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Abstract

Today’s exponential demand for lightweight applications requires the reduction of time-
to-market while maintaining high security standards in hardware-oriented applications,
particularly within embedded systems. High-Level Synthesis (HLS) tools have emerged as
essential enablers in this process, allowing developers and designers to utilize High-Level
Languages (HLL) alongside optimization strategies to produce Hardware Description Lan-
guage (HDL) code. This approach accelerates hardware development, facilitates early veri-
fication and validation. Ultimately, it contributes to a more efficient design flow. However,
the security implications of HLS-generated designs, especially their vulnerability to fault
attacks, remain under-explored. This thesis delves into the fault attack vulnerabilities
of four(4) prominent lightweight cryptographic algorithms (“GIFT-64-128”, “LED-64”,
“KATAN32” & “SIMON64/128”) implemented through the HLS workflow. Through a
series of statistical fault injection experiments, we evaluate the robustness of these algo-
rithms. The findings provide insights into the trade-offs between design efficiency and
security in HLS-generated cryptographic hardware. Although HLS tools can boost the
design process, consideration of synthesis configurations is essential to mitigate vulnera-
bilities and ensure robust protection against hardware-based attacks.

Keywords:
Hardware Security, High-level Synthesis (HLS), Fault Injection Attack, Lightweight Cryp-
tography
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Περίληψη

Σήμερα, η εκθετική ζήτηση «ελαφρών» εφαρμογών απαιτεί μείωση του χρόνου διάθεσής

τους στην αγορά, διατηρώντας παράλληλα υψηλά επίπεδα ασφαλείας σε εφαρμογές προσανατο-

λισμένες στο υλικό, ιδιαίτερα σε ενσωματωμένα συστήματα. Τα εργαλεία Σύνθεσης Υψηλού

Επιπέδου (HLS) έχουν αναδειχθεί ως βασικοί κινητήρες σε αυτή τη διαδικασία, επιτρέποντας
σε προγραμματιστές και σχεδιαστές να χρησιμοποιούν γλώσσες υψηλού επιπέδου παράλληλα

με στρατηγικές βελτιστοποίησης για την παραγωγή κώδικα γλώσσας περιγραφής υλικού. Αυ-

τή η προσέγγιση επιταχύνει την ανάπτυξη υλικού, διευκολύνει την έγκαιρη επαλήθευση και

επικύρωση. Συνολικά, συμβάλλει σε μια πιο αποτελεσματική ροή σχεδιασμού. Ωστόσο, οι επι-

πτώσεις στην ασφάλεια των σχεδίων που δημιουργούνται από το HLS, ειδικά η ευπάθειά τους
σε επιθέσεις εισαγωγής σφαλμάτων, παραμένουν αρκετά ανεξερεύνητες. Η διατριβή αυτή προ-

σπαθεί να εμβαθύνει στα ευπαθή σημεία επίθεσης σφάλματος τεσσάρων(4) ελαφροβαρών κρυ-

πτογραφικών αλγορίθμων (“GIFT-64-128”, “LED-64”, “KATAN32” & “SIMON64/128”)
υλοποιημένους μέσω HLS. Μέσω πειραμάτων επιθέσεων στατιστικής εισαγωγής σφαλμάτων,
αξιολογούμε την ευρωστία αυτών των αλγορίθμων. Τα ευρήματα παρέχουν πληροφορίες για

τις ανταλλαγές μεταξύ αποδοτικότητας σχεδιασμού και ασφάλειας σε κρυπτογραφικό υλικό

που δημιουργείται από HLS. ΄Οσο και αν τα HLS εργαλεία μπορούν να ενισχύσουν τη διαδικα-
σία σχεδιασμού, η εξέταση των στοιχείων σύνθεσης είναι απαραίτητη για τον μετριασμό των

ευπαθιών και τη διασφάλιση ισχυρής προστασίας από επιθέσεις σε υλικό.

Λέξεις Κλειδιά:

Ασφάλεια Υλικού, Σύνθεση Υψηλού Επιπέδου (HLS), Επίθεση Εισαγωγής Σφαλμάτων, Ε-
λαφροβαρής Κρυπτογραφία
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Chapter 1

Introduction

Security, robustness and the resilience of a circuit to disruptions can be assessed
through different methods after production. However, evaluating potential impact of soft
errors during the design stage to prevent encountering undesirable behaviors later during
qualification, plays crucial role. If the safety and reliability requirements are not taken
into account during the initial stages of the design, its modification at a later stage of
the production process requires additional study and correction time, resources and ma-
terials. This greatly increases the fixed cost of production. Especially in cases where the
hardware cannot be modified and the manufacturer is asked to choose between keeping
the vulnerable hardware or redesigning it at a cost.

In particular, security and reliability are related with various stages of the production
process. From design, to testing, to implementation to its final release. Whether the
predefined controls are applied during the production process largely determines the level
of security and reliability that will be achieved. As at the software level, access to critical
system data should also be prohibited at the hardware level.

Ensuring hardware integrity is another pillar of system’s security. It is crucial that it is
designed in such way that it recognizes its elements and in case of any change (e.g. attempt
to insert a fake part) to alert and stop its operation. Hardware availability is an indicative
element of system’s security as well. This implies unhindered access to necessary system
data as well as the internal code of the hardware by the system owner or authorized user.
The data to which access is allowed, are determined according to the restrictions set by
the system’s security policy.

However, in order to mitigate the threats, it is necessary to know what are the main
vulnerabilities of the hardware. As mentioned previously, there are many stages of the
production chain and all of them can have vulnerabilities. Hardware architecture plays a
key role. During design, failure to apply predefined and standardized methods results in
the subsequent creation of functional errors. These errors become apparent through the
observation of the operation, where any anomalies that occur are sensitive points, poten-
tially vulnerable. Deliberately driving the system into abnormal operating conditions may
cause the system to crash or reveal internal information. Nevertheless, many times, this
can happen unintentionally from the system.

12
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Fault Injection is now a standard technique for conducting dependability analysis. A
fault injection campaign involves comparing the circuit’s expected behavior for a specific
workload (i.e., the correct behavior verified by the designer) with the behavior observed
when each fault from a predefined set is introduced.

Due to the very large size of the contemporary designs, it is often impractical to inject
all potential errors across every location and clock cycle within a reasonable time frame.
As a result, most research studies rely on Statistical Fault Injection (SFI). While in a
SFI campaign, only a random portion of potential errors is introduced, with the selection
based on the target of the injection.

1.1 Thesis Objective & Outline

This Thesis’s objective, titled“Evaluating Fault Attack Vulnerabilities in Lightweight
Cryptographic HLS Implementations”, is to investigate the fault resilience of lightweight
cryptographic algorithms when synthesized through High-Level Synthesis (HLS) work-
flows. In response to the rising demand for efficient yet secure cryptographic solutions in
embedded systems, this research aims to examine fault attack vulnerabilities of four(4)
selected algorithms—GIFT-64-128, LED-64, KATAN32, & SIMON64/128—implemented
using HLS. Through a series of Statistical Fault Injection (SFI) experiments, the Thesis
evaluates each algorithm’s security, identifying critical errors, hang errors, and silent errors
that may arise under fault conditions. To describe the implementations and analyze the
results, this Thesis is divided in nine(9) chapters, as follows.

• In Chapter 1, titled “Introduction”, research objectives, scope and structure of the
Thesis are outlined.
• In Chapter 2, titled “High-Level Synthesis (HLS)”, it is provided an overview of HLS and
Electronic Design Automation (EDA) tools. There also basic knowledge about Hardware
Description Languages (HDL), specifically VHDL, with an emphasis on Vivado HLS as a
tool used for generating HDL code.
• In Chapter 3, titled “Cryptographic Acceleration”, the Thesis examines basic character-
istics of Lightweight Cryptography, covering both Stream and Block Ciphers.
• In Chapter 4, titled “NIST Cryptographic Standards & Guidelines”, NIST’s influence on
Lightweight Cryptography, particularly their Block Cipher essential standards for secure
cryptographic design in constrained environments, are reviewed.
• In Chapter 5, titled “Hardware Attacks & Techniques, there is a categorization of Hard-
ware Attacks, focusing on Fault Injection Attacks, including simulation-based and statis-
tical methods, which are relevant to this Thesis.
• In Chapter 6, titled “Ciphers Overview”, there is a detailed analysis of the four(4) se-
lected cryptographic algorithms, covering their specifications and their security posture.
• In Chapter 7, titled “Ciphers Implementation”, the HLS-based implementation of each
cipher is presented, focusing on their slice logic, memory and power usage.
• In Chapter 8, titled “Results Analysis”, the results from these Fault Injection tests are
presented and documented. There are data and analysis for each cipher.
• In Chapter 9, titled “Conclusion”, Thesis summarizes key findings, discussing observed
Critical Errors, Hang Errors, and Silent Errors across the implementations. Chapter 9
closes with recommendations for further future research.

The final section, titled “Bibliography”, lists all the references of this Thesis.

Evaluating Fault Attack Vulnerabilities in Lightweight Cryptographic HLS Implementations 13



Chapter 2

High-Level Synthesis (HLS)

2.1 Overview

An High-Level Synthesis (HLS) tool takes a program written in a High-Level Lan-
guage (HLL), typically C/C++, and automatically generates a design in Register
Transfer Level (RTL) written in a Hardware Description Language (HDL) that retains
the same functionality. High-Level Synthesis has gained popularity by bringing the
simplicity of high-level abstraction into the design process through behavioral syn-
thesis. This approach allows individuals with basic HLL knowledge to leverage hardware
programming benefits without needing to delve into implementation details. Additionally,
HLS significantly reduces human error which results in more flexible programs that are
much easier to debug and maintain [1].

Automatically converting from a HLL to a HDL, shifts tasks away from designers that
would otherwise be their responsibility. The specific tasks and their sequence can vary
significantly between tools. The fundamental tasks are outlined below, as described in [2].

Data-Flow Graph (DFG): A general representation of the design’s inputs and outputs,
the operations and their interoperability, and the shaping of data-flow based on data
dependencies. This step can be expanded to a Control/Data-Flow Graph (CDFG)
to incorporate control flow, including conditional cases.

Resource Allocation: Determines the resources necessary to implement the design, based
on information from the previous step. These resources should be sufficient to per-
form each defined operation but optimized to minimize reliance on more complex
components.

Scheduling : Assigns operations to clock cycles based on the timing characteristics of both
the hardware and the design. This is a crucial step in behavioral synthesis which
can be categorized as either Scheduling for unconstrained designs or Scheduling for
constrained designs, depending on the chosen methodology.

Register Allocation: Analyzes scenarios where registers are necessary, such as when
data dependencies extend beyond a single cycle. Lifetime analysis may also be
applied to assess data validity over time, enabling register sharing to minimize the
number of required registers.

Binding : Allocates scheduled operations to corresponding hardware resources.

State Machine Extraction: Derived from the scheduling step, defines how data is routed
into components based on the current state.

14
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Netlisting : Produces the synthesized design, which can also be performed alongside other
steps to provide a form of verification.

Interface Synthesis determines the structure of the top module’s interface within a de-
sign, encompassing both I/O and control signals necessary for communication with other
modules and peripherals. It organizes internal functions into distinct blocks, establishing a
hierarchical arrangement of modules and entities. While the process is largely automated,
most HLS tools offer designers some control to optimize the design and fully leverage hard-
ware capabilities. This approach allows minimal effort early-stage testing which facilitates
design exploration.

However, it is important to emphasize that while most HLS tools help designers in nav-
igating the complexities of hardware application development, they must not lose sight of
the fact that the final implementation will occur in hardware, which comes with its
own specific limitations. Designers must carefully consider the transition from sequen-
tial to concurrent logic throughout the design process. Also, memory management
differs in hardware. For instance, high-level techniques like dynamic memory allocation
which are advantageous in software, do not synthesize well or not at all in hardware. This
includes methods such as dynamic programming, pointer usage, recursion, and system
calls [1].

Figure 2.1: Generic HDL Design Flow [3]
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2.2 EDA Tools

Electronic Design Automation (EDA), also known as Electronic Computer-Aided
Design (ECAD), is a specific category of software tools and services that enable engineers
to design electronic systems and products, such as Printed Circuit Boards (PCB) and
Integrated Circuits (IC). EDA tools collaborate within a design flow that chip designers
utilize to create and evaluate complete semiconductor chips. Given that modern semicon-
ductor chips can contain billions of components, these tools are critical for their design.
They enable designers to model, simulate, test and analyze circuit designs to detect
potential problems before production begins.

Prior to the development of EDA, Integrated Circuits (IC) were designed by hand
and manually laid out [4]. By the mid-1970s, developers began automating circuit design
alongside drafting, leading to the creation of the first placement and routing tools. As
designs have become more complex, EDA software has gained significant importance for
developers and designers working on Printed Circuit Boards (PCB) and other types of
circuit boards. EDA software tools primarily focuses on [5]:

⇒ Design
⇒ Simulation

⇒ Analysis & Verification
⇒ Manufacturing Preparation

Nowadays, EDA has become increasingly important due to the continuous scaling
of semiconductor technology [6]. Modern digital design flows are highly modular,
where front-end processes generate standardized design descriptions that compile into
units resembling cells, irrespective of their underlying technology. These cells perform
logic or other electronic functions using specific IC technologies. Manufacturers typically
offer component libraries tailored to their production processes, complete with simula-
tion models compatible with standard simulation tools. Finally, EDA increases design
reusability simplifying the design process.

Figure 2.2: 4-Bit Adder Layout with “Cadence” EDA tool
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2.3 Hardware Description Languages

In computer engineering, a Hardware Description Language (HDL) is a spe-
cialized language for describing the structure and behavior of electronic circuits. HDLs
provide text-based descriptions of the architecture and functionality of electronic sys-
tems, allowing designers to specify how the hardware should operate over time. Unlike
most software programming languages, their syntax and semantics include explicit nota-
tions for expressing concurrency and incorporate the concept of time, a key characteristic
of hardware. They can describe designs at various abstraction levels, such as struc-
tural, behavioral or Register Transfer Level (RTL), while maintaining the same circuit
functionality.

Some points worth keeping in mind about HDLs, as described in [7]:
• Hierarchical Design: Complex circuits can be designed in sections, consisting of mod-
ules and sub-modules.
• Modular Architecture: Modifying a fixed module should not affect other modules
within the design.
• Text-based Explanation: Standard parsing concepts can be used to handle depiction
rather than relying on pictorial representation.
• Reprocess of Obtainable Resources: Existing resources should be reused to save
energy and time.

An HDL provides a precise and formal way to describe an electronic circuit,
enabling automated analysis and simulation. It also supports the synthesis of an
HDL description into a netlist, specifing electronic components and their connections.
This netlist can then be used for placement and routing, ultimately producing the masks
required to fabricate an Integrated Circuit (IC).

Worth noting that HDLs are an essential component of EDA systems, particularly for
designing ASICs, FPGAs, and microprocessors, which are regarded as complex circuits.

2.3.1 Hardware Description Language VHDL

VHDL is a Hardware Description Language (HDL) which is used to develop integrated
digital systems and circuits. The term VHDL is short for “VHSIC Hardware Description
Language”, where VHSIC is an acronym for “Very High Speed Integrated Circuit”. It was
developed in the early 1980s with funding from the US Department of Defense, and was
standardized by the IEEE Institute as IEEE 1076 in 1987.

When it was created, it was intended for modeling and simulating circuits but
later it was also used as a synthesis tool. During synthesis, the compiler constructs
a circuit that accurately corresponds to the logic and timing description that the code
models.

Today, VHDL code is the primary input file type that digital circuit design (e.g.
CAD) software accepts, enabling the creation of complex integrated circuits. In addition,
VHDL language is widely used for describing and implementing digital systems in recon-
figurable logic devices, such as Field Programmable Gate Arrays (FPGAs).

Finally, an important advantage of VHDL is it’s independence from companies and
technologies [8]. This essentially means that VHDL code can be ”ported” without limiting
designers on how to implement his system.
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2.4 Vivado HLS

Vivado HLS, version 2020.1, is the used tool for the needs of this Thesis. It is included
in the Vivado Design Suite developed by Xilinx, enabling developers and designers
to implement high-level algorithms in programmable logic through an advanced design
flow. Vivado HLS incorporates key technologies from processor compilers for interpreting,
analyzing, and optimizing C/C++ programs. The primary distinction lies in the target
platform for executing the application.

To guide the Vivado HLS compiler in generating an optimal processing architecture,
a solid understanding of hardware design principles is essential and needed. A Vivado
HLS project includes the high-level code, a testbench file that provides the inputs
for code testing , and at least one solution (e.g. sol 0) where the project’s constraints
and optimization details are specified. The solutions can be then synthesized, generating
the corresponding functionality in VHDL or Verilog files, along with various performance
reports.

From Synthesis perspective, the code of any HLS-generated module requires a soft-
ware testbench, providing also debug option. The software testbench serves the following
important functions as mentioned in UG998 (v1.1) [9]:
• Ensuring that the software intended for FPGA implementation operates correctly and
does not produce a segmentation fault. Segmentation faults are a concern in HLS just as
they are with any other compiler. The most common cause of this error is a user program
attempting to access a memory location linked to a pointer address before the memory
has been allocated and associated with the pointer.
• Demonstrating the functional correctness of the algorithm. For the produced hardware
implementation, the HLS compiler ensures only functional equivalence with the original
C/C++ code. Consequently, a robust software testbench is essential to reduce the efforts
required for hardware verification and validation.

Extra Optimizations can be also applied to the code, in the form of directives.
Directives can specify various aspects, such as minimum or maximum latency for a
code block, resources usage for variable handling (e.g., selecting array’s implementation
memory types), imposing limitations on resources, loops implementation (e.g., unrolled or
merged), dataflow adjustments, I/O signals management etc.. The ultimate goal of all the
aforementioned optimizations is the enhancement performance of the code. Finally, apart
from user interface, Vivado HLS compilation can be managed through a Tool Command
Language (Tcl) script file [9].
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Chapter 3

Cryptographic Acceleration

3.1 Overview

Since ancient times, humans have needed to protect their communication by hiding
their messages. A need arose for secure and reliable communication, especially when it
came to military and administrative matters [10]. To this day, the core concept remains
unchanged: to discover effective methods of concealing information transmitted by any
means, while ensuring that only the intended recipients possess the knowledge to reveal
it.

Key terms in cryptography include the plaintext, the ciphertext and cryptographic
key. The plaintext is the original information intended to be transmitted, while the ci-
phertext is the encrypted version of that plaintext. Cryptographic key is a secret and
crucial piece of information utilized as a parameter in a cipher to convert plaintext into
ciphertext during the encryption process. The security of the entire process does not relies
on the confidentiality of the algorithm, but on the secrecy of the key. The quality of the
key, which depends on factors like its generation process and its size, are vital. The key is
also essential for decryption, the reverse process that restores the original information.

In computing, a cryptographic accelerator is a co-processor specifically designed to
execute cryptographic operations which are computationally intensive. Developers must
also carefully consider how and where cryptographic algorithms are processed. If the
system’s main CPU handles the computationally heavy cryptographic tasks, it reduces the
available processing power for user applications. Hardware-based accelerators dedicated
to cryptographic tasks can offload most of this processing from the CPU, performing the
cryptographic operations much more efficiently than a general-purpose CPU.

Figure 3.1: Encryption & Decryption Process [11]
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3.2 Lightweight Cryptography

Cryptographic algorithms, based on the type of keys they use for encryption and
decryption, are divided into two main categories. These are the following:

• Symmetric or Secret Key : In the case of Symmetric or Secret Key Algorithms, the
sender and the recipient use the same key for encryption and decryption process
respectively. The sender sends the ciphertext to the recipient, once he has encrypted
the plaintext with the key. The recipient in turn, after receiving the ciphertext,
applies the same key and decrypts the message, thus recovering the original text.
An important part of the process is the security and secrecy of the key between sender
and receiver. If by any means, an attacker succeeds and discovers the key and has
knowledge of the algorithm, then he can gain access to all transmitted messages and
data. Important subclasses of symmetric algorithms are Stream Ciphers and Block
Ciphers [12].

• Asymmetric or Public Key : In Asymmetric of Public Key Algorithms, both the
sender and the recipient have their own pair of keys. One “public” and one “private”
key. The former is used during the encryption process and is known to everyone,
while the latter is known only to the owner of the key itself and is used during
the decryption process. In order to communicate, the sender uses the recipient’s
public key and encrypts the message. The recipient, after receiving the encrypted
message, uses his own private key to decrypt the message and read the original
text. The success of this method is based on the fact that each user’s private key is
mathematically linked to their public key. Therefore, the stronger the mathemati-
cal transformation, the harder is to reveal the original message without the right key.

Cryptographic algorithms, whether symmetric or public key, are vulnerable to Fault
Injection Attacks (FIA).

3.2.1 Stream Ciphers

Stream Ciphers are subclass of Symmetric Cryptographic Algorithms. Their opera-
tion is based on the encryption of the original text into separate individual pieces, usually
in the size of bit or byte. Their main advantage is their greater speed compared to the
rest of the symmetric algorithms, while maintaining relatively simple hardware imple-
mentation. Furthermore, the fact that the encryption is applied to independent pieces
of the plaintext, makes them less vulnerable to error propagation [13].

Figure 3.2: Stream Ciphers Encryption Process [14]
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3.2.2 Block Ciphers

Block Ciphers are also subclass of Symmetric Cryptographic Algorithms. The plain-
text is segmented into blocks of a fixed length which are inputted separately to the en-
cryption function, and output blocks of usually the same length. A larger block size has
better resist against statistical analysis. For the encryption process they use transposi-
tion techniques and they are slower than stream ciphers.

The two main properties of block ciphers are confusion and diffusion. Confusion
is obscuring the relationship between plaintext and ciphertext, aiming to make statisti-
cal analysis difficult, even when an attacker has access to numerous plaintext/ciphertext
pairs. It protects the link between the ciphertext and the key. Diffusion, on the other
hand, ensures that the influence of individual plaintext characters spreads across much of
the ciphertext. This means each output bit is affected by several input bits, helping to
obscure the statistical relationship between the plaintext and ciphertext.

Operation Modes define how messages, larger than the block size, are encrypted.
They are essential for ensuring the security of the encryption process. Each mode processes
data differently, having its own advantages and disadvantages. Block Cipher Encryption
Modes, as described by [15]:

⇒ Electronic Code Book (ECB)
⇒ Cipher Block Chaining (CBC)
⇒ Cipher FeedBack (CFB)
⇒ Output FeedBack (OFB)
⇒ Counter Mode (CTR)

Many algorithms in use today, implement multiple rounds of simple substitution and
permutation, forming an iterated block cipher, called Substitution-Permutation Network
(SPN). In SPNs, confusion is provided by substitution boxes [16].

Figure 3.3: Block Ciphers Generic Flow [17]
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Chapter 4

NIST Cryptographic Standards
& Guidelines

4.1 Overview

NIST stands for “National Institute of Standards and Technology” part of the U.S.
Department of Commerce. This government laboratory focuses on developing, testing,
and recommending best practices for federal agencies and other organizations, particu-
larly in areas like cybersecurity.

NIST creates cybersecurity standards, guidelines, best practices, and various resources
to address the needs of U.S. industry, federal agencies, and the wider public [18]. It’s ac-
tivities range from generating specific information that organizations can implement right
away to conducting longer-term research that anticipates advancements in technologies
and future challenges. Priority areas to which NIST contributes include emerging tech-
nologies, identity and access management, risk management, trustworthy networks and
platforms, education and workforce development, privacy, and of course cryptography.
[18].

NIST Cybersecurity Framework can be implemented in these five(5) areas [19]:

⇒ Identify
⇒ Protect
⇒ Detect
⇒ Respond
⇒ Recover

NIST has promoted the advancement of cryptographic techniques and technologies
through an open process that unites industry, government, and academia. This collab-
orative approach aims to develop practical cryptographic solutions that ensure effective
security.

Today, NIST’s cryptographic solutions are extensively utilized in commercial applica-
tions, ranging from tablets and smartphones to ATMs. They secure e-commerce globally,
protect U.S. federal information, and even safeguard classified federal data. It is advancing
lightweight cryptography to meet security needs for circuits that are smaller than what
was imagined just a few years ago. It’s validation of robust algorithms and implemen-
tations fosters confidence in cryptography, thereby enhancing its adoption to ensure the
privacy and security of individuals and businesses [20].
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NIST continues to spearhead public collaborations for the advancement of modern
cryptography, including the following categories, as described in [20]:

• Lightweight Cryptography. Suitable for small devices like Internet of Things (IoT)
devices and other resource-constrained platforms that may struggle with current
cryptographic algorithms.

• Block Ciphers. Data encryption in block-sized chunks is effective when dealing with
large amounts of data.

4.2 NIST’s Lightweight Cryptography

NIST started exploring cryptography for constrained environments in 2013 [21]. Fol-
lowing two workshops and consultations with industry, government, and academic stake-
holders, NIST launched a process to “solicit, evaluate, and standardize schemes” [21]
that offer Authenticated Encryption with Associated Data (AEAD) and optional hash-
ing capabilities for resource-limited environments where the performance of existing NIST
cryptographic standards is inadequate. In 2018, NIST released a call for algorithms de-
tailing the selection process, requirements and the evaluation criteria [21].

Round 1. The initial round of the NIST lightweight cryptography standardization pro-
cess. In March 2019, NIST received fifty-seven(57) submissions for consideration.
In April 2019, it commenced with the announcement of fifty-six(56) candidates and
concluded in August 2019. “NISTIR 8268” details the evaluation of the first-round
candidates and identifies thirty-two(32) algorithms that advanced.

Round 2. NIST’s second round of the standardization process commenced with the an-
nouncement of thirty-two(32) candidates in August 2019. By March 2021, it was
concluded with the announcement of the finalists. The evaluation of the second-
round candidates and the ten(10) finalists are provided in “NISTIR 8369”.

Final Round. The final round of the process began with the announcement of the ten
(10) finalists. It was concluded with NIST’s selection of the Ascon family in February
2023. “NISTIR 8454” outlines the evaluation of the finalists, providing extra details
on the selection process.
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4.3 NIST’s Block Cipher Techniques

At present, there are two(2) approved block cipher algorithms that can be utilized
for both applying or removing cryptographic protection, or verifying the previously ap-
plied protection. These are AES and Triple DES [22]. Before we explain more about
the aforementioned algorithms, it would be useful to understand FIPS, short for “Federal
Information Processing Standards”. The FIPS of the United States comprise a set of pub-
licly announced standards developed by NIST for use in computer systems of non-military
U.S. government agencies and contractors [23]. These standards establish requirements
for ensuring computer security and interoperability, nd are designed for situations where
appropriate industry standards do not exist [23].

Advanced Encryption Standard (AES) is outlined in “FIPS 197”, and was ap-
proved in November 2001. AES must be utilized with modes of operation that are specif-
ically designed for block cipher algorithms [22]. This standard also identifies that AES,
which is variant of the Rijndael algorithm, can be employed by U.S. Government organi-
zations and others to protect sensitive information.

Triple DES is detailed in “SP 800-67 Revision 2”, titled ”Recommendation for the
Triple Data Encryption Algorithm (TDEA) Block Cipher,” which received approval in
November 2017 [22]. TDEA must be implemented using suitable modes of operation that
are designed for block cipher algorithms [22].
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Chapter 5

Hardware Attacks & Techniques

5.1 Hardware Attack Categories

Before we proceed, it is essential to examine the different types of hardware attacks.
These attacks, based on the degree of physical intrusion, are fundamentally categorized
into three categories [24]:

• Invasive Attacks. They involve physically opening the Integrated Circuit (IC) package
to expose the silicon die using chemical techniques. This allows direct observation
of signals and intermediate values through specialized instruments. However, such
attacks demand costly equipment, technical expertise, and carry a significant risk of
permanently damaging the device.

• Semi-invasive Attacks. They also involve opening the IC package, but without di-
rectly contacting the internal wires. Instead, methods such as optical lasers are used
to manipulate intermediate values, lowering the risk of physical damage compared
to invasive attacks. Certain fault injection techniques fall into this category

• Non-invasive Attacks. They exploit vulnerabilities without directly accessing the sili-
con die, making them less intrusive, yet effective in compromising security. Attackers
maintain minimal contact with the IC chip pins, using techniques such as Side-
Channel Analysis and certain Fault Injection Attacks are classified as non-invasive.

Furthermore, hardware attacks can be categorized into active and passive attacks,
based on the direction of physical information flow:

• Active Attacks. In active attacks, the attacker actively disrupting the device’s oper-
ations to alter intermediate values. Fault injection attacks are examples of active
attacks.

• Passive Attacks. In passive attacks, the attacker focuses on collecting data from the
physical device without altering its operation. A common example is side-channel
attacks, where attackers analyze power consumption patterns to reveal sensitive
information, such as encryption keys.
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5.2 Fault Injections Attacks

Fault Injection Attack (FIA) is a common attack vector used in both hardware
and software attacks on computer systems. In hardware attacks, fault injections involve
creating physical disturbances, which can cause incorrect instructions to be executed
or faulty values to be stored in memory. In software attacks, unexpected input values
are introduced to expose possible vulnerabilities.

A successful Fault Injection Attack can bypass security mechanisms, including
secure boot processes. The attacker induces a fault during algorithm execution and subse-
quently uses various analysis techniques to exploit information from the altered execution.
When combined with cryptanalysis, this can lead to cryptographic attacks, potentially
enabling the recovery of encryption keys. Certain fault injection techniques are preferred
for their ability to precisely control the injection process, either in terms of timing (tem-
poral) or location (spatial). Some attacks are able to accurately target a specific moment
(temporal precision) or a certain memory register (spatial precision) [25].

Clock Fault Injection is considered a global attack because a clock glitch can affect
multiple components simultaneously. Despite its broad impact, it is technically simple as
noninvasive attack and it allows precise control over timing. This technique operates by
adding extra rising edges to a device’s input clock, thereby disrupting the target’s timing
constraints. This is achieved by inserting clock edges that are either too narrow or too
wide. However, the primary limitation of Clock Fault Injection is its ineffectiveness against
devices that utilize internal oscillators or a Phase-Locked Loop (PLL) to generate a new
clock from the external signal, as these mechanisms can reduce the impact of the injected
glitches.

Electromagnetic (EM) Fault Injection utilizes a powerful electromagnetic pulse
to induce faults, providing more localized effects necessitating advanced equipment. It is
categorized as semi-invasive attack as it might pose risks to the IC. A common method
for inducing an electromagnetic (EM) glitch involves generating a strong electromagnetic
pulse by creating a changing magnetic field through a wire loop. According to Faraday’s
law, a changing magnetic field induces voltage spikes in the wires of a chip, potentially
causing signal levels to flip from 1 to 0 or vice versa. This process becomes more difficult
with Package-on-Package (PoP) technology, where the memory die is stacked on top of
the processor die, complicating access. Despite its complexity, EM glitching allows precise
control over specific registers, making it a potent method for targeted attacks.

Optical Fault Injection is as a technique known for its unique spatial and temporal
precision. It involves using laser beams or other intense light sources to induce faults
into target device. Transistors can change states when exposed to an optical pulse, as
semiconductors are light-sensitive. However, the complexity and cost of this attack rise
considerably if the target IC chip needs to be decapsulated, a process that typically in-
volves the use of acid and specialized equipment.

Voltage Fault Injection, compared to Clock Fault Injection, offers greater temporal
precision and practicality, while also requiring significantly less complex equipment than
Electromagnetic (EM) or Optical Fault Injection methods. This technique involves inten-
tionally modifying a chip’s power supply by briefly lowering the voltage or introducing a
positive or negative power spike. This manipulation can disrupt the chip’s normal opera-
tion during critical tasks, potentially causing faults that attackers can exploit for various
attacks.
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5.2.1 Simulation-Based Fault Injection

As mentioned earlier, fault injection can occur at either the hardware or software level.
Our method of choice is simulation-based fault injection, a widely used method for
emulating hardware errors within software. In this technique, the system under test is
simulated on a separate. Specifically, fault simulation technique uses software tools to
simulate faults in a virtual environment, enabling us studying potential impact with-
out damaging at all the actual hardware. Fault simulation allows engineers to test
the robustness and the reliability of hardware designs, ensuring they can withstand var-
ious fault conditions. Also, fault simulation enhances security evaluation by identifying
potential vulnerabilities that might be exploited by attackers.

In conducting these fault injections experiment, I was provided with the essential
scripts and codes required to perform these fault simulations effectively. This foundation
allowed me to focus on configuring and executing fault injection scenarios, ensuring that
the time provided for this Thesis was enough. Having these pre-built tools expedited the
setup process, making it easier to perform fault injections and analyze the effects of both
single-bit and multiple-bit fault models on system resilience and reliability.

A key challenge is selecting a fault model that is both easy to implement and accu-
rately represents real hardware faults. The single bit-flip model has been extensively
utilized as an engineering approximation to simulate particle-induced soft errors in both
combinational logic and memory elements. However, previous studies have shown that
many soft errors occurring in the processor, are presented as multiple-bit errors at the
application level [26], [27], [28]. This observation has prompted researchers to scrutinize
the reliability of the single bit-flip model in accurately exhibiting transient faults caused
by soft errors. Consequently, the fault model should account for both single-bit and
multiple-bit errors when assessing metrics such as error coverage [29], [30] and error
resilience [31], [32].

Single-Bit Fault Model. Single-Bit Fault Model has been the traditional approach to
estimate the impact of soft errors on programs. It involves flipping a single bit in
the program’s data or control flow and assessing the effect of this change on the
program’s output.

Multiple-Bit Fault Model. With advancements in technology and continued scaling,
the likelihood of multiple-bit errors has increased. The multiple-bit fault model
introduces errors by flipping two or more bits simultaneously, providing a more
accurate representation of modern hardware faults.

Error models are usually implemented at the algorithm, source code, or command
level. Typically, cryptanalysis techniques are based on error models in which errors are
introduced during the data flow of the target device and are intended to affect a single bit
or more (byte or word) of a variable that is a key part of system security. The ways to
affect the target are by bit-flip, bit-set, bit-reset or giving a random value.
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5.2.2 Statistical Fault Injection

Fault Injection can be implemented by different methods but with the same goal of
finding circuit vulnerabilities. The identification of these vulnerabilities is the starting
point of the evaluation. Then, the results are taken into account in relation to the required
specifications for safety and reliability. In the event that the necessary specifications that
have been set are not met, it is determined where necessary the integration of counter-
measures and protection techniques to improve the durability of the circuit. If, despite
the identification of vulnerabilities in the circuit, it is chosen by design not to integrate
countermeasures, this is done by accepting any risk that has arisen. The earlier the
study is done the more design resources will be saved. So, fault tolerance tests should be
implemented as early as possible. For this reason, this dissertation focuses on injecting
errors through simulation in HLS-generated RTLs, enabling the study of circuit robustness
early in the design flow.

As mentioned earlier, to facilitate these fault injection experiments, I was provided
with the essential scripts and codes needed for efficient statistical fault injections. This
groundwork allowed me to concentrate on debugging and adjusting fault injection scenar-
ios. With these pre-developed resources, I could efficiently perform analysis and generate
representative data, even with the limitations of time and complexity.

The aim is always to achieve the desired result in a reasonable period of time,
which, however, allows for safe and representative conclusions. As the complexity
of circuits increases, their analysis through fault models becomes more difficult and time-
consuming. The possible number of faults to be injected to cover all possibilities can reach
unimaginable numbers, which leads to the adoption of more practical solutions. For this
reason it is customary to select a random subset of possible errors which is a representative
sample of the set of possible errors.

Through statistical methods, it is possible to calculate a minimum required num-
ber of faults, given a certain margin of error on the measured results. This method offers
some kind of quantification regarding the error margins around the results and to what
degree of confidence they correspond.

Since a circuit has finite number of elements, the N memory elements that exist depend
on the circuit in question. These are the ones that can be exposed to an attack which
can change their value during the operation of the circuit in a given clock cycles [33]. In
particular, the number of random errors being introduced can be calculated through a
proposed mathematical equation, presented below [33]:

n =
N

1 + e2 ∗ N−1
t2 ∗ p ∗(1−p)

• where N is the number of all memory elements of the circuit
• where p is defined as the standard error
• where e is the margin of error which must be within the interval [Peval – e ; Peval + e],
or [Peval – e∗100 ; Peval + e∗100]
• where t corresponds to the confidence level and indicates the probability the exact value
will be actually within the error range. Usually, confidence level 95% is chosen.
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Chapter 6

Ciphers Overview

Before we dive into cipher’s detailed overview, we need to clarify the origins of the
implementations that were used. The implementation of “GIFT-64-128” is based on [34]
to ensure accuracy and alignment with standard specifications. The implementations for
the other three(3) ciphers (“LED-64”, “KATAN32” & “SIMON64/128”) were provided
to me, serving as a foundation for my work. From these implementations I adjusted and
debugged the codes as needed. Also, I produced the necessary Header and Testbench
files for Vivado HLS, adapting the codes to ensure compatibility with Vivado HLS for
successful compilation and synthesis.

6.1 Cipher “GIFT-64-128”

GIFT is a family of lightweight block ciphers, very versatile and performs also very
well on software. Designed for low-resource environments like RFID tags and sensor net-
works, improving over PRESENT [35] in both security and efficiency [36].

According to [36], compared to PRESENT, GIFT presents the following advantages:
Smaller area due to smaller S-box.
Fewer subkey additions.
Better resistance against LC thanks to good choice of S-box and bit permutation.
Fewer rounds.
Faster & simpler key schedule.

There are two(2) versions of GIFT:

• GIFT-64-128 is a 28-round SPN cipher with 64-bit size state.
• GIFT-128 is a 40-round SPN cipher with 128-bit size state.

Both versions have a 128-bit length key.
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6.1.1 Specifications

GIFT-64-128 can be represented in three(3) different representations. In this Thesis,
we adopt the classical 1D representation of GIFT-64-128, GIFT-64 for short.

GIFT-64 is a 28-round SPN cipher with 128-bit length key. As described in [36],
during initialization, the cipher takes an n-bit plaintext bn−1, bn−2,..., b0 as the cipher
state S, where n = 64 and b0 is the least significant bit. The cipher state can also be
represented as s 4-bit nibbles S = ws−1||ws−2||...||w0, where s = 16. Additionally, the
cipher receives a 128-bit key K = k7||k6||...||k0 as the key state, with ki being a 16-bit
word.

Round Function. Each round of GIFT-64 has 3 steps:

⇒ SubCells
⇒ Permutation Bits
⇒ Add Round Key

Figure 6.1: “GIFT-64-128” Rounds [36]

SubCells. GIFT-64 uses an invertible 4-bit S-box, GS. The Sbox is applied to every
nibble of the cipher state.

Permutation Bits. The bit permutation used in GIFT-64 are given by [36]. It maps
bits from bit position i of the cipher state to bit position P (i).

Add Round Key. This step involves adding the round key and round constants. An
n/2-bit round key RK is derived from the key state and further partitioned into two(2)
s-bit words RK = U ||V = us−1...u0||vs−1...v0, where s = 16 for GIFT-64. A single bit
“1” and 6-bit round constant RC = c5c4c3c2c1c0 are XORed into the cipher state at bit
position n-1, 23, 19, 15,11, 7 and 3 respectively.
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Figure 6.2: “GIFT-64-128” Bit Permutation [36]

As for the key schedule, a round key is initially derived from the state prior to the
key state update. In the case of, two(2) 16-bit words from the key state are extracted as
the round key RK = U ||V . The round constant’s update function is defined in [36] as:

(c5, c4, c3, c2, c1, c0) ← (c4, c3, c2, c1, c0,c5⊕c4⊕1)

The six(6) bits are initialized to “0” and updated before being used in a given round. The
constants for each round are listed in the table below, encoded as byte values, with c0
representing the least significant bit.

Figure 6.3: “GIFT-64-128” Round Constants [36]
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6.1.2 Security Analysis

Differential Cryptanalysis (DC) [37] and Linear Cryptanalysis (LC) [38] are
among the most powerful techniques available for block ciphers. Assessing a block cipher’s
resistance to Differential and Linear Cryptanalysis is one of the most common and essential
forms of security analysis.

GIFT-64 is designed to minimize the probability of differential characteristics, making
it difficult to predict how small changes in the input will affect the output after several
rounds. It has a 9-round differential probability of 2−44.415. When taking the average per
round and propagating forward, the differential probability is anticipated to drop below
2−63 by the time we reach the 14th round, given that the differential probability begins
from the second round due to the absence of a whitening key at the outset [36]. It is worth
noting that the differential probability is nearly equal to that of the optimal differential
characteristic.

As for the LC, GIFT family is designed to prevent strong linear approximations, thus
making it resistant to linear cryptanalysis. It exhibits a 9-round linear hull effect of
2−49.997, and it is expected to take 13 rounds to achieve a correlation potential lower than
2−64.

Regarding Integral Attacks, GIFT family employs strong diffusion mechanisms to
ensure that each bit of the output depends on every bit of the input after several rounds,
which helps in resisting integral attacks.

Impossible Differential cryptanalysis [39] [40] exploits a pair of differences, ∆1 and ∆2,
where the state difference ∆1 never transitions to ∆2 after a certain number of rounds.
Such pairs, ∆1 and ∆2, are referred to as Impossible Differential Attacks. Subkeys
leading to impossible differentials were detected to be wrong [36]. GIFT-64 achieves full
diffusion after just three(3) rounds, and no 6-round truncated Impossible Differentials have
been found.

The Meet-in-the-Middle (MITM) Attack is a classical approach that divides the
encryption algorithm into two independent functions [41]. In this type of attack the at-
tacker tries to find a matching state in the middle of the encryption process by partially
encrypting the plaintext and decrypting the ciphertext. The security analysis shows that
GIFT’s key schedule and structure make it infeasible to find such a match efficiently.

Invariant Subspace Attack leverages a linear subspace A and a constant u that
remain invariant under the round transformation. In its generalized form, it exploits the
property that the subspace A ⊕ u is mapped to another subspace A′ ⊕ v after the round
transformation. For dimension 1 of GIFT-64, there are five transitions. In any of these
cases, XORing the constant to Most Significant Bit (MSB), breaks the invariant subspace,
thus GIFT-64 resists the invariant subspace attacks [36].

Nonlinear Invariant Attacks [42] are weak-key attacks that can be executed when
the round constant is XORed only to specific bits of the nibbles. For the SPN structure,
the attacks are mounted when:

· S-box has the quadratic nonlinear invariant
· Linear layer is represented by the multiplication with an orthogonal binary matrix

In GIFT’s S-box there is no quadratic nonlinear invariant, making it strong against the
nonlinear invariant attacks [36].
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6.2 Cipher “LED-64”

Light Encryption Device (LED) block cipher is based on AES-like design principles
[43]. This enables the establishment of straightforward bounds on the number of active
S-boxes during block cipher encryption. Notably, while AES-based methods are well-
suited for software implementations, they do not always yield the most efficient designs
in hardware. The version presented here includes a slight modification to the original
description from [44].

6.2.1 Specifications

In contemporary symmetric cryptography, an AES-like design is considered the optimal
foundation for a clean and secure architecture. The design of LED shares many similarities
with this established approach, incorporating elements such as S-boxes, ShiftRows, and a
variant of MixColumns in their conventional roles.

LED is a 64-bit block cipher that has two(2) primary instances, which utilize 64-bit
and 128-bit keys [45]. In our case we choose the instance with 64-bit length key and 32
rounds. The cipher state is conceptually organized in a (4 × 4) grid where each nibble
corresponds to an element from GF (24), with the polynomial X4 +X + 1 serving as the
basis for field multiplication [43].

For a 64-bit plaintext m, the sixteen(16) 4-bit nibbles m0||m1||...||m14||m15 are or-
ganized into a (4 × 4) square array, serving as the initial value of the cipher STATE.
It is important to note that the state is loaded row-wise rather than in the column-
wiseapproach typically seen in AES, which is considered more hardware-friendly choice
[46].

The key is viewed nibble-wise and is denoted k0, k1, ..., kl the l nibbles of the key. Then
the i-th subkey SKi, also arranged in a (4× 4) square array, is simply obtained by setting
skij = k(j+i∗16 mod l). For LED-64 all subkeys are equal to the 64-bit key K.

Add Round Key. This operation combines nibbles of subkey SKi with the STATE,
respecting array positioning, using XOR.

Operation “Step”. It consists of four(4) rounds of encryption applied to the cipher
state, with each of these rounds utilizing the following sequence:

⇒ AddConstants
⇒ SubCells
⇒ ShiftRows

⇒ MixColumnsSerial

Figure 6.4: Use of subkeys SKi during the s Steps [43]
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AddConstants. In each round, six(6) bits (rc5, rc4, rc3, rc2, rc1, rc0) are shifted one
position to the left with the new value for rc0 calculated as rc5⊕rc4⊕1. These six(6) bits
are initialized to “0” and are updated before being utilized in the round.

SubCells. Each nibble in the STATE array is replaced by the nibble generated after
using the S-box of PRESENT cipher [35].

Figure 6.5: PRESENT cipher S-box [35]

ShiftRows. ShiftRows transformation in LED-64 is specified to cyclically rotate
the rows of the STATE array by different offsets. This is intended to provide diffusion by
spreading the influence of individual bits across multiple columns. Here is how the shifts
are defined for the 1D state matrix of 16 elements:

· 0− 3 : No shift (0 positions)
· 4− 7 : Shift left by 1 position
· 8− 11 : Shift left by 2 positions
· 12− 15 : Shift left by 3 positions

MixColumnsSerial. This involves mixing the columns of the STATE array using
a predefined (4 × 4) MixColMatrix Maximum Distance Separable (MDS) matrix. LED
reuses the tactic adopted in [47] to define a MDS matrix for linear diffusion that is suitable
for compact serial implementation. Each element of the STATE is multiplied by this Mix-
ColMatrix. The multiplication is carried out in the finite field GF (24), and the results are
combined using XOR operations. The MixColumnsSerial function ensures each element of
the STATE is mixed according to the MixColMatrix, providing diffusion by spreading the
influence of each nibble across multiple positions [43]. Combined with the ShiftRows and
SubCell transformations, strengthens the cipher against various cryptographic attacks.

Figure 6.6: LED Single Round Overview [43]
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6.2.2 Security Analysis

The LED block cipher is easy to analyze, enabling a precise assessment of the required
number of rounds for adequate security. The key schedule was selected for its simplicity
and security features. Its straightforward nature facilitates direct derivation of bounds on
the minimum number of active S-boxes, even in the context of related-key attacks. When
excluding related-key attacks, it can be directly concluded that any differential path for
LED will have at least s · 25 active S-boxes [43].

In the context of Related-Key Attacks, it is essential to differentiate between the
various key-size versions. For our 64-bit key version in particular, if we assume that dif-
ferences are introduced at the key input, every subkey SKi in the 64-bit variant of LED
will be active. Consequently, it is evident that it is impossible to enforce two(2) consecu-
tive non-active big steps, as at least one(1) of the two(2) big steps will always be active [43].

Regarding Differential Cryptanalysis, LED’s structure ensures minimum number
of active S-boxes per round, reducing the probability of successful differential attacks. The
analysis showed that any differential path will encounter a significant number of active
S-boxes, making it highly unlikely for an attacker to find useful differential characteris-
tics. As for the Linear Cryptanalysis, LED’s design also ensures high number of active
S-boxes in linear paths, making it difficult to exploit linear approximations. Over four
rounds, upper bound for the best linear approximation probability is 2−50, while the best
linear hull probability is bounded by 2−32 [43].

The Slide Attack is a technique for block cipher cryptanalysis [48] that takes advan-
tage of the self-similarity present in a permutation. In the case of LED, the addition of
round-dependent constants ensures that each round is made unique. This feature renders
the slide attack infeasible.

Generally, the number of rounds in LED is deliberately set to ensure a wide margin
of security. Even if an attack technique could theoretically reduce the rounds required
for a breach, the chosen number of rounds provides sufficient buffer to prevent practical
exploitation.

In conclusion, security analysis confirms that LED is a well-designed block cipher
that balances hardware efficiency with strong cryptographic security. Its resistance to
various forms of cryptanalysis, particularly related-key and differential attacks, combined
with conservative design choices, ensure that LED remains robust even as cryptanalytic
techniques evolve.
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6.3 Cipher “KATAN32”

The KATAN family of block ciphers was designed to meet the needs of resource-
constrained environments, such as RFID tags and embedded systems [49]. The family
consists of three(3) main variants based on block sizes: KATAN32, KATAN48, KATAN64
(n-bit for KATANn). All three(3) “version” accept same length key, are highly compact,
and attain the minimal size while ensuring sufficient security. We have chosenKATAN32.

6.3.1 Specifications

In general, the KATAN family of block ciphers features very simple structure. The
plaintext is loaded into two(2) registers, with their lengths determined by the block size.
During each round, multiple bits are extracted from the registers and fed into two(2)
nonlinear Boolean functions. The outputs of these functions are then stored in the least
significant bits of the registers after they have been shifted. The ciphers have 254 rounds
in order to ensure sufficient mixing.

Specifically, KATAN32 is the smallest of this family. It uses a 80-bit length key and
has 32-bit block size, which means its plaintext and ciphertext has size of 32 bits. The
plaintext is loaded into two(2) registers, L1 with a length of 13 bits and L2 with a length
of 19 bits [49]. The Least Significant Bit (LSB) of the plaintext is loaded into bit 0 of L2,
while the Most Significant Bit (MSB) is placed in bit 12 of L1. In each round, L1 and
L2 are shifted to the left, and the newly computed bits are stored in the LSBs of both
registers. After 254 rounds, the contents of the registers are output as the ciphertext.

KATAN32 uses two(2) nonlinear functions fa(·) and fb(·) in each round. The non-
linear functions fa and fb are presented below, as defined in [49]:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb

where IR is irregular update rule (i.e., L1[x5] is XORed in the rounds where the irregular
update is used), and ka and kb are the two(2) subkey bits [49].

After the nonlinear functions are computed, L1 and L2 registers are shifted, causing
the Most Significant Bit (MSB) to drop off, while the Least Significant Bit (LSB) is filled
with the output from the second nonlinear function. Thus, after the round, the LSB of L1

contains the output of fb, and the LSB of L2 holds the output of fa. The key schedule for
KATAN32 involves loading the 80-bit key into a Linear Feedback Shift Register (LFSR),
with the LSB of the key placed in position “0”. In each round, positions “0” and “1” of
the LFSR serve as the round’s subkeys k2i and k2i+1, and the LFSR is clocked twice.

Figure 6.7: “KATAN” Round Overview [49]
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6.3.2 Security Analysis

The design philosophy was based on offering a very high level of security, having very
large security margins.

Differential and Linear Cryptanalysis were analyzed under the assumption that
the intermediate encryption values are independent [50]. This simplifies the analysis and
is not expected to change the results too much [49]. Using computer-aided search for
Differential Cryptanalysis (DC), the results indicated that, depending on the number of
rounds used, the best 42-round differential characteristic for KATAN32 has a probability
of 2−11, which could be even lower with a different set of rounds. Therefore, any
126-round differential characteristic cannot have a probability greater than (2−11)3 = 2−33

[49]. For LC, comparable results were found, with the best 42-round linear approximation
exhibiting a bias of 2−6 [49].

Regarding Combined Attacks, KATAN32 is secure against combined attacks like
differential-linear and boomerang attacks due its quick diffusion and large security
margins. The probability of a successful attack drops exponentially with the number
of rounds. Another combined attack is the impossible differential attack, which relies on
identifying a differential with a probability of zero over as many rounds as possible. How-
ever, due to the rapid diffusion, altering even a single bit will inevitably affect all bits after
at most 42 rounds, making it impossible to conduct an impossible differential attack over
more than 168 rounds.

Slide Attacks exploit the ability to find two messages that share much of the encryp-
tion process. However, due to the differences in the round functions, this is feasible
only for a very limited number of rounds. In fact, no slide property with a probability
of 2−32 exists starting from the first round of the cipher. The earliest round where such
a property can be constructed is round 19. If an attacker obtains the same intermediate
encryption value at round 19 and round 118, they may find a ’slid’ pair, maintaining this
equality with a probability 2−31 until the end of the cipher. This demonstrates that there
are no advantageous slid properties in the KATAN cipher family overall [49].

As for the Related-Key Attacks, the attacker seeks two(2) intermediate encryption
values and keys that evolve in the same manner for as many rounds as possible. As pre-
viously mentioned, there are no “good” relations over different rounds, meaning
the two(2) intermediate encryption values must be in the same round. After at most 80
rounds, the difference in the subkeys prevents any effective related-key differential from
propagating [49].

In [51], authors combined the Cube Attack [52] and its extended variant with fault
analysis to form successfulHybrid Attacks against the full-round versions of the KATAN
family. The attacks utilize Cube Attacks and their extensions to identify the effective fault
injection rounds, derive differential characteristics, and generate linear and quadratic equa-
tions. The complexity of the attack on KATAN32 is 259 computations and about 115 fault
injections [51].

In conclusion, while KATAN32 provides significant resistance to basic attacks.
Advanced fault and algebraic attacks can reduce the complexity of key recovery,
making it a potential target for attackers with access to side-channel or fault injec-
tion capabilities [51].
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6.4 Cipher “SIMON64/128”

The SIMON family is a group of lightweight block ciphers developed by the
U.S. National Security Agency (NSA) in 2013 [53], to provide cryptographic security with
minimal computational resources. These ciphers are primarily used in resource-constrained
environments like RFID tags, IoT devices, and embedded systems. SIMON ciphers use a
Feistel structure and their round functions rely heavily on basic bitwise operations such
as circular shifts, bitwise AND, and bitwise XOR [54]. SIMON family includes variants
with block sizes ranging from 32 to 128 bits and key lengths ranging from 64 to 256 bits.
A SIMON block cipher with an n-bit word and m-bit key is refereed as SIMON2n/m.

6.4.1 Specifications

Our choice is a configuration with 32-bit words and a 128-bit key, which becomes
SIMON64/128. The SIMON64 version operates on a 64-bit block size with a key
size of either 96 or 128 bits [54]. As noted, we select a 128-bit length key. The num-
ber of rounds varies depending on the key size, with SIMON64/128 performing 44 rounds.

Round Function. The SIMON round function used for encryption is presented below,
as defined in [55]:

R(l, r, k) = ((S1(l)&S8(l))⊕ S2(l)⊕ r ⊕ k, l)

Where l is the left-most word of a given block, r the right-most word and k the appropriate
round key. The structure follows the general Feistel scheme, where the block is split into
two equal halves, and in each round, the operations include the following [54]:

⇒ Left Circular Rotation: The left half of the input is circularly shifted by 1, 8, and
2 bits.

⇒ Bitwise AND: The result of these shifts is combined using the bitwise AND
operation.

⇒ Bitwise XOR: The output from the AND operation is XORed with the other half of
the input and the round key.

Figure 6.8: “SIMON” Feistel Structure of Round Function [54]

Key Schedule. SIMON’s key schedule offers key expansion capabilities by gener-
ating all round keys from the master key in succession. In SIMON64/128, the key schedule
produces forty-four(44) round keys, each 32-bit sized, from the initial 128-bit master key,
using bitwise XOR and right circular rotations. This setup enhances the security by
ensuring that every round key is distinct and not easily predictable from previous keys.
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6.4.2 Security Analysis

Since its introduction back in 2013, SIMON64/128 has undergone extensive crypt-
analysis. It generally shows resilience against common cryptanalytic attacks like
Differential and Linear Cryptanalysis. Also, SIMON has no look-up tables, making it
naturally immune to Cache-Timing Attacks [56].

Cryptanalysts have successfully attacked reduced-round versions of SIMON family.
The full 44-round version of SIMON64/128 remains secure against Reduced-Round
Attacks. Furthermore, like many lightweight ciphers, SIMON64/128 may be susceptible
to Side-Channel Attacks, as in low-resource environments, security posture depends on
the hardware implementation itself.

Finally, SIMON’s family structure relies heavily on basic bitwise operations, making
it susceptible to Rotational Attacks, where patterns in data rotations are exploited.
Again, although these attacks can break reduced-round versions, they are generally im-
practical against the full 44-round version of SIMON64/128.
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Chapter 7

Ciphers Implementation

For the needs of the experiments, all the four(4) ciphers followed the same implemen-
tation process. First of all, after each cipher was studied in terms of its structure and
specifications, all cipher were implemented in C/C++ code. For each cipher were created
three(3) files. A Source file, a Header file and a Testbench file. All these three(3) files were
the input files into Vivado HLS in order to start the actual HLS implementation process.
The device which was used is the “xc7a12ticsg325-1L”.

During HLS implementation phase in Vivado HLS tool, the important part is the
selections of the directives. For the three(3) basic variables used in every implementation
we applied the same directives.

• for “input” variable:
⇒ set directive array partition -type complete -dim 1 “top function” input

• for “masterkey” variable:
⇒ set directive array partition -type complete -dim 1 “top function” masterkey

• for “output” variable:
⇒ set directive array partition -type complete -dim 1 “top function” output
⇒ set directive interface -mode ap vld -register “top function” output

Variable “input” stores the cleartext data which are going to be encrypted. Variable
“masterkey” stores the main key used in the encryption process. Variable “output” stores
the produced ciphertext.

After the HLS implementation process has finished, the output VHDL files are ex-
tracted from Vivado HLS tool so they can be used for our fault injections. Also, for the
needs of statistical method, a Python script was created with the sole purpose of generat-
ing and formatting the random numbers which were used in the Statistical Fault Injection
test cases.Before proceeding to the implementation’s results, it is worth noting that the
final LUT count, after physical optimizations and full implementation, is typically lower.

In brief, “GIFT-64-128” and “LED-64” recorded similar logic and power usages. Their
only notable difference is in memory usage. We could expect that due to their alike design
principles which are based on. “KATAN32” has by far the highest usage in term of
logic, memory and power usage. On the other hand, “SIMON64/128” displays the lowest
utilization in logic, memory and power.
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7.1 Implementation of “GIFT-64-128”

“GIFT-64-128” logic usage is significantly low as none percentage is bigger than 8.00%.
It uses thirty-six(36) LUT slices as memory and zero(0) register as latch. Regarding
memory usage, the site type is “RAMB18”. Its static and total power consumption is
0.186 W and 16.953 W respectively.

Site Type Used Available Utilization

Slice LUTs 618 8000 7.73%

LUT as Logic 582 8000 7.28%
LUT as Memory 36 5000 0.72%

Slice Registers 548 16000 3.43%

Register as Flip Flop 548 16000 3.43%
Register as Latch 0 16000 0.00%

F7 Muxes 51 7300 0.70%

F8 Muxes 8 3650 0.722%

Table 7.1: Slice Logic of “GIFT-64-128”

Site Type Used Available Utilization

Block RAM Tile 1 20 5.00%

RAMB18 2 40 5.00%
RAMB36 0 20 0.00%

Table 7.2: Memory Usage of “GIFT-64-128”

On-Chip Power Used Available Utilization

Slice Logic 2.466 W 1246 — —

LUT as Logic 2.148 W 582 8000 7.28%
LUT as Memory 0.170 W 36 5000 0.72%

Register 0.103 W 548 16000 3.43%
F7/F8 Muxes 0.041 W 59 14600 0.40%

BUFG 0.005 W 1 32 3.13%

Signals 3.796 W 1477 — —

Block RAM 0.196 W 1 20 5.00%

I/O 10.308 W 534 150 356.00%

Static Power 0.186 W — — —

Total 16.953 W — — —

Table 7.3: Power Usage of “GIFT-64-128”
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7.2 Implementation of “LED-64”

“LED-64” logic usage is also incredible low as none percentage is bigger than 7.00%. It
uses sixteen(16) LUT slices as memory and zero(0) register as latch. Regarding memory
usage, the site type is “RAMB18”. Its static and total power consumption is 0.188 W and
17.041 W respectively.

Site Type Used Available Utilization

Slice LUTs 487 8000 6.09%

LUT as Logic 471 8000 5.89%
LUT as Memory 16 5000 0.32%

Slice Registers 471 16000 2.94%

Register as Flip Flop 471 16000 2.94%
Register as Latch 0 16000 0.00%

F7 Muxes 48 7300 0.66%

F8 Muxes 24 3650 0.66%

Table 7.4: Slice Logic of “LED-64”

Site Type Used Available Utilization

Block RAM Tile 0.5 20 2.50%

RAMB18 1 40 2.50%
RAMB36 0 20 0.00%

Table 7.5: Memory Usage of “LED-64”

On-Chip Power Used Available Utilization

Slice Logic 1.769 W 1047 — —

LUT as Logic 1.597 W 471 8000 5.89%
LUT as Memory 0.020 W 16 5000 0.32%

Register 0.095 W 471 16000 2.94%
F7/F8 Muxes 0.052 W 72 14600 0.49%

BUFG 0.005 W 1 32 3.13%

Signals 3.709 W 1122 — —

Block RAM 0.164 W 0.5 20 2.50%

I/O 11.211 406 150 270.67%

Static Power 0.188 W — — —

Total 17.041 W — — —

Table 7.6: Power Usage of “LED-64”
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7.3 Implementation of “KATAN32”

“KATAN32” logic usage is significantly higher as LUT slices utilization percentage is
almost 40.00%. It does not use LUT slices as memory, neither register as latch. Regarding
memory usage, the site type is “RAMB36”. Its static and total power consumption is 0.239
W and 170.363 W respectively.

Site Type Used Available Utilization

Slice LUTs 3198 8000 39.98%

LUT as Logic 3198 8000 39.98%
LUT as Memory 0 5000 0.00%

Slice Registers 3032 16000 18.95%

Register as Flip Flop 3032 16000 18.95%
Register as Latch 0 16000 0.00%

F7 Muxes 643 7300 8.81%

F8 Muxes 64 3650 1.75%

Table 7.7: Slice Logic of “KATAN32”

Site Type Used Available Utilization

Block RAM Tile 6 20 30.0%

RAMB18 0 40 0.00%
RAMB36 6 20 30.0%

Table 7.8: Memory Usage of “KATAN32”

On-Chip Power Used Available Utilization

Slice Logic 15.759 W 6952 — —

LUT as Logic 14.828 W 3198 8000 39.98%
CARRY4 0.013 W 3 3650 0.08%
Register 0.312 W 3032 16000 18.95%

F7/F8 Muxes 0.601 W 707 14600 4.84%
BUFG 0.005 W 1 32 3.13%

Signals 25.372 W 13083 — —

Block RAM 1.296 W 6 20 30.00%

I/O 127.697 W 9254 150 6169.33%

Static Power 0.239 W — — —

Total 170.363 W — — —

Table 7.9: Power Usage of “KATAN32”
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7.4 Implementation of “SIMON64/128”

“SIMON64/128” logic usage is the lowest recorded as none percentage is bigger than
3.00%. It does not use LUT slices as memory, neither register as latch or F7/F8 muxes..
Regarding memory usage, the site type is “RAMB36”. Its static and total power con-
sumption is 0.080 W and 8.214 W respectively.

Site Type Used Available Utilization

Slice LUTs 214 8000 2.68%

LUT as Logic 214 8000 2.68%
LUT as Memory 0 5000 0.00%

Slice Registers 192 16000 1.20%

Register as Flip Flop 192 16000 1.20%
Register as Latch 0 16000 0.00%

F7 Muxes 0 7300 0.00%

F8 Muxes 0 3650 0.00%

Table 7.10: Slice Logic of “SIMON64/128”

Site Type Used Available Utilization

Block RAM Tile 1 20 5.00%

RAMB18 0 40 0.00%
RAMB36 1 20 5.00%

Table 7.11: Memory Usage of “SIMON64/128”

On-Chip Power Used Available Utilization

Slice Logic 2.245 W 413 — —

LUT as Logic 2.134 W 214 8000 2.68%
Register 0.105 W 192 16000 1.20%

F7/F8 Muxes — — — —
BUFG 0.005 W 1 32 3.13%

Signals 3.172 W 666 — —

Block RAM 0.309 W 1 20 5.00%

I/O 2.407 W 264 150 176.00%

Static Power 0.080 W — — —

Total 8.214 W — — —

Table 7.12: Power Usage of “SIMON64/128”
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Chapter 8

Results Analysis

For the purposes of the Thesis, ten(10) Statistical Fault Injection (SFI) test cases were
created, from M1 to M10. For each case, the multiplicity of Fault Injection is increased
by 1. We symbolize test cases by ‘Mi’ where ‘M’ stands for ‘Multiplicity’ and ‘i’ for the
number of bit-flips, e.g. M1 is single bit-flip.

We categorized faults into three(3) categories as Critical Errors, Hang Errors and
Silent Errors.

• Critical Errors. These are severe errors that cause the system to crash, halt, or become
unresponsive. They typically result in a complete failure of the device or application
and may require a reset or power cycle to recover.

• Hang Errors. These are observable errors that affect the system but do not cause it
to crash. They may manifest as incorrect outputs or glitches in the system, but the
device remains operational and running.

• Silent Errors. These are errors that occur without being immediately detected. The
system appears to function normally, but the internal state or output is incorrect.
Silent errors can be particularly dangerous as they may go unnoticed and lead to
larger issues later on.

The tables bellow show percentage values. Positive percentages corresponds to incre-
ment, while negative percentages represent decrement. In ‘Transition Results’ tables, we
keep percentage sign to distinguish rises from drops. Furthermore, in the following graphs
we have illustrated Critical Errors with blue color, Hang Errors with orange, and Silent
Errors with green.

It is important to note that the 0.5% error margin, which is been set to this threshold
due to the Thesis’s time barrier. In our case study, due to the exponential increase in
simulation time, the error margin could not be lower. This means the actual results may
differ from the outputted percentages by ±0.5%. For this reason, percentage differences
of less than 0.5% in absolute value, are considered negligible.
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8.1 Results of “GIFT-64-128”

Multiplicity Critical Errors Hang Errors Silent Errors

M1 0.93% 12.30% 86.77%

M2 1.49% 22.36% 76.16%

M3 1.86% 31.56% 66.58%

M4 2.17% 39.18% 58.64%

M5 2.31% 46.60% 51.09%

M6 2.43% 52.96% 44.62%

M7 2.65% 58.00% 39.35%

M8 2.45% 62.97% 34.59%

M9 2.64% 66.98% 30.38%

M10 2.49% 71.00% 26.51%

Average 2.14% 46.39% 51.47%

Maximum 2.65% 71.00% 86.77%

Minimum 0.93% 12.30% 26.51%

Table 8.1: Results of “GIFT-64-128”

Multiplicity Critical Errors Hang Errors Silent Errors

M1-M2 0.55% 10.06% -10.62%

M2-M3 0.38% 9.20% -9.58%

M3-M4 0.31% 7.63% -7.94%

M4-M5 0.14% 7.42% -7.56%

M5-M6 0.11% 6.36% -6.47%

M6-M7 0.23% 5.04% -5.27%

M7-M8 -0.21% 4.97% -4.76%

M8-M9 0.19% 4.01% -4.21%

M9-M10 -0.15% 4.02% -3.87%

Average 0.17% 6.52% -6.70%

Maximum 0.55% 10.06% -10.62%

Minimum 0.11% 4.01% -3.87%

Table 8.2: Transition Results of “GIFT-64-128”

Multiplicity Critical Errors Hang Errors Silent Errors

M1-M5 1.38% 34.31% -35.69%

M5-M10 0.18% 24.40% -24.58%

M1-M10 1.56% 58.70% -60.27%

Table 8.3: Aggregate Transition Results of “GIFT-64-128”
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Critical Errors percentage has a slightly increasing trend, having its minimum
value 0.93% at M1 and its maximum value 2.65% at M7. In total, from M1 to M10,
Critical Errors are increased by 1.56%. The average increment percentage over consec-
utive cases is only 0.17%. From M4 and after, it remains broadly ”stable” around its
average value. The biggest increase appears from M1 to M2, as M2 is increased by
0.55%. Although this is the biggest difference between consecutive multiplicities, it is still
pretty close to error margin, making the difference almost insensitive. Also, average and
maximum values have small difference 0.51%, again almost equal to error margin. While
for the multiplicities M1 to M5 the increase reaches 1.38%, between M5−M10 the rise
of Critical Errors percentage is only 0.18% which is much less than the error margin.
That happened because between M7 −M8 and M9 −M10, Critical Errors percentage
is decreased. With that been said, the difference between M5−M10 is actually insensitive.

Hang Errors percentage is constantly increasing, having its minimum value 12.30%
at M1, and reaching its maximum value 71.00% at M10. The average percentage is
46.39%, differing 24.61% from the maximum percentage value and 34.09% from the mini-
mum. In total, from M1 to M10, Hang Errors are increased by 58.70%, having increased
by 34.31% from M1 to M5 and 24.40% from M5 to M10. The biggest increase appears
from M1 to M2, rising by 10.06%. Also, taking the error margin under consideration,
M5’s percentage 46.60% may be considered “average” value, as they differ only by 0.21%.
The percentage of the increase between consecutive cases decreases as the multiplicities
proceed. The average increment percentage of Hang Errors is 6.52%.

Silent Errors percentage fluctuation is opposite to Hang Errors. It starts from its
maximum value 86.77% at M1, dropping to minimum value 26.51% at M10. The average
percentage is 51.47%, differing 35.30% from the maximum percentage value and 24.96%
from the minimum. In total, Silent Errors are decreased by 60.27%, having decreased by
35.69% from M1 to M5 and 24.58% from M5 to M10. Similar to Hang Errors allocation,
Silent Errors biggest drop take place from M1 to M2 where the percentage of Silent Errors
drops by 10.62%. The percentage of the decrease between consecutive cases decreases as
the multiplicities proceed. The average reduction percentage of Silent Errors is 6.70%.

Figure 8.1: “GIFT-64-128” Graph
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8.2 Results of “LED-64”

Multiplicity Critical Errors Hang Errors Silent Errors

M1 1.75% 13.19% 85.07%

M2 3.31% 23.68% 73.00%

M3 4.25% 33.25% 62.49%

M4 4.88% 41.21% 53.90%

M5 5.17% 48.56% 46.27%

M6 5.44% 54.80% 39.77%

M7 5.40% 60.18% 34.42%

M8 5.56% 65.31% 29.13%

M9 5.27% 69.48% 25.26%

M10 5.14% 72.91% 21.95%

Average 4.62% 48.26% 47.13%

Maximum 5.56% 72.91% 85.07%

Minimum 1.75% 13.19% 21.95%

Table 8.4: Results of “LED-64”

Multiplicity Critical Errors Hang Errors Silent Errors

M1-M2 1.57% 10.50% -12.06%

M2-M3 0.94% 9.57% -10.51%

M3-M4 0.63% 7.96% -8.59%

M4-M5 0.29% 7.34% -7.64%

M5-M6 0.26% 6.24% -6.50%

M6-M7 -0.03% 5.38% -5.34%

M7-M8 0.16% 5.13% -5.29%

M8-M9 -0.29% 4.17% -3.87%

M9-M10 -0.13% 3.44% -3.31%

Average 0.38% 6.64% -7.01%

Maximum 1.57% 10.50% -12.06%

Minimum -0.03% 3.44% -3.31%

Table 8.5: Transition Results of “LED-64”

Multiplicity Critical Errors Hang Errors Silent Errors

M1-M5 3.43% 35.37% -38.80%

M5-M10 -0.03% 24.35% -24.32%

M1-M10 3.40% 59.72% -63.12%

Table 8.6: Aggregate Transition Results of “LED-64”
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Critical Errors percentage records a total increase of 3.40%, with the minimum
value 1.75% at M1 and the maximum value 5.56% at M8. From M1 to M5, the percent-
age is increased by 3.43%. On the other hand, the difference between M5−M10 is -0.03%
which is much smaller than the error margin. This means that after M4, the Critical Error
percentage remains stable. Another notable fact is the small difference between average
and maximum value, which is less than 1%, specifically 0.94%. Also, the biggest increase
appears from M1 to M2, rising by 1.57% which is nearly doubling M1’s percentage. Be-
tween M6 −M7, the percentage drops by 0.03% which is equal to the percentage drop
between M5−M10. The average increment percentage of Critical Errors is only 0.38%.

Hang Errors percentage is constantly increasing, having its minimum value 13.19%
at M1, and reaching its maximum value 72.91% at M10. The average percentage is
48.26%, differing 24.65% from the maximum percentage value and 35.07% from the mini-
mum. In total, from M1 to M10, Hang Errors are increased by 59.72%, having increased
by 35.37% from M1 to M5 and 24.35% from M5 to M10. The biggest increase appears
from M1 to M2, rising by 10.50%. Also, taking the error margin under consideration,
M5’s percentage 48.56% may be considered the average value, as they differ only by 0.30%.
The percentage of the increase between consecutive cases decreases constantly, as the mul-
tiplicities proceed. The average increment percentage of Hang Errors is 6.64%.

Silent Errors percentage fluctuation is opposite to Hang Errors. It starts from its
maximum value 85.07% at M1, dropping to minimum value 21.95% at M10. In total,
Silent Errors decrease by 63.12%. Similar to Hang Errors allocation, Silent Errors biggest
drop take place from M1 to M2 where the percentage of Silent Errors drops by 12.06%.
What is also interesting is that from M1 to M3 the percentage drops by 22.57%, while
between M5 −M10 the decrease records 24.32%, differing only by 1.74%. Finally, the
percentage of the decrease between consecutive cases decreases constantly, as the multi-
plicities proceed. The average reduction percentage of Silent Errors is 7.01%.

Figure 8.2: “LED-64” Graph
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8.3 Results of “KATAN32”

Multiplicity Critical Errors Hang Errors Silent Errors

M1 1.30% 3.17% 95.53%

M2 2.08% 5.56% 92.37%

M3 2.76% 8.46% 88.78%

M4 3.27% 10.94% 85.79%

M5 3.75% 13.62% 82.63%

M6 3.97% 16.09% 79.94%

M7 4.21% 18.60% 77.19%

M8 4.63% 20.35% 75.02%

M9 4.71% 23.14% 72.15%

M10 4.97% 25.37% 69.66%

Average 3.57% 14.53% 81.90%

Maximum 4.97% 25.37% 95.53%

Minimum 1.30% 3.17% 69.66%

Table 8.7: Results of “KATAN32”

Multiplicity Critical Errors Hang Errors Silent Errors

M1-M2 0.78% 2.38% -3.17%

M2-M3 0.69% 2.90% -3.59%

M3-M4 0.51% 2.48% -2.99%

M4-M5 0.47% 2.68% -3.16%

M5-M6 0.23% 2.47% -2.70%

M6-M7 0.24% 2.51% -2.75%

M7-M8 0.42% 1.75% -2.17%

M8-M9 0.08% 2.79% -2.87%

M9-M10 0.25% 2.24% -2.49%

Average 0.41% 2.47% -2.88%

Maximum 0.78% 2.90% -3.59%

Minimum 0.08% 1.75% -2.17%

Table 8.8: Transition Results of “KATAN32”

Multiplicity Critical Errors Hang Errors Silent Errors

M1-M5 2.45% 10.45% -12.90%

M5-M10 1.22% 11.75% -12.98%

M1-M10 3.67% 22.20% -25.88%

Table 8.9: Aggregate Transition Results of “KATAN32”
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Critical Errors percentage records a total increase of 3.67%, with the minimum
value 1.30% at M1 and the maximum value 4.97% at M10. From M1 to M5, the percent-
age is increased by 2.45% which more than double of the rise between M5−M10 (1.22%).
Another notable fact is the small difference between average and maximum value, which
is 1.4%, compared to the difference between average and minimum value, which is 2.27%.
Something also notable is a little spike of 0.42% from M7 to M8, considering the increase
between M6 −M7 and M8 −M9 which are 0.24% and 0.08% respectively. Of course,
taking under consideration the error margin, those changes from M6 to M9 may be insen-
sitive. The biggest increase appears from M1 to M2, rising by 0.78%. On the contrary,
the smallest increase is shown between M8−M9, having raised only by 0.08% remaining
essentially constant. Finally, the average increment percentage of Critical Errors is 0.41%,
which is just under the error margin.

Hang Errors percentage is constantly increasing, having its minimum value 3.17%
at M1, and reaching its maximum value 25.37% at M10. The average percentage is
14.53%, differing 10.84% from the maximum percentage value and 11.36% from the mini-
mum. In total, from M1 to M10, Hang Errors are increased by 22.20%, having increased
by 10.45% from M1 to M5 and 11.75% from M5 to M10. The biggest increase appears
from M2 to M3, rising by 2.90%, while between M7 −M8 the least increase by 1.75%.
The average increment rate of Hang Errors is 2.47%.

Silent Errors percentage fluctuation is opposite to Hang Errors. It starts from its
maximum value 95.53% at M1, dropping to minimum value 69.66% at M10. The average
percentage is 81.90%, differing 13.63% from the maximum percentage value and 12.25%
from the minimum. In total, Silent Errors decrease by 25.88%, having decreased by 12.90%
from M1 to M5 and 12.98% from M5 to M10. These percentage drop is approximately
the same between the two half of the test cases. Silent Errors biggest drop take place from
M2 to M3 where their percentage drops by 3.59%. The average reduction rate of Silent
Errors is 2.88%.

Figure 8.3: “KATAN32” Graph
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8.4 Results of “SIMON64/128”

Multiplicity Critical Errors Hang Errors Silent Errors

M1 17.06% 9.64% 73.29%

M2 24.42% 15.86% 59.72%

M3 27.86% 22.47% 49.67%

M4 29.12% 28.67% 42.22%

M5 28.89% 34.20% 36.91%

M6 28.16% 39.44% 32.39%

M7 27.24% 44.00% 28.75%

M8 26.26% 47.97% 25.77%

M9 25.30% 51.50% 23.20%

M10 24.19% 55.34% 20.47%

Average 25.85% 34.91% 39.24%

Maximum 29.12% 55.34% 73.29%

Minimum 17.06% 9.64% 20.47%

Table 8.10: Results of “SIMON64/128”

Multiplicity Critical Errors Hang Errors Silent Errors

M1-M2 7.36% 6.22% -13.57%

M2-M3 3.44% 6.61% -10.06%

M3-M4 1.26% 6.20% -7.45%

M4-M5 -0.23% 5.53% -5.30%

M5-M6 -0.73% 5.25% -4.52%

M6-M7 -0.92% 4.56% -3.64%

M7-M8 -0.98% 3.97% -2.99%

M8-M9 -0.96% 3.53% -2.57%

M9-M10 -1.11% 3.84% -2.73%

Average 0.79% 5.08% -5.87%

Maximum 7.36% 6.61% -13.57%

Minimum -0.23% 3.53% -2.57%

Table 8.11: Transition Results of “SIMON64/128”

Multiplicity Critical Errors Hang Errors Silent Errors

M1-M5 11.83% 24.56% -36.38%

M5-M10 -4.70% 21.14% -16.45%

M1-M10 7.13% 45.70% -52.83%

Table 8.12: Aggregate Transition Results of “SIMON64/128”
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Critical Errors percentage records a total increase of 7.13%, with the minimum
percentage value 17.06% at M1 and the maximum 29.12% at M4. The average percent-
age is 25.85%, differing 3.27% from the maximum percentage value and 8.79% from the
minimum. From M1 to M5, the percentage is increased by 11.83%, however, between
M5 −M10 the percentage of Critical Errors drops by 4.70%. The biggest increase ap-
pears from M1 to M2, rising by 7.36%. On the contrary, between M9−M10 it records its
greatest decrease by 1.11%. The percentage is continuously rising until M4, after which,
it is constantly dropping. The average increment percentage of Critical Errors is 0.79%

Hang Errors percentage is constantly increasing, having its minimum value 9.64%
at M1, and reaching its maximum value 55.34% at M10. The average percentage is
34.91%, differing 20.43% from the maximum percentage value and 25.27% from the mini-
mum. In total, from M1 to M10, Hang Errors are increased by 45.70%, having increased
by 24.56% from M1 to M5 and 21.14% from M5 to M10. The biggest increase appears
from M2 to M3, rising by 6.61%, while between M8 −M9 the least increase by 3.53%.
The average increment percentage of Hang Errors is 5.08%.

Silent Errors percentage fluctuation is opposite to Hang Errors. It starts from its
maximum value 73.29% at M1, dropping to minimum value 20.47% at M10. The average
percentage is 39.24%, differing 34.06% from the maximum percentage value and 18.77%
from the minimum. In total, Silent Errors decrease by 52.83%, having decreased by 36.38%
from M1 to M5 and 16.45% from M5 to M10. Silent Errors biggest drop take place from
M1 to M2 where their percentage drops by 13.57%. It is interesting that from M1 to
M3 the percentage drops by 23.63%, which is 7.18% greater than the decrease between
M5 −M10. The percentage of the decrease between consecutive cases decreases as the
multiplicities proceed. The average reduction percentage of Silent Errors is 5.87%.

Figure 8.4: “SIMON64/128” Graph
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Chapter 9

Conclusion

In this final chapter, we located key findings exported from our previous analysis.
We compared each of the four(4) lightweight block ciphers against each other, taking into
account their results from all their test cases M1−M10. In conclusion, we suggest possible
further research on this topic.

9.1 Key Findings

The main findings of the study are presented below. The analysis focuses on trends in
critical errors, hang errors, and silent errors across different multiplicities.

In brief, GIFT-64-128 & LED-64 share similar design principles, as they are based
on SPN structure and S-boxes, being the most stable regarding Critical Errors
among all tested ciphers. KATAN32 uses many rounds, nonlinear functions and
Linear Feedback Shift Register (LFSR) in order to ensure sufficient mixing. Overall,
it shows more stability regarding percentage changes between consecutive mul-
tiplicities. Finally, SIMON64/128 appears more sensitive, as by design relies heavily
on bitwise operations.

9.1.1 Critical Errors

• GIFT-64-128 shows a slow and stable increase in critical errors, with a significant
difference between the first two(2) multiplicities, but the overall change remains minor
beyond M5. Compared to the others ciphers it has the lower average of Critical Errors.

• LED-64 also displays a stable increase in Critical Errors, peaking at 5.56% by M8.
After M5, the percentage’s differences are under the error margin and practically imper-
ceptible.

• KATAN32 shows a moderate increase, having a notable rise from M1 to M5. After
“GIFT-64-128”, it has the second lower average percentage of Critical Errors.

• SIMON64/128 follows a pattern similar to “GIFT-64-128”, with relatively low in-
crements especially after M4, indicating stability in Critical Errors. However, the average
percentage is by far the greatest, being bigger by twelve(12), five(5) and seven(7) times
than “GIFT-64-128”, “LED-64” and “KATAN32” respectively.
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In general, regarding Critical Errors, the average percentage changes between consec-
utive multiplicities in “GIFT-64-128”, “LED-64” and “KATAN32” are below the error
margin, indicating imperceptible differences. This result may be related to their de-
sign primitives, as “GIFT-64-128” and “LED-64” uses SPN structure and S-boxes, and
“KATAN32” has 254 rounds and two(2) nonlinear functions in order to ensure sufficient
mixing. In contrast, “SIMON64/128” uses a Feistel structure and its round functions rely
heavily on basic bitwise operations such as circular shifts, bitwise AND, and bitwise XOR,
producing more notable percentage differences.

9.1.2 Hang Errors

• GIFT-64-128 & LED-64 show consistent and significant increases in Hang Errors,
with “LED-64” having slightly higher average percentage.

• KATAN32 has the lowest initial and average Hang Errors percentage. In addition,
it shows the least overall increase compared to the others ciphers.

• SIMON64/128 demonstrates moderate increases, lower than “GIFT-64-128” and
“LED-64” but significantly higher than “KATAN32”.

Regarding Hang Errors, all four(4) ciphers exhibit rising trend as the multiplicities
increase. The similarities in the percentages between “GIFT-64-128” & “LED-64” may
also be related to their similar design approach, indicating potential stability issues as
multiplicity increases. Regarding “KATAN32”, as its design ensures sufficient mixing,
shows more stable increases by its average transition percentage.

9.1.3 Silent Errors

• GIFT-64-128 & LED-64 present the opposite trend from Hand Errors. They both
show substantial decreases in Silent Errors, reflecting overall reduction close to 60%.

• KATAN32 has the highest initial Silent Error percentage, and while it has a de-
creasing trend like all the others ciphers, it records the smallest decrease.

• SIMON64/128 exhibits a similar downward trend in Silent Errors as the rest of the
ciphers but it has the lowest initial percentage. It also has the smallest average percentage.

Silent Errors demonstrate reversed trend from the Hang Errors, as all four(4) ciphers
show decreasing trend as the multiplicities increase. “GIFT-64-128” & “LED-64” per-
centages decreases significantly, suggesting improvements in these implementations’ error
handling mechanisms as multiplicities progress. “KATAN32”, despite starting high, shows
less improvement as it only drops by 25.88%. “SIMON64/128” follows similar downward
trend with “GIFT-64-128” & “LED-64”.
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9.2 Further Research

First of all, further studies should focus on expanding Thesis’s research without the
restrictions of tight time schedule and resources limitation. Under those conditions, the
error margin could be noticeably smaller, e.g. 0.1%. In this case, the exponentially
increasing simulation time required would not be a problem.

Furthermore, future research could continue by examining the effects of more combi-
nations of directives. Several papers such as [57] and [58], shape the direction of study
over this topic, but the research can be expanded more.

Next steps could be related to fault mitigation techniques. Future studies could fo-
cus on developing and testing fault mitigation strategies specifically designed for HLS-
generated cryptographic hardware. This could involve techniques such as redundancy,
error-detection codes, and fault-tolerant synthesis configurations that can be adapted to
lightweight ciphers without significantly impacting performance.

Under the umbrella of fault mitigation techniques, application of machine learning for
fault prediction could be further investigated. Leveraging machine learning algorithms
could offer a novel approach to predict and preempt fault-induced vulnerabilities in HLS
implementations. Future research could focus on training models with fault injection
data to predict susceptible areas within cryptographic designs, enabling proactive security
optimizations during the HLS process.
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