UNIVERISTY OF PIRAEUS - DEPARTMENT OF INFORMATICS
MANEMZTHMIO MEIPAIQZ - TMHMA NMAHPO®OPIKHZ

MSc «Development of an Al-Based System for Knowledge
Specific Assistance»

MMZ «AvarTuén evog 2uothpatog Texvntig Nonpoouvng yia YTroBononon o€
2UYKEKpIYEVN Mvwoon»

MSc Thesis

MeTamrtuxiakni AlaTpIRN

Development of an Al-Based System for
Thesis Title: Knowledge Specific Assistance

TitThog AiaTpIBAG: AvarTuén evog Zuotipartog Texvntrig Nonuoouvng yia
YtoBoRbnon og Zuykekpiuévn MNvwaon

Student’s name-surname: | Apostolou Athanasios

OvouaTeTTwvupho @oItnTh: ATtrooTéAou ABavaaiog
Father’s name: Christos
MaTpwvupo: XproTog
Student’s ID No:
MMNzMn2203
Api1Bu6¢ MnTpwou:
Supervisor: Dionisios Sotiropoulos, Assistant Professor
EmBAETTWY: Alovuaiog ZwTtnpoTtrouAog, Etrikoupog Kabnyntrg

October 2024/ OkTwRplog 2024

3-Member Examination Committee

TpipeAng E€eTtaoTikr) EmiTpoT

Dionisios Sotiropoulos
Assistant Professor

AIovU0I10G ZWTNPEOTTOUAOG
Etrikoupog Kabnyntg

Tsichrintzis Georgios
Professor

Toixpivi¢ig Mewpylog
Kabnyntig

Sakkopoulos Evangelos
Associate Professor

> akkATTouAog EudyyeAhog
AvattAnpwTn¢ Kabnyntrig

MSc Thesis Apostolou Athanasios

Contents

Y 013 = o PSSP 4
R o Yo 18 e 1o o PP PPPTPTP 5
1.1. Theory and Literature REVIEWouuuieiiiiii it eaaaaeees 5
1.1.1. Artificial iINTEIIGENCEvviieiiieeeeeeee e e e e e e e e e e e e e aaan 5
1.1.2. MACKhING LEAMING .eeiiiiiiieee ittt e e e e e e e e e e e s e e st aaeeaeeeeaaaaeeeaanan 6
1.1.3. Text Generation Models, LLM ...t e e et eeaeeeee 8
1.1.4. Retrieval Augmented Generation (RAG) ... 11
2 T o1 1 [1 SRS 13
P [=Ter o] g Lo (oo 1= SR PTPPRPPPRPRRN 14
2.1. Python Programming LANQUAGEccoeiiiiiiiiiiiiiiiiee ettt et e et ee e 14
2.2. Rust Programming LANQUAGEccooiiiiiiiiiiiiiiee ettt e st e e e snaeee e 16
2.3, PYtNON LIDFariescoouviiiiiiee ettt 17
2.4, RUSE LIDFArESs ...cooiiiiiiieiie ettt ettt e e e e e e e e e e e e e e e e e e e aaannns 19
2.5. HTML, CSS, SPA, TYPeSCHPL, VUE.JS . .cccuvtiiiieeiiciiiiiee ettt e ettt e et e e e e e enraeeeae e ans 20
2.6. Containers, Docker and KUDEINELESooiiieeiiieee e 21
3. Specific Knowledge Assistance APProachescoooiiiiiiiieiiiiiiiie e ciieee e saeeea e 25
3.1. Custom Text Generation Model Methodcooiiiiiiiiiiiiii e 25
8 T P O 1Y 1= 1 g T Yo I 1= o] 1T o R 25
3.1.2. Method Advantages and Disadvantagescceevieiieeeiiiiiiiicccieeeee e 30
3.2. Retrieval Augmented Generation (RAG) Methodc..ooeiiiiiiiiiiiiiiiiee e 30
K T2 R /1 (g ToTo I B 1= T Tod o) i oo P PRPPORPRRN 30
3.2.2. Method Advantages and Disadvantages ..o 33
4. SystemM ArChIECIUIE ..o e 34
4.1, System COMPONENTSuiiiiiiiiiiiie ettt e e e s s e e e e e e anbbeee e e e annneeeeas 34
4.2. Development Lifecycle and Deployment ... 40
5. Usage and Execution of the Application ... 42
5.1. Command Line Interface (CLI) USAQEccouiiiiiiiiiiiiieeeeee e 42
5.2. Graphical User Interface (GUI) USAQEoccuuuiiiiieiiiiiiiiiee sttt e sniraeeea e 47
6. Conclusions and FUTUIE WOTKoicuiiiiiiiiiiiiiie et e e e et e e e e e eneaeeeaeeean 55
(=31 o][ToT | £=T o] 1 YN PRSP PPPPPRPPRPTRP 57
Development of an Al-Based System for Knowledge 3

Specific Assistance

MSc Thesis Apostolou Athanasios

Abstract

This MSc thesis is about utilizing artificial intelligence models in order to find specific knowledge.
As part of this goal we will develop a complete web application, where users will be able to ask
questions to artificial intelligence models, which will answer them based on a specific context.
We will follow two different methods. For the first method we will create our own text generation
Al model [1] which will be trained to understand specific knowledge. For the second method we
will use existing artificial intelligence models, trying to limit them so that they respond only to the
specific knowledge context that we have chosen. In the end we will be able to come to conclusions
about the usefulness of these methods.

MepiAnyn

H TTapouca PETATTTUXIOKE £pYAaia agxoAEiTal e TNV agloTToinon MOVTEAWY TEXVNTAG vonuoouvng
yla Tnv utroporBnon aveupeong CUYKEKPIYEVNG yVwong. ZTa TTAaicia autol Tou oToxou Oa
avatmTuéoupe pia TTAAPN SI0dIKTUGKA €QapUoyr, OTnv oTroia ol XprioTeg Ba utmopolv va
KAVOUV €PWTACEIS O€ WOVTEAQ TEXVNTAG vonuoouvng, Ta oTroia Ba Toug amavrave ue Pdaon
OUYKEKPIPEVO TTAQiCI0. ©Oa akoAouBrigoupe dU0 dIaPopEeTIKES HEBODOUG. MNa TNV TTpwTN PHEB0dO Ba
onuioupynooupe éva OIKG Pag JOVTENO TEXVNTAG vonuoouvng Trapaywyng Kelpévou [1] To otroio Ba
EKTTAIOEUTET yIa va KATAvVOEi GUYKEKPIPEVN yvwaon. MNa Tnv deuTepn PEB0dO Ba XpNOIUOTIOINCOUNE
UTTAPXOVTA HOVTEAQ TEXVNTAS VONUOOUVNG TTPOCTIABWVTAG VA TA TTEPIOPICOUNE WOTE VA ATTAVTAVE
MOVO OTO OUYKEKPIUEVO TTAQICIO yvWOong TTou €xoupe €TIAEEEl. 2TO TEAOG Ba PTTOPECOUNE va
KOaTaAngoupe o€ GUUTTEPACUATA YIa TNV XPNOIMOTNTA AUTWY Twv JEBSdWV.

Development of an Al-Based System for Knowledge Specific 4
Assistance

MSc Thesis Apostolou Athanasios

1. Introduction

In our era, the knowledge we have acquired is bigger than ever. The number of books, notes, web
pages and other forms of content keeps increasing year by year. It is impossible for any human
being, to be able to read an process all this available knowledge. Fortunately, technology has
been greatly improved and is being used daily for tasks involving knowledge search and analysis.
While traditional tools like search engines made it easier for us to find existing knowledge, in the
past years we have observed the increasing development of tools using artificial intelligence. We
will study the usage of text generation machine learning models in specific knowledge search and
analysis assistance. We will use two different methods for these tasks and we will develop a full
web application with which users will be able to ask questions

1.1. Theory and Literature Review

The fundamental theoretic concepts of this thesis stem from the study field of artificial intelligence.
We will describe the connection between artificial intelligence, machine learning and deep
learning. We will focus on a specific category of machine learning models involving text generation
and the state of the art practices of utilizing their capabilities to the maximum by using Retrieval
Augmented Generation (RAG) technique.

1.1.1. Artificial intelligence

In the general sense, Artificial intelligence (Al) is about machines, like computer systems, showing
intelligence in a degree similar to humans. It is a field of research in computer science that
develops and studies methods and software that enable machines to perceive their environment
and use learning and intelligence to take actions that maximize their chances of achieving defined
goals [2]. The machines which fit this description can be called Als.

Intelligence can be considered to be a property of internal thought processes and reasoning, or
a property of intelligent behavior, an external characterization. From these two dimensions (human
vs. rational and thought vs. behavior) there are four possible combinations. The methods used are
necessarily different: the pursuit of human-like intelligence must be in part an empirical science
related to psychology, involving observations and hypotheses about actual human behavior
and thought processes; a rationalist approach, on the other hand, involves a combination of
mathematics and engineering, and connects to statistics, control theory, and economics. These 4
approaches are the following: [3]
+ Acting humanly: The Turing test approach The Turing test, proposed by Alan Turing (1950) and

it consists of 4 core principles that a computer would need to follow in order to pass it.

» natural language processing to communicate successfully in a human language

» knowledge representation to store what it knows or hears

» automated reasoning to answer questions and to draw new conclusions

» machine learning to adapt to new circumstances and to detect and extrapolate patterns

The full Turing test is completed with 2 additional characteristics which have been added by
later researchers:
» computer vision and speech recognition to perceive the world
» robotics to manipulate objects and move themselves

» Thinking humanly: The cognitive modeling approach We can determine if a computer or a
program thinks like a human by analyzing the human thought in 3 main concepts:

Development of an Al-Based System for Knowledge Specific 5
Assistance

MSc Thesis Apostolou Athanasios

» introspection - trying to catch our own thoughts as they go by
» psychological experiments - observing a person in action
» brain imaging - observing the brain in action
» Thinking rationally: The “laws of thought” approach Rationally thinking can be achieved by
following the rules defined by the “logic” study field. When conventional logic requires knowledge
that cannot be obtained realistically, then the theory of probability helps us define logical thinking.
+ Acting rationally: The rational agent approach Rational thinking can achieve a construction of
a comprehensive model of rational thought, but cannot generate intelligent behavior by itself. A
rational agent is one that acts so as to achieve the best outcome or, when there is uncertainty,
the best expected outcome.

1.1.2. Machine Learning

We described the fundamental concepts with which artificial intelligence is defined. Machine
learning (ML) is a field of study in artificial intelligence concerned with the development and study
of statistical algorithms that can learn from data and generalize to unseen data and thus perform
tasks without explicit instructions. [4]

Machine learning is a subset of artificial intelligence (Al) focused on developing algorithms and
statistical models that enable computers to perform tasks without explicit instructions. Instead,
these systems learn and improve from experience by identifying patterns in data. Machine
Learning uses algorithms and statistical models to enable computers to perform specific tasks
without being explicitly programmed to do so. Machine learning systems learn from and make
decisions based on data. The process involves the following steps:

+ Data Collection: Gathering relevant data that the model will learn from.

+ Data Preparation: Cleaning and organizing data to make it suitable for training.
» Model Selection: Choosing an appropriate algorithm that fits the problem.
 Training: Using data to train the model, allowing it to learn and identify patterns.
» Evaluation: Assessing the model’'s performance using different metrics.

» Optimization: Fine-tuning the model to improve its accuracy and efficiency.

» Deployment: Implementing the model in a real-world scenario for practical use.

There are 4 basic types of Machine Learning: [4]-[6]

» Supervised Learning: We have labeled data for which we know the correct output from the
corresponding input. The machine learning model tries to find a mapping from inputs to outputs.
Some examples of problems categories are Regression and Classification.

» Unsupervised Learning: We only have unlabeled data, meaning that we don’t know the correct
outputs for given inputs. The model must find hidden patterns or intrinsic structures in the input
data. Some problems categories are Clustering, association.

» Semi-Supervised Learning: Combines a small amount of labeled data with a large amount
of unlabeled data during training. It lays somewhere between supervised and unsupervised
learning.

» Reinforcement Learning: The model learns by interacting with an environment, receiving
rewards or penalties based on its actions, and aims to maximize the cumulative reward. Some
examples are Game playing, robotic control.

Development of an Al-Based System for Knowledge Specific 6
Assistance

MSc Thesis Apostolou Athanasios

Deep learning is a subset of machine learning that uses multilayered neural networks, called
deep neural networks, to simulate the complex decision-making power of the human brain [7].
Deep learning is being used in order to teach computers how to process data in a way that is
inspired by the human brain. Deep learning models can recognize complex patterns in pictures,
text, sounds, and other data to produce accurate insights and predictions. Deep learning methods
can be used in order to automate tasks that typically require human intelligence, such as
describing images or transcribing a sound file into text [8]. We can visualize the subsets of Deep
Learning, Machine Learning and Atrtificial Intelligence with the diagram below:

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

IMAGE 1: Venn Diagram for Al, ML, Deep Learning [9]

Artificial Intelligence, Machine Learning and Deep Learning are involved in many applications
like Recommender Systems, Medical Diagnosis, Image Recognition, Speech Recognition, Email
Spam and Malware Filtering, Traffic prediction, Self-driving cars, Virtual Personal Assistant,
Fraud Detection, Stock Market trading, Automatic Language Translation, Chatbots, Generation
of text images and videos. [10]-[12]. All these applications required different artificial intelligence
disciplines that can be combined in order to create a complete artificial intelligence system which
produces the required output.

Development of an Al-Based System for Knowledge Specific 7
Assistance

MSc Thesis Apostolou Athanasios

Output
Mapping fi
Chutput Omtput Apping trom
features
A A A
Additional
Output Mapping from Mapping from layers of more
I
P features features abstract
teatures
A A A A
Hand- Hand- -
designed designed Features Sl
features
program features
A A A A

Input Input Input Input

Deep
Classic y
Rule-hased learning
machine

learning Representation

systems

learning
IMAGE 2: Flowcharts showing how the different parts of an Al system relate to each other within
different Al disciplines. Shaded boxes indicate components that are able to learn from data. [13]

1.1.3. Text Generation Models, LLM

We described the fundamental concepts of artificial intelligence and machine learning. Now we
will take a closer look into a specific category of machine learning models which are used in text
generation tasks.

Generative Al refers to deep-learning models that can generate high-quality text, images, and
other content based on the data they were trained on. [14]. A text generation model is a type of
generative Al models which is designed to produce coherent and contextually relevant textual
content. These models are typically based on natural language processing (NLP) techniques and
are trained in text data to learn the patterns, grammar, and context required to generate human-
like text. When these these models are trained in huge sets of data and have been fed enough
examples to be able to recognize and interpret human language or other types of complex data,
then they are called large language models (LLM) [15].

These are the key components and concepts of text generation models:
* Training Data:
» Corpora: Large collections of text used to train the model. These can include books, articles,
websites, dialogues, and other text sources.
» Preprocessing: Cleaning and organizing the text data, including tokenization (breaking text
into words or subwords), removing special characters, and normalizing text.
* Model Architecture:

Development of an Al-Based System for Knowledge Specific 8
Assistance

MSc Thesis Apostolou Athanasios

» Recurrent Neural Networks (RNNs): Earlier models for text generation, including Long Short-
Term Memory (LSTM) and Gated Recurrent Units (GRUs), which handle sequential data by
maintaining context over time.

» Transformers: Modern architecture that has become the standard for NLP tasks. Transformers
use self-attention mechanisms to process entire sequences of text at once, allowing for
better handling of context and dependencies over long distances in the text. Examples
include the GPT (Generative Pre-trained Transformer) series, BERT (Bidirectional Encoder
Representations from Transformers), and others.

* Training Process:

» Unsupervised Learning: Most text generation models are trained using unsupervised learning,
where the model learns to predict the next word or sequence of words based on the context
provided by preceding text.

» Fine-Tuning: After pre-training on a large corpus, models are often fine-tuned on specific
datasets to adapt them to particular tasks or domains.

» Generation Techniques:

» Sampling: Randomly selecting the next word from the probability distribution generated by
the model.

» Beam Search: An algorithm that searches for the best sequence of words by considering
multiple candidate sequences at each step and selecting the most likely ones.

» Temperature Adjustment: Modifying the probability distribution to control the randomness of
the generated text. Lower temperatures result in more deterministic outputs, while higher
temperatures produce more diverse and creative text.

Usually the most popular LLMs have these parameters in order to control sampling. Parameter

“top_k” limits the model’s output to the top-k most probable tokens at each step. This can

help reduce incoherent or nonsensical output by restricting the model’s vocabulary. Parameter

“top_p” filters out tokens whose cumulative probability is less than a specified threshold (p). It

allows for more diversity in the output while still avoiding low-probability tokens. Temperature

adjusts the randomness or confidence level of the model’s predictions by scaling the log

probabilities. Higher temperatures lead to more diverse but potentially nonsensical outputs,

while lower temperatures yield more focused and predictable responses [16], [17].

Evaluation:

» Perplexity: A measure of how well a probability model predicts a sample. Lower perplexity
indicates better performance.

» Human Evaluation: Assessing the coherence, relevance, and fluency of the generated text
through human judges.

» Automated Metrics: BLEU (Bilingual Evaluation Understudy), ROUGE (Recall-Oriented
Understudy for Gisting Evaluation), and other metrics comparing the generated text to
reference texts.

Due to the fact that pre-trained LLMs are huge in size and their invocation requires huge
amounts of memory, most popular LLMs are converted using some quantization technique.
Quantization is a model compression technique that converts the weights and activations within
an LLM from a high-precision data representation to a lower-precision data representation, i.e.,
from a data type that can hold more information to one that holds less. A typical example of this is
the conversion of data from a 32-bit floating-point number (FP32) to an 8-bit or 4-bit integer (INT4
or INT8). [18] The are two popular types of LLM Quantization: PTQ and QAT [18]

Development of an Al-Based System for Knowledge Specific 9
Assistance

MSc Thesis Apostolou Athanasios

» Post-Training Quantization (PTQ): this refers to techniques that quantize an LLM after it has
already been trained. PTQ is easier to implement than QAT, as it requires less training data and
is faster. However, it can also result in reduced model accuracy from lost precision in the value
of the weights.

* Quantization-Aware Training (QAT): this refers to methods of fine-tuning on data with
quantization in mind. In contrast to PTQ techniques, QAT integrates the weight conversion
process, i.e., calibration, range estimation, clipping, rounding, etc., during the training stage.
This often results in superior model performance, but is more computationally demanding.

Some advantages of LLM quantization are: [18]

» Smaller Models: by reducing the size of their weights, quantization results in smaller models.
This allows them to be deployed in a wider variety of circumstances such as with less powerful
hardware; and reduces storage costs.

Increased Scalability: the lower memory footprint produced by quantized models also makes
them more scalable. As quantized models have fewer hardware constraints, organizations can
feasibly add to their IT infrastructure to accommodate their use.

Faster Inference: the lower bit widths used for weights and the resulting lower memory bandwidth
requirements allow for more efficient computations.

However the disadvantages are [18]:

 Loss of Accuracy: The most significant disadvantage of quantization is loss of accuracy in output.
Converting the model’s weights to a lower precision is likely to degrade its performance. The
more “aggressive” the quantization technique, i.e. the lower the bit widths of the converted data
type, e.g., 4-bit, 3-bit, etc., the greater the risk of loss of accuracy.

Some techniques for LLM quantization are the following [18]:

* QLoRA: Low-Rank Adaptation (LoRA) is a Parameter-Efficient Fine-Tuning (PEFT) technique
that reduces the memory requirements of further training a base LLM by freezing its weights and
fine-tuning a small set of additional weights, called adapters. Quantized Low-Rank Adaptation
(QLoRA) takes this a step further by quantizing the original weights within the base LLM to 4-
bit: reducing the memory requirements of an LLM to make it feasible to run on a single GPU.

* PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation (PRILORA) is a fine-tuning
technique recently proposed by researchers that aims to increase LoRA efficiency through
the introduction of two additional mechanisms: the linear distribution of ranks and ongoing
importance-based A-weight pruning.

* GPTQ: General Pre-Trained Transformer Quantization (GPTQ) is a quantization technique
designed to reduce the size of models so they can run on a single GPU. GPTQ works through
a form of layer-wise quantization: an approach that quantizes a model a layer at a time, with the
aim of discovering the quantized weights that minimize output error (the mean squared error
(MSE), i.e., the squared error between the outputs of the original, i.e., full-precision, layer and
the quantized layer.)

* GGML/GGUF: GGML (which is said to stand for Georgi Gerganov Machine Learning, after its
creator, or GPT-Generated Model Language) is a C-based machine learning library designed for
the quantization of Llama models so they can run on a CPU. More specifically, the library allows
us to save quantized models in the GGML binary format, which can be executed on a broader
range of hardware. GGML quantizes models through a process called the k-quant system, which
uses value representations of different bit widths depending on the chosen quant method. First,
the model’s weights are divided into blocks of 32: with each block having a scaling factor based
on the largest weight value, i.e., the highest gradient magnitude. Depending on the selected

Development of an Al-Based System for Knowledge Specific 10
Assistance

MSc Thesis Apostolou Athanasios

quant-method, the most important weights are quantized to a higher-precision data type, while
the rest are assigned to a lower-precision type. For example, the q2_k quant method converts
the largest weights to 4-bit integers and the remaining weights to 2-bit. Alternatively, however,
the g5_0 and g8 0 quant methods convert all weights to 5-bit and 8-bit integer representations
respectively. We can view GGML's full range of quant methods by looking at the model cards in
this code repo. GGUF (GPT-Generated Unified Format), meanwhile, is a successor to GGML
and is designed to address its limitations, most notably, enabling the quantization of non-Llama
models. GGUF is also extensible: allowing for the integration of new features while retaining
compatibility with older LLMs.

+ AWQ: Conventionally, a model’s weights are quantized irrespective of the data they process
during inference. In contrast, Activation-Aware Weight Quantization (AWQ) accounts for the
activations of the model, i.e., the most significant features of the input data, and how it is
distributed during inference. By tailoring the precision of the model’s weights to the particular
characteristic of the input, we can minimize the loss of accuracy caused by quantization.

1.1.4. Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) is a technique for augmenting LLM knowledge with
additional data. LLMs can reason about wide-ranging topics, but their knowledge is limited to
the public data up to a specific point in time that they were trained on. If we want to build Al
applications that can reason about private data or data introduced after a model’s cutoff date, we
need to augment the knowledge of the model with the specific information it needs. The process
of bringing the appropriate information and inserting it into the model prompt is known as Retrieval
Augmented Generation (RAG) [19]. RAG extends the already powerful capabilities of LLMs to
specific domains or an organization’s internal knowledge base, all without the need to retrain the
model. It is a cost-effective approach to improving LLM output so it remains relevant, accurate,
and useful in various contexts [20].

RAG is important because of these reasons [20]:
* LLMs have known drawbacks:

» Presenting false information when it does not have the answer.

» Presenting out-of-date or generic information when the user expects a specific, current
response.

» Creating a response from non-authoritative sources.

» Creating inaccurate responses due to terminology confusion, wherein different training
sources use the same terminology to talk about different things

* RAG comes with additional benefits:

» Cost-effective implementation: The computational and financial costs of retraining text
generation model for organization or domain-specific information are high. RAG is a more
cost-effective approach to introducing new data to the LLM.

» Current information: RAG allows developers to provide the latest research, statistics, or news
to the generative models. They can use RAG to connect the LLM directly to live social media
feeds, news sites, or other frequently-updated information sources. The LLM can then provide
the latest information to the users.

» Enhanced user trust: RAG allows the LLM to present accurate information with source
attribution. The output can include citations or references to sources. Users can also look

Development of an Al-Based System for Knowledge Specific 11
Assistance

MSc Thesis Apostolou Athanasios

up source documents themselves if they require further clarification or more detail. This can
increase trust and confidence in our generative Al solution.

» More developer control: With RAG, developers can test and improve their chat applications
more efficiently. They can control and change the LLM’s information sources to adapt
to changing requirements or cross-functional usage. Developers can also restrict sensitive
information retrieval to different authorization levels and ensure the LLM generates
appropriate responses. In addition, they can also troubleshoot and make fixes if the LLM
references incorrect information sources for specific questions. Organizations can implement
generative Al technology more confidently for a broader range of applications.

A typical RAG application has two main components [19]:

* Indexing: a pipeline for ingesting data from a source and indexing it. This usually happens offline.

» Load: First we need to load our data. This is done with Document Loaders.

» Split: Text splitters break large Documents into smaller chunks. This is useful both for indexing
data and for passing it in to a model, since large chunks are harder to search over and won'’t
fit in a model’s finite context window.

» Store: We need somewhere to store and index our splits, so that they can later be searched
over. This is often done using a Vector Store and Embeddings model.

* Retrieval and generation: the actual RAG chain, which takes the user query at run time and
retrieves the relevant data from the index, then passes that to the model.

» Retrieve: Given a user input, relevant splits are retrieved from storage using a Retriever.

» Generate: A ChatModel / LLM produces an answer using a prompt that includes the question
and the retrieved data

p—
Search Relevant] - Kno
Information J = So
2) Query
Relevant
Information
ompt for
e Enhanced
uery Context
Generated
Text 5
Response
Prompt
-
4 | Query "
i >
Enhanced
Context Large Language Model EndPoint
IMAGE 3: Conceptual flow of using RAG with LLMs. [20]
Development of an Al-Based System for Knowledge Specific 12

Assistance

MSc Thesis Apostolou Athanasios

1.2. Sections

Lets describe briefly the next sections of this thesis.

In Section 2 we will describe the various technologies and their advantages, which we will use
for our application development and deployment.

In Section 3 we will dive in the details of the two methods that we will use. We will compare
them and we will describe their advantages and disadvantages.

In Section 4 we will describe the architecture and the implementation of our application. We will
show the components which construct our application, the tasks each component can perform
and how they are connected together.

In Section 5 we will show the design and execution results of our deployed application. We will
investigate the various ways in which our application can be used by the users in order to find
specific knowledge based on raw data like documents or web pages.

In Section 6 we will write our conclusions we reached. We will describe the problems and
limitations we faced. Finally, we will specify future improvements that can be made as well as
future goals about scaling and expand the core idea.

Development of an Al-Based System for Knowledge Specific 13
Assistance

MSc Thesis Apostolou Athanasios

2. Technologies

In this chapter we will describe the main technologies which we will use for the development and
deployment of our system.

In the context of this thesis we will use many technologies in order to produce a complete
application. We will describe the main programming languages we used for this application, Rust
and Python. We will see more details about the core programming libraries our application is
using and their basic features we utilize. Finally we will talk about the state of the art deployment
procedure of deployments based on containers utilization.

2.1. Python Programming Language

Python is a high-level, general-purpose programming language. Its design philosophy emphasizes
code readability with the use of significant indentation. Python is dynamically typed and
garbage-collected. It supports multiple programming paradigms, including structured (particularly
procedural), object-oriented and functional programming. It is often described as a “batteries
included” language due to its comprehensive standard library. [21]

Choosing python as a programming language has several benefits [22]

» Python has easy English-like syntax that, so it is easier for developers to read a code base

understand it.

Python software usually can be written with fewer lines of code comparing to other programming

languages, so it can increase development productivity.

» Python has a large standard library which covers multiple tasks like cli parsing, http clients,
advanced mathematics, etc. Developers can utilize the standard library without the need to use
third party libraries or write code from scratch.

» Python can easily be used by developers with other popular programming languages such as
Java, C, and C++ and Rust.

» Python has one of the most active communities of developers. So, it makes it easier for

developers to find quick support for almost every task needed. There are also many helpful

resources like videos, tutorials, documentation, and developer guides available on the internet.

Python can be use in many operating systems such as Windows, macOS, Linux, and Unix since

it is portable.

The python programming language is very popular in various applications: [22]
» Server-side web development: Server-side web development includes the complex backend
functions that websites perform to display information to the user. For example, websites must
interact with databases, talk to other websites, and protect data when sending it over the
network.
Graphical User Interfaces development (GUI): Develop user friendly GUI applications while also
providing a good user experience.
» Gaming development: Python can be used to develop games. Popular python libraries exist for
both 2D and 3D graphics development.
» Automation with Python scripts: A scripting language is a programming language that automates
tasks that humans normally perform. Such tasks usually include:
» filesystem operations like files renaming, reading, writing, converting.
» Mathematical operations
» download content

Development of an Al-Based System for Knowledge Specific 14
Assistance

MSc Thesis Apostolou Athanasios

» text operations and transformations in files

» basic log analysis
» Data science and machine learning: Data science is extracting valuable knowledge from data,
and machine learning (ML) teaches computers to automatically learn from the data and make
accurate predictions.
Software deployments and operations: Python can be used for different development tasks and
software applications such as:
» Automatically building the software
» Utilize continuous integration and continuous deployments (CI/CD)
» Handling software project management
Software test automation: Check whether the actual results from the software match the
expected results to ensure that the software is error-free.

Using python programming language has various advantages [23]:

Presence of third-party modules: Python has a rich ecosystem of third-party modules and

libraries that extend its functionality for various tasks.

+ Extensive support libraries: Python boasts extensive support libraries like NumPy for numerical
calculations and Pandas for data analytics, making it suitable for scientific and data-related
applications.

» Open source and large active community base: Python is open source, and it has a large and

active community that contributes to its development and provides support.

Versatile, easy to read, learn, and write: Python is known for its simplicity and readability, making

it an excellent choice for both beginners and experienced programmers.

User-friendly data structures: Python offers intuitive and easy-to-use data structures, simplifying

data manipulation and management.

High-level language: Python is a high-level language that abstracts low-level details, making it

more user-friendly.

Dynamically typed language: Python is dynamically typed, meaning we don’t need to declare

data types explicitly, making it flexible but still reliable.

» Object-Oriented and Procedural programming language: Python supports both object-oriented
and procedural programming, providing versatility in coding styles.

 Portable and interactive: Python is portable across operating systems and interactive, allowing

real-time code execution and testing.

Ideal for prototypes: Python’s concise syntax allows developers to prototype applications quickly

with less code.

+ Highly efficient: Python’s clean design provides enhanced process control, and it has excellent

text processing capabilities, making it efficient for various applications.

Internet of Things (loT) opportunities: Python is used in loT applications due to its simplicity

and versatility.

Interpreted language: Python is interpreted, which allows for easier debugging and code

development.

However python programming language has also some drawbacks [23]:
» Performance: Python is an interpreted language, which means that it can be slower than
compiled languages like C or Java. This can be an issue for performance-intensive tasks.

Development of an Al-Based System for Knowledge Specific 15
Assistance

MSc Thesis Apostolou Athanasios

Global Interpreter Lock: The Global Interpreter Lock (GIL) is a mechanism in Python that
prevents multiple threads from executing Python code at once. This can limit the parallelism and
concurrency of some applications.

» Memory consumption: Python can consume a lot of memory, especially when working with large
datasets or running complex algorithms.

Dynamically typed: Python is a dynamically typed language, which means that the types of
variables can change at runtime. This can make it more difficult to catch errors and can lead
to bugs.

Packaging and versioning: Python has a large number of packages and libraries, which can
sometimes lead to versioning issues and package conflicts.

» Lack of strictness: Python’s flexibility can sometimes be a double-edged sword. While it can
be great for rapid development and prototyping, it can also lead to code that is difficult to read
and maintain.

2.2. Rust Programming Language

Rust is a general-purpose programming language emphasizing performance, type safety, and
concurrency. It enforces memory safety, meaning that all references point to valid memory,
without a garbage collector. To simultaneously enforce memory safety and prevent data races,
its “borrow checker” tracks the object lifetime of all references in a program during compiling.
Rust was influenced by ideas from functional programming, including immutability, higher-order
functions, and algebraic data types. It is popular for systems programming. Rust does not enforce
a programming paradigm, but supports object-oriented programming via structs, enums, traits,
and methods, and supports functional programming via immutability, pure functions, higher order
functions, and pattern matching. [24]

Rust programming languages can be used in many applications [25], [26]:
» Server-side web development: Rust can be used to write simple REST APIs or even full stack
backend applications which connect to databases and serve complex HTML pages using various
template engines.
Client-side web development: Rust can be compile to WebAssembly and be used to create
client side web applications supported in all modern web browsers.
Graphical User Interfaces development (GUI): Develop user friendly GUI applications while also
providing a good user experience. Rust GUI frameworks can use different architecture including
Elm, immediate mode, reactive and others.
» Gaming development: Rust can be used to develop games. New modern rust libraries have
emerged for both 2D and 3D graphics development.
Embedded development: Due to low resource usage and high performance, rust can be used
to develop applications for low resource devices.
+ Command line development: Rust can be used to create both command line interfaces (CLI) as
well as terminal user interfaces (TUI).
Internet of Things development (loT): loT devices typically have limited resources, and Rust’s
memory safety and low-level control make it an excellent choice for developing embedded
systems.
Robotics: Robotics requires real-time processing, and Rust’s low-level control and memory
safety make it ideal for developing real-time applications. Rust’s concurrency features make it
possible to handle multiple threads efficiently, which is essential in robotics applications.

Development of an Al-Based System for Knowledge Specific 16
Assistance

MSc Thesis Apostolou Athanasios

» Machine Learning: Rust libraries and ecosystem for machine learning development is newer and
currently more limited than Python’s. However rust can be preferred for its higher performance,
the memory safety and its immutability features.

Using rust programming language has various advantages [27]:

» Memory Safety: Rust’s borrow checker ensures memory safety without the overhead of garbage
collection. This means fewer memory leaks and crashes.

» Performance: Comparable to C and C++, Rust provides fine-grained control of memory and

other resources.

Concurrency: Rust’'s ownership model makes concurrent programming more manageable and

less prone to bugs.

* Modern Tooling: Cargo, Rust's package manager and build system, is highly praised for its ease
of use.

* Vibrant Community: Rust has a growing and enthusiastic community, which results in good
documentation, community support, and an expanding ecosystem.

However rust programming language has also some drawbacks [27]:

» Steep Learning Curve: Rust’s unique features, like ownership and lifetimes, can be challenging
to grasp for newcomers.

» Compilation Time: Rust programs can have longer compile times compared to some other
languages.

* Lesser Library Support: While growing, the Rust ecosystem is still smaller than those of older
languages like C++, Java or Python.

2.3. Python Libraries

We will talk about the most important Python libraries that we use for our application and their
important parts that we utilize.

One of the most significant libraries we use is NLTK. NLTK is a leading platform for building
Python programs to work with human language data. It provides easy-to-use interfaces to over
50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries
for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers
for industrial-strength NLP libraries, and an active discussion forum. Thanks to a hands-on
guide introducing programming fundamentals alongside topics in computational linguistics, plus
comprehensive APl documentation, NLTK is suitable for linguists, engineers, students, educators,
researchers, and industry users alike. NLTK is available for Windows, Mac OS X, and Linux.
Moreover, NLTK is a free, open source, community-driven project [28]. NLTK comes with many
corpora, toy grammars, trained models, etc which are called NTLK Data [29]. One of the most
important modules of NLTK is the “tokenize” module which can help us split a long text into
sentences or into words.

In order to create our own machine learning model we will use PyTorch library. PyTorch is a
machine learning library based on the Torch library, used for applications such as computer vision
and natural language processing [30]. Written in Python, it's relatively easy for most machine
learning developers to learn and use. PyTorch is distinctive for its excellent support for GPUs and
its use of reverse-mode auto-differentiation, which enables computation graphs to be modified
on the fly. The most fundamental concepts of pytorch are Tensors and Graphs. Tensors are a

Development of an Al-Based System for Knowledge Specific 17
Assistance

MSc Thesis Apostolou Athanasios

core PyTorch data type, similar to a multidimensional array, used to store and manipulate the
inputs and outputs of a model, as well as the model’s parameters. Tensors are similar to NumPy’s
ndarrays, except that tensors can run on GPUs to accelerate computing. Graphs are data
structures consisting of connected nodes (called vertices) and edges. Every modern framework
for deep learning is based on the concept of graphs, where Neural Networks are represented as
a graph structure of computations. PyTorch keeps a record of tensors and executed operations in
a directed acyclic graph (DAG) consisting of Function objects. In this DAG, leaves are the input
tensors, roots are the output tensors. [31]

In order to use existing pre-trained Large Language Models (LLM), which we described in
Section 1.1.3, we will use LangChain. LangChain is a framework for developing applications
powered by large language models (LLMs). LangChain simplifies every stage of the LLM
application lifecycle [32]:

» Development: Build our applications using LangChain’s open-source building blocks,
components, and third-party integrations. Use LangGraph to build stateful agents with first-class
streaming and human-in-the-loop support.

* Productionization: Use LangSmith to inspect, monitor and evaluate our chains, so that we can
continuously optimize and deploy with confidence.

» Deployment: Turn our LangGraph applications into production-ready APIs and Assistants with
LangGraph Cloud.

LangChain does not serve its own LLMs, but rather provides a standard interface for interacting
with many different LLMs. To be specific, this interface is one that takes as input a string and
returns a string. There are lots of LLM providers (OpenAl, Cohere, Hugging Face, Llama.cpp,
etc), the LLM class is designed to provide a standard interface for all of them. [33] LangChain
provides also integration with vector stores. One of the most common ways to store and search
over unstructured data is to embed it and store the resulting embedding vectors, and then at query
time to embed the unstructured query and retrieve the embedding vectors that are ‘most similar’
to the embedded query. A vector store takes care of storing embedded data and performing vector
search for us. Supported vector stores are [34]:

» Chroma

* Pinecone

* FAISS

* Lance

We will use Hugging Face Hub in order to be able to download pre-trained LLMs. The Hugging
Face Hub is a platform with thousands of machine learning models, datasets, and demo apps, all
open source and publicly available, in an online platform where people can easily collaborate and
build Machine Learning solutions. The Hub works as a central place where anyone can explore,
experiment, collaborate, and build technology with Machine Learning [35]

From the supported LangChain LLM providers we will mostly use the Llama.cpp provider.
The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art
performance on a wide variety of hardware - locally and in the cloud. Some characteristics of this
library are the following [36]

» Plain C/C++ implementation without any dependencies

 Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks

* AVX, AVX2 and AVX512 support for x86 architectures 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and
8-bit integer quantization for faster inference and reduced

Development of an Al-Based System for Knowledge Specific 18
Assistance

MSc Thesis Apostolou Athanasios

» memory use Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs
via HIP) Vulkan and SYCL backend support CPU+GPU hybrid inference to partially accelerate
models larger than the total VRAM capacity

LLama.cpp uses ggml, a tensor library for machine learning [37]. So llama cpp can be used with
any LLMs which have been converted to ggml or gguf quantized formats, which we discussed
in Section 1.1.3.

In order to create a graph of our own machine learning model performance we will use
matplotlib. Matplotlib is a comprehensive library for creating static, animated, and interactive
visualizations in Python. Matplotlib produces publication-quality figures in a variety of hardcopy
formats and interactive environments across platforms. Matplotlib can be used in Python scripts,
Python/IPython shells, web application servers, and various graphical user interface toolkits. [38]

We will use unstructured library in order to be able to read various documents. The
unstructured library provides open-source components for ingesting and pre-processing images
and text documents, such as PDFs, HTML, Word docs, and many more. The use cases
of unstructured revolve around streamlining and optimizing the data processing workflow for
LLMs. unstructured modular functions and connectors form a cohesive system that simplifies
data ingestion and pre-processing, making it adaptable to different platforms and efficient in
transforming unstructured data into structured outputs. [39]

We will depend on FAISS library to provide us a vector store implementation and search
algorithm to use with LangChain. Faiss is a library for efficient similarity search and clustering
of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones
that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter
tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful
algorithms are implemented on the GPU. [40]

2.4. Rust Libraries

We will talk about the most important Rust libraries that we use for our application and their
important parts that we utilize.

In order to create a command line application (cli) we will use clap library. Clap is a command
line argument parser for Rust. | allows us to create our command-line parser, with all of the bells
and whistles, declaratively or procedurally. [41]

To use asynchronous programming in Rust we need a asynchronous runtime, so we will
use the most popular one tokio. Tokio is an event-driven, non-blocking 1/O platform for writing
asynchronous applications with the Rust programming language. At a high level, it provides a few
major components: [42]

» A multithreaded, work-stealing based task scheduler.
» Areactor backed by the operating system’s event queue (epoll, kqueue, IOCP, etc...).
» Asynchronous TCP and UDP sockets.

Tokio provides a runtime for writing reliable, asynchronous, and slim applications with the Rust

programming language. It is: [42]

» Fast: Tokio’s zero-cost abstractions give us bare-metal performance.

» Reliable: Tokio leverages Rust’s ownership, type system, and concurrency model to reduce
bugs and ensure thread safety.

 Scalable: Tokio has a minimal footprint, and handles backpressure and cancellation naturally.

Development of an Al-Based System for Knowledge Specific 19
Assistance

MSc Thesis Apostolou Athanasios

We will use axum library to develop our web server. Axum is a web application framework that
focuses on ergonomics and modularity. Some high level features are: [43]
* Route requests to handlers with a macro free API.
» Declaratively parse requests using extractors.
» Simple and predictable error handling model.
» Generate responses with minimal boilerplate.
+ Take full advantage of the tower and tower-http ecosystem of middleware, services, and utilities.

We will use SeaORM library so that our backend fetches and writes data in a database.
SeaORM is a relational ORM which helps us build web services in Rust with the familiarity of
dynamic languages. Some SeaORM features are: [44]

+ Async: Relying on SQLx, SeaORM is a new library with async support from day 1.

* Dynamic: Built upon SeaQuery, SeaORM allows us to build complex dynamic queries.

» Testable: Use mock connections and/or SQLite to write tests for our application logic.

+ Service Oriented: Quickly build services that join, filter, sort and paginate data in REST, GraphQL
and gRPC APls.

SeaORM supports connections with MySQL, Postgres or SQLite databases [45].

2.5. HTML, CSS, SPA, Typescript, Vue.js

We will use Web Technologies in order to create a Frontend for our application. In this section we
will describe the main technologies for our frontend.

HyperText Markup Language (HTML) is the most basic building block of the Web. It defines
the meaning and structure of web content. Other technologies besides HTML are generally used
to describe a web page’s appearance/presentation (CSS) or functionality/behavior (JavaScript).
“Hypertext” refers to links that connect web pages to one another, either within a single website
or between websites. Links are a fundamental aspect of the Web. By uploading content to the
Internet and linking it to pages created by other people, we become an active participant in the
World Wide Web. HTML uses “markup” to annotate text, images, and other content for display in
a Web browser. HTML markup includes special “elements” such as <head>, <title>, <body> and
many others. An HTML element is set off from other text in a document by “tags”, which consist
of the element name surrounded by “<” and “>”. The name of an element inside a tag is case-
insensitive. That is, it can be written in uppercase, lowercase, or a mixture. [46]

Cascading Style Sheets (CSS) is a stylesheet language used to describe the presentation of a
document written in HTML or XML (including XML dialects such as SVG, MathML or XHTML). CSS
describes how elements should be rendered on screen, on paper, in speech, or on other media.
CSS is among the core languages of the open web and is standardized across Web browsers
according to W3C specifications. Previously, the development of various parts of CSS specification
was done synchronously, which allowed the versioning of the latest recommendations, like CSS1,
CSS2.1, etc. There will never be a CSS3 or a CSS4; rather, everything is now just “CSS” with
individual CSS modules having version numbers. [47]

JavaScript (JS) is a lightweight interpreted (or just-in-time compiled) programming language
with first-class functions. While it is most well-known as the scripting language for Web pages,
many non-browser environments also use it, such as Node.js, Apache CouchDB and Adobe
Acrobat. JavaScript is a prototype-based, multi-paradigm, single-threaded, dynamic language,
supporting object-oriented, imperative, and declarative (e.g. functional programming) styles.

Development of an Al-Based System for Knowledge Specific 20
Assistance

MSc Thesis Apostolou Athanasios

JavaScript’'s dynamic capabilities include runtime object construction, variable parameter lists,
function variables, dynamic script creation (via eval), object introspection (via for...in and
Object utilities), and source-code recovery (JavaScript functions store their source text and can
be retrieved through toString()). The standards for JavaScript are the ECMAScript Language
Specification (ECMA-262) and the ECMAScript Internationalization API specification (ECMA-402).
(48]

TypeScript (TS) is a programming language that adds static type checking to JavaScript.
TypeScript is a superset of JavaScript, meaning that everything available in JavaScript is also
available in TypeScript, and that every JavaScript program is a syntactically legal TypeScript
program. Also, the runtime behavior of TypeScript and JavaScript is identical. However, TypeScript
adds compile time type checking, implementing rules about how different types can be used
and combined. This catches a wide variety of programming errors that in JavaScript are only
encountered at runtime. Some typing rules are inferred from JavaScript. TypeScript also enables
the programmer to annotate their code, to indicate, for example, the types of parameters to a
function or the properties of an object. After compilation, type annotations are removed, making
the compiled output just JavaScript, meaning it can be executed in any JavaScript runtime. [49]

An SPA (Single-page application) is a web app implementation that loads only a single web
document, and then updates the body content of that single document via JavaScript APIs such as
Fetch when different content is to be shown. This therefore allows users to use websites without
loading whole new pages from the server, which can result in performance gains and a more
dynamic experience, with some trade-off disadvantages such as SEO, more effort required to
maintain state, implement navigation, and do meaningful performance monitoring. [50]

Our frontend will utilize all the technologies described above and it will use the Vue.js
framework. Vue is a JavaScript framework for building user interfaces. It builds on top of standard
HTML, CSS, and JavaScript and provides a declarative, component-based programming model
that helps us efficiently develop user interfaces of any complexity. The two core features of Vue
are:

* Declarative Rendering: Vue extends standard HTML with a template syntax that allows us to
declaratively describe HTML output based on JavaScript state.

» Reactivity: Vue automatically tracks JavaScript state changes and efficiently updates the DOM
when changes happen.

Vue can be used in different ways:

» Enhancing static HTML without a build step

+ Embedding as Web Components on any page

+ Single-Page Application (SPA)

* Fullstack / Server-Side Rendering (SSR)

» Jamstack / Static Site Generation (SSG)

» Targeting desktop, mobile, WebGL, and even the terminal

[51]

2.6. Containers, Docker and Kubernetes

We already talked about the programming languages and the most important programming
libraries which we will use for developing our application. In this section we will talk about the most
important technologies which we will use in order to deploy and deliver our application.

Development of an Al-Based System for Knowledge Specific 21
Assistance

MSc Thesis Apostolou Athanasios

Containers are executable units of software that package application code along with its
libraries and dependencies. They allow the same code to run in many different computing
environments, like desktops, servers, IT or cloud infrastructure. Containers take advantage of a
form of operating system (OS) virtualization in which features of the OS kernel (like for example,
Linux namespaces and cgroups) can be used to isolate processes and control the amount of
CPU, memory and disk that those processes can access. More portable and resource-efficient
than virtual machines (VMs), containers have become the de facto compute units of modern
cloud-native applications. Additionally, containers are critical to the underlying IT infrastructure that
powers hybrid multicloud settings—the combination of on-premises, private cloud, public cloud
and more than one cloud service from more than one cloud vendor. One way to better understand
a container is to examine how it differs from a traditional virtual machine (VM), which is a virtual
representation or emulation of a physical computer. A VM is often referred to as a guest, while
the physical machine it runs on is called the host. Virtualization technology makes VMs possible.
A small software layer which is called a hypervisor, allocates physical computing resources (for
example, processors, memory, storage) to each VM. It keeps each VM separate from others so
they don’t interfere with each other. Each VM then contains a guest OS and a virtual copy of
the hardware that the OS requires to run, along with an application and its associated libraries
and dependencies. VMware was one of the first to develop and commercialize virtualization
technology based on hypervisors. Instead of virtualizing the underlying hardware, container
technology virtualizes the operating system (typically Linux) so each container contains only the
application and its libraries, configuration files and dependencies. Containers are much more
lightweight, faster and more portable than VMs, due to the absence of the guest OS. Containers
and virtual machines are not mutually exclusive. For instance, an organization might leverage
both technologies by running containers in VMs to increase isolation and security and leverage
already installed tools for automation, backup and monitoring [52]. Here are the top advantages
of using containers:

+ Lightweight: Containers eliminate the need for a full OS instance per application and make
container files small and easy on resources, by sharing the machine OS kernel. A container’s
smaller size, especially compared to a VM, means it can spin up quickly and better support
cloud-native applications that scale horizontally.

 Portable and platform-independent: Containers carry all their dependencies with them, meaning
that software can be written once and then run without needing to be re-configured across
computing environments (for example, laptops, cloud and on-premises).

» Supportive of modern development and architecture: Due to a combination of their deployment

portability and consistency across platforms and their small size, containers are an ideal fit for

modern development and application patterns—such as DevOps, serverless and microservices

—that are built by using regular code deployments in small increments.

Improved utilization: Like VMs, containers enable developers and operators to improve CPU

and memory utilization of physical machines. Containers go even further because they enable

microservices architecture so that application components can be deployed and scaled more
granularly. This is an attractive alternative to scaling up an entire monolithic application because

a single component is struggling with its load.

Faster time to market: Containers rely less on system resources, making them faster to manage

and deploy than VMs. This feature helps save money and time on application deployment and

optimizes time to market.

[52]

Development of an Al-Based System for Knowledge Specific 22
Assistance

MSc Thesis Apostolou Athanasios

The most popular containerization technology nowadays is Docker. Docker enables developers
to build, deploy, run, update and manage containers. Docker uses the Linux kernel (the
operating system’s base component) and kernel features (like Cgroups and namespaces) to
separate processes so they can run independently. Docker essentially takes an application and
its dependencies and turns them into a virtual container that can run on any Windows, macOS
or Linux-running computer system. Docker is based on a client-server architecture, with Docker
Engine serving as the underlying technology. Docker provides an image-based deployment model,
making sharing apps simple across computing environments [52]. Docker is an open platform
for developing, shipping, and running applications. Docker allows us to separate our applications
from our infrastructure so we can deliver software quickly. With Docker, we can manage our
infrastructure in the same ways we manage our applications. By taking advantage of Docker’s
methodologies for shipping, testing, and deploying code quickly, we can significantly reduce the
delay between writing code and running it in production [53]. Docker provides many tools and
components, the most important of which is Docker Engine. Docker Engine is an open source
containerization technology for building and containerizing our applications. Docker Engine acts
as a client-server application with: A server with a long-running daemon process dockerd. APls
which specify interfaces that programs can use to talk to and instruct the Docker daemon. A
command line interface (CLI) client docker. The CLI uses Docker APIs to control or interact with
the Docker daemon through scripting or direct CLI commands. Many other Docker applications
use the underlying APl and CLI. The daemon creates and manages Docker objects, such as
images, containers, networks, and volumes. [54] Docker Build is one of Docker Engine’s most
used features. Whenever we are creating an image we are using Docker Build. Build is a key
part of our software development life cycle allowing us to package and bundle our code and ship
it anywhere. Docker Build is more than a command for building images, and it's not only about
packaging our code. It's a whole ecosystem of tools and features that support not only common
workflow tasks but a Iso provides support for more complex and advanced scenarios [55]. Finally,
when we talk about docker is essential to talk about Docker Compose too. Docker Compose is a
tool for defining and running multi-container applications. It is the key to unlocking a streamlined
and efficient development and deployment experience. Compose simplifies the control of our
entire application stack, making it easy to manage services, networks, and volumes in a single,
comprehensible YAML configuration file. Then, with a single command, we create and start all
the services from our configuration file. Compose works in all environments; production, staging,
development, testing, as well as Cl workflows. It also has commands for managing the whole
lifecycle of our application:

« Start, stop, and rebuild services

* View the status of running services

+ Stream the log output of running services
* Run a one-off command on a service
[56]

Since we talked about the fundamental concepts of containers and docker, which enables
to build and run containers easily, it's time to talk about a more advanced containerization
technology used for more complicated production systems which usually run multiple containers,
this is Kubernetes. Kubernetes, also known as K8s, is an open source system for automating
deployment, scaling, and management of containerized applications. It groups containers that
make up an application into logical units for easy management and discovery. Kubernetes builds
upon 15 years of experience of running production workloads at Google, combined with best-
of-breed ideas and practices from the community [57]. Kubernetes is a portable, extensible,

Development of an Al-Based System for Knowledge Specific 23
Assistance

MSc Thesis Apostolou Athanasios

open source platform for managing containerized workloads and services, that facilitates both
declarative configuration and automation. It has a large, rapidly growing ecosystem. Kubernetes
services, support, and tools are widely available. Containers are a good way to bundle and run
our applications. In a production environment, our need to manage the containers that run the
applications and ensure that there is no downtime. For example, if a container goes down, another
container needs to start. Kubernetes provides us with a framework to run distributed systems
resiliently. It takes care of scaling and failover for our application, provides deployment patterns,

and more. For example: Kubernetes can easily manage a canary deployment for our system [58].

Some features of kubernetes are:

+ Service discovery and load balancing: Kubernetes can expose a container using the DNS name
or using their own IP address. If traffic to a container is high, Kubernetes is able to load balance
and distribute the network traffic so that the deployment is stable.

» Storage orchestration: Kubernetes allows us to automatically mount a storage system of our
choice, such as local storages, public cloud providers, and more.

» Automated rollouts and rollbacks: We can describe the desired state for our deployed containers
using Kubernetes, and it can change the actual state to the desired state at a controlled rate. For
example, we can automate Kubernetes to create new containers for our deployment, remove
existing containers and adopt all their resources to the new container.

» Automatic bin packing: We provide Kubernetes with a cluster of nodes that it can use to run
containerized tasks. We tell Kubernetes how much CPU and memory (RAM) each container
needs. Kubernetes can fit containers onto our nodes to make the best use of our resources.

+ Self-healing: Kubernetes restarts containers that fail, replaces containers, kills containers that
don’t respond to our user-defined health check, and doesn’t advertise them to clients until they
are ready to serve.

» Secret and configuration management: Kubernetes lets us store and manage sensitive
information, such as passwords, OAuth tokens, and SSH keys. We can deploy and update
secrets and application configuration without rebuilding our container images, and without
exposing secrets in our stack configuration.

» Batch execution: In addition to services, Kubernetes can manage our batch and ClI workloads,
replacing containers that fail, if desired.

» Horizontal scaling: Scale our application up and down with a simple command, with a Ul, or
automatically based on CPU usage.

* IPv4/IPv6 dual-stack: Allocation of IPv4 and IPv6 addresses to Pods and Services Designed for
extensibility Add features to our Kubernetes cluster without changing upstream source code.

(58]

Development of an Al-Based System for Knowledge Specific 24
Assistance

MSc Thesis Apostolou Athanasios

3. Specific Knowledge Assistance Approaches

As we have already described, the goal of this thesis is to create a system that helps its users
to find and search existing knowledge. We need to specify with more details our problem domain
in order to describe the approaches we will use. There is a single common source of documents
for all users. These documents can be of various formats like text, markdown, pdf, html or xml
files and we will refer to them as “raw input”. The users should be able to prompt the system by
asking questions relative to these documents. The system should be able to provide the users the
relative information, by using artificial intelligence technologies.

We will approach the problem with two different methods. For the first method we will create
a custom text generation model from scratch. We will train this model with the “raw input” data
and so it should be able to generate text according to user prompting. For the first method we will
take some existing pre-trained text generation models. These models we will be able to answer
multiple questions according to their training. However, we will use the RAG technique, which we
have described in Section 1.1.4, and we will try to both expand its knowledge with the “raw input”
data and at the same to limit its knowledge only to these “raw input” data.

3.1. Custom Text Generation Model Method

In this section we will describe the custom text generation model method in more depth. We will
analyze the important steps for our solution and show the most important code snippets of our
implementation. Then we list the advantages and disadvantages of this method.

3.1.1. Method Description

The first step is to read the “raw input” data. For this task we will use the python modules
langchain community.document loaders (uses the unstructured library underneath for which we
have talked about at Section 2.3) in order to read various documents of different, which exist in a
given path data path

def read docs(data path: str) -> list[Document]:
txt loader = DirectorylLoader(data path, glob="**/*.txt", loader cls=TextLoader,
silent errors=True, show progress=True, use multithreading=True)
txt docs = txt loader.load()
md loader = DirectorylLoader(data path, glob="**/*.md", loader cls=TextLoader,
silent errors=True, show progress=True, use multithreading=True)
md docs = md loader.load()
pdf loader = DirectorylLoader(data_path, glob="**/
*.pdf", loader cls=UnstructuredPDFLoader, silent errors=True, show progress=True,
use multithreading=True)
pdf docs = pdf loader.load()
html loader = DirectorylLoader(data path, glob="**/
*.html", loader cls=UnstructuredHTMLLoader, silent errors=True, show progress=True,
use multithreading=True)
html docs = html loader.load()
xml_ loader = DirectorylLoader(data_path, glob="**/
*.xml", Tloader cls=UnstructuredXMLLoader, silent errors=True, show progress=True,
use multithreading=True)
xml docs = xml loader.load()

Development of an Al-Based System for Knowledge Specific 25
Assistance

MSc Thesis Apostolou Athanasios

docs = txt docs + md docs + pdf docs + html docs + xml docs
return docs

After we have read all the documents, we concatenate them to a single string source. We then
create our vocabulary by splitting the string source into unique words using the word tokenize
function of module nltk.tokenize (from library NLTK for which we talked about at Section 2.3).
We add a special EOS (End Of Sentence) token to this vocabulary. We sort the vocabulary tokens
(words) and we create the encoded vocabulary by simply assigning values for first token to 0,
second token to 1, third token to 2, etc.

Then we split the whole string source in sentences using the sent tokenize function of module
nltk.tokenize . We split each sentence into words using word tokenize and after the end of each
sentence we append the EOS token. So we have know transformed the source string into the
tokens (words including EOS token). We now create the encoded tokens by using the mapping
from the encoded vocabulary we created from the previous step. So we now have a list with the
encoded tokens of the whole source string.

We now create our Xtrain tensor, by using a window of 100 (configurable) encoded tokens. So
each row of Xtrain tensor has 100 tokens, and every next row starts from the next token from the
start of this row. So first Xtrain row includes token 1 to token 100, second row includes token 2 to
token 101, third row includes token 3 to token 103 etc. For each row of Xtrain tensor we add a row
at Ytrain tensor with the next token after the last of the row. So first row of Ytrain has token 101,
second row of Ytrain has token 102, third row of Ytrain has token 103, etc. With these Xtrain and
Ytrain tensors, we will train our model. We select some random sentences and follow the same
procedure in order to create Xtest and Ytest tensors for evaluation of our model. It is important
to mention that Xtrain and Ytrain are created with all the sentences since we don’t want to lose
any information of the users’ documents, so Xtest and Ytest will not be a very good evaluation
since the model will have already see these sentences during its training, maybe in different order.
However, this will enable us to be able to determine the performance of our model.

Using PyTorch library (which we talked about at Section 2.3) we create a machine learning
model. This first layer of the model is an Embedding layer. The Embedding layer is used to store
word embeddings and retrieve them using indices. The input to the module is a list of indices,
and the output is the corresponding word embeddings [59]. So the embedding layer will help give
some meaning to our naive encoding of the tokens. The second layer of the model is an LSTM
layer. The LSTM layer is really good at predicting sequential data, so it will enable us to predict
the next token given the 100 sized window of tokens. Then we add a Dropout layer in order to
improve model’s performance. The last layer is simply a Linear layer which will have output equal
to the number of our unique vocabulary tokens. Here is the basic code of our model definition:
class Skalm(nn.Module):

def init (self, skalm props: SkalmProps, n vocab: int):
super(Skalm, self). init ()
self.embedding = nn.Embedding(
num_embeddings=n_vocab,
embedding dim=skalm props.embedding dim,
padding idx=0
)
self.lstm = nn.LSTM(input size=skalm props.embedding dim,
hidden size=skalm props.lstm hidden size,
num layers=skalm props.lstm num layers,
batch first=True)

Development of an Al-Based System for Knowledge Specific 26
Assistance

MSc Thesis

def

Apostolou Athanasios

self.dropout = nn.Dropout(skalm props.dropout)
self.linear = nn.Linear(skalm props.lstm hidden size, n_vocab)

forward(self, x):

embedding

X = self.embedding(x)
lstm

X, = self.lstm(x)

dropout

X = self.dropout(x)

take only the last output
x = x[:, -1, :1

produce output

x = self.linear(x)
return x

We now create a training loop in order to train our model using dataset train created by Xtrain
and Ytrain tensors. We are using the Adam optimizer. Adam is an algorithm for first-order gradient-
based optimization of stochastic objective functions, based on adaptive estimates of lower-order
moments [60]. We use the CrossEntropylLoss as our loss function. CrossEntropyLoss criterion
computes the cross entropy loss between input logits and target and it is useful when training a
classification problem with C classes [61]. In our case the number of classes is the number of our
unique vocabulary tokens. Using the argmax function we are able to get the token with highest
probability to be the next token. In each train epoch with calculate the loss and the accuracy of
the model. After each training epoch, we evaluate the model with the dataset test created by
Xtest and Ytest tensors. During the training we save each model with less loss than our current
best model for comparison purposes and finally we keep the model with the least loss as our
final model.

def train one epoch(model: Skalm, loader: DatalLoader, optimizer: optim.Adam, loss fn:

nn.Cross
trai
trai
for

trai

return train_epoch loss, train epoch accuracy

EntropyLoss) -> tuple[float, float]:
n_epoch total loss = 0

n_epoch total correct = 0

X batch, y batch in loader:

Zero your gradients for every batch!
optimizer.zero grad()

Make predictions for this batch

y pred = model (X batch)

Compute the loss and its gradients
loss = loss fn(y pred, y batch)
loss.backward()

Adjust learning weights
optimizer.step()

calculate

train_epoch total loss += loss.item()
winners =y pred.argmax(dim=1)
train_epoch total correct += (y_batch

winners).sum().item() / len(y_batch)

n_epoch loss = train_epoch total loss / len(loader)
train _epoch accuracy = train_epoch total correct / len(loader)

Development of an Al-Based System for Knowledge Specific

Assistance

27

MSc Thesis Apostolou Athanasios

def validate one epoch(model: Skalm, loader_test: Dataloader, loss fn:

nn.CrossEntropylLoss):

test epoch total loss = 0

test epoch total correct = 0

for X_batch, y batch in loader_test:
y pred = model (X batch)
test loss = loss fn(y pred, y batch)
test epoch total loss += test loss.item()
winners = y pred.argmax(dim=1)

test epoch total correct += (y batch == winners).sum().item() / len(y_batch)

test epoch loss = test epoch total loss / len(loader test)
test epoch accuracy = test epoch total correct / len(loader test)
return test epoch loss, test epoch accuracy

def train skallm lstm(model: Skalm, skalm config: SkalmConfig, skalm dir path:

str,

Xtrain: Tensor, Ytrain: Tensor, Xtest: Tensor, Ytest: Tensor) -> tuple[dict[str, Any] |

None, list[float], list[float]]:
n_epochs = skalm config.n epochs
batch size = skalm config.batch size
optimizer = optim.Adam(model.parameters(), lr=skalm config.lr)
loss _fn = nn.CrossEntropyLoss(reduction="mean")
dataset train = TensorDataset(Xtrain, Ytrain)
dataset test = TensorDataset(Xtest, Ytest)
loader train = Dataloader(dataset train, shuffle=True, batch size=batch size)
loader test = Dataloader(dataset test, shuffle=True, batch size=batch size)
best model state dict = None
best loss = np.inf
train losses: list[float] = []
train_accuracy list: list[float] = []
test losses: list[float] = []
test accuracy list: list[float] = []
for epoch in range(n_epochs):
model.train(True)

train _epoch loss, train epoch accuracy = train one epoch(model, loader train,

optimizer, loss fn)
train losses.append(train_epoch loss)
train_accuracy list.append(train_epoch accuracy)
Validation
model.eval()
with torch.no grad():

test epoch loss, test epoch accuracy = validate one epoch(model, loader test,

loss fn)
test losses.append(test epoch loss)
test accuracy list.append(test epoch accuracy)
if test epoch loss <= best loss:
best loss = test epoch loss
best model state dict = model.state dict()

save model(skalm dir path, best model state dict, train losses,

train accuracy list, test losses, test accuracy list, epoch)

Development of an Al-Based System for Knowledge Specific
Assistance

28

MSc Thesis Apostolou Athanasios

save model(skalm dir path, best model state dict, train losses, train accuracy list,
test losses, test accuracy list, None)

return best model state dict, train losses, test losses
We perform the training only on CPU due to the hardware restrictions of our laptop (“HP Laptop
15s-eq2xxx” with processor “AMD Ryzen 5 5500U") for 5 days using only one book as a user
document [62]. We show the evaluation results:

skalm_test loss

—— Cross-Entropy Loss
4.5 1

4.0 1

3.5 1

3.0 -

2.5

Cross-Entropy Loss

2.0 -

1.5 4

o 4
—
o
]
o
w
=]
'S
o
U
(=]
o
=]
~
o
(=]
o

Epoch

IMAGE 4: SkalLM Test Loss

skalm_test accuracy

0.7 4 — Accuracy

0.6

Accuracy

0.4 4

0.3 4

40 50 60 70 80
Epoch

[=8
=
[=]
[
[=]
W
o

IMAGE 5: SkalLM Test Accuracy

When users prompt the system with this model then we split the question to sentences and then
to encoded tokens maximum of 100 (same as the window we used for training) tokens. If the

Development of an Al-Based System for Knowledge Specific 29
Assistance

MSc Thesis Apostolou Athanasios

question is less than 100, then we add a special padding token to the left as many times as needed
in order to reach 100 tokens. The system invokes the model in order to predict the next word.
The system then shifts the question to the left, replaces the last token with the predicted one and
then invokes the model again until it reaches a maximum of generated tokens (default 160) or a
maximum of EOS tokens (default 6).

3.1.2. Method Advantages and Disadvantages

We described the process of the method. This method offers very little advantages and is not very
suitable for a complete fully functional solution.

Advantages of this method are:
* Independence: Does not rely in any pre-trained text generation models.
Flexibility: The model creation and training is fully customizable and can be changed to better
suit the knowledge field for which the assistant is needed.

Disadvantages of this method are:

* Needs many sources: The model needs to learn both the language and the knowledge field from
the documents, so it needs thousands of documents in order to be able to perform somewhat
well.

 Highly consuming: Each time a document is added, removed or edited the model needs to be

retrained, which is a very time and resource consuming task.

Hard to implement: This method needs a dedicated data science team to fine tune and improve

the model parameters and layers, in order to be able to achieve a satisfying result for a specific

knowledge field.

» Hard to return sources: It’'s really hard, almost impossible, to return the sources of the relative
information with which the answer was constructed.

3.2. Retrieval Augmented Generation (RAG) Method

In this section we will describe the Retrieval Augmented Generation (RAG) method in more depth.
We will analyze the important steps for our solution and show the most important code snippets
of our implementation. Then we list the advantages and disadvantages of this method.

3.2.1. Method Description

For the RAG method we will depend on existing pre-trained LLMs. We have described the
characteristics of LLMs at Section 1.1.3.

The first step is to read the “raw input” data from the users’ documents similar to what we did
in the previous method. We will use the same read docs python function we showed before.

We will use class RecursiveCharacterTextSplitter from module langchain.text splitter in
order to split the “raw input” in to chunks:

docs = read docs(data path)
transformation: split the documents into chunks
splitter = RecursiveCharacterTextSplitter(

chunk size=128,

chunk overlap=8

Development of an Al-Based System for Knowledge Specific 30
Assistance

MSc Thesis Apostolou Athanasios

)
texts = splitter.split documents(docs)

Then we need an embedding model. Embeddings create a vector representation of a piece of
text. This is useful because it means we can think about text in the vector space, and do things
like semantic search where we look for pieces of text that are most similar in the vector space [63].
We will use the al1-MinilLM-L6-v2 pre-trained model from hugging face, which maps sentences &
paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or
semantic search. [64]. Then we will use the FAISS vector store (which we described in Section 2.3)
in order to save the embedding documents as a vector store to a local path.
embeddings = HuggingFaceEmbeddings (

model name=embedding model path,
model kwargs={'device': 'cpu'},
encode kwargs = {'normalize embeddings': True}

)
db = FAISS.from documents(texts, embeddings)
db.save local(vector store path, constants.VS INDEX NAME)

Now when users are prompting the system we create LangChain chain as of official
documentation [65]. For this we create a pipeline of an existing pre-trained model. In our custom
python function create 11m we support two types of pre-trained models. The first one is using
llama.cpp library we described in Section 2.3 for models in gguf format (mainly llama2 and llama3).
The second type is using AutoModelForCausallLM with HuggingFacePipeline which supports most
text generation models which have been uploaded in hugging face hub together with their
configuration. We load the vector store which we stored in the previous steps. We create a more
complicated chain in order to be able to return the relevant source together with the answer as
per official documentation [66]. The result consists of the question , the answer and the context
which is a list with the relevant Documents of the chunks in which the model found the answer.
More advanced models like llama2 and llama3 accept system prompting which allows the users
to instruct the LLM in which way to construct the final answer.

def create Llm(llm model path: str, model type: str, temperature: int, top p: int):
context length = 512
max_tokens = 160
batch size = 512
last n tokens = 8
repetition penalty = 1.1
if model type == 'llamacpp':
Callbacks support token-wise streaming
callback manager = CallbackManager([StdOutCallbackHandler()])
1lm = LlamaCpp(
model path=1lm model path,
temperature=temperature,
max_tokens=max_tokens,
last _n_tokens size=last n_tokens,
top_p=top_p,
callback manager=callback manager,
verbose=True, # Verbose is required to pass to the callback manager
client=None,
n_ctx=context length,

Development of an Al-Based System for Knowledge Specific 31
Assistance

MSc Thesis Apostolou Athanasios

n parts=-1,
seed=-1,
f16 kv=True,

logits all=False,
vocab only=False,
use_mlock=False,
n_threads=None,
n_batch=batch_size,
n_gpu_layers=None,
suffix=None,
logprobs=None,
repeat penalty=repetition penalty
)
return 1lm
elif model type == 'huggingface':
tokenizer = AutoTokenizer.from pretrained(llm_model path)
model = AutoModelForCausallLM.from pretrained(llm model path, device map='cpu')
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer,
max_length=context length)
1lm = HuggingFacePipeline(pipeline=pipe)
return 1lm
else:
raise Exception(f"unsuported model type {model type}")

def create chain(vector store path: str, embedding model path: str, 1lm model path: str,
prompt template: str, model type: str, temperature: int, top p: int):

load the language model
1lm = create 1lm(1lm _model path, model type, temperature, top p)
load the interpreted information from the local database
embeddings = get embeddings(embedding_model path)

db = FAISS.load local(vector store path, embeddings, constants.VS INDEX NAME,

allow dangerous deserialization=True)

prepare a version of the 1lm pre-loaded with the local content
retriever = db.as retriever(search kwargs={'k': 9})
prompt = PromptTemplate(

template=prompt template,

input variables=['context', 'question']

def format docs(docs):
return "\n\n".join(doc.page content for doc in docs)

rag _chain from docs = (
RunnablePassthrough.assign(context=(lambda x: format docs(x["context"])))
| prompt
[Tlm
| StrOutputParser()
)

rag chain with source = RunnableParallel(

Development of an Al-Based System for Knowledge Specific 32
Assistance

MSc Thesis Apostolou Athanasios

{"context": retriever, "question": RunnablePassthrough()}
) .assign(answer=rag_chain_ from docs)
return rag chain with source

ga_chain = create chain(vector_store path, embedding_model path, 1lm_model_path,
prompt template, model type, temperature, top p)

output = ga _chain.invoke(question)

invoke output = InvokeOutput.from output dict(output)

3.2.2. Method Advantages and Disadvantages

We described the process of the RAG method. This method offers many advantages with only a
few disadvantages and therefore it is recommended for a complete functional system.

Advantages of this method are:
* Needs only sources relative to knowledge field: The model already understands the needed
language, so it needs access only to the relevant documents for our desired knowledge field.
Adaptable: New, deleted or altered documents demand only the vector store to be recreated,
so the systemd can adapt to changes relatively quickly.
Easy to implement: This method can be implemented easily with the dependency on the libraries
we use without any deep advanced knowledge on how LLMs work.
» Able to return sources: It's really easy to return the relevant sources in which the answer was
found.
Prompting: It's easy to specify system prompting with advanced LLMs that support it, in order
to change the style or even the allowed or disallowed content of the answers.

Dissadvantages of this method are:
» Dependency on external LLMs: It requires external pre-trained LLMs. While nowadays there are
plenty of those and new ones are created almost every year, it is not always clear how they are
trained and what biases they have.
Inflexibility: The model structure and training procedure cannot be altered (sometimes it can be
extended with additional sources though).

Development of an Al-Based System for Knowledge Specific 33
Assistance

MSc Thesis Apostolou Athanasios

4. System Architecture

Now that we have explained the two methods on which our solutions is based upon, we are ready
to describe the system architecture of our complete solution.

4.1. System Components

We have develop 4 basic components for our application. The ska_11m component, which contains
a library and a command line application, is implemented in python and it is responsible for
all document processing and machine learning tasks. The ska cli command line application is
implemented in rust and is responsible for various administration tasks and uses the ska 1lm
internally to expose a more friendly command line interface for the machine learning tasks needed
to be performed by the admin. The ska server component, implemented in rust as well, exposes
a REST API, which enables users to perform the various tasks of the application, like prompting
the LLMs. Finally, the ska frontend materializes the Graphical User Interface with which the users
can interact with.

Apart from the four components we developed, we utilize three extra components for our
complete solution. The first one is Keycloak [67], an open source Identity and Access Management
solution which enables our users to login and to be authenticated and authorized to perform
specific actions of our application. The second one is PostgreSQL [68], an advanced open source
relational database which our application uses for storing and fetching data. The final component
is an api gateway which will lay ahead of our services and redirect the web traffic to the needed
service for the task.

In the following diagram, we show the fundamental Specific Knowledge Assistant (SKA) System
Components. With green color we have marked the components that we develop. With burgundy
color we have marked the extra components that we utilize and configure them in order to complete
our system.

SKA System Components

ska_cli

ska_llm

ska_frontend
static server

ska_server

ska_frontend api_gateway
client

»
PostgreSQL

Keycloak

IMAGE 6: SKA System Components

As we already said, the ska_11m component is implemented in python and it is responsible for
all document processing and machine learning tasks. It supports five crucial for our application

Development of an Al-Based System for Knowledge Specific 34
Assistance

MSc Thesis Apostolou Athanasios

operations which are using the libraries we described in Section 2.3. The operation download 1lm
downloads some given models from hugging face hub [35]. The operation rag prepare performs
the prepartation for the RAG method that we discussed in Section 3.2.1, including reading users’
documents and storing their chunks in vector store. The operation rag_invoke invokes the given
LLM and answers the given question based on the context of the relevant chunks found in the
vector store. The operation create 1lm creates and trains the SKA text generation model we
described in Section 3.1.1. The operation invoke skalm invokes our custom generation model
and answers the question with the procedure we described in Section 3.1.1. We show a high level
diagram of these basic operations:

ska_llm J
hugginface_hub
download lim [Jdownload_lims lio
- -"- module

rag_prepare
rag_invoke
create_skalm

faiss lib

il

rag
module

langchain lib

|

unstructured lib
lim module

nitk lib

|

IMAGE 7: SKA LLM operations

We have already said that the ska_cli command line application is implemented in rust, it is
responsible for various administration tasks and it uses the ska_11m internally. This cli component
exposes a friendly command line interface so that the admin can perform various operations. For
the command line interface and argument parsing we will depend on clap library. For all database
access we depend on the SeaORM library which we have describe in Section 2.4. There are two
top level commands, the command db and command model . The first command, command db , is
responsible for administration tasks that affect our PostgreSQL database. It has a single child
command command migrate which migrates the database schema if there is a new schema version
available. The second top level command, command model , is responsible for all the machine
learning tasks. We don’t use any relevant rust libraries for these tasks, but the core functionality is
handled by our ska_11m component as we have explained before. It has 5 child commands. The
first command command download downloads the needed machine learning models form hugging
face hug [35]. The predefined list with supported models currently are:

* all-MinilM-L6-v2 [64]: A sentence-transformers model which maps sentences & paragraphs to
a 384 dimensional dense vector space. It is used as our embedding model when we are storing/
searching context chunks in/from our vector store.

* Llama-2-7B-Chat-GGUF [69]: A Llama-2 model quantized for better invoking times performance,
but with less accuracy.

* Meta-Llama-3-8B-Instruct-GGUF [70]: A Llama-3 model quantized for better invoking times
performance, but with less accuracy.

Development of an Al-Based System for Knowledge Specific 35
Assistance

MSc Thesis Apostolou Athanasios

The second command command_insert inserts the models from the temporary downloaded
location to a persisted location that can be read by our application. The commands
command create skalm and command rag prepare are essentially wrappers around the equivalent
operations of our ska 1lm module. They also perform some extra checks and validations to
disallow unwanted consequences. The command command rag invoke performs validations and
uses internally either rag_invoke or invoke skalm operations of ska_1lm components depending
on the selected model. The following is a high level diagram showing the basic operations of
ska_cli and the most important modules they are using.

ska_cli J

entities
command_db -subcmd--» command_migrate

?
»
--3»{command_download ﬂ
v
-- command_insert
ska_llm
-
i
H I
;'— -» command_create_skalm

>
nn_model
»
>
~--»{command_rag_prepare

.

: >

: utils
‘--»{command_rag_invoke

IMAGE 8: SKA CLI operations

segorm lib

v
'
i
'
P
'
'
i
r
P
'

command_model o

¥

Y

The ska_server component is implemented in rust, it exposes a REST API with some http
endpoints which will be called by the ska frontend component (we will describe in a later
paragraph). It uses the same code base as the ska cli component in order to have consistent
business logic and be able to share domain relevant modules like entities and repos . For
the http api construction we depend on the axum library which we discussed in Section 2.4. All
the http endpoints are protected and need an authenticated user with required permissions for
allowed access. The authentication is performed by implementing an auth middleware which is
used by all endpoints. Each endpoint demands different user roles for a user to have in order to
be allowed to access it. The there are two top level routes route auth and route assistant
The first route auth has only on operation app login and is called when users are logged in the
app in order to update users’ details from the users pool to our database. The second top level
endpoint route route assistant enables three basic categories of operations. The first category
fetch is about fetching user data like chats and historical messages. The second category chat
CRUD is about CRUD (Create Read Update Delete) operations on user’s chats, which allows users
to manage their chats. The last operation, ask question , is about users asking questions to a
selected chat which uses a defined LLM. This operation performs various validations and uses
our ska_1lm component internally as well in order to invoke the required LLM. We show a simple
high level diagram of ska server component.

Development of an Al-Based System for Knowledge Specific 36
Assistance

MSc Thesis Apostolou Athanasios

Ska_sen'eJ
i{ entities
- »
app_login -
:O seaorm lib
i
! 1

| »
] Ll
i ' H repos
- [
| ' »
] Ll
: i - L
' |
@ =) ' ska_llm
-
-‘: nn_model
|
" auth_middleware |

SO]
- - ! -
T - i Ll
N Utlls
axum lib
»
>

IMAGE 9: SKA Server operations

fetch

i

The ska_frontend component materializes the Graphical User Interface with which the users
can interact with. It actually consists of two sub components. The first one is ska_frontend client
which contains all the built and bundled final needed files like html, css, javascript, images, etc.
The second sub component ska frontend static server is a simple http server, implemented by
using a simply configured nginx instance, which serves all the files needed for the ska frontend
client to runin the users’ browsers. The ska_frontend
client is what we call a Single Page Application (SPA) [46] so the pages can contain complex
logic in the client side and dynamically change their content without fetching new complete html
pages from a server for any single request. The implementation is based on the Vue.js library [51].
The multiple pages can be achieved in the client side by using the vue router library [71]. The
clientis using the “Asynchronous JavaScript and XML” (AJAX) [72] technique in order to fetch data
from our ska server by utilizing the axios library [73]. For the authentication and authorization
to work, we are using the oidc-client-ts library [74] which communicates with the Keycloak
instance in order to fetch the needed tokens (we will talk about it with more details when we will
describe Keycloak). The client provides three top level pages from which users can perform their
operations. The page home is the first page that is shown to a user. It shows a short description
about the app and its content changes slightly depending on whether users are logged in or not.
The page account enables logged in users to see their account details as well as to edit them.
The page assistant is the most important page as it enables logged in users to use the Specific
Knowledge Assistant. There users can create, edit or delete a chat with a selected LLM. Users
can then ask questions in this chat and fetch historical questions and answers of existing chats.
The following diagram shows a high level overviews of ska_frontend :

Development of an Al-Based System for Knowledge Specific 37
Assistance

MSc Thesis Apostolou Athanasios

ska_frontend J
ska_frontend
static server

A

Vue js lib

ska_backend

v vue router lib

ska_frontend
client

i —
__________________ lmm o e axios lib
|

[i

1 1

i i i
page_home page_account page_assistant

Keycloak

i (i

oidc-client lib

el

IMAGE 10: SKA Frontend operations

The keycloak component is used as a user pool and as a user authentication and authorization
utility. For this we have created a specific SKA Realm which contains the available users together
with their assigned roles. The supported roles are:

+ SKA_ADMIN: role that practically allows access to all endpoints

+ SKA_USER: role that allows users to edit their account info and use the assistant functionality.

+ SKA_GUEST: not used in current version but reserved in case of wanted future functionality
additions.

In order to authorize and authenticate users in ska frontend and protect our endpoints in

ska_server components we use the OpenID Connect “Authorization Code flow”, which follows

essentially the Oauth2 “Authorization Code flow with PKCE”. The steps that are performed for this
authorization flow are the following

» Users clicks “login” in ska_frontend .

» ska frontend client using oidc-client-ts library creates a cryptographically-random
code_verifier and from this generates a code_challenge and redirects user to Keycloak login
page along with the code_challenge.

» Keycloak creates a cryptographically-random code_verifier and from this generates a
code_challenge.

» Users authenticate using their credentials.

» Keycloak stores the code_challenge and redirects users back to the application with an
authorization code, which is good for one use.

» ska frontend client using oidc-client-ts sends this code and the code_verifier to a keycloak
endpoint

» Keycloak verifies the code_challenge and code_verifier and responds with an ID token and
access token, and a refresh token.

* ska frontend client passes the access token to the Authorization header in every request to
ska server using axios library.

The following example from frameworks.readthedocs.io can clarify the procedure, in which we
can replace the “Angular Client” with our ska frontend client component.

Development of an Al-Based System for Knowledge Specific 38
Assistance

MSc Thesis Apostolou Athanasios

i Keycloak
. Authorization Server
Resource: Owner

create random cods_werifisr B"

Access a
PP cods_challenge = t(cods_werifier)

I
I
I
{
I
I
redirect to Login !

With cods_challenge |

I I
| Request Login with code) challengs

5LOre code_challenge

Login form

authenticate user

>l
I
! Request token with code + code_verifier

I
Return token

Resource Owner Angular Client Keycloak
% Authorization Server

IMAGE 11: Keycloak Oauth2 Authorization Code flow with PKCE [75]

The PostgresSqQL database is used in order to persist users’ data. Specifically we use the table
users to store each user who logs in to our application. We update their details in each login.
Each user can have multiple chats which we store to table user_chat . Each chat can have
multiple messages some of them are “ANSWER” type and some of them are “QUESTION” type.
We store the messages to table chat_message . Here is the Entity Relationship Diagram (ERD) of
our database:

Development of an Al-Based System for Knowledge Specific 39
Assistance

MSc Thesis Apostolou Athanasios

(o]
® ¢ thapo_ska_schema
& thapo_ska_schema ® [user_chat

9 seaql_migrations chat_id bigint (IDENTITY}

4> thapa_ska_schema Fo)

version character varying 5 users & userJd_fk bigint & thapo_ska_schema
[applied_at bigint f chat_name character varyin po-ska
pplied atbig user_id bigserial —+ g9(200)] chat_message

(@) sub character varying f lm_model character varying

chat_message_id bigint (IDE
(200)

(@) email character varying NTITY)
© [} prompt character varying(s1

/2 chat_id_fk bigint
2 & 9

[1ast_login timestamp withou

%> thapo_ska_schema ttime zone

fj message_type character var
ying(20)

fj message_body character va
rying(1000)

|

temperature double precisio
9 nn_model [] created_at timestamp witho

ut time zone

n

nn_modeL_id bigserial B top_p double precision
f] updated_at timestamp with

[] path character varying out time zone fj created_attimestamp witho [contextjsonb

ut time zone
A is_trained boolean

) [} created_at timestamp witho
) [updated_at timestamp with 4t time zone
[created_at timestamp witho out time zone

ut time zone

[updated_at timestamp with
out time zone

IMAGE 12: SKA Database ERD

The api gateway is implemented by either using a nginx [76] reverse proxy or a kubernetes
Ingress [77] depending on the deployment method. All the incoming http requests reach this
component at first and then they get redirected to the desired service. This enables us to have a
single component which can be configured with rules. Additionally, we have the benefit to serve
the whole application under a single owned domain name and redirect the traffic based on http
paths. Specifically we configure the following http paths redirections:

» “/app”to ska_frontend : any http path that starts with “/app” is redirected to ska_frontend service
» “/backend” to ska_server : any http path that starts with “/backend” is redirected to ska_server
service

* “/iam” to Keycloak : any http path that starts with “/iam” is redirected to Keycloak service

4.2. Development Lifecycle and Deployment

We talked about our fundamental System components and modules. Now we will briefly talk about
the development lifecycle of the system and its deployment methods.

The code of our application exists in a git repository at https://github.com/ThanosApostolou/
thapo-ska. There are 3 fundamental branches. New code is directly pushed into main branch or
merged by some other feature branch into main branch. When changes of multiple commits have
been tested enough locally, then the main branch is merged into dev branch. After multiple merges
in dev branch, when we are ready for a release we merge dev branch into prod branch.

In alignment with the git branches, the application can run with 3 different environments:
* local environment
* dev environment
* prod environment

Each environment specifies different configuration for our services (e.g. about which url the
frontend uses, which url the backend uses, which database schema to use, etc...).

Development of an Al-Based System for Knowledge Specific 40
Assistance

https://github.com/ThanosApostolou/thapo-ska
https://github.com/ThanosApostolou/thapo-ska

MSc Thesis Apostolou Athanasios

The application is continuously deployed by use CI/CD (Continuous Integration and Continuous
Delivery) practices [78]. To achieve this we use Jenkins [79], an open source automation server.
In more details:

* main : main branch is tested only locally, so we don’t deploy anything for this.
» dev : Whenever changes are merged to dev branch, a jenkins pipeline is executed. The basic
pipeline tasks are:

» build all our services as docker images

» push the built docker images to our private docker repository

» deploy and start the application with dev environment at our private server, using docker

compose (see Section 2.6).

The dev application is targeting a private port which can be accessed only by our local network or

by using vpn. This environment’s purpose is to have a fully deployed system for testing purposes

which is not affected by local changes.

* prod : Whenever changes are merged to prod branch, a jenkins pipeline is executed. The basic

pipeline tasks are:

» build all our services as docker images

» push the built docker images to our private docker repository

» deploy and start the application with prod environment at a k3s [80] kubernetes instance
(see Section 2.6) installed in our private server. For easier management of all the kubernetes
resources we need to create, we use Helm [81].

The prod application is targeting a port which can be accessed publicly from the internet by all
the users. Currently the domain our application is using is the https://thapo-ska.thapo.org/app,
but it is possibly to change after the completion of this thesis.

Development of an Al-Based System for Knowledge Specific 41
Assistance

https://thapo-ska.thapo.org/app

MSc Thesis Apostolou Athanasios

5. Usage and Execution of the Application

We talked about the System Architecture of our application, now we will show real execution of
our application and its results.

5.1. Command Line Interface (CLI) Usage

We will show examples of executing the ska cli component. In some cases we will show the
description of the command and in other cases we will show the important parts of the command
output, where it makes sense.

Running app-cli --help will describe the top level command line arguments and options of
the application.
Usage: app-cli <COMMAND>

Commands:
model
db
help Print this message or the help of the given subcommand(s)

Options:
-h, --help Print help
-V, --version Print version

Starting with the db top level command, running app-cli db --help will describe its arguments
and options

Usage: app-cli db <COMMAND>

Commands:

migrate migrates db

help Print this message or the help of the given subcommand(s)
Options:

-h, --help Print help

We see that it has a single migrate subcommand. When we run this command app-cli db
migrate --help , it shows that it doesn’t take any arguments. We use this command in order to
migrate our database schema when there are changes.

migrates db
Usage: app-cli db migrate

Options:
-h, --help Print help

To see the arguments and options of the second top level command we run the command app-
cli model --help . We see that are five subcommands available: download , insert , rag-prepare ,
rag-invoke and create-skalm

Usage: app-cli model <COMMAND>

Development of an Al-Based System for Knowledge Specific 42
Assistance

MSc Thesis Apostolou Athanasios

Commands:
download downloads models and LLMs for RAG
insert inserts the downloaded LLMs in the systems files location
rag-prepare prepares the documents and vector store for RAG
rag-invoke invokes an LLM with a question
create-skalm creates and trains SKA text generation model
help Print this message or the help of the given subcommand(s)
Options:

-h, --help Print help

Subcommand download downloads the needed models and LLMs use for the RAG method. The
models we download are those we described the ska cli component at Section 4
* all-MinilM-L6-v2 [64]
* Llama-2-7B-Chat-GGUF [69]
* Meta-Llama-3-8B-Instruct-GGUF [70]

downloads models and LLMs for RAG
Usage: app-cli model download

Options:
-h, --help Print help

Some partial output running the actual command gives:

config.json: 100% || N 612/612 [00:00<00:00, 5.43MB/s]

config sentence transformers.json: 100% || | 116/116 [00:00<00:00, 1.02MB/
s]

modules.json: 100% || NG| 349/349 [00:00<00:00, 3.79MB/s]
sentence bert config.json: 100%| | 53.0/53.0 [00:00<00:00, 364kB/s]
tokenizer config.json: 100% |G| 350/350 [00:00<00:00, 2.66MB/s]
tokenizer.json: 100% || N 466k/466k [00:00<00:00, 1.98MB/s]
vocab.txt: 100% || NNEME | 232k/232k [00:00<00:00, 917kB/s]

pytorch model.bin: 100% | | | ©00.9M/90.9M [00:26<00:00, 3.47MB/s]
model.safetensors: 100% || NG| ©0.9Y/90.9M [00:32<00:00, 2.84MB/s]
Fetching 17 files: 100% ||| 17/17 [00:34<00:00, 2.00s/it]

1lama-2-7b-chat.Q2 K.gguf: 100% || N 2.83G/2.83G [04:04<00:00, 11.6MB/s]
Fetching 5 files: 100%| | 5/5 [04:04<00:00, 48.88s/it]

meta-1lama-3-8b-instruct.Q2 K.gguf: 100% || NN 3.18G/3.18G [04:36<00:00,
11.5MB/s]

Fetching 4 files: 100% || NN 4/4 [04:37<00:00, 69.45s/it]

The subcommand app-cli model insert --help shows the description of the insert
subcommand. It doesn’t take any arguments. It copies the models, which got downloaded in a

Development of an Al-Based System for Knowledge Specific 43
Assistance

MSc Thesis Apostolou Athanasios

temporary directory with the previous command, to a location which can be read by the system.
The need of a separate command instead of downloading the models directly to our system
directory is done in order to avoid partially downloaded models as well as for security concerns.

inserts the downloaded LLMs in the systems files location
Usage: app-cli model insert

Options:
-h, --help Print help

The subcommand rag-prepare reads the users’ documents and creates the vector store so that
it can be read by the application later. Running the command app-cli model rag-prepare --help
shows that the command receives an option about which embedding model to use:

prepares the documents and vector store for RAG

Usage: app-cli model rag-prepare --emb-name <EMB NAME>

Options:
-e, --emb-name <EMB NAME>
-h, --help Print help

Running app-cli model rag-prepare --emb-name all-MinilM-L6-v2 shows that it found a pdf
document (we use a single pdf book [62] as users’ source), which it split in chunks with
which it created the FAISS vector store (we have described with more details the procedure at
Section 3.2.1):

DirectorylLoader txt

0it [00:00, ?it/s]
DirectoryLoader md

0it [00:00, ?it/s]
DirectorylLoader pdf
100%| | /1 [01:03<00:00, 63.77s/it]
DirectorylLoader html

0it [00:00, ?it/s]
DirectoryLoader xml

0it [00:00, ?it/s]
len(docs): 1
splitter.split documents
get embeddings ()

get embeddings start

get embeddings end
FAISS.from documents
FAISS.save local

The subcommand create-skalm creates and trains the SKA custom text generation model as
we have discussed at Section 3.1.1. Running the command app-cli model create-skalm --help
shows that the command receives no arguments. We won’t show the output of the full execution
since it takes days to complete and it is very long.

creates and trains SKA text generation model

Usage: app-cli model create-skalm

Development of an Al-Based System for Knowledge Specific 44
Assistance

MSc Thesis Apostolou Athanasios

Options:
-h, --help Print help

Finally, the subcommand rag-invoke invokes the system specifying a desired embedding
model, an LLM, a question and an prompt-template. The prompt-template option is optional and
if omitted the default for this LLM will be used. Running the command app-cli model rag-invoke
--help the output below:

invokes an LLM with a question

Usage: app-cli model rag-invoke [OPTIONS] --emb-name <EMB NAME> --1lm-name <LLM NAME> --
question <QUESTION>

Options:

-e, --emb-name <EMB NAME>

-1, --1lm-name <LLM NAME>

-q, --question <QUESTION>

-p, --prompt-template <PROMPT TEMPLATE>

-h, --help Print help
Runrﬂng app-cli model rag-invoke --emb-name all-MinilM-L6-v2 --1lm-name 1lama2-7B --
question "what is a database?" we see that the system returns a JSON object with 3 top level
keys. The first one is context which shows the relevant chunks of the Documents that the LLM
found the relevant information. The second one is the question that users provided. The third one
is the answer of the LLM.

{
"context": [
{
"page content": "Designing Objects for Relational Databases",
"metadata": {
"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven

Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"

}
o
{
"page content": "systems must use some nonobject technical infrastructure,
most commonly relational databases. But making a coherent model that",
"metadata": {
"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven

Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"
}
i
{

"page content": "But for the important common case of a relational database
acting as the persistent form of an object-oriented domain, simple",
"metadata": {
"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"

Development of an Al-Based System for Knowledge Specific 45
Assistance

MSc Thesis Apostolou Athanasios

"page content": "the database is used to assemble new objects. Indeed, the
code that usually has to be written makes it hard to forget this",
"metadata": {
"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"

}
}
"page _content": "There are three common cases:\n\nl. The database is primarily
a repository for the objects.\n\nl121",
"metadata": {

"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"
}
+
{
"page_content": "designing objects for relational databases, 159-
161\n\nencapsulation, 154\n\nexample, 172-173\n\nand FACTORIES, 157-159",
"metadata": {
"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"
}
},

"page_content": "There is a raft of techniques for dealing with the technical
challenges of database access. Examples include encapsulating SQL",
"metadata": {
"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"

}
I
{
"page_content": "reality presents the usual problems of a mixture of paradigms
(see Chapter 5). But the database is more intimately related to",
"metadata": {

"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"
}
i
{
"page_content": "mapping between database tables and objects. There are other
technical examples. This pattern can also be applied within the",
"metadata": {

Development of an Al-Based System for Knowledge Specific 46
Assistance

MSc Thesis Apostolou Athanasios

"source": ".config/ska/local/data/books/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software/[Eric Evans] (2003) Domain Driven
Design Tackling Complexity in the Heart of Software.pdf"

}
}
I,
"question": "what is a database?",
"answer": " A database is a collection of data stored in a structured and organized

manner, typically in a digital format. It can be used to store and manage large amounts of
data, such as customer information, financial transactions, or inventory levels. A database
can be accessed and manipulated using various techniques, such as SQL (Structured Query
Language) or NoSQL databases. The data in a database is typically organized into tables
or schemas, with each table containing a set of rows or records that represent individual
instances of a particular entity or object. The relationships between these entities can
be defined using foreign keys, which link related tables together. The database can be
used to create, read, update, and delete (CRUD) operations on the data it contains."

}

Asking a simpler question to our custom SKA text generation model model

rag-invoke --emb-name all-MinilM-L6-v2 --1lm-name skalm --question "what is

domain driven design?" does not return any context. We see that our model which was trained
only wit a single book and was designed with a small depth of layers with small parameters does
not answer very good.

{
"context": [1,
"question": "what is domain driven design?",
"answer": "a pattern is that it is not a solution to the model . \n the team can

readily distinguish two models . \n the developer was able to respond to the model and the
design . \n the team had encountered in the model , the team had given a new concept . \n
the model is a set of concepts that can be integrated by the domain experts , the bones of
the model is the same concept . \n the team may not be a very deep model for the domain .
\n"

}

5.2. Graphical User Interface (GUI) Usage

We showcased the usage of our command line application. After the deployment, the admin
downloads and inserts the models, creates and trains the SKA text generation model and prepares
the RAG vector store. Now the system is ready to be used by its users by accessing the Graphical
User Interface that has been deployed. We will show the main pages of our app and the core
functionality of the Specific Knowledge Assistant.

The Home page is the first page a user sees. It shows a brief description of the application.
It also allows users to login to the system by either clicking the link in the page content or by
revealing the users account dropdown at the top right of the page.

Development of an Al-Based System for Knowledge Specific 47
Assistance

MSc Thesis Apostolou Athanasios

= Specific Knowledge Assistant

Welcome to Specific Knowledge Assistant

The Specific Knowldge Assistant (SKA) helps you find existing knowledge based on specific documents which have

been given to the system by the admin.

Please Login in order to use SKA

I —
IMAGE 13: SKA Home Page

When users click the login link, they get redirected to the kecloakk login page. There they can
login with their credentials and the Keycloak will redirect them back to the SKA home page.

THAPO_SKA_LOCAL

Sign in to your account

Username or email

thanosdev

Password

Sign In

IMAGE 14: SKA Keycloak Login

Now that users are logged in the Home page content changes in order to show a link to the
Assistant page. The top right account dropdown also changes in order to enable user to logout or
navigate the account info page.

Development of an Al-Based System for Knowledge Specific 48
Assistance

MSc Thesis Apostolou Athanasios

= Specific Knowledge Assistant

@ Account

@ E— logout

Welcome to Specific Knowledge Assistant

The Specific Knowldge Assistant (SKA) helps you find existing knowledge based on specific documents which have been given to the system by

the admin.

Go to Assistant page in order to use SKA

IMAGE 15: SKA Home Page and Account Dropdown with logged in user

The top left header menu now shows the Assistant page as an option for navigation too.

@ Assistant

IMAGE 16: SKA Home Page and Toolbar Menu with logged in user

In the Account page users can see their basic account information together with their assigned
roles. The “Manage Account” button will navigate users to the respective Keycloak page for
account management.

Development of an Al-Based System for Knowledge Specific 49
Assistance

MSc Thesis Apostolou Athanasios

= Specific Knowledge Assistant

thanosdev

Email thanosapostolou@outlook.
Name Thanos

Surname Apo

Roles SKA_USER

Manage Account

IMAGE 17: SKA Account Page

In the Keycloak account management page users can edit their personal information like first
name, last name and email. Users can also see other information like their signed in devices. When
users have finished with their changes they can click the link “Back to thapo_ska_local_frontend”
at the top in order to be navigated back to SKA application GUI.

@AKEYCLC Than

Welcome to Keycloak account management

[

a v -,

Personal info Account security Applications

Manage your basic information Control your password and account Track and manage your app
access permission to access your account

Personal info
Signing in Applications
Device activity

IMAGE 18: Keycloak Account Page

The most important page of our application is the Assistant Page. Initially, for users this page
does not include any chats, but it asks them to create some in order to be able to ask questions.

Development of an Al-Based System for Knowledge Specific 50
Assistance

MSc Thesis Apostolou Athanasios

= Specific Knowledge Assistant

Please Add or Select a chat in order to ask the Assistant some
+ Add Chat

a
questions!

IMAGE 19: Assistant Page

When users click the “Add Chat” button, a dialog appears which asks them to select an LLM
and enables them to edit some parameters. For a start, we will select our custom text generation
model skalm which does not support any parameters. The system enables us to create multiple
chats with the same LLM, so we will give the chat the name “our_skalm” so that we can recognize
it. We can select the newly created “our_skalm” and delete it or edit it by using a similar dialog
with the “Add Chat” dialog.

Add Chat
Choose a LLM:

skalm -

Chat Name our_skalm
Edit Parameters?

Temperature

Top-P

Prompt

#

Cancel

IMAGE 20: Assistant Add Chat Dialog

We select the chat we created “our_skalm”. Any new chat starts with an answer of the assistant
“Please ask me anything related to this field”. We ask the same question we used when we
showcased the CLI app “what is domain driven design?”. As before, the answer is not very
satisfying for the reasons we have already explained. The model does not support showing the
relevant context references either.

Development of an Al-Based System for Knowledge Specific 51
Assistance

MSc Thesis Apostolou Athanasios

—+ Add Chat

7~
|\!/| our_skalm (skalm)

sh two
1 had

or per

y deep model for the domain .

what is domain driven design? H D }

IMAGE 21: Assistant our_skalm Chat

We will not use our custom text generation model any more, but we will focus on the models
that are used for the RAG method. We will create now a chat called “our_llama3” using the latest
Llama3-8B LLM (the quantized version we have already described when we download it using
our cli app). We will use the default values for the parameters. We set values 0 for “Temperature”
and “Top-p” parameters in order to minimize the randomness of the answer, as we desire to give
the same answers for the same questions with the same context. The default prompting template
we are using for Llama-3 is the following, which tries to guide the LLM to answer only based on
the provided context and not based on its own knowledge from training.
<|begin_ of text|><|start header id|>system<|end header id|>
You are an assistant for question-answering tasks. Use the following pieces of retrieved
context to answer the question. If you don't know the answer, just say that you don't
know. Use three sentences maximum and keep the answer concise.<|eot id|><|start header id|
>user<|end header id|>
Context: {context}. Question: {question}<|eot id|><|start header id|>assistant<|
end header id|>

Development of an Al-Based System for Knowledge Specific 52
Assistance

MSc Thesis Apostolou Athanasios

[Add Chat h |
Choose a LLM:

llama3-868 -

Chat Name our_llama3

Edit Parameters?
Temperature 0

Top-P 0

<|begin_of_text|> <|start_header_id|>system<
end_header_id|>

ou are an assistant for question-answering tasks. Use
the following pieces of retrieved context to answer the
question. If you don't know the answer, just say that you
don't know. Use three sentences maximum and keep the
answer concise.<|got_id|> <|start_header_id|>user<|
end_header_id|>

Prompt Context: {context). Question: {question}<|ggt id|><|

start_header_id|>assistant<|end_header_id|=

IMAGE 22: Assistant Add Llama3 Chat

We select the chat we created “our_llama3”. We ask the same question that we asked skalm
model “what is domain driven design?”. We also ask a second question “what is a database?”.
We see that the answers are much better in comparison with skalm model.

-+ Add Chat

our_skalm (skalm) E

what i ain driven design?

(®) our llama3 (lama3-g8) !

what is a database?

IMAGE 23: Assistant our_llama3 Chat

When chats are used with supported by RAG models, the answers have a little button at the end
of them. Clicking on this button opens a modal that shows the context with the relevant chunks of
which the model found the answer. So, it enables the users to cross reference their documents
and verify the LLM answers.

Development of an Al-Based System for Knowledge Specific 53
Assistance

MSc Thesis Apostolou Athanasios

Context

Context Document 0:

Content:

The goal of domain-driven design is to create better software by focusing on a model of the domain rather than the technology.
Source:

/home/thanos/.config/ska/local/data/books/[Eric Evans] (2003) Domain Driven Design Tackling Complexity in the Heart of Software/[Eric Evans]
(2003) Domain Driven Design Tackling Complexity in the Heart of Software.pdf

Context Document 1:

Content:

The Utility of a Model in Domain-Driven Design In domain-driven design, three basic uses determine the choice of a model.
Source:

/home/thanos/.config/ska/local/data/books/[Eric Evans] (2003) Domain Driven Design Tackling Complexity in the Heart of Software/[Eric Evans]
(2003) Domain Driven Design Tackling Complexity in the Heart of Software.pdf

Context Document 2:

Content:

Domain-driven design is both a way of thinking and a set of priorities, aimed at accelerating software projects that have to

Source:

/home/thanos/.config/ska/local/data/books/[Eric Evans] (2003) Domain Driven Design Tackling Complexity in the Heart of Software/[Eric Evans]

nnnnnn -~ - - B PS e

IMAGE 24: Assistant our_llama3 Context Modal
Users can experiment with LLMs “Temperature”, “Top-p” and “Prompting Template” parameters
in order to achieve their wanted behavior for the task of knowledge search and assistance! We
have completed the showcase of the most important parts of our appliation.

Development of an Al-Based System for Knowledge Specific 54
Assistance

MSc Thesis Apostolou Athanasios

6. Conclusions and Future Work

We studied the usage of text generation machine learning models in specific knowledge search
and analysis assistance. We used two different methods to accomplish these tasks. The first
method involved the creation of a custom text generation machine learning model. We trained
this model with users’ documents for the specific knowledge field and we tried to make it possible
to answer users’ questions about this knowledge field. The second approach was based on the
Retrieval Augmented Generation (RAG) technique. We used pre-trained Large Language Models
(LLMs), we provided the users’ documents as context to these LLMs and we tried to make them
answer based only on this context and not based on their knowledge acquired by their training.

Then, we developed a full web application and a complete system with its own infrastructure in
order to support users to utilize this knowledge search and assistance, in a specific knowledge field
constructed by various documents of different formats. The admin was able to use the Command
Line Interface (CLI) application in order to administrate the system, manage the needed LLMs
and add/delete/update the users’ documents. The users were able to use the Graphical User
Interface (GUI) and utilize the Specific Knowledge Assistant (SKA) by asking questions relevant
to the knowledge field.

After using the system and researching ways to improve its capabilities and tune its performance
we reached in the following conclusions.

» Our custom text generation model was not able to perform well in answering questions. This
was expected since the model needed to learn from scratch all the vocabulary and grammar of
the language in addition the specific field of knowledge. The depth of the model architecture, the
training time and the users’ documents we had available for training were not enough in order
to achieve this goal.

» The method using a custom text generation model is not suitable for this task. Even if we
managed to make our model to perform well, each time the users’ documents were updated
we will need to retrain the model in these documents, a procedure very costly in terms of time,
resources and energy wasted.

» The method using the RAG technique achieved the desired outcome. Users were able to get
answers for their questions and be provided with the relative context of the information so that
can deep dive into or even cross check the answer.

» The whole system and infrastructure can be self hosted without any dependency on any other
external or paid service. We were able to download free high performant LLMs locally to our
self hosted server and deploy our whole application and the needed infrastructure using Docker
and Kubernetes. Utilizing Kubernetes allows us to move the system to a managed external paid
Kubernetes service if we ever need higher resources and availability in the future, with very
little changes.

* We need very high resources for a good user experience. We managed our system to work
somehow well by using lighter quantized machine learning models versions instead of the
original with the trade-off of losing accuracy. However, with multiple users’ documents and
larger chunks splits in our vector store (which gives us in better results) the system needs
several minutes sometimes to answer some questions. We understand that we need to utilize
a GPU (which our hardware didn’t support) instead of just using the CPU. Also the memory
requirements increase as well with the minimum being around 3GB of RAM.

The Specific Knowledge Assistance (SKA) was able to achieve its goals. However, this only the
beginning since machine learning and specifically RAG technique will increase in popularity more
and more as the years goes by, with many researchers trying to advance its capabilities and to

Development of an Al-Based System for Knowledge Specific 55
Assistance

MSc Thesis Apostolou Athanasios

mitigate its disadvantages. With this in mind, there are several improvements and changes we
can apply in the future after the completion of this thesis:

Deprecate support of the custom text generation model. As we concluded before, the custom
text generation model method had many drawbacks and wasn’t able to perform well. Supporting
both RAG and our custom text generation model limited the system and didn’t allow us to fully
take advantage of RAG technique.

Utilize a supported GPU. We will need to acquire high performance hardware with GPU
capabilities and deploy the system with some changes in order to support GPU during both the
vector store creation and the invocation of the LLMs during. This will vastly improve the user
experience.

Support more generation formats like images, sounds and videos. We only focused on text
generation task on this thesis. However, newer machine learning models are being developed
that support generation of images, sound and videos. In the future we will be able to update the
system in order to support generation of these types and not just text. This will be very useful in
some knowledge fields.

Add integrations with other applications and utilize interfaces which enables us to interact with
the external world. The langchain library we used has the concept of Tools [82] which allows
more advanced information to be passed in the LLMs programmatically. We didn’t use these
Tools since they are not very mature yet in development and their usage is very advanced for this
thesis goals. However, in the future we would be able to expand the system and find information
by other systems and not just documents.

We achieved the goal of knowledge assistance in a specific knowledge field using artificial

intelligence technologies. We believe that the system we created can form a future basis and be
expanded in order to be able to perform more complex tasks!

Development of an Al-Based System for Knowledge Specific 56

Assistance

MSc Thesis Apostolou Athanasios

Bibliography

(1]

(2]

(3]

(4]

(3]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

H. Face, “Text Generation.” [Online]. Available: https://huggingfagce.co/tasks/text-
generation

Wikipedia, “Artificial intelligence.” [Online]. Available: https://en.wikipedia.org/wiki/Artificial_
intelligence

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th Global Edition.
Pearson, 2021.

Wikipedia, “Machine Learning.” [Online]. Available: https://en.wikipedia.org/wiki/Machine_
learning

GeeksforGeeks, “Types of Machine Learning.” [Online]. Available: https://www.
geeksforgeeks.org/types-of-machine-learning

lakeFS, “Machine Learning Components: Elements & Classifications.” [Online]. Available:
https://lakefs.io/blog/machine-learning-components/

J. Holdsworth and M. Scapicchio, “Deep learning.” [Online]. Available: https://www.ibm.com/
topics/deep-learning

Amazon, “Deep learning.” [Online]. Available: https://aws.amazon.com/what-is/deep-
learning/

R. Khalkar, A. S. Dikhit, and A. Goel, “Handwritten Text Recognition using Deep
Learning (CNN & RNN),” International Advanced Research Journal in Science, Engineering
and Technology, 2021, [Online]. Available: https://www.researchgate.net/publication/
353939315 _Handwritten_Text_Recognition_using_Deep_Learning_ CNN_RNN

javatpoint, “Applications of Machine learning.” [Online]. Available: https://www.javatpoint.
com/applications-of-machine-learning

GeeksforGeeks, “Applications of Machine learning.” [Online]. Available: https://www.
geeksforgeeks.org/machine-learning-introduction/

C. Staff, “10 Machine Learning Applications.” [Online]. Available: https://www.coursera.org/
articles/machine-learning-applications

I. Goodfellow, Y. Bengio, and A. Courville, Artificial Intelligence: Deep learning - adaptive
computation and machine learning. 2016.

K. Martineau, “What is generative Al.” [Online]. Available: https://research.ibm.com/blog/
what-is-generative-Al

Cloudflare, “What is a large language model (LLM).” [Online]. Available: https://www.
cloudflare.com/learning/ai/what-is-large-language-model/

Ruman, “Setting Top-K, Top-P and Temperature in LLMs.” [Online]. Available: https://rumn.
medium.com/setting-top-k-top-p-and-temperature-in-llms-3da3a8f74832

A. Verma, “Understanding temperature, top_p, top_k, logit bias in LLM
parameters.” [Online]. Available: https://aviralrma.medium.com/understanding-lim-
parameters-c2db4b07f0ee

K. Talamadupula, “A Guide to Quantization in LLMs.” [Online]. Available: https://symbl.ai/
developers/blog/a-guide-to-quantization-in-lims/

Development of an Al-Based System for Knowledge Specific 57

Assistance

https://huggingfagce.co/tasks/text-generation
https://huggingfagce.co/tasks/text-generation
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://www.geeksforgeeks.org/types-of-machine-learning
https://www.geeksforgeeks.org/types-of-machine-learning
https://lakefs.io/blog/machine-learning-components/
https://www.ibm.com/topics/deep-learning
https://www.ibm.com/topics/deep-learning
https://aws.amazon.com/what-is/deep-learning/
https://aws.amazon.com/what-is/deep-learning/
https://www.researchgate.net/publication/353939315_Handwritten_Text_Recognition_using_Deep_Learning_CNN_RNN
https://www.researchgate.net/publication/353939315_Handwritten_Text_Recognition_using_Deep_Learning_CNN_RNN
https://www.javatpoint.com/applications-of-machine-learning
https://www.javatpoint.com/applications-of-machine-learning
https://www.geeksforgeeks.org/machine-learning-introduction/
https://www.geeksforgeeks.org/machine-learning-introduction/
https://www.coursera.org/articles/machine-learning-applications
https://www.coursera.org/articles/machine-learning-applications
https://research.ibm.com/blog/what-is-generative-AI
https://research.ibm.com/blog/what-is-generative-AI
https://www.cloudflare.com/learning/ai/what-is-large-language-model/
https://www.cloudflare.com/learning/ai/what-is-large-language-model/
https://rumn.medium.com/setting-top-k-top-p-and-temperature-in-llms-3da3a8f74832
https://rumn.medium.com/setting-top-k-top-p-and-temperature-in-llms-3da3a8f74832
https://aviralrma.medium.com/understanding-llm-parameters-c2db4b07f0ee
https://aviralrma.medium.com/understanding-llm-parameters-c2db4b07f0ee
https://symbl.ai/developers/blog/a-guide-to-quantization-in-llms/
https://symbl.ai/developers/blog/a-guide-to-quantization-in-llms/

MSc Thesis Apostolou Athanasios

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

[39]
[40]
[41]

LangChaing, “Build a Retrieval Augmented Generation (RAG) App.” [Online]. Available:
https://python.langchain.com/v0.2/docs/tutorials/rag/

Amazon, “What is Retrieval-Augmented Generation.” [Online]. Available: https://aws.
amazon.com/what-is/retrieval-augmented-generation/

Wikipedia, “Python (programming language).” [Online]. Available: https://en.wikipedia.org/
wiki/Python_(programming_language)

Amazon, “What is Python.” [Online]. Available: https://aws.amazon.com/what-is/python/

GeeksforGeeks, “Python Language advantages and applications.” [Online]. Available:
https://www.geeksforgeeks.org/python-language-advantages-applications/

Wikipedia, “Rust (programming language).” [Online]. Available: https://en.wikipedia.org/wiki/
Rust_(programming_language)

Rust, “Rust.” [Online]. Available: https://www.rust-lang.org/

C. Mittal, “10 Best Use Cases of Rust Programming Language in 2023.” [Online].
Available: https://medium.com/@chetanmittaldev/10-best-use-cases-of-rust-programming-
language-in-2023-def4e2081e44

M. Tawfik, “Rust Language: Pros, Cons, and Learning Guide.” [Online]. Available: https://
medium.com/@apicraft/rust-language-pros-cons-and-learning-guide-594e8c9e2b7c

N. Project, “Natural Language Toolkit.” [Online]. Available: https://www.nltk.org/
N. Project, “Installing NLTK Data.” [Online]. Available: https://www.nltk.org/data.html
Wikipedia, “PyTorch.” [Online]. Available: https://en.wikipedia.org/wiki/PyTorch

N. Corporation, “PyTorch.” [Online]. Available: https://www.nvidia.com/en-eu/glossary/
pytorch/

LangChain, “Introduction.” [Online]. Available: https://python.langchain.com/v0.2/docs/
introduction/

LangChain, “LLMs.” [Online]. Available: https://python.langchain.com/v0.1/docs/modules/
model_io/lims/

LangChain, “Vector stores.” [Online]. Available: https://python.langchain.com/v0.1/docs/
modules/data_connection/vectorstores/

HuggingFace, “Hugging Face Hub documentation.” [Online]. Available: https://huggingface.
co/docs/hub/index

G. Gerganov, “llama.cpp.” [Online]. Available: https://github.com/ggerganov/llama.cpp

G. Gerganov, “ggml.” [Online]. Available: https://github.com/ggerganov/ggmil/blob/master/
README.md

ivanov, M. Brett, and mdboom2, “matplotlib.” [Online]. Available: https://pypi.org/project/
matplotlib/

U. Technologies, “unstructured.” [Online]. Available: https://pypi.org/project/unstructured/
M. Douze and L. Hosseini, “faiss.” [Online]. Available: https://pypi.org/project/unstructured/

E. Page and K. K., “clap.” [Online]. Available: https://github.com/clap-rs/clap/blob/master/
README.md

Development of an Al-Based System for Knowledge Specific 58

Assistance

https://python.langchain.com/v0.2/docs/tutorials/rag/
https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://aws.amazon.com/what-is/python/
https://www.geeksforgeeks.org/python-language-advantages-applications/
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://www.rust-lang.org/
https://medium.com/@chetanmittaldev/10-best-use-cases-of-rust-programming-language-in-2023-def4e2081e44
https://medium.com/@chetanmittaldev/10-best-use-cases-of-rust-programming-language-in-2023-def4e2081e44
https://medium.com/@apicraft/rust-language-pros-cons-and-learning-guide-594e8c9e2b7c
https://medium.com/@apicraft/rust-language-pros-cons-and-learning-guide-594e8c9e2b7c
https://www.nltk.org/
https://www.nltk.org/data.html
https://en.wikipedia.org/wiki/PyTorch
https://www.nvidia.com/en-eu/glossary/pytorch/
https://www.nvidia.com/en-eu/glossary/pytorch/
https://python.langchain.com/v0.2/docs/introduction/
https://python.langchain.com/v0.2/docs/introduction/
https://python.langchain.com/v0.1/docs/modules/model_io/llms/
https://python.langchain.com/v0.1/docs/modules/model_io/llms/
https://python.langchain.com/v0.1/docs/modules/data_connection/vectorstores/
https://python.langchain.com/v0.1/docs/modules/data_connection/vectorstores/
https://huggingface.co/docs/hub/index
https://huggingface.co/docs/hub/index
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/ggml/blob/master/README.md
https://github.com/ggerganov/ggml/blob/master/README.md
https://pypi.org/project/matplotlib/
https://pypi.org/project/matplotlib/
https://pypi.org/project/unstructured/
https://pypi.org/project/unstructured/
https://github.com/clap-rs/clap/blob/master/README.md
https://github.com/clap-rs/clap/blob/master/README.md

MSc Thesis Apostolou Athanasios

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]
[52]

[53]
[54]
[55]
[56]
[57]
[58]
[59]

[60]

[61]

[62]

[63]

[64]

C. Lerche, “tokio.” [Online]. Available: https://github.com/tokio-rs/tokio/blob/master/
README.md

D. Pedersen and J. Platte, “axum.” [Online]. Available: https://github.com/tokio-rs/axum/blob/
main/README.md

B. Chan and C. Tsang, “SeaORM.” [Online]. Available: https://github.com/SeaQL/sea-orm/
blob/master/README.md

SeaQL.org, “Database Connection.” [Online]. Available: https://www.sea-gl.org/SeaORM/
docs/install-and-config/connection/

M. contributors, “SPA (Single-page application).” [Online]. Available: https://developer.
mozilla.org/en-US/docs/Glossary/SPA/

M. contributors, “CSS: Cascading Style Sheets.” [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/CSS

M. contributors, “JavaScript.” [Online]. Available: https://developer.mozilla.org/en-US/docs/
Web/JavaScript

M. contributors, “TypeScript.” [Online]. Available: hthttps://developer.mozilla.org/en-US/
docs/Glossary/TypeScript

M. contributors, “HTML: HyperText Markup Language.” [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/HTML

E. You, “Introduction.” [Online]. Available: https://vuejs.org/guide/introduction

S. Susnjara and I. Smalley, “What are containers?.” [Online]. Available: https://www.ibm.com/
topics/containers

D. Inc, “Get Docker.” [Online]. Available: https://docs.docker.com/get-docker/

D. Inc, “Docker Engine overview.” [Online]. Available: https://docs.docker.com/engine/

D. Inc, “Overview of Docker Build.” [Online]. Available: https://docs.docker.com/build/

D. Inc, “Docker Compose overview.” [Online]. Available: https://docs.docker.com/compose/
T. K. Authors, “kubernetes.” [Online]. Available: https://kubernetes.io/

T. K. Authors, “Overview.” [Online]. Available: https://kubernetes.io/docs/concepts/overview

P. Contributors, “Embedding.” [Online]. Available: https://pytorch.org/docs/stable/generated/
torch.nn.Embedding.html

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” [Online]. Available:
https://arxiv.org/abs/1412.6980

P. Contributors, “CrossEntropyLoss.” [Online]. Available: https://pytorch.org/docs/stable/
generated/torch.nn.CrossEntropyLoss.html

E. Evans, Domain Driven Design Tackling Complexity in the Heart of Software, 1st ed.
Addison-Wesley, 2004.

LangChain, “Text embedding models.” [Online]. Available: https://python.langchain.com/v0.
1/docs/modules/data_connection/text_embedding/

N. Reimers, O. Espejel, P. Cuenca, and T. Aarsen, “all-MiniLM-L6-v2.” [Online]. Available:
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Development of an Al-Based System for Knowledge Specific 59

Assistance

https://github.com/tokio-rs/tokio/blob/master/README.md
https://github.com/tokio-rs/tokio/blob/master/README.md
https://github.com/tokio-rs/axum/blob/main/README.md
https://github.com/tokio-rs/axum/blob/main/README.md
https://github.com/SeaQL/sea-orm/blob/master/README.md
https://github.com/SeaQL/sea-orm/blob/master/README.md
https://www.sea-ql.org/SeaORM/docs/install-and-config/connection/
https://www.sea-ql.org/SeaORM/docs/install-and-config/connection/
https://developer.mozilla.org/en-US/docs/Glossary/SPA/
https://developer.mozilla.org/en-US/docs/Glossary/SPA/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
hthttps://developer.mozilla.org/en-US/docs/Glossary/TypeScript
hthttps://developer.mozilla.org/en-US/docs/Glossary/TypeScript
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://vuejs.org/guide/introduction
https://www.ibm.com/topics/containers
https://www.ibm.com/topics/containers
https://docs.docker.com/get-docker/
https://docs.docker.com/engine/
https://docs.docker.com/build/
https://docs.docker.com/compose/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://arxiv.org/abs/1412.6980
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://python.langchain.com/v0.1/docs/modules/data_connection/text_embedding/
https://python.langchain.com/v0.1/docs/modules/data_connection/text_embedding/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

MSc Thesis Apostolou Athanasios

[65]

[66]

[67]
[68]
[69]

[70]

[71]
[72]

[73]
[74]
[79]

[76]
[77]

(78]
[79]
(80]
(81]
(82]

LangChain, “Chains.” [Online]. Available: https://python.langchain.com/v0.1/docs/modules/
chains/

LangChain, “Returning sources.” [Online]. Available: https://python.langchain.com/v0.1/
docs/use_cases/question_answering/sources/

K. Authors, “Keycloak.” [Online]. Available: https://www.keycloak.org/
T. P. G. D. Group, “PostgreSQL.” [Online]. Available: https://www.postgresql.org/

T. Jobbins, “Llama-2-7B-Chat-GGUF.” [Online]. Available: https://huggingface.co/TheBloke/
Llama-2-7B-Chat-GGUF

P. Bendus, A. Kotliar, and C. Crowley, “Meta-Llama-3-8B-Instruct-GGUF.” [Online]. Available:
https://huggingface.co/SanctumAl/Meta-Llama-3-8B-Instruct-GGUF

E. You and E. S. M. Morote, “Vue Router.” [Online]. Available: https://router.vuejs.org/

M. contributors, “Ajax.” [Online]. Available: https://developer.mozilla.org/en-US/docs/
Glossary/AJAX

J. J. "Jake" Sarjeant and M. Zabriskie, “Axios.” [Online]. Available: https://axios-http.com/
P. Luginbuihl, “oidc-client-ts.” [Online]. Available: https://authts.github.io/oidc-client-ts/

K. Authors, “Keycloak OAuth2 PKCE.” [Online]. Available: https://frameworks.readthedocs.
io/en/latest/spring-boot/spring-boot2/keycloakOAuth2PKCE.html

nginx, “nginx.” [Online]. Available: https://nginx.org/en/

T. K. Authors, “INgress.” [Online]. Available: https://kubernetes.io/docs/concepts/services-
networking/ingress/

Wikipedia, “CI/CD.” [Online]. Available: https://en.wikipedia.org/wiki/CI/CD
Jenkins, “Jenkins.” [Online]. Available: https://www.jenkins.io/

K. P. Authors, “K3s.” [Online]. Available: https://k3s.io/

H. Authors, “Helm.” [Online]. Available: https://helm.sh/

LangChain, “Tools.” [Online]. Available: https://python.langchain.com/v0.1/docs/modules/
tools/

Development of an Al-Based System for Knowledge Specific 60

Assistance

https://python.langchain.com/v0.1/docs/modules/chains/
https://python.langchain.com/v0.1/docs/modules/chains/
https://python.langchain.com/v0.1/docs/use_cases/question_answering/sources/
https://python.langchain.com/v0.1/docs/use_cases/question_answering/sources/
https://www.keycloak.org/
https://www.postgresql.org/
https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF
https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF
https://huggingface.co/SanctumAI/Meta-Llama-3-8B-Instruct-GGUF
https://router.vuejs.org/
https://developer.mozilla.org/en-US/docs/Glossary/AJAX
https://developer.mozilla.org/en-US/docs/Glossary/AJAX
https://axios-http.com/
https://authts.github.io/oidc-client-ts/
https://frameworks.readthedocs.io/en/latest/spring-boot/spring-boot2/keycloakOAuth2PKCE.html
https://frameworks.readthedocs.io/en/latest/spring-boot/spring-boot2/keycloakOAuth2PKCE.html
https://nginx.org/en/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://en.wikipedia.org/wiki/CI/CD
https://www.jenkins.io/
https://k3s.io/
https://helm.sh/
https://python.langchain.com/v0.1/docs/modules/tools/
https://python.langchain.com/v0.1/docs/modules/tools/

	Abstract
	Introduction
	Theory and Literature Review
	Artificial intelligence
	Machine Learning
	Text Generation Models, LLM
	Retrieval Augmented Generation (RAG)

	Sections

	Technologies
	Python Programming Language
	Rust Programming Language
	Python Libraries
	Rust Libraries
	HTML, CSS, SPA, Typescript, Vue.js
	Containers, Docker and Kubernetes

	Specific Knowledge Assistance Approaches
	Custom Text Generation Model Method
	Method Description
	Method Advantages and Disadvantages

	Retrieval Augmented Generation (RAG) Method
	Method Description
	Method Advantages and Disadvantages

	System Architecture
	System Components
	Development Lifecycle and Deployment

	Usage and Execution of the Application
	Command Line Interface (CLI) Usage
	Graphical User Interface (GUI) Usage

	Conclusions and Future Work
	Bibliography

