

 UNIVERSITY OF PIRAEUS

SCHOOL OF INFORMATION AND TELECOMMUNICATIONS

TECHNOLOGIES

DEPARTMENT OF DIGITAL SYSTEMS

 POSTGRADUATE PROGRAM OF STUDIES

 TITLE OF THE PHD THESIS

 MALWARE ANALYSIS

THESIS ADVISOR: CHRISTOS XENAKIS

STUDENT: SEFERIADIS CHRISTOS MTE2124

 PIRAEUS

 JANUARY 2025

 TABLE OF CONTENTS

Contents
TABLE OF CONTENTS .. 2

INTRODUCTION ..Error! Bookmark not defined.

1.1 Malware Detection techniques ... 8

Chapter 2 -Malicious malware scripts examples .. 12

Installation... 12

2.1 Malware Python scripts .. 12

File infection. .. 12

How it works ... 13

Trojan (trojan horse) .. 15

Worm .. 18

Spyware... 21

Ransomware .. 23

Adware .. 25

Dropper ... 27

Chapter 3 – Testing Environment & Malware Samples .. 32

3.1 Testing Environment.. 32

3.2 Malware Samples .. 32

3.2.1 Wannacry ransomware .. 32

3.2.2 Impact of Successful Attacks .. 34

Chapter 4 – Static Analysis .. 36

4.1 Finding Packer ... 39

4.2 Extraction and analysis of strings ... 41

4.3 Analysis PE Headers .. 43

4.4 Import Table Analysis ... 43

4.5 Search for embedded objects.. 47

4.6 Wannacry Abalysis .. 48

Chapter 5 – Dynamic Analysis .. 54

5.1 Process Explorer analysis... 59

5.2 Compare snapshots with regshot .. 66

5.3 Process Analysis Monitor .. 67

5.4 Filtering in process monitor ... 70

5.5 Search for Rootkit Objects ... 72

5.6 Wannacry Analysis .. 73

5.6.1 Registry Monitor ... 75

5.6.2 Process Monitor & Wireshark ... 77

5.6.3 Encryption Process.. 83

5.6.4 Recovery Prevention ... 87

5.6.5 Propagation ... 87

5.6.6 C&C communication .. 89

CONCLUSION ... 91

Introduction

In this thesis, which was prepared on the basis of the technical training for

cybersecurity specialists of the organization ENISA, an attempt will be made to

examine and analyze a malware. The main points that will be examined in order to

understand its behavior are the way it is executed, its purpose as well as the way it

communicates and interacts with the internet.

Our analysis includes 3 stages which are:

1) Static analysis: In static analysis, various data about malware are collected

without it being executed (which compiler was compile, what packer was used, etc.)

and the assembly code of the software is examined.

2) Dynamic analysis: In dynamic analysis, malware is executed in real time, but

in a protected environment, its behavior is analyzed and its action and results are

recorded.

3) Network analysis: Network analysis analyzes how malware communicates

with the internet (and in this case in a protected environment) as well as with which

websites it interacts and for what purpose.

So, based on the above, and using the appropriate tools that we will refer to below, we

will proceed to analyze malware. The most difficult but at the same time very

important part of the analysis is that of examining the assembly code of the software.

However, useful data is also drawn from dynamic analysis, which can give us an idea

of the operation of the software and be used as supplementary information to

understand the obscure assembly code of the executable. The stages of the analysis

and the procedures involved are briefly illustrated in the image below.

 Image 1. Types of Malware Analysis

Chapter 1 - Malware

Any software that is expressly designed to cause harm or abuse computer systems,

networks, or users is referred to as malware. Malware is an abbreviation for the term

"malicious software." Malware is software that is developed with the intention of

causing harm, and it can take many different forms since it is designed to compromise

the operation and security of a device or network. The following is a list of common

types of malicious software:

A virus is:

Viruses are programs that duplicate themselves when they attach themselves to

normal executable files or documents and then replicate themselves when the infected

file is executed at a later time.

Viruses have the ability to corrupt or erase files, spread to other files, and in certain

cases render the system inoperable.

Worms

The term "worm" refers to programs that are self-contained and capable of replicating

and spreading themselves autonomously, typically through vulnerabilities in

networks.

Worms have the ability to rapidly propagate across networks, causing damage by

exploiting security holes and consuming bandwidth and generating disruptions.

Trojans

Trojans are a type of malicious malware that masquerades as genuine software but

actually contains malicious code. Those that install them do so without realizing it

since they believe they are helpful programs.

The function of Trojans is to build backdoors for attackers, steal sensitive

information, or carry out a variety of damaging acts without the user's knowledge.

Ransomware

Ransomware is a type of malicious software that encrypts the files of a user and then

demands money (often in cryptocurrency) in exchange for the key to decode the files.

One of the functions of ransomware is to prevent users from accessing vital files until

the demanded ransom is paid. This can result in monetary losses and possible data

breaches.

Viruses and spyware:

The term "spyware" refers to software that is meant to monitor the activities of users

without their awareness. The collection of sensitive information, such as passwords,

surfing patterns, and personal data, tends to occur frequently.

The function of spyware is to violate privacy, lead to identity theft, and permit

targeted assaults depending on the information that is obtained when it is installed.

Adware

When a user's device is infected with adware, it displays adverts that the user does not

want to see. Adware typically inserts advertisements into web browsers or other

software.

It is possible for adware to interfere with the user experience, cause the system to run

more slowly, and even sometimes result in the installation of more malicious software

to be downloaded.

Keyloggers

Keyloggers are devices that record the keystrokes that are made on a user's device.

When they do this, they are able to obtain sensitive information such as login

credentials and credit card details.

Theft of identity, unauthorized access, and other criminal acts are all possible uses for

keyloggers, which can be employed for this purpose.

Rootkits

Rootkits are meant to conceal malicious software or activities by modifying or

changing the essential functionality of the operating system. Rootkits are utilized

specifically for this purpose.

The function of rootkits is to enable persistent access to a system for attackers, which

makes it difficult to identify and remove the rootkit.

Botnet

The term "botnet" refers to a network of computers that have been compromised and

are controlled by a central command server.

It is common practice to employ botnets for the purpose of carrying out coordinated

attacks, transmitting spam, carrying out distributed denial-of-service (DDoS) attacks,

or engaging in other criminal actions.

It is essential to keep in mind that these distinct types of malware are not incompatible

with one another. Furthermore, sophisticated assaults frequently utilize a combination

of several types of malware in order to accomplish their goals. One of the most

important things you can do to protect yourself from malware attacks is to regularly

update your software, use antivirus products, and engage in safe conduct while using

the internet.

1.1 Malware Detection techniques

Techniques for detecting malware entail determining whether or not a computer

system contains spyware or other harmful software. These strategies make use of a

variety of methodologies, frequently combining a number of different strategies in

order to provide complete coverage. Listed below are some more in-depth

explanations of the various ways for detecting malware:

Signature based

The typical approach entails the creation of signatures or patterns of known malware

and the subsequent matching of those signatures or patterns.

Information that is more extensive signatures are frequently based on distinctive traits

or sequences of bytes that are contained within malware. The signature-based

detection method is successful against known threats; but, it may have difficulty

detecting polymorphic malware, which is malware that alters its signature.

Detection System Based on Heuristics:

In spite of the fact that there is no precise signature that fits, heuristic analysis is able

to identify suspicious behaviors or characteristics that may suggest the existence of

malware.

Anomalies, such as code that modifies itself, efforts to conceal or obfuscate

information, or odd interactions across systems are what heuristics look for. It has a

greater degree of adaptability compared to signature-based approaches, although it

may result in false positives.

Behavior Based

An explanation of behavioral analysis is that it involves observing the activities and

behaviors of programs in order to find deviations from the behavior that is anticipated

of them.

Behavioral detection can uncover malware that was previously undetected by

monitoring actions like as file modifications, registry changes, and network

connections. Other activities that can be monitored include network communications.

Even while it is effective against zero-day attacks, it may produce false positives from

time to time.

Sandboxing

The process of sandboxing includes executing potentially malicious files or programs

in a separate environment in order to monitor how they behave once they are

executed.

Sandboxes are designed to imitate a real-world operational environment while

containing any potential negative effects. Researchers keep a close eye on the

activities of the malicious software, including its interactions with the memory, file

system, and network. Sandboxing is an effective method for performing dynamic

analysis and locating dangers that are not yet identified.

Machine Learning Algorithms

Machine learning algorithms examine big datasets in order to understand and

recognize patterns that are symptomatic of malicious software.

In addition, machine learning models are able to identify previously undiscovered

dangers by gaining knowledge from previous data. For the purpose of training

models, characteristics such as file properties, behaviors, and network patterns are

leveraged. Machine learning is flexible and effective against ever-changing threats,

but it has to be updated on a consistent basis.

Anomaly detection

The term "anomaly detection" refers to the process of identifying deviations from the

typical characteristics of a system.

It is possible to identify abnormalities, which may be indicative of malware, by first

creating a baseline of usual behavior. However, if it is not calibrated appropriately,

this technique may result in false positives, despite the fact that it is successful in

recognizing emerging threats.

Forensics

Memory forensics is the process of examination of a system's random access memory

(RAM), also known as volatile memory.

To provide further information, malicious software frequently lingers in memory,

which is why it is essential for identification. A number of runtime artifacts, including

injected code, hidden processes, and others, can be discovered by memory forensics.

Detecting complex threats that conventional approaches could overlook is a valuable

application of this technology.

YARA Rules

The YARA programme is a pattern-matching tool that gives analysts the ability to

construct individualized rules for the purpose of finding malicious software.

In the context of extended information, analysts build rules by analyzing certain traits

or patterns that are present in malware. In addition to its adaptability, YARA enables

the generation of individualized signatures that may be utilized in a variety of security

applications.

Network Detection

Keeping an eye out for patterns or behaviors that might be symptomatic of malicious

software by monitoring network traffic.

Identification of harmful activity within a network, such as command and control

communication, data exfiltration, or lateral movement, is the primary emphasis of

network-based detection. For the purpose of identifying dangers that are dependent on

network interactions, it is effective.

Honeypots

Deploying decoy systems, often known as honey pots or honey nets, in order to attract

and identify malicious behavior is an example of this methodology.

Organizations are able to study the strategies and methods employed by attackers by

tempting them to engage with these decoys. This helps to strengthen their capabilities

in terms of detection and response activities.

An effective malware detection method often utilizes a mix of these strategies in order

to establish a protection plan that is composed of many layers. As malicious software

continues to develop, detection technologies must also adapt in order to stay up with

new threats.

Chapter 2 -Malicious malware scripts examples

Using an Ubuntu 20.04 Virtual Machine as our testing environment, we will show

some operation examples of malicious files. We have created python scripts in order

to learn about the characteristics of dangerous software by examining some real-world

examples written in Python. The showcase structure is the following:

Installation

It is imperative that you ensure that Python3, the system package python3-dev, and

the Python package wheel have been installed.

sudo apt install python3-dev

pip3 install wheel

python3 setup.py bdist_wheel

The following command should be used in order to set up a virtual environment:

source setup_env.sh

Or you can install required Python packages listed in requirements.txt on your own. If

something goes wrong during the installation, the script should provide you

information about possible failures. You can then focus on the problematic steps

in setup_env.sh and fix the problem.

2.1 Malware Python scripts

File infection.

This kind of malware infects other files. The practice of code injection is a typical

example of such conduct. Malicious code is inserted into the files that are being

targeted, and it may be executed at a later time. The file infectors are able to

propagate as a result of this. The objective of its payload might be anything from

innocuous to harmful activity, depending on the circumstances.

Infector.py is the file that contains the implementation of our file infector. It makes

use of its own code to infect all of the files that are contained inside the same

directory, which enables it to spread in the future. It is expected that when the targeted

file is executed, it will carry out the same malicious infection on additional files that

our own file infector does.

Before the file infector is executed, make sure to observe the target_file.ext file. This

file is a straightforward one that can be found in the same directory as our file

infector. It is sufficient to execute the file infector within this folder (./infector.py) in

order to observe its behavior. Ideally, you will see something similar to this:

Only the file target_file.ext has been successfully infected by our file infector,

despite the fact that it has attempted to infect every file in this folder, including itself

(as will be described later). Now, place the infected file into the target_folder/ folder,

and run it in the same manner that we have executed our file infector

(./target_file.ext). On the other hand, this time we have successfully infected

target_file_2.ext by utilizing the infected target_file.ext. You should see information

that is comparable to what was presented earlier.

As will be seen in the following explanation, the process of creating a file infector is

really straightforward, and anybody can accomplish it if they have a fundamental

understanding of programming and an awareness of operating systems. Because of

this, we should always exercise extreme caution whenever we run any file that is not

common or that we do not trust.

How it works

• The first thing that we do is give our file infector a name and then create it.

• The next step is to select a folder that contains the files that we wish to infect.

We make a call to the method infect_files_in_folder, which is supplied by our

file infector, and we offer the path to the folder as an argument. This method

will return the total number of files that are infected.

• An initial step that must be taken is to perform a lookup for all of the

filenames that are contained inside the same directory.

• In the second stage, it is necessary to determine whether or not the file has

already been infected. When you run our file infector numerous times, you

will see that it does not pay attention to files that it has already infected. This

might be accomplished by utilizing some kind of mark that is left in the

infected file in conjunction with code that has been injected. It is a string

INJECTION SIGNATURE that is located in the docstring module in this

particular instance. The content of the file that is being targeted is read by our

file infector, and if the file exhibits this signature, the malware will continue to

propagate to new files.

• We need to make sure that the file that is being targeted has the appropriate

permissions for execution since we anticipate that the code that has been

injected will be executed.

• The next step is to copy the code from our own file and paste it into the one

that is being targeted.

• The code for our own program may be obtained by simply reading the source

file, which is available to us. In every instance, the name of the file is the very

first parameter that is supplied before the execution begins. In order to ensure

that the code is effective in all of the infected files, we need to retrieve the

name from this parameter. This is because the infected files may have

different names. Because malicious_code is a cached property, we would only

visit the source file once. This would only be necessary once.

Trojan (trojan horse)

This kind of malware tries to look like a legitimate software and the malicious activity

is hidden from the victim. The act of spying on victims is a common example of this

kind of behavior. A more accurate classification of Trojans may be achieved by

determining the function of the harmful component. They got their name from a

Greek myth in which the city of Troy accepted a statue of a wooden horse as a gift

from their adversaries, but the adversary's warriors were concealed within the statue.

An implementation of our trojan may be found in the file trojan.py. An attempt is

made to gather information from the victim, which is then disguised as a typical diary,

and then transfer it in a covert manner to the server of the attacker. Server.py is the

file that contains the implementation of the server. Without having any prior

information about the victim, we ought to be able to view all of the notes that were

entered into the journal.

Establishing a server that is capable of collecting data that is transmitted by the victim

is the initial step that the attacker has to do. Because of this, we ran the./server.py

command on our computer in order to set up a server that is online. The following text

ought to be displayed to you:

Utilizing the command./trojan.py, the second console should be used to execute the

trojan (diary) in the role of the victim. It is expected that the following text will

appear on the console of the threat actor immediately:

Consequently, this indicates that our client has successfully established a connection

to our server. Create a few lines of notes in the journal by typing them in. The fact

that the attacker is also being shown all of the notes is something that we can notice.

What does the victim see:

What does the attacker see:

The creation of a basic trojan is a pretty straightforward procedure, as will be shown

in the following paragraphs; all that is required is a fundamental understanding of

programming and an awareness of operating systems for anyone to be able to get

started. Because of this, we should always exercise extreme caution whenever we run

any file that is not common or that we do not trust.

How does it work

Server

• To begin, we put together our server, which is designed to gather the

information that is collected from the trojan that the victim has performed. The

server will do a listening operation on a certain port, which must be identical

to the one that is given in our trojan. This particular illustration will involve

the execution of both the server and the trojan on the same machine; however,

the server might be located remotely and could be situated anywhere in the

globe.

The communication is realized via TCP protocol specified by

socket.SOCK_STREAM.

• Following that, we are required to initialize the server by binding it to the port

that was provided.

• The connection that is made with the victim is among the most critical aspects.

This is accomplished through the use of the function collect_data that is made

available by the server. After the trojan has been executed on the victim's PC,

it waits for the connection that was previously initiated by the virus. From that

point on, it just does a continuous check to see if the client has sent any data.

In the event that this is the case, they are made visible to the attacker by being

logged into the console. An indication that the client has terminated the

connection is the presence of "empty" data in the transmitted data.

Client

• First and foremost, we need to develop our trojan. For the communication to

take place, the service requires both the name of the host (server) and the port

that has been defined. The fact that the server is listening on the same system

as our client indicates that the host is referred to as localhost.

• At this point, we are attempting to establish a connection with the server. The

relationship between the two should be kept a secret from the victim. In order

for us to identify any mistakes that may have been made in our example, the

logging message is displayed.

• Afterward, the trojan attempts to impersonate a harmless software by

welcoming the person who has been infected.

• At the same time as the victim is typing his or her notes into the diary (stdin),

each line is transmitted to the server of the attacker. Due to the fact that the

communication interface requires binary data, we are required to convert the

strings that we have got into bytes. We anticipate that the data will be encoded

using the UTF-8 standard.

Worm

Refers to a type of malicious software that is capable of propagating itself across a

network without the requirement for a host file. A malicious payload might be

included within worms, which would then execute orders on infected computers.

Worms could also just absorb the bandwidth of the network in order to disrupt

communication.

For the sake of this example, a proper infrastructure has to be established. There must

be a minimum of two hosts connected to the same network. In order to do this, it is

advised that two virtual computers be set up as follows: one for the attacker, and

another for the victim.

Now run both systems and log in. The default credentials on the Metasploitable2 are:

User: msfadmin

Password: msfadmin

Ensure that you have a copy of this repository duplicated on the machine that the

attacker is using. The very last thing that has to be done is to provide both

workstations with IP addresses that are legitimate. Using the following command, you

are able to accomplish this:

You should provide the victim the address 198.168.0.3 and the attacker the address

168.168.0.2. When you want to make sure that everything has been done correctly,

you should have the systems ping each other.

In the event that you are able to see the answer, then everything is in order, and we

can go on to the actual presentation.

Make a straightforward file on the PC of the victim that contains content similar to the

one that is presented above, and give it the name passwords.txt. A private file

belonging to the user is represented here on the system that is susceptible.

At long last, we are able to run our worm on the machine of the attacker (./worm.py).

This worm will attempt to connect in to each computer on the network via SSH and

will try to access each host. In the event that it is successful, it uses the vulnerable

system to copy itself and then takes the passwords.txt file from the user, if the user

has one. The log of the worm that is presented below should be visible to you if

everything was carried out appropriately. A number of different credentials were used

in an attempt to log in to hosts 198.168.0.1 and 198.168.0.2, but the attempt was

unsuccessful. On the other hand, it took the password file from one of the users on the

system 198.168.0.3 after successfully connecting to two users on that system. You

need to be able to locate this file within the same directory on the machine that your

adversary is using.

In and of itself, the process of creating a worm is a pretty straightforward one, as will

be demonstrated in the following description. Anyone can do this task with only a

fundamental understanding of programming and networking. Because of this, we need

to ensure that our systems are always up to date, secure, and have solid credentials.

How does it work.

• We begin by generating our worm and then providing it with a network

address that is representative of the network on which it is intended to spread.

• After that, we execute the function spread_via_ssh, which makes an attempt to

connect to every computer on the network, establish an SSH connection, and

spread itself (while simultaneously collecting the password file).

• This technique begins by generating an SSHClient from the paramiko module,

which will be of use to us in the process of getting the connection established.

• The generator generate_addresses_on_network is then used to continue the

process of iterating over all of the host addresses that are present on the

network. There are property credentials contained within the infection. These

credentials are combinations of usernames and passwords that the malware is

prepared to test out. This indicates that it will attempt to secure a login over

SSH on each host three times. SSH works on port 22.

• On the other hand, if the connection is made (as it is in the instance of

198.162.0.3), we are able to construct a SCP client that will send our data. If

the connection fails, it is captured as an exception, and the worm continues to

work with another user or host.

• We are now able to carry out commands for send and receive files. In the first

step, the password file will be obtained, and in the second step, the worm will

be transmitted to the remote computer. A name for the file is derived from the

arguments that are provided by the system.

Spyware

Refers to a type of malicious software that is designed to steal data from the victim

and spy on them. There are several other methods that may be used to spy on the

victim, such as scanning the keys that are pushed on the keyboard by the victim.

When contrasted with the trojan horse, spyware is often concealed from the victim's

view and does not reveal its presence.

There is no special preparation that is required prior to the running of the keylogger

(./keylogger.py). In the event that we merely press the Enter key, we are able to see

that nothing happened after the execution, and we are able to write new instructions.

This is the same as when we hit the Enter key. You are now able to do whatever

action you choose on your machine. You may open a browser and input something

like Passwd, which is a representation of your prospective password, in order to

demonstrate the demonstration. This is similar to what you would do on any login

page of your social network accounts.

You are now able to recognize that a new file called activity.log is situated in the

same location as our keylogger software. Through careful inspection of the file, you

will see that it includes all of the keys that you have pushed on your keyboard

following the execution, including the password that you use for Passwd. To acquire

direct access to such files across the network, an attacker may easily access those files

and change the keylogger to send them to a certain email address. Alternatively, he

can use a combination of other types of malware to gain direct access to those files.

A keylogger may be created using a relatively straightforward procedure, which is

outlined here. All that is required is a fundamental understanding of programming and

an awareness of operating systems for anyone to be able to create a keylogger.

Because of this, we should always exercise extreme caution whenever we run any file

that is not common or that we do not trust.

How does it work.

❖ In the beginning, we will configure our logger. We have the ability to define

both the file in which the data should be kept and the format of the message

that should be sent.

❖ Following that, we are required to acquire the logging file handler. In the

following stage, we will explain it to you why.

❖ We want our spyware to operate in the background as a daemon so that it is

more difficult for the victim to detect our malicious software. Additionally, in

order to accomplish this, we will make use of a standard Python module

daemon that will enable us to daemonize our keylogger. It is possible that we

will lose connections to all file handlers, including stdout and even our

logging file, when the daemon is established; but, if we indicate that the files

should be retained, we will not lose these connections. This is the reason why

we were able to acquire a logging file handler in the stage before this one. This

means that we are now able to construct the keylogger and initiate its

operation within the context of our concealed daemon.

❖ The pyxhook module for Linux is a Python extension that may be utilized for

the purpose of acquiring the key press events. Instead of using the pyHook

module, we should utilize it if we want to construct a keylogger for Windows;

yet, the interfaces of the two programs are extremely similar. We develop a

hooking manager that will handle event handling and provide us the ability to

establish a callback for the events that that manager manages. In this particular

scenario, the term "callback" refers to a function that will be invoked

whenever a new event is acquired (_keydown_callback). The only thing that

this function does is log the key into the activity.log file that we provided as

the destination.

Ransomware

This is a type of malicious software that attempts to encrypt your data or even restrict

your access to the system until a monetary ransom is paid. In order to make the threat

more severe and coerce you into submitting, it may delete your data on a constant

basis. During the past few years, ransomwares have gained a lot of popularity.

You should witness target_file.ext before the execution of ransomware. This file is a

basic one that is located in the same directory as our malware. To examine the

behavior of ransomware, just execute it in this folder (./ransomware). You should see

something similar to this:

Do not type anything at this time; instead, simply examine the target_file.ext file in

the next terminal. You are able to see that the original material is nothing more than a

standard text file. it was encoded to

SnVzdCBhbiBvcmRpbmFyeSB0ZXh0IGZpbGUuCg== (for people with greater

knowledge, it is evident that it is a straightforward format of base64). On the other

hand, this ransomware operates under the assumption that the user is unfamiliar to the

fundamentals of cryptography. As users, we now have two choices available to us.

There are two possible outcomes: either we "send a payment to the bank address

XYZ" and acquire the right key, or we guess the key, in which case the software

terminates and our data continue to be encrypted.

This results in the decryption of the data, and as we can see, the contents of our file

are brought back to their original state.

The creation of basic ransomware is a relatively straightforward procedure, as will be

discussed here; simply having a fundamental understanding of encryption and

programming is all that is required to do this task completely. Because of this, we

should always exercise extreme caution whenever we run any files that are not

common or that we do not trust.

How does it work.

▪ Firstly, we create our ransomware and give it a name.

▪ A lookup for all of the filenames that are contained within the same directory

is the first thing that has to be done (function get_files_in_folder(path) makes

this search). README files are not taken into consideration by this solution

since ransomware would encrypt this file as well if it were to be executed.

▪ Afterwards, we can easily encrypt every file that we discover. The steps

involved in the encryption process are outlined below.

▪ Encryption is the most crucial component of the program. It is possible to

encrypt the files in a variety of different methods. In a typical scenario, the

encryption key would also be involved in the encryption process (with a

somewhat more robust encryption technique), however for the purpose of

illustration, we may utilize the base64 encoding method. In this particular

instance, we read the data from the file, encrypt it to base64, and then write it

back to the file.

▪ We are able to display our ransom message to the user once all of the files

have been encrypted, in which we ask for payment in exchange for the key.

▪ The process of decryption is somewhat comparable to that of encryption. The

key is loaded, and then a comparison is made between it and our default key,

which is referred to as the __ransomware_key. In the event that they are

identical, we quickly reverse the encryption that was done earlier. The

software will terminate and the data will continue to be encrypted even if the

user enters a different key.

Adware

This is a type of malicious software that makes an effort to display advertisements to

unwary users. Typically, it is nothing more than a piece of software that is merely

unpleasant and does not intend to cause any harm. In an effort to make the advertising

more persistent, adware may use a variety of different ways.

Before carrying out the execution of the adware (./adware.py), we do not require any

particular preparation before doing so. Immediately following the execution, we are

able to observe three popup windows that display adverts on our screen. When we

touch the close button on any popup window, nothing occurs, and the advertisement

continues to appear on the screen. This may be bothersome, but it is still reasonably

ok.

Creating basic adware is a relatively straightforward technique, which will be

explained in more detail below. This is the reason why you should constantly exercise

caution if you are running files that are not trustworthy or atypical.

How does it work.

o In the first step of the process, we take our adware and pass it parameters from

the system. PySide2 is a Python package that we are utilizing since we require

a graphical user interface (GUI). The primary QT application is represented by

our class Adware, which received its inheritance from the QApplication.

o The function show_ads() is invoked, which results in the creation of dialog

popups. The references to these forms are then sent to the variables that are

located in the main module windows. Keep in mind that if you lose reference

to those windows, they will not be displayed on the screen. It is essential that

you do not lose this reference.

o A property known as advert_slogans is included in our adware. This property

contains a set of advertising slogans that we want our victim to view. Calling

the function create_ad_window() will allow us to generate a popup window

that is one of a kind for each of those phrases.

o On account of the fact that these windows would appear on the same spot on

the screen and overlap one another, it is necessary for us to relocate the popup

windows that we have produced to a random location on the screen.

o For the purpose of generating popup windows, our method create_ad_window

generates a new AdWindow that contains the specified text. It is necessary to

use the show method in order to display the window on the screen.

o AdWindow is a popup window that is derived from QDialog and represents an

independent window with a layout that only has one label that displays the

advertisement. Nevertheless, in order to make adware more unpleasant and to

display advertisements in a more aggressive manner, we have configured the

window to ignore the close signal if the victim pushes the close button. In the

case that this occurs, the window will acquire information on a new event that

is referred to as closeEvent. For the window to remain on the screen, we will

simply disregard any action that may be taken.

Dropper

Dropper is a type of malicious software that makes an attempt to download or dump

harmful code onto the system that it is targeting. It is possible for the malware to be

covertly included within the dropper itself or to be downloaded from a remote

repository. Over and over again, it employs obfuscation and encryption in an effort to

evade discovery.

The initial step that the attacker has to do is to establish a server that will be

responsible for the distribution of malware to its customers. As a result, we will

execute the./server.py file on our computer in order to establish a server that is

operational. The following text ought to be displayed to you:

The dropper should be executed on the second terminal using the

command./dropper.py. The victim should be the dropper. It is expected that the

following text will appear on the console of the attacking party immediately:

List the directory in which the dropper is placed, and you will notice that a new file

called malware.py has been produced. This will allow you to check that the dropper

has accomplished its intended goal. Just for the sake of demonstration, the

"malicious" code is nothing more than a straightforward command to print out some

brief text. Python malware.py should be executed in order to execute the file. Once

you have completed these steps, you should see the following text:

The process of creating a basic dropper is quite straightforward, as will be seen in the

following description; nevertheless, in order to do this task, one must possess a

fundamental understanding of programming and an awareness of operating systems.

Because of this, we should always exercise extreme caution whenever we run any file

that is not common or that we do not trust.

How does it work.

Server

• To begin, we will construct our server, which will be responsible for

transmitting malicious malware to a dropper client that is now being launched

by the victim. A certain port will be used by the server to listen for

connections; this port must be identical to the one that our dropper is using.

For the sake of this illustration, the server and dropper will both be performed

on the same machine; however, the server might be located remotely and

could be situated anywhere in the globe.

Communication is realized via TCP protocol specified by

socket.SOCK_STREAM.

• Next, we will need to connect the server to the port that was provided in order

to initialize the server.

• The malicious command that ought to be sent to the dropper is something that

we are able to monitor. A straightforward command to print some text is all

that is required in this scenario.

• The connection that is made with the victim is among the most critical aspects.

The send_malicious_code function that is given by the server takes this into

consideration and implements it. Following the execution of the dropper on

the victim's machine, it waits for the connection that was previously initiated

by the dropper. Following that, it merely transmits the payload and then closes

the connection for good.

• Encryption of the malicious code is going to be the initial attempt to prevent

discovery, and it will eventually be implemented. Imagine if someone is able

to view anything that we send over the network. Should this be the case, our

malicious code may be identified instantly, resulting in the cessation of contact

or the notification of the victim. Because of this, we employ at least one layer

of encryption in our system. For the sake of demonstration, we can utilize the

base64 basic encoding.

Dropper(client)

• To begin, we need to go ahead and activate our dropper. For the purpose of

communication, this service requires both the name of the host (server) and

the port that has been defined. The presence of a host with the name localhost

indicates that the server resides on the same computer system as our client.

The attempt to escape discovery is repeated for a second time. Imagine if

someone were to go at the code of our dropper and notice that there is an

address that seems strange. Alternatively, it is likely that our target analyzes

the files in search of potential port numbers; if the number 27000 is presented,

they could have a suspicion about anything. In order to conceal this

information, we will have to pass certain arguments that appear to be

completely harmless.

• Those who examine the code will be able to see the many ways that are used

for network connectivity. However, based on the variables that were supplied

to our dropper, it is unclear with whom you would be communicating and

which port will be utilized (maybe 729000000?). In the course of the runtime,

we are able to create the required connection properties in a dynamic manner.

The decode_hostname method accepts two strings, reorders them, and then

generates a new string for each of them. The string "localhost" is unexpectedly

obtained by our dropper from the first two parameters that are received by it.

In addition, we can easily determine the port by doing a square root

calculation using the most recent parameter. It is simple to carry out, but it is

more difficult to identify.

• At this point, we will attempt to establish a connection with the server. This

relationship need to be concealed from the victim if at all possible. The logged

message is solely displayed for the sole purpose of identifying any mistakes

that may have occurred in our case.

• The dropper will next make an attempt to introduce itself to the victim as a

harmless software.

• In the interim, the client will make an effort to obtain the malicious code from

the server that is located remotely. It is important to keep in mind that the data

are encrypted using Base64; thus, we need to decode them, and we have

successfully downloaded software that contains malware.

• Executing the code that was downloaded or just writing it into a file is the

final step that has to be taking place. By doing so, the payload was

successfully delivered to the system that was the goal of the delivery.

Chapter 3 – Testing Environment & Malware Samples

3.1 Testing Environment

We have used a virtual safe environment the VMware Workstation and created 2

Virtual Machines for the purpose of testing malware. The first one is an outdated

Windows 10 machine where we have installed the necessary tools for the static and

dynamic analysis. We have created a Vlan with address space of 10.0.0.0 in order to

achive that the Windows machine will not affect our own system.

Furthermore, we have created a Linux based Renmux virtual machine which acting as

the default gateway for the Windows machine. To achieve that we have installed the

InteSim tool which operation is to simulate and catch the internet traffic generated

from the execution of the malware. Also, we have created a separated VLAN with

address space of 10.3.3.0. The following image depicts the configuration:

3.2 Malware Samples

We have used 3 malware samples to do the malware analysis. The first two ones are

malware which are unknown and they are downloaded from the ENISA. The last one

is the wannacry ransomware which had a great impact back in the 2017 where it

became known to the public.

3.2.1 Wannacry ransomware

The WannaCry ransomware is a very damaging piece of malware that first appeared

in May of 2017, after which it caused severe damage across a variety of industries all

around the world. The following is an in-depth overview of its operations, patterns of

activity, and the impact of its successful attacks:

Operations and Behavior Patterns

1. Initial Infection and the Spread of the Disease:

2. Exploitation of weakness: The WannaCry ransomware was originally

distributed by taking use of a weakness in Microsoft Windows that was

referred to as EternalBlue. The National Security Agency (NSA) built a set of

tools that included this vulnerability, which was then disclosed by the Shadow

Brokers organization.

3. A vulnerability known as the Server Message Block (SMB) protocol is the

target of EternalBlue's attack. This protocol is utilized for the purpose of file

sharing and communication between nodes on a network or network.

WannaCry is capable of executing arbitrary code on a system that is

susceptible because it sends packets that have been carefully designed.

Payload Delivery:

a. Dropper File: Once the vulnerability has been exploited, WannaCry will

drop and run a file that is referred to as the "dropper." The primary

ransomware component is downloaded and executed by this file, which is

responsible for its execution.

b. The dropper is responsible for installing the ransomware on the victim's

computer. In order to ensure that the malware remains active, the dropper

modifies the system such that it restarts whenever the computer boots up.

Encryption Process:

a) WannaCry uses a hybrid encryption methodology to encrypt files,

utilizing AES-128 for file encryption and RSA-2048 for key

encryption. It does this by scanning the infected system for certain file

types, such as documents, pictures, and databases, and then encrypting

those files using the hybrid encryption method.

b) A change has been made to the file extension, and encrypted files now

have a ". WNCRY" extension applied to them.

Ransom Note and Demand:

a) Show of Ransom letter: Once the encryption process is complete,

WannaCry will show a ransom letter that requests payment in

Bitcoin. Vulnerable individuals are provided with instructions on

how to acquire Bitcoin and then transfer the money to a particular

wallet address.

b) Payment Deadline: The ransom letter will threaten to permanently

lock files if the ransom is not paid within a set period of time,

which is often three days. The ransom sum will increase after this

period of time has passed.

Communication

a) The WannaCry ransomware is equipped with a kill switch

mechanism, which is an unregistered domain name that is encoded

inside the malware. If malicious software is able to establish a

connection to this domain, it will halt the encryption process. A

researcher in the field of security made this discovery and activated

it, which considerably reduced the transmission of the virus.

Propagation to Other Systems:

b) Network Scanning: WannaCry uses the same SMB attack to search

for more susceptible devices on local networks and the internet.

This strategy enables the malware to spread quickly and

independently.

3.2.2 Impact of Successful Attacks

Changes on a Global Scale:

• Healthcare Systems: The National Health Service (NHS) of the United

Kingdom was significantly impacted, as a large number of hospitals and

clinics experienced system failures. These failures resulted in appointments

being canceled, treatments being delayed, and considerable operational

disruption and disturbance.

• Corporate Sector: Major corporations, like as FedEx, Nissan, and Renault,

experienced operational halts, production downtimes, and financial losses as a

result of encrypted files and crippled information technology systems.

Losses in Financial Terms:

• The ransom payments were made by a relatively small number of victims; yet,

those victims who did pay the ransom contributed to considerable illegal

revenues for the perpetrators of the attack. It is difficult to ascertain the precise

sum, although estimates imply that tens of thousands of dollars were paid

toward the transaction.

• Expenses for Mitigation: In order to recover lost data, restore systems, and

improve security measures, organizations spent millions of dollars on

information technology services. It was expected that the entire economic

impact would be calculated in the billions of dollars throughout the world.

Absence of data and interruptions in operations:

• Unavailability of Data: A great number of firms experienced essential data

unavailability, which resulted in disruptions in service and a loss of trust from

customers.

• Downtime: As a result of the fast response, systems had to be taken offline,

which resulted in a substantial amount of downtime. This, in turn, had an

impact on the operations of the firm and the productivity of its employees.

Responses to Regulatory and Security Concerns:

• Increased Security Posture: The global impact of WannaCry led to an

increase in awareness as well as a considerable push towards stronger

cybersecurity procedures. These activities include frequent patch management

and strengthened network defenses.

• Changes in Policy: Governments and regulatory authorities have placed a

greater emphasis on the significance of comprehensive cybersecurity

frameworks, which has led to the establishment of more stringent laws and

recommendations for enterprises to adhere to.

Chapter 4 – Static Analysis

In the process of malware static analysis, the properties and code of dangerous

software are analyzed without the software itself being executed into memory.

1) File Identification:

Description: Determine the kind of file, its format, and the characteristics associated

with it.

The process of identifying a file entails studying the file's headers, magic numbers,

and metadata in order to determine the kind of file (for example, executable,

document, or script for example). In order to proceed with the analysis processes, it is

essential to have a knowledge of the file format.

2) Code Disassembly:

It is necessary to convert the binary code into assembly language in order to do

analysis.

By disassembling the code, one can discover the low-level instructions that are being

carried out by the malicious software. In order to browse through the assembly code

and locate functions, loops, and branches, analysts make use of tools such as IDA Pro

and Ghidra with the application.

3) String Analysis:

Extract strings that are contained within the binary and perform analysis on them.

It is possible for strings to contain hardcoded URLs, filenames, or messages that are

utilized by the malevolent software. These strings are extracted and analyzed by

analysts in order to uncover potential indicators of compromise (IOCs) or to obtain

insights into the operation of the virus.

4) Static Signature-Based Detection:

Produce signatures or patterns of known malware and evaluate their compatibility

with your own.

A static signature is a type of signature that is derived from a specific sequence of

bytes or features that are present within malware. The usage of these signatures allows

for the comparison of files to databases containing known malware signatures, which

helps in the rapid detection of known threats.

5) Heuristic Analysis:

Determine whether there are any patterns or actions that are suggestive of

intentionally harmful intent.

During the process of static analysis, what is known as heuristic analysis entails

searching for suspicious code structures. These structures may include encryption

routines or code that may alter itself. Rather than depending on predetermined

signatures, it seeks to identify possible dangers based on the structures and properties

of the code.

6) Code Emulation:

The purpose of this is to simulate the execution of code without actually running the

code.

Through the process of code emulation, analysts are able to gain an understanding of

the possible behavior of malware without subjecting it to execution on a live system.

It is possible to investigate code routes, system calls, and interactions by using

emulators, which reproduce the execution environment.

7) File Decomposition:

In order to do a comprehensive examination, the file should be disassembled into its

component parts.

When a file is decomposed, the process of extracting embedded files, resources, or

payloads is taken into consideration. This stage contributes to a better knowledge of

the structure of the file, along with the identification of new components and the

preparation for future study of nested artifacts.

8) Reverse Engineering:

The code should be unpacked or deobfuscated in order to disclose its initial form.

It is necessary to have a comprehension of the obfuscated or packed code in order to

do reverse engineering. Techniques are utilized by analysts in order to unpack the

malware, which results in the original code being more readable and comprehendible.

This stage is essential for doing an in-depth examination.

9) Metadata Analysis:

Detailed description: investigate the metadata that is connected to the file.

Information such as the date the file was created, the author's details, and the

compilation timestamps are all included in the metadata process procedure. Through

the examination of metadata, one may get insights about the origins of the file and

build a history of events from which they originated.

10) Dependency Analysis:

Determine whatever external libraries or dependencies are being utilized by the

malicious software.

Analyzing dependencies is a process that assists in gaining an understanding of the

external resources and APIs (Application Programming Interfaces) that the virus may

utilize. As a result of this knowledge, potential behaviors and interactions may be

predicted more accurately.

11) Code Structure Analysis:

The purpose of this analysis is to examine the general structure and organization of

the system.

Identifying functions, control flow, and logic are necessary steps in the process of

analyzing the structure of the code. Having an understanding of the structure of the

code can give insights on the capabilities of the virus as well as the potential actions it

could take.

An essential first stage in the process of analyzing malware is known as static

analysis. This type of analysis offers vital insights into the characteristics and possible

actions of dangerous software without the requirement for the software to be

executed. Not only does this approach lay the groundwork for further dynamic

analysis, but it also contributes to the development of detection signatures and

preventative actions.

4.1 Finding Packer

Malware creators use various ways to make software difficult to detect and analyze.

They change their code and compress them in such a way that when they start running

on the computer they decompress on their own. One such example is the following:

 Image 2Normal PE file

 Image 3.Compressed PE file

Finding the packer is very important for analyzing malware. We will use the PEiD

and Exeinfo PE tools which will help us identify the packer that has been used and

how to unpack it.

We open the aop.exe file with PEiD

 Figure 15.Find packer

The marked spot shows us that the malware has been packed with an upx packer. To

verify the result we will use the tool exeinfo pe.

 Figure 16.Pack verification

As we can see from the marked point, our result is confirmed, so we conclude that the

malware has been packaged with UPX.

Then we use upx to extract the contents of the malware and a new object will be

created which will be stored in the path c:\analyses\sample\aop_unpacked.exe. To

confirm that the process was done correctly, we will use peid again.

 Figure 17.Checking the unzipped file

We notice that no other packer is used as Microsoft Visual C++ appeared, which is a

widely known program used all over the world.

4.2 Extraction and analysis of strings

Searching strings is a very simple way to find evidence of malware's functionality.

For example, if we find a list of SMTP servers, we can assume that the malware might

be sending spam.

To extract strings we use BinText which searches for any file type for ASCII,

Unicode, and Resources strings along with their offsets.

 Figure 18.The strings contained in the unzipped file

Below we see some such strings as well as their functionality.

➢ Patterns like %s*.* and %s\%s

They tell us that they may be used either for path mapping or file search.

FindFirstFileA and FindNextFileA indicate that the software is looking for some files

on the local disk.

➢ System\cURRENTcONTROLsET\sERVICES\%

Windows Services-related keys. The malware uses the services of the system for its

self-preservation.

➢ %%%c%c%%%c%c

Unusual private IP address. It is difficult to understand what it is used for, and further

analysis will be needed.

➢ HTTP/1.1 etc

Common HTTP headers indicating that malware is using HTTP or HTTPs

connections.

➢ Cmd/c ping 127.0.0.1 -n 1&del”%s” and %s\svchost.exe

Used to self-delete malware

➢ Characteristic string (ABCD…)

Used in Base647 encoding functions.

➢ Suspicious domain name 1107791273.f3322.org.

It may be a domain of the C&C server but needs further analysis.

➢ Unusual names: prsionaljrq, prsionyta and providesmid.

Some unique names are used by the malware to name and create a signature.

➢ F-secure, f-secure.exe, FortiTray.exe, avg.exe, Norman, NVCSched.exe,

ClamAV, agent.exe, Comodo, cfp.exe

They are names of AV and state that the malware disables AV functions trying to

avoid detection.

➢ Common usernames and passwords (caomina 1234520 etc).

It shows us that the malware executes some dictionary attack.

➢ At\\%s%d%d%s, F:\NewArea.exe, \\%s\F$\NewArea.exe,

E:\NewArea.exe

This is Windows file sharing and shows us that the malware uses it to spread it

to the rest of the system.

4.3 Analysis PE Headers

Windows executable file (PE) headers contain information about executable files and

how they run. It is essentially a data structure where its header contains important

information about the code, the type of application and the libraries used by the

executable file. Their analysis is particularly useful in order to find clues about how

the malware has been packaged (especially if an unknown packer has been used and

the tools used to find it cannot help us)

Then we open the aop_unpacked with pe view and select the

IMAGE_FILE_HEADER. One of the most important fields is the Time Date Stamp

which tells us when the malware was created.

 Figure 19.The Image_file_header

We select the IMAGE_OPTIONAL_HEADER and see the Address of entry point

which we will use later to determine which PE section it is in. In this case it is located

in the 0x154EC.

4.4 Import Table Analysis

Another important technique is the Import Address Table with which we can find the

functions and libraries contained in malware and by examining them try to predict its

operation. We open the file with CFF Explorer and select the Import Directory that

contains the software libraries.

Figure 20.The libraries that the malware has through CFF explorer

We see that the malware contains functions from many different libraries. The most

common of them are:

➢ Avicap32.dll – These are video functions

➢ Msvfw32.dll – These are bitmap/video compression and decompression

functions

➢ Wtsapi32.dll – These are windows terminal services functions

We then analyze which functions have been imported from each library and look for

which ones can show us some of the malware's functions. Below we will see a list of

the most important of them.

Imported from Wtsapi32.dll

➢ WTSFreeMemory

➢ WTSQuerySessionInformation

These are functions specific to Windows Remote Desktop Service and show us that

the malware is trying to perform some functions in terms of Remote Desktop Service.

Imported from kernel32.dll

➢ SeyLasError

➢ GetCurrentProcess

➢ CreateRemoteThread

➢ WriteProcessMemory

➢ VirtualAllocEx

CreateRemoteThread and WriteProcessMemory are functions that show us that

malware is trying to infect system processes. Mostly he tries to hide his presence in

the system or to hack and steal information.

➢ DisconnectNamePipe

➢ TerminateProcess

➢ PeekNamedPipe

The TerminateProcess function indicates that the malware is trying to terminate some

processes of the system. Knowing from analyzing the strings that the malware has

hardcoded names of the antivirus processes, we can assume that it tries to "kill" these

processes in order to avoid being recognized.

➢ TerminateThread

➢ WinExec

➢ OutputDebugStringA

The WinExec function indicates that the malware is trying to execute system

command.

➢ Process32Next

➢ Process32First

➢ CreateToolhelp32Snapshot

These functions are used to enumerate a list of processes. This confirms to us that

malware is trying to terminate main processes or infect some of them.

Imported from advapi32.dll

➢ RegOpenKeyA

➢ RegQueryValueA

➢ GetTokenInformation

➢ LookupAccountSidA

➢ CreateServiceA

➢ RegDeleteKeyA

➢ RegDeleteValueA

➢ RegEnumKeyExA

These are functions for registry functions. The malware tries to do some registry

operations, and the CreateServiceA function indicates that it creates a system service

as a persistent mechanism.

➢ capGetDriverDescriptionA

➢ capCreateCaptureWindowA

These are video capture functions that show us that the malware has a spying

function.

Imported from msvfw32.dll

➢ ICSeqCompressFrameEnd

➢ ICCompressorFree

➢ ICClose

➢ ICOpen

➢ ICSendMessage

➢ ICSeqCompressFrameStart

➢ ICSeqCompressFrame

These functions reinforce the suspicion that malware is trying to download

videos.

Imported from user32.dll

➢ SetClipboardData

➢ GetClipboardData

➢ GetSystemMetrics

These are clipboard functions that show us that the malware is trying to capture the

system clipboard. Another indication that he is trying to steal information.

Imported from wininet.dll

➢ InternetOpenUrlA

➢ InternetOpenUrlA function which is used to retrieve data and malware

information from FTP or HTTP addresses.

4.5 Search for embedded objects

Malware can sometimes contain embedded objects that do not belong to it. The

Exeinfo PE tool enables us to scan the virus in order to find such objects as: Pe files,

MSI files Word documents etc. To do this we open the program and select the Ripper

by clicking it. Then we choose which type of object we want to scan for or we can

select "I'm hungry for Ripping" which is for all types.

 Figure 21.Search embedded objects with Exeinfo PE

If an embedded object is found, it will be stored in the same folder as the malware.

Once the analysis is over, we copy the files we want to keep to the path

C:\analyses\results. Then go to the styx machine and download the files as shown in

the image below.

Figure 22.Download results in Styx

4.6 Wannacry Abalysis

We download the wannacry malware samply from the ANY.run website. ANY.run is

a repo website where there are stored various malware files and they can be easily

downloaded for analysis. We have downloaded the sample with the following

dropper, encrypter and decrypted SHA256 hash values:

Dropper

 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b1022c

Encrypter

 ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa

Decrypter

 b9c5d4339809e0ad9a00d4d3dd26fdf44a32819a54abf846bb9b560d81391c25

The exploit that was utilized, which was given the moniker EternalBlue, takes use of a

weakness in the Server Message Block (SMB) protocol. This vulnerability makes it

possible for the malware to propagate to any unpatched Windows PCs on a network

that have this protocol enabled, as well as to Windows XP and Windows 2016.

Because to this vulnerability, remote code execution is possible over SMB version 1.

WannaCry makes use of this vulnerability by constructing a bespoke SMB session

request that contains values that are hard-coded and depending on the machine that is

being targeted. It is important to note that after the initial SMB message is delivered

to the victim's IP address, the virus sends two further packets to the victim that

contain the hard-coded IP addresses 192.168.56.20 and 172.16.99.5.

Nevertheless, the virus does not impact computers that connect through a proxy server

since the mechanism by which it initiates the connection does not affect those

systems. This means that such systems are still exposed.

In the event that the connection is unsuccessful, the dropper will make an effort to

establish a service with the name "mssecsvc2.0" and the DisplayName "Microsoft

Security Center (2.0) Service." It is possible to witness this in the System event log,

which is referred to as event ID 7036. This indicates that the service has begun

operating.

The service will also be displayed in the System event log with the event ID 7036,

which indicates that it has begun operating.

The encrypter program is subsequently extracted from its resource R/1831 by the

dropper, which then copies it to the hardcoded filename %WinDir%\tasksche.exe and

then executes it.

If the mutex "MsWinZonesCacheCounterMutexA0" is present, the encrypter will not

proceed with the execution of the program. This check is performed when the

encrypter is executed. It is important to note that the malicious software does not

generate this mutex at that point, which indicates that it is attempting to determine

whether or not there is other software present on the system, as seen in the image

below:

The encrypter binary also contains a password-protected zip file (password:

WNcry@2ol7) containing the following files:

• A directory named “msg” containing Rich Text Format files with the

extension .wnry. These files are the “Readme” file used by the

@WanaDecryptor@.exe decrypter program in various languages.

At the very least, the English and Spanish translations of the decryption message

appear to have been translated by a computer. This is because there are grammatical

errors that would not be anticipated from natural speakers.

• b.wnry, a bitmap file displaying instructions for decryption

• c.wnry, containing the following addresses:

o gx7ekbenv2riucmf.onion

o 57g7spgrzlojinas.onion

o xxlvbrloxvriy2c5.onion

o 76jdd2ir2embyv47.onion

o cwwnhwhlz52maqm7.onion

o https://dist.torproject.org/torbrowser/6.5.1/tor-win32-0.2.9.10.zip

• r.wnry, additional decryption instructions used by the decrypter tool, in

English

• s.wnry, a zip file containing the Tor software executable

• t.wnry, encrypted using the WANACRY! encryption format, where

“WANACRY!” is the file header

• taskdl.exe, (hash

4a468603fdcb7a2eb5770705898cf9ef37aade532a7964642ecd705a74794b79),

file deletion tool

• taskse.exe, (hash

2ca2d550e603d74dedda03156023135b38da3630cb014e3d00b1263358c5f00d

), enumerates Remote Desktop Protocol (RDP) sessions and executes the

malware on each session

• u.wnry (hash

b9c5d4339809e0ad9a00d4d3dd26fdf44a32819a54abf846bb9b560d81391c25)

, “@WanaDecryptor@.exe” decrypter file

After putting these files into its working directory, the malware makes an effort to

alter the attributes of all the files to "hidden" and to provide full access to all of the

files in the current directory as well as any folders that are below it. For this purpose,

it executes the command "attrib +h.," which is then followed by the command "icacls.

/grant Everyone:F /T /C /Q."

WannaCry then proceeds to encrypt files on the system, searching file extensions such

as .docx, .ppam, .dot etc.

In addition, a registry entry is added to the

"HKLM\SOFTWARE\Wow6432Node\WanaCrypt0r\wd" directory. This registry

item adds a key that references the location from which WannaCry was initially run.

The WannaCry encrypter initiates the execution of the embedded decryptor binary

known as "@WanaDecryptor@.exe," which displays two timers and instructions for

transmitting the ransom in the language that has been configured on the infected

system. In accordance with the instructions, a payment of bitcoins to a certain address

in the amount of $300 is required. In spite of the fact that only the first of the

following addresses was detected to be utilized by the sample that was studied, the

binary contains the following addresses:

• 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw

• 115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn

• 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94

The following is a screenshot of the “Wana Decrypt0r 2.0” program:

The malware also displays the following bitmap image contained in “b.wnry” on the

desktop, in case the “Wana Decrypt0r” program failed to execute:

The price of the ransom will increase by a factor of two if it is not paid before the

clock runs out on the first timer. Following the expiration of the second timer, the

readme file for the virus indicates that the data will no longer be recoverable. It is

impossible to retrieve the data once they have been encrypted if the decryption key is

not available. In order to carry out the encryption process, the malicious software

makes use of the Microsoft Enhanced RSA and AES Cryptographic Provider libraries.

Immediately following the encryption of the files, the decryption tool will make an

effort to erase any Windows Shadow Copies by utilizing the following command:

cmd.exe /c vssadmin delete shadows /all /quiet & wmic shadowcopy delete &

bcdedit /set {default} bootstatuspolicy ignoreallfailures & bcdedit /set {default}

recoveryenabled no & wbadmin delete catalog –quiet

Chapter 5 – Dynamic Analysis

In dynamic malware analysis, the malware is run in a controlled environment so that

its behavior and interactions with the system, network, and other processes can be

observed. A controlled environment is used to do the study. By utilizing this method,

one may gain significant insights into the behaviors that the virus engages in

throughout its runtime, which in turn helps one better comprehend its capabilities. An

explanation of dynamic malware analysis is provided in the following information:

1) Sandbox Execution:

Run the malicious software inside of a sandbox, which is a controlled environment

that is commonly used in the malicious software industry.

Both real and virtual machines may be used to create sandboxes, which are then used

for analytical purposes. They offer an isolated environment in which the malicious

software may operate without causing any harm to the host system. Because of its

adaptability and the simplicity with which it may be snapshotted, virtualization

technology is frequently utilized.

2) Behavioral Monitoring:

During the operation of the malware, it is important to observe and monitor its

activities.

It is important to note that behavioral monitoring entails tracking a variety of actions,

such as modifications to the file system, changes to the registry, connections over the

network, the formation of processes, and manipulations of memory. The capturing

and logging of these actions is accomplished through the utilization of tools such as

Process Monitor, Wireshark, and API monitors.

3) Network Traffic Analysis:

Perform an analysis of the network communications that were started by the malicious

software. In order to identify communication with external servers, command and

control (C2) servers, or data exfiltration, it is necessary to capture and examine

network traffic. It is possible to examine packets and gain an understanding of the

behavior of malware on a network by utilizing tools such as Wireshark or other

specialist network analysis tools.

In the event that the dropper is performed, it will initially make an attempt to establish

a connection to the website located at

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com. If the connection is

successful, the dropper will depart.

4) Memory Analysis:

Conduct an investigation into the runtime memory of the system that has been

compromised.

Memory analysis is the process of evaluating the contents of random access memory

(RAM) in order to discover injected code, hooks, or alterations that were done by

malicious software. For the purpose of analyzing memory dumps and gaining an

understanding of the influence that malware has on the system's volatile memory,

tools such as Volatility and WinDbg are utilized.

5) Dynamic Instrumentation:

In order to track the activities of the virus, it is necessary to inject hooks or monitors

into its execution environment.

Analysts are able to insert code into the malware process through the use of dynamic

instrumentation, which enables them to intercept and log particular interactions or

behaviors. In this way, information regarding the operations of the virus, such as

function calls, API usage, or system calls, may be captured more effectively.

6) Code Tracing:

Follow the path that the malicious software takes to complete its execution.

The process of code tracing entails tracking the path that the virus takes during

execution in order to gain an understanding of its logic and operation. It is possible to

create breakpoints, step through the code, and study the flow of execution with the

help of analytical tools such as OllyDbg and x64dbg.

7) Dynamic Analysis Tools:

Make use of specialist tools that have been developed specifically for the study of

dynamic malware.

Cuckoo Sandbox, Joe Sandbox, and hybrid-analysis.com are examples of tools that

automate dynamic analysis by providing an environment in which malware samples

may be executed and thorough results can be generated. Many times, these tools

integrate a number of different methods of analysis and show the results in a way that

is easy to understand.

8) Malware Interaction Monitoring:

Monitoring the interaction between the malicious software and the environment is

part of the description.

Pay attention to the manner in which the malicious software interacts with the system,

other processes, and other institutions. The identification of malicious payloads,

dropped files, and efforts to escalate privileges are all included in this. For the purpose

of analysis, these exchanges are captured by tools and monitors.

9) Dynamic Threat Intelligence:

The purpose of this activity is to gather and update threat intelligence based on

statistical analysis.

In the process of constantly analyzing fresh malware samples, the information that is

obtained adds to the development of threat intelligence capabilities. The identification

of novel attack vectors, the comprehension of evasion tactics, and the update of

detection signatures for security systems are all included in these responsibilities.

10) Analysis of Artifacts:

Conduct an investigation of the artifacts that were produced during the dynamic

analysis.

In addition to memory dumps, registry entries, network logs, and files that were

produced or changed by the virus, artifacts can also include registry entries. An

analysis of these artifacts is performed by analysts in order to recognize indications of

compromise (IOCs) and comprehend the influence that the malware has had on the

system.

The dynamic analysis of malware is an integral component of the larger process of

malware analysis, and it plays a significant part in gaining a knowledge of the

behavior of malware in real time. In order to improve detection skills, establish

mitigation techniques, and contribute to threat intelligence, analysts make use of the

insights that they obtain via dynamic analysis.

Starting the analysis we make a restore to winbox and set the network in inetsim

mode through the Styx machine. Then we open the file in viper and send it to winbox

machine. Then we run the following tools: Process Explorer, Process Monitor and

Regshot.

 Figure 23.The Process Explorer tool

After starting the Process Monitor we disable the event capture and then make it clear.

Figure 24.Disable event capture

Open the regshot, tick "Scan dir" and set it C:/

 Figure 25.The Regshot tool

At this point we will create an additional snapshot in case something goes wrong to

immediately return to the previous state with all the tools ready.

 Figure 26.Create a snapshot

Then we go back to regshot and press 1st shot to create a snapshot of the operating

system before the malware runs. When the process is finished, i.e. the 2nd shot button

becomes active, we start the event capture in Process Monitor.

Now we are ready to run the malware. At the same time we go to Process Explorer

and observe for any changes made. After the malware runs and we wait 1 minute for

it to load completely, we stop the event capture in Process Monitor, go to Regshot and

press button 2nd shot. This is necessary before further analysis in order to reduce the

insignificant changes recorded by Regshot and Process Monitor which are the result

of normal activity and not because of malware.

5.1 Process Explorer analysis

Process Explorer is a task manager that shows the processes running on the system. It

provides a list of active processes, DLL files loaded by a process, various properties

of the processes, and general system information. A useful tool is the Verify button

with which we can verify if a process has been created by Microsoft. Malware usually

replenishes genuine Windows files in an attempt to hide its presence, and using this

technique we can identify executable files of the malware. However, if an attacker

uses process substitution, which involves running a process that writes a malicious

payload to available memory, then verifying its signature cannot work since the

replacement process is performed in memory while verification is performed on the

executable on disk.

Another feature of Process Explorer is that we can compare the strings of the

executable file with the strings in memory for the same file that has been run as a

process. If there are differences, it means that the process of replacement has

occurred.

After running the malware we notice that it immediately appears in the process list.

 Figure 27.Display of malware in process list

Process Explorer uses various colors to distinguish processes. Blue indicates that this

process is running in the same security framework as Process Explorer. Pink indicates

that it contains one or more Windows services. Purple means that the process has

been packaged or compressed. Red and green indicate new processes or those that

have been shut down. After the malware started running, it immediately created 4 new

win32.exe, explorer.exe, debug.exe, sysedit.exe. The names of our processes indicate

that they may be system processes, which is a technique used by malware to mislead

the user. After creating the processes, the malware shuts down (red).

 Figure 28.Creation of new processes by malware

 Figure 29.Keep new processes running while malware is shut down

Then for further analysis of the processes we right-click on them and select

Properties. We notice that we can see various information such as image location,

security context, performance data, list of threads, TCP/IP connections, strings list. In

our case we will analyze the win32.exe.

Figure 30.Process properties window

We see that the child process is stored in the %LOCALAPPDATA%\Temp

(C:\Users\chris\AppData\Local\Temp) path that is common for malware to store the

files it creates.

Then we select the strings and see the strings that are in its memory

Figure 31.List of strings found in process memory

It is noteworthy that the strings present in memory differ from those present in the

image. Many of them show us some of the functions of malware

Below are some such examples.

 Figure 32.Windows function names used by the malware

The malware enters this list during its execution. These functions were neither present

in the image import table nor in the strings found in the image file.

 Figure 33.Suspicious url

It is a suspicious URL with some PHP files and a widely known user-agent string.

This shows us that the malware is likely using http connections and may be an address

of the C&C server.

Below we have some images from a separate group of strings. Their role is not clear

at this point in the analysis but may be useful at a later stage.

 Figure 34.Suspicious strings and hosts files.

Figure 35.Additional suspicious files

5.2 Compare snapshots with regshot

After completing the 2nd shot in Regshot we click on Compare to see the changes

made to the system files between the 1st and 2nd shot. As a result, a notepad will

appear with the following sections:

• Keys added (registry)

• Values deleted (registry)

• Values added (registry)

• Values modified (registry)

• Files added (file system)

• Files deleted (file system)

• Files [attributes?] modified (file system)

It is important to remember that Regshot uses specific functions to detect changes in

the system. Therefore, if the malware modifies these features, some changes may not

be recognized. In most cases this is used to hide the malware's files from the user.

In Values adds we see that the malware obsesses by putting the value

hsfio38fiosfh398rfisjhkdsfd "C:\Users\chris\AppData\Local\Temp\win32.exe" in

HKU\S-1-5-21- 606041777-3127973734-2451401058-

1001\Software\Microsoft\Windows\CurrentVersion\Run\. This is a known

mechanism that allows malware to run after every reboot.

In the Values modified section we see that the malware changed the value of Hidden

and HiddenFileExt which make the operating system hide known file extensions and

disable hidden files.

In the files added we see that the malware added 4 executable files, namely ending in

.exe and one file ending in .tmp

5.3 Process Analysis Monitor

 The Process Monitor includes the following data:

• Time of day: The time when the recorded event occurred

• Process: The name of the process that produces the event

• PID: The process ID.

• Operation: The API function called (or a short description of the activity, e.g.

Process Create).

• Path: The path of a file or registry key

• Result: The success or failure of an operation.

• Details: Details of the operation.

After we stopped the event capture, we save the results for future analysis.

 Figure 36.Saving process monitor results

Then using the process tree (Tools -> Process Tree...) we find suspicious processes of

malware.

Figure 37.Finding malware processes through the Process Tree

Analyzing Life Time, we observe that the malware started first, created its "childish"

processes and stopped. We right-click on any malware process and select Add process

to include filter. This displays only events related to the selected process.

 Figure 38.Show the events of a particular process

5.4 Filtering in process monitor

Due to the large amount of information, it is a good idea to limit it to what is

absolutely necessary. This can be done by selecting the Filter and then the

Highlighting where we put the following: Process Create, WriteFile and Process Start.

After the image is made, it will be as follows.

 Figure 39.Process monitor highlight

Following the filtering we can see that the malware is not responsible for processing

the values of the system. This is the first process created by it that is installed in

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\ and creates the .tmp file

in %LOCALAPPDATA%

In general, the highlight is useful for analyzing the main events without affecting the

rest. For example, to check which event created a process, we highlight Process

Create and then analyze the events that result from it. On the other hand, using

filtering is useful when we need to focus only on a specific group.

Double-clicking each event will display additional information. We double click on

the Writefile of the 1102231642.exe process and go to Stack.

 Figure 40.Stack view in Process window

At this point we can see the call stack of the process at the time it was done. In this

case, the event was a result of the CopyFileA function, which was called by the main

malware. Useful information is also the address to which the call was made

0x404d7a. this address can be used in future more in-depth analysis to identify where

executable files were copied

Then we see the Cross Reference Summary (Tools -> Cross Reference Summary...)

which shows us which files and "keys" have been written or read and by which

process.

 Figure 41.Process monitor cross reference summary

We see that the .tmp file has been written by a single process and read by the others.

This means this file can be used for IPC (Inter Process Communication). It is also

worth pointing out that the UserID key is written only by the main process which is

the malware and is read by the others. This means that it can be used to place data for

other processes.

5.5 Search for Rootkit Objects

In the last step of the analysis, we look for rootkit objects using the GMER tool.

Depending on the result of GMER, there may be additional steps for analysis, such as

if GMER detects new hidden files that were not detected in previous cases.

First of all we close the tools we used previously (Process Explorer, Process Monitor,

etc.) and start GMER. Leave the picked boxes as they are and press Scan.

 Figure 42.GMER results

In this case, the first 3 changes detected are changes that are always detected by

GMER in this system. The other 2 changes mention a suspicious structure of the

debug.exe which indicates a suspicious blackout. There are no changes to the typical

rootkit activity and it should be noted that if we run GMER more than 1 time it can

detect changes that will have been created by GMER in a previous run.

5.6 Wannacry Analysis

Tracking system alterations is a common method that is utilized in order to follow the

behavior of WannaCry infection. A number of changes have occurred, including the

types of processes that have been initiated by the systems, the number of files that

have been deleted by the virus, the alteration of the registry key, and the pattern of

network traffic. Systems Internals suites and Wireshark are utilized in this area for the

purpose of doing behavioral and network analysis.

Ransomware is a campaign that consists of many stages. The primary ransomware

tasksche.exe will be loaded by the first mssecsvc.exe, which will then begin the

further three processes that are listed below:

• taskdl.exe

• taskse.exe

• @WanaDecryptor@.exe

For the purpose of monitoring the pop-up processes, we make use of the analytic tools

known as Process Explorer. The command parameters of this process have been

established by many processes in order to achieve various functionalities. The

following is a list of the primary activities that are currently being carried out:

Mssecsvc

At the beginning of the infection process, the payload that is given to the system that

is infected initiates the mssecsvc process within the lsass process without any

parameters being specified.

1. Before beginning propagation, install the mssecsvc2.0 service.

2. Put resources into the tasksche.exe running program.

Tasksche

The operations are listed as follows:

1. Create the registry:

• HKEY_LOCAL_MACHINE\Software\Wow6432Node\Microsoft\Windo

ws\CurrentVersion\Run\aucdehyopp032

2. Release XIA resource

3. Get TOR configuration from c.wnry used in the follow-up onion server

connection by @WanaDecryptor@.exe

4. Run command “attrib +h”

5. Run command “icacls . /grant Everyone:F /T /C /Q”

6. Decrypt t.wnry

@WanaDecryptor@

• Attempt to connect to the onion server (C&C) in the dark web and send the

user name, host name, and some information about the infected system.

The response may include an updated bitcoin address in c.wnry.

• Launch “taskhsvc” as sub-process to do the communication with onion

server (C&C) and send some information about encrypting the users’ files

from 00000000.res, including end time of encryption, the amount, the size

of encryption

• Delete volume shadow copies utilizing the Windows built-in vssadmin

utility. It will launch the following command as sub-process

“vssadmin.exe delete shadows /all /quiet” to implement the shadow

deleting utililty.

Taskhsvc

Connect to onion server (C&C). This is the same binary as the “tor.exe” but renamed

by the Wannacry to evade detection of dark web communication.

Taskdl

SQL Client Configuration Utility, which also impersonates as the Microsoft

Corporation process.

Taskse

Utility used to launch @WanaDecryptor@.exe

5.6.1 Registry Monitor

In order to keep track of the value that WannaCry has put to the registry, we make use

of the Autoruns and Process Monitor tools. A distinct registry key corresponds to a

particular capability within the system each time. Some of the keys are used for

autoruns, while others are used to support the activities of ransomware.

When we are examining the influence on the file system, we concentrate mostly on

newly added files and those that have been removed. In the instance of Wannacry, it

often appends two different kinds of files to the machine that has been compromised.

Binary data and encrypted files belonging to victims of WannaCry.

It is the responsibility of the mssecsvc.exe to initially generate tasksche.exe in the

directory 'C:\WINDOWS\', then renaming it to "qeriuwjhrf," and then getting ready to

load resources into tasksche. The goal of this behavior is to prevent people from

defending the actual "tasksche.exe" that is associated with WannaCry by employing a

disguised version of "tasksche.exe" in Process Monitor.

• C:\WINDOWS\tasksche

• C:\WINDOWS\qeriuwjhrf

The tasksche.exe run with “/i” parameters will unzip resource XIA with password

“WNCry@2ol7” in its .rsrc section, and drop the following folders and files to

C:\ProgramData\kzvuujeikxgdr888\

• C:\ProgramData\kzvuujeikxgdr888\msg (the folder that contains message in

different languages)

• C:\ProgramData\kzvuujeikxgdr888\@Please_Read_me@.txt

• C:\ProgramData\kzvuujeikxgdr888\b.wnry

• C:\ProgramData\kzvuujeikxgdr888\c.wnry

• C:\ProgramData\kzvuujeikxgdr888\r.wnry

• C:\ProgramData\kzvuujeikxgdr888\s.wnry

• C:\ProgramData\kzvuujeikxgdr888\t.wnry

• C:\ProgramData\kzvuujeikxgdr888\u.wnry

• C:\ProgramData\kzvuujeikxgdr888\tasksche

• C:\ProgramData\kzvuujeikxgdr888\taskdl

• C:\ProgramData\kzvuujeikxgdr888\taskse

• C:\ProgramData\kzvuujeikxgdr888\@WanaDecryptor@.exe

• C:\ProgramData\kzvuujeikxgdr888\00000000.eky

• C:\ProgramData\kzvuujeikxgdr888\00000000.pky

• C:\ProgramData\kzvuujeikxgdr888\00000000.res

The WannaCry will put the ransom bitmap in current user desktop for wallpaper

substitution:

• C:\Users\<Current_User>\Desktop\@WanaDecryptor@.bmp

During the encryption routine, the ransomware will put two ransom-related files in

each folder:

• <Encrypted_Folder>\@WanaDecryptor@.exe

• <Encrypted_Folder>\@Please_Read_me@.txt

The WannaCry will copy the file contents from the original files into memory and

append the “.WNCRYT” extension to store the encrypted files. The original files are

deleted after encryption.

5.6.2 Process Monitor & Wireshark

When looking at the network from a network viewpoint, the Process Hacker analysis

tool is utilized to observe the rough network connection, and Wireshark is utilized to

capture, filter, and investigate data on packets. Within the realm of malware behavior,

the Command-and-Control network, the activities of worm dissemination, and the

flow of the TOR communication network are the primary focal points. In order to

establish a connection, this program will submit a request to the domain location

"www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com." As soon as the website

begins to react regularly, the binary will be present.

Following the completion of the domain check, the mssecsvc.exe program will

proceed to register the mssecsvc2.0 service and then to enter the service mode for

propagation. Attempts at propagation will be made by the mssecsvc2.0 by constantly

sending TCP SYN packets to port 445 of both the local area network (LAN) and the

wide area network (WAN). It is apparent that the virus increases the extent of its

growth in other devices and makes use of the NetBIOS packets that are not banned

from the outside in order to travel over the Internet. Specifically, this refers to the

extensive infection that occurred during the original epidemic, which is the reason

why it is impossible to determine where the initial vector malware may have

originated from.

Following the discovery of a computer that has a NetBIOS port that is open,

WannaCry will acquire a TCP socket for port 445, connect to an SMB socket, and

obtain an SMB tree id for purposes of later usage. Additionally, the virus will transmit

three NetBIOS session setup packets to it. This is another hallmark of the infection.

The correct Internet Protocol address (192.168.135.131) of the system that is being

abused is known to one. Two Internet Protocol addresses (192.168.56.20 and

172.16.99.5) are included in the malware body of other instances. For the purpose of

MS17-010 SMB RCE detection, the phenomena and characteristic of the precise host

IP address is taken into consideration.

1) MS17-010 SMB RCE Detection

For the purpose of determining whether or not MS17-010 has been patched,

the detection technique involves the disclosure of information. In order to

attempt a transaction on FID 0, WannaCry establishes a connection to the

IPC$ tree. If the status that is given is

"STATUS_INSUFF_SERVER_RESOURCES," this indicates that the

application does not have the MS17-010 patch installed on the computer.

2) SMB Doublepulsar Probe

The SESSION SETUP Trans2 Request is being sent out with the purpose of

determining whether or not the system has already been hacked by the

Doublepulsar backdoor.

If the value 65 (0x41) is seen in the "Multiplex ID" column, it indicates that the

system that is now being used is a regular system. If this is not the case, the value of

"Multiplex ID" is 81(0x51). When this occurs, it indicates that the system has already

been compromised by the Doublepulsar backdoor.

3) Triggering the Vulnerability

If the detection result reveals that the target is vulnerable to the MS17-010

vulnerability but is not yet infected with the Doublepulsar backdoor, then it

will continue to install the Doublepulsar backdoor by utilizing the Eternalblue

exploit.

The series of NOPs that make up an initial NT Trans request is rather lengthy.

The purpose of this is to identify the specific location inside the affected

devices where the vulnerability is present. The SMB protocol of the targets

can be exploited by the attacker by utilizing a packet that has been specially

prepared. Multiple Secondary Trans Requests are triggered as a result of the

massive NT Trans request, which also provides as signs for attackers

regarding how to activate the vulnerability.

4) Doublepulsar Instrcution

The control is transferred to the doubepulsar backdoor once the Eternalblue

assault has been successfully completed. A sequence of SMB packets

containing the Doublepulsar instructions are transmitted between the system

that is spreading WannaCry and the victim that is being targeted. These

packets are delivered in certain hidden fields.

a) Ping Request

The WannaCry ransomware will make a ping request to the target

after the initial negotiation and session setup has been completed.

This will be accomplished by sending numerous ping packets to the

infected device. The primary objective of the ping request is to

determine whether or not the hook of Doublepulsar has been

effectively deployed. The "ping" command is concealed within the

"Timeout" field, which was initially the length of time that the

client waits for the server to reply to a request that has not yet been

processed. In accordance with the Microsoft Open Specifications,

the default value of the Timeout field is set to forty-five seconds.

For the sake of the experiment, the Timeout field has been

configured to read 4 hours 20 minutes 10.881 seconds

(0x00ee3401). This aberrant Timeout number is not actually

related to the time out set; rather, it is hinting that the Doublepulsar

instruction opcode is being used. In order to calculate this opcode,

the procedure involves adding up each byte and then deleting the

overflow that is produced as a consequence. With the use of the

ping command, one may determine whether or not the

Doublepulsar backdoor has been successfully installed on the

machine that has been compromised.

b) Ping Response: Infected

In spite of the fact that the Doublepulsar backdoor answers to the

"ping" instruction with the field "Multiple ID (MID)" set to 0x81, it

nevertheless indicates the presence of itself. The "Signature" field

in this packet has additional connotation that might be drawn from

it. The value of 0x011f7a1332 has been assigned to the signature

field. The first byte, which is 0x01, indicates that the computer

works on the x64 platform. It is important to note that the last four

bytes (0x1f7a1332) include the encrypted XOR key, which will be

utilized for the subsequent encryption of the packet content.

c) Exec Request

Following the verification that the backdoor is there, WannaCry

will restart sending the "exec" Doublepulsar instruction to the

target. It will also instruct the backdoor on the target to initiate the

injection of ransomware into the lsass process. An anomalous value

is assigned to the "Timeout" field by the packet, as demonstrated

by the "ping" command. The value will once again be set to the

value 0x001a8925 in the "Timeout" field when the "exec"

command is executed.

d) Exec Response: Completed

In the event that the shellcode is finished, the Doublepulsar

backdoor will transmit a packet with the field MID set to 0x82,

which indicates that the task has been performed successfully.

5.6.3 Encryption Process

The system thread known as TaskStart is used to activate the encryption component

of the WannaCry malware. During the course of its execution, the encryption

component examines the presence of each of the following mutexes at the same time:

• GlobalnMsWinZonesCacheCounterMutexA,

• GlobalnMsWinZonesCacheCounterMutexW,

• MsWinZonesCacheCounterMutexA.

In the event that the mutex known as "MsWinZonesCacheCounterMutexA" is

present, the encryption component will immediately terminate operations without

requiring any additional action. In the event that the mutex is not active on the

system, the encryption procedure immediately begins. To be more specific,

TaskStart generates a new mutex with the name

"MsWinZonesCacheCounterMutexA" and reads the contents of the c.wnry file

from the directory that is now active. Following that, WannaCry will set up three

different configuration files. 0000000.re, 000000.pky, and 000000.eky as well.

Following the creation of the configuration files, the encryption component is now

prepared to begin the process of encrypting data on the system. In order to achieve

this goal, it generates many threads. To begin,

Additionally, WannaCry makes an effort to load and verify the presence of two

keys that are included within the 00000000.pky and 00000000.dky files. The

00000000.dky file contains an RSA key that may be used to decrypt the data. This

key is obtained when the payment has been acknowledged. When the victim hits

the "Check Payment" button, WannaCry begins examining the system to see

whether or not the 00000000.dky file is present. In the event that the two files

stated above do not exist, WannaCry will produce a new RSA 2048-bit

asymmetric key pair that is completely unique. This key pair may be observed in

the memory dump that was created by the SysAnalyzer program at the specific

offset of 0x2B3795.

Soon after the key pair has been produced, WannaCry will export the public RSA

key of the victim to a file called 00000000.pky by utilizing the CryptExportKey

function that is available in Microsoft. The next step in WannaCry is to export the

victim's private RSA key and then encrypt it using a different RSA public key that

has been hard-coded. A file with the extension 00000000.eky is used to hold the

encrypted private key. Following the secure storage of the key, WannaCry

invokes the CryptDestroyKey method to destroy the private key that is stored in

memory. This is done in order to restrict the number of key recovery alternatives

that are available.

After that, WannaCry begins to enumerate information about all of the logical

disks that are connected to the system at a rate of three seconds per second. In the

event that a newly attached drive is not a CD ROM drive, the encryption

procedure will start on the newly attached drive automatically. At this point,

WannaCry also begins scanning for preset file extensions of interest and iterating

through all of the folders that are currently present. The CryptGenRandom

function is used to produce a 16-byte symmetric AES key, which is then used to

encrypt each individual file. After that, it uses the public RSA key to encrypt each

and every created AES key, and it puts the cryptographic information within the

file header, beginning with the WANACRY! string value. The files that have been

encrypted are renamed and concatenated with the.Extension for the WNCRY file.

An encrypted ZIP archive that requires a password to access is included in the

encryption layer. By using the IDA Pro program to disassemble the encrypter, we

were able to successfully retrieve the password, which was "WNcry@2ol7." Table 8

provides a short summary of the contents of the ZIP package, which are explained in

more detail below:

• msg is a folder that contains a list of rich text format (RTF) files with the wnry

extension. These files are the readme instructions used to show the extortion

message to the victim in different languages, based on the information

obtained from the system by malicious WannaCry functions;

• b.wnry is an image file used for displaying instructions for the decryption of

user files. It starts with 42 4D strings, which indicates that this file is a bitmap

image.

• c.wnry contains a list of Tor addresses with the .onion extension and a link to

a zipped installation file of the Tor browser from Tor Project.

• r.wnry is a text file in English with additional decryption instructions to be

used by the decryption component (the u.wnry file mentioned below);

• s.wnry file is a ZIP archive (HEX signature 50 4B 0304) which contains the

Tor software executable. This executable has been obtained with the

assistance of the WinHex tool by saving raw binary data with the .zip

extension.

• t.wnry is an encrypted file with the WANACRY! encryption format. The file

header starts with the WANACRY! string;

• taskdl.exe is a supporting tool for the deletion of files with the .WNCRY

extension. By observing the properties of the file, the following masquerade

description can be found: “SQL Client Configuration Utility”;

• taskse.exe is a supporting tool for malware execution on remote desktop

protocol (RDP) sessions. The following file description was identified:

“waitfor – wait/send a signal over a network”;

• u.wnry is an executable file (HEX signature 4D 5A) with the name of

“@WanaDecryptor@.exe”, which represents the decryption component of

WannaCry

While this is going on, another thread is calling the taskse.exe process every thirty

seconds. This process is attempting to enumerate active RDP connections on

remote workstations that are connected to the system and to execute the binary file

that is called @WanaDecryptor@.exe. The decryption component of WannaCry is

represented by this file, which was retrieved from the u.wnry file previously

mentioned. By including the value in the AutoRun registry entry, it is possible to

guarantee that RDP session injections will continue to be persistent.

5.6.4 Recovery Prevention

Following the completion of the encryption procedure, WannaCry will execute a

number of commands on the system in an effort to thwart a variety of standard data

recovery methods. All of the following commands are carried out by WannaCry in

order to hinder data recovery.

• vssadmin delete shadows/all/quiet. Deletes all the shadow volumes on the

system without alerting the user. By default, these volumes contain backup

data in the event of a system fault.

• wmic shadowcopy delete. Ensures deletion of any copies relevant to shadow

volumes.

• bcdedit/set default bootstatuspolicy ignoreallfailures. Ensures that the machine

is booted, even if errors are found.

• bcdedit/set default recoveryenabled no. Disables the Windows recovery

feature, thus preventing the victims from the possibility to reverting their

system to a previous build.

• wbadmin delete catalog −q. Ensures that victim can no long er use any backup

files created by Windows Server.

5.6.5 Propagation

The core propagation and exploit capability of WannaCry is carried by the worm

component of the malware. This functionality makes use of the EternalBlue exploit

and the DoublePulsar backdoor in order to take advantage of the MS17-010 Software

Management Framework vulnerability. Following the completion of the first

exchanges and the verification of connectivity with the kill-switch domain, the

functionality of the worm is created by beginning the mssecsvs2.0 service, which

WannaCry installs once it has been run. Through the use of the SMB vulnerability,

this service makes an attempt to disseminate the WannaCry payload to all susceptible

computers that are currently connected to either internal or external networks.

In order to do this, WannaCry employs the creation and spawning of two distinct

threads that concurrently duplicate the worm payload across all networks that have

been identified. Before beginning the process of propagation, the component in the

internal network acquires the IP addresses of local network interfaces by using the

GetAdaptersInfo function. Additionally, the component determines the subnets that

are present in the network.

Following that, the component of the worm uses port 445, which is the default port

for the SMB over IP service, to attempt to establish a connection with every

conceivable IP address in any local network that is connected to the internet. In the

event that it is successful, the worm will attempt to exploit the service for the MS17-

010 software vulnerability. In our testbed, connection attempts were seen with

Wireshark on a REMnux system. These attempts occurred when the infected machine

transmitted SMB probing packets to the clean machine. Both machines were clean.

The produced traffic during the SMB probing has two hardcoded IP addresses:

192.168.56.20 and 172.16.99.5. This is one of the distinctive characteristics of the

traffic that is created during the SMB probing. Extraction of strings from the binary

allows for their observation to be carried out. Specifically, WannaCry transmits three

NetBIOS session setup packets, two of which contain the previously described

hardcoded IP addresses. Another packet has the same information.

Parallel to this, the worm component makes an effort to propagate itself throughout

the external networks by creating a number of different IP addresses and by

attempting to establish a connection to TCP port 445. This is something that can be

seen using Wireshark on REMnux, as demonstrated.

5.6.6 C&C communication

During the course of its execution, the program will also attempt to make contact with

the command and control servers. To do this, WannaCry extracted contents from the

s.wnry file, which contained the Tor executable, and put them into the installation

directory, as seen in the following image:

A listening session is initiated on the localhost address 127.0.0.1:9050 prior to the

unpacking process. This IP, together with the 9050 port that has been supplied, is

normally taken into consideration when setting the Tor browser program. Once

WannaCry determines that the contents of the s.wnry file have been damaged, it will

attempt to download the Tor executable from a URL that has been hardcoded.

Following the successful extraction of the Tor executable, it moves

"TaskData\Tor\tor.exe" to "TaskData\Tor\taskhsvc.exe" and then executes the latter.

Afterwards, WannaCry performs a parsing operation on the contents of the c.wnry

file, which contains the configuration data with the following information

included.onion addresses to connect to, as well as the zipped file associated with the

Tor browser installation.

• gx7ekbenv2riucmf.onion

• 57g7spgrzlojinas.onion

• xxlvbrloxvriy2c5.onion

• 76jdd2ir2embyv47.onion

• cwwnhwhlz52maqm7.onion

• https://dist.torporject.org/torbrowser/6.5.1/tor -win32-0.2.9.10.zip

Immediately after that, WannaCry transmits the initial eight bytes of the content of the

00000000.res file to the command and control server. These bytes provide

information on the host and user name of the system that is infected. In all, 88 bytes

of configuration data are accumulated in the 00000000.res file, which is deleted

throughout the encryption process. This data includes internal flags, counters, and

timestamps. During the course of its connection with Tor addresses, WannaCry

creates a secure HTTPS channel to port 443 and makes use of two common Tor ports,

9001 and 9050, to transmit directory information and network traffic.

CONCLUSION

We created some python scripts to show the various malware operations

(adware,trojan etc) by running them in an Ubuntu 20.04 Linux virtual machine.

Furthermore, we created a safe virtual environment using a Windows 10 outdated

machine and a Renmux Linux based virtual machine to perfome a static and dynamic

analysis of 2 malware samples provided by the ENISA training course as well as the

wannacry ransomware. We analyzed the behavior patterns and how the malwares

infect our system and also we used some tools to examine the infected code.

TOOL WEBSITES

1) PEiD – http://www.woodmann.com/collaborative/tools/index.php/PEiD

2) Exeinfo PE –

http://www.woodmann.com/collaborative/tools/index.php/ExeInfo_PE

3) PEview – http://wjradburn.com/software/

4) CFF Explorer – http://www.ntcore.com/exsuite.php

5) Resource Hacker – http://www.angusj.com/resourcehacker/

6) BinText – http://www.mcafee.com/us/downloads/free-tools/bintext.aspx

7) Upx – http://upx.sourceforge.net/

8) Process Explorer – http://technet.microsoft.com/en-US/sysinternals/bb896653

9) Process Monitor – http://technet.microsoft.com/en-

us/sysinternals/bb896645.aspx

10) Regshot – http://sourceforge.net/projects/regshot/

11) GMER – http://www.gmer.net/

12) Tcpdump – http://www.tcpdump.org/

13) Wireshark – https://www.wireshark.org/

14) Mitmproxy – http://mitmproxy.org/

15) INetSim – http://www.inetsim.org/

http://www.woodmann.com/collaborative/tools/index.php/PEiD
http://www.woodmann.com/collaborative/tools/index.php/ExeInfo_PE
http://wjradburn.com/software/
http://www.ntcore.com/exsuite.php
http://www.angusj.com/resourcehacker/
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx
http://upx.sourceforge.net/
http://technet.microsoft.com/en-US/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://sourceforge.net/projects/regshot/
http://www.gmer.net/
http://www.tcpdump.org/
https://www.wireshark.org/
http://mitmproxy.org/
http://www.inetsim.org/

BIBLIOGRAPHY

[1] Kim, Samuel, "PE Header Analysis for Malware Detection" (2018). Master's

Projects. 624.

[2] Elisan, C., Advanced malware analysis, 2015 1st ed. New York, NY:

McGraw-Hill Education.

[3] Ligh, M., Case, A., Levy, J. and Walters, A., The Art of Memory Forensics:

Detecting Malware and Threats in Windows, Linu, 2015 1st ed. Indianapolis: John

Wiley & Sons.

[4] Ravindar Reddy Ravula, “CLASSIFICATION OF MALWARE USING

REVERSE ENGINEERING AND DATA MINING TECHNIQUES”, Master’s

Thesis, The Graduate Faculty of The University of Akron, 2011.

[5] Sikorski, M. and Honig, A., Practical malware analysis: the hands-on guide

to dissecting malicious software, 1st ed. San Francisco, 2012.

[6] Aycock, J., Computer viruses and malware, 1st ed. New York, 2010.

[7] Ligh, M., Richard, M. and Adair, S., Malware Analyst's Cookbook and DVD:

Tools and Techniques for Fighting Malious Code, 1st ed, Indianapolis, 2010.

[8] Shackleford, D.,Virtualization security: Protecting Virtualized Environments,

1st ed. Indianapolis, 2013.

[9] Szor, P., The Art of Computer Virus Research and Defense, 1st ed. Upper

Saddle River, 2005.

[10] Monappa K. A., Learning Malware Analysis, 1st ed, London, 2018.

[11] Von Spiegel Staff, “Documents Reveal Top NSA Hacking Unit”, Spiegel

International, Dec 2013.

