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Abstract

Keywords: artificial intelligence, large language models, chatgpt, financial analysis, re-

trieval augmented generation, knowledge mining, timeseries prediction, online learning,

cloud computing, machine learning, deep learning

The exponential growth of digital data and advancements in Artificial Intelligence (AI) have

redefined data-driven decision-making across industries. However, managing complex, high-

dimensional, and multi-frequency datasets remains challenging, particularly in finance and

cloud computing sectors where data variability, real-time adaptability, and predictive preci-

sion are crucial. This thesis introduces data-centric AI methodologies designed to create

resilient and adaptable systems capable of processing diverse data across multiple formats

and domains.

Specifically, the dissertation presents a Knowledge and Reasoning Framework that utilizes

ontologies and retrieval-augmented generation (RAG) techniques for integrating, managing,

and processing structured and unstructured data. This enables the combined utilization of

different types of data originating from different sources. Furthermore, techniques are devel-

oped to improve the real-time adaptability of time-series analysis models, allowing continu-

ous system updates to capture evolving trends and maintain robust performance in dynamic

environments. Techniques are also presented for the optimized use of Large Language Mod-

els (LLMs) for text analysis and classification, comparing their effectiveness with traditional

transfer learning techniques for sentiment analysis in financial articles. Finally, an innovative

system is proposed that combines and extends these methodologies, managing text, numeri-

xiii



cal data, and time-series data from various sources, providing a comprehensive solution with

applications in the financial sector.

The dissertation validates the proposed methodologies through real-world applications such

as time-series prediction for cloud computing resource management, financial risk assess-

ment, sentiment analysis, and systematic stock selection in finance. These contributions

demonstrate significant improvements in handling complex datasets, ensuring real-time adapt-

ability, and delivering interpretable and reliable AI-driven insights. By addressing the com-

mon challenges of data complexity and heterogeneity in real-world applications through

multiple data-centric methodologies, this thesis offers scalable and resilient AI solutions

for data-rich environments, effectively managing diverse and complex data formats across

various domains.



��������

������ �������: ������� ���������, ������ �������� �������, chatgpt ,
����������������� �������, �������� ����� ������������, ������� ������,
�������� �����������, ������������ �����, �������� ������, ����� ������

� �������� ������ ��� �������� ��������� ��� �� ��������� ���� �������
��������� (��) ����� ����������������� �� ���� ��������� ��� ���������
�� �������� �� ��������� �������. ������, � ���������� ��� ������������
��������, ������ ��������� ��� ������������ ����� ������� ���������
��������� ��������, ��������� ����� ������ ��� ������������������ ��� ���
cloud computing, ���� � �������� ��� ���������, � ����������������� ��
���������� ����� ��� � �������� ��������� ����� ��������. � �������
�������� ����������� ������������ �� �� ��������� �� ��������, ������-
������ �� ����������� ��������� ��� ������������� ��������� ����� ��
�������������� ������� �������� �� ��������� ������ ��� ������.

������������, � �������� ����������� ��� ������� ����������� ��� ������
��� ��������� ���������� ��� �������� ���������-����������� �����������
(RAG) ��� ��� ����������, ���������� ��� ����������� ��������� ��� ��
��������� ���������. ���� ��������� �� ����������� ����� ������������
����� ��������� ������������ ��� ������������ �����. ��������, �����-
������� �������� ��� �� �������� ��� ������������������ �������� ��������
����������� �� ���������� �����, ������������ ������ ��������� ��� ��-

xv



�������� ��� ��� ��������� ������������� ������ ��� �� ��������� ����-
��� �������� �� �������� ������������. �������������� ������ ��������
��� ���������������� ����� ������� ��������� �������� (LLMs) ��� �-
������ ��� ���������� ��������, ������������ ��� ������������������ ����
�� ������������ �������� ��������� ������� ��� ������� �������������
�� ����������������� �����. �����, ����������� ��� ��������� �������
��� ��������� ��� ���������� ����� ��� ������������, �������������� �������,
���������� �������� ��� �������� ����������� ��� �������� �����, ������-
���� ��� ������������ ���� �� ��������� ���� ���������������� �����.

� �������� ���������� ��� ������������� ������������ ���� ��������� ����
���������� �����, ���� � �������� ����������� ��� �� ���������� �����
��� cloud computing, � ���������� ������������������ ��������, � �������
������������� ��� � ����������� ������� ������� ��� ���������������-
��. ����� �� ����������� ������������ ���������� ���������� ��� ����������
�������� ������� ���������, �������������� ����������������� �� ����-
������ ����� ��� ���������� ����������� ��� ��������� ������������ ��
�� ����� ��. ���������������� ��� ������ ���������� ��� ��������������
��� ��� ������������ ��� ��������� �� ��������� ��� ����������� ������
���� ������������ ������ ��� ������������� ������������ �� ���������
�� ��������, ���� � �������� ��������� ���������� ������ ��� ��� �����-
��������� ������������ �������� ��� �������� ���������, ������������
���� �������� ������������ ���������� �������� ���������� �� �����-
���� ������.



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

�������� (Abstract in Greek) . . . . . . . . . . . . . . . . . . . . . . . . . xv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Knowledge Modeling for Semantic Matching of Heterogeneous Data
Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Background on Knowledge Systems . . . . . . . . . . . . . . . . 14

2.1.1 Knowledge Bases and Ontologies . . . . . . . . . . . . . . 14

2.1.2 Vector Databases and Embedding-Based Retrieval . . . . 18

2.1.3 Retrieval-Augmented Generation Methods . . . . . . . . . 22

2.2 The Reasoning Framework . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Use Cases in Cloud Computing and Finance . . . . . . . . . . . . 28

2.3.1 Use Case 1: Cloud Computing with Knowledge Graphs
and Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . 28

xvii



2.3.2 Use Case 2: Macroeconomic Analysis with RAG Approaches 37

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Online Learning for Time Series Prediction in Dynamic Environments 49

3.1 Background on Online Learning for Time Series Prediction . . . 50

3.1.1 Introduction to Time Series Prediction . . . . . . . . . . . 50

3.1.2 Challenges in Time Series Prediction . . . . . . . . . . . . 53

3.1.3 Overview of Online Learning . . . . . . . . . . . . . . . . 57

3.2 Overview and Design of the Online Learning System . . . . . . . 60

3.2.1 Architecture Components . . . . . . . . . . . . . . . . . . . 60

3.2.2 System Workflow and Component Interactions . . . . . . 63

3.3 Use Cases in Cloud Computing and Finance, and Evaluation . . 63

3.3.1 Use Case 1: Runtime Adaptation for Serverless Functions
in Hybrid Clouds . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Use Case 2: Portfolio Risk Assessment leveraging Proba-
bilistic DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Prompt Engineering for Financial Sentiment Analysis . . . . . . . . . 97

4.1 Introduction to Financial Sentiment Analysis . . . . . . . . . . . 98

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1.2 Value Proposition . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Background on Financial Sentiment Analysis . . . . . . . . . . . 103

4.2.1 Sentiment Analysis in Finance . . . . . . . . . . . . . . . . 103

4.2.2 ChatGPT and Related AI Tools . . . . . . . . . . . . . . . 105

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 Dataset Creation and Annotation . . . . . . . . . . . . . . 107

4.3.2 Establishing Baseline: Sentiment Classification using Fin-
BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.3 Sentiment Classification with ChatGPT . . . . . . . . . . . 111

4.3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 115



4.3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.1 Sentiment Classification Performance . . . . . . . . . . . . 120

4.4.2 Sentiment Score Relation to the Financial Market . . . . . 123

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5.1 ChatGPT’s Performance in Financial Sentiment Analysis 132

4.5.2 Potential Applications in Financial Services . . . . . . . . 133

4.5.3 Limitations and Future Work . . . . . . . . . . . . . . . . 134

5 AI on Diverse Data for Holistic Financial Analysis . . . . . . . . . . . 137

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1.1 Background and Motivation . . . . . . . . . . . . . . . . . 138

5.1.2 Potential of LLMs in Stock Selection and Financial Analysis141

5.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Background on AI in Financial Analysis . . . . . . . . . . . . . . 145

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.1 Progressive News Summarizer . . . . . . . . . . . . . . . . 149

5.3.2 Fundamentals Summarizer . . . . . . . . . . . . . . . . . . 155

5.3.3 Stock Price Dynamics Summarizer . . . . . . . . . . . . . 156

5.3.4 Macroeconomic Environment Summary . . . . . . . . . . 160

5.3.5 Signal Generation . . . . . . . . . . . . . . . . . . . . . . . 163

5.3.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 168

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.4.1 Bootstrapping Evaluation Results . . . . . . . . . . . . . . 177

5.4.2 Market Performance Evaluation Results . . . . . . . . . . 179

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 187

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191





List of Figures

2.1 Retrieval-Augmented Generation (RAG) Pipeline for augmenting
Large Language Model (LLM) responses. . . . . . . . . . . . . . 24

2.2 Reasoning Framework High-Level Architecture. . . . . . . . . . . 26

2.3 Reasoning Framework’s dependencies with other components. . 29

2.4 Application data as triples. . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Resource data as triples. . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Reasoning Framework Implementation in the cloud computing
use case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Resource Graph without INSERT queries. . . . . . . . . . . . . . 33

2.8 Resource Graph after updating it with INSERT queries. . . . . . 34

2.9 Indicative Application Graph . . . . . . . . . . . . . . . . . . . . . 34

2.10 Deployment Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Data Ingestion and Preprocessing Workflow of the Reasoning
Framework in the finance use case. . . . . . . . . . . . . . . . . . 39

2.12 Reasoning Framework Implementation in the finance use case. . 40

2.13 Reasoning Framework’s Retrieval Module Framework as a RAG
Agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Architecture of the Online Learning System. . . . . . . . . . . . . 61

3.2 Conceptual Architecture of the Adaptive Routing Service. . . . . 67

3.3 Forecaster’s internal Architecture and Components. . . . . . . . 68

3.4 Mean Response and Execution Latency between di�erent experi-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xxi



3.5 Time Series of wait and response latency with Fibonacci function,
performance-based adaptation, and 10-minute monitoring pooling. 72

3.6 Time Series of wait and response latency with Fibonacci function,
performance-based adaptation, and 5-minute monitoring pooling. 72

3.7 Time Series of wait and response latency with Fibonacci function
and 50-50 routing policy. . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Time Series of wait and response latency with Fibonacci &List
functions, performance-based adaptation, and 10-minute moni-
toring pooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 Time Series of wait and response latency with Fibonacci &List
functions and 50-50 policy. . . . . . . . . . . . . . . . . . . . . . 74

3.10 Time Series of execution latency with Fibonacci &List functions,
cost-based adaptation, and 10-minute monitoring pooling. . . . 74

3.11 Standard Deviation of Response Latency between di�erent exper-
iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.12 Conceptual architecture of DeepVaR framework. . . . . . . . . . 82

3.13 Training dataset for rolling window VaR estimation. . . . . . . . 85

3.14 AUDUSD: VaR
99% performance per model. . . . . . . . . . . . . . 87

3.15 GBPUSD: VaR
99% performance per model. . . . . . . . . . . . . . 88

3.16 USDJPY: VaR
99% performance per model. . . . . . . . . . . . . . . 90

3.17 EURUSD: VaR
99% performance per model. . . . . . . . . . . . . . 91

3.18 Box-plots of the VaR
99% performance per model over 1000 ran-

dom portfolios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Time Series Plot of Sentiment Labels per Week . . . . . . . . . . 108

4.2 Dataset Creation Process . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Sentiment Distribution . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Sentiment Distribution per FX Pair . . . . . . . . . . . . . . . . . 111

4.5 Most Common Tokens on Positive Headlines . . . . . . . . . . . 112



4.6 Most Common Tokens on Negative Headlines . . . . . . . . . . . 113

4.7 Correlation Matrix of Predicted Sentiment and Market Returns . 125

5.1 Conceptual architecture of MarketSenseAI, highlighting the core
components, data flow, and outcome for a selected stock (e.g.,
Amazon). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Data flow within MarketSenseAI. . . . . . . . . . . . . . . . . . . 150

5.3 Progressive News Summarizer . . . . . . . . . . . . . . . . . . . . 152

5.4 Stock’s Fundamentals Summary . . . . . . . . . . . . . . . . . . . 157

5.5 Stock Price Dynamics Summary . . . . . . . . . . . . . . . . . . . 159

5.6 Macroeconomic Environment Summary (MarketDigest) . . . . . 161

5.7 MarketSenseAI Components’ Text Similarity with Signal . . . . . 167

5.8 Bootstrapping-based Evaluation . . . . . . . . . . . . . . . . . . . 172

5.9 Signal Ranking by GPT-4 . . . . . . . . . . . . . . . . . . . . . . . 176

5.10 Performance of Equally-Weighted Portfolios . . . . . . . . . . . . 180

5.11 Performance of Capitalization-Weighted Portfolios . . . . . . . . 181

5.12 Performance of Ranked Portfolios . . . . . . . . . . . . . . . . . . 182

5.13 Signals Ranking by GPT-4 . . . . . . . . . . . . . . . . . . . . . . 184





List of Tables

1.1 List of publications related to the contributions of this thesis. . . 10

2.1 Comparison of Graph Databases . . . . . . . . . . . . . . . . . . . 15

2.2 Comparison of Vector Databases . . . . . . . . . . . . . . . . . . . 19

2.3 Reasoning Framework API Description . . . . . . . . . . . . . . . 36

2.4 Reasoning Framework’s Evaluation in Cloud Computing Use Case 36

2.5 Reasoning Framework Evaluation in Financial Use Case . . . . . 46

3.1 Cluster Configuration Comparison . . . . . . . . . . . . . . . . . . 69

3.2 Cost per Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Mean running time to estimate VaR quantiles. . . . . . . . . . . . 86

3.4 Performance of VaR
99% models in AUDUSD series. . . . . . . . . 87

3.5 Coverage and independence tests of VaR
99% models in AUDUSD

series. The p-values are in brackets. . . . . . . . . . . . . . . . . 88

3.6 Performance of VaR
99% models in GBPUSD series. . . . . . . . . 89

3.7 Coverage and independence tests of VaR
99% models in GBPUSD

series. The p-values are in brackets. . . . . . . . . . . . . . . . . 89

3.8 Performance of VaR
99% models in USDJPY series. . . . . . . . . . 89

3.9 Coverage and independence tests of VaR
99% models in USDJPY

series. The p-values are in brackets. . . . . . . . . . . . . . . . . 90

3.10 Performance of VaR
99% models in EURUSD series. . . . . . . . . 91

3.11 Coverage and independence tests of VaR
99% models in EURUSD

series. The p-values are in brackets. . . . . . . . . . . . . . . . . 92

3.12 Average performance of VaR
99% models over the FX portfolios. . 93

xxv



3.13 Percentage of portfolios passed the coverage and independence
tests of VaR

99% per model in significant level 95% . . . . . . . . . 94

4.1 Examples of Annotated Headlines . . . . . . . . . . . . . . . . . . 109

4.2 FX Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Experimental ChatGPT Prompts for Sentiment Classification . . . 115

4.4 Performance Results in Sentiment Classification . . . . . . . . . . 121

4.5 Performance Metrics for Individual Sentiment Classes Across Mod-
els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6 Best Performing Model in Sentiment Classification per FX pair . 122

4.7 Performance Results in Sentiment Classification (filtered data) . . 123

4.8 Correlation of Predicted Sentiment and FX pair returns . . . . . 127

4.9 DA of Non-Numerical and Naive Models . . . . . . . . . . . . . . 128

4.10 DA of Numerical and True Sent. Models . . . . . . . . . . . . . . 128

4.11 Directional Accuracy Results for each Numerical Model per Ticker129

4.12 Average Time and Tokens Processed per ChatGPT Prompt . . . 130

5.1 Apple Inc. Progressive News Summary (October vs November
2023) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2 Apple Inc. Progressive News Summary (November 2023) . . . . 154

5.3 Apple Inc. Fundamentals Summary (2023-Q3) . . . . . . . . . . 158

5.4 Apple Inc. Stock Price Dynamics Summary (November 2023) . 160

5.5 Macroeconomic Environment Summary (November 2023) . . . . 163

5.6 Apple Inc. Generated Signal and Explanation (November 2023) 166

5.7 Statistics of Text Similarity between Signals and Components . . 167

5.8 Evaluated Investments Strategies on S&P 100 Stocks . . . . . . . 174

5.9 Portfolio Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 175

5.10 MarketSenseAI vs Bootstrapped Portfolios . . . . . . . . . . . . . 178

5.11 MarketSenseAI Performance of Vanilla Strategies . . . . . . . . . 179

5.12 MarketSenseAI Performance of Rank-Based Strategies . . . . . . 181



List of Algorithms

1 VaR prediction using the DeepVaR framework . . . . . . . . . . . 83

2 Portfolio VaR rolling window estimation . . . . . . . . . . . . . . 94

3 Stock Universe Identification . . . . . . . . . . . . . . . . . . . . . 159

xxvii





Acronyms

AI Artificial Intelligence

ADF Augmented Dickey-Fuller

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ARIMA Autoregressive Integrated Moving Average

AWS Amazon Web Services

BiGAN Bidirectional Generative Adversarial Network

DA Directional Accuracy

DL Deep Learning

DNN Deep Neural Network

ECB European Central Bank

ETFs Exchange Traded Funds

ETS Exponential Smoothing

xxix



EVT Extreme Value Theory

FaaS Function as a Service

FED Federal Reserve

FIBO Financial Industry Business Ontology

FX Foreign Exchange

GANs Generative Adversarial Networks

GARCH Generalized AutoRegressive Conditional Heteroskedasticity

GPT Generative Pre-trained Transformer

JSON JavaScript Object Notation

HS Historical Simulation

IoT Internet of Things

LM Language Model

LLM Large Language Model

LLMs Large Language Models

LSTM Long Short-Term Memory

MAE Mean Absolute Error



MC Monte Carlo

ML Machine Learning

MMLU Massive Multitask Language Understanding

NLP Natural Language Processing

OWL Web Ontology Language

PCA Principal Components Analysis

QA Question Answering

RAG Retrieval-Augmented Generation

RDF Resource Description Framework

REST Representational State Transfer

RM RiskMetrics

RNNs Recursive Neural Networks

SEC Securities and Exchange Commission

SES Simple Exponential Smoothing

S-MAE Sentiment Mean Absolute Error

STD Standard Deviation



SVM Support Vector Machines

VaR Value at Risk

0DTE Zero-Day Expiry options



Chapter 1

Introduction

Chapter Structure

This Chapter is constructed as follows:

• Section 1.1 - Motivation, explains the reasons behind this research, and
highlights its relevance and potential impact.

• Section 1.2 - Objectives, outlines the goals and objectives of the research.

• Section 1.3 - Research Questions, outlines the main questions that the
study aims to answer.

• Section 1.4 - Research Contributions, explains the contributions made
by the research.

• Section 1.5 - Outline of Dissertation, presents a structural overview of
the dissertation.

1.1 Motivation

Over the past decade, advancements in Artificial Intelligence (AI) and Big Data
have transformed various industries, improving existing practices and introduc-
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ing new paradigms of e�ciency and innovation [Siripurapu et al., 2023]. AI,
including Machine Learning (ML) and Deep Learning (DL), has demonstrated
significant potential in analyzing vast, complex, and heterogeneous datasets,
automating intricate processes, and providing predictive insights that were pre-
viously unattainable. The integration of scalable software systems, advanced
ML frameworks, and parallel hardware capabilities has enabled the process-
ing and analysis of multi-frequency and multi-type data on an unprecedented
scale [Elshawi et al., 2018].

AI and Big Data technologies have advanced significantly, driven by the ex-
ponential growth of digital data and the demand for data-driven decision-
making [Langer and Mukherjee, 2023]. These technologies have been success-
fully applied in fields such as healthcare, retail, transportation, and finance,
demonstrating their ability to extract meaningful insights from structured, un-
structured, and semi-structured data, thereby enhancing operational e�ciency,
improving customer experiences, and supporting strategic planning [Yadav
et al., 2023]. For instance, AI algorithms are now capable of diagnosing
diseases with high accuracy [Al-Antari, 2023], predicting consumer behavior,
optimizing supply chains [Toorajipour et al., 2021], and automating financial
analysis and decisions [Soldatos and Kyriazis, 2022].

The transformative potential of AI lies in its ability to learn from historical
data, adapt to new information, and provide actionable insights, even when
dealing with highly dimensional and multi-frequency datasets. In finance,
AI-driven models are capable of comprehensively analyzing market trends,
forecasting risks, and significantly assisting in making informed investment
decisions [Emmert-Streib, 2021]. Similarly, in cloud computing, AI can op-
timize resource allocation e�ciently, enhance performance, and contribute to
substantial cost reductions. These advancements highlight AI’s wide-reaching
impact across various sectors, ushering in a new era of innovation and e�-
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ciency [Hameed et al., 2016].

Furthermore, the advent of Large Language Models (LLMs), especially fol-
lowing the introduction of OpenAI’s GPT-3.5 model, has revolutionized the
application and transformative potential of AI [Ye et al., 2023]. LLMs, with
their advanced Natural Language Processing (NLP) capabilities, can under-
stand, generate, and translate human language with impressive accuracy. By
processing and extracting knowledge from unstructured data through context
understanding, these models provide a novel approach to utilizing diverse data
formats e�ectively. For example, in finance, LLMs can analyze large volumes
of financial documents, news articles, and social media feeds, helping investors
gauge market sentiment and make informed decisions [Fatouros et al., 2023d].

These recent advancements and the rapid pace of AI development present chal-
lenges that must be addressed to enable the e�ective integration of such models
into real-world settings while leveraging all the knowledge available in com-
plex data. These challenges include managing high-dimensionality and hetero-
geneous data sources, extracting meaningful information from multi-type and
multi-frequency datasets, and ensuring real-time adaptation and performance.

More specifically, AI models often need to process and analyze data that is not
only vast in volume but also highly complex and multidimensional. This com-
plexity arises from the variety of data sources and types, such as structured data,
unstructured text, sensor data, and data collected at di�erent frequencies [Chen,
2022a]. Addressing these challenges requires robust data-centric approaches,
knowledge modeling via ontologies, semantic interoperability among di�erent
data sources and systems, and datastores capable of managing such data [Mu-
nir and Anjum, 2018]. However, developing models that can e�ectively handle
and extract meaningful insights from heterogeneous data sets, such as those
used in financial applications and cloud resource management, remains a sig-
nificant challenge [Jung, 2018].
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Additionally, AI systems must be capable of adapting in real-time while main-
taining high performance. In dynamic environments, where data and condi-
tions change rapidly, AI models must continuously update and refine their
parameters. This requires advanced techniques for real-time learning and the
design of data-e�cient models [Guan et al., 2023]. Balancing trade-o�s be-
tween accuracy, speed, and resource consumption is crucial for developing
e�ective real-time AI applications.

Moreover, LLMs such as ChatGPT have demonstrated remarkable capabilities
in information retrieval from unstructured data while performing tasks such
as text summarization, Question Answering (QA), and Massive Multitask Lan-
guage Understanding (MMLU), often outperforming human experts [Ovadia
et al., 2023]. With appropriate prompt engineering and agent-based tech-
niques, LLMs can provide personalized explanations in natural language, assist-
ing humans in decision-making [Najork, 2023]. Despite these strengths, LLMs
face limitations related to the scope of their training data and the probabilis-
tic nature of their outputs, which can lead to hallucinations [Ai et al., 2023].
Furthermore, these models often lack robustness in mathematical reasoning,
limiting their utility in contexts involving complex numerical analysis [Xiong
et al., 2024].

The rapid advancements in AI and Big Data technologies hold great promise for
revolutionizing various industries. However, addressing the challenges of han-
dling multi-frequency, multi-type, high-dimensional data, ensuring real-time
adaptation and performance, e�ectively bootstrapping LLMs with proprietary
knowledge, and developing techniques that enhance their mathematical reason-
ing are essential for realizing the full potential of these technologies and the
available real world data. By tackling these challenges, we can create more re-
liable and impactful AI solutions that drive innovation and improve outcomes
across diverse sectors.
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1.2 Objectives

The primary objective of this research is to develop advanced data-centric AI
methodologies capable of handling and extracting meaningful insights from
heterogeneous, high-dimensional, and complex data sets. This involves creat-
ing robust systems that can e�ectively process and analyze data from diverse
sources, including structured, unstructured, and multi-frequency data. By
addressing the challenges associated with data variety, complexity, and high-
dimensionality, this research aims to enhance the accuracy, e�ciency, and scal-
ability of AI applications across various domains, such as finance and cloud
computing.

Another critical objective is to enhance the real-time adaptability and perfor-
mance of AI systems. In dynamic environments where data and conditions
evolve rapidly, AI models must be capable of continuously updating their pa-
rameters. This research introduces advanced techniques for real-time learning,
emphasizing data e�ciency and resource optimization, to ensure that AI appli-
cations maintain high performance and adapt swiftly to new information.

Additionally, the research aims to enhance the utility and robustness of LLMs,
such as ChatGPT, for specific applications by integrating domain-specific infor-
mation and providing more reliable and interpretable outputs. This involves
developing prompt engineering methods, techniques to mitigate LLM limita-
tions like numerical reasoning, and approaches to improve reproducibility and
structured outputs. By extending the capabilities of LLMs, this research seeks
to improve their performance in tasks such as information retrieval, text sum-
marization, question answering, and personalized explanations, thereby making
these models more e�ective tools for decision-making and innovation.

To evaluate these methodologies, they applied in various real-world scenarios
and across di�erent ML tasks, ranging from classification to time-series analysis.
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This research advances existing methods used for financial risk assessment,
sentiment analysis, explainable stock selection, and reasoning across diverse
data sources, including data from cloud computing and financial domains.

1.3 Research Questions

This thesis aims to answer the following research questions:

RQ1: "How can advanced AI methodologies be developed to e�ectively han-
dle and extract meaningful insights from heterogeneous, high-dimensional,
and complex data sets, particularly in the domains of finance and cloud
computing?"

This question seeks to explore the development of robust systems that can
manage diverse data sources and types, with a focus on improving the accuracy,
e�ciency, and scalability of AI applications. This is particularly relevant when
dealing with the intricate nature of financial data and the vast, dynamic datasets
typical of cloud computing environments. To address these points, this thesis
evaluates the reasoning framework, RAG, and in-context learning techniques
to assess their e�ectiveness in extracting insights from complex datasets.

RQ2: "What techniques can be implemented to enhance the real-time adapt-
ability and performance of AI systems in dynamic environments?"

This question focuses on the development of advanced techniques for real-
time learning and inference to ensure AI applications can maintain high per-
formance and adapt swiftly to evolving information and conditions. This is
critical in high-impact domains where model drift may have significant conse-
quences. The thesis explores the implementation of adaptive algorithms on top
of the reasoning framework from extbfRQ1, utilizing real-time monitoring and
feedback loops to dynamically adjust models. Additionally, state-of-the-art DL
time-series models are parameterized to facilitate e�cient online learning. By

Doctoral Thesis



1.3. RESEARCH QUESTIONS 7

leveraging these techniques, AI systems can remain robust and e�cient even
as underlying data patterns evolve rapidly.

RQ3: "How can LLMs be optimized and compared to state-of-the-art trans-
fer learning approaches in text classification?"

This question examines the optimization of LLMs and their comparative perfor-
mance against traditional transfer learning methods in text classification tasks
such as sentiment analysis. The study investigates various prompt engineering
strategies to evaluate the e�cacy of LLMs compared to domain-specific pre-
trained models. By comparing the performance of LLMs with existing transfer
learning techniques, the thesis aims to determine the conditions under which
LLMs provide superior results, particularly in handling complex and context-
rich text data.

RQ4: "In what ways can LLMs be enhanced to improve their utility and
relevance for specific applications, while mitigating their inherent limita-
tions?"

This question explores methods for integrating domain-specific information
into LLMs, leveraging the findings from RQ1, RQ2, and RQ3 to improve their
performance in tasks such as information retrieval, text classification, sum-
marization, and question answering, particularly in the financial sector. The
research delves into techniques such as prompt engineering, knowledge distil-
lation, and the incorporation of proprietary data to overcome limitations like
processing numbers, ensuring reproducibility, and generating structured out-
puts. By enhancing LLMs with targeted knowledge, this thesis aims to expand
their applicability and reliability in specialized domains.
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1.4 Research Contributions

The research conducted and presented in this thesis makes four key contri-
butions, which are aligned with the formulated research questions. These
contributions are divided into the following main areas: (i) the development of
robust AI methodologies for handling heterogeneous data, (ii) the enhancement
of real-time adaptability and performance of AI systems, (iii) the optimization
and comparison of LLMs with traditional methods, and (iv) the bootstrapping
of LLMs for specific applications while mitigating their limitations.

RC1: A Knowledge-Based Reasoning Framework

In order to answer RQ1, this thesis presents a novel Knowledge-Based Rea-
soning Framework. This framework leverages semantic matching, knowledge
graphs, text embeddings, and ontology technologies to e�ectively manage and
extract meaningful insights from diverse data sources. The framework ad-
dresses the challenges of data variety and complexity, thereby improving the
accuracy, e�ciency, and scalability of AI applications. The thesis evaluates two
di�erent versions of the Reasoning Framework: (i) managing application and
resource data used in cloud computing services and (ii) enabling data mining
from diverse financial reports and articles.

RC2: Real-Time Adaptability Enhancement Techniques

Addressing RQ2, this thesis introduces advanced techniques for enhancing
the real-time adaptability and performance of AI systems via online learn-
ing. The research includes the development of adaptive algorithms, utilizing
real-time monitoring and feedback loops to dynamically adjust models. These
techniques ensure that AI applications maintain high performance and adapt
quickly to new information and conditions, which is crucial in high-impact
domains where model drift may have significant consequences. This work
presents two systems that allow for real time time series prediction: (i) predict-
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ing resource utilization in serverless cloud computing and (ii) predicting risk
of financial assets in real time.

RC3: Optimization and Evaluation of LLMs in Text Classification

In response to RQ3, this thesis investigates the optimization of LLMs and their
comparative performance against state-of-the-art transfer learning approaches
in text classification tasks. Various prompt engineering strategies are explored
to enhance the e�cacy of LLMs. The study provides a comprehensive com-
parison, highlighting the conditions under which LLMs outperform traditional
methods, thereby contributing to the understanding of their advantages and
limitations in handling complex text data.

RC4: Bootstrapping LLMs for Enhanced Utility and Specific Applications

To address RQ4, this thesis explores methods for bootstrapping LLMs with
domain-specific knowledge to enhance their utility and relevance for specific
applications. Techniques such as prompt engineering, knowledge distillation,
and the incorporation of proprietary data are developed to mitigate limitations
like processing numbers, ensuring reproducibility, and generating structured
outputs. The research leverages findings from RQ1, RQ2, and RQ3 to improve
the performance of LLMs in tasks such as information retrieval, text classi-
fication, summarization, and question answering, particularly in the financial
sector.

By making these contributions, this thesis advances the state of the art in AI
methodologies, particularly in the application of information retrieval, provid-
ing significant insights and practical solutions for handling complex, heteroge-
neous data to make timely predictions in dynamic environments.

Table 1.1 demonstrates how the publications are mapped to any of the afore-
mentioned research contributions.
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Table 1.1: List of publications related to the contributions of this thesis.
Title Authors Venue Contribution
DeepVaR: a framework for portfolio
risk assessment leveraging probabilistic
deep neural networks

G. Fatouros, G. Makridis, D. Kotios
J. Soldatos, M. Filippakis,
D. Kyriazis

Springer, Digital Finance, 5(1), 29-56, 2023 C2

Transforming sentiment analysis
in the financial domain with ChatGPT

G. Fatouros, J. Soldatos, K. Kouroumali,
G. Makridis, D. Kyriazis

Elsevier, Machine Learning with
Applications, 14, 100508, 2023 C3, C4

Can Large Language Models Beat
Wall Street? Evaluating GPT-4’s Impact on
Financial Decision-Making with
MarketSenseAI

G. Fatouros, K. Metaxas, J. Soldatos,
D. Kyriazis

Springer, Neural Computing and Applications
1433-3058, 2024 C3, C4

Deep learning enhancing banking
services: a hybrid transaction classification
and cash flow prediction approach

D. Kotios, G. Makridis, G. Fatouros,
D. Kyriazis Springer, Journal of Big Data, 2023, 9(1), 100 C2

Embedding Automated Function Performance
Benchmarking, Profiling and Resource Usage
Categorization in Function as a Service
DevOps Pipelines

V. Katevas, G. Fatouros, D. Kyriazis,
G. Kousiouris

Elsevier, Future Generation Computer
Systems, 2024 C1, C2

Knowledge graphs and interoperability
techniques for hybrid-cloud deployment
of faas applications

G. Fatouros, Y. Poulakis, A. Polyviou,
S. Tsarsitalidis, G. Makridis, J. Soldatos,
G. Kousiouris, M. Filippakis, D. Kyriazis

2022 IEEE International Conference
on Cloud Computing Technology
and Science (CloudCom)

C1, C2, C4

Enhanced Runtime-Adaptable Routing for
Serverless Functions based on Performance
and Cost Tradeoffs in Hybrid
Cloud Settings

G. Fatouros, G. Kousiouris, G. Makridis,
J. Soldatos, M. Filippakis, D. Kyriazis

2023 IEEE International Conference
on Cloud Computing Technology
and Science (CloudCom)

C1, C2

Hocc: an ontology for holistic
description of cluster settings

Y. Poulakis, G. Fatouros, G. Kousiouris,
D. Kyriazis

2022 International Conference on the
Economics of Grids, Clouds, Systems,
and Services (GECON).

C1, C2

Enhancing smart agriculture scenarios
with low-code, pattern-oriented functionalities
for cloud/edge collaboration

G Fatouros, G. Kousiouris, T. Lohier,
G. Makridis, A. Polyviou, J. Soldatos,
D. Kyriazis

2023 19th International Conference on
Distributed Computing in Smart Systems
and the Internet of Things (DCOSS-IoT)

C1, C2

Enhancing Explainability in Mobility Data
Science through a combination of
methods.

G. Makridis, V. Koukos, G. Fatouros,
M. Separdani, D. Kyriazis 2024 Science and Information Conference C4

Towards a Unified Multidimensional
Explainability Metric: Evaluating
Trustworthiness in AI Models

G. Makridis, G. Fatouros, A. Kiourtis,
D. Kotios, V. Koukos, D. Kyriazis,
J. Soldatos

2023 19th International Conference on
Distributed Computing in Smart Systems
and the Internet of Things (DCOSS-IoT)

C4

XAI for time-series classification
leveraging image highlight methods

G. Makridis, G. Fatouros, V. Koukos,
D. Kotios, D. Kyriazis, J. Soldatos

2023 International Conference on
Management of Digital EcoSystems (MEDES) C4

Addressing Risk Assessments in Real-
Time for Forex Trading

G. Fatouros, G. Makridis, J. Soldatos,
P. Ristau, V. Monferrino

Springer, Big Data and Artificial
Intelligence in Digital Finance, 2022 C2

Large Language Models and Extended Reality
Convergence for Personalized Training
at the Industrial Metaverse

G. Fatouros, M. Touloupos, J. Soldatos 2024 32nd European Conference
on Information Systems (ECIS) C1, C4

1.5 Outline of Dissertation

The remainder of this dissertation is organized in the following way:

• Chapter 2 presents the Reasoning Framework for semantic matching.
The chapter initially performs a literature review covering knowledge
bases, vector databases, RAG methods, and ontologies. It then details the
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architecture of the proposed Reasoning Framework, which facilitates the
semantic matching of diverse data. Furthermore, this chapter evaluates
the proposed framework through case studies in cloud computing and fi-
nance, demonstrating its e�ectiveness in handling complex, heterogeneous
data sets and optimizing resource allocation.

• Chapter 3 focuses on online learning in time series prediction. The chap-
ter presents an AI-based system designed to update model parameters
in real-time, enabling the e�cient processing of time-series data. The
chapter evaluates this approach through two distinct use cases: the first
predicts function latency in serverless cloud computing, supporting the
Reasoning Framework discussed in Chapter 2; the second applies online
learning to financial risk prediction by adapting a state-of-the-art deep
learning algorithm. The chapter begins by reviewing the necessity of on-
line learning in dynamic environments like cloud computing and finance,
followed by a detailed explanation of the proposed system’s architecture.
It concludes with performance evaluations that assess the e�ciency and
accuracy of the online learning approach in these applications.

• Chapter 4 focuses on textual data and NLP, examining the e�ciency of
LLMs, particularly ChatGPT, in text classification of financial data. The
chapter begins with an introduction to text classification and sentiment
analysis within the financial domain, followed by a review of prior work
on sentiment analysis in finance and the role of AI tools in this area. It
then details the methodology for using and evaluating ChatGPT for sen-
timent classification in the Foreign Exchange (FX) market. The chapter
concludes with the research findings and their implications for real-world
use cases, providing insights into the e�ectiveness of LLMs in financial
sentiment analysis.

• Chapter 5 presents a holistic LLM-based system for explainable stock
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analysis, selection, and ranking, called MarketSenseAI. This system inte-
grates the techniques discussed in previous chapters, leveraging knowl-
edge bases, text analytics, LLM reasoning, and serverless processing to de-
liver comprehensive financial analysis. The chapter begins by highlighting
the need for such a service and provides an analysis of the current state of
the art. The proposed system and its processes are then described in de-
tail, followed by an explanation of the evaluation methodology, including
the data used, comparison methods, and empirical findings. The chap-
ter concludes with a summary of the primary contributions and insights
provided by MarketSenseAI.

• Chapter 6 summarizes the doctoral dissertation and its main contribu-
tions. It reflects on the research questions posed at the beginning, outlin-
ing how each was addressed through the work presented. The chapter
also discusses the open research topics and future goals that have emerged
from this research, providing a roadmap for subsequent investigations and
potential developments in the field.

Doctoral Thesis



Chapter 2

Knowledge Modeling for Semantic Match-

ing of Heterogeneous Data Types

Chapter Structure

This Chapter is constructed as follows:

• Section 2.1 - Background on Knowledge Systems, analyzes the State of
the Art on Knowledge and Vector databases, ontologies, RAG methods,
and semantic reasoning with a focus on cloud computing and finance.

• Section 2.2 - Overview and Design of the Reasoning Framework,
presents an overview of the proposed Reasoning Framework including
its architecture, internal components and their relationships.

• Section 2.3 - Use Cases in Cloud Computing and Finance, and Eval-
uation, evaluates the proposed Reasoning Framework under two distinct
uce cases in cloud computing and finance and presents the outcomes of
this evaluation.

• Section 2.4 - Discussion, provides a summary of the chapter’s contri-
butions, highlights the challenges encountered, and outlines future work
directions.

13
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DATA TYPES
In today’s data-driven world, the ability to semantically match and integrate
heterogeneous data types has become a critical challenge across various do-
mains, including cloud computing and finance. As organizations increasingly
rely on diverse data sources—ranging from structured databases to unstruc-
tured text—the need for robust knowledge systems that can e�ectively manage
and leverage this data has never been greater [Nguyen et al., 2022]. This chap-
ter introduces the proposed Reasoning Framework, an architecture designed
to facilitate semantic matching and reasoning across di�erent types of data. By
integrating techniques such as knowledge graphs, ontologies, and RAG meth-
ods, this framework aims to enhance decision-making processes and optimize
resource allocation in complex environments [Wang et al., 2024]. The follow-
ing sections will explore the state of the art in knowledge systems, outline the
architecture of the Reasoning Framework, and evaluate its application in both
cloud computing and financial use cases.

2.1 Background on Knowledge Systems

2.1.1 Knowledge Bases and Ontologies

2.1.1.1 Knowledge Bases

Knowledge bases are structured repositories that store information in a way
that supports the retrieval and reasoning processes necessary for complex
decision-making tasks. They are central to various AI applications, partic-
ularly those requiring the management and integration of large amounts of
structured data [Krzywicki et al., 2016]. Knowledge bases typically consist of
entities, attributes, and relationships, and they are designed to facilitate easy
querying and manipulation of data. These systems are foundational in fields
like natural language processing, semantic web technologies, and expert sys-
tems [Kingston, 2001]. Table 2.1 presents the most prominent graph databases
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supporting Resource Description Framework (RDF) which is required in the
development of knowledge systems.

Table 2.1: Comparison of Graph Databases
Name Paper License Features

AlegroGraph [Fernandes and Bernardino,
2018]

Commercial /
OSS

Supports RDF, SPARQL,
and graph analytics

Neo4j [Miller, 2013] GPL
ACID transactions, native
graph storage, and real-time
queries

GraphDB [Lopez-Veyna et al., 2022] Commercial
Supports RDF, SPARQL,
and semantic graph
processing

Virtuoso [Erling, 2012] Commercial
Multi-model data storage,
SPARQL support, and linked
data capabilities

Apache Jena [Siemer, 2019] Apache License
2.0

Framework for building
semantic web applications,
supports RDF and SPARQL

Historically, knowledge bases have been employed in a variety of domains, from
medical diagnosis systems to customer service chatbots, where they support
the retrieval of relevant information based on specific queries. The structure
of knowledge bases allows them to answer complex queries by leveraging pre-
defined rules and relationships between data points [Tran et al., 2022]. This
makes them particularly valuable in environments where the precise organiza-
tion of data is crucial for accurate and e�cient retrieval.

2.1.1.2 Ontologies for Semantic Reasoning

Ontologies build upon the concept of knowledge bases by introducing a for-
mal representation of a set of concepts within a domain and the relationships
between those concepts. An ontology is essentially a model for describing
the world that consists of a vocabulary of terms, and the specification of their
meanings and relationships [Chalupsky et al., 2002]. Ontologies are used to
create shared understanding among people or software agents, facilitating in-
teroperability between systems by providing a common framework that all
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components understand.

In the context of semantic reasoning, ontologies play a critical role by enabling
machines to infer new knowledge from existing data. This is done through
logical rules that define how di�erent concepts relate to one another, allowing
systems to draw conclusions that are not explicitly stated in the data. On-
tologies are particularly e�ective in environments that require the integration
of data from multiple sources, such as cloud computing environments where
di�erent services and resources must be coordinated [Bajraktari et al., 2018].
They enable the consistent interpretation of data across di�erent systems, en-
suring that semantic discrepancies do not hinder interoperability.

2.1.1.3 Applications in Cloud Computing and Finance

The application of knowledge bases and ontologies in cloud computing has
gained significant traction, particularly with the advent of Function as a Service
(FaaS) platforms. FaaS o�ers a novel cloud computing model that abstracts the
complexity of managing infrastructure, allowing developers to focus solely on
writing and deploying functions as part of an application workflow [Van Eyk
et al., 2018]. These workflows, which consist of linked functions, services, or
actions, can have varying requirements for computational resources, latency,
and performance [Van Eyk et al., 2017].

In cloud computing, ontologies and knowledge bases are critical for enabling
semantic matching between the specific requirements of these workflows and
the available cloud resources. For instance, in hybrid cloud environments
where workflows may span across public, private, and edge resources, ontolo-
gies can model the relationships between various components, such as virtual
machines, containers, and network configurations. This modeling allows the
system to optimize resource allocation by automatically matching the applica-
tion’s requirements—such as locality, latency, and hardware needs—with the
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most suitable resources available in the cloud or at the edge [Rausch et al.,
2021].

For example, in IoT-driven applications in agriculture, functions may need to
be deployed on edge devices located in greenhouses to interact directly with
sensors, while other functions, like simulation models, require more power-
ful cloud resources. Ontologies facilitate this by providing a semantic under-
standing of the application requirements and the capabilities of the available
infrastructure, enabling e�cient and context-aware deployment of the entire
workflow. This semantic reasoning is crucial in overcoming challenges such
as vendor lock-in and ensuring interoperability between di�erent cloud envi-
ronments, as noted in studies focusing on multi-cloud and hybrid cloud FaaS
deployments [Kousiouris and Kyriazis, 2021,Hellerstein et al., 2018].

In the financial sector, the use of knowledge bases and ontologies, such as
the Financial Industry Business Ontology (FIBO), is particularly prominent
[Petrova et al., 2017]. FIBO provides a standardized framework for repre-
senting complex financial concepts, relationships, and processes, facilitating the
integration and analysis of diverse financial data sources. Ontologies in finance
enable automated systems to perform tasks such as risk assessment, fraud
detection, and regulatory compliance more accurately by providing a shared
understanding of financial terms and their interrelations.

2.1.1.4 Challenges of Knowledge Systems

While knowledge bases and ontologies o�er substantial benefits in cloud com-
puting and finance, several challenges remain, particularly in the dynamic
and heterogeneous environments typical of these domains. In cloud comput-
ing, one of the key challenges is enabling the seamless deployment of FaaS
applications across hybrid cloud environments. The lack of standardization
and interoperability between di�erent cloud platforms often results in vendor
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lock-in, limiting the transferability of workflows from one cloud provider to
another [Van Eyk et al., 2017]. Ontologies can address these issues by pro-
viding a common framework for describing and matching the requirements of
application functions with available resources [Agbaegbu et al., 2021]. How-
ever, maintaining and updating these ontologies to keep pace with the rapidly
evolving cloud landscape remains a significant challenge.

Another challenge is the integration of unstructured data within these knowl-
edge systems. Traditional knowledge bases and ontologies are primarily de-
signed to handle structured data, which limits their e�ectiveness in domains
where unstructured data is prevalent, such as in financial markets where news
articles, social media, and other textual data play a crucial role in decision-
making. Additionally, the integration of ontologies with ML models poses
another challenge, as these models often rely on large volumes of unstructured
data that are not easily captured by traditional ontological frameworks.

2.1.2 Vector Databases and Embedding-Based Retrieval

2.1.2.1 Vector Databases

Vector databases have emerged as a crucial technology in managing and query-
ing high-dimensional data, particularly in applications that involve unstruc-
tured or semi-structured data such as text, images, and multimedia [Adnan
and Akbar, 2019]. Unlike traditional databases that rely on structured data and
relational queries, vector databases store data in the form of vectors—numeric
representations of data points in a high-dimensional space. This allows for
e�cient similarity searches, where the goal is to find data points (vectors) that
are closest to a given query vector according to some distance metric (e.g.,
Euclidean distance, cosine similarity). Table 2.2 presents the most prominent
vector databases along with their features.

Doctoral Thesis



2.1. BACKGROUND ON KNOWLEDGE SYSTEMS 19

Table 2.2: Comparison of Vector Databases
Name Paper License Features

Manu [Guo et al., 2022] Commercial
Cloud-native, horizontally
scalable, high performance,
tunable consistency

Pinecone [Touya and Lokhat, 2020] Commercial
Real-time vector search,
automatic scaling, and
integration with ML models

Weaviate [Singh et al., 2023] Open Source
GraphQL interface, hybrid
search, and support for
contextionary embeddings

Faiss [Douze et al., 2024] Open Source
Efficient similarity search,
high-dimensional vectors,
and GPU support

Milvus [Wang et al., 2021] Open Source
High availability, distributed
architecture, and support for
various indexing methods

Chroma [Ramprasad and Sivakumar,
2024] Open Source

Utilizes chroma features for
music information retrieval
and singer identification

The key advantage of vector databases is their ability to handle large-scale,
unstructured data, which is increasingly common in various domains such as
NLP, computer vision, and recommendation systems [Kukreja et al., 2023].
By converting complex data types into vectors, these databases enable fast and
scalable retrieval of similar items, making them indispensable for applications
like image recognition, document search, and recommendation engines.

In the context of AI, vector databases are often used in conjunction with em-
bedding models, which convert raw data into vector representations. These
embeddings capture the semantic relationships between data points, allowing
for more accurate searches. For example, in NLP, word embeddings can capture
the meaning of words based on their usage in large text corpora, enabling the
retrieval of semantically similar terms even if they are not exact matches [Touya
and Lokhat, 2020].
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2.1.2.2 Embedding Techniques for Semantic Matching

Embedding-based retrieval relies on the creation of vector representations (em-
beddings) of data points that preserve the semantic relationships inherent in the
original data. Embeddings are typically generated using ML models trained on
large datasets, which learn to map data points into a continuous vector space
where semantically similar items are located closer together [Kukreja et al.,
2023].

In the realm of textual data, embeddings such as Word2Vec [Church, 2017],
GloVe [Pennington et al., 2014], and BERT [Devlin et al., 2018] have revolu-
tionized how semantic similarity is measured. These models generate dense
vector representations of words, sentences, or documents that capture their
meanings based on context. For instance, Word2Vec generates embeddings by
predicting a word based on its surrounding words in a sentence, e�ectively
capturing the context in which the word appears. BERT, on the other hand,
uses a transformer-based architecture to generate embeddings that consider the
bidirectional context of words in a sentence, resulting in even more accurate
representations.

When these embeddings are stored in a vector database, they enable powerful
semantic matching capabilities. For example, a query for a particular concept
can retrieve documents or items that are semantically similar, even if they do
not contain the exact words or phrases used in the query. This is particularly
valuable in applications such as document search, where the goal is to retrieve
relevant information based on the meaning rather than the exact wording of
the query.

2.1.2.3 Use Cases in Data Processing

Vector databases and embedding-based retrieval are emerging technologies that
have shown significant promise in improving the e�ciency and e�ectiveness of
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information retrieval across various domains. Although these technologies are
relatively new, they are being actively explored in several key areas, and there
are some early-stage implementations.

In the financial sector, vector databases are being investigated for their po-
tential to enhance the analysis and retrieval of unstructured text data, such as
news articles, earnings reports, and Securities and Exchange Commission (SEC)
fillings [LlamaIndex, 2024]. The ability to embed textual data into vectors al-
lows financial institutions to explore more sophisticated methods of identifying
trends, sentiments, and potential risks based on the semantic content of the
data [CNBC, 2023]. However, real-world applications in this sector are still
limited, and much of the current work is focused on research and develop-
ment rather than widespread deployment.

In cloud computing, vector databases are being used experimentally to manage
and retrieve information from logs, monitoring data, and other unstructured
sources critical for maintaining the performance and security of cloud infras-
tructure [Naveen, 2023]. The embedding of these data points into vectors
enables more e�ective detection of anomalies and retrieval of related events or
issues. However, comprehensive implementations are not yet widespread, and
these technologies are primarily being tested in controlled environments.

One of the more established use cases for embedding-based retrieval is in rec-
ommendation systems [Shi et al., 2023], where companies like Netflix and
Amazon employ vector databases to store and analyze user preferences and
item characteristics. These embeddings enable the recommendation of prod-
ucts, movies, or services that align with the user’s interests. This application is
relatively mature compared to other potential uses of vector databases.

Overall, while the use of vector databases and embedding-based retrieval in
large-scale data processing is still in its early stages, the initial applications in
finance, cloud computing, and recommendation systems illustrate the technol-
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ogy’s potential. As these technologies continue to evolve, further real-world
implementations are expected to emerge.

2.1.2.4 Challenges in Vector Search

While vector databases and embedding-based retrieval o�er significant advan-
tages, they also present several challenges, particularly in scaling these systems
to handle the ever-increasing volume of data. One of the primary challenges is
the computational cost associated with generating and storing embeddings for
large datasets [Kukreja et al., 2023].

Another challenge is the interpretability of embeddings [Khoshraftar et al.,
2021]. Unlike traditional keyword-based search, where the relationship be-
tween a query and the retrieved results is relatively straightforward, the rela-
tionship between vectors in a high-dimensional space is more abstract. This
can make it di�cult for users to understand why certain results were retrieved,
which is particularly problematic in sensitive domains like finance.

To address these challenges, ongoing research is focused on improving the e�-
ciency of embedding generation and storage, as well as developing techniques
for more interpretable vector-based retrieval. Additionally, there is growing in-
terest in hybrid approaches that combine the strengths of vector databases with
traditional relational databases or graph databases, allowing for more flexible
and powerful data retrieval capabilities [Friedman and Broeck, 2020].

2.1.3 Retrieval-Augmented Generation Methods

2.1.3.1 Overview

RAG is an emerging technique in the field of NLP that combines the strengths
of retrieval-based models with generative AI models by incorporating real-time
retrieval of relevant information from external knowledge bases. By combining
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retrieval mechanisms with generative models, RAG enables the production of
more accurate and contextually relevant responses, especially when dealing
with complex or specialized queries [Hu and Lu, 2024]. This hybrid approach
leverages the strengths of both retrieval-based systems, which excel at accessing
specific information, and generative models, which are adept at constructing
coherent, human-like responses [Fatouros et al., 2024b].

2.1.3.2 Enhancing LLMs with RAG

Generative models, such as Generative Pre-trained Transformer (GPT) variants,
rely solely on their training data, which can limit their e�ectiveness when
responding to queries that require up-to-date or domain-specific knowledge.
RAG addresses this limitation by integrating a retrieval component that searches
an external vector database for relevant documents or information snippets
[Shao et al., 2023]. The retrieved content is then used to inform the generative
model, allowing it to produce responses that are not only coherent but also
grounded and enriched with relevant details [Gao et al., 2023].

As shown in Figure 2.1, when a user submits a query, the RAG system first
identifies and retrieves the most pertinent information from a pre-indexed
knowledge base. This information is then passed to the generative model,
which uses it as context to generate a more informed and accurate response.
This process enhances the model’s ability to provide precise answers, especially
in scenarios where the original training data may not cover the query’s context.

2.1.3.3 Applications in NLP

RAG methods are being actively explored in various NLP applications, particu-
larly those that require accurate information retrieval combined with generative
capabilities. One of the primary applications of RAG is in QA systems, where
users ask questions, and the system provides answers based on a combination
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Figure 2.1: RAG Pipeline for augmenting LLM responses.

of pre-existing knowledge and information retrieved in real-time [Han et al.,
2024]. For example, in the medical domain, a RAG-powered system could
provide doctors with up-to-date information on the latest research findings or
treatment guidelines by retrieving and synthesizing relevant documents from a
medical knowledge base.

Another key application area for RAG is in customer support and helpdesk
automation [Xu et al., 2024]. In this context, RAG systems can dynamically
pull in relevant documentation, user manuals, or previous support cases to
generate detailed, context-specific responses to customer queries, improving the
e�ciency and accuracy of automated customer service solutions. In addition to
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these applications, LLM agents powered by RAG are increasingly being used
to autonomously respond to events or generate content [Tang and Guo, 2024].

2.1.3.4 Challenges in RAG

Despite its potential, the implementation of RAG methods poses several chal-
lenges [Yu et al., 2024]. One of the primary challenges is ensuring the rele-
vance and accuracy of the retrieved documents. The quality of the generated
responses heavily depends on the quality of the retrieval process; if irrelevant
or low-quality documents are retrieved, the generative model may produce
inaccurate or misleading information.

Another challenge is the computational complexity involved in integrating re-
trieval with generation in real-time [Meduri et al., 2024]. The process of
searching through large-scale vector databases and then conditioning the gener-
ation on the retrieved information requires significant computational resources,
which can limit the scalability of RAG systems, especially in time-constrained
applications.

2.2 The Reasoning Framework

The e�ective processing and interpretation of heterogeneous and complex data
is critical in domains such as cloud computing and finance. To address this
need, this section presents the design of a versatile reasoning framework capa-
ble of integrating various knowledge representation and retrieval mechanisms,
including both traditional semantic reasoning and RAG techniques. This frame-
work is designed to be flexible, allowing it to be applied across di�erent use
cases, such as optimizing cloud computing resources and generating structured
financial summaries from multiple sources.

The Reasoning Framework is structured into several core components, each
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Figure 2.2: Reasoning Framework High-Level Architecture.

responsible for di�erent aspects of knowledge processing and reasoning. The
architecture is designed to be modular, allowing for the integration of various
technologies depending on the specific use case. Figure 2.2 illustrates this
architecture designed to support both traditional knowledge bases and RAG
approaches.

Specifically, the Knowledge Integration Layer encompasses the Data Inges-
tion and Knowledge Integration components. The Data Ingestion Component
is responsible for retrieving data from external sources and providers, utilizing
technologies that support Representational State Transfer (REST) or Advanced
Message Queuing Protocol (AMQP) protocols for real-time data acquisition.
Depending on the specific use case, the Knowledge Integration component
manages both structured and unstructured data. For structured data, it han-
dles RDF triples and ontologies stored in graph databases, ensuring semantic
interoperability and relationship standardization. For unstructured data, it
processes text and embeddings, which are stored in vector databases. This
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component is also crucial in extracting metadata via NLP techniques, organiz-
ing it within the appropriate datastore, whether graph or vector-based.

At the core of the framework is the Semantic Reasoning Engine, which drives
the system’s ability to infer insights from the integrated knowledge. This
engine supports both traditional reasoning methods, leveraging ontologies and
knowledge graphs to apply logical rules and derive conclusions, and dynamic
reasoning approaches that use RAG techniques to process and reason over
textual data. By combining these capabilities, the engine can adapt to new
information and changing contexts, ensuring that the outputs it generates are
both timely and relevant. The engine processes input requests or feedback
from external sources, applying sophisticated reasoning to provide actionable
insights across various domains.

The Retrieval and Augmentation Module further enhances the framework’s
functionality by enabling the dynamic incorporation of external data into the
reasoning process. For structured data, it supports SPARQL query-based re-
trieval [Pérez et al., 2009], allowing for e�cient data extraction from knowl-
edge graphs. For unstructured data, the module integrates RAG methods,
facilitating the retrieval of relevant documents or information snippets from
vector databases. This module performs similarity searches and augments the
reasoning process with pertinent information, which is then used to inform
decision-making and content generation.

Finally, the Knowledge Synthesis and Output component is tasked with trans-
forming the results of the reasoning processes into actionable and consumable
outputs. In cloud computing contexts, this may involve generating optimized
configurations or recommendations for resource allocation, which are then fed
back into a cloud platform or orchestration service. In financial applications,
this component generates structured summaries, reports, or analyses, combin-
ing retrieved financial data, market trends, and expert opinions to produce
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outputs that are both informative and aligned with the latest developments.
These outputs are then delivered in a format, such as JavaScript Object Nota-
tion (JSON), that meets the specific needs of the end users or systems interacting
with the framework.

2.3 Use Cases in Cloud Computing and Finance

2.3.1 Use Case 1: Cloud Computing with Knowledge Graphs and On-

tologies

2.3.1.1 Problem Context

FaaS is a novel cloud computing paradigm that allows customers to develop,
run, and manage application functionalities without the complexity of manag-
ing the underlying infrastructure [Van Eyk et al., 2018]. However, deploying
workflows that consist of linked functions, services, or actions in a hybrid cloud
environment presents several challenges, particularly in matching application
requirements with the capabilities of available resources. These challenges
are compounded by the heterogeneous nature of cloud resources, including
di�erences in computational power, latency requirements, and geographical
location [Kousiouris and Kyriazis, 2021]. This section presents the applica-
tion of the Reasoning Framework in addressing these challenges by leveraging
knowledge graphs and ontology-based semantic reasoning.

2.3.1.2 Application of the Reasoning Framework

The Reasoning Framework proposed in this context performs semantic match-
ing between application and resource metadata to facilitate the optimized de-
ployment of FaaS applications in a hybrid cloud environment. The framework
utilizes knowledge graphs and ontologies to model the relationships between
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di�erent resources and application components, enabling the automatic match-
ing of application requirements with the appropriate cloud resources. In this
use case the proposed framework is part of a platform being developed in
the H2020 PHYSICS project1 which enables the optimized deployment of FaaS
application in hybrid cloud environments while abstracting the infrastructure
layer for the customer. Figure 2.3 illustrates the positioning of the proposed
service, the Reasoning Framework, with relation to other platform components.

Figure 2.3: Reasoning Framework’s dependencies with other components.

The framework retrieves application descriptions provided as graphs by the
function editor specification (e.g., Node-RED), which includes developer-inserted
annotations during the design process. These annotations are serialized in
JSON-LD format and transformed into a formal application description schema
based on the Web Web Ontology Language (OWL) [Bechhofer, 2004]. This
schema allows the framework to interpret the application as a graph, facili-
tating the semantic matching process. The underlying data include all the
information required for the application’s deployment in a FaaS setting, such
as the flows’ executable docker image location, execution mode (function or

1https://physics-faas.eu/
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service), and various annotations (e.g., locality, memory size, preferance on
energy/performance etc., specific hardware needs etc.) populated by the de-
veloper, that need to be in line with the target infrastructure capabilities (see
Figure 2.4).

Figure 2.4: Application data as triples.

Resource descriptions from available clusters, using Kubernetes as the resource
manager, are similarly ingested into the framework. These descriptions are
translated into a unified format according to a pre-defined ontology [Poulakis
et al., 2022], forming a resource graph. The created triples from each available
cluster are ingested (also in JSON-LD format) to the Reasoning Framework
forming the resource graph. The structure of sample resource data ingested
in the Reasoning Framework from an Elastic Kubernetes Cluster (EKS) is il-
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lustrated in Figure 2.5. This data includes information regarding the cluster
locality, sizing (i.e., CPU, RAM), architecture, each cluster node’s operating
system, and metrics related to the performance, energy consumption, and re-
silience.

Figure 2.5: Resource data as triples.

The Reasoning Framework uses the input application and resource graphs to
perform semantic matching between application requirements and available
resources, e�ectively acting as a first-level filter for resource selection.

2.3.1.3 Workflow and Implementation

The Reasoning Framework’s workflow begins with the ingestion of application
and resource data into the knowledge base. The framework then applies
semantic reasoning to infer relationships between the application and resource
graphs. For instance, it can determine which cloud resources are best suited
to deploy a given application workflow based on factors such as computational
power, memory requirements, and locality constraints.

The implementation of the Reasoning Framework, illustrated in Figure 2.6 is
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based on the AllegroGraph platform, a horizontally distributed, multi-model
knowledge graph technology that supports sophisticated decision-making pro-
cesses [Fernandes and Bernardino, 2018]. The backend service of the frame-
work is implemented using Flask, which exposes RESTful endpoints for data
ingestion, information retrieval, and inference requests. This microservices-
based architecture allows the framework to be easily integrated into existing
cloud platforms and to scale according to the demands of the application and
resources.

Figure 2.6: Reasoning Framework Implementation in the cloud computing use case.

2.3.1.4 Semantic Rules

After ingesting triples to the Reasoning Framework, these can be processed
as graphs. With SPARQL queries to the knowledge graph, the required in-
formation, such as for example the workflows included in an application or
the sizing of each cluster are made available as graph patterns [Zheng et al.,
2016]. However, some of these data require multiple queries to be retrieved
and this results in increased processing time for the Reasoning Framework to
respond to requests. For this purpose, specific relationships between the nodes
of each input graph are implemented in the form of INSERT queries. Hence, all
required information per provided endpoint can be instantly retrieved with a
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SELECT query. As an example, Figure 2.7 illustrates part of the available infor-
mation of a target EKS cluster hosted in AWS before the INSERT query, where
needed information (e.g, ram, cpu, architecture) for functions’ allocations are
part of each cluster node description. However, Reasoning Framework needs
to aggregate such data to filter the clusters that do not meet application re-
quirements. Such aggregations require multiple and complex queries as well
transformations performed at the Fask service. On the other hand, after the
INSERT operation (see Figure 2.8), performed during cluster registration in
the platform, all the required data (e.g., cpu cores and ram) are available at
cluster level and can be retrieved with a SELECT query.

Figure 2.7: Resource Graph without INSERT queries.

Fig 2.9 illustrates an application consisting of an orchestrating flow that calls
three other flows during deployment. Each of them has specific annotations,
internal functions, and requirements. The target cluster should fulfill all this
information for successful application deployment. Thus, application and re-
source matching could be cumbersome, especially for large workflows.

Although AllegroGraph’s build-in reasoner automatically infers some types of
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Figure 2.8: Resource Graph after updating it with INSERT queries.

Figure 2.9: Indicative Application Graph

relationships between the nodes of the ingested graphs, they do not su�ce to
assign connections between application and resource graph. To this end, several
rules have been implemented to automate this process and create connections
in the form of edges that link each flow with candidate target clusters. These
rules enable Reasoning Framework to infer triples of the form ?flow :allocatable
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?cluster by comparing the requirements of the input application graph with
the characteristics of the available resources. The latter allows retrieving all the
information required to deploy an application with a simple SPARQL query that
can be executed in a timely manner. Fig 2.10 depicts part of a deployment
graph where the flows of the given application have been connected to the
target cluster, as indicated by the "Allocatable" edges of the graph.

Figure 2.10: Deployment Graph.

2.3.1.5 Reasoning Framework API

While application and resource matching is Reasoning Framework’s primary
task, it also provides specific data stored in its KB to other components in an
asynchronous manner. Platform components responsible for the placement of
the input application request data such as the built image location, parameters,
and several annotations of each flow/function that are then used in typical
Kubernetes and FaaS platform manifest files. Table 2.3 describes the REST
endpoints currently used the most from the platform.
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Table 2.3: Reasoning Framework API Description
ID Method Endpointa Scope

EP1 POST /cluster Store a new cluster
EP2 GET /cluster Specs of stored clusters
EP3 POST /app Store a new app
EP4 GET /app Descriptions of all stored apps
EP5 GET /app/run/a_id Workflow allocations and manifest
aOnly the most used endpoints are presented.

Table 2.4: Reasoning Framework’s Evaluation in Cloud Computing Use Case
Endpoint Baseline Time (ms) Optimized Time (ms) Improvement (%)
POST /cluster 68.99 100.45 -45.59
GET /cluster 28.32 6.58 76.76
POST /app 155.06 179.20 -15.57
GET /app 26.81 21.74 18.91
GET /app/run/id 166.42 110.71 33.48

2.3.1.6 Evaluation and Results

To evaluate the performance of the Reasoning Framework, a series of experi-
ments were conducted to measure the response time for di�erent Application
Programming Interface (API) endpoints. These experiments compared the
baseline setup, which involves complex SPARQL queries and data manipula-
tions, with an optimized setup that leverages pre-inserted semantic rules. The
results, as shown in Table 2.4, indicate that the optimized setup significantly
reduces query latency, particularly for GET requests, which are critical for
real-time resource allocation in cloud environments.

The experimental results demonstrate that the Reasoning Framework is e�ec-
tive in facilitating the deployment of FaaS applications in hybrid cloud settings,
reducing the complexity and time required for resource matching and selection.
By leveraging knowledge graphs and ontologies, the framework enhances the
ability to manage and deploy cloud applications in a manner that is both
e�cient and scalable.
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2.3.2 Use Case 2: Macroeconomic Analysis with RAG Approaches

2.3.2.1 Problem Context

Macroeconomic data plays a crucial role in financial analysis, serving as the
backbone for understanding broad economic trends that directly impact mar-
kets, investment strategies, and portfolio management [Wang, 2022]. Key eco-
nomic indicators, such as inflation rates, unemployment figures, central bank
policies as well as geopolitical tensions need to be monitored continuously to
make informed predictions and adjust strategies accordingly [Maitra, 2023].
However, the vast and unstructured nature of data sources—ranging from fi-
nancial reports to real-time news—makes it challenging to extract relevant
insights e�ciently.

Traditional rule-based reasoning systems often fall short in such dynamic en-
vironments [Sun et al., 2024]. These systems rely on predefined rules and on-
tologies, which, while e�ective for structured data, lack the flexibility to adapt
to rapidly changing economic conditions and the nuances found in unstruc-
tured text from various sources. Moreover, analyzing macroeconomic data
typically requires significant human e�ort due to the varying frequencies at
which this data is updated [Sijabat, 2022]. For instance, while models based
on price data can be processed systematically on a daily basis, those relying
on macroeconomic data necessitate thorough analysis across various aspects
such as asset classes (e.g., stocks, bonds, commodities), regions, and indus-
tries, each of which experiences irregular updates and requires di�erent levels
of expertise [Fatouros et al., 2024a]. This inconsistency in data frequency
leads to investment strategies that are either solely focused on macro data or
exclude it entirely in favor of more advanced strategies based on price dynam-
ics [Cioc�irlan et al., 2023]. The rigidity of rule-based systems hinders their
ability to e�ectively identify emerging economic themes or adapt to shifts in
market sentiment in a timely manner.
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A Reasoning Engine based on LLMs, grounded by factual and updated data
through RAG, o�ers a more robust solution for these scenarios. LLMs can
process and understand vast amounts of text, identifying complex patterns and
relationships within the data that rule-based systems might miss [Fatouros
et al., 2023d]. When combined with RAG, which ensures that the reasoning is
informed by the most current and relevant information, this approach enables
the generation of structured, actionable insights that can be seamlessly con-
sumed by other financial services or used to highlight specific economic themes
to end users [Hivarhizov, 2024]. This dynamic and responsive system is better
suited to meet the demands of modern financial analysis, where timely and
accurate information is paramount.

2.3.2.2 Data Ingestion and Preprocessing

The data ingestion and preprocessing phase is a critical component of the
macroeconomic analysis pipeline with the overall process illustated in Fig-
ure 2.11. It begins with a set of dedicated web scrapers, each tailored to
specific organizations such as the Federal Reserve (FED), European Central
Bank (ECB), JPMorgan, Goldman Sachs, and BlackRock, among others. These
scrapers are designed to download publicly available reports and articles in
PDF format from the websites of these organizations, based on a specified date
range.

Once the PDFs are retrieved, the system extracts essential metadata, including
the report’s date, title, publisher, and the URL link to the report. This metadata
is crucial for proper citation and ensures traceability of the sources used in
subsequent analyses. The PDFs are then parsed using the PDFReader tool to
extract the textual content.

Given that websites may include a mix of content, such as marketing materials
or non-macroeconomic articles, a filtering step is performed using GPT-4o,
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Figure 2.11: Data Ingestion and Preprocessing Workflow of the Reasoning Framework
in the finance use case.

one of the most advanced LLMs currently available [OpenAI, 2024]. This
step ensures that only relevant macroeconomic reports are retained for further
processing. The filtered reports are then cleaned using the LLM, which removes
extraneous text and refines the content. Additionally, the LLM generates a
one-sentence summary for each report, which is appended to the metadata to
provide a quick overview of the report’s focus and facilitate better indexing.

The processed PDFs are stored in a cloud storage bucket, and a lookup ta-
ble is updated with the metadata, including the location of each report in the
bucket. Furthermore, for each report, a JSON file containing all the metadata
and the cleaned content is generated and stored as a separate file in the bucket.
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This structured storage approach, combined with comprehensive metadata in-
dexing, ensures e�cient and accurate retrieval of relevant reports during the
subsequent analysis phase. By focusing on core, clean data for indexing, the
system enhances both the accuracy and speed of retrieval operations.

2.3.2.3 Application of the Reasoning Framework

The application of the Reasoning Framework in the financial use case is cen-
tered around the implementation of the RAG method, designed to synthe-
size comprehensive macroeconomic analyses from a vast repository of financial
reports and articles. This approach leverages the structured metadata and
cleaned content extracted during the data ingestion and preprocessing phase
(described in Section 2.3.2.2) to generate up-to-date, factually grounded in-
sights that are crucial for financial decision-making. This approach, illustrated
in Figure 2.12, integrates data ingestion, vector-based retrieval, and advanced
reasoning to create accurate and actionable financial insights.

Figure 2.12: Reasoning Framework Implementation in the finance use case.

After the data ingestion and preprocessing phase, the cleaned content and meta-
data are retrieved using the lookup table. The processed documents are then
embedded using OpenAI’s embedding model and stored in a Vector Database
(i.e., Pinecone). The metadata plays a crucial role in indexing these embed-
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Figure 2.13: Reasoning Framework’s Retrieval Module Framework as a RAG Agent.

dings, enabling fast, accurate, and time-aware retrieval based on text similarity
searches.

The retrieval module illustrated in Figure 2.13 demonstrates the implementa-
tion of an advanced RAG agent, designed to support reasoning with complete
and grounded information. The RAG agent upon request/query implements
the following functions:

• Query Expansion: This step generates multiple variations of the input
query using semantic enhancement, via a dedicated request to the LLM, to
improve recall and identify broader relevance within the vector database.

• Metadata-Based Search: In parallel, metadata-driven filters refine the
scope of the retrieval by leveraging date, source, or other document at-
tributes, ensuring precision in the search results while reducing the search
space. The required filters are generated by the LLM based on the input
query.

• Embedding Variants: Di�erent variations of the input query are to en-
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sure coverage in information retrieval via similarity search.

• Top-n results: The original chunk texts of the to most similar embeddings
are combined and then passed as context to the reasoning engine for
downstream tasks.

For the Embedding Variants generation, the retrieval module uses pre-defined
prompt templates. These prompts are tailored to address specific financial
analysis tasks and ensure that the retrieved data is highly relevant for the
reasoning process. Below is a description of the prompts used in this process:

• Consensus Analysis Prompts: Request comprehensive macroeconomic
analyses for specific regions or markets (e.g., United States, Europe, China).
Each market is addressed with a unique prompt.

• Sentiment Analysis Prompts: These prompts identify positive and nega-
tive sentiments regarding investment opportunities and risks.

• Contradictory Views Prompts: These prompts are formulated to detect
and summarize any conflicting or di�ering viewpoints among the available
macroeconomic reports.

The Reasoning Module utilizes retrieved embeddings after applying these prompts
to the indexed documents in the vector database. It requests the LLM, specif-
ically GPT-4o via OpenAI’s API (although the modularity of the architecture
allows for the integration of di�erent LLMs), to generate a macroeconomic sum-
mary for each category (e.g., consensus, sentiment, contradictions) [Achiam
et al., 2023]. The LLM, leveraging its generative capabilities, produces outputs
that reflect current economic conditions while integrating insights from various
sources, o�ering a comprehensive view of the financial landscape. This ap-
proach enables dynamic adaptation to new information, crucial in the rapidly
evolving financial markets.

Finally, the Knowledge Synthesis and Output component processes the raw
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insights generated by the LLM to ensure they are structured, accurate, and
ready for practical use. This component uses tools like Pydantic to validate
and enforce the structure of the output, ensuring consistency and reliability.
Once validated, the output is formatted into a structured JSON format, captur-
ing key financial insights, such as sentiment analysis, market consensus, and
contradictory viewpoints. This structured report is then ready for dissemina-
tion or further analysis. It can be automatically posted to external systems,
such as a financial service platform or a chatbot, ensuring that the insights are
not only well-organized but also immediately actionable for decision-makers.
This process ensures that the outputs are both high-quality and fit seamlessly
into automated workflows, supporting real-time decision-making in dynamic
environments.

This implementation of the RAG method within the Reasoning Framework
represents a significant advancement over traditional rule-based systems, of-
fering enhanced flexibility, accuracy, and responsiveness in financial analysis.
By grounding the LLM in recent, high-quality data, the framework ensures
that the outputs are not only contextually relevant but also actionable, provid-
ing valuable insights that can inform investment strategies and other financial
decisions.

2.3.2.4 Example Outputs

The Reasoning Framework was applied to generate concise macroeconomic
analyses for three consecutive dates: June 29, 2024, July 31, 2024, and August
10, 2024. These outputs were designed to be directly consumed by the Market-
SenseAI platform (see Chapter 5), o�ering the required macroeconomic context
for stock picking.

June 29, 2024: The consensus indicated that inflation remains a central con-
cern across major economies. The UK saw inflation fall to 2%, prompting
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expectations of a rate cut by the Bank of England, while the ECB was expected
to cut rates sooner than the Federal Reserve due to slower growth in the Euro
area. Key sectors such as technology and AI were identified as driving short-
term returns, with a focus on AI winners like Nvidia. Small- and mid-cap
stocks were highlighted as undervalued, o�ering potential entry points for in-
vestors. Geopolitical and economic uncertainties, such as election outcomes,
were recognized as significant challenges, recommending diversified portfolios
with ample liquidity to navigate potential market dislocations.

July 31, 2024: The consensus analysis revealed ongoing market volatility
driven by sentiment shifts rather than fundamental changes. Central banks
were at a critical juncture, with potential rate cuts by the Fed and rate hikes by
the BOJ leading to currency fluctuations. The U.S. economic outlook presented
mixed signals, with optimism about AI-driven growth contrasted by a sluggish
housing market. In Europe, economic stagnation was noted, with some regions
showing better performance due to political stability and reforms. The invest-
ment strategy suggested a diversified and adaptable approach, with small-cap
stocks benefiting from easing inflation and expected Fed rate cuts.

August 10, 2024: By this date, the U.S. labor market showed signs of cool-
ing, with rising unemployment possibly leading the Fed to cut interest rates.
Inflation was declining in the U.S., positively a�ecting risky assets but posing
a potential market risk if driven by reduced demand. Central banks began
cutting rates after significant hikes, with the ECB facing pressure due to high
services inflation and weak economic confidence. Geopolitical factors, particu-
larly in China and the Middle East, contributed to market uncertainty. The
recommended investment strategy focused on fixed income and selective eq-
uity opportunities, favoring high-yield bonds and large-cap equities due to
their growth prospects.

These outputs highlight the framework’s ability to synthesize complex and
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timely macroeconomic information into concise, actionable insights. By ground-
ing the analysis in updated data, the Reasoning Framework ensures that the
generated reports are relevant and directly applicable to current market condi-
tions.

Additionally, a di�erent configuration of the Reasoning Framework, with mod-
ified instructions in the Reasoning and Output Synthesis Modules but utilizing
the same RAG process and data, produces an extended macroeconomic report.
This version, available to MarketSenseAI users at https://www.marketsense-ai.
com/macro-insights, includes in-depth discussions on sectoral trends, detailed
policy analysis, and comprehensive investment outlooks across various regions
and asset classes.

2.3.2.5 Evaluation

The evaluation of the Reasoning Framework was conducted by comparing its
outputs against those generated by state-of-the-art LLMs with access to real-
time data, specifically Llama 3.1 via Perplexity Pro [AI, 2024, Dubey et al.,
2024] and Google Gemini 1.5 [Reid et al., 2024]. The evaluation focused on
three key areas: the alignment of generated summaries with expert opinions,
the quantitative assessment using automated metrics such as BERTScore and
ROUGE, and qualitative feedback from a financial analyst reviewing the sum-
maries.

2.3.2.5.1 Automated Metrics: To quantitatively assess the quality of the gener-
ated summaries, we employed two widely used metrics in NLP: BERTScore
and ROUGE. In selecting BERTScore and ROUGE as the primary evaluation
metrics for assessing the quality of generated macroeconomic summaries, this
work aimed to capture both semantic similarity and textual overlap, which are
crucial for evaluating the e�ectiveness of the Reasoning Framework. BERTScore,
which leverages pre-trained transformer models, excels at measuring the seman-
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tic alignment between the generated text and reference outputs by evaluating
token similarity in a contextual manner [Zhang et al., 2019]. This makes it
particularly suitable for financial text, where nuanced language and domain-
specific terminology are prevalent. ROUGE, on the other hand, is a traditional
metric focused on n-gram overlap, providing insights into how well the gen-
erated summaries capture key phrases and structures found in the reference
texts [Lin, 2004].

These metrics were chosen because they complement each other. BERTScore
focuses on the depth of understanding and semantic fidelity, while ROUGE
assesses more superficial text alignment. Together, they o�er a comprehen-
sive evaluation of the generated text’s quality. The comparisons yielded the
results presented in Table 2.5. BERTScore results indicate that the Reasoning
Framework produces summaries that are highly similar to those generated by
other state-of-the-art LLMs, demonstrating its e�ectiveness in capturing rel-
evant macroeconomic insights. The ROUGE scores support the BERTScore
findings, confirming that the Reasoning Framework generates content that is
on par with the outputs from advanced models in terms of coverage and rele-
vance.

Table 2.5: Reasoning Framework Evaluation in Financial Use Case
Metric RF vs Perplexity RF vs Gemini Perplexity vs Gemini
BERTScore (F1) 0.8374 0.8466 0.8614
ROUGE-1 (F1) 0.4659 0.4577 0.5761

2.3.2.5.2 Human Evaluation: To complement the quantitative metrics, a finan-
cial analyst was consulted to review and compare the outputs from the Reason-
ing Framework with those from Perplexity Pro and Google Gemini 1.5. The
analyst highlighted several key strengths of the Reasoning Framework’s output,
particularly its forward-looking insights, sector-specific analysis, and practical
investment strategies.
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Key Insights from the Analyst Review:

• The Reasoning Framework (MarketSenseAI) provided forward-looking
projections, especially regarding monetary policy, which are crucial for
making informed investment decisions.

• The sector-specific analysis, particularly in technology and AI, o�ered
actionable insights that were more detailed and targeted than the other
models.

• The investment strategies recommended were deemed more practical and
directly applicable, making it the most useful tool for investors and ana-
lysts.

The analyst concluded that, while the outputs from Perplexity Pro and Google
Gemini 1.5 were robust, the Reasoning Framework’s ability to combine macroe-
conomic insights with practical investment guidance made it superior for real-
world financial applications.

2.3.2.5.3 Real-World Application: The RAG-based version of the Reasoning
Framework has already integrated into the MarketSenseAI platform, provid-
ing actionable macroeconomic insights that are consumed by users for stock
picking and investment strategy formulation. The real-world application of
these insights has been positively received, with early feedback indicating in-
creased user engagement and satisfaction.

2.4 Discussion

This chapter has introduced the Reasoning Framework, a versatile architec-
ture designed to facilitate semantic matching and reasoning across diverse
data types. By supporting the implementation of both traditional knowledge
systems, such as ontologies and knowledge bases, with advanced retrieval-
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augmented generation (RAG) methods, the framework e�ectively addresses
the complexities of heterogeneous data processing in cloud computing and
financial analysis.

One of the key contributions of this work is the seamless integration of tradi-
tional semantic reasoning with modern vector-based retrieval techniques. This
combination allows the framework to leverage the strengths of both approaches,
providing a robust solution for real-time decision-making in dynamic environ-
ments. The cloud computing use case demonstrated how the framework can
optimize resource allocation for FaaS applications by employing knowledge
graphs and ontologies to model and match application requirements with avail-
able resources. In the financial use case, the framework’s application of RAG
methods showed its capability to generate actionable macroeconomic insights,
which are crucial for informed investment strategies.

Despite these advancements, several challenges remain. The integration of
structured and unstructured data within a unified reasoning framework poses
significant computational and scalability issues, particularly when dealing with
large-scale, real-time data streams. Additionally, the reliance on current LLMs
for semantic reasoning introduces potential limitations related to model bias.

As a direction for future work, there is considerable potential in further inte-
grating ontologies and graph databases with LLMs and RAG approaches. For
example, LLMs could be employed to automate data modeling tasks, facilitating
the creation and maintenance of complex ontologies. Additionally, leveraging
LLMs to enhance retrieval capabilities using SPARQL or other relevant query
languages could bridge the gap between structured knowledge systems and
unstructured data processing. This integration could lead to more dynamic
and adaptable systems capable of more sophisticated reasoning and retrieval,
thereby improving the overall performance and applicability of the Reasoning
Framework in various domains.
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Chapter 3

Online Learning for Time Series Predic-

tion in Dynamic Environments

Chapter Structure

This Chapter is constructed as follows:

• Section 3.1 - Background on Online Learning for Time Series Predic-
tion, reviews the necessity of online learning in dynamic environments,
such as cloud computing and finance, and examines the current state of
the art in this field.

• Section 3.2 - Overview and Design of the Online Learning System,
presents an overview of the proposed AI-based system, detailing its ar-
chitecture, components, and how it enables real-time updates to model
parameters for time-series data processing.

• Section 3.3 - Use Cases in Cloud Computing and Finance, and Evalu-
ation, evaluates the online learning system through two distinct use cases:
predicting function latency in serverless cloud computing and financial
risk prediction. This section also presents the outcomes of the evaluation,
analyzing the system’s e�ciency and accuracy.
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• Section 3.4 - Discussion, provides a summary of the chapter’s contribu-
tions, highlights the challenges encountered during the implementation,
and outlines future work directions, including the integration of the Rea-
soning Framework with online learning systems.

In dynamic environments such as cloud computing and finance, where data
patterns evolve rapidly, the ability to continually adapt predictive models in
real-time is crucial for maintaining accuracy and relevance. The research pre-
sented in this chapter addresses this need by enabling models to update their
parameters dynamically as new data becomes available. This chapter intro-
duces a novel AI-based system that applies online learning to time-series data,
enhancing the capability to predict outcomes such as function latency in server-
less cloud computing and financial risks. The findings from the evaluation
of this system demonstrate its e�ectiveness in improving prediction accuracy
and e�ciency compared to traditional static models, o�ering significant ad-
vancements in real-time data processing and decision-making. The proposed
approach not only supports the dynamic adaptation of models but also inte-
grates seamlessly with existing frameworks, such as the Reasoning Framework
discussed in Chapter 2, further solidifying its relevance and applicability in
complex, real-world scenarios.

3.1 Background on Online Learning for Time Series Pre-

diction

3.1.1 Introduction to Time Series Prediction

3.1.1.1 Definition and Characteristics of Time Series Data

Time series data refers to a sequence of data points collected or recorded at
successive points in time, often at regular intervals. Unlike cross-sectional data,
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which captures a single point in time, time series data is inherently tempo-
ral, meaning that its observations are dependent on the time at which they
are measured. This characteristic introduces specific patterns, such as trends,
seasonality, and autocorrelation, which must be considered during analysis.

For example, in financial markets, time series data may represent daily stock
prices, interest rates, or trading volumes. In cloud computing, time series data
might include system latency, resource usage, or error rates over time. The
primary challenge in working with time series data lies in modeling these
temporal dependencies accurately to make reliable predictions. Additionally,
time series data often exhibits non-stationarity, where the statistical properties
of the series change over time, further complicating predictive modeling.

3.1.1.2 Traditional Methods for Time Series Prediction

Traditional methods have been extensively used across various domains to fore-
cast future data points based on historical data. Some widely used approaches
include:

• Autoregressive Integrated Moving Average (ARIMA): ARIMA models
are widely used for forecasting univariate time series data. They combine
three components: autoregression (AR), di�erencing to make the data
stationary (I), and moving averages (MA) to model the residuals [Said
and Dickey, 1985]. ARIMA models are particularly e�ective for series with
linear relationships and can be extended to seasonal data using SARIMA
(Seasonal ARIMA).

• Exponential Smoothing (ETS): Exponential smoothing techniques, such
as Simple Exponential Smoothing (SES) and Holt-Winters, are used for
forecasting time series data by assigning exponentially decreasing weights
to past observations [Kalekar et al., 2004]. These methods are especially
useful for capturing trends and seasonality in data [Gardner Jr, 1985].
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• State-Space Models: These models represent the time series as a system
evolving over time, characterized by hidden states. The Kalman Filter
is a well-known example, estimating the state of a dynamic system from
noisy observations [Aoki, 2013,Welch et al., 1995].

• Linear Regression Models: When the relationship between the depen-
dent variable and time is approximately linear, linear regression can be
applied to predict future values. Although simple, they can be extended
with polynomial terms or interactions to capture more complex patterns
in the data.

3.1.1.3 AI Methods for Time Series Prediction

While traditional methods have proven e�ective in many contexts, they often
struggle with non-linearities, high-dimensional data, and drifts, where the un-
derlying data distribution changes over time. This has led to the adoption of
more advanced approaches, particularly ML and DL techniques, which o�er
greater flexibility and accuracy for a wide range of time series prediction tasks.
Key ML/DL methods include:

• Random Forests: Random Forests are ensemble learning techniques that
combine multiple decision trees to improve predictive accuracy. These
methods are particularly e�ective when dealing with large datasets and
complex patterns like in predictive maintenance and Internet of Things
(IoT) data [Papacharalampous et al., 2023,Fatouros et al., 2023c].

• Support Vector Machines (SVM): SVMs are a type of supervised learn-
ing model that can be used for both classification and regression tasks,
including time series prediction [Makridis et al., 2020]. By mapping in-
put data into high-dimensional space, SVMs are able to capture complex
relationships that are not easily modeled by linear techniques.
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• Recursive Neural Networks (RNNs) and Long Short-Term Memory
(LSTM): RNNs are a class of neural networks designed to handle sequen-
tial data, making them well-suited for time series prediction [Connor et al.,
1994]. LSTMs, a specialized form of RNNs, are designed to capture long-
term dependencies in data by using memory cells that store information
over extended periods. This makes them highly e�ective for time series
with long-range temporal dependencies [Gallicchio et al., 2018].

• Probabilistic Deep Neural Network (DNN): Probabilistic DNNs like
DeepAR and DeepState are specialized models designed for probabilis-
tic time series forecasting [Salinas et al., 2020]. These models output a
full predictive distribution rather than point estimates, allowing for un-
certainty quantification. These models are particularly useful in scenarios
where understanding the uncertainty in predictions is crucial.

3.1.2 Challenges in Time Series Prediction

3.1.2.1 Drift and Non-Stationarity

In time series prediction, one of the major challenges is dealing with concept
drift and non-stationarity.

Drift occurs when the statistical properties of the target variable change over
time, making it di�cult for traditional models to maintain accuracy [You et al.,
2021]. Concept drift can be gradual, abrupt, or recurring. Formally, if a
predictive model f : X ! Y is defined, drift occurs when the joint distribution
P(X ,Y ) changes over time:

Pt1(X ,Y ) , Pt2(X ,Y ) for t1 , t2

where X represents the input features, and Y represents the target variable.
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Non-Stationarity is when the statistical properties of a time series, such as
mean, variance, and autocorrelation, are not constant over time. Many tradi-
tional time series models, including ARIMA and ETS, assume stationarity. A
time series Yt is stationary if:

E[Yt ] = µ (constant mean)

Var(Yt) = s2 (constant variance)

Cov(Yt ,Yt�k) = gk (autocovariance depending only on lag k)

Non-stationarity can be detected using tests such as the Augmented Dickey-
Fuller (ADF) test [Chen, 2022b], where the null hypothesis H0 is that the
series is non-stationary:

DYt = a +b t + gYt�1 +d
p

Â
i=1

DYt�i + et

where DYt is the di�erence operator, and et is the white noise.

Addressing Drift and Non-Stationarity: Tackling these issues is crucial for
robust time series models. For instance, ARIMA models use di�erencing to
remove non-stationarity:

Y
0

t
= Yt �Yt�1

This transformation stabilizes the mean by removing trends and seasonality.

Monotonic transformations, like the logarithmic transformation,

Y
0

t
= log(Yt)

or the square root transformation,

Y
0

t
=

p
Yt
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can stabilize variance, particularly in data with exponential growth or quadratic
trends [Cheng et al., 2015].

Online learning methods continuously update model parameters, making them
responsive to drift. For example, in a linear regression model:

Yt = b0 +b1Xt + et

parameters b0 and b1 can be incrementally updated as new data arrives, allow-
ing the model to adapt to evolving data distributions.

Advanced techniques like LSTM networks are capable of capturing and adapt-
ing to temporal dependencies, making them resilient to both non-stationarity
and drift [Karaahmetoglu et al., 2020].

These challenges highlight the need for online learning techniques that can
adapt to changing environments, ensuring models remain accurate and reliable
over time.

3.1.2.2 High Dimensionality and Noise

Time series prediction often involves high-dimensional data and noise, both of
which can complicate model accuracy and e�ciency.

High-dimensional time series data features numerous variables evolving over
time. This complexity increases the risk of overfitting, as models might capture
noise instead of underlying patterns [Dong et al., 2020]. Dimensionality reduc-
tion techniques, like Principal Components Analysis (PCA) or autoencoders, are
commonly used to transform high-dimensional data into a lower-dimensional
space that retains essential information [Sun and Bozdogan, 2020].

Noise refers to random fluctuations that obscure the true underlying signal,
making it di�cult for models to learn and predict accurately. Noise can result
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from measurement errors, external disturbances, or inherent variability. Tech-
niques like smoothing (e.g., moving averages, exponential smoothing), filtering
(e.g., Kalman filters), and denoising algorithms help reduce noise’s impact
on model performance [Rezaei et al., 2022]. Additionally, regularization tech-
niques, such as Lasso or Ridge regression, can manage noise by penalizing
overly complex models that might otherwise fit the noise rather than the sig-
nal.

Addressing high dimensionality and noise is essential for developing models
that generalize well and provide accurate forecasts, particularly in real-world
applications where data is often imperfect and high-dimensional.

3.1.2.3 Computational Constraints in Real-Time Environments

Real-time environments impose unique computational challenges for time series
prediction, especially with high-frequency data or large-scale systems requiring
immediate responses. Several key factors contribute to these constraints:

Latency Requirements: In real-time systems, predictions must be generated
within strict time limits to be actionable. For example, in financial markets, even
milliseconds can impact the success of a trading strategy. Consequently, mod-
els need to be optimized for low-latency inference, often requiring lightweight
algorithms or approximate methods that deliver rapid predictions without sig-
nificant sacrifices in accuracy.

Scalability: Real-time applications must often scale to handle high volumes of
data or simultaneous requests. This demands models that not only perform
well individually but can also scale horizontally across distributed systems
or in parallel processing environments. Online learning algorithms, which
update models incrementally as new data arrives, are particularly suited for
maintaining real-time performance in scalable systems.
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Model Adaptation: Real-time environments are dynamic, with changing con-
ditions that can impact the performance of static models. Online learning
and model adaptation are therefore crucial, allowing models to update and re-
fine themselves in response to new data without requiring extensive retraining,
which would be computationally prohibitive in real-time settings.

Addressing these computational constraints is essential for the successful de-
ployment of time series prediction models in real-time environments, where
the ability to provide timely and accurate predictions is paramount.

3.1.3 Overview of Online Learning

3.1.3.1 Types of Online Learning Approaches

This chapter focuses on the online learning strategies employed in the proposed
system, which are particularly relevant to the dynamic environments of cloud
computing and financial markets. The primary method utilized is the sliding
window approach, which is central to the system’s ability to adapt to real-
time changes in data streams. The other methods, though less emphasized,
complement the sliding window approach by addressing specific challenges
such as drift and real-time updates.

• Sliding Window Method: This method continuously updates the model
using the most recent data within a specified window that moves forward
over time. It is particularly e�ective in environments like serverless cloud
computing [Fatouros et al., 2023a], where rapid adaptation to fluctuating
conditions, such as changes in function latency, is essential. This method
ensures that the model remains up-to-date with the latest data trends,
making it highly suitable for dynamic, real-time applications.

• Incremental Learning: Complementing the sliding window method, in-
cremental learning updates the model with new data without requiring a
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complete retraining. This approach is beneficial when the model needs
to maintain an ongoing understanding of evolving trends, especially in
scenarios where data flows continuously but with varying patterns.

• Feature Drift Adaptation: Managing feature drift—where the statistical
properties of input features change over time—is crucial in dynamic sec-
tors like finance [Fatouros et al., 2023b]. The sliding window method
inherently supports this by recalibrating the model’s focus on the most
current data attributes, thereby mitigating the impact of feature drift on
prediction accuracy.

• Real-Time Updating: The ability to update models in real-time is criti-
cal for maintaining predictive accuracy in environments where delays in
model training can lead to suboptimal decisions. The sliding window ap-
proach facilitates rapid retraining cycles, ensuring that the model reflects
the most recent data and remains e�ective in real-time applications, such
as financial risk assessment and cloud resource management.

By emphasizing the sliding window method within the online learning frame-
work, the proposed system ensures that models remain both responsive and
accurate in continuously evolving data environments. This approach is partic-
ularly well-suited to the use cases discussed in this chapter, where real-time
data processing and decision-making are paramount.

3.1.3.2 Fundamentals of Online Learning

Online learning is a ML paradigm where models are incrementally updated as
new data becomes available, without the need for complete retraining. This
is particularly advantageous in environments characterized by continuous data
streams, where computational resources or time constraints make frequent re-
training impractical.
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Key Characteristics:

• Incremental Updates: Online learning algorithms process data sequen-
tially, updating the model one observation or small batch at a time. This
contrasts with batch learning, where the model is trained on the entire
dataset at once, making online learning more suitable for real-time appli-
cations.

• Adaptability: These models are designed to adapt to changes over time,
making them e�ective in non-stationary environments where data distri-
butions evolve. This adaptability is crucial for maintaining model accu-
racy in dynamic settings.

• Scalability: By updating incrementally, online learning can e�ciently han-
dle large volumes of data, making it scalable for applications where data
is too extensive to fit into memory or where the data is generated contin-
uously.

• Real-Time Prediction: Online learning is essential for applications re-
quiring real-time analysis and decision-making, as it minimizes the lag
between data acquisition and model updating, thus providing timely and
accurate predictions.

Challenges:

• Stability-Plasticity Dilemma: Online learning models must balance re-
taining previously learned information (stability) with the ability to in-
tegrate new information (plasticity). This balance is critical to prevent
catastrophic forgetting, where new data overwrites valuable older knowl-
edge.

• Noise Sensitivity: Incremental learning approaches can be more suscep-
tible to noise and outliers since each new data point can significantly
influence model parameters. E�ective noise management strategies, such
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as regularization, are essential to maintain model robustness.

• Parameter Tuning: The performance of online learning models is highly
dependent on parameters such as learning rates and window sizes. These
need careful tuning to achieve optimal performance, particularly in envi-
ronments where data characteristics are subject to frequent changes.

• Model Type Trade-o�: There is an inherent trade-o� between using tra-
ditional time series models like ARIMA, which are quicker to retrain, and
more complex deep learning models, which can capture non-linear rela-
tionships but require longer retraining times. This trade-o� is particularly
important in applications where rapid model updating is critical, such as
in real-time financial forecasting or adaptive cloud resource allocation.

3.2 Overview and Design of the Online Learning System

The proposed online learning system is designed to adapt to dynamic en-
vironments such as cloud computing and financial markets by continuously
updating predictive models based on real-time data streams. This system’s
architecture, illustrated in Figure 3.1, is composed of several key components,
each responsible for specific tasks in the data processing, model training/update,
and prediction workflow.

3.2.1 Architecture Components

3.2.1.1 Data Monitoring & Ingestion

The Data Monitoring & Ingestion component captures real-time data streams
from external sources such as cloud computing environments (e.g., function la-
tencies, resource usage metrics) and financial systems (e.g., asset prices, trading
volumes). This component can be implemented using REST APIs or messaging
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Figure 3.1: Architecture of the Online Learning System.

protocols to ensure reliable and e�cient data ingestion. The raw data ingested
is then sent to the Datastore and triggers the Data Preparation component
when new data is available.

3.2.1.2 Datastore

The Datastore serves as a central repository for both historical and newly
ingested data, supporting model training and validation processes. It can be
implemented using relational (RDBMS) or NoSQL databases, depending on the
system’s scalability and performance requirements. The stored data is accessed
by the Data Preparation component for processing and by the Model Trainer
for training or updating the predictive models.
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3.2.1.3 Data Preparation

The Data Preparation component is responsible for processing the raw data
collected from various sources. This includes tasks such as data cleaning, nor-
malization, feature extraction, and handling of missing values. These prepro-
cessing steps ensure that the data is in the optimal format for model training
and prediction. Once the data is prepared, it is passed to the Model Trainer
for further processing.

3.2.1.4 Model Trainer

The Model Trainer component continuously updates the predictive model using
the processed data from the Data Preparation component. Depending on the
specific requirements and limitations of the use case, the model could be a
traditional time series model or a machine learning/deep learning (ML/DL)
model. For example, in cases where the available historical data covers only
a short period, or when e�ciency is prioritized over accuracy, a traditional
model may be more appropriate. The parameters of the model should be
predefined and validated through an o�ine process before deployment. This
component is crucial for maintaining the model’s accuracy and relevance in
dynamic environments.

3.2.1.5 Prediction Engine

The Prediction Engine generates real-time predictions using the continuously
updated model provided by the Model Trainer. This component plays a vital
role in delivering actionable insights to external data consumers, such as cloud
orchestrators or financial services, which rely on accurate and timely predictions
for decision-making. Essentially, the Prediction Engine performs the inference
task based on the most current model to provide predictions that can be used
immediately by external systems.
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3.2.2 System Workflow and Component Interactions

The system workflow begins with the Data Monitoring & Ingestion component
capturing real-time data streams from external sources. This data is then
stored in the Datastore and triggers the Data Preparation component, where it
undergoes preprocessing. The processed data is used by the Model Trainer to
update the predictive model, which is then utilized by the Prediction Engine
to generate real-time predictions. These predictions are consumed by external
systems that depend on timely and accurate data-driven insights.

3.3 Use Cases in Cloud Computing and Finance, and Eval-

uation

3.3.1 Use Case 1: Runtime Adaptation for Serverless Functions in Hy-

brid Clouds

3.3.1.1 Problem Context

Serverless computing, or FaaS, has rapidly gained popularity due to its advan-
tages like automatic scalability, reduced operational overhead, and micro-billing.
In this model, developers focus on application logic while cloud providers man-
age resources, dynamically scaling functions based on demand. However, the
rise of serverless computing, especially in hybrid cloud environments where
functions are deployed across private and public clouds (e.g., AWS, Azure),
introduces challenges in optimizing performance metrics such as response la-
tency [Shahrad et al., 2019].

In hybrid cloud setups, ensuring optimal latency is complex. Traditional static
routing methods struggle to adapt to the dynamic nature of serverless functions,
which can experience variability due to cold starts, resource contention, and
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cloud-specific factors [Kousiouris and Pnevmatikakis, 2023]. Industries like
manufacturing, eHealth, and smart agriculture, which use proprietary servers
for security and cost reasons, often supplement with public cloud resources
for resilience [Aryotejo et al., 2018]. This hybrid model demands sophisti-
cated routing mechanisms that can dynamically balance performance and cost,
something traditional approaches fail to provide [De Palma et al., 2020].

This proposed system addresses these challenges by introducing a dynamic
routing service for hybrid cloud environments. This system leverages real-time
metrics—such as function invocations, memory usage, and latency data—to
intelligently route serverless functions across cloud clusters, optimizing for both
performance and cost e�ciency. Unlike static methods, this system adapts in
real time, ensuring better resource utilization and improved response times.

The solution has been evaluated using Apache OpenWhisk clusters on AWS
and Azure, demonstrating significant improvements in performance and cost
management under various workloads, thereby validating the e�ectiveness of
this dynamic routing approach in hybrid cloud environments [Fatouros et al.,
2022].

3.3.1.2 Related Work

The challenge of understanding and predicting performance in serverless com-
puting, has attracted significant research attention due to the dynamic and
complex nature of FaaS deployments and their performance metrics.

3.3.1.2.1 Performance Estimation in FaaS: Recent studies have proposed vari-
ous analytical methods for estimating the performance of FaaS platforms by
utilizing di�erent evaluation metrics. SAAF [Cordingly et al., 2020] provides
a comprehensive set of performance profiling and resource utilization metrics
for concurrent FaaS workloads, enabling accurate predictions of FaaS function
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runtimes. Another approach, presented by [Mahmoudi and Khazaei, 2022],
introduces a data-driven model that forecasts the average response time of
functions on the KNative FaaS platform, though its evaluation is limited to
a single server environment. Addressing the performance impact of concur-
rency, [Zafeiropoulos et al., 2022] propose autoscaling mechanisms for server-
less applications using reinforcement learning techniques, tested in both real
and simulated settings on the Kubeless serverless platform. The issue of han-
dling concurrency, particularly in clusters with limited capacity, is crucial as it
significantly influences both the quality of service and the operational costs of
FaaS platforms [Lipitakis et al., 2023]. Moreover, the balancing of requests to
optimize between wait and execution times o�ers multiple pathways to enhance
cluster performance [Kousiouris and Pnevmatikakis, 2023].

In the realm of function orchestration, MLFaaS [Paraskevoulakou and Kyriazis,
2023] introduces a method for deploying machine learning pipelines as work-
flows of linked functions, determining the optimal number of functions based
on individual response times. Additionally, [Lin and Khazaei, 2020] propose
a framework for modeling the end-to-end latency of function workflows, using
AWS Lambda metrics and graph analysis to predict and optimize both perfor-
mance and cost. SLAM [Safaryan et al., 2022] focuses on estimating function
execution times to recommend the best memory configurations for serverless
applications, aligning with specified service level objectives and user-defined
goals.

3.3.1.2.2 Implications of Bursting Invocations and Time Series Forecasting: The
impact of bursting function invocations on serverless platforms has been ex-
plored by [Shahrad et al., 2019], who highlight its e�ect on wait times, par-
ticularly when multiple functions are invoked simultaneously on a worker
node. [Qiu et al., 2021] conducted production measurements on IBM Cloud
and a private cloud, examining how workload consolidation a�ects wait, initial-
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ization, and execution latencies. Their findings indicate that function duration
is correlated not only with the selected memory but also with the number of
concurrent containers. Inspired by these insights, [Jegannathan et al., 2022]
propose time series forecasting techniques to anticipate such performance fluc-
tuations. Faa$T [Romero et al., 2021], for instance, leverages temporal patterns
in invocation frequency to reduce cold starts, particularly for infrequently in-
voked applications on Azure Functions.

3.3.1.3 System Design

The primary objective of the proposed adaptive routing service is to dynami-
cally route serverless function requests within hybrid environments, optimizing
for user-defined goals such as latency or cost. This section outlines the system’s
design, detailing the interactions among its key components.

3.3.1.3.1 Overall Architecture: The system is built around three core compo-
nents, as shown in Figure 3.2:

1. Monitor: Continuously tracks performance metrics across registered clus-
ters, including average initialization, wait, and execution times, and trig-
gers alarms when thresholds are exceeded.

2. Forecaster: Utilizes recent metrics to predict function latency across clus-
ters. Based on user objectives, it calculates the optimal distribution of
requests to minimize latency or cost [Amazon Web Services, 2022]).

3. Router: Distributes incoming function requests according to the routing
strategy generated by the Forecaster.

These components work together to adaptively manage routing in response to
the dynamic nature of the environment as depicted in Figure 3.2.
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Figure 3.2: Conceptual Architecture of the Adaptive Routing Service.

3.3.1.3.2 The Monitor tracks key performance metrics across clusters, such as
the number of cold starts, success rates, and averages of wait, initialization,
and execution times over a configurable time window. Users can set both
the time interval for calculating averages (e.g., the last 10 minutes) and the
polling frequency. The Monitor can be configured to trigger alarms or invoke
the Forecaster when metrics exceed predefined thresholds [Kousiouris et al.,
2023].

3.3.1.3.3 The Forecaster implemented as a REST API using Flask and Guni-
corn [Chesneau, 2017], retrieves performance data from OpenWhisk metrics
APIs across clusters. It processes this data, focusing on a recent 15-minute
window to align with typical FaaS container lifespans. Forecaster’s internal
architecture and components are illustrated in Figure 3.3.

Data is preprocessed to retain relevant fields such as activation ID, start and end
times, wait time, duration, and memory usage. This data is then aggregated
by minute, allowing for a detailed analysis. Unlike the Monitor, the Forecaster
performs its own data preprocessing, enabling more sophisticated analysis.

The Forecaster employs an exponential smoothing model [Hyndman and Athana-
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Figure 3.3: Forecaster’s internal Architecture and Components.

sopoulos, 2014] to predict execution and wait times for each function. These
predictions are used to calculate performance scores (total predicted latency)
and cost estimates (based on invocation frequency and memory usage).

Relative scores for each cluster are computed using a reciprocal transformation
of the original metrics, normalizing them for comparison across clusters using
Equation 3.1. These scores guide the Router in making informed routing
decisions, balancing performance and cost considerations.

relative_scores[c][m] =
inverted_metric[c][m]

Âc02C inverted_metric[c0][m]
(3.1)

The Forecaster transmits these relative scores as a JSON object to the Router,
which uses them to dynamically adjust routing.

3.3.1.3.4 The Router dynamically routes incoming requests based on the Fore-
caster’s insights. It includes a REST endpoint for applying new routing per-
centages in real-time. If the primary server becomes unavailable, the Router
defaults to forwarding all requests to the secondary cluster.
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3.3.1.4 Evaluation Setup

3.3.1.4.1 Server and Cluster Configuration: The adaptive routing service is com-
posed of the Router and the Monitor, which are implemented as pattern sub-
flows on a NodeRED server, with the Forecaster hosted within a Docker con-
tainer. These components communicate via HTTP nodes. The system runs on
a server located in Athens, Greece, equipped with 4 vCPUs and 8GB of RAM.

The function invocations are handled by two distinct OpenWhisk clusters,
hosted on AWS (primary) and Azure (secondary, in a hybrid cloud context).
The configurations of these clusters are compared in Table 3.1.

Table 3.1: Cluster Configuration Comparison
AWS AZURE

Container Memory 8GB 2GB
Location Sweden Netherlands

Orchestrator Kubernetes Kubernetes

3.3.1.4.2 Function Implementation: Two Python-based functions with varying
computational demands were used for evaluation: a Fibonacci number calcula-
tor and a function that generates a large list. The Fibonacci function calculates
the n-th Fibonacci number, while the List function creates a list with a speci-
fied length. For testing, the Fibonacci function was set with n=40, and the List
function generated a list of 10 million elements.

3.3.1.4.3 Experiments: The experimental setups were designed to evaluate
both performance and cost-e�ciency of the adaptive routing service.

Performance-based Routing

1. Deploy the Fibonacci function with an initial routing strategy favoring
AWS (100-0) and a 10-minute monitoring window, polled every 30 sec-
onds.

Georgios D. Fatouros



70
CHAPTER 3. ONLINE LEARNING FOR TIME SERIES PREDICTION IN DYNAMIC

ENVIRONMENTS

2. Modify the monitoring window to 5 minutes, maintaining the same initial
routing strategy as in the first experiment.

3. Conduct a baseline experiment with the Fibonacci function using a static
50-50 routing strategy.

4. Deploy both the Fibonacci and List functions with a 100-0 routing strategy
and a 10-minute monitoring window.

5. Establish a baseline with both functions using a fixed 50-50 routing strat-
egy.

Cost-based Routing

1. Evaluate cost implications using both functions with a 100-0 initial rout-
ing strategy and a 10-minute monitoring window. Costs were calculated
using rates from AWS ($0.0000166667 per GB-second and $0.2 per 1M re-
quests) and Azure ($0.000016 per GB-second and $0.2 per 1M requests).
Results were compared against the performance-based routing baseline
(setup five).

Alarms are triggered when the overall wait time in a cluster exceeds 3 seconds,
prompting the Forecaster to reassess the routing strategy.

3.3.1.4.4 Request Rate: To maintain consistency across all experimental sce-
narios, a steady request rate of 10 invocations per minute per function was
used, allowing for a controlled evaluation of the system’s performance.

3.3.1.5 Results

3.3.1.5.1 Average Latencies Analysis: The experimental outcomes, depicted in
Fig 3.4, provide insight into the performance metrics derived from various
routing strategies during the tests with Fibonacci and combined (Fibonacci and
List) functions. It is evident that scenarios involving both functions generally

Doctoral Thesis



3.3. USE CASES IN CLOUD COMPUTING AND FINANCE, AND EVALUATION 71

yield lower average latencies compared to those relying solely on the Fibonacci
function. This is largely due to the lower execution latency of the List function,
which positively a�ects the overall average latency in the combined setup.

Figure 3.4: Mean Response and Execution Latency between different experiments.

For the Fibonacci function deployment, the performance-based adaptive strat-
egy, starting with a 100-0 routing, initially encountered high latencies, with
average response and execution times of 75396 ms and 57973 ms, respec-
tively. However, a significant reduction in both latency and execution time
was observed upon convergence. A reduced monitoring window of 5 minutes
resulted in similar latencies but facilitated a 30% faster convergence compared
to the 10-minute window interval, as shown by comparing Figure 3.5 and 3.6.
The static 50-50 routing strategy exhibited lower initial latencies but lacked the
adaptive optimization benefits (Figure 3.7).

In the combined deployment of the Fibonacci and List functions, the performance-
based adaptive strategy also showed higher initial latencies (36825 ms response
latency and 27910 ms execution time). However, it demonstrated substantial
improvements upon convergence, achieving 36162 ms and 27179 ms in re-
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Figure 3.5: Time Series of wait and response latency with Fibonacci function,
performance-based adaptation, and 10-minute monitoring pooling.

Figure 3.6: Time Series of wait and response latency with Fibonacci function,
performance-based adaptation, and 5-minute monitoring pooling.

sponse latency and execution time, respectively—9% lower latency compared
to the static routing (Figure 3.8 and 3.9). The cost-based adaptive approach
initially showed latencies of 66022 ms and execution times of 28780 ms, which
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Figure 3.7: Time Series of wait and response latency with Fibonacci function and 50-50
routing policy.

improved to 63376 ms and 26249 ms post-convergence, highlighting the bal-
ance between performance and cost-e�ciency (Figure 3.10).

Figure 3.8: Time Series of wait and response latency with Fibonacci & List functions,
performance-based adaptation, and 10-minute monitoring pooling.
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Figure 3.9: Time Series of wait and response latency with Fibonacci & List functions
and 50-50 policy.

Figure 3.10: Time Series of execution latency with Fibonacci & List functions, cost-
based adaptation, and 10-minute monitoring pooling.

3.3.1.5.2 Variance Analysis: Standard Deviation (STD) provides a measure of
the variability in performance metrics, which is crucial for applications that
require consistency. As noted in [Kousiouris and Pnevmatikakis, 2023], sta-
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bility in execution times is particularly important given the FaaS cost model’s
dependence on execution time. The results, illustrated in Fig 3.11, reveal the
standard deviation of response latency across di�erent setups.

Figure 3.11: Standard Deviation of Response Latency between different experiments.

For the Fibonacci function deployment:

• The adaptive strategy initially showed high variability with a response
latency STD of 43494 ms, which reduced significantly to 8989 ms after
convergence.

• The 5-minute monitoring window adaptive approach followed a similar
pattern, tapering to an STD of 11046 ms upon convergence.

• The static strategy exhibited approximately 30% higher latency variability
compared to the converged version of the first setup.

For the combined Fibonacci and List functions deployment:

• The adaptive strategy had an STD of 9176 ms (response latency), which
reduced slightly to 8388 ms upon convergence.
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• The cost-optimized adaptive strategy exhibited a higher STD overall, as it
prioritized execution time over latency. However, it achieved the lowest
STD in execution time, reducing to 7868 ms upon convergence.

• The static strategy showed around 45% higher variability in latency com-
pared to the converged performance-optimized adaptive setup.

3.3.1.5.3 Cost Analysis: Table 3.2 presents the cost analysis for each experi-
mental setup, indicating both initial and converged costs. Costs are calculated
based on the mean cost per minute, derived from the average execution time
and the number of requests processed per minute in each cluster, assuming a
function memory of 512Mb.

Table 3.2: Cost per Experiment
Experimental Setup Costa Cost-Convergeda

Fibonacci & List, Performance Opt 2.12 2.05
Fibonacci & List, Cost Opt 2.81 1.86

Fibonacci & List, 50-50 2.25 2.25
aMean cost per minute in dollars, based on the average execution time
and number of requests in each cluster, for 512Mb function memory.

The results indicate that the adaptive system, particularly in the cost-optimized
setup, achieves significant cost reductions, lowering the mean cost per minute by
up to 17% post-convergence. This underscores the adaptive system’s ability to
enhance performance while maintaining cost e�ciency. Moreover, the adaptive
system was successfully integrated and validated within the PHYSICS Cloud
Platform, where it played a crucial role in dynamically updating resource data
within the Reasoning Framework presented in the previous Chapter 2. This in-
tegration e�ectively retriggered the optimization process for function placement,
ensuring that resource allocation decisions remained optimal and responsive to
real-time data, further improving the overall e�ciency and e�ectiveness of the
cloud platform.
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3.3.2 Use Case 2: Portfolio Risk Assessment leveraging Probabilistic

DNNs

3.3.2.1 Problem Context

Risk assessment in the financial sector has increasingly relied on Value at
Risk (VaR) models. However, traditional VaR models have shown limitations
during periods of economic turmoil, such as the 2008 financial crisis and the
2020 COVID-19 pandemic, where they failed to accurately measure financial
risk [De Waal et al., 2013]. Following the introduction of the Basel II Accord,
VaR became crucial for determining capital requirements and risk assessment,
driving institutions to seek more accurate methods to monitor and assess risk
exposure [Elsinger et al., 2006,Zhao, 2020].

Despite its widespread use, VaR has faced significant criticism for its simplistic
assumptions, particularly during crises when its predictions can be unreliable
[Abad et al., 2014]. Critics have likened VaR to "an airbag that works all the
time, except when you have a car accident" [Einhorn and Brown, 2008]. VaR
represents the maximum expected loss of a portfolio over a given time horizon
at a predefined confidence level, and several variations of VaR have emerged,
including non-parametric, parametric, and semi-parametric models.

Non-parametric methods like Historical Simulation (HS) use past portfolio re-
turns to estimate VaR but may fail to capture unprecedented market fluctua-
tions [Chang et al., 2003]. Parametric models, such as the Variance-Covariance
method and various GARCH variants, require assumptions about the distribu-
tion of returns, which often do not hold true for financial time series [Abad
et al., 2014]. Semi-parametric models, such as those based on Monte Carlo
simulations, o�er a middle ground by incorporating elements from both ap-
proaches and are particularly e�ective for complex portfolios [Abad et al.,
2014].
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However, these traditional methods face challenges, especially during market
downturns when portfolios may experience losses exceeding the predicted VaR.
This issue is exacerbated by dependencies between VaR predictions, particularly
at high confidence levels like 99%, and the presence of fat tails in financial data
distributions [Angelidis and Degiannakis, 2018, Yamai et al., 2002]. Further-
more, most existing studies focus on single-asset portfolios, which may not
adequately represent the complexities of diversified portfolios.

The 2008 financial crisis, resulting in a global loss of $3.4 trillion [Dattels and
Miyajima, 2009], and the ongoing challenges posed by the COVID-19 pandemic
underscore the need for innovative VaR prediction methodologies. In response,
this research introduces a data-driven framework for predicting portfolios’ VaR,
addressing the dynamic nature of financial data with several key innovations:

• Continuous Learning: The framework continuously updates model pa-
rameters to reflect the latest market data, reducing the likelihood of clus-
tered VaR violations.

• Probabilistic Forecasting: By utilizing auto-regressive recurrent neural
networks, the model captures rare market events with minimal training
time.

• Portfolio-Level Analysis: The framework extends beyond single-asset
analysis to evaluate entire portfolios in near real-time, eliminating the
need for frequent retraining.

While the framework is primarily evaluated on FX portfolios, its applicabil-
ity extends to other financial instruments and time horizons. The evaluation
demonstrates its e�ectiveness using various loss functions and coverage tests,
suggesting that the approach can be optimized for di�erent types of time-series
data.
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3.3.2.2 Related Work

The concept of Value at Risk (VaR) as a financial risk assessment tool was
introduced by J.P. Morgan and Reuters in 1996 under the "RiskMetrics model"
[Longerstaey and Spencer, 1996]. Despite its widespread adoption, this para-
metric method is criticized for relying on assumptions like the normality and
independence of financial returns, which are often unrealistic.

Given these limitations, the financial sector has explored alternative approaches
to VaR estimation. Research comparing various VaR methods highlights that
unconditional models often lead to clustered VaR violations, although some
models remain acceptable depending on the window size used for historical
data [Kuester et al., 2006]. Conditional VaR models, while potentially more
volatile, have also been scrutinized for their practical implications in capital
allocation. Much of the focus has been on the Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) family of models, with some studies
suggesting that asymmetric GARCH models might o�er marginally better per-
formance, although the di�erences are not statistically significant [Abad et al.,
2014]. Another approach that has shown promise is based on Extreme Value
Theory (EVT), which is particularly e�ective at forecasting extreme losses dur-
ing periods of financial stress. EVT-based methodologies like the Peak Over
Threshold (POT) and block maxima models have been demonstrated to pro-
duce more accurate predictions of extreme losses compared to traditional meth-
ods at high confidence levels [Novak, 2011,Mcneil, 1998,Bekiros and Georgout-
sos, 2005].

The advent of ML and DL has provided financial firms with advanced tools
for improving VaR estimation. Recent studies have applied various deep learn-
ing architectures, such as RNNs and LSTM networks, to time-series forecast-
ing, proving e�ective in capturing non-linear temporal patterns in financial
data [Lim and Zohren, 2020, Sen et al., 2019]. For instance, RNN-based
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models have been used in portfolio management [Neuneier, 1996,Xiong et al.,
2018], while LSTM networks have shown strong potential in predicting stock
market movements [Weng et al., 2017]. Additionally, Generative Adversarial
Networks (GANs) have been utilized to generate synthetic financial data that
closely resembles real market data, further aiding in risk modeling [Goodfellow
et al., 2014, Pfenninger et al., 2021]. A combination of wavelet analysis and
LSTM networks has also been employed to capture the complex characteristics
of financial time series, such as non-linearity and non-stationarity [Yan and
Ouyang, 2018].

Despite the advances in ML/DL, challenges remain in VaR estimation. Two
major issues identified in the literature are the excess losses associated with
VaR violations and the tendency of most VaR 99% models to produce more
violations than the expected confidence level. The first issue highlights that
even though a 99% risk measure may seem comprehensive, the 1% of events it
does not capture can result in significant losses, as argued by [Hendricks, 1996].
The second issue pertains to the limited back-testing of these models regard-
ing the coverage and independence of VaR estimations, particularly in studies
focused on univariate financial indices without considering asset correlations
within portfolios.

The main contributions of this research address these challenges. First, it
proposes a novel probabilistic approach for VaR prediction using the DeepAR
model, which provides a full predictive distribution, enabling decision-makers
to optimize their risk management strategies. This approach has been shown
to outperform the most prevalent VaR estimation methods, particularly at the
99% confidence level. Second, the research introduces evaluation and back-
testing procedures that are applied not only to univariate assets but also to
diversified portfolios, utilizing a range of evaluation metrics and statistical tests
to demonstrate the e�ectiveness of the proposed approach.
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3.3.2.3 System Design

This research proposes an innovative framework for portfolio Value at Risk
(VaR) estimation using probabilistic deep neural networks [Mohebali et al.,
2020]. The model calculates the VaR for each asset individually (VaRi) and
then derives the portfolio’s overall VaR (VaRp) by accounting for asset corre-
lations and weights. This method has been evaluated using several randomly
generated portfolios to ensure robustness across di�erent scenarios.

To assess the proposed model, it was compared against five established VaR
methods: GARCH, RiskMetrics (RM), Historical Simulation (HS), Bidirectional
Generative Adversarial Network (BiGAN), and Monte Carlo (MC). The eval-
uation used metrics such as the number of VaR violations and various loss
functions.

The approach uses log-returns for both VaR and Profit and Loss (PnL), with
VaR being defined mathematically as the percentile of the return distribution
that corresponds to a given confidence level [Christo�ersen et al., 2001].

The core of the proposed framework is the DeepAR model, a probabilistic fore-
casting technique based on auto-regressive recurrent neural networks, designed
for accurate multivariate time-series modeling [Salinas et al., 2020]. DeepAR
models the conditional distribution of time-series data to produce accurate
probabilistic forecasts and can be trained on multiple time-series simultane-
ously, enabling cross-learning among them.

As depicted in Figure 3.12 and further analyzed in terms of sequence flows
by Algorithm 1, the DeepVaR framework performs estimations on asset-level
(i.e. for a single VaR) at each time step t. Historical market prices xi from t0 to
t �1 of multiple instruments i are ingested into the framework simultaneously.
During the data preprocessing step the input data are initially resampled to
match the frequency of the selected VaR time horizon and then are transformed
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to log-returns (ri,t). The latter is used to train the DeepAR model and to
estimate the distribution of each time series (i.e. asset-level) for time step t.
With the distribution of the assets’ returns available, VaRi,t can be obtained
from Eq. 3.2. In the last step, portfolio-level predictions, i.e. portfolio VaRp,t

is estimated based on the returns variance-covariance matrix, VaRi,t and the
input weight on each asset. It is also noted that the process of calculating
VaRp from VaRi requires only matrices multiplications (see Eq. 3.3). Thus,
no training is required and therefore the overall process is quite time-e�cient.
Thus, DeepVaR could be also used for what-if analysis comparing portfolios’
risk against the di�erent weights on input assets/instruments.

VaR
a = q1�a (3.2)

VaR
a
p
=

p
V RV T (3.3)

Figure 3.12: Conceptual architecture of DeepVaR framework.

DeepVaR, the implementation of DeepAR in this framework, adapts to the dy-
namic nature of financial data by incorporating a continuous learning approach.
Unlike traditional ML pipelines that require extensive initial training, DeepVaR
is retrained on the latest market data, mitigating model bias, serial correlation

Doctoral Thesis



3.3. USE CASES IN CLOUD COMPUTING AND FINANCE, AND EVALUATION 83

Algorithm 1 VaR prediction using the DeepVaR framework
1: Input:
2: X : Historical Prices 2 R

T⇥N

3: w: Portfolio weights 2 R
1⇥N

4: f req: Time horizon of VaR
5: a: VaR confidence probability
6: Output:
7: VaR

a
p

: Portfolio VaR estimation
8: Data Preprocessing
9: train_ds ( returns[-900 :, :] (training dataset)

10: R ( COV(train_ds[�125 :, :]) (variance covariance matrix)

11: Model training and forecasting
12: model ( DEEPARESTIMATOR(predictionLength = 1,

contextLength = 15,
f req = f req,
numLayers = 2,
dropoutRrate = 0.1,
cellType = ”lstm”,
numCells = 50,
trainer = Trainer(epochs = 5, lr = 0.0001,numBatchesPerE poch = 50))

13: estimator ( TRAIN(model, train_ds)
14: pred ( PREDICT(estimator,num_samples = 1000)
15: Calculate portfolio VaR

a
p

16: lower_q ( QUANTILE(pred,q = 1�a,axis = 0)
17: upper_q ( QUANTILE(pred,q = a,axis = 0)
18: V ( ARRAY([1,4]) (initialize empty array)

19: for i in RANGE(N) do
20: if w[i]< 0 then
21: V [i]( w[i]⇥ lower_q[i]
22: else
23: V [i]( w[i]⇥upper_q[i]
24: end if
25: end for
26: VaR

a
p
(�SQRT(V ⇥R⇥V

T )

between VaR estimations, and clustered VaR violations [Mehrabi et al., 2021].
The model is optimized for rapid retraining, making it suitable for real-time or
intra-day VaR estimation.
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3.3.2.4 Evaluation Setup

The proposed DeepVaR framework was evaluated against several baseline VaR
estimation techniques. These include the GARCH model, known for captur-
ing time-varying volatility in financial time-series [So and Philip, 2006]; the
RiskMetrics model, a variant of GARCH [Longerstaey and Spencer, 1996]; the
Historical Simulation (HS) method, which calculates VaR based on past obser-
vations; the Monte Carlo (MC) method, which estimates future returns distribu-
tions by generating random samples; and the BiGAN, which models the joint
probability distribution of returns using adversarial networks [Donahue et al.,
2016].

3.3.2.4.1 Dataset Description: The evaluation was conducted using daily close
prices of four highly liquid foreign exchange (FX) instruments (AUDUSD, GB-
PUSD, USDJPY, EURUSD) from 2007 to 2020. The data was transformed into
log-returns, and the VaR predictions were measured on this scale. The perfor-
mance of the models was assessed using a rolling window prediction format
over a test period from 2018 to 2020 as shown in Figure 3.13.

To further validate the results, 1000 randomly generated portfolios reflecting
di�erent trader behaviors were analyzed. These portfolios included both long
and short positions, with asset allocation expressed as varying proportions of
the four FX instruments.

3.3.2.4.2 Evaluation Metrics: The evaluation of the proposed approach em-
ployed several metrics to assess its performance. These included the number
of VaR violations, violation rate, quadratic loss, smooth loss, tick loss, and firm
loss, each highlighting di�erent aspects of the models’ predictive capabilities.
Additionally, the validity of the VaR forecasts was tested using the Christo�ersen
conditional coverage test and the Dynamic Quantile (DQ) test [Engle and Man-
ganelli, 2004], which check for the independence and correct coverage of the
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Figure 3.13: Training dataset for rolling window VaR estimation.

VaR predictions.

3.3.2.5 Results

3.3.2.5.1 Framework’s Latency: Table 3.3 summarizes the required mean time
in seconds per model to obtain the quantiles (e.g., q1,q99) needed for the VaR
estimation of both single and four assets portfolios. The fourth column of
the table indicates the relative di�erence in calculation time between the two
di�erent input sizes. According to these findings, it is obvious that despite
the fact that deep learning-based models require significantly more time to
estimate VaR than the other models, that time (⇡ 12.5s) is very low, enabling
VaR estimation even for intra-day trading applications. Moreover, the input
size has a minimal e�ect on deep learning models’ training time which leverage
matrices operations to parallelize computations. In contrast, estimation time in
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econometric models such as GARCH is linearly dependent on the number of
the input time series.

Table 3.3: Mean running time to estimate VaR quantiles.
Model 1 asset(sec) 4 assets(sec) Rel. Difference (%)

DeepAR 12.457834 12.533903 0.61
HS 0.000201 0.000398 98.01
RM 0.003418 0.013461 293.83
GARCH 0.009435 0.038732 310.51
BiGAN 20.467264 20.947305 2.35
MC 0.000567 0.002108 271.78

3.3.2.5.2 Univariate VaR Performance: This section presents VaR estimations
for each FX asset separately, covering the period from 2018-01-01 to 2020-
12-18, as outlined in Section 3.3.2.4.1. The performance of various models is
summarized in Tables 3.4-3.11 and Figures 3.14-3.17. Each figure compares
the VaR estimates of each model (black line) against the actual portfolio returns
(green and yellow dots for positive and negative returns, respectively), with red
dots indicating VaR violations. The accompanying tables present evaluation
metrics and statistical tests for each model.

The AUDUSD currency pair, known for its strong liquidity, is the first time
series analyzed. Table 3.4 shows that the DeepVaR model outperforms the
other models in all examined loss metrics. Table 3.5 indicates that, apart
from DeepVaR, all models fail the Christo�ersen and DQ tests for 99% VaR
estimation, highlighting their inability to maintain correct unconditional cover-
age. Figure 3.14 further illustrates that DeepVaR adapts to increased AUDUSD
volatility by providing stricter VaR estimates, while traditional models experi-
ence clustered VaR violations.

For the GBPUSD currency pair, associated with two major global economies,
the DeepVaR model also shows superior performance, particularly in terms of
the number of violations and various loss metrics (Table 3.6). Figure 3.15
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(a) DeepVaR (b) HS

(c) RM (d) GARCH

(e) BiGAN (f) MC

Figure 3.14: AUDUSD: VaR
99% performance per model.

Table 3.4: Performance of VaR
99% models in AUDUSD series.

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 5 0.00539 0.00539 -0.00632 0.00020 0.02334
HS 9.28 15 0.01616 0.01617 -0.00519 0.00022 0.02923
RM 9.28 21 0.02263 0.02263 -0.00472 0.00021 0.03457
GARCH 9.28 17 0.01832 0.01832 -0.00488 0.00020 0.03059
BiGAN 9.28 20 0.02155 0.02155 -0.00502 0.00023 0.03403
MC 9.28 18 0.01940 0.01940 -0.00489 0.00022 0.03149

indicates that both DeepVaR and HS fail to capture negative returns at similar
dates, while other models exhibit more frequent VaR violations. Despite passing
the Christo�ersen test, all models fail the DQ test, suggesting serial dependency
in the VaR violations (Table 3.7).
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Table 3.5: Coverage and independence tests of VaR
99% models in AUDUSD series.

The p-values are in brackets.
Model LRuc LRind LRcc DQ

DeepVaR 2.386 [0.122] 0.054 [0.816] 2.441 [0.295] 2.158 [0.905]
HS 3.014 [0.083] 10.682⇤⇤ [0.001] 13.696⇤⇤ [0.001] 124.125⇤⇤ [0.0]
RM 11.036⇤⇤ [0.001] 2.931 [0.087] 13.966⇤⇤ [0.001] 31.907⇤⇤ [0.0]
GARCH 5.224⇤ [0.022] 1.013 [0.314] 6.237⇤ [0.044] 17.616⇤⇤ [0.007]
BiGAN 9.424⇤⇤ [0.002] 7.211⇤⇤ [0.007] 16.635⇤⇤ [0.0] 106.141⇤⇤ [0.0]
MC 6.512⇤ [0.011] 8.445⇤⇤ [0.004] 14.957⇤⇤ [0.001] 108.176⇤⇤ [0.0]

(a) DeepVaR (b) HS

(c) RM (d) GARCH

(e) BiGAN (f) MC

Figure 3.15: GBPUSD: VaR
99% performance per model.

The USDJPY currency pair, second only to EURUSD in trading volume, is
also evaluated. DeepVaR consistently shows superior performance across most
metrics, except for tick loss, where GARCH performs slightly better (Table 3.8).

Doctoral Thesis



3.3. USE CASES IN CLOUD COMPUTING AND FINANCE, AND EVALUATION 89

Table 3.6: Performance of VaR
99% models in GBPUSD series.

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 7 0.00754 0.00754 -0.00617 0.00019 0.02454
HS 9.28 8 0.00862 0.00862 -0.00557 0.00020 0.02280
RM 9.28 22 0.02371 0.02371 -0.00467 0.00021 0.03530
GARCH 9.28 14 0.01509 0.01509 -0.00485 0.00019 0.02710
BiGAN 9.28 16 0.01724 0.01724 -0.00502 0.00022 0.02969
MC 9.28 13 0.01401 0.01401 -0.00508 0.00021 0.02663

Table 3.7: Coverage and independence tests of VaR
99% models in GBPUSD series.

The p-values are in brackets.
Model LRuc LRind LRcc DQ

DeepVaR 0.613 [0.434] 4.258⇤ [0.039] 4.871 [0.088] 27.815⇤⇤ [0.0]
HS 0.184 [0.668] 3.713 [0.054] 3.897 [0.142] 31.297⇤⇤ [0.0]
RM 12.745⇤⇤ [0.0] 0.366 [0.545] 13.11⇤⇤ [0.001] 36.725⇤⇤ [0.0]
GARCH 2.108 [0.147] 1.623 [0.203] 3.731 [0.155] 35.0⇤⇤ [0.0]
BiGAN 4.055⇤ [0.044] 4.868⇤ [0.027] 8.923⇤ [0.012] 98.703⇤⇤ [0.0]
MC 1.347 [0.246] 6.491⇤ [0.011] 7.838⇤ [0.02] 77.377⇤⇤ [0.0]

The coverage and independence tests in Table 3.9 indicate promising results
for both DeepVaR and GARCH, with DeepVaR achieving fewer VaR violations
than the nominal threshold. As shown in Figure 3.16, DeepVaR provides
stricter VaR estimates during periods of high volatility, such as May 2020, by
leveraging the dependencies between the examined time-series.

Table 3.8: Performance of VaR
99% models in USDJPY series.

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 8 0.00862 0.00862 -0.00493 0.00015 0.02146
HS 9.28 11 0.01185 0.01185 -0.00489 0.00016 0.02387
RM 9.28 24 0.02586 0.02586 -0.00366 0.00015 0.03456
GARCH 9.28 13 0.01401 0.01401 -0.00396 0.00013 0.02351
BiGAN 9.28 12 0.01293 0.01293 -0.00439 0.00016 0.02354
MC 9.28 12 0.01293 0.01293 -0.00460 0.00016 0.02411

The final currency pair examined is EURUSD, the most widely traded forex
pair. The results, summarized in Table 3.10, show that DeepVaR has the
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(a) DeepVaR (b) HS

(c) RM (d) GARCH

(e) BiGAN (f) MC

Figure 3.16: USDJPY: VaR
99% performance per model.

Table 3.9: Coverage and independence tests of VaR
99% models in USDJPY series. The

p-values are in brackets.
Model LRuc LRind LRcc DQ

DeepVaR 0.184 [0.668] 0.139 [0.709] 0.324 [0.851] 2.857 [0.827]
HS 0.308 [0.579] 2.477 [0.116] 2.785 [0.248] 49.276⇤⇤ [0.0]
RM 16.439⇤⇤ [0.0] 0.207 [0.649] 16.646⇤⇤ [0.0] 36.755⇤⇤ [0.0]
GARCH 1.347 [0.246] 0.37 [0.543] 1.717 [0.424] 8.448 [0.207]
BiGAN 0.743 [0.389] 7.143⇤⇤ [0.008] 7.886⇤ [0.019] 81.484⇤⇤ [0.0]
MC 0.743 [0.389] 2.159 [0.142] 2.902 [0.234] 45.667⇤⇤ [0.0]

lowest quadratic and smooth loss, as well as the fewest VaR violations. The
GARCH model performed better in terms of tick and firm loss. Table 3.11 shows
that all models passed the Christo�ersen coverage and independence tests, but
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(a) DeepVaR (b) HS

(c) RM (d) GARCH

(e) BiGAN (f) MC

Figure 3.17: EURUSD: VaR
99% performance per model.

only DeepVaR and RM succeeded in the DQ test. Figure 3.17 demonstrates
that DeepVaR is the only model that avoided any VaR violations during the
EURUSD volatility shift in May 2020.

Table 3.10: Performance of VaR
99% models in EURUSD series.

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 2 0.00216 0.00216 -0.00508 0.00014 0.01501
HS 9.28 4 0.00431 0.00431 -0.00459 0.00014 0.01539
RM 9.28 14 0.01509 0.01509 -0.00362 0.00013 0.02354
GARCH 9.28 5 0.00539 0.00539 -0.00404 0.00013 0.01494
BiGAN 9.28 8 0.00862 0.00862 -0.00404 0.00014 0.01814
MC 9.28 7 0.00754 0.00754 -0.00416 0.00014 0.01738

The results for each FX time series can be attributed to the inherent charac-
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Table 3.11: Coverage and independence tests of VaR
99% models in EURUSD series.

The p-values are in brackets.
Model LRuc LRind LRcc DQ

DeepVaR 8.463⇤⇤ [0.004] 0.009 [0.926] 8.472⇤ [0.014] 5.786 [0.448]
HS 3.846 [0.05] 0.035 [0.852] 3.881 [0.144] 29.349⇤⇤ [0.0]
RM 2.108 [0.147] 0.429 [0.512] 2.537 [0.281] 9.598 [0.143]
GARCH 2.386 [0.122] 0.054 [0.816] 2.441 [0.295] 22.326⇤⇤ [0.001]
BiGAN 0.184 [0.668] 0.139 [0.709] 0.324 [0.851] 26.285⇤⇤ [0.0]
MC 0.613 [0.434] 0.107 [0.744] 0.72 [0.698] 28.095⇤⇤ [0.0]

teristics of the examined models, with the key factor being how each model
adapts to changes in return volatility. Models that closely fit the true returns
are more prone to VaR breaches, while those that generalize better tend to
produce higher firm losses (Section 3.3.2.4.2).

For instance, the HS model relies on the last 1000 historical returns to estimate
VaR, leading to slow adaptation to sudden and permanent changes in volatility,
as reflected in Figures 3.14-3.17. Similarly, the MC model, which also uses
historical data for input parameters, shows slow response to volatility shifts.

The BiGAN model, as illustrated in Figures 3.14-3.17, shows frequent oscil-
lations in its VaR estimates, but it fails to capture sudden negative returns,
suggesting limited e�ectiveness in predicting VaR during rare financial events.

The GARCH and RM models, both GARCH(1,1) types, e�ectively capture time-
varying volatility. However, the RM model uses a shorter history (74 days)
compared to the 900 days used by GARCH, leading to RM producing the most
VaR violations across all time series due to its closer fit to actual PnL.

DeepVaR mitigates this trade-o� by training over 900 days and predicting re-
turn distribution parameters based on the last 15 values of the input series.
This allows DeepVaR to “memorize” past information while accurately captur-
ing time-series volatility using recent data for parameter estimation.
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3.3.2.5.3 Multivariate VaR Performance: The multivariate performance evalua-
tion of VaR models was conducted using 1000 randomly generated portfolios,
each including both long and short positions on various FX assets. The goal
was to assess the models in a realistic portfolio context where the total absolute
value of positions equals one, simulating a scenario that minimizes commission
fees—a common strategy in portfolio management. Notably, no commission
fees or extra charges were considered in this evaluation, simplifying the anal-
ysis as these could be modeled as a constant across all VaR models without
significantly a�ecting the outcomes.

To compute the portfolio VaR, the correlations between the FX instruments
were accounted for, using the correlation matrix R, which was calculated based
on the last 125 daily returns. The portfolio VaR for a given day was then
estimated using the weighted VaR estimates of each instrument, taking into
account both long and short positions. This process is detailed in Algorithm
2.

The average performance across the random portfolios is summarized in Table
3.12. DeepVaR consistently achieved the lowest loss across all metrics, except
for tick loss, where it showed a slight disadvantage. Table 3.13 further high-
lights the robustness of DeepVaR, with a significant percentage of portfolios
passing the coverage and independence tests, outperforming the other models.

Table 3.12: Average performance of VaR
99% models over the FX portfolios.

Model E[v] v rv lQL lQ lT lF

DeepVaR 9.28 2.90310 0.00319 0.00313 -0.00427 0.00011 0.01351
HS 9.28 7.29 0.00784 0.00784 -0.00361 0.00011 0.01618
RM 9.28 12.14 0.01308 0.01308 -0.00305 0.00010 0.02002
GARCH 9.28 8.61 0.00928 0.00928 -0.00321 0.00010 0.01660
BiGAN 9.28 11.51 0.01240 0.01240 -0.00320 0.00011 0.01966
MC 9.28 10.31 0.01111 0.01111 -0.00327 0.00011 0.01854

The evaluation results are also presented as box plots in Figure 3.18, providing
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Algorithm 2 Portfolio VaR rolling window estimation

1: Generate random portfolio weights w 2R1⇥4

2: Set confidence probability a (i.e. a = 0.99) of VaR estimation
3: Set window tw = 125, for the calculation of returns correlation matrix R 2R4⇥4

4: Split FX returns to train Rtrain 2R125⇥4 and test set Rtest 2R928⇥4

5: for test day t = 1 to T do
6: R ( CORR(Rtrain)
7: for m in models do
8: Initialize zero vector V 2R1⇥4

9: for i in w do
10: if wi < 0 then
11: Vi ( wiVaR

1�a
i,m,t

12: else
13: Vi ( wiVaR

a
i,m,t

14: end if
15: end for
16: VaR

a
m,t (�

p
V RV T

17: end for
18: Append Rtest [t] to Rtrain

19: PnLt ( Â4
i=1 wiRtrain,i[�1]

20: end for

Table 3.13: Percentage of portfolios passed the coverage and independence tests of
VaR

99% per model in significant level 95%

.

Model LRuc LRind LRcc DQ

DeepVaR 72.8 95.5 80.6 84.6
HS 76.9 72.0 59.5 36.7
RM 65.2 95.3 68.3 55.9
GARCH 76.5 92.9 77.5 63.0
BiGAN 64.3 71.5 53.5 26.1
MC 70.4 68 54.8 26.7

a visual comparison of the models’ performance across the portfolios. DeepVaR
stands out as the only model with a violation rate below the 1-a (i.e., 0.01)
confidence probability in most portfolios, as shown in Figure 3.18a. The other
models showed higher variability, with some portfolios significantly exceeding
the nominal threshold.

DeepVaR’s advantage is also evident in the quadratic loss (Figure 3.18b) and
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(a) Violation Rate (b) Quadratic Loss

(c) Smooth Loss (d) Tick Loss

(e) Firm Loss

Figure 3.18: Box-plots of the VaR
99% performance per model over 1000 random portfolios.

smooth loss (Figure 3.18c) metrics, where it outperformed all other models.
Although DeepVaR underperformed slightly in tick loss (Figure 3.18d), its
performance was more stable across portfolios compared to the other models,
which exhibited higher variability.

Finally, the firm loss metric (Figure 3.18e) highlights DeepVaR’s e�ciency,
showing that it resulted in lower opportunity costs for firms compared to the
other models.

In summary, the multivariate evaluation demonstrated that DeepVaR consis-
tently outperformed the other models in most metrics across a broad set of
random portfolios, making it a robust choice for portfolio VaR estimation.
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3.4 Discussion

This chapter presented a novel approach to online learning for time series
prediction in dynamic environments, such as cloud computing and financial
markets. The primary contributions include the development of an adapt-
able system architecture that continuously updates predictive models based on
real-time data streams, ensuring high accuracy and relevance. The system’s ef-
fectiveness was demonstrated through two distinct use cases: optimizing server-
less function latency in hybrid cloud environments and assessing financial risk
using probabilistic deep neural networks. Both use cases showed significant
improvements in predictive performance, validating the system’s utility in real-
world scenarios.

However, several challenges were encountered during implementation. Manag-
ing drift and non-stationarity in time series data proved particularly di�cult,
requiring sophisticated data preprocessing and model adaptation strategies.
Additionally, the computational constraints of real-time environments posed
challenges in balancing model complexity with the need for low-latency pre-
dictions. Despite these challenges, the system demonstrated robustness and
adaptability, particularly when integrated with advanced online learning tech-
niques.
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Chapter 4

Prompt Engineering for Financial Senti-

ment Analysis

Chapter Structure

This Chapter is constructed as follows:

• Section 4.1 - Introduction to Financial Sentiment Analysis, introduces
the concept of sentiment analysis within the financial domain, discussing
its importance and the challenges specific to financial texts.

• Section 4.2 - Background on Financial Sentiment Analysis, reviews
previous research in sentiment analysis for finance, focusing on the role
of AI tools and the evolution of techniques leading up to the use of LLMs.

• Section 4.3 - Methodology, details the approach used to evaluate Chat-
GPT for financial sentiment analysis, including the dataset, experimental
setup, and the metrics for performance evaluation.

• Section 4.4 - Experimental Results, presents and analyzes the results of
the experiments, comparing ChatGPT’s performance with FinBERT, and
discussing the impact of di�erent prompt designs.
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• Section 4.5 - Discussion, summarizes the key findings, highlights the
strengths and limitations of ChatGPT in this context, and suggests impli-
cations for real-world applications and future research.

Building on the foundation laid in the previous chapters, where the disserta-
tion thesis explored knowledge systems, reasoning engines and the dynamics
of online learning systems for time series prediction, this chapter transitions to
the domain of text analytics. In the financial sector, where unstructured data
such as news articles, analyst reports, and social media posts abound, extract-
ing actionable insights through text analytics is crucial. The power of LLMs
is explored to meet these challenges, leveraging their advanced capabilities in
NLP. This chapter explores how emerging models like GPT outperform pre-
vious state-of-the-art language models, o�ering unprecedented accuracy and
e�ciency in tasks like sentiment analysis [Fatouros et al., 2023d]. Text analyt-
ics not only o�ers valuable standalone insights but also plays a pivotal role in
enhancing predictive systems. For instance, when integrated with time series
models, such as those presented in Chapter 3, text-derived features can provide
additional context, improving the accuracy and robustness of time series mod-
els. This chapter delves into the application of LLMs in financial sentiment
analysis, demonstrating how these models transform raw text into actionable
intelligence, thereby enriching knowledge and predictive systems in dynamic
environments like financial markets.

4.1 Introduction to Financial Sentiment Analysis

4.1.1 Motivation

The financial services industry has always been at the forefront of adopting
new technologies, constantly evolving to keep pace with the rapidly shifting
global landscape. From the early days of electronic trading platforms to the
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more recent emergence of financial technologies (Fintech), the sector has un-
dergone a significant transformation, especially with the incorporation of AI
and ML [Arner et al., 2015]. The growth of the Fintech market underscores
the profound impact of these innovations, with applications ranging from credit
scoring and fraud detection to robo-advisory services and AI-powered chatbots
for customer service [Fatouros et al., 2023b,Kotios et al., 2022].

Among the various technological advancements, sentiment analysis has become
an essential tool for understanding market dynamics and predicting future
trends. By analyzing market sentiment, financial institutions can gain valuable
insights into the collective mood of the market, thereby enabling more informed
and strategic decision-making.

Historically, sentiment analysis in finance has relied on manually curated lexi-
cons and simple ML algorithms [Schumaker and Chen, 2009]. However, with
the rapid advancements in NLP, more sophisticated techniques have emerged.
DL models like BERT (Bidirectional Encoder Representations from Transform-
ers) [Devlin et al., 2018] and FinBERT [Liu et al., 2021], a version of BERT
tailored specifically for financial text, have significantly enhanced the accuracy
and reliability of sentiment analysis.

Despite these advancements, the financial domain presents unique challenges
for sentiment analysis. Financial texts, particularly news headlines, often con-
tain domain-specific terminology and nuanced sentiments that complicate the
sentiment classification process [Loughran and McDonald, 2011]. For instance,
a typical characteristic of FX news is the intertwining of sentiments about multi-
ple currencies within a single statement. Consider the headline, "CAD is one of
the better places to sell the US dollar on a pullback." Conventional sentiment
analysis tools might incorrectly identify this as a positive sentiment overall,
missing the nuanced implications for specific currency pairs like USD/CAD.
Such tools often fail to infer the specific financial instruments related to the
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sentiment, which is crucial for accurate financial analysis.

Moreover, traditional sentiment analysis models often lack the flexibility to
adapt their output based on specific use-case contexts, limiting their broader
applicability [Poria et al., 2016]. For example, the sentiment expressed in a
discussion about a new government regulatory policy may vary depending
on whether the context is an investor forum focused on market impacts or
a consumer forum concerned with service fees. Standard sentiment analysis
models might struggle to capture these contextual di�erences, underscoring
the need for more context-aware models that can o�er a more comprehensive
and accurate sentiment analysis in financial applications [Poria et al., 2017].
Addressing these challenges presents significant opportunities for advancing
financial sentiment analysis.

Among the AI tools reshaping the financial landscape, Generative Pre-trained
Transformers (GPT) have shown considerable promise. GPT, a state-of-the-art
language model developed by OpenAI, has been trained on vast amounts of
data, enabling it to understand and replicate complex patterns in human lan-
guage with remarkable accuracy [Radford et al., 2018]. Since the introduction
of the first GPT model in 2018, OpenAI has made significant improvements
in the architecture, culminating in the latest version, GPT-4 [OpenAI, 2023a].
The widespread impact of GPT became particularly evident with the release of
ChatGPT, a specialized version fine-tuned for conversational tasks, towards the
end of 2022.

ChatGPT holds significant potential for enhancing existing financial applica-
tions, including risk analysis through sentiment analysis. By leveraging Chat-
GPT’s advanced natural language understanding capabilities, financial institu-
tions can significantly improve the accuracy and depth of sentiment analysis.
This model can e�ectively process and interpret vast amounts of unstructured
data, such as news articles and financial reports, providing a comprehensive
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view of market sentiment. Improved sentiment analysis can, in turn, inform
critical areas such as investment strategies, risk management, and portfolio op-
timization, leading to more informed decision-making and potentially higher
returns [Tetlock, 2007, Chen et al., 2014]. Additionally, ChatGPT’s conversa-
tional capabilities can make complex risk analysis findings more accessible to
both expert and novice users, enhancing the practical utility of financial in-
sights [Yue et al., 2023].

The advanced language understanding capabilities of ChatGPT open up a
wealth of opportunities for innovation in the financial domain, particularly
in sentiment analysis. Despite its potential, this area remains largely under-
explored, presenting a significant opportunity for research and development.
ChatGPT’s ability to interpret complex language patterns, which are often
prevalent in unstructured financial data, o�ers a promising solution for en-
hancing the depth and accuracy of sentiment analysis in financial contexts.

4.1.2 Value Proposition

The field of financial sentiment analysis has seen the application of various
Language Model (LM), but the potential of LLMs, in the context of the FX
market remains relatively unexplored, as discussed in Section 4.2. FX news is
particularly challenging due to its unique nature, often conveying sentiments
about two di�erent assets within a single statement, adding an extra layer
of complexity. Recognizing this intricacy, this chapter breaks new ground by
investigating ChatGPT 3.5’s ability to discern these subtle sentiment cues. The
value propositions of the research presented in this chapter are outlined as
follows:

• A zero-shot prompting strategy is employed to assess ChatGPT’s profi-
ciency in interpreting FX-related financial text, emphasizing its ability to

Georgios D. Fatouros



102 CHAPTER 4. PROMPT ENGINEERING FOR FINANCIAL SENTIMENT ANALYSIS

achieve accurate sentiment analysis without the need for domain-specific
fine-tuning. This approach highlights the advanced capabilities of gener-
ative AI in specialized financial sentiment analysis tasks and its potential
for real-world applications.

• A carefully curated and annotated dataset of FX-related news headlines
has been developed and made publicly available. This dataset facilitates
a comprehensive evaluation of various ChatGPT prompts, showcasing the
model’s extensive training on diverse datasets and its adaptability across
di�erent sectors, including finance. Sharing this dataset contributes a valu-
able resource to the research community, encouraging further innovation
in financial sentiment analysis and financial services.

• The evaluation includes traditional metrics such as precision, recall, f1-
score, and Mean Absolute Error (MAE) for sentiment classification. Ad-
ditionally, it extends to analyzing the correlation between predicted sen-
timent and market returns. This comprehensive evaluation covers senti-
ment class prediction and sentiment score estimation for single and mul-
tiple news headlines, as well as complete news articles, demonstrating
ChatGPT’s versatility and proficiency in handling complex financial texts.

• Benchmarking ChatGPT’s performance against the state-of-the-art model
FinBERT and a naive approach provides a well-rounded perspective
on its capabilities in the financial domain. The exploration of multiple
prompts underscores the importance of prompt engineering, particularly
in zero-shot contexts, to optimize performance and enhance the e�ective-
ness of sentiment analysis.

• As LLMs become increasingly integrated into real-world applications, this
chapter o�ers valuable insights for researchers and stakeholders on how
to e�ectively harness the model’s potential. The publicly available dataset
and annotations further solidify the contribution, serving as a useful re-
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source for future research endeavors in financial sentiment analysis.

4.2 Background on Financial Sentiment Analysis

4.2.1 Sentiment Analysis in Finance

Sentiment analysis, also known as opinion mining, involves the application
of computational methods to extract subjective information, such as opinions
and sentiments, from text data [Bing, 2012]. This technique has been utilized
across various domains, including customer reviews, social media content, and
news articles. In the financial sector, sentiment analysis is particularly valuable
for assessing market sentiment, a critical factor that can influence the price
movements of financial assets [Bollen et al., 2011,Siering et al., 2018].

The concept that sentiment or public mood can impact financial markets has
been recognized since the time of John Maynard Keynes [Keynes, 1937], who
described market behavior as being influenced by "animal spirits," or waves
of optimism and pessimism. Numerous empirical studies have supported this
idea, showing that shifts in investor sentiment can significantly a�ect asset
prices and trading volumes [Baker and Wurgler, 2007,Tetlock, 2007].

Initially, sentiment analysis in finance relied on manually crafted financial
lexicons, where words were pre-classified as positive, negative, or neutral
[Loughran and McDonald, 2011]. However, this approach often oversimpli-
fied the context in which words were used. For example, while the word
"crisis" typically carries a negative connotation, it could be used in a positive
context, such as in the phrase "the company successfully averted a crisis."

The advent of ML techniques marked a significant advancement in sentiment
analysis. ML models, trained on labeled financial news articles, were able to
learn from the context in which words appeared, leading to more accurate senti-
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ment classifications [Schumaker and Chen, 2009]. Despite these improvements,
traditional ML methods, such as Naive Bayes, support vector machines, and
decision trees, often struggled to capture long-term dependencies in the text
and were challenged by the high dimensionality of textual data [Chen et al.,
2018].

The evolution of DL techniques, particularly in the field of NLP, has further
enhanced sentiment analysis. This progress is exemplified by the introduc-
tion of advanced language models like ELMo [Peters et al., 2018], ULM-
Fit [Howard and Ruder, 2018], and transformer-based architectures such as
BERT, which have demonstrated superior performance in sentiment classifica-
tion tasks. These models excel at understanding context, capturing long-term
dependencies, and reducing data dimensionality through high-quality embed-
dings [Refaeli and Hajek, 2021]. Domain-specific adaptations like FinBERT
have further refined these capabilities, particularly for financial texts, thereby
improving the accuracy and reliability of financial sentiment analysis. For in-
stance, [Leippold, 2023] highlighted FinBERT’s robustness against adversarial
text manipulations compared to keyword-based methods in financial sentiment
analysis. [Farimani et al., 2022] demonstrated the use of FinBERT models for
real-time market predictions, emphasizing the importance of sentiment-aware
time series derived from financial news related to FX and cryptocurrency mar-
kets. Their approach, which integrated sentiment scores with technical in-
dicators, showed significant improvements over existing baselines. These ad-
vancements underscore the transformative potential of LMs in enhancing the
understanding and prediction of financial sentiments.

However, financial sentiment analysis still faces several challenges. These in-
clude the need to comprehend domain-specific terminology, disentangle subtle
sentiments related to multiple financial instruments within the same context,
and adjust sentiment output based on specific use cases or prior topics. For
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example, a statement might be interpreted as negative for the overall economy
but positive for a particular stock. Current models like FinBERT often reflect
the perspective of the experts who annotated the training data [Malo et al.,
2014], limiting their flexibility in adjusting sentiment output based on finer
nuances. This context-dependent framing of sentiment remains an open chal-
lenge, highlighting the need for future research that enhances the adaptability
and performance of sentiment analysis in finance. In this regard, the emer-
gence of LLMs like GPT variants presents promising potential. These models,
with their inherent contextual understanding and adaptability, o�er valuable
solutions to these challenges and open new avenues for exploration in financial
sentiment analysis [Radford et al., 2019].

4.2.2 ChatGPT and Related AI Tools

The success of GPT has spurred the development of various LLMs that have
demonstrated impressive performance across a range of NLP tasks. Each of
these models brings distinct advantages and capabilities to the field of NLP,
including financial applications.

Among these, BloombergGPT is a notable example, excelling in several financial
NLP tasks [Wu et al., 2023a]. Developed by Bloomberg’s AI team, this model
has been trained on an extensive corpus of financial texts. However, despite its
success in various financial tasks, BloombergGPT currently lacks an open API
and is primarily used internally within Bloomberg as of May 2023.

Another significant player in the realm of LLMs is Google’s Bard, a direct
competitor to ChatGPT. Powered by Google’s LAMDA (Language Model for
Dialogue Applications), Bard combines features of both BERT and GPT archi-
tectures [Thoppilan et al., 2022]. While Bard has great potential for creating
engaging and contextually aware dialogues, it also shares the limitation of
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BloombergGPT in that it does not yet o�er a widely accessible API.

BLOOM, an open-source alternative to GPT-3, has also garnered attention
among LLMs [Scao et al., 2022]. Although BLOOM is open-source, it presents
its own challenges, requiring specialized knowledge and substantial computa-
tional resources for e�ective use. Additionally, there isn’t a version of BLOOM
specifically tuned for conversational tasks, a feature that makes models like
ChatGPT particularly valuable.

Since the introduction of ChatGPT, numerous LLMs tailored for specific tasks,
such as code completion [Dakhel et al., 2023], content creation, and marketing,
have emerged. These models, although more specialized, add new dimensions
of utility and specialization, further broadening the potential applications and
impacts of LLMs. Despite the proliferation of LLMs, ChatGPT continues to
hold a leading position in the field [JasperAI, 2023]. Its accessibility through
an open API, extensive training data, and versatility across a wide range of
tasks highlight its substantial potential and practical utility.

Despite the advancements in applying ChatGPT across various fields, such as
healthcare and education [Sallam, 2023], its specific application to financial
sentiment analysis remains relatively unexplored. Notably, there is a lack of
studies that directly assess ChatGPT’s performance through its API, which is
essential for broader adoption and integration into third-party applications. To
date, no studies have evaluated ChatGPT’s performance in financial sentiment
analysis, particularly within the context of the FX market. This gap in the
existing research presents an opportunity to explore and contribute to this
emergent field. By focusing on ChatGPT’s application and performance in
sentiment analysis, and by directly interacting with its API, new insights and
findings can be introduced to the field, underscoring the real-world applicability
and practicality of integrating ChatGPT into financial services.
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4.3 Methodology

This section outlines the methodology used to evaluate ChatGPT’s performance
in financial sentiment analysis, covering data collection, preprocessing, and the
deployment of ChatGPT via its API. It also details the experimental setup,
including prompt design and evaluation criteria, with a focus on the practical
implications of the findings in the financial sector.

4.3.1 Dataset Creation and Annotation

The dataset was compiled by collecting news headlines relevant to key FX
pairs: AUDUSD, EURCHF, EURUSD, GBPUSD, and USDJPY. The data was
sourced from FX Live1 and FXstreet2 over 86 days, between January and May
2023 (Figure 4.1). The dataset comprises 2,291 unique news headlines, each
associated with a FX pair, timestamp, source, author, URL, and article text.
Data was gathered using a custom web scraping service deployed on a virtual
machine, retrieving the latest news approximately every 15 minutes (Figure
4.2).

Each headline was manually annotated for sentiment, based on its potential
short-term impact on the corresponding FX pair, acknowledging the sensitivity
of currency markets to economic news [Evans and Lyons, 2005]. Sentiments
were categorized as ’positive’, ’negative’, or ’neutral’, corresponding to bullish,
bearish, and hold sentiments, respectively. Table 4.1 provides examples of
annotated headlines, while Figure 4.3 and 4.4 depict the overall and per-FX-
pair sentiment distributions.

The dataset’s token distribution was also analyzed, with common tokens in
positive and negative sentiment headlines illustrated in Figure 4.5 and 4.6.

1https://www.forexlive.com/
2https://www.fxstreet.com/
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Figure 4.1: Time Series Plot of Sentiment Labels per Week

Figure 4.2: Dataset Creation Process

Table 4.2 o�ers detailed statistics on token distribution, the number of articles,
and the daily average of articles per FX pair.

The dataset reveals variability in article frequency, ranging from 55 articles for
EURCHF to 758 for EURUSD, and in token count, with an average of 263
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tokens per article and 12 tokens per headline. The length of texts influences
the response latency, cost, and performance of language models like ChatGPT,
with longer texts requiring more computational resources and time, potentially
increasing latency and cost.

Table 4.1: Examples of Annotated Headlines
FX Pair Headline Sentiment Explanation
GBPUSD Diminishing bets for a move to

12400
Neutral Lack of strong sentiment in ei-

ther direction
GBPUSD No reasons to dislike Cable in

the very near term as long as the
Dollar momentum remains soft

Positive Positive sentiment towards GB-
PUSD (Cable) in the near term

GBPUSD When are the UK jobs and how
could they affect GBPUSD

Neutral Poses a question and does not ex-
press a clear sentiment

USDJPY BoJ’s Ueda: Appropriate to con-
tinue monetary easing to achieve
2% inflation target with wage
growth

Positive Monetary easing from Bank of
Japan (BoJ) could lead to a
weaker JPY in the short term due
to increased money supply

USDJPY Dollar rebounds despite US data.
Yen gains amid lower yields

Neutral Since both the USD and JPY are
gaining, the effects on the USD-
JPY FX pair might offset each
other

USDJPY USDJPY to reach 124 by Q4 as
the likelihood of a BoJ policy
shift should accelerate Yen gains

Negative USDJPY is expected to reach a
lower value, with the USD los-
ing value against the JPY.

AUDUSD RBA Governor Lowe’s Testi-
mony High inflation is damaging
and corrosive

Positive Reserve Bank of Australia
(RBA) expresses concerns about
inflation. Typically, central
banks combat high inflation
with higher interest rates, which
could strengthen AUD.

To support further research, the dataset has been made publicly available on
the Zenodo repository3 [Fatouros and Kouroumali, 2023]. This resource is
expected to be valuable for exploring machine learning techniques in financial
sentiment analysis, contributing to a deeper understanding of the interaction
between financial news sentiment, AI models, and market behavior.

3https://zenodo.org/record/7976208
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Figure 4.3: Sentiment Distribution

4.3.2 Establishing Baseline: Sentiment Classification using FinBERT

To assess the e�ectiveness of ChatGPT in financial sentiment analysis, its per-
formance is compared against FinBERT, a widely recognized model known for
its accuracy in financial text sentiment classification. FinBERT serves as a solid
benchmark, allowing for a meaningful evaluation of ChatGPT’s capabilities in
this specialized domain.

For the implementation, the Transformers library from Hugging Face was em-
ployed to utilize FinBERT [Wolf et al., 2020]. This Python-based API o�ers
a user-friendly interface for integrating pre-trained transformer models into
applications. The process involved loading the FinBERT model and its cor-
responding tokenizer from the Hugging Face model repository, tokenizing the

Doctoral Thesis



4.3. METHODOLOGY 111

Figure 4.4: Sentiment Distribution per FX Pair

news headlines, and passing them through the model. FinBERT then gen-
erates probabilities for each sentiment category—positive, negative, and neu-
tral—reflecting its confidence in classifying the input text. These probabilities
are used to determine the predicted sentiment class and compute a sentiment
score (denoted as FinBERT-N) for each headline. The sentiment score is cal-
culated by subtracting the probability of the negative class from the probability
of the positive class.

4.3.3 Sentiment Classification with ChatGPT

The primary objective of this chapter is to investigate the potential of ChatGPT
in the domain of financial sentiment analysis. Given its extensive training on a
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Figure 4.5: Most Common Tokens on Positive Headlines

diverse range of texts, ChatGPT is anticipated to exhibit an advanced contextual
understanding, which is crucial for interpreting sentiment in financial news.
The rationale behind utilizing ChatGPT lies in its capability to grasp not only
the literal meanings of words but also the underlying implications, idioms,
and sentiments that may be specific to a particular industry or topic. For
example, in the FX market, a news item might convey a positive sentiment
for one currency (e.g., JPY) but a negative sentiment for the corresponding
FX pair (e.g., USDJPY). This nuanced contextual understanding, which is vital
for most sentiment analysis tasks, is where ChatGPT could potentially surpass
traditional language models like BERT.

To assess ChatGPT’s capabilities in financial sentiment analysis, a series of ex-
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Figure 4.6: Most Common Tokens on Negative Headlines

periments were designed and conducted using a zero-shot prompting approach.
Zero-shot prompting leverages ChatGPT’s pre-existing training and comprehen-
sion of language patterns and context to generate desired responses without
any additional task-specific fine-tuning or further training. This approach al-
lows for a direct evaluation of ChatGPT’s inherent capabilities in sentiment
analysis, highlighting its potential for immediate integration and application in
various scenarios.

Table 4.3 outlines the prompts used for sentiment classification. These prompts
range from simulating the perspective of a financial analyst evaluating news
(GPT-P1 and P2) to that of a sentiment analysis AI model, such as FinBERT,
assessing a headline (GPT-P3), a FX trader reacting to market updates (GPT-

Georgios D. Fatouros



114 CHAPTER 4. PROMPT ENGINEERING FOR FINANCIAL SENTIMENT ANALYSIS

Table 4.2: FX Dataset Statistics
No of Daily Headline ArticleFX Pair Articles Articles Tokens Tokens

AUDUSD 461 5.36 11.51 288.42
(3.97) (2.85) (149.4)

EURCHF 55 0.64 12.58 162.62
(0.92) (3.06) (98.9)

EURUSD 758 8.81 11.56 255.87
(7.08) (2.9) (180.53)

GBPUSD 518 6.02 11.95 263.1
(4.67) (2.55) (148.29)

USDJPY 499 5.8 11.68 259.38
(4.29) (2.88) (142.82)

Total 2291 26.64 11.69 262.58
(21.71) (2.82) (158.99)

Note: Values in parenthesis represent standard deviations.

P4), and prompts designed to evaluate the sentiment of all available daily news
per FX pair (GPT-P5) and all available daily news (GPT-P6). Additionally,
variations of these prompts were implemented to require numerical sentiment
output in the form of a sentiment score (GPT P1N-P6N) ranging from [�1,1]

instead of a sentiment class label.

Another variant, applied to both FinBERT and GPT-P4 (FinBERT-A, FinBERT-
AN, GPT-P4A, and GPT-P4AN), was established to analyze model performance
in sentiment analysis when both the article text and news headline are provided.
This aims to determine whether the inclusion of the article’s text—serving as
additional context—enhances the model’s accuracy.

Prompts GPT-P6 and GPT-P6N were specifically designed to ask ChatGPT to
process a set of headlines and return a collective sentiment in a structured
format, such as JSON. Evaluating this feature is crucial to understanding Chat-
GPT’s adaptability and its potential for seamless integration into existing plat-
forms. This capability is particularly important for practical scenarios where
the generated outputs are directly utilized by other systems or services.
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Table 4.3: Experimental ChatGPT Prompts for Sentiment Classification
Prompt
Abbr.

Prompt

GPT-P1 Act as a financial expert holding {ticker}. How do you feel about
the headline {headline}? Answer in one token: positive, negative,
or neutral.

GPT-P2 Act as a financial expert. Classify the sentiment for {ticker} based
only on the headline {headline}. Answer in one token: positive,
negative, or neutral.

GPT-P3 Act as a sentiment analysis model trained on financial news head-
lines. Classify the sentiment of the headline {headline}. Answer
in one token: positive, negative, or neutral.

GPT-P4 Act as an expert at FX trading holding {ticker}. Based only on
the headline {headline}, will you buy, sell or hold {ticker} in the
short term? Answer in one token: positive for buy, negative for
sell, or neutral for hold position.

GPT-P5 Act as an expert at FX trading holding {ticker}. Based only on
the following list of headlines {ticker_daily_headlines}, will you
buy, sell or hold {ticker} in the short term? Answer in one token:
positive for buy, negative for sell, or neutral for hold position

GPT-P6 Act as a sentiment analysis service of a financial platform. Based
only on the following list of headlines {all_daily_headlines}, pro-
vide a summary of the daily sentiment for the FX pairs: {tickers}.
Provide only the sentiment per FX pair in JSON format eg {’US-
DJPY’: ’positive’, ’EURUSD’: ’neutral’}. The sentiment can be
positive for buy, negative for sell, or neutral for hold position.

4.3.4 Experimental Setup

The sentiment analysis experiments were conducted using the GPT-3.5-turbo
model available through OpenAI’s Python library [Brown et al., 2020]. Each
prompt was submitted to the model as a single user instruction, with several pa-
rameters fine-tuned to optimize the model’s output depending on the prompt.
For instance, the max_tokens parameter in GPT P1-P5 was set to 1 to limit the
model’s response to a single token. For prompts GPT P1N-P4N, P5N, P6-P6N,
the max_tokens parameter was set to 10, 20, and 200 tokens respectively, based
on the expected length of the response. Subsequent processing was applied to
the response text to extract the necessary information for each prompt. For
example, a simple function with a regular expression was developed to extract
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the JSON (JavaScript Object Notation) from P6’s response. The temperature pa-
rameter was set to 0.2 to encourage the model to generate more deterministic
outputs. It is important to note that these prompts were refined through exten-
sive prompt engineering to ensure that GPT’s responses included the required
information (i.e., sentiment class or score).

For each prompt, the time taken to receive a response from the API was
monitored to track task latency and evaluate GPT’s e�ciency. Additionally, the
number of tokens used in the completion and the number of tokens in the
prompt were logged for cost management and resource usage tracking.

The experiments were iteratively executed over the FX dataset described in Sec-
tion 4.3.1. Error handling mechanisms were incorporated to address potential
API exceptions or response errors, ensuring smooth execution of the iterative
process. While running these sentiment analysis experiments on large datasets
incurs costs in line with OpenAI’s pricing structure, the insights gained from
the analysis provide invaluable intelligence that significantly enhances decision-
making in finance.

4.3.5 Evaluation Metrics

The evaluation strategy for sentiment classification in this chapter employed a
dual approach, involving both a traditional evaluation based on comparison
with the true sentiment class and a market-related model evaluation. The tra-
ditional method focused on models that predicted a sentiment class for each
headline (i.e., FinBERT and GPT’s P1-P4), where the predicted sentiment class
was compared against the actual sentiment class annotated in the dataset. In
contrast, the market-related evaluation was applied to all models under con-
sideration, where the predicted sentiment classes were assigned corresponding
integer codes. For FinBERT, the sentiment score was calculated based on the
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predicted class probabilities, as explained in Section 4.3.2.

4.3.5.1 Evaluation Based on True Class

To assess the performance of the sentiment classification models, an evaluation
framework was established using several key performance metrics, including
accuracy, precision, recall, and F1-score. These metrics provide insights into
how e�ectively the models predict sentiment classes as defined in our annotated
dataset.

A particularly important metric used in this evaluation is the Sentiment Mean
Absolute Error (S-MAE), represented by Equation 4.1, where N denotes the
total number of instances or data points, yi is the true sentiment class for the
i-th instance, and ŷi is the predicted sentiment class for that instance. S-MAE
measures the average absolute di�erence between the integer values of the
true sentiment classes and the predicted ones, with -1, 0, and 1 representing
negative, neutral, and positive sentiments, respectively.

S�MAE =
1
N

N

Â
i=1

|yi � ŷi| (4.1)

The use of S-MAE is particularly justified by its ability to penalize models that
significantly misclassify sentiment. This is crucial in financial sentiment anal-
ysis, where the interpretation of sentiment can be complex and nuanced. For
instance, a headline expressing a positive sentiment for a particular currency
(e.g., USD) could imply a negative sentiment for its paired currency (e.g., EU-
RUSD). Similarly, negative sentiment towards an economy following a central
bank announcement might actually indicate positive market sentiment for the
associated currency. These subtleties highlight the importance of penalizing
both incorrect polarity predictions and misjudgments in sentiment intensity.

Additionally, the evaluation includes a comparative analysis of di�erent models.
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Specifically, the performance of the FinBERT model is compared with that of
ChatGPT under various prompts (P1-P4). This comparison aims to reveal the
influence of prompt selection on ChatGPT’s performance, o�ering a deeper un-
derstanding of how di�erent models perform in sentiment classification tasks.

4.3.5.2 Model Evaluation in Relation to the Market

Beyond traditional classification metrics, the models were also assessed in terms
of their relevance to actual market returns. This evaluation approach is par-
ticularly important given the primary application of these models—to inform
trading decisions in financial markets.

For this analysis, sentiment scores were aggregated on a daily basis for each FX
pair. Specifically, the sentiment scores from all headlines related to a particular
FX pair within a single day were summed to produce a daily sentiment score
(refer to Equation 4.2). This aggregated score was then compared with the
actual daily return of the corresponding FX pair using Pearson correlation. The
correlation was calculated to determine whether the sentiment scores predicted
by the models had any relationship with real market movements.

Sd =
Nd

Â
i=1

si (4.2)

Where:

• Sd is the total sentiment score for day d.

• Nd is the number of headlines related to the FX pair on day d.

• si is the sentiment score of the i
th headline on day d.

In addition to assessing correlation with market returns, the models were also
evaluated on their ability to correctly predict the direction of market movement,
which is a crucial factor in financial decision-making [Blaskowitz and Herwartz,
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2011]. This metric, known as Directional Accuracy (DA), measures the percent-
age of days where the predicted sentiment direction (positive/negative) matches
the actual direction of market returns. For instance, if the model accurately
predicted the market movement direction on 65 out of 100 days, the model’s
DA would be 65%.

For this market-related evaluation, the sentiment score for prompts GPT-P1
through P6 was treated as an integer value corresponding to the predicted
sentiment class. This approach allowed for the sentiment score to be quantified
and aggregated in a manner that reflects its intended use—as an indicator of
the overall daily sentiment towards a specific FX pair.

To provide a comprehensive benchmark, both a naive baseline for DA and the
DA based on the true sentiment were calculated. The naive baseline simply
predicts the most common sentiment direction for each FX pair in the anno-
tated dataset. This baseline o�ers a fundamental comparison point, especially
given the imbalances often found in real-world data. Meanwhile, the DA of
the true sentiment provides a direct measure of how well sentiment aligns with
market movements in the dataset.

This evaluation encompassed all models (FinBERT, GPT P1-P6, and P1N-P6N)
and, by integrating DA with Pearson correlation, o�ered a more complete
perspective on the models’ performance in a financial setting. The findings
highlight the significance of advanced sentiment analysis methods, particularly
when contrasted with the naive baseline, in capturing the complexities of finan-
cial market behavior.

4.4 Experimental Results

This section presents the outcomes from the in-depth analysis and experiments
conducted to evaluate ChatGPT’s e�ectiveness in financial sentiment analysis.
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A detailed discussion is provided, comparing the performance of di�erent Chat-
GPT prompts against the established FinBERT baseline across various metrics.
The code used to reproduce these results is available on GitHub4.

4.4.1 Sentiment Classification Performance

Table 4.4 illustrates the sentiment classification performance across various
models, including FinBERT and di�erent ChatGPT prompts (GPT-P1 to P4)
applied to our dataset. The evaluation criteria include metrics such as Accuracy,
Precision, Recall, F1-Score, and S-MAE.

The results reveal that GPT models consistently outperform FinBERT in all
metrics. FinBERT, a specialized language model for financial text, shows an
accuracy of 0.561, a precision of 0.560, and a recall of 0.562. Its F1-Score
stands at 0.556, and it produces an S-MAE of 0.540. While these figures are
respectable, they are significantly outperformed by the GPT models. Notably,
GPT-P3, which emulates FinBERT as a sentiment analysis model trained on
financial news headlines, performs well but falls short of other GPT models
that incorporate FX pair information into their prompts.

GPT-P1, designed to act as a financial expert analyzing sentiment in headlines
while considering the related FX pair, also performs well in sentiment clas-
sification. However, it slightly lags behind GPT-P2 by about 8%, indicating
that while the emotion-based approach of P1 is e�ective, the sentiment-focused
approach of P2 is more precise in this context.

GPT-P2 and P4, which function as financial experts factoring in the related
FX pair during sentiment analysis, demonstrate significant improvements in
sentiment classification. GPT-P2 leads with the highest accuracy, recall, and
F1-Score, all around 0.790. GPT-P4, modeled as a FX trader making decisions

4https://github.com/giorgosfatouros/Financial-Sentiment-Analysis-with-ChatGPT
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based on headline sentiment, exhibits similar performance metrics to GPT-
P2, despite the di�erent prompt framing. This alignment with the dataset
annotation suggests that role-specific prompts, such as those used in GPT-P4
and GPT-P2, are particularly e�ective.

Table 4.4: Performance Results in Sentiment Classification
Model Accuracy Precision Recall F1 S-MAE
FinBERT 0.561 0.560 0.562 0.556 0.540
GPT-P1 0.730 0.760 0.730 0.725 0.300
GPT-P2 0.790 0.797 0.790 0.790 0.227
GPT-P3 0.735 0.780 0.735 0.737 0.282
GPT-P4 0.784 0.804 0.784 0.789 0.221

Table 4.5 provides a more detailed breakdown of the models’ performance,
evaluating their precision, recall, and F1-score for each sentiment class: Posi-
tive, Negative, and Neutral. For the Positive sentiment class, GPT-P1 achieved
the highest precision, while GPT-P4 led in recall and F1-score. In the Nega-
tive sentiment class, GPT-P4 demonstrated the highest precision, with GPT-P2
excelling in recall and F1-score. For the Neutral sentiment class, GPT-P2 out-
performed in precision, while GPT-P3 had the highest recall. GPT-P2 and
GPT-P4 both achieved the top F1-score for Neutral sentiment. This detailed
analysis highlights the strengths and weaknesses of each model across di�erent
sentiment classes, which is crucial for applications where accurate classification
of specific sentiment classes is more critical than overall performance.

Furthermore, as shown in Table 4.6, the performance of GPT models varies
depending on the specific FX pair. For the AUDUSD pair, GPT-P2 shows supe-
rior performance in accuracy, recall, F1-score, and S-MAE, while GPT-P4 leads
in precision. For the USDJPY pair, GPT-P2 excels in all performance metrics.
The evaluation of the EURCHF pair reveals a split in performance dominance,
with GPT-P2 leading in accuracy, recall, and F1-score, while GPT-P4 excels
in precision and S-MAE. Notably, GPT-P4 outperforms in all metrics for both
the EURUSD and GBPUSD pairs, highlighting its e�ectiveness in sentiment
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Table 4.5: Performance Metrics for Individual Sentiment Classes Across Models
FinBert P1 P2 P3 P4

Positive
Precision 0.59 0.91 0.87 0.89 0.88
Recall 0.61 0.54 0.71 0.59 0.79
F1-score 0.60 0.68 0.79 0.71 0.82

Negative
Precision 0.56 0.74 0.81 0.87 0.88
Recall 0.68 0.90 0.88 0.72 0.76
F1-score 0.61 0.81 0.85 0.79 0.81

Neutral
Precision 0.53 0.64 0.71 0.60 0.66
Recall 0.41 0.77 0.78 0.88 0.83
F1-score 0.46 0.69 0.74 0.72 0.74

analysis related to these FX pairs.

Table 4.6: Best Performing Model in Sentiment Classification per FX pair
FX Pair Accuracy Precision Recall F1 S-MAE
AUDUSD P2 P4 P2 P2 P2
EURCHF P2 P4 P2 P2 P4
EURUSD P4 P4 P4 P4 P4
GBPUSD P4 P4 P4 P4 P4
USDJPY P2 P2 P2 P2 P2

It is noteworthy that 75.6% of the headlines in the dataset explicitly mention
the related FX pair at the beginning. This suggests that the performance
di�erence between prompts such as GPT-P1, P2, and P4, which incorporate
FX pair information, could be even more pronounced with more complex
headlines. To further investigate, the models were tested on a subset of the
data containing headlines that do not explicitly mention the associated FX pair.
This assessment provides insights into how well each model handles sentiment
analysis in a more challenging context where the relevant topic (i.e., FX pair) is
not directly stated. The results from this analysis, presented in Table 4.7, show
that GPT-P4 continues to outperform, achieving the highest scores across all
metrics. This finding highlights GPT-P4’s ability to interpret implicit context

Doctoral Thesis



4.4. EXPERIMENTAL RESULTS 123

within headlines.

In contrast, FinBERT’s performance slightly decreases when the FX pair is not
directly mentioned, with accuracy, precision, recall, F1-score, and S-MAE at
0.543, 0.543, 0.543, 0.538, and 0.539, respectively. GPT-P1, P2, and P3 also
show a dip in performance compared to the complete dataset results. However,
even with reduced performance, GPT-P1, P2, and P3 still outperform FinBERT,
underscoring the superiority of GPT models in handling complex scenarios.
Despite the decrease in performance, GPT-P2 still achieves high scores with
an accuracy of 0.711, precision of 0.728, recall of 0.711, F1-score of 0.714, and
S-MAE of 0.326, demonstrating its robustness in sentiment classification.

This analysis underscores the strength of GPT models, particularly GPT-P4,
in sentiment analysis tasks. These models’ ability to maintain high perfor-
mance even in more challenging scenarios makes them promising tools for
real-world applications. Importantly, these results also emphasize the signif-
icance of prompt design in guiding ChatGPT. By carefully crafting prompts
tailored to the task, the model’s e�ectiveness in sentiment analysis can be sig-
nificantly enhanced.

Table 4.7: Performance Results in Sentiment Classification (filtered data)
Model Accuracy Precision Recall F1 S-MAE
FinBERT 0.543 0.543 0.543 0.538 0.539
GPT-P1 0.663 0.715 0.663 0.672 0.410
GPT-P2 0.711 0.728 0.711 0.714 0.326
GPT-P3 0.665 0.657 0.665 0.657 0.384
GPT-P4 0.765 0.772 0.765 0.763 0.249

4.4.2 Sentiment Score Relation to the Financial Market

The second evaluation method assesses the alignment between the sentiment
scores predicted by each model and actual market price movements. This
comparison aims to evaluate the potential utility of these models in a trading
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context by analyzing how closely their sentiment scores correspond to the daily
returns of the respective FX pairs. The process for calculating the overall daily
sentiment score is outlined in Section 4.3.5.2. This comparison is conducted
using Pearson correlation and DA, as discussed in Section 3.3.2.3.

4.4.2.1 Correlation with Market Returns

The Pearson correlation coe�cient is a crucial metric for evaluating the e�ec-
tiveness of the models in predicting sentiment that aligns with market returns.
This coe�cient ranges from -1 to +1, where a higher positive value indicates a
stronger relationship between sentiment scores and market returns. A higher
positive correlation suggests that as the sentiment improves, market returns also
tend to increase. Therefore, the model with the highest correlation between its
sentiment scores and market returns can be considered the most accurate in
reflecting the market’s reaction to sentiment changes.

The correlation matrix shown in Figure 4.7 reveals the relationships among var-
ious models, the annotated sentiment, and the daily market returns calculated
using pairwise correlation on our dataset aggregated on a daily basis as dis-
cussed in Section 4.3.5.2. It is expected that GPT-P4 demonstrates the highest
correlation with the true sentiment, as P4 closely mirrors the approach used for
annotating sentiment in the dataset. Similarly, FinBERT shows the strongest
correlation with GPT-P3, which mimics a sentiment analysis model trained on
financial data. However, a particularly interesting observation is that GPT-P6N
exhibits a higher correlation with market returns than the true sentiment itself.
This highlights GPT’s ability to process all daily news collectively, enhancing
its capacity to more accurately gauge market sentiment. Models that generate
sentiment scores ranging from -1 to 1, rather than performing sentiment classi-
fication, tend to align more closely with market movements. This alignment is
plausible because these models are better equipped to capture subtle variations

Doctoral Thesis



4.4. EXPERIMENTAL RESULTS 125

in news sentiment, whether slightly positive or negative.

Interestingly, while the GPT models that consider entire article texts (specifi-
cally, GPT-P4A and GPT-P4AN) did not outperform their counterparts focus-
ing solely on headlines, the opposite was true for FinBERT, which showed
improved performance when given a broader context.

Figure 4.7: Correlation Matrix of Predicted Sentiment and Market Returns

It’s also important to note that GPT-P5 exhibited the lowest correlation with
both daily returns and true sentiment, suggesting that this prompt may not be
as e�ective for sentiment prediction in relation to market price forecasting as
the others.
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Moreover, the high correlation between the categorical and numerical versions
of the models (GPT-P1 and P1N through GPT-P6 and P6N) indicates that these
di�erent versions largely agree on the sentiment of the text, demonstrating the
consistency of GPT’s outputs.

The correlation between true sentiment and daily returns is approximately 0.49,
indicating a moderate linear relationship. This suggests that while sentiment
can explain some of the variations in market prices, other factors and market
dynamics are also likely influencing these movements.

Table 4.8 provides a more detailed breakdown of the correlation coe�cients
between predicted sentiments by various models and returns for individual FX
pairs. Although di�erent models show varying degrees of correlation strength
with di�erent currency pairs, the pair-specific correlations for each model gen-
erally reflect the trends highlighted in Figure 4.7. A notable and consistent
observation across all models is the low or negative correlation with EURCHF
pair returns, which is likely due to the limited volume and scarcity of news
related to EURCHF.

4.4.2.2 Directional Accuracy of Sentiment Scores

Tables 4.9 and 4.10 provide an overview of the DA achieved by various sen-
timent scoring models, alongside comparisons with a naive baseline and the
DA based on true sentiment. DA measures the percentage of instances where
the predicted sentiment direction aligns with the actual direction of market
movement.

For reference, the naive approach, which simply predicts the most frequent
sentiment direction for each FX pair, achieves a DA of 52.1%. This figure
serves as a baseline for evaluating the models. In contrast, the DA based on
true sentiment is significantly higher, standing at 69.6%.
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Table 4.8: Correlation of Predicted Sentiment and FX pair returns

Model AUD/ EUR/ EUR/ GBP/ USD/
USD CHF USD USD JPY

FinBERT 0.004 -0.214 0.192 0.206 0.209
FinBERT-N -0.206 -0.028 0.155 0.172 0.113
FinBERT-A 0.282 -0.134 0.169 0.051 0.448
FinBERT-AN 0.313 -0.220 0.122 0.085 0.505
GPT-P1 0.401 -0.025 0.461 0.398 0.659
GPT-P1N 0.353 0.235 0.547 0.461 0.627
GPT-P2 0.413 -0.060 0.446 0.441 0.659
GPT-P2N 0.317 -0.061 0.476 0.438 0.606
GPT-P3 0.405 -0.118 0.440 0.460 0.619
GPT-P3N 0.390 0.035 0.464 0.451 0.650
GPT-P4 0.508 0.061 0.519 0.526 0.641
GPT-P4N 0.466 0.058 0.388 0.414 0.542
GPT-P4A 0.499 0.004 0.473 0.335 0.646
GPT-P4AN 0.532 0.0 0.466 0.342 0.581
GPT-P5 0.132 0.131 0.428 0.335 0.669
GPT-P5N 0.335 0.132 0.416 0.404 0.448
GPT-P6 0.580 0.072 0.461 0.527 0.628
GPT-P6N 0.589 -0.098 0.585 0.557 0.620
True Sent 0.517 0.173 0.425 0.496 0.650

Upon reviewing the tables, GPT-P1N emerges as the model with the highest
DA, reaching 67.2%, indicating its strong capability in accurately predicting
the direction of market movement based on sentiment scores. GPT-P3N and
GPT-P6N follow closely, with DA values around 66%. Among the categorical
models, GPT-P5 leads with the highest DA, closely trailed by GPT-P6 and
GPT-P4. Overall, the numerical models generally demonstrate superior DA
compared to their categorical counterparts, highlighting their enhanced ability
to capture directional shifts in market sentiment. Notably, the GPT models
exhibit a performance level that is nearly comparable to the human-annotated
sentiment, underscoring their e�ectiveness in this task.

Table 4.11 presents the DA of numerical sentiment analysis models across
di�erent FX pairs. The results reveal that models GPT-P1N through GPT-
P3N demonstrate consistent performance across all FX pairs, suggesting that,
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Table 4.9: DA of Non-Numerical and Naive Models
Model DA
FinBERT 0.595
FinBERT-A 0.498
GPT-P1 0.583
GPT-P2 0.607
GPT-P3 0.607
GPT-P4 0.640
GPT-P4A 0.587
GPT-P5 0.652
GPT-P6 0.640
Naive Sent. 0.521

Table 4.10: DA of Numerical and True Sent. Models
Model DA
FinBERT-N 0.599
FinBERT-AN 0.526
GPT-P1N 0.672
GPT-P2N 0.644
GPT-P3N 0.660
GPT-P4N 0.611
GPT-P4AN 0.648
GPT-P5N 0.623
GPT-P6N 0.652
True Sent. 0.696

despite the di�erent instructions in their prompts, these models capture similar
sentiment aspects from the headlines.

GPT-P4AN, which integrates the entire article content, stands out as the top
performer for the AUDUSD pair. However, for the other FX pairs, its perfor-
mance is comparable to that of the GPT models that rely solely on headline
analysis.

For the EURUSD and GBPUSD pairs, GPT-P6N significantly surpasses other
models in performance. This superior result may be attributed to GPT-P6N’s
capability to process an extensive list of daily headlines, thereby e�ectively
capturing the collective sentiment, which could be more reflective of the market
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movements for these specific pairs.

However, for the EURCHF pair, the DA generally tends to be lower. This
could be due to the relatively limited amount of data available for this pair,
highlighting the crucial importance of data availability in predicting market
direction accurately. Although FinBERT, when including the entire article
content, achieves the highest DA for EURCHF, the small sample size makes it
di�cult to draw definitive conclusions about the significance of incorporating
broader context.

Overall, these findings underscore the complex relationship between news sen-
timent and market movements, emphasizing the need for thorough testing
across diverse datasets to validate models. They also highlight the importance
of understanding the unique dynamics and trends of each market to tailor
sentiment analysis approaches accordingly.

Table 4.11: Directional Accuracy Results for each Numerical Model per Ticker
Model AUDUSD EURCHF EURUSD GBPUSD USDJPY
FinBERT 0.537 0.469 0.538 0.547 0.482
FinBERTA 0.481 0.562 0.481 0.491 0.625
GPT-P1 0.648 0.500 0.673 0.679 0.696
GPT-P2 0.648 0.438 0.577 0.679 0.679
GPT-P3 0.630 0.500 0.635 0.755 0.679
GPT-P4 0.537 0.188 0.500 0.660 0.536
GPT-P4A 0.667 0.312 0.615 0.660 0.679
GPT-P5 0.593 0.469 0.615 0.660 0.589
GPT-P6 0.593 0.344 0.731 0.792 0.607

Note: The results refer to the numerical (N) versions of the models providing a continu-
ous sentiment value in [-1,1].

4.4.2.3 Performance and Cost Analysis

In the deployment of machine learning models, especially within production
environments, both performance and cost are critical considerations. These
factors play a significant role in determining a model’s scalability, e�ciency,
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and overall practicality. Therefore, the evaluation of GPT prompts includes an
analysis of processing time and token consumption, which directly impact oper-
ational costs and performance. Table 4.12 summarizes the average processing
time and number of tokens processed by each prompt.

Table 4.12: Average Time and Tokens Processed per ChatGPT Prompt
Prompt Pr. time Pr. tokens Hdln. time Hdln. tokens
P1 0.94 63.0 0.94 63.17
P2 0.81 67.0 0.81 67.15
P3 0.97 66.0 0.97 65.91
P4 0.82 84.0 0.82 84.39
P4A 0.66 437.0 0.82 437.09
P5 0.83 193.0 0.11 24.74
P6 5.99 592.0 0.22 22.22
P1N 2.29 90.0 2.29 90.34
P2N 1.42 85.0 1.42 84.79
P3N 1.23 80.0 1.23 79.98
P4N 1.06 91.0 1.06 90.81
P4AN 0.71 494.0 1.06 494.09
P5N 1.85 201.0 0.24 25.68
P6N 6.10 600.0 0.23 22.54

Among the sentiment classification prompts, P1, P2, and P3 exhibit similar
average times and token usage, generating concise responses in less than a
second with approximately 65 tokens. The top-performing prompt, P4, gen-
erates more tokens, which could potentially lead to higher costs. In contrast,
P5 and P6, while producing significantly more tokens, benefit from processing
multiple headlines at once. This capability, along with their higher accuracy,
can result in cost savings when handling large volumes of data. Prompts that
generate numerical outputs generally require more time and tokens due to the
increased complexity involved in generating accurate responses. Furthermore,
experimental results indicate that the additional cost incurred by analyzing
entire news articles—which can involve processing more than five times the
number of tokens per prompt—does not necessarily correspond to a significant
improvement in performance.
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It is important to note that processing times can be influenced by various factors
and may not always be consistent. The load on the ChatGPT model, which
varies depending on the time of day, global usage patterns, and the location
of the end-user, can significantly a�ect processing times. Therefore, while
the average times presented are useful for relative comparisons, they may not
always reflect real-time performance accurately, and thus should be interpreted
with caution.

Considering that the cost of using OpenAI’s API for the ChatGPT-3.5 model is
0.002 USD per 1,000 tokens, the financial implications of integrating ChatGPT
into existing services appear to be relatively low, even when processing large
volumes of data daily. For instance, Bloomberg News publishes approximately
5,000 articles per day [Bloomberg, 2023].

To illustrate, using the P6N model—which generates the highest number of
tokens among the models tested—the daily cost can be estimated as follows:
600 tokens (average generated by P6N per article) multiplied by 5,000 articles,
then multiplied by 0.002 USD per 1,000 tokens. This calculation results in a
total daily cost of approximately 6 USD.

Therefore, even when handling large data volumes, such as those produced
by Bloomberg, the cost of using advanced language models like ChatGPT for
sentiment analysis remains quite a�ordable. This cost-e�ectiveness, combined
with the strong performance demonstrated by these models, makes them a
viable option for real-world financial applications.

For applications requiring real-time insights and enhanced accuracy, a mixed
approach may be necessary. This approach could involve generating quick and
concise responses for individual headlines using prompts P1-P4 (or P1N-P4N),
while also processing larger batches of headlines with prompts P5, P6 (or P5N,
P6N) when time allows.
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4.5 Discussion

4.5.1 ChatGPT’s Performance in Financial Sentiment Analysis

The findings from this research indicate that ChatGPT consistently surpasses
the performance of the FinBERT model in financial sentiment analysis, regard-
less of the prompts employed. Notably, the prompts GPT-P4, P6, and P6N
demonstrated significant e�ectiveness in sentiment analysis, o�ering valuable
insights that could enhance market prediction capabilities. The strong perfor-
mance of ChatGPT, coupled with the flexibility a�orded by prompt engineering,
suggests a high potential for further refinement and application optimization.
For instance, by carefully framing the task, as seen with prompts GPT-P4 and
P6, it is possible to boost ChatGPT’s accuracy even further. However, it is
essential to acknowledge that the e�ectiveness of di�erent prompts varies, un-
derscoring the need for continued optimization and extensive testing on larger
datasets.

An intriguing observation was that GPT-P6N exhibited a stronger correlation
with market returns than the actual sentiment itself, suggesting that the model
might have a superior grasp of overall market sentiment when processing a full
day’s worth of news simultaneously. This capability may stem from ChatGPT’s
ability to detect subtle sentiment variations across multiple news articles, which
could be more challenging for individual human annotators who review texts
in isolation.

Furthermore, models that generate sentiment scores on a scale from -1 to 1
(N versions) demonstrated a closer alignment with market trends, indicating
their proficiency in capturing the finer nuances of news sentiment that might
be more reflective of market behavior. On the other hand, despite GPT-P5’s
approach of processing all daily news for each FX pair, it showed a weaker cor-
relation with both market returns and true sentiment, highlighting the critical
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importance of e�ective prompt engineering and thorough prompt evaluation
before implementation.

The strong correlation observed across pairs such as GPT-P1 and P1N to GPT-
P6 and P6N also highlights the consistency and dependability of GPT’s outputs,
positioning these models as promising tools for practical applications.

4.5.2 Potential Applications in Financial Services

The results of this research point to several practical applications within the
financial services industry. By carefully selecting prompts, models like ChatGPT
can be utilized for financial sentiment analysis, o�ering actionable insights that
may assist in forecasting market trends. It is essential to recognize, however,
that the optimal prompt may di�er based on the specific use case, the financial
instrument in question, and the acceptable margin of error in predictions.

It is also important to emphasize that the observed correlation between the
model’s sentiment scores and market movements does not inherently indi-
cate an ability to predict future price changes. Financial markets are intricate
systems influenced by numerous factors, including macroeconomic indicators,
geopolitical events, and technical considerations. Understanding this complex-
ity, a similar methodology to that employed in this study could be expanded
by incorporating a broader set of inputs. Instead of relying solely on domain-
specific news headlines, the model could be fed additional relevant data, such as
economic indicators and other market information, potentially leading to even
more comprehensive insights. Consequently, while sentiment analysis through
language models like ChatGPT can provide valuable viewpoints, these models
should be integrated into a more comprehensive approach to financial market
analysis to maximize their e�ectiveness.
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4.5.3 Limitations and Future Work

While this study presents promising results, it also uncovers certain limitations
of ChatGPT and highlights areas for future research.

First, the limited duration of the dataset used in this study is a notable con-
straint. The analysis is based on a specific time frame, and while the outcomes
are encouraging, the models’ performance may di�er when applied to data
from other periods or under di�erent market conditions. Financial markets
are influenced by various factors over time, and the short duration of the
dataset may not capture all these dynamics. This limitation suggests the need
for further studies that cover longer periods to validate and generalize these
findings.

Additionally, even though the models showed significant correlation with mar-
ket sentiment, they did not fully align with market movements, indicating that
sentiment explains only a portion of the variations in market prices. This obser-
vation highlights the complexity of financial markets and suggests that future
research should aim to refine these models to better capture market behavior.

In the context of generative AI, potential issues like model collapse, particularly
when relying heavily on synthetic training data, should be considered [Brock
et al., 2018]. Such phenomena can cause models to produce repetitive or uni-
form outputs across di�erent inputs [Goodfellow et al., 2014]. In this study,
while prompts guided ChatGPT’s responses, it’s important to note that Chat-
GPT’s foundational knowledge is built on extensive and diverse real-world text
data, which reduces the reliance on synthetic data alone [Brown et al., 2020].
This approach helps mitigate the risk of overfitting to synthetic patterns [Zhang
et al., 2021].

As the development of LLMs rapidly progresses, future research should fo-
cus on comparing and evaluating the unique capabilities of both existing and
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emerging models. For instance, newer models like GPT-4 [OpenAI, 2023a]
have the potential to further improve the performance demonstrated by Chat-
GPT in this study. Additionally, with the advent of open-source LLMs like
META’s Llama, it would be valuable to assess these models, their e�ectiveness
in financial sentiment analysis, and their potential integration into commercial
systems. Continuous exploration of advancements in LLMs is essential to fully
harness their capabilities in the complex and dynamic field of financial services.

While the initial findings emphasize the strengths of models like ChatGPT in
financial sentiment analysis, it is important to broaden the scope of research.
Specifically, exploring how sentiment scores derived from ChatGPT influence
market dynamics in subsequent days could provide insights into the temporal
relationship between sentiment and market movements.

Regarding processing time, more extensive testing under varied conditions is
required to establish more accurate and consistent response time measurements.
For practical applications that utilize LLM services, such as the ChatGPT API,
it would be prudent to implement mechanisms to manage potential variations
in response time due to factors like system load fluctuations.

Overall, the findings of this study underscore the significant potential of Chat-
GPT in financial sentiment analysis. By addressing the identified areas for
future research, more sophisticated and accurate sentiment analysis models for
financial markets with real business value can be developed.
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Chapter 5

AI on Diverse Data for Holistic Financial

Analysis

Chapter Structure

This Chapter is constructed as follows:

• Section 5.1 - Introduction, introduces MarketSenseAI, an advanced AI-
driven framework designed for holistic financial analysis, outlining its
key components, objectives and the motivation behind its development in
response to the challenges faced in contemporary financial markets.

• Section 5.2 - Background on AI in Financial Analysis, reviews the
evolution of AI tools in financial analysis, highlighting the transition from
sentiment analysis, as discussed in the previous chapter, to a more com-
prehensive market analysis approach.

• Section 5.3 - Methodology, details the architectural design of Market-
SenseAI, including the integration of news summarization, fundamental
analysis, and macroeconomic assessment, along with the data sources and
experimental setup.

• Section 5.4 - Experimental Results, presents the outcomes of the em-
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pirical tests conducted with MarketSenseAI, comparing its performance
with established benchmarks and demonstrating its practical application
in stock selection and market analysis.

• Section 5.5 - Discussion, interprets the results, evaluates the strengths
and limitations of MarketSenseAI, and discusses its potential implications
for financial markets.

Building on the insights gained from Chapters 2 and 4, where the potential
of LLMs in knowledge mining and financial sentiment analysis was explored,
this chapter transitions to a more holistic approach to financial market analy-
sis. MarketSenseAI, the framework introduced here, leverages the strengths of
sentiment analysis and integrates them with other critical aspects of financial
analysis, including fundamental and technical analysis. The research in finan-
cial sentiment analysis with ChatGPT has laid the groundwork for this broader
exploration, setting the stage for the advanced capabilities of LLMs in compre-
hensive financial market analysis. This chapter’s focus shifts from sentiment
analysis to the development of a sophisticated tool that provides actionable
insights across various dimensions of the financial markets, revolutionizing
financial engineering through the exclusive use of NLP.

5.1 Introduction

5.1.1 Background and Motivation

Capital markets are essential for the e�cient allocation of capital within an
economy, and the process of price discovery is crucial for maintaining the
health and stability of the financial system [Kidwell et al., 2016]. This process
is influenced by a complex array of factors, including company-specific data,
sectoral trends, macroeconomic indicators, momentum e�ects, and political as
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well as geopolitical events [Lewellen, 2002]. Market participants engage collec-
tively in this intricate process, contributing to the overall e�ciency of financial
markets [Malkiel, 2003].

The selection of stocks operates as a mechanism of price discovery, wherein in-
vestors identify stocks that they believe are "mispriced" relative to the broader
market, o�ering potential returns. This approach underpins the concept of
value investing [Greenwald et al., 2020]. However, the notion of "mispricing"
extends beyond simple valuation discrepancies; it can also encompass market
perceptions of a stock’s fair price, which may di�er from its fundamental value.
This can include expectations of future growth, often emphasized in "growth in-
vesting," where current fundamentals are sometimes overlooked. Additionally,
stock selection is complicated by factors such as the rise of passive investing,
capital flows, derivative-related activities, and macroeconomic conditions, all of
which contribute to a financial system that is inherently probabilistic and often
chaotic [Bouchaud et al., 2003].

Retail investors, in particular, face challenges in analyzing individual stocks
due to their limited capacity to process information, susceptibility to behavioral
biases, and lack of robust risk management skills. As a result, they may miss
promising investment opportunities or expose themselves to unnecessary risks.
Exchange Traded Funds (ETFs) present a practical solution for these investors,
allowing them to engage with the broader market more e�ectively, a strategy
often referred to as investing in "beta."

Small to medium-sized asset and wealth management firms also encounter
di�culties in conducting detailed stock analysis due to resource constraints
and a limited scope of selection. For these firms, ETFs o�er an appealing
option, providing a more diversified and manageable investment approach.

In contrast, larger professional firms are typically equipped with advanced
technology, infrastructure, and skilled personnel, enabling them to conduct
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superior analysis and risk management of their portfolios. These firms of-
ten employ teams of stock analysts, economists, and traders whose collective
knowledge and expertise are directed toward identifying investment opportu-
nities. However, despite these advantages, outperforming the market remains
challenging. Large organizations face issues such as silos, poor communication,
and conflicting incentives, which can hinder their ability to achieve consistent
success [Weiss-Cohen et al., 2019].

Over the past 15 years, particularly following the 2008 financial crisis, there
have been significant shifts in the structure and operation of capital markets,
with lasting e�ects on price discovery. Key developments include:

1. Central Bank Policies: The 2008 crisis fostered a belief among mar-
ket participants that central banks would intervene to stabilize markets
using all available tools. However, excessive reliance on central bank in-
terventions risks distorting market mechanisms and incentives, leading to
the underpricing of risk, moral hazard, and potential systemic externali-
ties [BIS, 2022].

2. The Rise of Passive Investing: ETFs facilitate "blind" participation in
market-weighted indices, treating all included stocks equally regardless
of their fundamental value. This can cause stocks to deviate significantly
from their fair value, particularly those widely held by passive investors
[Goyal and He, 2015].

3. Impact of Retail Investors: The increasing influence of retail investors,
who have access to gamified, leveraged, and derivative-enabled trading
platforms, has also disrupted price discovery. For example, Zero-Day Ex-
piry options (0DTE), which expire within a single day, accounted for ap-
proximately 43% of the total S&P 500 options volume in 2022, compared
to just 6% in 2017 [Brogaard et al., 2023]. Similarly, the phenomenon
of "meme stocks," such as GameStop, where retail herd behavior drove
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prices to extreme levels, exemplifies the impact of retail investors [Anand
and Pathak, 2022].

These factors collectively disrupt the functioning of price discovery, reducing
the incentives for investors to accurately assess risk and value assets. In this
complex market environment, there is a pressing need for more sophisticated
tools that can enhance the analytical capabilities of human decision-makers.
Such tools are essential for navigating the increasingly data-rich and complex
financial landscape, enabling investors to achieve precision and insight neces-
sary for informed decision-making.

5.1.2 Potential of LLMs in Stock Selection and Financial Analysis

Pretrained foundational models have demonstrated exceptional versatility and
e�ectiveness across various domains [Usha Ruby et al., 2024]. The emergence
of LLMs like ChatGPT o�ers promising advancements in financial analysis and
stock selection [Mao et al., 2024]. These advanced AI systems, trained on vast
and diverse datasets, have shown the ability to replicate intricate aspects of
human cognition, and in many cases, surpass them [OpenAI, 2023a].

LLMs can quickly analyze vast amounts of financial data, discerning detailed
insights from earnings reports to macroeconomic studies, and processing un-
structured data such as news articles and expert opinions more e�ciently than
human analysts [Guo et al., 2023]. This deep content analysis enables LLMs
to identify patterns often overlooked in traditional analyses [Alshami et al.,
2023].

Moreover, LLMs play a critical role in reducing biases in stock selection. Un-
like human analysts, LLMs are not influenced by emotional or overconfidence
biases, o�ering a more objective perspective in financial analysis [Tjuatja et al.,
2023]. While some biases from training data may persist, LLMs significantly
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diminish the impact of human biases, such as overconfidence or confirmation
bias, on investment decisions [Abramski et al., 2023,Atreides and Kelley, 2023].
Furthermore, LLMs can process and analyze extensive financial data, surpass-
ing the limitations of individual or team analysts.

Although these AI systems may outperform humans in specific tasks, their
primary value lies in augmenting human capabilities. They serve as power-
ful tools that enhance decision-making, improve the quality of analysis, and
increase overall productivity [Noy and Zhang, 2023]. For example, complex
tasks like consolidating financial statements from multiple subsidiaries of a
large corporation can be streamlined by an LLM-based system [Kim et al.,
2023]. Such systems can highlight discrepancies, flag outliers, and provide
executive summaries, tasks that would be time-consuming and error-prone if
done manually.

Recent developments in the financial sector validate these observations. Ma-
jor players such as JPMorgan and Bloomberg have launched AI-driven initia-
tives, including an AI-enabled advisory platform [CNBC, 2023] and a finance-
centric LLM [Wu et al., 2023b]. Additionally, Morgan Stanley has utilized
OpenAI’s models to create a chatbot that assists financial advisors by leverag-
ing the bank’s extensive research data [OpenAI, 2023b]. Similarly, Broadridge,
through its subsidiary LTX, introduced BondGPT, a chatbot powered by GPT-4
designed to assist institutional investors in bond trading [LTXtrading, 2023].
Although many major financial institutions like Goldman Sachs and BlackRock
have dedicated AI departments working on specialized projects, the specifics of
these innovations often remain proprietary and are not fully disclosed to the
public.
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5.1.3 Contributions

This chapter makes several key contributions to the integration of AI and finan-
cial analysis through the introduction of MarketSenseAI1, an innovative service
for stock analysis rooted in the power of LLMs. The primary contributions are
as follows:

1. A Novel LLM-Driven Investment Service: MarketSenseAI represents a
significant advancement by integrating various text data sources to provide
holistic stock investment insights, surpassing traditional models that rely
solely on quantitative data and models.

2. Explainable Investment Signals: MarketSenseAI generates actionable
and interpretable investment insights, ensuring transparency and increas-
ing user acceptance of AI-generated signals.

3. Versatile Use Cases: The design of MarketSenseAI allows for individ-
ual usage of service components, catering to diverse investor needs and
o�ering flexibility and adaptability to di�erent investment strategies.

4. Integration of Macroeconomic Analysis: Unlike traditional models, Mar-
ketSenseAI incorporates macroeconomic conditions directly into the model.
This integration allows the system to account for factors such as interest
rates and economic growth, which are typically considered separately in
traditional approaches. The holistic view provided by MarketSenseAI en-
ables more informed and accurate predictions, reflecting real-world com-
plexities more e�ectively.

5. Empirical Evaluation: Demonstrating the reliability and statistical sig-
nificance of its recommendations, MarketSenseAI’s empirical testing on
the S&P 100 stocks over a 15-month period showcases its superior perfor-
mance, delivering excess alpha of 10% to 30% and achieving a cumulative

1MarketSenseAI is available at www.marketsense-ai.com.
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return of up to 72%, while maintaining a risk profile comparable to the
broader market.

6. Superior Performance: MarketSenseAI establishes itself as a pioneering
tool in the integration of generative AI into financial analytics by outper-
forming high-performing indices and traditional strategies.

7. An Independent Financial Advisor: MarketSenseAI democratizes access
to premium investment insights for retail investors, asset managers, and
other stakeholders.

In summary, this paper pioneers the integration of multi-source data analysis
with the cognitive capabilities of LLMs to redefine stock selection and portfolio
management. Unlike traditional financial engineering methods such as pricing
models, time series analysis, or sentiment indicators, MarketSenseAI utilizes
NLP exclusively to analyze diverse data types (i.e., news, financial reports, and
stock prices) and rank the generated stock signals. This comprehensive and
interpretable methodology represents a significant advancement in financial
analytics, demonstrating the potential of LLMs to disrupt the financial industry
by providing actionable investment insights based entirely on text analytics.

At the core of MarketSenseAI, the LLM generates concise summaries from
vast amounts of numerical and textual data, extracting crucial insights about a
company’s developments and stock potential. The architecture is designed to
process complex and large datasets e�ectively by dividing tasks into manage-
able components, each focusing on specific aspects of the data. It then analyzes
these summaries, considering the investment horizon, to make stock investment
suggestions. Based on the explanations of these signals, the LLM ranks the
stocks, allowing for the selection of the most robust signals. This multi-process
approach, harnessing the summarization and analytical power of AI, o�ers a
sophisticated tool for investors navigating the complexities of the stock market.
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Furthermore, MarketSenseAI’s modular architecture allows for diverse appli-
cations in the financial domain. Each component of this architecture provides
specific insights, such as news, fundamentals, and macroeconomic summaries,
which can be used independently. It can facilitate the construction of AI-based
portfolios using the generated signals and their explanations, o�ering a revo-
lutionary approach to asset management. This framework can be tailored to
make personalized investment decisions, taking into account user preferences
on risk, investment horizon, and goals. This adaptability demonstrates the
framework’s potential in various areas of finance, extending far beyond stock
selection.

Overall, MarketSenseAI bridges domain knowledge with the latest AI advance-
ments, providing a novel and applicable system in investment finance. This
tool holds significant promise for asset managers and retail investors seeking
advanced financial advice, especially those with limited resources and access to
premium financial services.

5.2 Background on AI in Financial Analysis

The application of AI techniques in the financial sector has surged significantly
over the past decade, gradually eclipsing traditional statistical or algorithmic
approaches [OECD, 2021]. Various facets of the financial domain, including
risk assessment [Fatouros et al., 2023b], banking services [Kotios et al., 2022],
and trading operations [Bloomberg, 2019], have increasingly integrated AI
technologies. Concurrently, the rise of foundational models, particularly the
successive versions of GPT and their associated chat interfaces, has driven
transformative changes across diverse sectors. The financial industry, in par-
ticular, has begun incorporating insights derived from these models into its
business operations [Chui et al., 2023].
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Despite the relatively recent public availability of these models — such as
the ChatGPT API, which only became accessible in March 2023 — numerous
research e�orts have emerged, exploring how these Generative AI frameworks
can enhance investment strategies.

Research by [Zaremba and Demir, 2023] highlights the potential of ChatGPT
in finance, especially for tasks requiring NLP capabilities, such as sentiment
analysis of financial news and summarization of earnings reports. These tasks
show a significant correlation with stock market behavior [Tetlock et al., 2008].
Additionally, [Lopez-Lira and Tang, 2023] demonstrate ChatGPT’s accuracy
in financial news sentiment analysis, showing a positive correlation between
ChatGPT-generated sentiment scores and subsequent stock returns. Under
various investment strategies, ChatGPT was found to outperform traditional
sentiment analysis methods, with news sentiment contributing to notable re-
turns.

In comparative analyses, [Li et al., 2023] argue that ChatGPT and GPT-4 out-
perform domain-specific models like FinBERT [Araci, 2019] and BloombergGPT
[Wu et al., 2023b] in tasks such as named entity recognition and news clas-
sification. While FinBERT excels in financial sentiment analysis compared to
ChatGPT, the study lacked prompt engineering and used a dataset inherently
favoring FinBERT. On the other hand, [Fatouros et al., 2023d] provide evi-
dence that ChatGPT surpasses FinBERT in financial sentiment analysis, both
in classification performance and correlation with actual returns, even when
using zero-shot prompting. Zero-shot prompting allows ChatGPT to perform
tasks without specific prior training, indicating its e�ectiveness in sentiment
analysis based on broad-based training, despite not being explicitly trained on
financial data.

Furthermore, [Kim et al., 2023] emphasize the utility of GPT-3.5 in sum-
marizing corporate disclosures, suggesting that sentiment derived from these
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summaries more accurately predicts stock market reactions than the original
documents. This finding underscores the value of GPT models for investors
seeking concise, targeted information. [Kirtac and Germano, 2024] extended
this research, showing GPT-3.5’s e�ectiveness in sentiment analysis for predict-
ing next-day stock returns, outperforming FinBERT and lexicon-based models.
Additionally, [Yu et al., 2023] and [Chen et al., 2023] explored sentiment
indicators derived from LLMs, demonstrating how these indicators enhance
forecasting models for stock movements, further indicating the superior perfor-
mance of LLMs in predicting stock directions.

In summary, current research on LLMs in financial applications supports and
reinforces the methodologies underlying each component of the proposed sys-
tem. However, while these studies highlight the utility of LLMs in various
financial tasks, few focus specifically on stock selection. Most existing research
is limited to specific types of text data, such as news articles or tweets, with
narrow use cases like sentiment analysis or text summarization, and often
presents limited evaluation with less structured methodologies. In contrast,
MarketSenseAI presents a framework that leverages multi-modal financial data,
including news, financial reports, stock prices, and macroeconomic insights, to
provide actionable and interpretable investment recommendations for analyzed
stocks, while outperforming high-performing ETFs.

Unlike traditional methods that heavily rely on quantitative analysis, where sen-
timent indicators are used as features in predictive models, MarketSenseAI em-
phasizes language understanding and reasoning to generate investment insights
after processing both numerical and textual data. MarketSenseAI’s innovative
approach also incorporates macroeconomic analysis through expert opinion,
overcoming the limitations of traditional quantitative models that struggle to
e�ectively use infrequent macroeconomic data or integrate expert perspectives.
This approach enables the provision of detailed, AI-generated explanations for
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each recommendation, enhancing the interpretability and trustworthiness of in-
vestment decisions. Additionally, the evaluation considers transaction costs and
the number of trades, underscoring MarketSenseAI’s applicability in real-world
settings.

5.3 Methodology

The architectural framework of MarketSenseAI, as illustrated in Figure 5.1,
integrates four primary components responsible for processing data inputs,
alongside a fifth component dedicated to formulating the final investment rec-
ommendation (i.e., buy, hold, or sell) for a specific stock. This final component
synthesizes all the gathered information and provides a clear explanation for
the decision. Each component leverages OpenAI’s API and employs the GPT-4
model [OpenAI, 2023a], utilizing zero-shot prompting and in-context learning
to perform distinct tasks [Dong et al., 2022].

Figure 5.1: Conceptual architecture of MarketSenseAI, highlighting the core compo-
nents, data flow, and outcome for a selected stock (e.g., Amazon).

The framework is structured to mimic the decision-making process of a profes-
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sional investment team. This process encompasses monitoring recent develop-
ments related to the company or its sector (via a news summarizer), analyzing
the company’s latest financial statements (through a fundamentals summa-
rizer), and performing a macroeconomic analysis of the current environment,
while considering price action dynamics (through macro and price dynamics
summaries). The overarching architecture includes the following components,
with their data flow depicted in Figure 5.2:

1. Progressive News Summarizer: Gathers and condenses daily news items
into ongoing summaries.

2. Fundamentals Summarizer: Preprocesses and examines quarterly finan-
cial data to create a summary of key financial metrics.

3. Price Dynamics Summarizer: Compares the target stock’s performance
with that of similar stocks and the broader market context.

4. Macroeconomic Environment Summary (MarketDigest): Synthesizes
investment reports and research articles from financial institutions into a
concise macroeconomic summary.

5. Signal Generation: Integrates outputs from the above components to
generate investment recommendations, accompanied by detailed justifica-
tions.

The subsequent sections provide a detailed description of each key component
in this architecture.

5.3.1 Progressive News Summarizer

The impact of company-specific news—ranging from announcements, reports,
analyst opinions, to research findings—on market sentiment and subsequent
stock prices is significant [Malik, 2011]. Depending on the nature of the news,
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Figure 5.2: Data flow within MarketSenseAI.

its influence can be short-term, long-term, or minimal [Alqahtani et al., 2020].
Therefore, the sourcing and interpretation of news require careful management
in the context of stock analysis.

The Progressive News Summarizer (PNS,t) is tasked with acquiring news, con-
densing it, and creating a progressive synopsis of the most impactful news
related to a particular stock. As depicted in Figure 5.3, daily news items rel-
evant to a specific stock are retrieved from available APIs. In this study, the

Doctoral Thesis



5.3. METHODOLOGY 151

EODHD2 Stock Market and Financial News API was utilized for sourcing the
news. The processes for generating daily and progressive news summaries are
modeled by Equations 5.1 and 5.2, respectively.

NS,t =
tM

i=t�t
Summarize(NS,i) (5.1)

PNS,t = Summarize(PNS,t=t�1,NS,t) (5.2)

Where PNS,t represents the Progressive News Summary for stock S at time t,
and NS,t is the aggregated news summaries for stock S over the most recent t

days. Additionally, NS,i refers to the news articles available for stock S on day
i. The parameter t defines the number of days included in the aggregation,
representing the time window for the progressive news summary.

The daily news for a company undergoes preprocessing to exclude unrelated
text, such as clickbait articles, ensuring that the content is in an appropriate
format for inclusion in the prompt. GPT-4, accessed via OpenAI’s API, is
then systematically prompted to distill the daily news and generate a concise
summary (NS,i) for each day. These summaries are stored in a centralized
repository.

While this method produces a summary for a specific date, it is crucial to
integrate the ongoing narrative of news-related content for the company, par-
ticularly older news that remains significant. For instance, in scenarios such
as a merger or legal dispute, an announcement about the company’s better-
than-expected results might hold less weight in the overall decision-making
process. The Progressive News Summarizer addresses this by merging the lat-
est news summaries (NS,t) with the preceding progressive summary (PNS,t�1).

2https://eodhd.com/financial-apis/stock-market-financial-news-api/
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Figure 5.3: Progressive News Summarizer

Specifically, the prompt is structured to instruct GPT-4 to emulate the role of a
financial analyst tasked with synthesizing an updated summary for a specific
stock by integrating various types of information. The prompt includes:

• Current Summary: The most recent summary of the company and its
stock as of a specific month and year.

• Daily News Summary: News articles divided into factual news and ana-
lysts’ opinions concerning the company over a given month.

• Instructions: Directions to integrate the most relevant information, dis-
tinguishing between factual news and analysts’ opinions.

This process ensures that the summary consistently reflects the latest, most
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relevant, and significant developments, o�ering a comprehensive and up-to-
date snapshot of the company’s standing in the news.

Although this study’s Progressive News Summarizer is tailored for monthly in-
tervals, its design allows for adaptability to di�erent frequencies, aligning with
various investment strategies. Future research could explore the e�ects of ad-
justing the summarizer’s frequency on the e�ectiveness of di�erent investment
approaches.

Table 5.1 illustrates how the Progressive News Summarizer e�ectively captures
the evolving narrative around Apple Inc. (AAPL.US) across two di�erent
months in 2023. The summaries encompass a wide array of topics, from the
company’s ongoing financial performance to its strategic initiatives and market
challenges.

In October, the focus was on Apple’s significant role in the tech industry,
marked by the launch of the iPhone 15 series and updates to its Apple Watch
and AirPods. This period also highlighted challenges in smartphone sales, the
impact of geopolitical issues, and fluctuations in stock performance. Unique to
this month were reports on Apple’s interest in acquiring Formula 1 broadcast-
ing rights and the sale of company stock by CEO Tim Cook, underscoring the
company’s diverse strategic interests and executive decisions.

By November, while many earlier themes continued, new elements emerged.
The summary highlighted Apple’s sales slowdown, competitive pressures in
the smartphone market, and its strategic shift in partnerships, including the
termination of its credit card agreement with Goldman Sachs. Notably, the
company’s sustainability e�orts and the launch of the M3 chip were high-
lighted, alongside its expansion in streaming content.

This table showcases the Progressive News Summarizer’s ability to integrate the
latest corporate developments, market dynamics, and strategic maneuvers. It
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serves as a valuable tool for providing a comprehensive and up-to-date analysis
of investment opportunities and industry trends. An example of a summary
generated by this component is provided in Table 5.2.

Table 5.1: Apple Inc. Progressive News Summary (October vs November 2023)
Topic October November

Financial Performance Yes Yes
Guidance for Q4 2023 Yes Yes
iPhone 15 Launch Yes Yes
New Apple Watch and AirPods Yes No
Smartphone Sales Challenges Yes Yes
Geopolitical Issues Impact Yes Yes
Stock Performance Yes Yes
Partnership with DuckDuckGo Yes No
CEO Tim Cook’s Stock Sale Yes No
Interest in Formula 1 Broadcasting Yes No
Product Lineup including M3 Chip No Yes
Sales Slowdown and Competition No Yes
Appeal Win in UK No Yes
Partnership with Goldman Sachs No Yes
Regulatory Issues in Payment Apps No Yes

Table 5.2: Apple Inc. Progressive News Summary (November 2023)
Category News Summary

Market Position Dominant in the tech sector with record services revenue and robust
product lineup, including the iPhone 15 series and new Mac products.

Sales Performance Experiencing a slowdown, potentially dropping 5% in iPhone sales
due to challenges in China and Japan.

Stock Analysis Recent dip viewed as a buying opportunity by analysts, seasonal per-
formance aligns with product launch cycle.

Legal and Strategic Moves Won UK appeal on mobile browser and cloud gaming services, po-
tentially ending credit card partnership with Goldman Sachs.

Innovation and Sustainability Launched M3 silicon chip based on 3-nanometer technology, expand-
ing streaming content on Apple TV+.

Regulatory Challenges Faces oversight of digital wallets and payment apps, navigating
geopolitical and economic risks.

Investment Consideration Despite challenges, presents a promising opportunity with strategic
expansion, innovative products, and strong services division.

Doctoral Thesis



5.3. METHODOLOGY 155

5.3.2 Fundamentals Summarizer

Fundamental data is a cornerstone in predictive financial analytics, o�ering
quantifiable metrics that reveal a company’s current health and potential future
trajectory. As shown in Figure 5.4, we source this quarterly information using
EODHD’s Fundamental Data API. To ensure consistency and clarity when
comparing financial data, we preprocess the data before incorporating it into
the prompt. This preprocessing involves a numerical abbreviation technique
that converts large numbers into a more compact format, using prefixes like
"million," "billion," or "thousand." For instance, numbers in the billions are
formatted as ’X billion,’ where X is the original number divided by one billion,
rounded to two decimal places. This standardization is crucial for allowing
GPT-4 to accurately compare and interpret complex financial figures.

Additionally, financial data from di�erent quarters is arranged side by side in
a table format. The resulting prompt, inputted into the GPT-4 model, focuses
on aspects such as profitability, revenue trajectory, debt metrics, and cash flow
dynamics by comparing the most recent quarterly financial statements. By
emphasizing recent data, the LLM can detect shifts in financial performance,
potentially correlating these with ongoing news developments. Specifically,
MarketSenseAI models a company’s financial condition using the following
formula:

Fs = Summarize
 
Standardize

 
n[

i=1
FDs,qi

!!
(5.3)

Where FDs,qi
represents the financial data for a given stock s in quarter qi, with

i = 1, . . . ,n indicating that the data spans the last n quarters. The Standardize()
function is applied to this data, incorporating standardization techniques such
as numerical abbreviation to ensure uniformity across di�erent data sets.
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The prompt structure guides GPT-4 to take on the role of a financial analyst
focused on recent trends. The AI is tasked with evaluating the financial health
of a specified company’s stock by analyzing its latest quarters. The prompt
includes:

• Financial Tables: Key financial data from the Balance Sheet, Income
Statement, and Cash Flow Statement for the latest quarters.

• Analysis Focus: Emphasis on recent trends and developments in prof-
itability, revenue growth, debt levels, and cash flow generation.

• Instructions: Conduct a bullet-point analysis.

Although LLMs traditionally encounter challenges in interpreting complex nu-
merical data, our preprocessing approach, combined with GPT-4’s capabilities,
ensures accurate comparison and analysis. The fundamentals summarizer is
designed to present an unbiased, factual overview of a company’s financial sta-
tus, avoiding any direct investment recommendations. Table 5.3 illustrates how
the Fundamentals Summarizer distills key insights from financial statements,
including income, balance, and cash flow statements. Like the Progressive
News Summarizer, this component can be used independently to provide a
concise financial overview of the company under analysis.

5.3.3 Stock Price Dynamics Summarizer

The Stock Price Dynamics Summarizer is a critical component of Market-
SenseAI, designed to analyze and contextualize the price movements and fi-
nancial metrics of stocks. As illustrated in Figure 5.5, this component not only
evaluates the target stock but also compares its performance with the five most
similar stocks, selected based on company description and sector, along with
the broader market context represented by the S&P 500 index. The Stock Price
Dynamics Summary is mathematically represented by Equation 5.4.
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Figure 5.4: Stock’s Fundamentals Summary

PS,t = Summarize
 
MS,t ,

n[

j=1
MPj,t

!
(5.4)

In this equation, PS,t represents the Stock Price Dynamics Summary for stock
S at time t, MS,t denotes the performance metrics of stock S at the same time
point, and MPj,t refers to the performance metrics for each peer stock Pj at time
t. The structure of the prompt includes:

• Performance Metrics: This involves analyzing the stock’s performance
using metrics such as Cumulative Returns, Volatility, Sharpe Ratio, Maxi-
mum Drawdown, and a Correlation Matrix.

• Comparative Analysis: The stock’s performance is compared with that
of similar stocks and the S&P 500 index.

Georgios D. Fatouros



158 CHAPTER 5. AI ON DIVERSE DATA FOR HOLISTIC FINANCIAL ANALYSIS

Table 5.3: Apple Inc. Fundamentals Summary (2023-Q3)
Category Fundamentals Summary

Profitability Apple’s net income increased from $19.88 billion in Q2 2023 to $22.96 bil-
lion in Q3 2023, indicating strong profitability. The company’s gross profit
also rose from $36.41 billion to $40.43 billion over the same period.

Revenue Growth Total revenue grew from $81.80 billion in Q2 2023 to $89.50 billion in Q3
2023, reflecting positive revenue growth.

Debt Levels The company’s total liabilities increased from $274.76 billion in Q2 2023
to $290.44 billion in Q3 2023. While long-term debt slightly decreased from
$98.07 billion to $95.28 billion, short-term debt increased from $11.21 billion
to $15.81 billion. The net debt also saw a slight increase from $80.87 billion
to $81.12 billion, signaling a rising debt level that could pose concerns if not
managed properly.

Cash Flow Net cash from operating activities decreased from $26.38 billion in Q2 2023
to $21.60 billion in Q3 2023. However, the end period cash flow rose from
$29.90 billion to $30.74 billion, indicating positive cash flow generation.

Assets and Equity Total assets grew from $335.04 billion in Q2 2023 to $352.58 billion in Q3
2023. Similarly, total stockholder equity increased from $60.27 billion to
$62.15 billion, reflecting growth in the company’s assets and equity.

Conclusion Apple Inc. demonstrates strong profitability and revenue growth. However,
the increasing debt level requires careful monitoring. The company maintains
positive cash flow generation, and its assets and equity are expanding.

• Instructions: Summarize the findings in a concise and factual report.

The methodology for identifying similar stocks is described in Algorithm 3,
which employs the MPNet language model to generate embeddings and com-
pute similarity scores [Song et al., 2020]. Specifically, stock descriptions are
encoded into high-dimensional vectors by MPNet, capturing each company’s
unique characteristics and activities. This allows for the computation of pair-
wise similarity scores among companies listed in the S&P 500, ensuring that
the selected stocks for comparison are genuinely similar to the target stock.
This process is crucial for conducting a comprehensive comparative analysis
that integrates individual stock performance with broader market trends.

The summarizer retrieves market data for the target stock, its similar stocks,
and the S&P 500 index. It analyzes key financial indicators, including cumu-
lative returns and Sharpe ratios over 3, 6, and 12 months, and also evaluates
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Figure 5.5: Stock Price Dynamics Summary

Algorithm 3 Stock Universe Identification
1: procedure STOCKUNIVERSE(targetStock,descriptions,n)
2: Generate embeddings for each stock description using a pre-trained language model
3: Compute similarity scores between the target stock’s embedding and others
4: Rank the stocks based on their similarity scores to the target stock
5: Select the top n stocks with the highest similarity scores
6: return List of top n similar stocks based on embeddings
7: end procedure

volatility and maximum drawdown. These metrics are particularly important
as they provide insights into the risk-adjusted returns and resilience of the
stocks during market downturns [Korn et al., 2022]. This analysis o�ers a
comprehensive understanding of the stock’s performance relative to its peers
and the broader market.

An example of the summarizer’s output is shown in Table 5.4, highlighting its
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ability to distill complex data into accessible insights. This approach provides
a multi-dimensional view of the stock’s market dynamics and momentum in
relation to similar companies and overall market trends.

Table 5.4: Apple Inc. Stock Price Dynamics Summary (November 2023)
Metric Price Dynamics Summary

Cumulative Return Apple Inc demonstrated a 29.0% return, outperforming the S&P 500 in-
dex’s 13.7% but underperforming tech peers like Adobe Systems and
Amazon.com Inc.

Sharpe Ratio Apple’s Sharpe Ratio of 1.34 indicates a favorable risk-adjusted return
compared to the market index Sharpe Ratio of 0.99, suggesting better
compensation for the risk taken.

Volatility Apple’s volatility at 21.7% is lower than that of Alphabet Inc, Adobe, and
Amazon, indicating less erratic stock price movements.

Maximum Drawdown Apple experienced a maximum drawdown of -16.0%, which is less severe
than the drawdowns of Adobe, Amazon, and Best Buy Co. Inc.

Correlation Apple shows a high correlation with the S&P 500 (0.76) and moderate
correlation with other tech stocks like Microsoft Corporation and Ama-
zon.

Conclusion Apple has shown resilience and strong risk-adjusted performance relative
to the broader market and some tech peers, with lower volatility and a
relatively modest maximum drawdown.

5.3.4 Macroeconomic Environment Summary

Conducting an in-depth macroeconomic analysis is crucial for making informed
investment decisions and e�ective capital allocation. Such analysis provides
vital insights into the overall economic health and performance, which signifi-
cantly influence the profitability and value of individual companies as well as
the broader stock market. By considering major forces that shape the invest-
ment landscape, such as global events like the Covid-19 pandemic or the war
in Ukraine, investors can make more informed decisions.

To support this, MarketSenseAI includes a component called MarketDigest, il-
lustrated in Figure 5.6 and presented in the second use case of Chapter 2. This
component synthesizes investment reports and research articles on a biweekly
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basis, providing concise summaries of complex economic data and trends. Mar-
ketDigest sources its information from a variety of publicly accessible reports
from leading banks and investment institutions, including Goldman Sachs, Mor-
gan Stanley, UBS, and BlackRock. The mathematical representation for Market-
SenseAI’s Macroeconomic Environment Summary component, MarketDigest, is
formulated as follows:

Mt = Summarize
 

N[

j=1
Summarize

⇣
Report

j,t

⌘!
(5.5)

Here, Mt represents the MarketDigest output at time t, and Report
j,t denotes the

investment report or article j at time t. The variable N quantifies the number
of reports or articles analyzed at time t.

Figure 5.6: Macroeconomic Environment Summary (MarketDigest)

Initially, these reports and articles are transformed into text form. MarketDi-
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gest then leverages GPT-4 to clean and filter the individual reports, extract
their metadata, store them in a vector database and subsequently, using RAG
transform the individual reports into a comprehensive overview. This method
enables MarketDigest to integrate diverse perspectives and analyses into a cohe-
sive narrative, o�ering a consensus view on the macroeconomic climate, central
bank policies, preferred sectors or countries, and geopolitical trends. The out-
put is concise yet thorough, accounting for potential contradictions or di�ering
viewpoints among market analysts and experts. The prompt structure for
MarketDigest includes:

• Initial Summary Focus: Summarization of individual reports, empha-
sizing critical macroeconomic elements, including central bank policies,
geopolitical insights, and market outlooks.

• Synthesis and Sentiment Analysis: An in-depth analysis of all reports to
extract consensus and divergent views, with a focus on sentiment analysis
categorized by asset class or investment dimension.

• Instructions: Demand for a detailed and factual report, with emphasis on
prevailing market sentiments and analytical categorization by asset class.

Table 5.5 provides an example of a MarketDigest summary. Notably, KM Cube
Asset Management3 initiated MarketDigest in March 2023, serving as a critical
analytical tool, providing succinct market overviews to its clients. Distributed
biweekly, it enhances the understanding of market dynamics for both private
and institutional clients, thereby informing their investment decision-making
processes [Metaxas, 2023]. Furthermore, MarketDigest plays a central role in
the company’s monthly investment committee meetings, substantially contribut-
ing to the deliberation and formulation of strategies for investment portfolios
and the management of discretionary products.

3https://www.km3am.com/
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Table 5.5: Macroeconomic Environment Summary (November 2023)
Category Macro Summary

Inflation US core PCE inflation eased to 3.5% in October, indicating a disinfla-
tion trend.

Interest Rates Market-implied pricing suggests potential rate cuts in March 2024 for
both the US and Europe.

Japan’s Monetary Policy Bank of Japan expected to weaken or abandon yield curve control due
to domestic inflation.

ECB Policy European Central Bank has begun balance sheet unwind.
Bond Market Outlook Positive outlook on short- to medium-term developed market sovereign

bonds.
Equity Market Stance Neutral stance on developed market equities, with US stocks as the

largest allocation.
Global Growth Global economy expected to experience below-trend growth in 2024.
Investment Strategy Portfolios should maintain neutral exposure to risk and equities, over-

weight allocation to quality fixed income.
US Dollar US dollar’s position as the leading global reserve currency shows signs

of vulnerability.
Employment Risks Risks to employment are on the downside, with leading indicators of

employment deteriorating significantly.
Market Rally Global financial markets experiencing significant rally, boosted by

cooling inflation and falling Treasury yields.
Contradictions Positive outlook on bonds but neutral on equities; US dollar vulnerabil-

ity but remains a key currency.
Positive Sentiment Short- to medium-term bonds, inflation-linked bonds, private market

income, quality fixed income, US stocks.
Negative Sentiment Credit, US Treasury, private markets, small-cap equities, Chinese equi-

ties.
Neutral Sentiment Developed market equities, investment-grade credit, real estate, private

equity funds, emerging markets outside China.

5.3.5 Signal Generation

The signal generation component, representing the final stage in the Market-
SenseAI pipeline (Figure 5.1), synthesizes the textual outputs from the news,
fundamentals, price dynamics, and macroeconomic analysis components to
produce an investment recommendation for a specific stock, accompanied by a
detailed rationale.

The underlying premise is that an investment decision for a stock should be
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informed by key developments related to the company, reflected in the news,
the company’s financial health, the stock’s performance relative to competitors
and the market, and the broader macroeconomic environment. This decision-
making model can be mathematically represented as:

Is = f (Ns,Fs,Ps,M) (5.6)

Here, Ns,Fs,Ps, and M denote stock-specific (s) textual representations of current
news, fundamentals, price dynamics, and macroeconomic conditions, respec-
tively, derived from the components discussed in Sections 5.3.1-5.3.4.

We argue that the state-of-the-art LLM, GPT-4, is well-equipped to evaluate and
reason across these diverse data categories, as evidenced by its demonstrated
proficiency in complex financial reasoning tasks [Callanan et al., 2023]. Within
this framework, GPT-4 is prompted to assume the role of an expert financial
analyst. This approach utilizes the Chain of Thought methodology [Wei et al.,
2022], guiding the model through a logical, multi-step reasoning process that
mirrors the analytical approach of a seasoned financial expert. By employing
this technique, MarketSenseAI can e�ectively analyze and synthesize the news,
company fundamentals, stock performance data, and macroeconomic factors
that influence the stock, thereby providing structured and reasoned insights
into stock selection. This method is particularly advantageous in complex do-
mains like finance, where navigating multifaceted data and reasoning like an
expert is crucial. Additionally, in-context learning is applied to dynamically
adjust the analysis based on current financial conditions and evolving market
data [Dong et al., 2022]. This dual strategy enables MarketSenseAI to deliver
deep insights that adapt to changing market conditions and investor prefer-
ences, marking a significant advancement in AI-driven financial analysis. The
prompt structure includes:
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• News Analysis: The model first evaluates the latest news summaries
related to the target company, assessing their potential impact on the
stock’s performance.

• Price Dynamics Analysis: Next, it compares the stock’s price dynamics
with those of related stocks and the broader market, o�ering a relative
performance perspective.

• Macroeconomic Environment Analysis: The model then examines the
broader macroeconomic environment and its implications for the target
company, considering global economic trends and events.

• Fundamentals Analysis: The final step involves a review of the com-
pany’s fundamental financial data, analyzing its current financial health
and future prospects.

The output from the model is presented in a concise format, including a deci-
sion ("buy", "sell", or "hold") along with a clear, step-by-step explanation of the
reasoning behind this choice. In this context, "buy" and "sell" refer to portfolio
positioning (long and short positions, respectively), while "hold" indicates that
the stock should not be included in the portfolio composition.

Table 5.6 illustrates MarketSenseAI’s functionality by providing an explainable
investment recommendation for Apple Inc. at the end of November 2023, sug-
gesting a "hold" position in the rebalanced portfolio for the following month.
The table reveals mixed signals, balancing positive developments such as strong
financials and successful product launches against challenges like sales slow-
downs, competitive pressures, and regulatory scrutiny. The overall decision to
"hold" reflects a cautious approach, considering the various contrasting factors
at play.

The analysis of text similarity within MarketSenseAI, as depicted in Figure 5.7
and detailed in Table 5.7, illustrates how the model’s reasoning aligns with
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Table 5.6: Apple Inc. Generated Signal and Explanation (November 2023)
Decision Explanation

HOLD The analysis [...] presents a mixed picture. Starting with the news analysis, while Ap-
ple remains a dominant player in the tech sector with solid financials and a successful
product launch in South Korea, it faces challenges such as a sales slowdown, compet-
itive pressures, and regulatory scrutiny. The Chinese government ban and sluggish
sales in China and Japan are concerning, but analysts see the recent stock dip as a
buying opportunity, suggesting underlying strength. The company’s strategic moves,
such as potentially ending its credit card partnership with Goldman Sachs, indicate a
focus on its services business, which is a positive sign. However, the legal challenges
and geopolitical risks cannot be ignored. In terms of price dynamics, Apple has
outperformed the S&P 500 [...] strong risk-adjusted performance. However, the max-
imum drawdown and the high correlation with the market suggest that Apple is not
immune to market downturns. The macro environment analysis reveals a disinflation
trend in the US and potential rate cuts in 2024, which could be favorable for equities.
However, the global economy is expected to grow below trend, and there is a neutral
stance on developed market equities, suggesting caution. The positive outlook on
quality fixed income and US stocks is encouraging, but the vulnerability of the US
dollar and downside risks to employment add uncertainty. Fundamentals analysis
shows strong profitability and revenue growth for Apple, with increased net income
and gross profit. The company’s debt levels have risen, which warrants monitoring,
but the positive cash flow generation and growth in assets and equity are reassuring.
Considering the mixed signals [...] a "hold" decision is prudent[...]

Green/Red text highlights positive/negative developments for the company or stock.

the dynamics of the input data, which is crucial for generating monthly invest-
ment signals. The high similarity scores in the "News" and "Price Dynamics"
summaries (mean scores of 0.923 and 0.907, respectively) reflect the model’s
emphasis on these rapidly changing factors, recognizing their immediate impact
on stock prices. This emphasis is particularly relevant for short-term, monthly
predictions, where current developments and price trends can significantly in-
fluence market behavior.

Conversely, outputs from the "Fundamentals" and "Macro" components, with
mean similarity scores of 0.849 and 0.803, respectively, exhibit a lesser di-
rect influence on the model’s monthly decisions. The fundamentals, updated
quarterly, provide a stable but less frequently changing view of a company’s fi-
nancial health, while macroeconomic data, being broader and more generalized,
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have a more moderate impact on short-term investment decisions.

Figure 5.7: MarketSenseAI Components’ Text Similarity with Signal

Table 5.7: Statistics of Text Similarity between Signals and Components
Component mean std min max

News 0.92 0.02 0.87 0.97
Price Dynamics 0.91 0.01 0.85 0.94
Fundamentals 0.85 0.03 0.77 0.93
Macro 0.80 0.02 0.75 0.87

This analysis highlights MarketSenseAI’s capability to process and integrate
various data types, tailoring its decision-making process to the nature of the
input data. This approach is essential for delivering accurate and timely in-
vestment recommendations that align with the investor’s time horizon.
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5.3.6 Experimental Setup

This section outlines the data sources and methodologies employed in Mar-
ketSenseAI’s analysis, along with the experimental setup used to evaluate and
interpret the generated investment signals and explanations.

5.3.6.1 Data

The evaluation of MarketSenseAI’s performance utilizes stocks from the S&P
100 index, which includes the 100 largest and most established companies
in U.S. equity markets. These stocks, due to their prominence and the sub-
stantial amount of analysis they receive, create a challenging environment for
achieving superior stock-selection performance, particularly when accounting
for transaction costs [Fontinelle, 2022].

The assessment period extends from December 1, 2022, to March 31, 2024.
During this period, MarketSenseAI drew on various datasets for its in-context
learning processes:

1. News: A total of 163,483 articles published between December 1, 2022,
and February 29, 2024, averaging 4.57 articles per day per stock, with a
standard deviation of 5.49. The average number of tokens per article was
867, with a standard deviation of 1196. This dataset resulted in 35,229
daily, company-specific news summaries and 1,500 monthly progressive
summaries.

2. Fundamentals: Financial data were sourced from 612 quarterly reports
of S&P 100 stocks, starting from the second quarter of 2022. This data
set produced 608 unique fundamentals summaries, averaging about 6 per
stock.

3. Descriptions: Concise descriptions of each stock and its sector were used
by Algorithm 3 to identify similar stocks.
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4. Prices: Historical daily stock prices (adjusted close) from January 1, 2022,
to February 29, 2024, were analyzed to compute stock price dynamics.
This data was utilized by the Stock Price Dynamics component to produce
one summary per month for each stock, totaling 1,500 summaries.

5. Macro: 187 investment reports (each 20-30 pages long) from major finan-
cial institutions, published between April 2023 and February 2023, were
analyzed by MarketDigest. For predictions made between January and
March 2023, macroeconomic summaries were unavailable for the signal
generation component, resulting in 11 macroeconomic summaries being
used for signal generation.

To evaluate the system, the "Signal Generation" component was provided with
the latest available summaries (news, fundamentals, price dynamics, macro) at
the end of each month. While macroeconomic summaries were identical across
all stocks, fundamental summaries were updated only when a new quarterly
report for a stock became available. News and price summaries, being more
dynamic, provided updated stock-specific insights each month. The investment
signals generated by MarketSenseAI were then assessed based on the actual
stock performance in the month following the signal. In total, 1,500 signals
were generated (15 months x 100 stocks), with a distribution of 338 “buy”,
1,150 “hold”, and 12 “sell” signals.

5.3.6.2 Data Sources, Preprocessing, and Parameter Selection

The empirical testing employed data from S&P 100 stocks, encompassing mar-
ket trends, news articles, quarterly financial statements, and one year of his-
torical daily stock prices sourced from EODHD APIs, alongside publicly avail-
able macroeconomic data from investment reports by institutions like Goldman
Sachs, Morgan Stanley, UBS, and BlackRock, as well as statements from the
Federal Reserve.
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News data underwent filtering to exclude irrelevant articles and was summa-
rized daily using GPT-4, followed by aggregation into monthly summaries.
Financial data was standardized using numerical abbreviations and organized
quarterly to facilitate comparative analysis. Stock price data was adjusted for
splits and dividends, with key metrics such as cumulative returns, volatility,
Sharpe ratio, and maximum drawdown calculated. Macroeconomic data was
converted into text and summarized using GPT-4.

Feature engineering was incorporated into the prompts used for GPT-4, ensur-
ing the extraction of significant events and analyst opinions from news data,
profitability and debt metrics from financial data, performance metrics from
stock price data, and consensus and market sentiment from macroeconomic
data.

Key parameters were determined through empirical testing and domain exper-
tise. The number of similar stocks in the Price Dynamics Component was set
to five peers, balancing granularity and relevance. The number of quarters
in the Fundamentals Summarizer was set to five to ensure a comprehensive
financial health analysis. Signal update frequency was set to one month, bal-
ancing responsiveness and stability. These steps ensure robust data inputs for
MarketSenseAI, enabling the generation of accurate and actionable investment
signals.

5.3.6.3 Evaluation

The evaluation of MarketSenseAI’s generated signals was designed to rigor-
ously assess the model’s performance through multiple, robust methodologies.
We focused on comparing MarketSenseAI’s signals against bootstrapped signals
to evaluate their statistical significance and against actual stock price movements
under various investment strategies to measure practical performance. Addi-
tionally, we utilized GPT-4 to rank "buy" signals based on their explanations,
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providing an indirect assessment of the quality and context of the generated
signals. This multi-faceted evaluation approach ensures a comprehensive un-
derstanding of MarketSenseAI’s e�ectiveness and its potential advantages over
traditional and naive investment strategies.

5.3.6.3.1 Bootstrapping: Bootstrapping is a statistical method that involves re-
sampling data with replacement to estimate the variability of specific statis-
tics, including standard errors, confidence intervals, and various accuracy met-
rics [Efron and Tibshirani, 1986]. This method is particularly useful when
dealing with complex or unknown data distributions.

In this study, bootstrapping was employed to evaluate MarketSenseAI’s per-
formance and its statistical significance against randomized investment sig-
nals. For this purpose, a matrix of signals for MarketSenseAI ([nmonths ⇥nstocks])
was used, from which samples were drawn randomly, representing "sell" (-1),
"hold" (0), and "buy" (1) positions. It is crucial to note that the distribution of
these randomly generated signals might not mirror the distribution within the
MarketSenseAI dataset.

This approach ensures that the findings are not due to random chance and
provides a robust assessment of the model’s performance. After an iterative
examination, we settled on creating 10,000 random portfolios for bootstrapping,
observing that additional samples did not significantly alter the evaluation
outcomes.

In this context, multiple randomized signals were generated for the stocks
under consideration over the designated time frame. MarketSenseAI’s perfor-
mance was then compared against these randomized signals using two primary
metrics. Firstly, the portfolio’s cumulative returns were calculated by adhering
to "buy", "sell", or both signals, applying equal weight to each and implement-
ing monthly rebalancing (as depicted in Figure 5.8 and defined in Equation
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5.7). Secondly, the e�ectiveness of the signals was evaluated using a hit ratio,
with the following month’s actual returns serving as the reference benchmark
(as detailed in Equation 5.8).

Figure 5.8: Bootstrapping-based Evaluation

The portfolio performance (cumulative return) is given by:

Performance=
n

’
i=1

 
1+

ÂN

j=1 PL(i, j)

signals per month at i

!
(5.7)

The hit ratio is calculated as:

HRL =
Â(i, j)2VL

I(PL(i, j)> 0)
length(VL)

(5.8)
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where,

PL(i, j) : Performance of asset j at time i, defined as PL(i, j) = m(i, j)⇥ r(i, j).

L : Indicator representing the evaluated signals, Llong for long, Lshort

for short, and Lboth for both signals.

m(i, j) : Model predictions (signals) for asset j at time i.

r(i, j) : Actual returns for asset j at time i.

VL : Set of returns based on model predictions and L.

I(x) : Indicator function, returning 1 if x is true and 0 otherwise.

This methodology evaluates the real impact of MarketSenseAI by determin-
ing whether its recommendations o�er tangible benefits compared to random
trading signals.

5.3.6.3.2 Market Performance: This part of the assessment focuses on provid-
ing a practical evaluation of MarketSenseAI by comparing the performance of
portfolios constructed based on its signals with actual market prices. Various
investment strategies were employed to demonstrate the robustness and versa-
tility of MarketSenseAI’s recommendations. The design of the MarketSenseAI-
based portfolios, the baseline portfolios, and the evaluation metrics are outlined
in Table 5.8 and Table 5.9, respectively. The MarketSenseAI portfolios were
created by following the service’s signals, which were generated on the last day
of each month after market closure, and held for one month.

By evaluating MarketSenseAI’s signals against actual market prices, we aim
to showcase the real-world applicability and e�ectiveness of the generated rec-
ommendations. Utilizing di�erent investment strategies highlights how Mar-
ketSenseAI can be adapted to various investment approaches and objectives,
emphasizing its flexibility. The inclusion of traditional market indices and
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naive strategies as benchmarks provides a clear context for evaluating the per-
formance improvements o�ered by MarketSenseAI. The use of comprehensive
evaluation metrics, such as Sharpe Ratio and Maximum Drawdown, ensures
that the assessment considers both returns and risk, o�ering a balanced view
of performance.

Table 5.8: Evaluated Investments Strategies on S&P 100 Stocks
Abbreviation Description

MS Equally weighted portfolio rebalanced monthly based on both "buy" and
"sell" signals of MarketSenseAI.

MS-L Equally weighted portfolio rebalanced monthly based on the "buy" signals
of MarketSenseAI.

MS-L-Cap Capitalization-weighted portfolio rebalanced monthly based on the "buy"
signals of MarketSenseAI.

MS-Top10-SR Equally weighted portfolio rebalanced monthly based on the 10 stocks with
the best Sharpe Ratio among those with a "buy" signal.

S&P100-Eq Equally weighted portfolio of all the stocks of the S&P 100 index.
S&P100 Capitalization-weighted S&P 100 index (OEF ETF).
Naive Equally weighted portfolio rebalanced monthly for all S&P 100 stocks with

prices above their corresponding 200-day moving average, fully allocated.
Naive-Top10 Equally weighted portfolio rebalanced monthly based on the 10 stocks with

the best Sharpe Ratio and prices above their corresponding 200-day moving
average, fully allocated.

MS-TopN-GPT Equally weighted portfolio rebalanced monthly based on the N stocks with
the best score produced by GPT-4 after processing all the stocks with a
"buy" signal.

MS-High-GPT Equally weighted portfolio rebalanced monthly based on stocks with a
score greater than 7/10 produced by GPT-4 after processing all the stocks
with a "buy" signal.

MS-Low-GPT Equally weighted portfolio rebalanced monthly based on stocks with a
score lower than or equal to 7/10 produced by GPT-4 after processing all
the stocks with a "buy" signal.

MS-TopN-Cap-GPT Capitalization-weighted portfolio rebalanced monthly based on the N

stocks with the best score produced by GPT-4 after processing all the stocks
with a "buy" signal.

5.3.6.3.3 Ex-post Evaluation with Ranking: To further assess the quality and
relevance of the explanations provided for the "buy" signals, an additional
layer of analysis was incorporated using a ranking mechanism, as illustrated in
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Table 5.9: Portfolio Evaluation Metrics
Metric Description

Total Return The portfolio’s cumulative returns (%) over a specific period (Equa-
tion 5.7)

Sharpe Ratio A measure of risk-adjusted return, calculated as the average return
earned in excess of the risk-free rate per unit of volatility.

Sortino Ratio Similar to the Sharpe Ratio, but focuses on downside risk by mea-
suring returns relative to negative asset volatility.

Volatility A statistical measure of the dispersion of returns for a given secu-
rity or market index, typically measured using standard deviation.

Win Rate The percentage of trades that are profitable out of the total number
executed.

Maximum Drawdown (Ddn) The maximum observed percentage loss from a peak to a trough of
a portfolio, before a new peak is reached.

Figure 5.9. In this process, GPT-4 was presented with all the explanations that
resulted in "buy" signals for each stock during a particular month. This set
comprised all explanations E(Si) associated with a "buy" recommendation for
each stock Si|S1=buy. The prompt instructed GPT-4 to rank these explanations
on a scale from 0 to 10, where 10 represented a strong buy.

The rationale behind this approach is that if MarketSenseAI’s outputs are truly
insightful, detailed, and actionable, GPT-4 should be capable of ranking them
e�ectively [Shu et al., 2023, Liu et al., 2023]. Stocks with higher rankings
are expected to perform better in the portfolios. This method also introduces
an alternative mechanism for ranking, filtering, and weighting in portfolio
management. This evaluation approach was applied in the last four investment
strategies listed in Table 5.8.

5.3.6.4 Setup

MarketSenseAI was implemented using Python 3.11, with the LangChain frame-
work [Chase, 2022] employed for constructing prompts and utilizing OpenAI’s
API to access the GPT-4 model. Each component of MarketSenseAI, described
in Section 3.3.2.3, operates independently as a standalone script. The out-
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Figure 5.9: Signal Ranking by GPT-4

puts generated by these components are systematically stored in a datastore,
ensuring organized and e�cient data management. By leveraging OpenAI’s
API for GPT-4, MarketSenseAI benefits from the consistent processing times
provided by OpenAI’s infrastructure, while OpenAI handles the underlying
computational and hardware management.

For the backtesting of portfolios during the evaluation process, the VectorBT
PRO library4 was selected. This library is renowned for its versatility and
e�ciency in financial analysis and backtesting investment strategies, making it
an ideal choice for rigorously assessing the performance of portfolios generated
by MarketSenseAI.

4https://vectorbt.pro/
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To determine the most similar stocks for the Stock Price Dynamics Summa-
rizer, the mpnet-base-v2 model from Hugging Face’s Transformers framework
was utilized, alongside the cosine_similarity function from the Scikit-Learn
Python library. Data preprocessing was conducted using Pandas and NumPy
libraries, ensuring that the price data was clean and properly prepared for
analysis.

The experiments were conducted on a desktop computer equipped with an
AMD Ryzen 5 5600x 6-Core CPU, 32GiB of RAM, and an NVIDIA GeForce
RTX 3070 GPU. For data storage, a dedicated cloud-based S3 bucket hosted
on Amazon Web Services (AWS) was employed.

5.4 Experimental Results

This section presents the empirical findings obtained from the multifaceted
evaluations outlined in Section 3.3.2.4.

5.4.1 Bootstrapping Evaluation Results

Table 5.10 displays the outcomes of the bootstrapping evaluation, which is
instrumental in contrasting the e�cacy of MarketSenseAI with various boot-
strapped portfolios. This evaluation also includes an assessment of Market-
SenseAI’s performance with detrended returns, providing a refined analysis of
its signal generation capability. The detrending of returns is mathematically
expressed as:

r
0(i, j) = r(i, j)� r(i, ·) (5.9)

In this formula, r
0(i, j) represents the detrended return for asset j at time i,

r(i, j) is the actual return, and r(i, ·) is the average return at time i across all
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assets. This detrending process is crucial as it helps to isolate the performance
of individual stocks from the broader market trends, thereby o�ering a clearer
perspective on MarketSenseAI’s signal precision.

The table evaluates both cumulative returns (R) and hit ratios (HR), along with
their respective quantiles (QR and QHR), delivering an extensive view of the
system’s e�ectiveness in comparison to randomized strategies.

Table 5.10: MarketSenseAI vs Bootstrapped Portfolios
Signals R QR HR QHR

Detrend-Buy 7.67 97.85 51.86 99.50
Buy 35.48 98.70 60.34 99.35
Detrend-Sell 22.62 100 72.73 100
Sell 0.10 100 63.64 100
Detrend-Both 8.41 99.55 52.61 94.20
Both 33.87 100 60.46 100

The results from the bootstrapping evaluation reveal that MarketSenseAI’s sig-
nals significantly outperform random chance, as evidenced by the high quan-
tiles achieved in both cumulative returns (R) and hit ratios (HR) across diverse
signal categories. This superior performance holds true even when assessing
detrended returns, indicating MarketSenseAI’s proficiency in identifying prof-
itable investment opportunities independent of broader market trends.

A particularly noteworthy observation is the high hit ratio quantile for the
"Buy" signals following detrending. Given the upward market trend during
the evaluation period, this suggests that MarketSenseAI’s recommendations
have a higher probability of success compared to randomly generated signals.
This finding underscores the model’s ability to e�ectively pinpoint potential
market-outperforming opportunities.

In summary, the bootstrapping evaluation robustly demonstrates MarketSenseAI’s
capacity to produce trading signals that significantly exceed what would be ex-
pected by mere chance.
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5.4.2 Market Performance Evaluation Results

It is crucial to highlight that the period during which the experiments were
conducted was marked by varied performances among di�erent stocks. While
technology giants and companies centered around AI enjoyed a strong year,
others delivered more modest returns [Thompson, 2023]. To address this
disparity, our analysis places a special focus on equal-weighted indices, which
helps to balance these di�erences and more accurately reflect MarketSenseAI’s
potential. Additionally, all results presented here incorporate transaction costs,
ensuring a realistic assessment of the practical applicability and e�ectiveness of
strategies derived from MarketSenseAI.

5.4.2.1 Vanilla Strategies

The evaluation of MarketSenseAI’s vanilla strategies, as detailed in Table 5.11
and illustrated in Figure 5.10, demonstrates the e�ectiveness of LLM-driven
investment strategies. The strategy that follows the full set of MarketSenseAI’s
signals (MS), equally weighted, achieves a total return of 35.48% (32.94% after
accounting for transaction costs), with a Sharpe ratio of 2.49 and a Sortino ratio
of 3.87. The long-only strategy (MS-L), which considers only the "buy" signals
generated by MarketSenseAI, produces similar results, reflecting the relatively
low number of "sell" signals issued.

Table 5.11: MarketSenseAI Performance of Vanilla Strategies
Strategy Total Return1 Sharpe Sortino Vol Win Rate Max Ddn

MS 35.48 (32.94) 2.49 3.87 15.76 65.68 8.47
MS-L 35.79 (34.82) 2.41 3.75 16.44 65.02 9.00
S&P100-Eq 25.22 (25.12) 1.98 3.02 14.72 76.36 10.66
Naive 17.89 (17.45) 1.47 2.14 14.71 65.09 11.00
MS-L-Cap 66.22 (65.25) 2.90 4.95 22.81 65.88 9.64
S&P100 43.27 (43.20) 2.86 4.61 16.17 N/A 9.24

These results significantly outperform the equally-weighted S&P 100 (S&P100-
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Eq) both in total and risk-adjusted returns, with an "alpha" of approximately
10% and 28% higher Sortino ratio. The naive trend-following strategy (Naive),
often used by market participants, yielded significantly lower results.

Figure 5.10: Performance of Equally-Weighted Portfolios

In terms of capitalization-weighted performance, the MS-L-Cap emerges as a
top performer in terms of Sharpe and Sortino ratios, as well as total return,
reaching an 60% total return. This is a significant outperformance of 43% to
the S&P100 ETF as depicted in Figure 5.11.

5.4.2.2 Rank-based Strategies

Continuing the analysis of MarketSenseAI’s e�ectiveness, Table 5.12 and Fig-
ure 5.12 present an in-depth examination of rank-based strategies derived
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Figure 5.11: Performance of Capitalization-Weighted Portfolios

from MarketSenseAI’s signals. This section explores the practical applications
of these signals, particularly focusing on portfolios with a more manageable
number of assets (approximately 10), and emphasizes how di�erent strategic
implementations can influence investment outcomes.

Table 5.12: MarketSenseAI Performance of Rank-Based Strategies
Strategy Total Return Sharpe Sortino Vol Win Rate Max Ddn

MS-Top10-SR 23.13 (22.12) 1.45 2.11 19.27 67.8 12.66
MS-Top5-GPT 50.96 (49.67) 2.26 3.69 24.01 68.42 11.39
MS-Top10-GPT 49.09 (48.07) 2.68 4.29 19.37 74.1 7.66
MS-High-GPT 39.47 (38.35) 2.28 3.44 19.08 71.9 9.73
MS-Low-GPT 25.66 (24.27) 1.76 2.64 17.04 55.1 12.22
Naive-Top10 29.01 (28.18) 1.67 2.48 20.29 69.3 9.79
MS-Top10-Cap-GPT 72.87 (71.64) 2.80 4.89 25.61 71.2 10.77
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The MS-Top10-SR strategy, which selects "buy" stocks with the highest Sharpe
ratios, achieved a total return of 23.13% (22.12% after accounting for transac-
tion costs). However, strategies that employ GPT-4 to rank stocks demonstrate
significantly better performance, both in terms of total returns and risk-adjusted
metrics. This underscores the advanced analytical abilities of the LLM in iden-
tifying high-potential investments, as well as the value of the insights generated
by MarketSenseAI.

Figure 5.12: Performance of Ranked Portfolios

The MS-Top5-GPT and MS-Top10-GPT strategies, which focus on the top 5
and top 10 stocks as ranked by GPT-4, delivered exceptional total returns
of 50.96% (49.67% after costs) and 49.09% (48.07% after costs), respectively.
These strategies not only outperformed the MS-Top10-SR and the Naive-Top10
benchmarks but also exhibited impressive Sharpe and Sortino ratios, highlight-
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ing their strong performance relative to the risk involved.

Notably, the MS-Top10-GPT strategy achieved the highest win rate at 74.1%
and the lowest maximum drawdown at 7.66%, further demonstrating the ro-
bustness of GPT-4’s ranking mechanism in managing market volatility and
capturing growth opportunities.

The comparison between the MS-High-GPT and MS-Low-GPT strategies, which
yielded returns of 39.47% (38.35% after costs) and 25.66% (24.27% after
costs) respectively, reveals the significant advantage of selecting stocks based
on the detailed explanations provided by MarketSenseAI. This di�erentiation
highlights the value of the insights that support each stock’s recommendation,
introducing a novel GPT-based ranking method for stocks that are classified
with the same signal.

Moreover, the MS-Top10-Cap-GPT strategy, which applies a capitalization-weighted
approach to the top GPT-4 ranked stocks, stands out with a total return of
72.87% (71.64% after costs), marking the highest return among all the strate-
gies evaluated.

5.4.2.3 GPT Ranking

Expanding on the insights derived from GPT-4’s rankings of MarketSenseAI
signals, Figure 5.13 visually represents the quality of explanations associated
with MarketSenseAI’s "buy" signals over the evaluation period. The figure
combines a bar plot that shows the frequency of "buy" signals for stocks with
at least five such signals, with a scatter plot that displays the evaluative scores
assigned by GPT-4. These scores reflect the strength, depth, and relevance
of the explanations accompanying each "buy" recommendation. In this scatter
plot, points are positioned according to the average score assigned to each stock,
o�ering an intuitive view of how GPT-4 assessed the quality and persuasiveness
of the explanations provided for each stock.
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Figure 5.13: Signals Ranking by GPT-4

A notable observation from Figure 5.13 is the significantly higher scores given
to technology and AI-related stocks, such as Nvidia, Microsoft, and Amazon.
This trend reflects the heightened market enthusiasm for these sectors during
the evaluation period. The tendency for these stocks to receive higher scores
not only validates the relevance of MarketSenseAI’s "buy" signals but also high-
lights the model’s ability to capture and convey prevailing market sentiment
and potential in its explanations.

5.5 Discussion

The notable performance of MarketSenseAI can largely be attributed to the
advanced capabilities inherent in LLMs like GPT-4. These models are trained
on an extensive and diverse corpus that includes research articles, financial
documents, and historical records of significant financial events. This compre-
hensive training allows GPT-4 to recognize and di�erentiate between e�ective
and ine�ective investment strategies that have been employed on Wall Street.

Doctoral Thesis



5.5. DISCUSSION 185

For instance, the model can understand various investment methodologies such
as factor investing, momentum investing, and growth investing, as well as how
macroeconomic factors, like interest rate policies, influence asset prices over
time.

MarketSenseAI leverages this deep, contextual understanding by providing
GPT-4 with inputs similar to those used by professional investment teams,
including news articles, financial statements, stock price data, and macroeco-
nomic reports. This approach enables the AI to perform a detailed analysis
of each stock, generating investment decisions that are consistently updated
with the latest information. The system’s ability to analyze each stock individ-
ually and adjust based on real-time updates ensures that its decisions are both
rational and well-informed.

One of the key strengths of MarketSenseAI is its elimination of human bi-
ases and emotions from the investment process. Human decision-making is
often influenced by psychological factors, such as overconfidence or fear, which
can lead to suboptimal investment choices. By contrast, MarketSenseAI re-
lies purely on data-driven insights, resulting in objective and potentially more
reliable stock selection.

The empirical results presented in this chapter demonstrate that MarketSenseAI
can generate accurate and actionable investment signals. These results un-
derline the potential of GPT-4 not only to replicate but also to enhance the
decision-making processes traditionally carried out by professional investment
teams. This capability suggests a significant leap forward in the application
of AI to financial markets, o�ering both retail and institutional investors a
powerful tool to navigate the complexities of stock selection and portfolio man-
agement.

However, it is important to recognize the limitations of this work. The as-
sumptions made regarding the factors influencing investment decisions and
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the e�ectiveness of GPT-4 across di�erent market conditions may not hold
universally. The relatively short duration of the evaluation period also limits
the generalizability of the findings, pointing to the need for further research
over longer periods and in diverse market environments. Additionally, while
GPT-4 was chosen for its advanced capabilities, future research should explore
the potential benefits and limitations of other LLMs, as well as the e�ects of
fine-tuning these models on the performance of MarketSenseAI.

Overall, the presented findings highlight the considerable promise of LLMs in
financial analysis. MarketSenseAI represents a significant advancement in AI-
driven financial decision-making, contributing to the ongoing development of
tools that could enhance the stability and e�ciency of the financial system.
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Chapter 6

Conclusions and Future Work

Chapter Structure

This Chapter is constructed as follows:

• Section 6.1 - Conclusions, presents the concluding remarks of this thesis.
This Section summarizes the key findings of the research and highlights
its significance.

• Section 6.2 - Future Work, outlines potential directions for future re-
search that could build upon the findings of the current thesis.

6.1 Conclusions

This doctoral dissertation has explored the design, optimization, and devel-
opment of AI systems, with a particular focus on the challenges posed by
multidimensional, high-dimensional, and complex datasets. The research con-
ducted addresses significant gaps in the fields of cloud computing and finance,
providing novel methodologies and frameworks that advance the state of the
art in these domains.

One of the primary contributions of this research is the development of a
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data-centric Knowledge-Based Reasoning Framework, which e�ectively han-
dles and extracts insights from heterogeneous, complex, and multi-frequency
datasets. This framework, evaluated in both cloud computing and financial
contexts, demonstrated its ability to enhance resource allocation and optimize
decision-making processes. This directly addresses RQ1, which sought to de-
velop methods for managing diverse data sources, particularly in the complex
domains of finance and cloud computing.

The research also introduced advanced techniques for real-time adaptability
and performance in AI systems focusing on time series data. By integrating
online learning and adaptive algorithms, the proposed methods allow AI ap-
plications to maintain high performance and swiftly adapt to new information,
which is critical in dynamic environments. This work answers RQ2, focusing
on enhancing the real-time adaptability and robustness of AI systems in rapidly
changing conditions.

Another significant contribution lies in the optimization and comparative eval-
uation of LLMs against traditional transfer learning methods for text classifica-
tion tasks, such as sentiment analysis. The findings indicate that LLMs, with
appropriate prompt engineering, can outperform traditional methods, especially
in handling complex and context-rich text data. This research addresses RQ3,
investigating the conditions under which LLMs o�er superior performance
compared to conventional approaches.

Finally, the dissertation explored methods for enhancing the utility of LLMs by
incorporating domain-specific knowledge to improve their relevance for special-
ized applications. This involved integrating proprietary data and developing
strategies to mitigate the inherent limitations of LLMs, such as hallucinations
and challenges in processing structured data. This contribution addresses RQ4,
focusing on methods to enhance the applicability and reliability of LLMs in
specialized domains, particularly in finance.
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Overall, this research makes substantial contributions to the advancement of
data-centric AI methodologies, providing innovative solutions to key challenges
in handling complex datasets, enhancing real-time adaptability, optimizing lan-
guage models, and extending their applicability to specific domains. These
contributions collectively pave the way for more robust, scalable, and impactful
AI applications across a variety of industries.

6.2 Future Work

As a direction for future work, there is considerable potential in further inte-
grating ontologies and graph databases with LLMs and RAG approaches. In
particular, LLMs could be utilized to automate complex data modeling tasks,
streamlining the creation and maintenance of intricate ontologies. By lever-
aging LLMs to enhance retrieval capabilities using SPARQL or other relevant
query languages, it would be possible to bridge the gap between structured
knowledge systems and unstructured data processing. This integration could
result in more dynamic and adaptable systems, capable of sophisticated reason-
ing and retrieval, thereby significantly improving the overall performance and
applicability of the Reasoning Framework across various domains.

Moreover, while GPT-4 was selected for its advanced capabilities, future re-
search should investigate the potential benefits and limitations of other LLMs.
Exploring di�erent models and the e�ects of fine-tuning these models could
o�er valuable insights into optimizing the performance of systems like Market-
SenseAI. This could include experimenting with domain-specific fine-tuning to
better align the LLMs with specialized tasks in finance, cloud computing, or
other sectors.

Another promising direction lies in applying the knowledge gained from this
research to build human-centered interfaces, such as chatbots, that utilize pro-
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prietary, domain-specific, and real-time knowledge as well as LLM-powered
agents. These interfaces could assist users in making informed decisions in
a personalized manner. By integrating real-time and proprietary data, lever-
aging the advanced reasoning capabilities of LLMs for orchestrating multiple
data pipelines and models, such interfaces could provide tailored recommenda-
tions and insights, enhancing user experience and decision-making processes
in various industries.
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