attention

and eye-movement was established both through fMRI imaging [64], and by comparing covert

model predictions with eye movements [71]. One of the driving factors was propositions like

that of Itti and Koch [28] whose contributions in covert saliency computational models laid

significant groundwork in the previous years [27, 36]. Therefore it is important to have an

understanding of the different uses of the term. In computer vision, saliency is mostly used

as a term when referring to fixation prediction while in vision science saliency is connected

with FIT and the original computational models of covert attention prediction [41].

2.1.6 Saliency-Based Computational Models

Early models of visual attention used handcrafted features to predict the saliency levels

in an image. Using the pre-established categorization of psychology, they were categorized

based on whether they processed bottom-up or top-down information.

Early bottom-up models

Early bottom-up models usually extracted low-level features such as color, contrast, and

texture [92]. One of the first and most influential bottom-up models was based on the

feature integration theory (FIT) and was proposed by Itti et al. [27]. After this, several

other feature-based models were proposed [1, 4, 12, 22, 53, 55, 57, 77, 94, 95]. For example,
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Liu T and al. [53] extracted several features and then used a conditional random field

(CRF) to combine them and make predictions. Zang and Sclaroff [95] proposed a boolean

map approach. Achanta et al. [1] proposed a frequency-tuning model based on features of

color and luminance. Besides the feature extraction methods, a notable mention is Bruce

and Tsotsos [8] who proposed an Attentional Information Maximization (AIM) model based

on information theory ideas.

Early top-down models

Early top-down models were more difficult to model due to their task-specific nature. The

first proposed mechanism[67] used a Bayesian rule-based system to combine information from

bottom-up and top-down saliency maps. After this, several Bayesian models were proposed

[38, 91, 96]. Early machine-learning models, like Jud et al.[34] using Support-Vector-Machines

are also notable because they served an introductory role to the subsequent Deep Learning

models. [92]

The Deep Learning models

Advancements in Deep Learning [46] have enabled the creation of bottom-up and top-down

models using Deep Learning technology. The first Deep Learning model [89] was created by

Vig et al.. It was construed as an ensemble of Deep-Networks (eDN) and outperformed all

the existing models on the MIT300 challenge [9].

Researchers then began to utilize the exceptional abilities of pre-trained models and

transfer learning that had emerged the previous years. The first model was DeepGaze I [43]

utilizing the pre-trained weights of AlexNet [39] a Deep Learning model trained on ImageNet

[14]. Other models followed like DeepFix [40] utilizing VGG-16 [83], and DeepGaze II [44]

utilizing VGG-19 [83].

Jetley et al. [30] followed a different approach by regarding saliency as a generalized

Bernoulli distribution. By combining the Softmax activation function with ”measures de-
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signed to compute distances between probability distributions” [30], they created an effective

loss function that demonstrated better results than typical loss functions. Other notable ap-

proaches combined Convolutional Neural Networks (CNN) with Long Short-Term Memory

(LSTM) networks [13, 52], or even approaches such as SalGan [69] that utilized Generative

Adversarial Network (GAN) [21] models.

In recent years, other approaches have been proposed based on the publications of the

previous years. For example, EML-net [31] used an encoder-decoder architecture. The

encoder contained more than one CNN models, which were separately optimized, then com-

pressed, concatenated, and connected to a decoder for further optimization. Dodge et al.

[15] used a mixture of experts. In their model, an image is passed through a pre-trained

network and then the last layers are concatenated and fed into a category-specific network

of experts. A gated network determines the weights for each of them and the final saliency

map is a weighted sum of the expert saliency maps. Maldi et al. [56] described bottom-up

and top-down features of convolutional networks as saliency maps and combined them to

produce the resulting saliency map.

Last but not least, expanding on their previous work of DeepGaze I and DeepGaze II,

Kummerer et al. proposed DeepGaze III [42]. Α model with an architecture consisting of

three parts. A spatial priority network, a scanpath network, and a fixation selection network.

2.2 Deep Learning Background

2.2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a biologically inspired [46] machine learning

algorithm and the most basic form of a deep-learning model. ANN’s success lies in detecting

non-linear relationships in the input data. Early linear classifiers were only able to divide

their input space into ”very simple regions” [46]. Thus, they approximated solutions to

problems with data sets that were only linearly separable or became separable after hand-

crafted feature extraction. Usually, creating hand-crafted features requires knowledge from
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a domain expert [46]. ANNs can extract features automatically in tasks that require the

representation of high-dimensional relationships creating a distinctive advantage over linear

learners.

An ANN is a multilayered network consisting of an input layer, one or more hidden layers,

and an output layer. The input layer receives the data based on which we want to make a

prediction. The hidden layers are a series of adjustable values called weights or parameters

that can be modified to make the prediction more accurate, and the output layer contains

the final prediction of the model, usually ”in the form of a vector of scores”[46]. The weights

or parameters are inspired by ”neurons” hence the term Artificial Neural Networks. They

are responsible for modifying the input values to their respective output values.

However, we have not yet explained one of the most important aspects of an ANN. How

are these weights adjusted? Before addressing this question in ANNs, we will first address

it in linear learners because they serve as a simple introduction to the more complex nature

of ANNs.

In a linear learner, an objective function measures the difference between the real and

predicted outputs in an instance of training data or an average of multiple instances. Each

weight in a weight vector is then adjusted by a very small amount and the new error is

computed. This new resulting vector is called the gradient vector. If the error increases, the

weights are adjusted in the opposite direction or else in the same.

One of the earliest methods that were used based on the above is called the Stochastic

Gradient Descent which computes the average error over a few examples of the training data

and then repeats the process to the rest reducing or ”descending” the error bit by bit. During

this process, subsets of the training dataset are used and not the whole dataset making the

process ”noisy” [46].

Linear learners performed their computations in parallel. The learning procedure between

a shallow learner and a deep learner is really similar. However, the deep learner computes

the gradients backward and in steps - from output to input - using a technique called back-
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propagation. This technique is a ”practical application of the chain rule” [46]. To understand

this concept, one could imagine a neural network as a ”chain combination” [20]. For example,

the combination:

f(x) = f (3)
(
f (2)

(
f (1)(x)

))
. (2.1)

Would be a neural network and f (1), f (2), f (3) would be each layer of the network [20].

When an input value is given in this chain combination, an output is produced through

a process which is called forward propagation. Then, using the output produced by the

network and the expected value we calculate the loss of the network using a predefined loss

function that suits our needs. A loss function is the way we compute the error between the

predicted and expected values and can take different forms based on the problem we are

studying. After the error is computed a process of adjustment of the chain combination by

taking advantage of the chain rule. This process is called back propagation.

To dive even deeper in our explanation, the functions in our chain can be represented

as different multi-dimensional vectors representing the weights. These vectors are mapped

with one another as a chain combination with the vector closer to the input as the inner

function. Each value in the vector can be though of as a neuron. The output of a neuron

could be represented as [46]:

zj =
n∑

i=1

wjixi (2.2)

• j is the dimension index of our neuron in a layer.

• i is the index of the different weights that are multiplied with the input value of the

previous layer and then summed to get the final value.

So the output of our first layer consisting of m neurons would be represented as:
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f (1)(x) =



z1

z2
...

zm


(2.3)

Now the neurons of the second layers would be represented as:

ql =
m∑
i=1

wlizi (2.4)

Notice that the input value of the neurons are the sum of the weights× neuron values of

the previous layer. And the new layer would be represented as:

f (2)
(
f (1)(x)

)
) =



q1

q2
...

qk


(2.5)

Now the pattern becomes obvious.

These however does not explain how the ANN is able to capture non-linear relationships

as what has been described are all linear transformations.

This is achieved through the use of activation functions. An activation function is a

non-linear function. The most commonly used activation function is Rectified Linear Unit

(ReLU) which is defined as a(x) = max(0, x) . Now the new approximator f(x) takes the

form:

f(x) = a
(
f (3)

(
a
(
f (2)

(
a
(
f (1)(x)

)))))
. (2.6)

The addition of the activation functions forces the network to adjust its weights after

passing them through the activation functions which effectively adds non-linearity.
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2.2.2 Convolutional Neural Networks

Convolutional neural networks(CNNs) [45, 47] ”is a specialized kind of neural network for

processing data that has a known grid-like topology” [20]. They have proven to be especially

useful for image-processing tasks due to the grid-like structure of images. The name of these

networks is derived from a mathematical operation known as convolution, which is used to

replace general matrix multiplication within a layer. In a strict mathematical sense, however,

the operation performed by most code libraries is not convolution but cross-correlation [20].

The difference between convolution and cross-correlation is that in convolution a flip of

one of the functions involved is needed making the order in which you apply the operations

irrelevant (associativity) [20]. However, in CNNs, we don’t need the associative property

and thus it makes the flipping irrelevant. Hence, conventionally, rather than being called

cross-correlational neural networks, they were named convolutional.

Convolutional Neural Networks Architecture

Convolutional neural networks have three main layers: convolution layers, pooling layers,

and fully-connected layers [68]. The first layer is usually the typical input layer which can

be also found in ANNs. Then a convolution layer is introduced:

Convolution Layer: This is the main difference from a typical ANN. They introduce the

idea of computing the convolution operation between the input layer and learnable kernels

[68]. A learnable kernel in our context is a matrix that slides across the input grid, computing

a dot product with the local regions that are learned by the training algorithm. The result of

the sliding is a smaller representation combining information from each local region. Essential

parameters for this procedure are stride and padding which control the size of the output.

Stride refers to the step size of the kernel when sliding across the input. A bigger step results

in a smaller representation. Padding refers to the addition of pixels with zero value in the

edges. This ensures that the image can be thoroughly covered by a two-dimensional filter.
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Each convolution layer uses multiple filters to create different feature maps. The formula for

convolution, as presented below [21], expresses in mathematical terms how these kernels are

applied to local regions of the input to generate a new grid.

Y [i, j] =
∑
m

∑
n

X[i−m, j − n] ·K[m,n] (2.7)

In this formula:

• Y [i, j] is the output value at position (i, j) of the grid called the feature map.

• X[i−m, j − n] is the input value which is based on the position (m,n) of the kernel.

• K[m,n] is the kernel’s value at position (m,n). The kernel is not flipped.

What are the advantages of Convolution: Three advantages of using a CNN are:

”sparse interactions, parameter sharing, and equivariant representations” [20].

Sparse Interactions: In an ANN each input in a layer is connected with every output.

The way this is represented is a matrix multiplication between the input and output val-

ues. However, by using the convolution operation, the number of parameters is drastically

reduced.

For example, if we have 200 inputs connected to 200 outputs the resulting matrix needs

200x200 parameters to perform the multiplication in a typical ANN. However, the result-

ing matrix is smaller by making the interaction sparse, meaning, reducing the number of

connections with an output. If we reduce the number of connections to an output to 5, the

number of parameters needed is 5x100. This is achieved due to the difference in size between

the input and the learnable kernels.

The loss of information resulting from the fact that each input is no longer connected with

each output is partially compensated by faster running time, resistance against overfitting,

and the CNNs’ receptive field. The receptive field is closely tied to the depth of a CNN. A
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higher depth allows for indirect communication of the sparse connections that were previously

disconnected.

Parameter Sharing: In a typical ANN, the elements of a weight matrix are used only

once. With the use of a sliding, learnable kernel, each value of the kernel is applied across

the entire input. This allows the CNN to capture multi-dimensional relationships. For two-

dimensional inputs specifically, the way the CNN captures information is much closer to the

human visual system than the typical ANN. In fact, ”the overall architecture is reminiscent

of the LGN–V1–V2–V4–IT hierarchy in the visual cortex ventral pathway” [68]. The result

is a significant improvement in the ability of neural networks in human-like interpretations

of grid-like inputs such as images.

Equivariant Representations: Parameter sharing allows the network to be equivariant

to translation, meaning that when a transformation is applied to an input, a corresponding

transformation is also applied to the output. Practically this means that the network can

recognize features irrespective of their location in the grid.

Calculating the Output Size for N ×N Inputs in Convolution Layers For better

understanding, we also present the formula [68] that can calculate the output size for an

input of size N ×N ×Din as :

Nout =
Nin + 2P − F

S
+ 1 (2.8)

In this equation Nout is the size of the N ×N output grid. Nin is the size of the N ×N

input grid. P is the padding applied to the input. F is the size of the filter or kernel. S

is the stride step of the convolution operation. Din and Dout is the number of input kernels

and output kernels respectively.

Pooling Layer: CNN layers have multiple filters. Each filter produces an activation

map. The more filters a layer has the more dimensions are in the depth of the resulting
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activation map. Pooling layers can reduce the width and height of the resulting activation

maps to reduce the number of parameters and improve running time. In a similar way to the

kernels in convolution, the pooling filters are applied by sliding the filter across the activation

map. The data-reducing operations that are mostly used in this process are a max (Figure

2.3) or an average.

Figure 2.3: Before and after max-pooling with a stride of 2.

Fully Connected Layer: The outputs from the successive convolutional and pooling

layers terminate in a fully connected layer, the typical layer of an ANN. This layer is usually

combined with a Sigmoid or a Softmax function. These two functions can translate the out-

puts of the fully connected layer in an interpretable format. In detail, the Sigmoid translates

all the outputs into values between 0 and 1, so it is mostly used for binary classification.

On the other hand, the Softmax function can translate the output vector into a probability

distribution and can be used for multi-class classification.

2.2.3 Autoencoders

An autoencoder is a neural network structure that can employ both fully connected layers

and convolution layers. It was inspired to solve problems in an unsupervised way [3]. Its

main idea lies in distorting the input data and then recreating them in an altered form. This

new representation can provide us with insights into the original data. So the original goals
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of the autoencoder as a neural network structure were dimensionality reduction and feature

extraction [20].

The autoencoder structure consists of two main parts, the encoder and the decoder.

The encoder part is responsible for encoding the input information into a lower-dimensional

representation and the decoder is responsible for reconstructing the lower-dimensional rep-

resentation into a new output. However, the goal is to create a representation in an altered

form from the input. The reason is that simply reconstructing the input would not provide

us with meaningful information [20].

The structure of an autoencoder looks like an hourglass. Again it consists of an input

layer, one or multiple hidden layers, and an output layer. The layers become smaller in size

towards the end of the encoder with the last layer named the bottleneck. The bottleneck

is the layer that marks the end of the encoder and the start of the decoder. After the

bottleneck, the layers start to increase in size. This gradual increase enables the decoder to

reconstruct the latent representation of the bottleneck.

The reason for this decrease in dimensionality and the subsequent increase is to achieve

regularization [60]. This allows the network to not simply output the input image but to also

learn the most ”salient” [20] properties based on the task. If this decrease didn’t occur the

network structure would be ”overcomplete” [20] and would overfit the input data without

learning anything useful.

Image Denoising: One of the most well-known problems that use autoencoders as a

possible solution is image denoising. In this problem, the goal is to teach a learner to

recreate the original image given an image that has noise added to it. To tackle this problem

the noisy image is given as an input to the autoencoder. The autoencoder then performs

the forward pass and outputs the prediction of the real image. Then the loss is calculated

between the output image and the real image with no noise. The most common loss function
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used for this problem is usually Mean Squared Error (MSE). The formula of MSE is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.9)

For the denoising task:

• n is the number of pixels in the image.

• yi is the real pixel value.

• ŷi is the predicted pixel value.

The computed loss is then back-propagated in the network and the process continues to the

next image until the network can denoise the images effectively.

Image Segmentation - U-Net: One of the most prominent and successful uses of the

autoencoder is in the task of image segmentation. Specifically, an autoencoder is utilized with

skip connections between the encoder and the decoder. A skip connection is a concatenation

of every step in the encoder with the corresponding layer in the decoder [80]. This approach

significantly increased the accuracy of the models that were used. Until then, the most

successful approaches utilized fully convolution layers with typical CNN architectures such

as Alex-Net, VGG Net, or Google Net [54].

By adding to the decreasing-in-size, fully convolution layers, an up-scaling counterpart

with skip connections, they created an architecture [80] that can make a per-pixel classi-

fication output. This U-Net architecture significantly outperformed previous attempts in

several tasks of medical image segmentation [80].

Improving the U-Net architecture - Adding Residual Connections One of the

major problems that scientists encounter when training very deep neural networks is the

problem of vanishing or exploding gradients [19]. This is a degradation problem that occurs

much more frequently when the layers of a network increase significantly. This problem can
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be addressed by an architectural modification called residual connections [23]. The original

input is feed-forwarded in the stacked layers. The mapping learned from these layers is

denoted as F(x). Then utilizing a skip connection that performs an identity mapping, in

which the original input values x are simply returned as is, we add the original input to

F(x). So the final output of a residual layer is F(x) + x. He et al. [23] showed that a

network that utilized stacks of residual layers was easier to optimize than a network with

stacked convolution layers especially when depth increased.

Zhang et al. utilized the idea of residual layers and modified the U-Net architecture to

incorporate it. This allowed them to outperform ”U-Net with only 1/4 of its parameters”

[98] in a road extraction task.

Further Improving the U-Net architecture - Incorporating Attention Gates:

CNNs can capture relationships of a grid by a down-sampling procedure that enables a

model to understand global connections in an image. However, it is difficult for such a

model to capture ”small objects that show large shape variability” [66] resulting in an in-

creased false positive rate in a segmentation task. To address this problem, attention gates

(AG) were proposed [66]. These attention gates enable a network to suppress unnecessary

background noise and significantly improve localization.

The incorporation of attention gates was inspired by sentence embedding learning [81].

In particular, Oktay et al. [66] use attention coefficients αi ∈ [0, 1] multiplied with the values

of an input feature map in an element-wise fashion. This computes a single scalar value for

each pixel and all the scalar values constitute the output of an attention gate. This AG

enables the model to focus on smaller and more complex objects and areas.

In detail, as we can see in 2.4 the input tensors are linearly transformed using a 1x1x1

channel-wise convolution. Then, the addition operation between the two outputs is per-

formed which then passes through a ReLU activation function to add non-linearity. Then,

the output of the activation function is again linearly transformed and given as an input to
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Figure 2.4: The internal process of an attention gate taken from [66]. Licensed under Creative
Commons Attribution 4.0.

a sigmoid function. Finally, the output of this process is multiplied by the original input.

In the U-Net context, the gating g is applied to the decoder and the original input x is from

the skip connections between the encoder layers and the decoder.

2.2.4 Generative Adversarial Networks

A Generative Adversarial Network [21] is a combination of neural networks that are

”simultaneously trained” [21] in a competitive or ”adversarial” [21] way which revolutionized

the image generation domain. In the original paper [21], Goodfellow et al. compare this

process with an interaction between counterfeiters and policemen. The generative model is

the counterfeiter trying to produce images that will fool the discriminator which has the

policing role. Through this rivalry, the generator and discriminator are driven to improve

their outputs reaching a point where their output may look realistic to a human.

In the original work, the Generator and Discriminator are represented by two neural

networks. The interaction between the two is described as a minmax game. This means that

one player aims to minimize a value while another maximizes it. In our context, the generator

aims to minimize the times the discriminator makes a mistake while the discriminator aims

to minimize their mistakes between fake and real outputs.

In detail, the goal of the Discriminator is to maximize the correctness of the value

log(D(x)) which is the logarithm probability that an input x is real rather than an out-

put of the Generator. The Generator receives noise z as input from a noise distribution

pz(z) and aims to rearrange the inputs in such a way that it fools the discriminator. This
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means that we train the Generator to ”minimize log (1−D (G (z)))” [21]. The minmax game

can be summarized in an equation taken from [21]:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] . (2.10)

However, in practice, the generator performs much better if instead of trying to minimize

log (1−D (G (z))) it aims to maximize logD(G(z)). This is because in the original definition,

the Discriminator can distinguish the images with great accuracy in the first iterations which

leads to saturation [21]. The new definition provides the Generator with an attainable goal,

especially in the early training of the model while keeping intact the dynamic interplay

between the agents.

Conditional Generative Adversarial Network In the original paper on GANs, Good-

fellow et al. propose a different definition that would make the GAN conditional. They state

that ”A conditional generative model p(x|c) can be obtained by adding c as input to both G

and D”. The actualization of this idea was created by Mizra et al.. In their implementation,

an extra input layer is used for the Generator and the Discriminator that represents the

addition of c. They state that c (y using their notation) ”could be any kind of auxiliary

information, such as class labels or data from other modalities” [61]. The combination of in-

put noise with this extra information such as the class label, allows the Generator to output

a diversity of images that can be easily conditioned by the user.

Image-to-image translation with GANs Early implementations [48, 72] of image-to-

image translation utilizing GANs were not conditional. They utilized the structure of regular

GANs relying on a loss to ensure the translation of the image from one domain to another.

This loss is usually the mean squared error loss (called L2 loss) that would be slightly adapted

based on the particular task. In this process, it is very common to utilize an autoencoder as
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the Generator. The use of the mean squared error loss in the image-to-image task reminds

the use of the aforementioned in the denoising task of autoencoders.

The GAN in an image-to-image translation task does not need the addition of noise, as

the goal now is not to generate new, different images from scratch that look like the originals.

Using noise would mean that the aim is to achieve different outputs which doesn’t serve a

purpose in an image-to-image task.

The first conditional implementation of image-to-image translation utilizing GANs was

by Isola et al. [25]. The condition was the addition of the real image in the input of the

generator and discriminator. They utilized a U-Net [80] architecture for the generator part

and a PatchGan architecture for the discriminator part.

A typical discriminator should be able to discern what image is counterfeit and which is

not. However, until then, discriminators produced only one classification judgment for the

entire image. Contrary to that, the PatchGan architecture classifies patches of the image

and produces the final decision after producing a decision for each patch separately and then

combining these decisions for a final result. This allows the discriminator to focus on local

areas and forces the generator to produce finer details.

Conditional GAN architectures similar to the implementation of Isola et al. have been

utilized to unravel relationships between visual tasks [93]. Intuitively, we know that some

visual tasks are more similar than others. However, the first systematic way to measure this

similarity was proposed by Zamir et al. [93]. By utilizing transfer learning scenarios and

conditional GANs, they created the most extensive taxonomy among visual tasks until then.

2.2.5 Transfer Learning

Transfer learning in the real world is the process in which a person’s general experience

can be applied to many different situations. For example, if one has taken advanced math-

ematical lectures at the university, he is more likely to understand theoretical concepts in

physics. Similarly, if one can play the violin at a professional level, he is also more likely to

learn the piano faster than a beginner [100] even if there is no difference in time spent study-
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ing. As we can deduce, there needs to be a connection between the two learning procedures

and common learning domains or tasks for a person to gain an easily observable advantage

in the learning process. We shouldn’t expect that learning to swim will give us a significant

advantage in understanding advanced theoretical mathematical concepts.

In deep learning, transfer learning is a process that allows the training of one model to

be used as a starting point for another model. Usually, it is used when there are not enough

labeled data for a new task while there are plenty in a similar one. This allows the model

to require much less task-specific training data for the new task. However, the two tasks

must be significantly similar or even the same, else there could be no positive gain from the

knowledge transfer, and even in some cases, the new model could be influenced negatively

[97]. Below we present a definition taken from [70]:

Transfer Learning: Given a source domain DS and learning task TS, a target domain

DT and learning task TT , transfer learning aims to help improve the learning of the target pre-

dictive function fT (·) in DT using the knowledge in DS and TS, where DS ̸= DT , or TS ̸= TT .

This definition implies that transfer learning can occur even if only the tasks or the do-

mains are different without needing both to occur simultaneously even though it is possible.

However, in most practical uses in deep learning tasks, usually DS ̸= DT [70]. The term

domain in this definition consists of a feature space and the marginal probability distribu-

tion for that feature space, and the term task refers to the possible labels a learning sample

can take in combination with the objective function. This is the function that we want to

approximate.

Measuring the success of transfer learning through fine-tuning:

Advances in deep learning and particularly research in the abilities of transfer learning have

reached a point where the success or failure of a transfer learning task can be measured
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experimentally. The generalization ability of the base model to the new domain or the

”transferability” measure that has been developed in the past few years, ”can be categorized

into three groups: feature statistics based, test performance based, and finetuning based ”

[97].

The feature statistics-based measurement relies on metrics like maximum mean discrep-

ancy (MMD) and KL-divergence, and the performance-based measurement measures the

success of a classifier trained in one domain when applied to another [97]. However, these

two measurements would compute an expected transferability measure for our case. To ac-

curately capture the transferability of a source model to another domain, the best way is to

utilize the last technique which evaluates actual fine-tuning performance.

This technique involves training or using a pre-trained base model and fine-tuning the

base model to a different task. This technique uses performance metrics like the model’s

accuracy in the new task to measure the similarity between the two domains, called ”trans-

ferability” from one domain to another.

The pioneering work that used fine-tuning to measure transferability was from Zamir et

al. [93]. They created a taxonomy of vision models based on their pre-training and success in

subsequent fine-tuning. Their goal was to unveil an underlying structure [93] that connected

basic vision tasks to reduce the need for labeled data. Subsequent publications like Achille et

al. [2] tried to create a more efficient measurement of taxonomic distance named Task2Vec

which we will not explain in detail. However, based on the work of Zamir et al, in their

work, they provide us with a metric of transfer distance between two tasks which is a great

measure to showcase the transferability from one task to another. We present the definition

below verbatim [2]:

Transfer distance: We define the transfer (or fine-tuning) gain from a task ta to a task tb

(which we improperly call distance, but is not necessarily symmetric or positive) as the dif-

ference in expected performance between a model trained for task tb from a fixed initialization

(random or pretrained), and the performance of a model fine-tuned for task tb starting from
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a solution of task ta:

Dft(ta → tb) =
E[ϵa→b]− E[ϵb]

E[ϵb]
,

where the expectations are taken over all training with the selected architecture, training

procedure, and network initialization, ϵb is the final test error obtained by training on task b

from the chosen initialization, and ϵa→b is the error obtained instead when starting from a

solution to task a and then fine-tuning (with the selected procedure) on task tb.

In simple words, this definition provides a measure of the benefit of training in a source

task ta and then retraining on another target task tb, against training in the target task tb

from scratch. A positive number indicates a benefit while a negative indicates that there is

a negative transfer between the two tasks.
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CHAPTER 3

EXPERIMENT DEFINITION AND METHODOLOGY

In our definition of the experiment, two agents are trained. The first agent is trained

on fixation maps under free-viewing conditions representing the attention mechanism of a

human and the second task-specific agent is trained to become optimized in a segmentation

task. The first fixation agent is then retrained in the same task as the second agent. Then,

common tasks are introduced between the two agents.

The fixation maps are expected to make the first agent behave in a human-like way and

the second agent as a task-optimized mechanism. This means:

• The first agent will adapt quickly to the common tasks using a small or moderate-sized

dataset regardless of their similarity or dissimilarity.

• The first agent, trained on human fixation maps, is expected to be more adaptable

across tasks than the task-specific showcasing generalization ability, a human charac-

teristic.

• The second agent will be adaptable to similar tasks and could be equal or better

in performance than the first agent. However, as the tasks get more dissimilar his

performance is expected to decline in contrast to the first agent.

In detail, to achieve the training of the agents would be to create a model that given an

input or a pair of inputs can output a segmentation map that represents the target of our

task. In the above definition, this target would be a segmentation map of the goal. This

model will be a pixel-to-pixel [93] classification else called a segmentation model that will

32



divide the input image into two regions. The first region represented with black pixels would

be the area that the model would have no interest in and the region represented with white

pixels would be the area that represents the understanding of the model in the goal.

For the retraining of the model, transfer learning is utilized. In our context, we have

a case of inductive transfer learning [70], which refers to a scenario where the source and

target tasks are different, but there is labeled data available for the target task. The process

we are going to follow will be based on the influential paper for transfer learning of Zamir

et al. [93].

In their approach, models are trained from scratch for several visual tasks with a moderate

amount of pictures. Then retraining is applied from the base models to all other tasks. They

also compare their results with a task-optimized mechanism. In their results, we can observe

that there can be significant improvements in the models using a source task and then

retraining when contrasted to models that do not.

There are also clear levels of improvement and different efficiency using different source

tasks which indicate a better level of transferability between tasks and a clear difference

in taxonomy. This indicates that their approach of comparing accuracy with and without

pre-training, might yield interpretable results to our problem as well.

3.1 Datasets

All of the datasets used for the different agents are based on the COCO dataset. This is

one of the most extensive datasets labeled using ”per-instance segmentation” [50] with more

than 91 object categories and 328k images.

Segmentation Datasets: The segmentation datasets are constructed from the different

categories of the Microsoft COCO dataset [50]. The COCO dataset provides several cat-

egories that may become increasingly dissimilar. In our case, we chose three progressively

dissimilar animals—dogs, giraffes, and birds—based on the animal taxonomy established by
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Carl Linnaeus. This classification system, described in his tenth edition of Systema Naturae

[51] in 1758, constitutes a golden standard generally accepted until today, albeit with new

scientific discoveries incorporated.

To further explain, this animal taxonomy consists of seven basic ranks created based on

similar physical characteristics. Therefore, the visual appearance of the animals is analogous

to the rank they belong to. These ranks are Kingdom, Phylum, Class, Order, Family, Genus,

and Species [11]. Dogs and giraffes are mammals and belong to the same Kingdom, Phylum,

and Class. However, birds belong to the same Kingdom and Phylum as dogs and giraffes

but in a different Class [84]. Therefore, based on this taxonomy, it is expected that the

visual appearance of birds has a higher distance from giraffes than the visual appearance

of dogs. Furthermore, it should be noted that the bird category has more branches in the

sub-categories when contrasted to the other two tasks, meaning that their Order, Family

and Genus varies depending on the bird Species. This implies that this task is not only more

dissimilar, but could also prove to be harder due to higher diversity.

Fixation Dataset: For the bottom-up fixation model, we utilized Salicon’s[32] training

dataset. Salicon’s training dataset is constructed from a selection (10k) of images from the

Microsoft COCO dataset. This selection is made from 80 out of the 91 categories of the

original COCO dataset, including the categories we will utilize in our training, as well as

other very similar categories to ours, like cats and zebras, and very different categories like

clocks and chairs. This creates an extensive training dataset that aims to be representative

of the general free-viewing behaviors humans exhibit in everyday life.

The Salicon dataset consists of pairs of images from real-world images and fixation maps.

However, the fixation maps are not constructed with an eye-tracker, which was the typical

way to construct such datasets until then, but by mouse clicks of humans observing the

real-world images. Scientists showcased [32] that there is a sufficient connection between eye

fixation and mouse clicks so they replaced the eye tracker with a procedure that was much
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easier to perform. This allowed them one of the most extensive eye-fixation datasets.

For our training needs, we utilized the entire Salicon dataset. This ensures that our

fixation agent will be presented with a diverse set of images, including those relevant to our

experiment. Since the Salicon dataset contains many different animal categories, including

ours, we expect a well-crafted model to exhibit high accuracy in these categories and therefore

to successfully mirror human free-viewing behaviour in them.

Preprocessing the datasets: There were several other category combinations that could

follow the criteria of dissimilarity. However, there are not many categories with at least

2k images. The three categories we picked had enough images to set up our experiment.

After cropping the images to be of similar size, we picked the 2k images with the highest

percentage of pixels that belong to the goal. This helps us to partially avoid the cases where

the conditional GAN would overfit the negative class resulting in a generated image with

only black pixels. After modification, we can achieve the below representation 3.1 for each

category.

(a) The original image (b) The segmentation map of the goal

Figure 3.1: Representation of the original and segmented image of a dog.

Then we split the resulting datasets to create a testing dataset that contains 100 images.

Due to the nature of our experiment, we won’t be focusing on hyper-parameter searching or

model-tuning, so a validation dataset is not required.
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3.2 Model

Combining ideas from SalGan [69] that used a GAN to predict visual fixations and [93]

that used a conditional GAN to predict visual relationships through transfer learning we

chose to perform the segmentation with a conditional GAN. As mentioned, the original idea

was proposed in the paper of Mirza et al.[61] with one of the most famous implementa-

tions being the pix2pix GAN [25]. However, we did not use this exact architecture. We

created a new architecture similar to the architecture by Zamir et al. [93] that uses residual

connections.

For the generator, we employed a U-Net architecture incorporating residual connections

and an attention mechanism. For the discriminator, we employed a typical Patch-GAN

architecture. In detail:

Generator: The main building part of the generator that replaces the simple convolution

layers is a structure that applies a series of residual blocks repeated n times. We found

that this repetition of residual blocks increased the model accuracy, especially in the harder

tasks like bird segmentation. Our residual block contains two convolution layers and the

subsequent normalization and activation function before adding input and output. Before

the residual blocks, in our structure, a 1x1 convolution layer is applied that increases the

number of filters. Between, this convolutional and the residual layers, no normalization

or activation function is applied to decrease training time. This structure along with max

pooling layers is progressively applied, reducing the spatial dimensions while increasing the

filters. The filters produced are:

Encoder Filters: 64 - 128 - 256 - 512 - 1024

The output of the encoder is fed to a transposed convolution layer reducing the filters by

half while increasing the spatial dimension. With this upsampled feature map, the concate-

nation with the layers having the same number of filters from the encoder begins producing
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the first skip connection. After this concatenation of the feature map (512 filters) with the

encoder layer (512 filters), the resulting map has 1024 filters. The attention mechanism is

applied in the skip connection, meaning between the encoder layer and the upsampled feature

map before the concatenation. Also, instances of custom pixel padding are applied to make

sure that the concatenated layers are of the same size. The pattern continues producing the

below filters and concatenations:

Decoder Filters: 512+512 - 256+256 - 128+128 - 64+64

This produces a layer with 128 filters. This layer is fed into a last transposed convolu-

tion layer which reduces it to 64 filters. Then a final convolution is applied with 3 filters

representing the RGB values utilizing a tanh activation function and the final output is

created.

Discriminator: The discriminator architecture is simpler than the generator. The real

image with the output of the generator is concatenated and fed as input to the discriminator.

Then, a series of five convolution layers ensue resulting in a single channel output with each

value in the output representing a patch in the concatenated image grid. In detail, the filters

produced are:

Discriminator filters: 64 - 128 - 256 - 512 - 1024

As mentioned, the PatchGAN discriminator is essential to achieve a good representation

due to its localization abilities achieved by examining several different patches separately

instead of an image as a whole.

3.3 Observability of the experiment

3.3.1 Measuring the success of our saliency model

To understand if the training of our model is a success, first, we need to establish our

needs. As showcased, the most successful fixation prediction models utilized some form of
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transfer learning from task-specific scenarios. However, this cannot be our case since this

will introduce bias to the comparing process of the agents. Our agent should be as pure as

possible, trained only with fixation maps. This means that we should not expect our fixation

model to achieve top-notch accuracy in its predictions. Nevertheless, we need a model that

is accurate enough and has a significant fixation prediction ability.

Many metrics can showcase this capability. However, since our purpose is not to exten-

sively compare the model’s accuracy with that of the top-performing models, we will use a

single metric that is both simple and efficient. This metric is called Judd-Area Under the

Curve (AUC) [34] and is based on the Area Under the ROC Curve metric [16]. It measures

the ”tradeoff between true and false positives at various discrimination thresholds” [10].

To use this metric, the saliency map is converted to a binary map for different threshold

values. The pixels with values above this threshold are classified as positive while the others

as negative. For each threshold, the true positive rate and false positive rate are computed.

A true positive pixel is a positive pixel that agrees with the pixel of the fixation map while

a false positive pixel is a positive pixel that does not. To calculate the rate, we divide these

numbers by the total amount of positive or negative pixels respectively [10]. Then a curve is

created representing the contrast of these rates. Specifically, the true positive rate against

the false positive rate at various threshold levels.

3.3.2 Measuring the success of our segmentation models

Many metrics could be considered when measuring the success of a segmentation model.

The first thing that comes to mind would be to measure how many pixels from the generated

image match the ground truth and then divide them by the total number of pixels. However,

this metric comes with many limitations, especially if imbalanced classes exist which is also

our case. For example, when we are trying to segment birds, the model can overfit the data

and generate only black images. This is because the majority of the image is black. However,

the score mentioned above would be very high in this case as the white pixels are much less

than the black pixels. Yet our model would have completely failed to achieve our goal which
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is to label the white part of the image where birds exist.

To overcome this problem another metric is used called Intersection over Union (IoU).

This metric not only takes into account the true positive (TP) pixels but also the false

positives (FP) and false negatives (FP). Although this technique is usually used for bounding

boxes [78], it is common and valid to use this metric for pixel-to-pixel segmentation tasks

[25, 54]. In this measurement, a logical AND is computed between the true mask and the

predicted mask representing the true positives, and also a logical OR representing the sum

of true positives, false positives, and false negatives. In detail:

IoU =
Intersection (TP)

Union (TP + FP + FN) (3.1)

If there were multiple classes, we would compute the IoU for all of them and then calcu-

late an average. However, in our case, we are dealing with a binary task of black-and-white

images. The black part of the image does not convey meaningful information, while also

dominating the image in many cases. Adding it to our calculation would lead to a misrep-

resentation of the result. So we choose to discard it and use the IoU metric for the white

class only.

3.3.3 Measuring the success of agents

As mentioned, to measure transfer learning success scientists have utilized transfer dis-

tance. However, based on our experiment structure, there is no one-to-one correspondence

with transfer distance in all comparable scenarios of our agents. Nevertheless, by utilizing

a similar logic, in most scenarios, we are going to compare the maximum accuracy achieved

in the test set of models with different pre-trainings and the same goal task. Transfer dis-

tance though will still be useful for us in some scenarios where we compare models with and

without pre-trainings. The metric that we are going to compare the models on is the IoU

metric.

Moreover, to make the comparison even more meaningful, we will compare the models
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with different pre-trainings across different dataset modifications. Meaning, we will observe

the behavior of the agents when utilizing different dataset sizes. We consider this crucial, as

for an agent to adapt to a task with a smaller amount of images than another, is significant

evidence for the adaptability comparison that we will perform.
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CHAPTER 4

RESULTS

4.1 Experimental evaluation of the hypothesis

Establishing a baseline: To meaningfully interpret our results and ensure the experiment

proceeds as expected, we must establish a baseline against which our agents will be compared.

In this baseline, we utilized the three animal datasets that we prepared. We used the

hyperparameters shown in Table 4.1. These are typical hyperparameters for the domain

translation task utilizing conditional GANs. For uniformity, we applied them in all of our

trainings. The base models were trained for 20 epochs for different dataset sizes. When

retraining to another task, all the encoder layers of the U-Net architecture were frozen. The

values reported are the maximum values achieved in the test dataset during these 20 epochs.

Hyperparameter Value

Learning Rate 0.0002

Beta 0.9

Loss Function Binary Crossentropy

Table 4.1: Hyperparameters of our experiments

After examining the results, some key observations can be made:

• The easiest segmentation task to perform, is the giraffe task, while the hardest is the

bird task. Both by a large margin.
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Dataset Size Dog Giraffe Bird

250 0,49 0,63 0,22

500 0,47 0,62 0,24

1000 0,52 0,65 0,22

1900 0,53 0,66 0,23

Table 4.2: IoU values for the base model segmentation performance with different dataset
sizes.

• The ease of the task correlates with the size of the animal. This could be attributed

to a higher presence of black pixels in the images or to the fact that the bird task is

more diverse.

• The model of the bird segmentation consistently achieves the lowest scores indicating

significant difficulties in training.

• For the dog and giraffe categories, there is an obvious correlation with performance

and dataset size increase. For the bird category however dataset size is less significant.

We can observe that utilizing the dataset size of 1900 increases performance when

contrasted to the 1000 dataset size. Surprisingly though, the best performance can be

observed when utilizing the 500 dataset size.

Evaluating our fixation model: After having established these baseline models, we are

going to make sure that the fixation model is performing as well as expected. We trained the

model for 50 epochs utilizing the training dataset of Salicon. As mentioned, the metric that

we are going to use is the AUC-Judd metric. After getting an average for all the different

thresholds and for 1000 test images, the score achieved was 0.79 (Table 4.3).

Epochs AUC - Judd

50 0.79

Table 4.3: AUC-Judd score for the fixation model trained for 50 epochs
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We deem this score significant enough for a fixation model. This is because the baseline

for such a model is 0.5 while the maximum value to be expected is 0.92 [10]. To further

showcase the efficiency of our model, we also provide some qualitative results from the test

set in Figure 4.1.

Figure 4.1: Real-world images, ground truths and our generated saliency maps.

Evaluating the ability of the agents: To test the abilities of the agents, we executed

various experiments. We focused on creating different scenarios that will accurately capture

the accuracy and adaptability of the agents while extensively highlighting their transfer
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learning abilities. The difference between these scenarios is the number of successive trainings

for the fixation agent.

In the first scenario we directly train the fixation agent to the new segmentation tasks

therefore n = 1. In the second scenario we re-train the fixation agent to the dog-segmentation

task and then separately to the giraffe and bird tasks, therefore n = 2. and in the third

scenario we apply successive training for all segmentation tasks therefore n = 3.

First scenario: n = 1 For our first experiment, the agents are trained on one task at

a time. Before diving into the results of the comparison, we will present the results of the

fixation agent when we retrain to the dog dataset and compare them to the base model.

Dataset Size Base Agent (Dog) Fixation to Dog

250 0.49 0.57

500 0.47 0.59

1000 0.52 0.60

1900 0.53 0.60

Table 4.4: Comparison between the base dog agent and fixation agent when trained on the
dog task. Note that the fixation agent wins in all training scenarios.

As we can observe from the results in Table 4.4 when we utilize the fixation agent the

new model achieves an increase in accuracy for all dataset sizes.

Next, we will employ the results of the task-optimized agent. This agent was trained

for 100 epochs utilizing all 1900 images on the task of dog segmentation and achieves an

accuracy of 0.58 for this particular dataset size as can be seen in Table 4.5. Surprisingly, the

fixation to dog agent outperforms the task-optimized agent with all dataset sizes except the

250.
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The significant improvement in the fixation agent’s accuracy in the dog task, along with

its superior performance compared to the task-optimized agent, provides initial evidence

that training with fixation maps can enhance performance.

Base Agent (Dog) Fixation to Dog Task-Optimized Agent

0.53 0.60 0.58

Table 4.5: Comparison between the base dog agent the fixation agent and the task-optimized
agent when trained on the dog task with a dataset size of 1900.

Now we will compare the performance in the giraffe and bird segmentation tasks when

utilizing the fixation and task-optimized models as a base, respectively. The processes can be

seen in Figures 4.2 and 4.3. We will focus solely on the giraffe and bird segmentation tasks

since we have already presented a comparison between the base dog segmentation model and

the dog segmentation results assisted by the fixation agent.

Fixation Agent

Fixation

50 epochs

Dog

Giraffe

Bird

20 epochs

20 epochs

20 epochs

Figure 4.2: Setup for the fixation agent in the first scenario
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Task-Optimized Agent

Dog

100 epochs

Giraffe

Bird

20 epochs

20 epochs

Figure 4.3: Setup for the task-optimized agent in the first scenario

The comparison of the task-optimized and the fixation agent for the giraffe and bird task

can be seen in Table 4.6 and 4.7 respectively. Since we didn’t apply successive retraining

between the giraffe and bird tasks, we chose to present the results in separate tables.

Dataset Size Task-Optimized to Giraffe Fixation to Giraffe

250 0.60 0.68

500 0.60 0.69

1000 0.61 0.70

1900 0.62 0.70

Table 4.6: Comparison between the task-optimized and fixation agent when trained on the
giraffe task. Note that the fixation agent wins in every training scenario.
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Dataset Size Task-Optimized to Bird Fixation to Bird

250 0.22 0.25

500 0.24 0.32

1000 0.19 0.30

1900 0.18 0.36

Table 4.7: Comparison between the task-optimized and fixation agent when trained on the
bird task. Note that the fixation agent wins in every training scenario.

From these results we can make the following observations:

• When we apply the retraining from the task-optimized agent to the giraffe and bird

task, we see a small decrease from the base model for the giraffe task and an even

smaller decrease for the bird task on average, especially for the largest dataset sized of

1000 and 1900.

• When we apply the retraining from the fixation agent to the giraffe and bird task, we

see a substantial increase in both tasks from the base models.

• When the two agents are compared, the superiority of the fixation agent is clear.

In figure 4.4 we provide a qualitative comparison between the fixation and task-optimized

agent for the hardest task of bird segmentation when utilizing the model with the highest

accuracy for both agents - the model trained with 1900 images for the fixation agent and

the model trained with 500 images for the task-optimized agent.
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Figure 4.4: Comparison between images generated by the fixation agent and the task-
optimized agent for the bird task.

Second scenario: n = 2 Now we will present the results when applying our first successive

training. The fixation agent is first trained for 50 epochs, then retrained for 20 epochs on

the dog dataset and finally, we apply separate training for the giraffe and the bird datasets

as seen in figures 4.5 and 4.6. We present the accuracy of the agents in Table 4.8.
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Fixation Agent

Fixation Dog

50 epochs 20 epochs

Giraffe

Bird

20 epochs

20 epochs

Figure 4.5: Setup for the fixation agent in the second scenario

Task-Optimized Agent

Dog

100 epochs

Giraffe

Bird

20 epochs

20 epochs

Figure 4.6: Setup for the task-optimized agent in the second scenario
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Dataset Size Task-Optimized Agent Fixation Agent

Giraffe Bird Giraffe Bird

250 0.60 0.22 0.66 0.36

500 0.60 0.24 0.66 0.35

1000 0.61 0.19 0.67 0.32

1900 0.62 0.18 0.68 0.32

Table 4.8: Comparison between the fixation agent and the task-optimized agent when trained
on the dog dataset and then to giraffe and bird segmentation tasks directly.

• The setup for this particular scenario for the task-optimized agent is the same with the

previous scenario, therefore the observations for the task-optimized agent hold true to

this as well.

• Again, when we apply the retraining from the fixation agent to the giraffe and bird

task, we see a substantial increase in both tasks from the base models.

• Concluding, when contrasted with the base and task-optimized agents the superiority

of the fixation agent is clear.

Third scenario: n = 3 In our last scenario, we utilized three successive retrains for the

fixation agent as can be seen in figures 4.7 and 4.8, and then we compared his accuracy with

the accuracy of the task-optimized agent.
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Fixation Agent

Fixation Dog

50 epochs 20 epochs

Giraffe Bird

20 epochs 20 epochs

Figure 4.7: Setup for the fixation agent in the third scenario

Task-Optimized Agent

Dog

100 epochs

Giraffe Bird

20 epochs 20 epochs

Figure 4.8: Setup for the task-optimized agent in the third scenario

The results can be seen in Table 4.9. For these results we made the following observations:

• The task-optimized agent is outperformed by the fixation agent on both tasks.

• The task-optimized agents ability seems to diminish on dataset size increase for the

bird task.

• Again, when contrasted with the base and task-optimized agents the fixation agent is

superior.
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Dataset Size Task-Optimized Agent Fixation Agent

Giraffe Bird Giraffe Bird

250 0.60 0.26 0.66 0.32

500 0.60 0.25 0.66 0.29

1000 0.61 0.17 0.67 0.30

1900 0.62 0.15 0.68 0.33

Table 4.9: Comparison between the fixation agent and the task-optimized agent when trained
on each task succesively.

Interpretation of the experimental results for each scenario: Before diving into the

experimental interpretations and verdicts, let’s repeat our hypothesis in a slightly modified

way. This time we will take into account the fact that we don’t have a range of tasks but

only two, a similar and a dissimilar:

• First part: The fixation agent will adapt quickly to the common tasks using a small

or moderate-sized dataset regardless of the similarity or dissimilarity.

• Second part: The fixation agent, is expected to be more adaptable across tasks than

the task-specific agent showcasing generalization ability, a human characteristic.

• Third part: The task-optimized agent could be adaptable to the similar task with

equal or better performance than the fixation agent. However, in the dissimilar task,

his performance is expected to decline in contrast to the first agent.

Now, we will judge the hypothesis separately for each scenario. If all parts of the hy-

pothesis are undeniably true then we will accept the hypothesis for the respective scenario.
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We will reject the hypothesis if there is at least one undeniably false part. Finally, it could

also be the case that the results are fuzzy:

Verdict for n = 1: We observed that the fixation agent outperforms the task-optimized

agent and the base agents in both the giraffe and the bird task for all dataset sizes therefore all

three parts hold undeniably true, subsequently the hypothesis is accepted for this particular

scenario.

Verdict for n = 2: Again the fixation agent outperformed the task-optimized agent and

the base agents in both the giraffe and the bird task for all dataset sizes, therefore all three

parts hold undeniably true. For n = 2, the hypothesis is accepted.

Verdict for n = 3: Finally, the same pattern holds true for the third scenario. The task-

optimized agent and the base agents are outperformed by the fixation agent an all dataset

sizes. Again, for n = 3, the hypothesis is accepted.

Retrains First part Second part Third part

n=1 True True True

n=2 True True True

n=3 True True True

Table 4.10: Summary of hypotheses evaluation across different number of retrains

Based on the above table, we can claim that for our experimental setup, the hypothesis

is accepted.

4.2 Limitations

The main experiment definition has a significant limitation:
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• The time and cost to train our model architecture was significantly high. For a base

model of 1900 images, training for 20 epochs utilizing an A100 graphics card, required

25 minutes of training time. This computational complexity is a well-known problem

when training conditional GANs and significantly limits the number of experiments

that could be executed. Consequently, more computational resources would allow us

to perform multiple experiments with different types of animals, which would allow us

to establish an extensive computational taxonomy and derive further insights.
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CHAPTER 5

CONCLUSIONS

In this thesis, we mainly focused on two topics. The first was computational models of

attention and bottom-up fixation prediction. The second was transfer learning and the

ability to generalize across tasks. By combining knowledge from both domains and inspired

by human transfer learning abilities, we created a hypothesis for the generalization ability of

fixation models in task-specific scenarios. To test this hypothesis, we crafted and executed

different experimental scenarios.

The experimental scenarios revolved around the comparison of a general-purpose agent

trained on fixation maps and a task-optimized segmentation agent. The central hypothesis

was that if common tasks are introduced between them, which become increasingly dissimilar,

the general-purpose agent will showcase greater adaptability and generalization.

To test this hypothesis, we introduced two common tasks between the agents, a similar

task and a dissimilar task to that of the task-optimized agents. The tasks were simple

animal segmentation tasks, and the similarity of the animals was determined based on the

generally accepted animal taxonomy created by Carl Linnaeus [51], which takes into account

the similar physical characteristics of animals.

When creating the different experimental scenarios, we focused on creating experiments

that would be able to capture the generalization abilities of the fixation and the task-

optimized agents while providing us with a full view of their transfer learning abilities on

both direct and successive training. Consequently, we crafted three different scenarios with

both direct retrains on each task separately and sequential retrains applying the tasks one
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after the other.

For our experimental conditions, we concluded that the fixation agent did indeed have

increased generalization abilities when compared to the task-optimized for all the different

scenarios we have created.
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