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Abstract

Financial markets have evolved into highly complex systems, where the intricate dynamics of
trading are captured in the limit order book (LOB), a critical component of market microstructure.
This thesis explores the challenge of analyzing LOB data to infer meaningful patterns and predictive
signals, leveraging machine learning techniques to address the inherent complexity and non-linearity
of the data. Our work focuses on bridging the gap between raw LOB snapshots and the more detailed
market by order (MBO) data, which offers richer insights but is often unavailable or underutilized in
academic research.

To this end, we developed a greedy algorithm to reconstruct synthetic MBO data from high-
frequency LOB snapshots. This reconstructed dataset serves as the foundation for constructing a
feature vector set inspired by prior studies, incorporating inferred market event data to compute
time-sensitive features aimed at capturing temporal dynamics. The resulting features aim to provide
a deeper understanding of market activity and support applications such as alpha signal prediction,
a crucial element in financial modeling.

By simplifying access to granular market information and demonstrating the feasibility of ex-
tracting temporal dynamics from raw LOB data, this thesis lays the groundwork for future work in
predictive modeling and feature validation. Experimental results demonstrate the potential of this
method to contribute to trading strategies and market analysis while highlighting avenues for further
exploration and optimization.
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Περίληψη

Οι χρηματοπιστωτικές αγορές έχουν εξελιχθεί σε εξαιρετικά πολύπλοκα συστήματα, όπου

οι περίπλοκες δυναμικές των συναλλαγών καταγράφονται στο βιβλίο οριακών εντολών (LOB),
ένα κρίσιμο στοιχείο της μικροδομής της αγοράς. Η παρούσα διπλωματική εργασία διερευνά την

πρόκληση της ανάλυσης δεδομένων LOB για την εξαγωγή ουσιαστικών προτύπων και προβλε-
πτικών σημάτων, αξιοποιώντας τεχνικές μηχανικής μάθησης για την αντιμετώπιση της εγγενούς

πολυπλοκότητας και μη γραμμικότητας των δεδομένων. Το έργο μας εστιάζει στη γεφύρωση του

χάσματος μεταξύ των στιγμιοτύπων του LOB και των λεπτομερέστερων ανά-εντολή δεδομένων
(MBO - Market By Order), τα οποία προσφέρουν πιο πλούσιες πληροφορίες αλλά συχνά δεν είναι
διαθέσιμα ή δεν αξιοποιούνται στην ακαδημαϊκή έρευνα.

Για αυτόν τον σκοπό, αναπτύξαμε έναν άπληστο αλγόριθμο για την ανακατασκευή συνθε-

τικών δεδομένων ΜΒΟ από στιγμιότυπα υψηλής συχνότητας του LOB. Αυτό το ανακατασκευα-
σμένο σύνολο δεδομένων χρησιμεύει ως βάση για τη δημιουργία ενός διανύσματος χαρακτηρι-

στικών εμπνευσμένου από προηγούμενες μελέτες, ενσωματώνοντας τα συνθετικά δεδομένα για

τον υπολογισμό χρονικών χαρακτηριστικών που στοχεύουν στη σύλληψη χρονικών δυναμικών.

Τα χαρακτηριστικά που προκύπτουν αποσκοπούν στην καλύτερη κατανόηση της δραστηριότη-

τας της αγοράς και στην υποστήριξη εφαρμογών όπως η πρόβλεψη σημάτων alpha, ένα κρίσιμο
στοιχείο στη χρηματοοικονομική μοντελοποίηση.

Με την απλοποίηση της πρόσβασης σε λεπτομερείς πληροφορίες της αγοράς και τη διαπίστω-

ση της δυνατότητας εξαγωγής χρονικών δυναμικών από ακατέργαστα δεδομένα LOB, αυτή η
διπλωματική εργασία θέτει τις βάσεις για μελλοντική έρευνα στη μοντελοποίηση και επικύρω-

ση χαρακτηριστικών. Τα πειραματικά αποτελέσματα αποδεικνύουν την αποτελεσματικότητα

αυτής της μεθόδου να συνεισφέρει σε στρατηγικές συναλλαγών και ανάλυση της αγοράς, ενώ

υπογραμμίζουν τις δυνατότητες περαιτέρω διερεύνησης και βελτιστοποίησης.
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Chapter

1 Introduction

Adam Smith claimed that man has an intrinsic "propensity to truck, barter, and exchange one
thing for another" [1]. This quote carries a profound meaning on the nature of human interactions
and our tendencies to engage in mutually beneficial exchanges and transactions. The manifestation
of this inclination has evolved dramatically over centuries—from the ancient sailing ships that brought
silk from China to Rome in the second century, to the rise and fall of the Portuguese monopoly in the
spice trade in the sixteenth century, and to the modern era, where computer chips from Taiwan and
feta from Greece traverse the globe seamlessly [2]. This evolution highlights an ongoing integration
of national economies into a global economic system. The continuous progression of trade has also
seen the establishment of regulated exchanges, creating structured environments for the trading of
goods, currencies, and financial assets. In recent years, trade has advanced yet again, reaching new
speeds and efficiencies with the advent of algorithmic High-Frequency Trading (HFT).

High-Frequency Trading is a highly specialized strategy in which financial firms leverage advanced
technology and complex algorithms to execute trades at extraordinary speeds, often within microsec-
onds or nanoseconds. This process allows HFT firms to capitalize on fleeting market inefficiencies
or tiny price movements. By executing vast numbers of trades with extremely short holding periods,
typically milliseconds to seconds, HFT aims to capture small profits on each trade, which can ag-
gregate into significant gains. This approach has transformed modern markets, adding liquidity and
increasing the speed of transactions, although it has also introduced complexities and debates over
fairness and market stability. HFT is particularly complex as the discipline rests at the confluence
of two already complicated areas of study: high-frequency finance and computer science. Very few
academic institutions offer programs that prepare students to be simultaneously competent in both
areas. Most finance-trained people do not understand computer programming, and most computer
scientists do not have a grasp on the required highly academic finance [3].

To develop such complex systems, it is essential to study the processes and inner workings of
financial markets, a field known as market microstructure [4]. Market microstructure research focuses
on the mechanics of price formation, trading rules and behaviors, the structure of exchanges, and the
factors influencing liquidity, transaction costs, and information flow. By analyzing these elements,
researchers aim to understand how they collectively impact price discovery, market efficiency, and
participant behavior within the marketplace. A fundamental aspect of market microstructure is the
limit order book (LOB). A LOB is an electronic record of all buy (bid) and sell (ask) orders for a
specific financial asset, organized by price levels. It displays the quantities available at each price for
buyers and sellers and is typically structured so that the highest bid and the lowest ask, representing
the best prices for buying and selling, appear at the top. As new orders are placed, modified, or
canceled, the LOB updates, reflecting the dynamic nature of trading activity and allowing for price
discovery, liquidity assessment, and trade execution insights [5].
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CHAPTER 1. INTRODUCTION

The vast volume and complexity of data generated by the limit order books has introduced chal-
lenges in analyzing and predicting market behavior. Traditional models often fall short in capturing
the highly non-linear and intricate patterns present in LOB data. Deep learning, a subset of machine
learning [6], has shown particular promise for modeling such complex, high-dimensional data. With
its ability to model non-linear relationships and learn directly from raw, large-scale data, deep learn-
ing seems especially suited to handling the structures within the LOB. This capacity makes deep
learning a powerful tool for limit order book analysis, enabling the extraction of meaningful patterns
and predictive signals from the vast amount of information generated in real-time trading.

One especially valuable application of deep learning in this context is the prediction of alpha
signals (also known as return predictors), which are key to generating insights on expected returns.
Accurate prediction of alpha signals is a major focus for financial firms such as hedge funds and
banks, where the ideal outcome is to produce high-frequency price forecasts directly from raw limit
order book data. However, LOB data is inherently limited in granularity, as it is derived from a
broader and more detailed data feed known as market by order (MBO) data. MBO data includes
all individual orders, providing a richer view of market activity, but it is largely neglected in current
academic literature [7]. Combining LOB and MBO data has the potential to improve forecasting
accuracy, as shown by the feature vector sets of by Alec N. Kercheval and Juan Zhang [8], which is
was used in many relevant studies to create datasets for training deep learning models.

In this thesis, we aim to bridge this gap by developing a method to infer MBO data from
high-frequency limit order book snapshots. To achieve this, we developed a greedy algorithm that
deterministically maps consecutive LOB snapshots to a set of inferred trade orders, effectively creating
a synthetic MBO dataset from the raw data. By using both MBL data (Market by Limit - Raw Book)
and an inferred MBO data, we constructed the proposed feature vector set. This approach could
simplify access to one of the most granular sources of market microstructure information, provided
that future experiments demonstrate that the resulting features effectively capture key patterns and
produce results comparable in quality to those obtained with actual MBO data.
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Chapter

2 Limit Order Books

2.1 Origins and Current Landscape

"The bookkeeper of the Amsterdam chamber of the VOC,1 Barent Lampe, was seated behind an
imposing volume with deckle-edged pages and a vellum cover, the Amsterdam chamber’s subscription
share register...Under the watchful eye of the notary, the bookkeeper checked each entry and added
up the amounts...Altogether, 1,143 investors subscribed to the initial capital of the Company’s
Amsterdam chamber" [9, pp. 7–8]. Through Lodewijk Petram’s vivid narration in his book on
the origins of stock exchanges, we witness the first recorded instance of investment accounting in
1602. The Dutch East India Company initially required shareholders to hold their shares for at least
ten years before cashing out. However, realizing this might be too lengthy, they added a clause to
the first page of the share register: "Conveyance or transfer [of shares] may be done through the
bookkeeper of this chamber". This addition quickly paved the way for the first recorded stock trades.
In March 1603, Jan Allertsz tot Londen sold one share to Maria van Egmont and another to Mrs.
van Barssum. The use of this subscription register, enabling organized ledgers and share transfers,
can be seen as the earliest foundation of what would eventually become the modern order books.

Modern market microstructure evolved into using two main trading mechanisms: quote-driven (or
dealer) markets and limit order book (LOB) systems. Initially, markets relied on designated market
makers, such as dealers or specialists, to provide liquidity and ensure market continuity. These
dealers maintained buy and sell quotes to facilitate trades, playing a central role in price stability.
This quote-driven model underpinned much of the microstructure literature before the 1990s and
was crucial in markets with lower liquidity or fewer participants [10].

However, advancements in telecommunications and computing in the 1970s and 1980s initiated
a shift toward electronic trading systems. A key milestone was the establishment of NASDAQ in
1971, the first fully electronic stock exchange, which marked the beginning of a broad transition
toward LOB systems. By the 1990s, LOBs had become prevalent across major financial markets,
operating without designated market makers. Instead, participants post limit orders—commitments
to trade at specified prices—which remain in the LOB until matched or canceled, while market
orders execute immediately at the best available prices. This shift to LOBs has brought numerous
benefits, including lower trading costs, improved transparency, and efficient price discovery through
automated electronic networks, making it the standard in today’s high-frequency, competitive trading
environment [10].

1Vereenigde Oost-Indische Compagnie (Dutch East India Company)
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CHAPTER 2. LIMIT ORDER BOOKS

Figure 2.1 | First page of the share register of the Dutch East India Company’s Amsterdam chamber
[9, p. 11].
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2.2. DEFINITIONS AND BASIC STRUCTURE

2.2 Definitions and Basic Structure

In order to rigorously analyze and model the limit order book (LOB) and its behavior in financial
markets, it is essential to establish precise mathematical definitions and formal descriptions of its
components and dynamics. Most of the definitions and mathematical structures presented in the
following sections are derived from the thorough survey of Gould et al. [11], which synthesizes findings
from a wide range of empirical and theoretical research on LOBs. When examples are needed, we
will use BTCUSDT2 as the illustrative asset, as its limit order book data will also serve as the basis
for our later experiments. At first, we need to define the building blocks of a LOB which are the
orders. A market participant can post a buy or sell order.

Box 2.1 | Buy and Sell Orders

An order x = (px, ωx, tx) submitted at time tx with price px and size ωx (ωx > 0 for sell
orders and ωx < 0 for buy orders) is the commitment to sell or buy up to |ωx| units of the
traded asset at a price no less, or no greater, respectively, than px.

Prices and sizes of orders in a LOB come with their respective measurement parameters: tick
size for price and lot size for quantity. Together, these are referred to as the resolution parameters
of the LOB:

Box 2.2 | Resolution Parameters

The tick size π of a LOB is the smallest price interval between different orders within it. All
orders must be submitted with a price that is specified to the accuracy of π.

The lot size σ of a LOB is the smallest amount of the asset that can be traded within it. All
orders must be submitted with a size ωx ∈ {±kσ|k = 1, 2, . . .}.

For example, for the pair BTCUSDT in the Binance Exchange, the tick size is π = 0.01 USDT
and the lot size is σ = 0.00001 BTC (Updated on 2022-12-14). This indicates that a trader cannot
place an order of volume lower than 0.00001 and the specified price of his order should have precision
of at most 2 decimal places.

When a trade is submitted, the trade-matching algorithm of the LOB checks whether it can match
it to the already available orders of the opposite side. If this is the case, the trade immediately gets
fulfilled. If not, it becomes active and remains active until it gets fulfilled from another trade or it
is canceled. We will delve further into the specific rules governing the matching process, but first,
defining active orders is essential to clearly establish what constitutes a LOB at any given moment.

Box 2.3 | Limit Order Book at Time t

A LOB L(t) is the set of all active orders in market at time t

2BTCUSDT refers to the trading pair for Bitcoin (BTC) against Tether (USDT), a stablecoin pegged to the US
dollar, on cryptocurrency exchanges
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CHAPTER 2. LIMIT ORDER BOOKS

The evolution of a LOB L(t) over time is a càdlàg3 process [12]. This property arises because
for a limit order x = (px, ωx, tx) that becomes active, it holds that x ∈ L(t) and for t′ −→ tx holds
that x ̸∈ L(t′), or more concisely, x ̸∈ limt′↑tx L(t′).

Box 2.4 | Càdlàg Process

A sample function x on a well-ordered set T is càdlàg if it is continuous from the right and
limited from the left at every point. That is, for every t0 ∈ T, t ↓ t0 implies x(t) −→ x(t0),
and for t ↑ t0, limt↑t0 x(t) exists, but need not be x(t0). A stochastic process X is càdlàg if
almost all its sample paths are càdlàg.

The set of active orders in L(t) can be considered as two distinct sets of ordered queues, one
with active buy orders B(t) and one with active sell orders A(t). The total sum of the sizes of
orders for a specified price and time is called bid-side depth and ask-side depth respectively.

Box 2.5 | Bid-Side Depth and Ask-Side Depth

nb(p, t) :=
∑

{x∈B(t)|px=p}
ωx, (2.1)

na(p, t) :=
∑

{x∈A(t)|px=p}
ωx (2.2)

We can also calculate the mean bid-side and ask-side depth at a given price level between two
consecutive LOB snapshots. This metric provides a useful tool for analyzing liquidity dynamics over
short intervals.

Box 2.6 | Mean Bid-Side Depth and Mean Ask-Side Depth between t1 and t2

nb(p, t1, t2) := 1
t2 − t1

∫ t2

t1
nb(p, t)dt, (2.3)

na(p, t1, t2) := 1
t2 − t1

∫ t2

t1
na(p, t)dt (2.4)

Some fundamental terms that play a crucial role in market analysis are the bid price, ask price,
mid-price, and bid-ask spread. The latter two, in particular, are frequent targets in forecasting
research, as mid-price prediction [13] and spread-crossing forecasts [14] can lead to effective trading
strategies with promising results.

The bid price is the highest stated price within all active buy orders B(t) and ask price is the
lowest stated price within active sell orders A(t).

3Acronym of the french phrase "continue à droite, limite à gauche"
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2.2. DEFINITIONS AND BASIC STRUCTURE

Box 2.7 | Bid Price and Ask Price

b(t) := max
x∈B(t)

px, (2.5)

a(t) := min
x∈A(t)

px (2.6)

The mid-price is the average of the current highest bid price and the lowest ask price, representing
the fair market value of an asset. The bid-ask spread is the difference between the highest price
buyers are willing to pay (bid) and the lowest price sellers are willing to accept (ask), reflecting the
transaction cost and market liquidity.

Box 2.8 | Mid Price and Bid-Ask Spread

m(t) := a(t) + b(t)
2 , (2.7)

s(t) := a(t) − b(t) (2.8)

Many times, it is useful to consider prices in both sets relative to the bid price and ask price in
each case. For a buy order price the bid-relative price is δb(p) := b(t) − p and for a sell order price
the ask-relative price is δa(p) := p − a(t). So, for any given order we have:

Box 2.9 | Relative Price of an Order x = (px, ωx, tx)

δx :=

δb(p), if the order is a buy order
δa(p), if the order is a sell order

(2.9)

Now, we can express the depths and their means in terms of relative prices, just as we did with
the absolute prices.

Box 2.10 | Bid-Side Depth and Ask-Side Depth at relative price p

N b(p, t) :=
∑

{x∈B(t)|δx=p}
ωx, (2.10)

Na(p, t) :=
∑

{x∈A(t)|δx=p}
ωx (2.11)

Box 2.11 | Mean Bid-Side Depth and Mean Ask-Side Depth at relative price p
between t1 and t2

N
b(p, t1, t2) := 1

t2 − t1

∫ t2

t1
N b(p, t)dt, (2.12)

7



CHAPTER 2. LIMIT ORDER BOOKS

N
a(p, t1, t2) := 1

t2 − t1

∫ t2

t1
Na(p, t)dt (2.13)

By aggregating individual depths over a time interval, we can capture a broader view of liquidity
on both sides of the order book. This leads to the mean bid-side and ask-side relative depth profiles.

Box 2.12 | Relative Depth Profiles

The mean bid-side relative depth profile between times t1 and t2 is the set of all ordered pairs
(p, N

b(p, t1, t2)).

The mean ask-side relative depth profile between times t1 and t2 is the set of all ordered pairs
(p, N

a(p, t1, t2)).
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Figure 2.2 | LOB Depth Profile

2.3 The Trade-Matching Algorithm

The matching rules of the LOB characterize its evolution over time. There are three distinct
cases of the application of a new buy or sell order x with price px at time tx in relation to b(t) and
a(t).

1. When px ≤ b(t) or px ≥ a(t), then x is a limit order that becomes active upon arrival and it
does not alternate b(t) or a(t).

8



2.3. THE TRADE-MATCHING ALGORITHM

2. When b(t) < px < a(t), then x is a limit order that becomes active upon arrival resulting in a
new bid-price or ask-price, b(tx) = px or a(tx) = px, respectively.

3. When px ≥ a(t) or px ≤ b(t), then x is a market order that matched immediately to one or
more active sell or buy orders upon arrival, respectively.The price in which the match occurs is
not necessarily equal to the price of the incoming order. The actual price px of the active order,
as well as the resulting a(t) or b(t) depend on the available depths na(a(t), t) or nb(b(t), t)
and the size of the incoming order ωx. To elaborate further:

Box 2.13 | The New Bid-Price b(tx) Upon Arrival of a Sell Market Order x

b(tx) = max(px, q), where q = arg max
k′

b(t)∑
k=k′

∣∣∣nb(k, t)
∣∣∣ > ωx (2.14)

Box 2.14 | The New Ask-Price a(tx) Upon Arrival of a Buy Market Order x

a(tx) = min(px, q), where q = arg min
k′

a(t)∑
k=k′

na(k, t) > |ωx| (2.15)

Box 2.15 | Price of a Sell Market Order x

px =


b(t) if ωx ≤

∣∣∣nb(b(t), t)
∣∣∣ ,

∑
k≤q

k·|nb(k,t)|
ωx

where q = arg max
k′

b(t)∑
k=k′

∣∣∣nb(k, t)
∣∣∣ > ωx.

(2.16)

Box 2.16 | Price of a Buy Market Order x

px =


a(t) if ωx ≤ na(a(t), t),

∑
k≥q

k·na(k,t)

|ωx| where q = arg min
k′

a(t)∑
k=k′

na(k, t) > |ωx| .

(2.17)

To put it simply, regarding the third case:

• Incoming Market Sell Order
If the order size ωx is small enough to be fulfilled at the current best bid price, then this best
bid price remains the price of the sell order. If the order size exceeds the available depth at
the best bid, the algorithm identifies the next price levels where it can find enough depth to

9



CHAPTER 2. LIMIT ORDER BOOKS

fulfill the order. This might require moving down the bid prices until enough cumulative depth
is reached. In the same manner, If the sell order size ωx is less than or equal to the depth at
the best bid price b(t), the entire order is executed at that price b(t). If the sell order requires
more depth than what is available at the best bid, the price of execution becomes a weighted
average of multiple bid prices, where each price is weighted by the depth available at that level,
continuing down the bid side until enough depth is gathered.

• Incoming Market Buy Order
If the buy order size ωx is small enough to be filled at the current best ask price, then this best
ask price becomes the price of the buy order. If the order size is larger than the available depth
at the best ask, the algorithm moves up the ask prices, accumulating depth across multiple
price levels until it can fulfill the buy order. This might require moving up the ask prices until
enough cumulative depth is reached. Similarly, If the order size ωx is smaller than or equal
to the depth at the best ask price a(t), the order is executed entirely at that price a(t). If
the order size exceeds the best ask depth, the price of execution is calculated as a weighted
average across multiple ask prices, where each price level is weighted by the depth consumed
at that level, continuing up the ask side until enough depth is gathered.

In practice, when placing an order on exchanges and trading platforms (Figure 2.3), traders
specify the type of order (either a limit order or a market order). For a limit order, the trader sets
both the size (quantity of the asset to be traded) and the price at which they wish to buy or sell. This
ensures the order will only execute if the market reaches their specified price, giving the trader more
control over the execution price but without a guarantee that the trade will be filled immediately. On
the other hand, when selecting a market order, the trader only specifies the size of the order. The
execution price is not pre-set. Instead, it will be determined at the moment the order is matched
against the best available bid or ask prices in the market. This allows for immediate execution, but
the final price is based on current market conditions and may fluctuate slightly.

In financial analysis, a common metric used to assess price evolution over time is known as
returns. Returns measure the relative change in price between two points in time, providing insight
into the growth or decline of an asset’s value [15]. This metric is fundamental in finance as it allows
for the comparison of performance across assets and periods, enabling analysis of trends, volatility,
and risk.

Box 2.17 | Returns

The bid-price return between times t1 and t2 is:

Rb(t1, t2) := b(t2) − b(t1)
b(t1) (2.18)

Similarly, we define the ask-price return between times t1 and t2 (Ra(t1, t2)) and the mid-price
return between times t1 and t2 (Rm(t1, t2)).
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Box 2.18 | Logarithmic Returns

The bid-price logarithmic return between times t1 and t2 is:

rb(t1, t2) := log
(

b(t2)
b(t1)

)
(2.19)

Similarly, we define the ask-price logarithmic return between times t1 and t2 (ra(t1, t2)) and
the mid-price return logarithmic between times t1 and t2 (rm(t1, t2)).

(a) Option for placing a Market or Limit Order.

(b) Only the size is necessary for the market order.
The amount is just an approximation of the execution price.

(c) The size and the price are mandatory to place a limit order.

Figure 2.3 | Example of market and limit order placement from a real trading platform.
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2.4 Priority Mechanisms

As discussed in the previous section, priority in the execution of an incoming trade is given to
active orders at the best bid or best ask prices. However, we have yet to address the concept of
priority within an individual price level. This refers to the specific order in which active orders at a
single price level are executed. In other words, when multiple orders exist at the same price level, it
becomes important to understand the sequence in which these orders are fulfilled.

Typically, exchanges use a first-in, first-out (FIFO) or time-priority rule, whereby the earliest order
placed at that price level is executed first. This priority mechanism is commonly called price-time.
It effectively incentivises traders to place limit orders [16]. Without a time-based priority system,
traders would have little motivation to reveal their intentions by submitting limit orders sooner than
absolutely necessary.

Another priority mechanism frequently used in futures markets is pro-rata [17]. Under this
system, when multiple orders are competing at the same price level, each active order receives a
portion of the trade based on its share of the total available depth. For example, if the total depth
at a price level σ consists of two active orders, with one representing 1/3 and the other 2/3 of σ,
then an incoming buy market order of size 3σ would be split such that one unit σ matches with the
smaller order and 2σ matches with the larger order. This priority system presents a unique challenge
for traders, as submitting limit orders with larger sizes than the desired trade quantity becomes a
viable strategy to secure a greater allocation in pro-rata priority order books [18].

Using price-time (FIFO) versus pro-rata priority produces distinct market results, particularly
affecting liquidity, order depth, and price stability. FIFO prioritizes orders based on arrival time,
creating a tight order queue where speed is rewarded, leading to shallower order books but higher
price stability and efficiency, with fewer price reversals due to lower cancellation rates. In contrast,
pro-rata distributes fills based on order size, encouraging larger orders and resulting in greater market
depth but with higher variability, as traders tend to over-quote to capture partial fills. This variability
leads to more frequent price reversals and slightly reduced price efficiency, as price levels shift more
often due to the dynamic queue behavior in pro-rata markets. Thus, FIFO generally fosters faster,
more stable price discovery, while pro-rata allows for deeper liquidity at the cost of increased price
volatility [18].

Another, not so frequently used priority mechanism is price-size. That is, breaking the ties by
selecting the active order of the largest size over the rest. The first major exchange that introduced
a price-size trading platform was NASDAQ in 2010 (NASDAQ OMX PSX ).

2.5 Hidden Liquidity

Hidden liquidity has become a prominent feature of modern equity markets, allowing traders to
conceal all or part of their orders from public view. This results in market liquidity being composed
of both a visible (displayed) and an invisible (non-displayed) component. While non-displayed orders
typically lose priority to displayed orders at the same price level, their invisibility offers significant
strategic advantages. Traders can place partially or totally hidden orders to mask their intentions,
reducing the risk of adverse price movements caused by opportunistic trading behavior. However,
this opacity also limits the ability of market participants to assess the true depth of the market and
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can obscure the best available prices, as hidden depth may exist within the spread. The rise of hidden
liquidity, including mechanisms such as iceberg orders and trading in dark pools, reflects an increasing
preference for privacy in trading. This shift has introduced complexities in price discovery and has
raised concerns about market transparency, prompting regulatory scrutiny regarding its impact on
overall market efficiency [19] [20].

One manifestation of hidden liquidity is the use of iceberg orders, which allow traders to display
only a small portion of their total order while keeping the remainder hidden. Institutional traders
often employ iceberg orders to minimize market impact when executing large trades. By revealing
only a fraction of their order, they can avoid signaling their intentions to the market, which could
lead to unfavorable price movements. This approach is especially valuable in public markets where
transparency can work against large traders, merely exposing a large sell or buy order can create
downward or upward pressure on prices, respectively. To mitigate this risk, traders often "slice
and dice" their large orders, entering them in smaller increments over time [21]. Alternatively, some
institutional participants turn to off-exchange venues, like dark pools, to further conceal their activity.

Dark pools, a type of private exchanges, have seen significant growth in recent years. These
venues enable traders to place orders that are entirely invisible to the broader market until execution.
By keeping orders hidden, dark pools reduce market impact and associated liquidation costs, making
them particularly attractive for executing large trades. Unlike traditional limit order books, dark
pools lack intrinsic price discovery; instead, their execution prices are typically derived from publicly
quoted prices on exchanges. This linkage allows for potential price manipulation on public exchanges
to indirectly influence dark pool execution prices. While dark pools offer advantages in minimizing
market impact, they have also drawn scrutiny from regulators due to their lack of transparency and
potential for misuse [22].

Hidden liquidity significantly complicates the modeling of limit order books because a snapshot
L(t) at any given time t may not capture the full picture of market activity [11]. The visible orders
displayed in the limit order book represent only a portion of the total liquidity available, as hidden or
iceberg orders and trades executed in dark pools remain obscured. This incomplete representation
introduces challenges in understanding true market depth, assessing supply and demand dynamics,
and accurately predicting price movements. Consequently, models based solely on visible LOB data
may overlook key liquidity components, leading to potential biases or inaccuracies in market behavior
predictions. For this reason, there is research that focused on detecting hidden liquidity events, such
as studies on identifying iceberg orders [23].

The table below illustrates how different trading mechanisms, in regards to hidden liquidity,
could impact the market differently. Inspired by similar comparative analyses in the literature (Fig.
4.7 [21]), it highlights the potential outcomes for price and volume depending on the mechanism
used, under common initial market conditions.
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Figure 2.4 | Comparison of trading mechanisms for BTCUSDT using hypothetical scenarios. The current bid
and ask prices are $34,950 and $35,050 with depth 1 BTC.

Public Order Book Iceberg Orders Dark Pool

Order Placement Place two limit orders to
sell 2 BTC at $35,000
and $35,050

Place a limit order to sell
4 BTC at $35,000, dis-
playing only 1 BTC, with
the rest hidden

Place a sell order for
4 BTC in a dark pool,
indicating willingness to
match at the midpoint of
the bid-ask spread

Possible Consequences Sell pressure cancels
the bid, a new offer
at $34,950 arrives, and
quotes shift to $34,900-
$34,950

The smaller displayed sell
order does not trigger a
price drop, and buy or-
ders gradually fill both
the visible and hidden
portions

A buy order for 4 BTC
in the dark pool matches
the sell order at the mid-
point of $35,000

Possible Outcome BTC sells below $35,000
due to sell pressure

BTC sells for $35,000 af-
ter time passes and new
buy orders arrive

BTC sells for $35,000
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Chapter

3
Foundational Research and

Key Contributions

3.1 Large-Scale Application of Deep Learning to LOBs and Universal
Features of Price Dynamics

In his work [24], Justin Sirignano explored the potential of deep learning in modeling the dynamics
of limit order books (LOBs). At the time, LOB data posed significant challenges due to its high-
dimensional, nonlinear structure and immense volume. The research aimed to demonstrate the
advantages of neural networks for capturing the complexities of price movements and risk modeling
within this environment. The dataset used in this study encompassed LOB data from nearly 500
stocks listed on the NASDAQ and S&P 500 indices over a period extending from January 2014
to August 2015. The data included around 50 terabytes of raw event-level information, which was
preprocessed into structured snapshots for training and testing. The neural networks were trained to
predict the joint distribution of the best bid and ask prices at future times.

A key innovation was the introduction of a spatial neural network architecture tailored to exploit
local spatial structures within the LOB. This approach outperformed traditional methods such as
logistic regression and even standard neural networks, particularly in handling deep levels of the
LOB and accurately modeling extreme market events. By leveraging a cluster of 50 GPUs for
training, Sirignano demonstrated that neural networks could efficiently process vast datasets while
achieving superior out-of-sample prediction accuracy. The results revealed that neural networks not
only improved forecasting of future price distributions but also showed potential for advancing risk
management by better estimating value-at-risk. This study highlighted the scalability and adaptability
of deep learning for financial applications, setting the stage for subsequent research in this domain.

Building on his earlier work, Sirignano et al [25] tried to tackle the question of universality of price
formation mechanisms across financial assets. Using a high-frequency database containing billions
of transactions for US equities, this study provided evidence of a universal, stationary relationship
between order flow history and price changes.

This study employed a recurrent neural network (RNN) architecture with Long Short-Term Mem-
ory (LSTM) units [26], specifically designed to capture the temporal dependencies inherent in LOB
data. This architecture effectively modeled historical dependencies by incorporating multiple layers
of LSTMs, followed by a fully connected layer of rectified linear units (ReLUs). The network’s out-
put was a probability distribution predicting the direction of the next price move, generated using a
softmax activation function. A significant innovation in this research was the network’s use of rich
historical data as input, including the order book’s state over many lags. This approach allowed
the model to incorporate path-dependence and nonlinear relationships between historical order flow
and price changes. The training utilized an extensive high-frequency dataset comprising billions of
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transactions and quotes for approximately 1,000 US equities, processed using the LOBSTER engine
to reconstruct limit order book states. The sheer scale of the data required parallel training across
500 GPU nodes.

Key takeaways from the study are:

• Nonlinearity: The study confirmed the nonlinear dependence of price changes on historical
order flow, demonstrating that deep learning models significantly outperformed linear models
like vector autoregression.

• Universality: The model identifies universal features in the relationship between order flow
and price changes that are consistent across all stocks analyzed. This ability uncovers the
presence of common underlying mechanisms in price formation, irrespective of the specific
characteristics of individual stocks.

• Stationarity: The model demonstrates remarkable stability in price forecasting accuracy over
time, maintaining consistent performance even when tested a year out of sample. This suggests
the existence of a stationary relationship between order flow and price changes, as observed in
the long-term stability of the predictions.This finding is particularly striking given that prices
themselves are typically considered non-stationary, meaning their statistical properties, such as
mean and variance, evolve over time.

• Path-Dependence: The inclusion of historical order flow and price information greatly en-
hanced prediction performance, indicating that price dynamics are influenced by long-range
dependencies.

These findings emphasize the ability of deep learning to uncover features that are not only robust
across various stocks and time periods but also hold significant practical value for trading and risk
management. The model’s capacity to generalize effectively to out-of-sample stocks demonstrates
its versatility, making it particularly useful in real-world scenarios. For instance, it could be applied
to newly listed financial instruments, where historical data is limited, offering valuable insights and
predictions even in the absence of extensive training data.

3.2 A Feature Vector Set Combining MBL and MBO Data

Alec N. Kercheval and Yuan Zhang in 2015 [8] attempted to model the limit order book dynamics
of equity financial instruments applying SVMs [27]. They were inspired by the work of Fletcher and
Shaw-Taylor [28] whose work yield promising results using similar approach on the foreign exchange
pair EUR/USD. They captured high frequency limit order book data from five NASDAQ-listed stocks
and proposed a four-phase design framework for building machine learning models. These models
were trained to capture price fluctuations, or more generally, the book dynamics, in the form certain
metrics.

The chosen metrics were the mid-price (2.7) movement and the bid-ask spread (2.8) crossing.
The latter refers to the event when a market order interacts with the limit order book in such way
that it causes the best bid or best ask price to cross over the other side of the bid-ask spread. Those
are very common choices in the relevant literature because their successful and consistent prediction

16



3.2. A FEATURE VECTOR SET COMBINING MBL AND MBO DATA

can easily lead to profitable trading strategies. There are three cases regarding the direction of both.
Consider an example of bid and ask prices for BTCUSDT at time t { 67416 $, 67416.34 $ } −−−−−−→

mid−price

67416.17 $:

Box 3.1 | Mid-Price Movement

1. Upward movement: At t + ∆t the mid-price increases to { 67416.22 $, 67416.36 $ } −→
67416.29 $.

2. Downward movement: At t + ∆t the mid-price decreases to
{ 67415.92 $, 67416.02 $ } −→ 67415.97 $.

3. Stationary : At t + ∆t the mid-price remains constant or, in reality, we usually set a
threshold between which the mid-price is considered stationary.

Box 3.2 | Bid-Ask Spread Crossing

1. Upward price spread crossing : At t + ∆t the best bid price { 67416.5 } is greater than
the best ask price { 67416.34 } at t .

2. Downward price spread crossing : At t + ∆t the best ask price { 67415.78 } is less than
the best bid price { 67416 } at t.

3. No price spread crossing : No occurrence of the above cases (pask
t+∆t ≥ pbid

t and pbid
t+∆t ≤

pask
t ).

Their four-phase process consisted of the feature extraction, model training, model validation
and unseen data classification. A simplified overview of their framework architecture is depicted
below:

Figure 3.1 | Forecasting Process Architecture
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An influential aspect of their work is the feature representation. The authors constructed a
feature dataset that incorporated not only raw Market-by-Limit (MBL) data but also enriched it with
order-messaging information. This additional information included price and volume derivatives,
intensities of different event types and accelerations. Instead of relying solely on data from a single
LOB snapshot at each time point, they aimed to capture the temporal dynamics of the LOB’s
previous states, allowing the model to better understand the evolution of the market activity over
time.

The inclusion of these time-sensitive parameters significantly improved model performance, yield-
ing a boost of 3.2% to 6.3% in precision, accuracy, and F1 score metrics [29] compared to models
using only raw data. Notably, their feature set has been adopted in other studies [30], [13] and serves
as a foundation for much of the subsequent research in this area. In this thesis, we will also aim to
utilize a similar feature set, with the key difference being that we will attempt to infer Market-by-
Order (MBO) data to generate the time-sensitive parameters. A detailed explanation of each feature
vector and its construction will be provided in a later chapter as part of our implementation.

Box 3.3 | Feature Vector Sets

Basic set

v1 = {P ask
i , V ask

i , P bid
i , V bid

i }n
i=1

Time-insensitive set

v2 = {(P ask
i − P bid

i ), (P ask
i + P bid

i )/2}n
i=1

v3 = {|P ask
i+1 − P ask

i |, |P bid
i+1 − P bid

i |}n
i=1, where Pn+1 = P1

v4 = { 1
n

∑n
i=1 P ask

i ,
1
n

∑n
i=1 P bid

i ,
1
n

∑n
i=1 V ask

i ,
1
n

∑n
i=1 V bid

i }
v5 = {

∑n
i=1(P ask

i − P bid
i ),

∑n
i=1(V ask

i − V bid
i )}

Time-sensitive set

v6 = {dP ask
i t, dP bid

i t, dV ask
i t, dV bid

i t}n
i=1

v7 = {λla
∆t, λlb

∆t, λma
∆t , λmb

∆t , λca
∆t, λcb

∆t}
v8 = {1λla

∆t
>λla

∆T
, 1λlb

∆t
>λlb

∆T
, 1λma

∆t
>λma

∆T
, 1λmb

∆t
>λmb

∆T
}

v9 = {dλmat, dλlbt, dλmbt, dλlat}
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3.3 A Public Benchmark Dataset and an Experimental Protocol of
Research Methods in Mid-Price Forecasting

Ntakaris et al.[30] introduced the first publicly available LOB-ITCH1 dataset (F1-2010) for re-
search in machine learning for prediction of mid-price movement. The authors derived limit order
book data for 5 Finish stocks from the Helsinki exchange operated by NASDAQ NORDIC for 10
consecutive trading days. Additionally to the release of the dataset, they described an experimental
protocol for the evaluation of the performance of research methods and different models applied to
mid-price forecasting.

They used data only from 10:30 to 18:00, excluding auction periods, in order to ensure consistency
and reliability in the analysis of market dynamics. Auction periods, such as pre-opening and post-
closing auctions, follow different operational mechanisms compared to continuous trading hours.
These periods are characterized by concentrated trading activity aimed at determining opening and
closing prices, leading to structural breaks in the limit order book dynamics. By excluding these
intervals, the researchers focus on the regular trading period where market conditions are stable and
comparable, avoiding biases or anomalies introduced by auction-specific behaviors. This approach
ensures that the dataset accurately represents the continuous trading phase with minimal noise from
irregular auction-driven activity.

The order book data was processed into three distinct datasets using different normalization
strategies: z-score, min-max, and decimal precision. These pre-normalization techniques not only
enhanced the utility of the data but also ensured the anonymity of the original dataset. The extracted
features were generated following the previously discussed methodology outlined by Kercheval and
Zhang[8], which employs an event-based inflow of trading information. They build each data point as
a vector containing details of the last 10 consecutive events, decoupling the dataset from time-based
inflow to account for the irregular intervals between trading events. To facilitate classification tasks,
five integer labels were assigned to each vector, representing the average percentage change in mid-
price over the next 1, 2, 3, 5, and 10 consecutive events. The labels correspond to three movement
states: 1 for upward movement (percentage change ≥ 0.002 ), 2 for stationarity (percentage change
between −0.00199 and 0.00199), and 3 for downward movement (percentage change ≤ −0.002).

The prediction framework utilized an expanding window cross-validation format (Figure 3.2).
Specifically, the 10-day trading dataset was divided into 9 folds. The first fold used the data from
the first day for training and the second day for testing. Each subsequent fold expanded the training
dataset by including an additional day, while the test dataset remained fixed as the next day in the
sequence. For instance, the final fold used data from the first nine days for training and the 10th day
for testing. Performance was evaluated across all folds using standard metrics, including accuracy,
recall, precision, and F1 score.

They utilized two regression models using the proposed dataset to set the performance baselines
for its evaluation: Ridge Regression (RR) and Single Hidden Layer Feedforward Neural Network
(SLFN). These methods are chosen because they represent two distinct paradigms of predictive
modeling: linear and nonlinear approaches. Ridge Regression is a linear model that is computationally
efficient, especially for high-dimensional datasets like the one presented, and offers regularization to

1ITCH protocol is a data feed specification provided by exchanges like NASDAQ offering granular event-level data
of an instrument’s limit order book.
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prevent overfitting. On the other hand, the SLFN represents a nonlinear modeling approach, capable
of capturing more complex relationships and interactions within the data. By comparing these two
methods, the study establishes a foundational understanding of the dataset’s predictive capabilities
and highlights the potential for improvement with more sophisticated models.
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Figure 3.2 | Expanding Window Cross-Validation Setup

3.4 A Structured Approach to Stationary Features and Appropriate
Models

Tsantekidis et al. [31] addressed the challenge of price non-stationarity by developing features
designed to be robust against distribution shifts. They also investigated the practical question
of which types of machine learning models are best suited to leverage these features effectively.
Their analysis primarily utilized the F1-2010 benchmark dataset, introduced by Ntakaris et al. [30].
Additionally, they incorporated a simpler dataset comprising FOREX price data for 66 currency pairs.

Non-stationarity of prices presents a significant challenge when modeling financial data with
machine learning. In essence, non-stationarity implies that the statistical properties of price data,
such as mean and variance, change over time. This dynamic nature creates several issues for predictive
modeling:

• Shifitng Data Distributions: Machine learning models typically assume that the training and
testing data come from the same underlying distribution. However, non-stationarity violates
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this assumption, as the patterns and relationships in price data evolve over time. This leads
to models that perform well on historical data but fail to generalize to new, unseen data.

• Noise and Volatility: Financial markets are inherently noisy and volatile, with price move-
ments influenced by various factors such as macroeconomic news, market sentiment, and order
flow dynamics. These fluctuations exacerbate the non-stationarity problem, making it difficult
for models to distinguish between meaningful signals and random noise.

• Feature Instability: In non-stationary data, the importance of features may change over time.
This instability undermines the ability of models to maintain consistent predictive performance
across different time periods.

• Overfitting Risks: Non-stationarity increases the risk of overfitting, as models may capture
short-term trends or patterns that are not representative of the long-term behavior of the
market.

An existing approach to address this problem involves normalizing the data from each trading day
using the mean and standard deviation computed from the previous day’s data. However, the authors
proposed a novel method by introducing a set of stationary features. They transformed prices into
their percentage differences relative to the current mid-price and utilized cumulative sums of order
sizes (depth) at each level of the limit order book. Additionally, they incorporated the percentage
changes of the mid-price from the previous time step. Features like these proportional differences
relative to the mid-price are less sensitive to price-level shifts, while utilizing price relations from prior
time steps incorporates temporal dynamics into the feature dataset. Below, we present an organized
overview of these features:

Box 3.4 | Price Level Differences

p′(i)(t) = p(i)(t)
m(t) − 1 (3.1)

where i is the price level and m(t) is the mid-price (2.7).

Box 3.5 | Mid Price Change

m′(t) = m(t)
m(t − 1) − 1 (3.2)

Box 3.6 | Depth Size Cumulative Sum

v′(k)(t) =
k∑

i=1
v(i)(t) (3.3)

where k is the price level. This equation is equivalent to the equations (2.1) and (2.2).
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The authors analyzed and justified the use of CNNs (Convolutional Neural Networks) and LSTMs
(Long Short Term Memory) networks for this kind of data. CNNs were chosen for their ability to
capture the temporal dynamics after the input data was formed as a tensor of temporally ordered
features. The same ability is also true to LSTMs because of their the capacity to retain information
from previous states by using gated functions which control how much of the input and the previous
state will be included in the activation of the network. They proposed a hybrid architecture of those
types of models, where the CNN layers act as a feature extractor of the initial limit order book time
series producing a new time series of the same length. The LSTM layer is then applied on the time
series and produce the final label for each time-step.

This novel approach was rigorously evaluated against standalone CNN and LSTM architectures,
as well as simpler models such as SVM and MLP. The models were tested across various prediction
horizons using performance metrics including recall, precision, F1-score, and Cohen’s kappa. The
combined CNN-LSTM model consistently demonstrated greater stability and superior performance,
outperforming the other approaches in nearly every metric and across all prediction horizons. The
tests were conducted separately using the raw values of the LOB snapshots and the stationary
feature set. In all cases, the stationary feature set outperformed the raw values, demonstrating its
effectiveness in enhancing model performance.

3.5 State of the Art - DeepLOB

Zihao Zhang et al. [32] expanded upon the hybrid CNN-LSTM architecture introduced by
[31], introducing a novel approach to feature extraction and architectural design. Their model,
named DeepLOB, integrates a sophisticated Inception Module [33] within the CNN, enabling it to
automatically extract multi-scale spatial features from raw LOB data without relying on handcrafted
features. Additionally, their innovative framework incorporates a transfer learning strategy to test
the model’s universality across different stocks. DeepLOB is widely regarded as the state of the
art in the field, achieving remarkable performance with accuracy levels nearing 80% across multiple
prediction horizons in the case of the F1-2010 benchmark dataset.

The authors choose to not rely on handcrafted features seen in earlier studies, opting instead for
a data-driven machine learning approach that integrates feature discovery directly into the modeling
workflow. This approach not only streamlines the process by eliminating the need for separate
preprocessing steps but also uncovers features that may not be apparent to human designers. They
used raw limit order book data, consisting of price and volume information from the top 10 levels of
the book (40 features in total), as input to a Convolutional Neural Network (CNN). A key innovation
was the use of an Inception Module within the CNN architecture. This module combines multiple
convolutional filters of varying sizes, enabling the network to capture market dynamics across different
time scales. This design is analogous to applying multiple moving averages simultaneously, allowing
the model to identify both short-term and long-term trends in the data. The output of the Inception
Module was then passed to an LSTM network, which captures the temporal relationships. The
final output of the network classified mid-price movements into one of three categories: upward,
downward, or stationary, representing the direction of the mid-price movement. Below, we present a
schematic representation of their model architecture.
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Figure 3.3 | CNN-LSTM with Inception Module architecture

The model was evaluated using the F1-2010 benchmark dataset [30], which, as previously dis-
cussed, was specifically created for this type of problem. However, the authors argued that while this
dataset is valuable, it has certain limitations. It spans only 10 days of trading data and focuses on a
set of relatively illiquid stocks. To address these issues, they employed a second dataset consisting of
one year of order book data for five highly liquid stocks2 from the London Stock Exchange (LSE ).
These stocks provided a richer source of information due to their high liquidity.

The model outperformed all existing algorithms and models on both datasets. An even more
remarkable finding emerged when the model trained on the five LSE stocks was directly applied
(transfer learning) to five different3 LSE stocks. It demonstrated robust performance, suggesting
that the model was able to capture some degree of universality in price formation mechanisms.
This result is particularly noteworthy as it indicates the potential for the model to generalize across
different financial instruments. The results for these two sets of stocks are presented below.

To address and demystify the "black-box" nature of deep learning models, the study employed
the LIME (Local Interpretable Model-Agnostic Explanations) method as part of a sensitivity analysis.

2Lloyds Bank (LLOY ), Barclays (BARC), Tesco (TSCO), BT, and Vodafone (VOD)
3HSBC, Glencore (GLEN), Centrica (CNA), BP, and ITV
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Table 3.1 | LSE Dataset Performance

Prediction Horizon Accuracy % Precision % Recall % F1 %

Training Set: LLOY, BARC, TSCO, BT, VOD

k = 20 70.17 70.17 70.17 70.15
k = 50 63.93 63.43 63.93 63.49
k = 100 61.52 60.73 61.52 60.65

Transfer Learning Set: GLEN, HSBC, CNA, BP, ITV

k = 20 68.62 68.64 68.63 68.48
k = 50 63.44 62.81 63.45 62.84
k = 100 61.46 60.68 61.46 60.77

This approach aims to provide interpretable insights into individual predictions by analyzing the
relationship between input components and the model’s final outputs. By identifying the most
influential input features, the authors sought to enhance understanding of how specific elements,
such as price and volume dynamics, contribute to price formation. These identified influences were
then compared to established domain knowledge, offering a means to validate the model’s alignment
with known patterns of market behavior and price dynamics.
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4
Data Extraction and

Persistence

4.1 The BTCUSDT Pair from the Binance Exchange

We selected the BTCUSDT financial instrument as the focus of our study, representing the ex-
change rate of Bitcoin against Tether, a stablecoin tied to the value of the US dollar. Its combination
of accessibility, liquidity, and prominence within the cryptocurrency ecosystem makes it an excellent
choice for experiments related to our current theme of study. The data was sourced from Binance
Exchange, the largest cryptocurrency exchange globally by trading volume.

A major advantage of this selection is that Binance provides free and open access to a compre-
hensive suite of web services for interacting with various components of the exchange. These services
include integration capabilities through multiple protocols such as REST, FIX, and WebSocket, along
with a dedicated testing environment (Testnet) that allows users to test trading strategies with vir-
tual accounts. Furthermore, several free programming libraries serve as wrappers for Binance’s web
services, consolidating functionalities and abstracting low-level details to create a more user-friendly
interface. For this study, we utilized the python-binance library, the most popular and well-maintained
Python wrapper for Binance. Its thorough documentation and active maintenance make it a reliable
choice for our requirements.

Another significant benefit of Bitcoin is its high liquidity, commanding the largest percentage of
market capitalization within the cryptocurrency space. This high liquidity translates into large order
volumes and frequent order book updates, resulting in an information-rich dataset. Such datasets are
vital for studies of this nature, as discussed in previous chapters, where the richness of information
contributes to more accurate and robust modeling of market dynamics.

Figure 4.1 | Percentage breakdown of the top ten cryptocurrencies relative to the total market
capitalization of all assets. [34]

25



CHAPTER 4. DATA EXTRACTION AND PERSISTENCE

Although Binance is the largest cryptocurrency exchange by trading volume, the cryptocurrency
market remains highly fragmented, presenting challenges for comprehensive analysis. Fragmentation
refers to the dispersal of trading activity across numerous exchanges, each with its own order books,
trading rules, and liquidity pools. This dispersion can lead to inefficiencies, as price discovery is often
incomplete, and discrepancies between exchanges may arise due to differences in trading volumes,
participant behaviors, or latency. Regulatory fragmentation further compounds this issue, with vary-
ing legal and compliance requirements across jurisdictions, creating additional barriers to a unified
market. For instance, some exchanges are restricted from operating in certain regions, leading to
pockets of isolated liquidity. Despite these challenges, our selection of Binance mitigates some of
these issues, as it commands a dominant share of global cryptocurrency trading and represents one
of the most active and liquid platforms. While fragmentation still exists, working with data from the
largest exchange ensures that our study captures a significant portion of the market activity.

Another notable drawback is the inherent volatility of cryptocurrency markets. High volatility
introduces significant noise in the datasets, complicating the task of predictive modeling. Unlike
traditional financial assets, cryptocurrencies often experience rapid and substantial price fluctuations
within short time frames, complicating the development of accurate forecasting models. This volatility
stems from several factors, including limited supply, speculative trading, regulatory developments,
and market sentiment.

In particular, market sentiment plays a pivotal role in driving sudden and unpredictable price
changes. Positive developments, such as the approval of Bitcoin ETFs, have been shown to signif-
icantly boost prices, reflecting increased investor confidence and market enthusiasm. In contrast,
negative sentiment can have a detrimental impact, as evidenced by sharp declines triggered by reg-
ulatory crackdowns or public statements from influential figures. For example, announcements or
comments by high-profile individuals on social media platforms can lead to rapid price corrections,
underscoring the sensitivity of cryptocurrency markets to external influences. Such dynamics high-
light the challenges of modeling and forecasting in an environment where sentiment-driven volatility
can outweigh fundamental and technical factors.

2016 2018 2020 2022 2024
Date

0

20000

40000

60000

80000

100000

Pr
ice

 in
 U

SD

Bitcoin Closing Price

Figure 4.2 | Bitcoin value over time.
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4.2 Binance WebSocket Depth Stream

The protocol that best fits our case amongst those provided by the Binance API is the WebSocket
protocol, defined in RFC 6455 [35]. WebSocket allows for an upgraded HTTP request that enables
bidirectional, asynchronous communication through a single connection between the client and server
with minimal resource overhead [36]. This makes WebSocket particularly suitable for scenarios
requiring high-frequency data streams, as it eliminates the need for repetitive request-response cycles
typical of REST architecture. In our case, where we need to access high-frequency limit order
book data, relying on REST would be inefficient and cumbersome. With WebSocket, a single
communication channel is opened, enabling live streaming of changes in the limit order book in near
real-time without the constant overhead of creating and tearing down connections.

The Binance API offers a specialized stream for our requirements, known as the Depth Stream,
specifically designed for managing a local order book. This stream provides incremental updates,
reporting only the price and volume changes for affected levels of the order book. To ensure that
the client has a consistent and accurate view of the order book, it is the developer’s responsibility to
first fetch the entire order book via Binance’s REST API as an initial snapshot. The Depth Stream
then maintains this local order book by applying the incremental updates received from the stream.
This approach is highly efficient and minimizes computational overhead, as it avoids repeatedly
downloading the entire order book. The Depth Stream offers two options for update intervals: 100
milliseconds or 1000 milliseconds. To maximize granularity and capture market dynamics as precisely
as possible, we chose the 100-millisecond interval.

The DepthCacheManager in the python-binance library is a specialized class designed to manage
and maintain a real-time local order book for a specified trading pair by utilizing Binance’s WebSocket
Depth Stream. This manager simplifies the otherwise complex process of handling incremental
updates to the order book while ensuring data consistency and reliability. It continuously listens
to the WebSocket stream for real-time updates, received at intervals specified by the ws_interval
parameter (100ms or 1000ms), providing updated bid and ask prices as market activity occurs.
Additionally, to address potential discrepancies due to network delays or dropped messages, the
manager periodically fetches a full snapshot of the order book using Binance’s REST API (by default
every 1800 seconds). The DepthCacheManager is ideal for applications requiring high-frequency
trading or live market analysis, as it abstracts the intricacies of reconciling WebSocket data with
REST API snapshots. Its integration as an asynchronous context manager further ensures efficient
resource management, automatically opening and closing WebSocket connections within the defined
context, while offering methods such as get_bids() and get_asks() to access the top levels of the
bid and ask books in a sorted manner.
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Figure 4.3 | WebSocket and HTTP connections.
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4.3 Limit Order Book Data Streaming

We will now demonstrate the practical application of the DepthCacheManager from the python-
binance library to retrieve real-time snapshots of the BTCUSDT limit order book. In this example, we
will focus on capturing only the top 10 bids and asks from the order book. This choice is not merely for
the sake of simplicity but reflects the actual level of detail we will use in our experiments. According
to existing literature [37], the best bid and ask levels play a dominant role in price discovery and
formation, while the deeper levels of the book are estimated to contribute significantly less, often as
little as 20%. By concentrating on the top levels, we align our methodology with established research
practices, ensuring both relevance and efficiency in our data analysis.

1 from time import time
2 from datetime import datetime
3 from binance import AsyncClient, DepthCacheManager
4 import asyncio
5

6 async def stream_lob(min = 1):
7 client = await AsyncClient.create()
8 dcm = DepthCacheManager(client, 'BTCUSDT', ws_interval = 100)
9

10 if min < 1:
11 min = 1
12

13 now = time()
14 print("Streaming started at "
15 + datetime.fromtimestamp(now).strftime('%Y/%m/%d:%H:%M:%S.%f'))
16 stop_at = now + min * 60
17 print("Estimated end time: "
18 + datetime.fromtimestamp(stop_at).strftime('%Y/%m/%d:%H:%M:%S'))
19

20 async with dcm as dcm_socket:
21 while True:
22 try:
23 depth_cache = await dcm_socket.recv()
24 print("symbol {}".format(depth_cache.symbol))
25 print("top 10 bids")
26 print(depth_cache.get_bids()[:10])
27 print("top 10 asks")
28 print(depth_cache.get_asks()[:10])
29 print("last update time {}".format(depth_cache.update_time))
30 print("\n")
31 now = time()
32 if now > stop_at:
33 print("Streaming ended at "
34 + datetime.fromtimestamp(now).strftime('%Y/%m/%d:%H:%M:%S.%f'))
35 break
36 except Exception as ex:
37 print(f"An exception occurred: {ex}")
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38 break
39

40 await client.close_connection()
41

42 if __name__ == '__main__':
43 loop = asyncio.get_event_loop()
44 loop.run_until_complete(stream_lob(min = 1))

This code demonstrates the implementation of a real-time order book streaming application
using the python-binance library. It employs the DepthCacheManager class to maintain a local rep-
resentation of the limit order book for the trading pair BTCUSDT. To use DepthCacheManager, it is
essential to provide an instance of AsyncClient which is a specialized client designed for asynchronous
interaction with the Binance API. Additionally, we specify the trading pair of interest (BTCUSDT)
and set the WebSocket update interval (ws_interval) to 100 milliseconds.

The script is structured to stream data for an arbitrary number of minutes as determined by the
user through the min parameter, with a default runtime of one minute. This parameter is essential
to define a condition for terminating the stream and gracefully closing the connection to Binance’s
WebSocket API. The main loop utilizes the asynchronous context manager functionality to manage
the lifecycle of the WebSocket connection efficiently. Within the loop, incremental updates to the
order book are received and processed, displaying the top 10 bid and ask levels, along with the last
update time. This design not only handles data streaming but also ensures proper resource cleanup by
automatically closing the WebSocket connection once the user-defined streaming time has elapsed.

Below are the first three snapshots streamed using the script. The bids and asks are presented
as two distinct arrays, each containing two-element subarrays representing price-volume pairs. These
arrays are sorted, with bids arranged from the highest to the lowest price and asks from the lowest
to the highest price. The update time is highlighted in the output and displayed in milliseconds
since the Unix epoch. In particular, the time difference between consecutive updates is exactly 100
milliseconds, as expected given the specified ws_interval. However, as we will observe in the next
section, this timing consistency will not always hold. Outliers can occur, particularly during extended
streaming sessions. These deviations may be attributed to the periodic full update of the limit order
book, network latency, connection instability, or server-side delays. Additional reasons could include
temporary congestion in data transmission or local hardware limitations affecting processing speed.

Figure 4.4 | BTCUSDT limit order book real-time streaming.
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4.4 Data Persistence

Although streaming real-time data to the console is useful for initial testing and prototyping, it
is not sufficient for most practical applications. Effective data handling and persistence are critical
priorities, especially when working with massive datasets, as discussed in the previous chapter. In
real-world scenarios, managing such large volumes of data typically requires specialized tools and
robust infrastructure. However, in our smaller-scale case, we can demonstrate a simpler approach
to data persistence by storing the data in commonly used formats, such as CSV files, or directly
in a database. A slight modification to the previous Python code is enough to implement this
functionality.

For saving limit order book snapshots to the file system, we can use the popular pandas library.
It allows us to create a DataFrame to organize the data and provides built-in functionality to export
it to CSV format. By incorporating the additional code provided below, we can replace the logic
that simply prints data to the console with a mechanism to collect snapshots in a global DataFrame.
At the end of the streaming process, this DataFrame can be sorted and saved as a CSV file. This
approach not only ensures that the data is properly persisted but also provides a simple yet effective
example of data management.

1 lob_snapshots_df = pd.DataFrame(columns=[
2 "depth_update_time",
3 "bid1_p", "bid1_v", "bid2_p", "bid2_v", "bid3_p", "bid3_v",
4 "bid4_p", "bid4_v", "bid5_p", "bid5_v",
5 "bid6_p", "bid6_v", "bid7_p", "bid7_v", "bid8_p", "bid8_v",
6 "bid9_p", "bid9_v", "bid10_p", "bid10_v",
7 "ask1_p", "ask1_v", "ask2_p", "ask2_v", "ask3_p", "ask3_v",
8 "ask4_p", "ask4_v", "ask5_p", "ask5_v",
9 "ask6_p", "ask6_v", "ask7_p", "ask7_v", "ask8_p", "ask8_v",

10 "ask9_p", "ask9_v", "ask10_p", "ask10_v"
11 ])
12

13 def insert_snapshot(update_time, bids, asks):
14 global lob_snapshots_df
15

16 bids_flat = [item for sublist in bids for item in sublist]
17 asks_flat = [item for sublist in asks for item in sublist]
18

19 data = [update_time] + bids_flat + asks_flat
20

21 lob_snapshots_df = pd.concat([lob_snapshots_df if not lob_snapshots_df.empty else None,
22 pd.DataFrame([data], columns=lob_snapshots_df.columns)],
23 ignore_index=True)
24

25 def dump_to_csv():
26 global lob_snapshots_df
27 lob_snapshots_df.sort_values(by="depth_update_time", inplace=True)
28 file_name = f"{lob_snapshots_df['depth_update_time']
29 .iloc[0]}__{lob_snapshots_df['depth_update_time'].iloc[-1]}.csv"
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30

31 raw_dir = os.path.join(os.path.dirname(__file__), '..', '..', 'data', 'raw')
32 os.makedirs(raw_dir, exist_ok=True)
33

34 file_path = os.path.join(raw_dir, file_name)
35

36 lob_snapshots_df.to_csv(file_path, index=False, float_format='%.5f')

For the database implementation, we chose to use PostgreSQL, a popular and free relational
database management system known for its reliability and flexibility. The first step in this approach
is to design the database schema, starting with a table to store raw limit order book snapshots. This
table serves as the foundation for capturing the high-frequency updates from the Depth Stream. As
the implementation progresses, we can expand the schema by adding more tables to store derived
data, such as market events. The structure of the snapshots table is straightforward, as shown below,
with each column representing a price or volume level from the bid and ask sides, along with the
timestamp for each update.

1 create table public.snapshots
2 (
3 depth_update_time bigint not null,
4 bid1_p numeric not null,
5 bid1_v numeric not null,
6 bid2_p numeric not null,
7 bid2_v numeric not null,
8 ...
9 ...

10 ...
11 bid9_p numeric not null,
12 bid9_v numeric not null,
13 bid10_p numeric not null,
14 bid10_v numeric not null,
15 ask1_p numeric not null,
16 ask1_v numeric not null,
17 ask2_p numeric not null,
18 ask2_v numeric not null,
19 ...
20 ...
21 ...
22 ask9_p numeric not null,
23 ask9_v numeric not null,
24 ask10_p numeric not null,
25 ask10_v numeric not null
26 );

Once the table is created, we can modify the asynchronous loop in the Python code to insert
a new row into this table every time an update event is received. By doing so, each incremental
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update to the limit order book is persisted directly into the database in real-time. This approach
demonstrates the integration of streaming data with a relational database, a common practice in
financial applications and other data-intensive domains.

1 def insert_snapshot(update_time, bids, asks):
2

3 connInfo = CommonUtils.get_dbconnection_info('appsettings.json')
4

5 conn = psycopg2.connect(**connInfo)
6

7 cursor = conn.cursor()
8

9 insert_query = """INSERT INTO snapshots (
10 depth_update_time,
11 bid1_p, bid1_v, bid2_p, bid2_v, bid3_p, bid3_v, bid4_p, bid4_v, bid5_p, bid5_v,
12 bid6_p, bid6_v, bid7_p, bid7_v, bid8_p, bid8_v, bid9_p, bid9_v, bid10_p, bid10_v,
13 ask1_p, ask1_v, ask2_p, ask2_v, ask3_p, ask3_v, ask4_p, ask4_v, ask5_p, ask5_v,
14 ask6_p, ask6_v, ask7_p, ask7_v, ask8_p, ask8_v, ask9_p, ask9_v, ask10_p, ask10_v)
15 VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s,
16 %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"""
17

18 bids_flat = [item for sublist in bids for item in sublist]
19 asks_flat = [item for sublist in asks for item in sublist]
20

21 data = (update_time,) + tuple(bids_flat) + tuple(asks_flat)
22

23 cursor.execute(insert_query, data)
24

25 conn.commit()
26 cursor.close()
27 conn.close()

After successfully extracting and inserting data into the database, we can perform a quick con-
sistency check on our raw dataset by analyzing the intervals between consecutive snapshots. The
denser the intervals, the better the data quality for high-frequency analysis. This can be achieved by
querying the database to calculate the total count of consecutive snapshots for each time difference
and their respective percentages relative to the entire dataset.

1 WITH time_differences AS (
2 SELECT
3 depth_update_time,
4 depth_update_time - LAG(depth_update_time) OVER (ORDER BY depth_update_time)
5 AS time_diff
6 FROM
7 snapshots
8 )
9 SELECT
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10 time_diff,
11 COUNT(*) AS occurrence_count,
12 TO_CHAR(100.0*cast(COUNT(*) as float) / (select count(*) from snapshots),'999D99999999%')
13 as per_total
14 FROM
15 time_differences
16 WHERE
17 time_diff IS NOT NULL
18 GROUP BY
19 time_diff
20 ORDER BY
21 occurrence_count DESC;

The output of this query, when applied to two 4-hour streaming sessions, are summarized in the
tables below to provide an example of the data’s temporal distribution.

Table 4.1 | Streaming Result Temporal Distribution

Time Difference (ms) Total Occurrences Total Occurrences %

2024-06-19 07:39:57.822 −→ 11:39:55.973

100 131264 93.1162
101 6908 4.9004
200 2284 1.6202
201 275 0.1951
300 137 0.0972
99 54 0.0383
301 21 0.0149
400 19 0.0135
500 2 0.0014
102 1 0.0007
401 1 0.0007
98 1 0.0007

2024-07-22 18:39:41.752 −→ 22:39:41.035

100 135052 94.3977
101 7165 5.0081
200 652 0.4557
201 75 0.0524
99 66 0.0461
300 40 0.0280
400 8 0.0056
301 7 0.0049
102 1 0.0007

The results show that the 100ms interval is consistent in over 98% and 99% of the raw snapshots
across these sessions, indicating highly reliable data capture with minimal irregularities.
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5 Synthetic MBO Data

5.1 A Greedy Algorithm to Infer Market Events

In an ideal scenario where consecutive limit order book snapshots are captured with an infinites-
imally small time interval ∆t, given that market events are applied sequentially, it would be possible
to record every order individually as it is executed. This would allow us to precisely infer the type
of order, its price level, and its volume. However, in real-world settings, as in our dataset, the time
interval between snapshots, while small (100 milliseconds in our case), is not close to this ideal. In
practice, snapshots can differ significantly in both price levels and volumes, reflecting the rapid and
dense market activity that occurs, particularly in highly liquid markets. These disparities make it
challenging to accurately trace every intermediate market event between two snapshots.

Given this reality, the paths between one snapshot and the next can involve an arbitrary number
of market events, resulting in an effectively infinite number of possible transitions. To address this,
we propose a set of deterministic rules that simplify each transition by identifying the path with the
minimal number of market events necessary to account for the observed changes. This approach,
which embodies the "greedy" principle, prioritizes the selection of the most straightforward and
efficient sequence of market events to explain each transition. It is essential to clarify that this
approach can be effective because we are not striving to reconstruct the exact ground truth, but to
produce features that effectively encapsulate the underlying market dynamics.

The first step in our approach is to construct a mapping array that encodes the transition between
snapshots, focusing solely on prices. For each price in a given snapshot, we perform a binary search
against the array of prices in the subsequent snapshot. The results of this search are stored in the
mapping array, with slight modifications to enhance readability and ensure symmetry for both bids
and asks. As a result, each snapshot is associated with two mapping arrays: one for bids and one for
asks. The length of these arrays corresponds to the total number of levels in the order book under
consideration, which, in our case, is consistently 10 levels.

The Binary Search algorithm that we applied returns the index of the specified price if it exists in
the next snapshot. If the price is not found and is less than one or more prices in the next snapshot
array, the algorithm returns a negative number, which is the bitwise complement of the index of the
first element larger than the price under test. If it is not found and is greater than all the prices in the
next snapshot, the algorithm returns the negative of the array’s length. This allows us to determine
the following:

• When a previous price exists in the next snapshot and its corresponding index.

• When a previous price does not exist while being greater than every other price.
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• When a previous price does not exist while being less than every other price.

• When a previous price does not exist but falls between the values of the next snapshot’s prices,
and more precisely, its ordered position relative to the new prices.

We manipulate the results of the binary search so the mapping array for both bids and asks for
a snapshot will have the following encoding:

• index of existing prices in the next snapshot (1-based indexing).

• -128 (signed byte minimum) for prices that are lower (greater) from every new bid (ask).

• 127 (signed byte maximum) for prices that are greater (lower) from every new bid (ask).

• -(index) of the next larger (smaller) price of the new snapshot for all the non-existing prices
that fall between the next snapshot prices

Box 5.1 | Example of decoding a bid map: [1,2,3,4,5,6,7,8,10, -128]

The previously first price (first index of the mapping array) is still in the first position (value of
mapping array = 1) in the next snapshot. The same holds for the second, third, fourth, fifth,
sixth, seventh, and eighth prices. We can see that the previously ninth bid (ninth element of
the mapping array) is now the tenth price in the next snapshot (value of mapping array =
10). Additionally, the previously lowest price (tenth index) is not present in the next snapshot
and is lower than all the new prices (indicated by the value -128). The algorithm then follows
the "easiest route to truth". It interprets the missing price (previously ninth) as a new limit
order. This new limit order is positioned between the previously eighth and ninth prices, so it
naturally takes the ninth spot. Consequently, the previously ninth and tenth prices are shifted
down.

Using the above logic is only part of the solution. After determining the relationship between
the prices in the previous and next snapshots during a transition, it is also necessary to examine the
volumes in both cases. Consider an example of such a scenario, as illustrated in the figure below:

Figure 5.1 | Scenario of bid map: [1,2,3,4,5,6,7,8,10, -128]
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As previously stated, we infer that the ninth level of the next snapshot represents a new buy
limit order with a price equal to the price at that level and a volume equal to the total depth at that
level. Additionally, we observe that the volume of the best bid increases after the transition. In this
case, we infer that there was also a limit buy order at the best bid price, with a volume equal to the
difference between the volumes before and after the transition. We will rigorously analyze all cases
in the following sections.

5.2 Trivial Cases

A very common scenario occurs when the price levels remain unchanged. This corresponds to a
mapping array of [1,2,3,4,5,6,7,8,9,10], where the 1-based indices of the array match their values at
every position. In such cases, we can make the following inferences:

• Any increase in volume indicates a new limit order, with the volume equal to the difference
between the current and previous volumes at the same price level.

• A decrease in volume can result from one of two events:

1. If it occurs at the top price level, it represents a market order.
2. If it occurs at lower price levels, it can only indicate a canceled limit order.

• No volume change in any level of the book indicates no market events.

Let’s test all of the above cases using simulated transition data.

• MAP = [1,2,3,4,5,6,7,8,9,10] with no volume changes:

Figure 5.2 | [1,2,3,4,5,6,7,8,9,10] - No market events.

As expected, the 10 levels of the order book are identical in both prices and volumes, indicating
that no market events occurred.
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• MAP = [1,2,3,4,5,6,7,8,9,10] with increased volume:

Figure 5.3 | [1,2,3,4,5,6,7,8,9,10] - New Limit Orders.

The algorithm correctly infers that there are three sell limit orders corresponding to volume
differences at the first, third, and eighth levels, with sizes equal to the differences in depth at each
respective level.

• MAP = [1,2,3,4,5,6,7,8,9,10] with decreased volume at best price:

Figure 5.4 | [1,2,3,4,5,6,7,8,9,10] - New Market Order.

There was a reduction in the total depth at the best ask price, indicating a market buy order
with a size equal to the volume that was removed.
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• MAP = [1,2,3,4,5,6,7,8,9,10] with decreased volume at lower prices:

Figure 5.5 | [1,2,3,4,5,6,7,8,9,10] - Cancellations.

All the missing volume at each level is interpreted as a cancellation of an existing order, with the
canceled volume equal to the difference in depth.

• MAP = [1,2,3,4,5,6,7,8,9,10] with mixed events:

Figure 5.6 | [1,2,3,4,5,6,7,8,9,10] - All types of orders.

We observe that the aggregation of cases works flawlessly.

39



CHAPTER 5. SYNTHETIC MBO DATA

5.3 Extreme Cases

Extreme cases refer to scenarios where none of the prices from the previous snapshot match those
in the new snapshot. These cases can be categorized into two distinct types, which are symmetrical
for bids and asks:

1. All new bids are greater than the previous bids (or, conversely, all new asks are lower
than the previous asks) - MAP = [-128,-128,-128,-128,-128,-128,-128,-128,-128,-128]:
This scenario suggests that an equal number of new limit orders were placed, surpassing the
previous bids or asks with better (more competitive) prices.

2. All new bids are lower than the previous bids (or all new asks are higher than the
previous asks) - MAP = [127,127,127,127,127,127,127,127,127,127]: This situation
indicates the occurrence of a very large market order that consumed the entire volume of the
first 10 levels. As a result, the prices and volumes observed in the next snapshot have shifted
upward from the deeper levels of the order book.

• MAP = [-128,-128,-128,-128,-128,-128,-128,-128,-128,-128] for bids:

Figure 5.7 | [-128,-128,-128,-128,-128,-128,-128,-128,-128,-128] - Bid Side.

As we can observe, the algorithm generates an entirely new set of ten buy limit orders that, due
to their more competitive prices, occupy the top levels of the order book. Additionally, we infer that
the previous ten orders were simply shifted downward to the lower levels of the book.
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• MAP = [-128,-128,-128,-128,-128,-128,-128,-128,-128,-128] for asks:

Figure 5.8 | [-128,-128,-128,-128,-128,-128,-128,-128,-128,-128] - Ask Side.

It behaves symmetrically on the ask side, where the more competitive prices correspond to a new
set of lower price levels.

• MAP = [127,127,127,127,127,127,127,127,127,127] for bids:

Figure 5.9 | [127,127,127,127,127,127,127,127,127,127] - Bid Side.
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The final snapshot is filled with less favorable prices, leading us to infer that a large sell market
order consumed the entire volume of the top ten levels. The volume of this market order is equal to
the sum of the depths from all ten levels, while the resulting price is the weighted average of those
levels’ prices, with the respective volumes serving as weights (2.16).

• MAP = [127,127,127,127,127,127,127,127,127,127] for asks:

Figure 5.10 | [127,127,127,127,127,127,127,127,127,127] - Ask Side.

The same applies to the ask side, where a buy market order was submitted with a total volume
equal to the sum of the depths across the top ten levels. The resulting price is the weighted average
of these levels’ prices, with the volumes serving as weights (2.17).

5.4 General Cases

Here, we address all cases where at least one price level has changed, but the scenario does not
qualify as an extreme case. We will divide these into subcases based on the expected type of order
inferred from the observed transitions.

MARKET ORDERS

There are two scenarios that lead to the inference of a market order:

1. Similar to the trivial case, there is a decrease in volume at the previously top price level, but in
this case, the new snapshot places it at any level. This suggests that a market order occurred,
followed by the submission of new limit orders with better prices, which shifted the top levels.

2. There are consecutive price levels missing from the top downwards. This indicates the presence
of a market order with a volume larger than the depth at the top price level, continuing to
consume volume from subsequent levels. In this case, the market order’s total volume is
calculated as the sum of the depths of all missing price levels, starting from the top and
moving downward. Additionally, any volume difference at the first existing level is accounted
for as the final piece of the consumed size.
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• An example of the first case of market order with MAP = [2,3,4,5,6,7,8,9,10,-128]:

Figure 5.11 | [2,3,4,5,6,7,8,9,10,-128] - Bid Side.

As depicted in the figure above, the previously first price is now in the second position with a
reduced volume. Here, we infer that a sell market order occurred, with a volume equal to the missing
size. The mapping clearly reveals what occurred. Each previous price corresponding to the array
indices has been shifted one position lower, resulting in a new best bid. Additionally, the previously
lowest bid is now outside the scope of the top ten levels, indicated by the value -128.

• An example of the second case of market order with MAP = [127,127,127,1,2,3,4,5,6,7]:

Figure 5.12 | [127,127,127,1,2,3,4,5,6,7] - Bid Side.

Here, we observe an upward shift in prices, as the top three price levels are missing. The best
bid is now the previously fourth price level, but with reduced volume. This is interpreted as a large
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market order that consumed the entire volume of the first three levels and partially consumed the
volume at the fourth level, which now sits at the top.

CANCELLATIONS

There are again two scenarios in the case of cancellations:

1. A decrease in the volume at a lower price level, which was not previously identified due to a
large market order consuming volumes, will be interpreted as a cancellation of an order. The
canceled volume is equal to the missing volume, regardless of where the price level now resides
in the new snapshot.

2. A price level is entirely missing, but this was not identified earlier due to a large market order
consuming volumes. In this case, we must carefully distinguish between levels missing due to
cancellations and levels that disappeared as a result of downward price shifting caused by new
limit orders. If the disappearance is due to price shifting, no cancellation should be reported,
as we follow the greedy approach to infer the most straightforward sequence of market events.

• An example of the first case of cancellation with MAP = [127,127,127,1,2,3,4,5,6,7]:

Figure 5.13 | [127,127,127,1,2,3,4,5,6,7] - Bid Side.

It is shown that the tenth price still exists in the ending price levels but with a decreased depth
by one. We infer that this decrease corresponds to the cancellation of an order with a volume of one.

• An example of the second case of cancellation with MAP = [127,127,127,1,2,3,4,5,6,-
6]:
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Figure 5.14 | [127,127,127,1,2,3,4,5,6,-6] - Bid Side.

In this similar example, the price level of 1000 is entirely missing, while price levels with worse
prices have shifted upward from below the tenth level to occupy its position. This indicates a
cancellation of an order with a size equal to the total depth of the missing price level.

• An example of omitting a cancellation due to downward shifting with MAP =
[3,4,5,6,7,8,9,10,-128-128]:

Figure 5.15 | [127,127,127,1,2,3,4,5,6,-6] - Bid Side.

Here, we observe that the two bottom price levels are missing because new limit orders with
better prices at the top have pushed the existing levels two positions down. As a result, we do not
interpret the absence of the price levels at 2000 and 1000 as cancellations, since their disappearance
is due to the natural downward shifting caused by the introduction of new limit orders.
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LIMIT ORDERS

Again, we design our algorithm to handle two cases, which are essentially the opposite of can-
cellations.

1. An increase in volume at any price level is interpreted as a new limit order, with the order’s
volume equal to the difference in depth (the additional volume).

2. Any new price level that did not exist in the previous snapshot but appears in the current
snapshot is a new limit order. However, care must be taken to distinguish these from price
levels that have been upwardly shifted from deeper levels due to cancellations at upper levels
or large market orders.

• An example of the first case of limit order with MAP = [127,127,127,1,2,3,4,5,6,7,8]:

Figure 5.16 | [127,127,127,1,2,3,4,5,6,7,8] - Ask Side.

The previously third price level is now at the top, with an increase in depth by 2. This indicates
that a new limit order was placed at the price level of 13000 with a size of 2.

• An example of the second case of limit order with MAP = [1,2,3,5,6,7,8,9,10,-128]:

46



5.4. GENERAL CASES

Figure 5.17 | [1,2,3,5,6,7,8,9,10,-128] - Ask Side.

As we observe the testing transition, the absence of the value 4 in the mapping array, along with
the value 5 appearing at the fourth index, indicates that the previously fourth best ask has been
shifted one level down. The same is true for the subsequent price levels, with the final value of -128
signaling that the previously last ask price has been pushed out of the visible top 10 levels. This
suggests the presence of a new sell limit order at the price corresponding to the fourth level in the
ending snapshot, with a volume equal to the total depth at that level.

• An example of omitting a limit order due to upward shifting with MAP =
[1,2,3,4,-4,-4,5,6,7,8]:

Figure 5.18 | [1,2,3,4,-4,-4,5,6,7,8] - Ask Side.

Finally, even though the price levels for 21000 and 22000 appear new in the ending snapshot,
we do not infer the presence of any new limit orders. This is because their appearance results from
upward shifting caused by two cancellations at higher levels.
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5.5 Storing Transitions and Events

We need to finalize the database schema introduced in the previous chapter to store the transitions
and the events produced by the algorithm. The second table, following the snapshots table, will hold
the transitions. It will include the transition serial number, which indicates the sequential order of
transitions, as well as references to the starting and ending snapshots. Additionally, it will store the
time interval between the two snapshots, the total number of extracted events, the mapping arrays
that represent the relationship between price levels of the snapshots, and a human-readable text
representation similar to the descriptive format used in the figures in previous sections.

1 create table public.transitions
2 (
3 serial_no integer not null
4 constraint transition_pkey
5 primary key,
6 from_snapshot bigint not null,
7 to_snapshot bigint not null,
8 time_diff integer not null,
9 events_count integer not null,

10 bid_map integer[] not null,
11 ask_map integer[] not null,
12 display_text text not null
13 );

Next, we need a table to store the events produced by the algorithm. This table will include a
reference to the transition it belongs to, along with integer code values to represent the type of the
event (limit, cancel, or market), the side of the event (buy or sell), and the effect side (bid or ask).
Additionally, the table will store the price and volume of the event, as well as a human-readable text
representation for clarity and ease of interpretation.

1 create table public.events
2 (
3 for_transition integer not null
4 constraint events_transitions_fk
5 references public.transitions,
6 serial_no integer not null,
7 event_type integer not null, --enum
8 event_side integer not null, --enum
9 effect_side integer not null, --enum

10 price numeric not null,
11 volume numeric not null,
12 display_text varchar(50) not null,
13 primary key (for_transition, serial_no)
14 );
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We will also create an enumeration table to store the code values and their corresponding de-
scriptions for event types, event sides, and effect sides.

1 create table public.enums
2 (
3 name varchar(50) not null,
4 value integer not null,
5 description varchar(50) not null
6 );
7

8 insert into public.enums (name, value, description) values ('event_type', 10, 'Limit Order');
9 insert into public.enums (name, value, description) values ('event_type', 20, 'Market Order');

10 insert into public.enums (name, value, description) values ('event_type', 30, 'Cancel Order');
11

12 insert into public.enums (name, value, description) values ('event_side', 10, 'Buy');
13 insert into public.enums (name, value, description) values ('event_side', 20, 'Sell');
14

15 insert into public.enums (name, value, description) values ('effect_side', 10, 'Bid');
16 insert into public.enums (name, value, description) values ('effect_side', 20, 'Ask');

Lastly, we will organize all this information into a database view that consolidates the most
important details from our results. This view will serve as a structured summary, making it easy to
query and analyze. Additionally, it provides a convenient way to export the data into formats such
as CSV files, if needed, for further processing or sharing.

1 create view events_export as
2 select
3 transitions.from_snapshot,
4 transitions.to_snapshot,
5 et.description AS event_type,
6 es.description AS event_side,
7 ef.description AS effect_side,
8 events.price, events.volume, events.display_text
9 from

10 events
11 join
12 transitions on events.for_transition = transitions.serial_no
13 join
14 enums et ON events.event_type = et.value AND et.name = 'event_type'
15 join
16 enums es ON events.event_side = es.value AND es.name = 'event_side'
17 join
18 enums ef ON events.effect_side = ef.value AND ef.name = 'effect_side'
19 order by
20 events.for_transition, events.serial_no;
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Let us now examine the results of the test transition (Figure 5.20) presented below as they are
stored in our database.

Figure 5.19 | Database View Output.

Figure 5.20 | A transition sample.
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6 Experimental Results

6.1 Feature Construction

This section represents the culmination of our efforts and the realization of the final objective
which is the generation of handcrafted features akin to those proposed in [8]. However, our approach
differs significantly, as we rely exclusively on raw snapshots of the limit order book and reverse-
engineer the market events that occurred to construct the feature vector set presented in their
study. The resulting feature set, illustrated in Box 3.2, demonstrates the feasibility of reconstructing
high-quality, informative features without direct access to detailed event-level data.

We conducted experiments using raw limit order book data from a 10-hour streaming session,
which exhibits the statistical characteristics outlined below. In this context, static transitions are
defined as those in which there are no changes in price levels, although volumes may vary.

Table 6.1 | Streaming Result Statistics - Transitions

Total Total %

10-hour session started at 2024-12-17 16:31:09.714

Transitions 359441 100
Static Transitions 245241 68.23
Transitions - With Price Movement 114200 31.77
Transitions - With No Change 41999 11.68

Table 6.2 | Streaming Result Statistics - Inferred Market Events

Count

10-hour session started at 2024-12-17 16:31:09.714

Market Events 1201035
Average Events Per Transition 3.34
Average Bid Events Per Transition 1.64
Average Ask Events Per Transition 1.70
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We will now provide a detailed explanation of the feature vector set presented in Box 3.2, along
with the assumptions made to adapt it to our specific data context.

BASIC SET

This feature vector set is the most straightforward, consisting of the raw bid and ask prices and
volumes for the top 10 levels of the limit order book.

Figure 6.1 | Raw limit order book prices and volumes

TIME-INSENSITIVE SET

This group of features captures the relationships between prices and volumes within the current
time snapshot. It comprises four distinct vector sets. The first focuses on the bid-ask spread and
mid-price, providing a measure of the immediate market state. The second examines the differences
between consecutive price levels on each side of the order book. The third set calculates the averages
of prices and volumes. Lastly, the fourth set considers the accumulated cross-side differences in prices
and volumes, highlighting disparities between the bid and ask sides. These features are independent
of time dynamics and instead provide a snapshot-based perspective of the order book’s structure.

Figure 6.2 | Bid-Ask Spreads and Mid Prices

Figure 6.3 | Price Differences
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Figure 6.4 | Mean Prices and Volume - Accumulated Differences

TIME-SENSITIVE SET

Here, we introduce the inferred data integration with raw snapshot data to compute time-
dependent parameters designed to capture temporal dependencies. This group consists of four
feature vector sets, each targeting a specific aspect of market dynamics over time.

The first feature set computes the average time derivatives of prices and volumes over the past
1 second, capturing short-term changes. The second calculates the average intensity of each event
type, representing the recent arrival rate within the same 1-second window. The third set uses an
indicator function to signal whether a specific type of limit or market order has intensified in the
recent past compared to the longer term. Specifically, the recent short-term period is defined as
the last 10 seconds, while the long-term period spans 900 seconds. This feature is set to 1 if the
short-term average intensity exceeds the long-term intensity. Finally, the fourth feature set measures
the acceleration of limit or market orders, computed as the derivative of event intensity over the past
1 second.

These features rely on an important assumption due to the lack of detailed event timestamps
within transitions. Specifically, we assume that each snapshot has a fixed temporal distance of
exactly 100 milliseconds. This assumption is justified by the smoothness of the interval distribution
and allows us to approximate time fractions by counting snapshots. For instance, to calculate metrics
for the past 1 second, we simply use the last 10 snapshots. This assumption enables consistent and
practical computation of temporal features without requiring precise event timing.

Figure 6.5 | Price and Volume Derivatives
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Figure 6.6 | Average Intensity - Intensity Indicators - Accelerations

6.2 Class Labeling Methodology

It somewhat escapes the scope of this thesis to delve deeply into labelling strategies, as they often
depend on the specific goals of what one opts to predict. However, for the sake of completeness and
to showcase how a fully constructed dataset could look, we will briefly discuss a common approach
for mid-price prediction labelling. For this example, we refer to the methodology employed in [30]
for creating the F1-2010 dataset.

In this approach, the number of labels corresponds to the future horizons for which we aim to
predict the mid-price. These horizons can be defined in terms of time intervals, ticks, or the number
of events in the future. In our case, we define the horizons in terms of how many snapshots ahead
we want to predict. For every row in our feature dataset, we compute the mid-price at each specified
horizon and calculate its percentage change relative to the current mid-price.

Next, we apply a threshold to this percentage change to classify movements as upward, downward,
or stationary. As suggested in [8], a good dataset should aim for an approximate class distribution
of 1:1:2 for upward, downward, and stationary signals. For our experiments, we set a threshold of
±0.01% to distinguish the classes. Specifically, a change equal to or above 0.01% is classified as an
upward movement (label 1), a change between −0.01% and 0.01% is considered stationary (label
2), and a change equal to or below −0.01% is classified as a downward movement (label 3).

In our experiments, we used horizons of 50 and 100 forward snapshots. The class distributions
for these horizons are presented below. It is important to note, however, that the chosen thresholds
and horizons may not always be optimal for real-world applications. For example, longer horizons
could be challenging for models to predict accurately, and small percentage changes may not account
for transaction costs and fees, potentially limiting the profitability of trading strategies. Therefore,
careful consideration is needed when selecting parameters for labelling in practical scenarios.

Table 6.3 | Label Distribution

Horizon Upward Downward Stationary

1st hour of 10-hour session started at 2024-12-17 16:31:09.714

50 7766 6151 13083
100 8047 8297 10656
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7
Conclusion and Future

Work

The central goal of this thesis has been to explore the potential of starting from raw limit order
book (LOB) snapshots to infer meaningful market dynamics, a stepping stone toward constructing
effective alpha predictors. This challenge is often viewed as a kind of "holy grail" in quantitative
finance, as it seeks to directly extract predictive signals from raw data. By leveraging the structural
characteristics of LOB data, we have attempted to infer market events and the temporal dynamics
underlying price formation. This methodology enables the generation of features that capture not
just the static state of the market but also its evolution over time.

The work presented demonstrates the feasibility of reverse-engineering market events and tran-
sitions from raw snapshots. This is achieved through the development of a robust greedy algorithm
that resolves the sequential paths between snapshots, identifying the simplest yet most likely transi-
tions. From these inferred transitions, we constructed feature sets designed to encapsulate temporal
dynamics, offering a more comprehensive view of market activity. Such features, especially those
derived from the inferred time-sensitive parameters, hold significant promise for predictive modeling.
By including rich information such as price derivatives, order intensities, and event accelerations,
we aimed to provide a foundation for models to better understand market dynamics and potentially
improve forecasting capabilities.

As for future work, the natural progression of this research involves extensive experimentation in
predictive modeling. This step will evaluate the constructed feature sets against various baselines,
such as raw LOB features or other handcrafted features created without synthetic reconstruction.
Furthermore, comparisons should be made with methodologies that utilize automated feature ex-
traction techniques, such as those found in deep learning models like CNNs or hybrid CNN-LSTM
architectures. The goal is to quantify the added value of inferred features and determine their
practical utility in real-world applications.

Another area ripe for exploration is the extension of the dataset and model applicability. While
this thesis focused on the BTCUSDT pair from Binance, applying the framework to other assets,
exchanges, and asset classes could reveal the universality or specificity of the inferred features.
Transfer learning techniques could also be employed to test the adaptability of models trained on
one dataset to different markets.

In conclusion, this thesis represents a step forward in the effort to harness raw LOB data for
predictive modeling, bridging the gap between granular market microstructure information and higher-
level alpha predictors.
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