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ΠΕΡΙΛΗΨΗ 

Η παρούσα διπλωματική εργασία επικεντρώνεται στην εκτίμηση 

της Πιθανότητας Αθέτησης Υποχρεώσεων  χρησιμοποιώντας μεθόδους 

εποπευτόμενης στατιστικής και μηχανικής μάθησης για δίτιμα 

προβλημάτα, που είναι απαραίτητες για την αποτελεσματική διαχείριση 

κινδύνου και τη συμμόρφωση με τους κανονισμούς στα χρηματοπιστωτικά 

ιδρύματα και για τον τραπεζικό τομέα. Τονίζεται ο κρίσιμος ρόλος της 

εκτίμησης της πιθανότητας αθέτησης, συζητώντας τη σημασία των 

χρηματοπιστωτικών ιδρυμάτων στις σύγχρονες οικονομίες, τις προκλήσεις 

που αντιμετωπίζουν, και τη σημασία της ακριβούς εκτίμησης της 

πιθανότητας αθέτησης στη μείωση του πιστωτικού κινδύνου και την 

εξασφάλιση της κανονιστικής συμμόρφωσης, παρέχοντας επίσης μια 

συνοπτική βιβλιογραφική ανασκόπηση σχετικά με τον πιστωτικό κίνδυνο 

και την εκτίμηση της πιθανότητας αθέτησης, από παραδοσιακές 

στατιστικές μεθόδους μέχρι τις πιο πρόσφατες εξελίξεις στη μηχανική 

μάθηση. Περιγράφεται επίσης το θεωρητικό υπόβαθρο της Λογιστικής 

Παλινδρόμησης (Logistic Regression), των Τυχαίων Δασών (Random 

Forest), της Βαθμιαίας Ενίσχυσης (Gradient Boosting), και των 

Νευρωνικών Δικτύων (Neural Networks), συμπεριλαμβανομένης της 

διαχείρισης δεδομένων, των μετρικών αξιολόγησης, και των διαδικασιών 

εκπαίδευσης των μοντέλων. Στο τελευταίο μέρος της διπλωματικής 

εργασίας, αυτές οι μέθοδοι εφαρμόζονται πρακτικά χρησιμοποιώντας 

πραγματικά δεδομένα πιστωτικών κινδύνου, όπου γίνονται συγκρίσεις των 

αντίστοιχων αποδόσεων των μοντέλων χρησιμοποιώντας τις μετρικές 

Kolmogorov-Smirnov, Gini, και Area Under the Curve (οι μετρικές που 

χρησιμοποιούνται για την διαχείρηση κινδύνου στον τραπεζικό κλάδο). Η 

διπλωματική εργασία στοχεύει στη παρουσίαση των πρακτικών 

αξιολόγησης πιστωτικού κινδύνου μέσω της εφαρμογής, σύγκρισης, 

αξιολόγησης, και βελτιστοποίησης αυτών των στατιστικών μοντέλων 

μηχανικής μάθησης. 

  



  

ABSTRACT 

This thesis focuses on the estimation of Probability of Default using 

binary supervised learning methods, which is essential for effective risk 

management and regulatory compliance in financial institutions and the 

banking sector. The crucial role of Probability of Default estimation is 

emphasized, discussing the importance of financial institutions, the 

challenges they face, and the significance of accurate Probability of Default 

estimation in mitigating credit risk and ensuring regulatory compliance, by 

also providng a concise literature review on credit risk and Probability of 

Default estimation, from traditional statistical methods to more recent 

advancements in machine learning. The theoretical background of Logistic 

Regression, Random Forest, Gradient Boosting, and Neural Networks, 

including data management, evaluation metrics, and model training 

processes are also being described. In the last part of the current thesis, these 

methods are practically implemented using real-world credit data, with 

performance comparisons made using Kolmogorov-Smironv, Gini, and 

Area Under the Curve metrics (i.e. banking industry standards). The thesis 

aims to enhance credit risk assessment practices through the application, 

comparison, evaluation, and optimization of these statistical machine 

learning models. 
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C H A P T E R  1  
 

 

Introduction to Probability of  

Default Estimation 
 

The field of applied statistics plays a pivotal role in numerous domains, with 

financial institutions and the banking sector being no exception. In these industries, the 

estimation of the Probability of Default (PD) using binary supervised (statistical) 

learning methods is crucial for effective risk management and regulatory compliance. 

This thesis focuses on exploring and implementing various statistical Machine 

Mearning (ML) methods to estimate PD, thereby contributing to the enhancement of 

credit risk assessment practices. 

In Chapter 2, we delve into the crucial role of PD estimation in financial 

institutions and the banking sector. This chapter is structured to provide a 

comprehensive understanding of the significance of PD estimation. The Role of 

Financial Institutions in Modern Economies is being discussed, highlighting their 

integral functions and impact -overall. Special emphasis is given to the challenges that 

financial institutions face in managing stability and solvency. Additionally, special 

focus is given on credit risk and the Significance of PD, underscoring the importance 

of accurate PD estimation in mitigating credit risk. Finally, the fundamental role of PD 

in regulatory compliance is being depicted, detailing how PD estimation is essential for 

adhering to regulatory frameworks and maintaining financial health. 

Chapter 3 presents a concise literature review on credit risk and PD, spanning 

from traditional statistical methods to the latest advancements in statistical supervised 

ML. This review provides a historical perspective and sets the stage for understanding 

the evolution and current state of PD estimation methodologies. 

In Chapter 4, we delve into the theoretical background of the statistical ML 

methods studied in this thesis. This chapter covers the theoretical foundations of 

Logistic Regression (LR), Random Forest (RF), Gradient Boosting (GB), and Neural 

Networks (NN). Additionally, we discuss critical aspects of data management, train-

test split, feature evaluation, and the segmentation of potential predictors using the 

Information Value (IV)  criterion, in the context of the statistical ML in credit risk. 

Special attention is given to industry-standard performance metrics such as Area Under 

the ROC Curve (AUC), Gini Index, and Kolmogorov-Smirnov Separation statistic 

(KS), which are widely used in the banking sector to evaluate model performance. The 

chapter also outlines the process of efficiently training  ML models, including feature 

selection, hyperparameter tuning, and cross-validation, as well as the importance of 

unbiased monitoring of model performance on unseen data. 
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Chapter 5 involves the practical implementation of LR, RF, GB, and NN 

resulting in the creation of application scorecards for each model, for credit risk 

assessemnt purposes. The performance of these models is compared using the KS, Gini 

Index, and Area Under the ROC Curve (AUC) metric. Furthermore, the IV criterion is 

used to compare characteristics between training and test sets. Population Stability 

Index (PSI) test is also conducted to compare the distributions of scores on training 

against the test data, ensuring the robustness and stability of the developed models. 

More specifically, as the financial sector has evolved, so too has the need for 

sophisticated methods to accurately estimate credit risk. The introduction of statistical 

learning models in PD estimation has been a significant development. These models 

not only provide a more precise understanding of risk but also enhance the decision-

making process for financial institutions. The financial crisis of 2007–2008 highlighted 

the importance of robust risk management frameworks, pushing financial institutions 

to develop statistical and ML models with meticulus attention to detail, aiming for a 

more accurate estimation of PD, and subsequently for better estimation of potential 

losses. 

Supervised learning methods, such as LR, RF, GB, NN, offer distinct 

advantages, being however accompanied by some disadvantages as well. By leveraging 

these such models, banks and financial institutions can accurately predict the 

probability of borrowers defaulting on loans, ensuring more stable credit portfolios and 

reducing exposure to high-risk clients. The models rely on past borrower data to identify 

patterns and relationships between various financial indicators and the risk of default. 

This data-driven approach has led to more informed credit risk management strategies, 

allowing institutions to balance their portfolios by minimizing risk and maximizing 

potential returns. 

Moreover, regulatory frameworks, such as Basel III and the International 

Financial Reporting Standard 9 (IFRS9), have underscored the need for precise PD 

estimation. Basel III, for example, places strict requirements on banks to maintain 

adequate capital reserves against unexpected losses, with PD estimation playing a 

critical role in determining how much capital a bank should hold. Similarly, IFRS9 

emphasizes the importance of forward-looking models in estimating Expected Credit 

Losses (ECL), requiring banks to account for potential losses well in advance of actual 

default events. This regulatory pressure has accelerated the adoption of advanced ML 

techniques in the banking sector, where PD estimation has become central to both 

regulatory compliance and strategic financial planning. 

The adoption of ML models in PD estimation is not without its challenges. For 

instance, ensuring data quality and addressing data imbalances are critical factors that 

affect model performance. Imbalanced datasets, where default cases are much less 

frequent than non-default cases, can skew the results of ML models. To mitigate this, 

financial institutions employ various techniques, such as the fuzzy augmentation 

technique -inferring the rejected applicants as if their loan application had been 

approved, and incorporating them into the analyses and to the model development 
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proceedure. Additionally, model interpretability is another challenge, especially with 

more complex models like NN. While these models can provide highly accurate 

predictions, their "black box" nature makes it difficult for stakeholders to understand 

the decision-making process behind the predictions. This has led to a growing interest 

in explainable machine learnign techniques that allow financial institutions to interpret 

the predictions of ML models more effectively. 

The need for transparency and interpretability in PD estimation is not just a 

matter of regulatory compliance but also a business imperative. Financial institutions 

must be able to justify their credit decisions to both regulators and customers. As a 

result, while more complex models such as GB and NN often offer superior predictive 

power, simpler models like Logistic Regression continue to be widely used due to their 

ease of interpretation -with their performance also reaching at high and accaptable 

levels. Moreover, this trade-off between model accuracy and interpretability remains a 

key consideration in the deployment of statistical learning methods for PD estimation. 

Looking ahead, the role of statistical learning in PD estimation is likely to grow 

even more important as financial institutions face increasing pressure from regulators 

and shareholders to optimize their credit risk management practices. Advances in big 

data analytics, combined with the growing availability of alternative data sources (e.g. 

social media data, transaction data), offer new opportunities for enhancing PD 

estimation models. However, with these opportunities come new challenges, 

particularly in terms of data privacy and ethical considerations. As ML models become 

more pervasive in financial decision-making, ensuring that these models are fair, 

transparent, and compliant with data protection regulations will be critical to their 

continued success. 

To this end, financial institutions are investing heavily in the development of 

robust governance frameworks to oversee the deployment of ML models. These 

frameworks are designed to ensure that the models used for PD estimation are not only 

accurate but also aligned with regulatory requirements and ethical standards. Model 

validation, for instance, has become a crucial step in the credit risk management 

process, with institutions employing independent teams to validate the performance of 

their models before they are deployed in real-world scenarios. This validation process 

typically involves stress testing the models under various economic scenarios to ensure 

that they can accurately predict PD even in adverse conditions. 

The integration of advanced statistican ML models into the financial sector 

represents a paradigm shift in how credit risk is managed, with financial institutions 

embrace a data-driven approach that leverages the power of statistical ML to make more 

informed, strategic decisions. By combining the strengths of various statistical and ML  

models, institutions can build more resilient credit portfolios that are better equipped to 

withstand the uncertainties of the financial markets. 

In conclusion, the adoption of statistical learning methods for PD estimation 

marks a significant step forward in the evolution of credit risk management. As 
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financial institutions continue to refine their models and integrate new data sources, the 

accuracy and reliability of PD estimates will only improve. This, in turn, will contribute 

to greater financial stability and ensure that banks are better prepared to manage the 

risks associated with lending in an increasingly complex global economy. Finally, this 

thesis aims to provide a comprehensive analysis of PD estimation methods, offering 

insights into their theoretical underpinnings, practical implementations, and 

performance evaluations. By leveraging advanced statistical ML techniques, this work 

contributes to the ongoing efforts to improve credit risk assessment and management in 

the financial sector. 
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C H A P T E R  2  
 

 

The Crucial Role of PD Estimation In  

Financial Institutions & Banking Sector 
 

The estimation of the Probability of Default (PD) has established as a pivotal 

tool across the financial sector, underpinning critical decision-making processes with 

profound implications for financial stability and risk management. Originating in the 

world of finance, PD estimation has transcended its roots to become an indispensable 

metric in sectors as diverse as banking, investment, and regulatory compliance. The 

need for institutions -as well as for the regulatory authorities- to better apprehend the 

complicated field of credit risk became imperative, as many financial institutions grow 

big enough to cause global economic crises in case of bankruptcy -being “Too big to 

fail”, since a single financial institution’s failure could ignite a chained transmission of 

the crisis across different countries and continents. As a historical antecedent, PD 

estimation initially took shape in response to the challenges faced by lenders seeking to 

assess the creditworthiness of borrowers in order to maximize their profits. However, 

it has since grown into a multi-disciplinary instrument with far-reaching applications, 

ensuring the integrity and resilience of financial systems and industries worldwide. The 

purpose of this chapter is to present and highlight the decisive significance of PD  

estimation, mainly within the banking sector, as also to expound on its applications and 

underscore its paramount importance for regulatory authorities in the pursuit of 

attaining global economic stability.  

 

2.1 The Role of Financial Institutions In Modern Economies 

Banks and financial institutions play a profound role in the efficient operation 

of the economic system in every modern society. In their role as intermediaries, banks 

manage financial capital, engage in money and capital markets, and gain profits through 

a series of activities involving deposits, lending and investments. Consequently, banks 

play a vital role in shaping the factors that influence the overall money supply within 

an economy, as clearly stated by Saunders Cornett (2017) in their book “Financial 

Institutions Management: A Risk Management Approach”.  

Furthermore, the banking sector can be categorized into three main segments: 

firstly, there are the Central Banks, responsible for controlling monetary policy within 

the region or country in which they operate. They also oversee and regulate other banks, 

with ultimate goal of maintaining financial stability and soundness. Secondly, there are 

the Retail and Commercial Banks, which accept deposits from individuals, households 

and businesses, and offer various financial services such as wealth management, credit 

cards, and other retail banking services -by using the received deposits. Additionally, 
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they are subject to regulations to ensure the safety of deposits and fair lending practices. 

In return, depositors receive interest payments over time based on a pre-agreed interest 

rate (a stable interest rate) or on an interest rate that fluctuates. Finally, there are other 

financial institutions such as Investment Banks, Mortgage Banks, Cooperative Banks, 

Agricultural Banks, and Shipping Banks. These institutions focus on activities such as 

raising capital, asset management and trading various financial instruments like bonds, 

stocks, derivatives, and currencies. They generate profits through fees and 

commissions, interest income, trading gains, and other sources depending on their 

activities -each within their respective areas of expertise and influence. 

The financial system can be delineated into two primary sub-segments: the 

Money Market and the Capital Market (Sapountzoglou G., Pentotis C. (2017)). In the 

Money Market segment, activities encompass the buying and selling, as well as asset 

management of various financial instruments such as foreign exchange transactions, 

treasury bills, banking bonds, repos, alongside short-term borrowing and lending, 

certificates of deposit, and commercial paper. These activities involve a diverse array 

of participants and are characterized by high levels of liquidity, leading to low default 

rates. Conversely, the capital market segment involves activities such as the trading of 

stocks, fixed and fluctuating-rate bonds, convertible bonds, derivatives, commodities, 

and real estate investment trusts (REITs). Unlike the money market, the capital market 

exhibits lower levels of liquidity and higher default rates, largely due to the relatively 

higher variance in the prices of negotiable assets. Furthermore, financial markets can 

be divided into two sub-segments, namely the primary market and the secondary 

market. The primary market involves the origination and initial offering of new assets 

by companies, governments, or other entities to raise capital, whereas the secondary 

market encompasses the trading of pre-existing assets among investors, acquired 

initially in the primary market. 

Banks and financial institutions participate in various ways in all the aforementioned 

activities. More specifically, banks carry out the following functions: 

- Serve as intermediaries connecting savers with borrowers. 

- Accept deposits from the public and provide loans. This ongoing process not 

only improves the efficiency of the financial system but also safeguards 

depositors. 

- Provide financing for individuals, businesses, and governments. 

- Oversee their assets, which are supported by both short-term and long-term 

liabilities (including deposits, bank loans, and equity). 

- Effectively manage and oversee payment settlements. 

- Conduct checks to prevent fraudulent activities. 

- Gather, process, and manage information. 
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- Operate within an environment characterized by uncertainty and various risks. 

As can be seen, the intermediary role of banks and financial institutions is 

extremely important for the efficacious operation of the modern economic system. 

Nevertheless, the borrower typically possesses a better understanding of their own 

ability to fulfill their loan obligations compared to their lender and also are familiar 

with the financial aspects and characteristics of the institution providing the loan. This 

information imbalance between the borrower and lender is known as the “asymmetric 

information” problem. The challenge is that banks, which act as intermediaries, work 

hard and spend a lot of money to get the right information about borrowers, as well as 

to process this information and obtain significant insights about their level of 

credibility. The imperfections in financial markets are mainly attributed to this situation 

of unequal access to information between those seeking loans and those providing them. 

Imperfections in financial markets arise not only from information costs but also from 

transaction costs. These inherent imperfections in financial markets play a significant 

role in justifying the existence of the banking system and its role as an intermediary, 

since banks and financial institutions obtain the expertise and known-how to mitigate 

these potential issues, when getting involved into such activities.  

Due to the problem of “asymmetric information”, banks and financial 

institutions are confronted with two more practical issues; “the adverse selection 

problem” and the “moral hazard problem”. The first problem refers to the potential 

profit loss that financial institutions and banks may face by lending money to riskier 

clients who are more likely to default or by rejecting safer clients, both as a result of 

inaccurate risk assessments. The latter, refers to a situation in which the borrower after 

obtaining a loan, becomes involved in undisclosed high-risk activities that negatively 

impact their financial stability, this subsequent moral hazard decreases the probability 

of loan repayment -thus increasing the probability of a defaulting event being occured. 

Therefore, the need for an accurate estimation and quantification of this 

associated risk has risen for financial institutions, in order to make informed-based 

decisions and to minimize potential losses. (Atzoulatos A. (2011)). 

 

2.2 Risk and problems encountered by Financial Institution 

Before moving on to the presentation of PD and its indispensable role in 

quantifying credit risk, it is essential to provide a brief overview of the various types of 

risks that financial institutions and banks encounter. These risks are deeply 

interconnected, and an inaccurate assessment of credit risk could increase or introduce 

other potential risks that may ultimately lead to the failure of the financial institution 

(Saunders C. (2017)). 

Nearly all the activities in which fixnancial institutions and banks engage 

involve various types of risks. These risks are presented epigrammatically below: 

- Interest rate risk 
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- Credit risk 

- Liquidity risk 

- Foreign exchange risk 

- Country sovereign risk 

- Market risk 

- Off-balance sheet risk 

- Technological risk 

- Operational risk 

- Insolvency risk 

 

All the mentioned risks are inherent to the activities of financial institutions and 

are interconnected with each other in various ways. A concise overview of all these 

risks will be presented, as the interconnection and subsequent interaction between them 

is perhaps the most intricate and complex challenge faced by banks and financial 

institutions.  

- Interest rate risk: This risk arises from fluctuations in interest rates. Financial 

institutions may face losses if the interest rates change unfavorably, affecting 

the value of their assets and liabilities. 

- Credit risk: This is the risk that arises for potential inability or denial of 

borrowers or counterparties to fulfill their financial obligations, resulting in 

losses for the lender or investor. Almost all kind of financial institutions 

encounter this risk. 

- Liquidity risk: It involves the risk that an institution may not have enough cash 

or liquid assets to meet its short-term financial obligations. It may lead to 

financial distress or bankruptcy. 

- Foreign exchange risk: Changes in currency values can affect the value of assets 

and liabilities denominated in different currencies. Hence, this risk occurs when 

financial institutions have exposure to fluctuations in exchange rates, by 

maintaining or investing in assets of foreign currencies. 

- Country sovereign risk: This risk relates to investments in foreign government 

or corporal securities. It involves the possibility of a country defaulting on its 

debt or implementing policies that negatively impact investments. Thus, this is 

a different type of credit risk for financial institutions. 

- Market risk: Arises from the trading of assets and liabilities due to fluctuations 

in interest rates, exchange rates, and the values of financial assets. It occurs 

when financial institutions trade their assets and liabilities instead of holding 

them for long-term investments and for risk mitigation. 

- Off-balance Sheet risk: This refers to potential losses from contingent liabilities 

and commitments that are not reflected on a company's balance sheet. These 

obligations can become actual losses. Includes all the activities that create 

potential assets and liabilities, which result in a potential future position for the 
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balance sheet of the financial institution. 

- Technological risk: It encompasses the risk of disruptions or vulnerabilities in a 

financial institution's technology infrastructure, including cyberattacks, data 

breaches, or system failures. 

- Operational risk: This risk arises from internal processes, systems, people, and 

of the external environment of the financial institution. It includes risks related 

to errors, fraud, legal compliance, and business interruptions. Reputation and 

Strategic risk can also be included in this segment, as a wider definition of what 

operational risk is.  

- Insolvency risk: It is the risk that a financial institution becomes insolvent, 

meaning it cannot meet its financial obligations by mitigating risks produced by 

a sudden and/or sharp decrease on the values of the assets that a financial 

institution holds. Hence, the financial institution may face bankruptcy or 

regulatory intervention. 

While these risks are often discussed in isolation, they are intertwined in 

complicated and various ways. For instance, an abrupt raise in interest rates can cause 

turbulences through both business and consumer sectors, disrupting their ability to 

fulfill their financial contractual commitments. This interdependence sets in motion 

chained reactions that impact credit risk, interest rate risk, and off-balance-sheet risk, 

creating a dynamic landscape of interconnected challenges, all due to the interactions 

between the aforementioned individual risks. 

Furthermore, a financial institution's capital is intricately linked to the capital of 

its counterparties, forming a symbiotic relationship crucial for effective liquidity 

management. Consequently, liquidity risk is tightly intertwined with credit risk and 

interest rate risk. When a client fails to meet its obligations, the consequences extend 

beyond the financial institution, affecting earnings, profits, and ultimately, the 

institution's overall capital position. As a result, every risk and its multi-level 

interactions with every other aforementioned risk, become pivotal in shaping the risk 

of insolvency, which may lead to bankruptcy. 

Similarly, there is a strong correlation between fluctuations in foreign exchange 

rates and interest rates. Exchange rates may undergo changes when the central bank 

adjusts a key interest rate through monetary policy. Additionally, various other discrete 

or random risks can impact the profitability and exposure of a financial institution. 

These unique risks may include external events, such as sudden shifts in regulatory 

legislation, which can positively affect certain risk factors while negatively impacting 

others, with their combined effect potentially leading to an overall negative outcome 

for the financial institution's capital position. 

Other more discrete or random risks include sudden and unexpected changes in 

conditions prevailing in financial markets due to a war, an uprising, or a sudden market 

collapse, such as the stock market crash of 2008 and the consequent global financial 
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crisis, the COVID-19 pandemic, the Russia-Ukraine war. These changes can have a 

significant impact on the risk exposure of a financial institution. Other risks of discrete 

or random events include fraudulent activities, extreme weather events and 

mismanagement. All of these could ultimately cause significant damage or even the 

insolvency of a financial institution. However, each of these risks is difficult to predict 

and be modeled. Finally, more macroeconomic or systemic risks, such as inflation’s 

volatility and unemployment, can directly and indirectly affect the risk exposure of a 

financial institution to interest rate risk, credit risk, and liquidity risk. For example, the 

Greek unemployment rate had more than tripled between 2008 and 2012 -from 7.6 % 

in 2008 to 24.2% in 2012, the number of the unemployed increased from 364.3 

thousand in 2008 to 1 million and 172.2 thousand in 2012. In the summer of 2013, the 

unemployment rate exceeded 28%. With such high unemployment, the exposure of all 

the Greek financial institutions to credit risk increased dramatically -as too many 

borrowers could not repay their loans after losing their jobs and subsequently their 

sources of income. (Saunders C. (2017)). 

 

2.3 Credit risk and Probability of Default Significance 

Credit risk arises from the potential inability of borrowers or counterparties to 

fulfill their financial contractual obligations and is the primary financial risk faced by 

credit institutions, as it is directly related to their core activity, namely, the provision of 

loan capital. These obligations may refer either to the repayment of a loan granted by 

the credit institution or to the regular payments arising from the issuance of a bond in 

which the credit institution has invested. Consequently, all financial institutions closely 

monitor the performance of portfolios associated with credit risk, in order to maximize 

their profits and be ready to mitigate the loss -in case a credit event arises. The "Too 

big to fail" financial institutions (i.e. “SSI – Systemically Important Institutions”) are 

obligated by regulatory authorities to operate within and not deviate from some industry 

stands, as well as to closely monitoring credit risk and report the overall status of their 

portfolio, as a potential bankruptcy could trigger economic destabilization on the 

continent where the financial institution operates. Even worse, the economic crisis 

could spread to other countries, resulting to a generalized economic recession among 

countries and continents (Αtzoulatos A. (2011)). The credit risk regulations which are 

applied by the authorities, will be analyzed in the next sub-section “2.4 The 

Fundamental Role of PD in Regulatory Authorities”. For the rest of this sub-section, a 

coherent elaboration on credit risk and PD will be made.  

The drive for credit expansion and fierce competition among financial 

institutions can occasionally lead to the financing of individuals and legal entities that 

fall short of fundamental solvency requirements—that is, their ability to meet long-term 

financial obligations. Essentially, these entities are unable to guarantee the repayment 

of their debts. This situation increases the risk of losses for credit institutions, as it raises 

the probability of default within their loan portfolios and reduces the chances of 

recovering the initially loaned capital—or even a portion of it (Sapountzoglou G., 
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Pentotis C. (2017)). 

Financial institutions aim to avoid potentially “bad” borrowers -those that 

eventually will not repay the borrowed amount to its full, and on the contrary, they want 

to invest in “good” applicants -those that will eventually fully repay the borrowed 

amount. This segmentation between the populations of “good” and “bad” applicants is 

crucial in the context of credit risk -as well as for all the financial institutions that 

encounter credit risk (Saunders C. (2017)). More precisely, there are many definitions 

for the categorization of a borrower into “good” or “bad”, and this categorization 

depends directly to the borrower’s number of days past due of each corresponding credit 

obligation. However, specific guidelines were given by the EBA (European Banking 

Authority) for the assessment & classification of a borrower (natural or legal entity) as 

“good” or “bad”, and hence constructing the most up-to-date default definition across 

all firms that are subjected to the Capital Requirements Regulation (CRR) and are 

required to hold capital against credit activities. Regulation authorities such as EBA  

and NCAs (i.e. National Competent Authorities) have adopted the new default 

definition (PWC – EBA Credit Risk: Default Definition (2017)).  

The definition of default varies for retail and non-retail financial institutions 

(EBA 2020/978, (2020) http://data.europa.eu/eli/guideline/2020/978/oj). It is based on 

the overdue period of more than 90 consecutive days, with additional materiality rules: 

- For retail financial institutions, a borrower is considered as defaulted if the 

overdue amount is equal to or exceeds 100€ and/or if the total overdue amount 

exceeds the 1% of the borrower’s total assets. 

- For non-retail financial institutions, a borrower is considered as defaulted if the 

overdue amount is equal to or exceeds 500€ and/or if the total overdue amount 

exceeds the 1% of the borrower’s total assets. 

In both cases, breaching these specified thresholds (i.e. more than 90 days past 

due and/or breaching a materiality threshold) identifies the borrower as defaulted. 

Therefore, the PD is a measure that quantifies how likely it is for a borrower to become 

classified as defaulted.  

It should be noted that the failure to meet an obligation and the subsequent 

classification of the borrower as defaulted does not always lead to negative 

consequences for the credit institution. There are situations in which, despite the initial 

default event, the borrower will eventually fully repay all its contractual obligations.  

In a bank's credit policy, the approval of loans primarily depends on the 

borrower's creditworthiness. Additionally, the quality of any potential collateral or 

guarantees that come with the loan are considered. To this direction points the fact there 

is always some remaining risk, regardless of the size of the collateral. However, it 

would be a mistake to overlook the size and quality of collateral that accompanies a 

bank's claim because these often play a crucial role in recovering the provided capital 

http://data.europa.eu/eli/guideline/2020/978/oj
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if the borrower faces bankruptcy. (Sapountzoglou G., Pentotis C. (2017)). 

Common types of guarantees that come with the requirements of banks include: 

- Collateral 

- Guarantees from third parties 

- Credit derivatives 

Collateral itself is divided into two categories: physical and financial. Physical 

collateral includes assets like real estate properties and land. Financial collateral 

encompasses assets such as stocks and other investment securities. The role of collateral 

extends beyond merely reducing potential credit losses in case of borrower default; it 

also serves as a deterrent for borrowers to default on their obligations. Guarantees 

involve shifting the responsibility for repaying the debt to third parties (co-debtors) 

when the original borrowers are unable to fulfill their obligations. Providing guarantees 

from third parties substantially reduces the PD, as a full default only happens when both 

the borrower and the guarantor cannot meet their obligations. Lastly, credit institutions 

use credit derivatives to ensure that in specific credit events, such as a borrower's 

bankruptcy, they receive compensation from the counterparty to cover some or all of 

their credit losses. In practice, assessing collateral and guarantees usually involves 

estimating a Recovery Rate (RR) -this rate indicates the portion of the credit exposure 

(the lender's claim) that can be recovered if the borrower defaults. Estimating the 

recoverable capital in bankruptcy is not always certain, as actual recoveries may 

significantly differ from initial estimates due to factors like undervaluation of physical 

collateral (like real estate) or difficulties in enforcing claims against guarantors. Hence, 

collaterals convert proportion of the credit risk into legal and valuation risk, while third-

party guarantees reduce the probability of bankruptcy. 

Credit rating agencies have drawn conclusions about the potential recovery of 

capital from defaulted securities by analyzing historical data related to the type of loan, 

issuer’s creditworthiness, and the historical values of defaulted debt securities. It has 

been found that -in practical terms- senior debt securities (i.e. securities that have a 

higher repayment priority) typically exhibit high capital recovery rates in case of 

default, such as bonds issued by governments. Conversely, junior debt securities (i.e. 

collaterals with lower repayment priority) offer limited capital recovery potential to 

their holders. Additionally, secured bonds backed by physical assets such as land and 

real estate provide a substantial degree of capital recovery assurance in the event of 

issuer bankruptcy. On the other hand, unsecured debt (i.e. debt bound to no collateral) 

recovery rate relies directly to the issuer's financial health. Lastly, subordinated debt 

holders are at the bottom of the hierarchy in case of issuer bankruptcy, will be repaid 

only if the claims of higher-ranking claims have been satisfied. Recovery rates in the 

context of debt issuances are defined as the ratio of the bond's post-bankruptcy price to 

its face value (par value). During economic downturns, recovery rates for defaulted debt 

securities tend to decrease significantly, whereas the opposite trend occurs during 

periods of economic prosperity. Thus, there has been a robust positive correlation 

between recovery rates and the overall economic conditions.  
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When a banking institution evaluates its exposure to credit risk, it focuses on 

assessing potential losses that might occur within each segment of its portfolio. These 

potential credit losses are being calculated on a regular basis. The estimation of 

Expected Losses (EL) involves the estimation of PD , Loss Given Default (LGD), RR 

and the Exposure at Default (EAD) -the total amount in which the financial institution 

is exposed at the time of default.  

Hence, EL represents the estimated average losses that the credit portfolio is 

expected to face. The EL of a portfolio is computed by multiplying the PD  by the LGD 

and further by the EAD. This results to the following equation: 

𝐸𝐿 = 𝑃𝐷 × 𝐿𝐺𝐷 × 𝐸𝐴𝐷 

where LGD = 1 – RR, RR is the recovery rate of the corresponding exposure. 

It should be noted that EL, which a financial institution includes in its risk 

management strategy, should not be considered a risk for the financial institution itself. 

This amount is regularly estimated and, therefore, is regarded as a known figure. The 

financial institution is required to have the capability to efficiently handle any potential 

adverse events. In addition to EL, financial institutions and banks should also assess the 

level of Unexpected Losses (UL), which essentially represents the true risk faced by 

financial institutions. 

UL are defined as the maximum potential losses that a financial institution's 

portfolio may encounter under a certain degree of uncertainty. To quantify UL, two 

additional components have been introduced: Value at Risk and Expected Shortfall. 

(Boutsikas M. (2023)). 

Value at Risk (VaR) serves the purpose of determining the most adverse 

potential loss an investment can incur and the corresponding amount of capital required 

to safeguard against it. It's important to note that this worst-case scenario typically 

involves complete loss of the invested amount, an event with an exceedingly low 

probability that would result into a huge reserve, often unrealistic. Consequently, VaR 

tries to answer the following question: What represents the most unfavorable 

conceivable outcome for the investment, under a certain level of uncertainty. The 

maximum potential loss for a certain level of uncertainty -set by the researcher, denoted 

as VaR, corresponds to the loss “L” linked to an investment characterized by stochastic 

gains, let Π = −L. This metric signifies the highest conceivable loss that may transpire 

within the least favorable interval of possible investment outcomes. In practice, VaR is 

the most commonly used risk measure, but it does come with notable limitations. For 

instance, it does not offer insights into the magnitude of potential losses should they 

surpass the Value at Risk (VaR) for a specified confidence level. This is why another 

risk metric, Expected Shortfall, finds practical application. Expected Shortfall, in 

essence, signifies the average loss when it falls within the range of more extreme 

scenarios, given that the losses have exceeded the VaR.  
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To conclude, following the above analyses it can easily be seen that PDs’ 

estimation plays a pivotal role in assessing and managing credit risk within a financial 

institution. Both EL and UL are fundamental components in this context. EL represents 

the anticipated average losses that the credit portfolio may encounter and its calculation 

heavily relies on the sound estimation of PD. It provides insight into the regular, 

expected losses that the institution should be well-prepared to handle efficiently. On the 

other hand, UL signifies the maximum potential losses under certain levels of 

uncertainty, particularly in extreme scenarios, which is also heavily influenced by the 

estimation of PD, since the accurate estimation of PD results to a more accurate 

estimation of EL -and the subsequent accurate estimation of UL. Hence, a 

comprehensive framework is formed that aids financial institutions in understanding, 

measuring, and mitigating the multilevel and complex credit risks they face. 

 

2.4 The Fundamental Role of PD in Regulatory Compliance 

Two main pillars that comprise the regulations of the financial institutions are 

“Basel III” (i.e. updates of Basel I & II) and “IFRS9”. In simple terms, IFRS9 builds a 

framework in which all entities that hold financial instruments, keep track of their 

possessions (i.e. account-wise) and portfolio’s structure (i.e. model-wise) correctly and 

in transparency, whereas Basel rules strive for making banks not taking too many risks 

with their money, by maintaining a safety cushion (“Required Reserves”) in case of 

economic turndown. Therefore, to emphasize the importance of accurate PD estimation, 

it is deemed suitable to offer a concise overview of the essential regulatory standards 

that financial institutions must strictly follow concerning credit risk, as mandated by 

regulatory authorities in the context of credit risk management. 

IFRS 9 (International Financial Reporting Standard 9): IFRS9 replaced IAS39 

(International Accounting Standard 39) and was first issued by the International 

Accounting Standards Board (IASB) in July 2014. It was introduced to address some 

of the deficiencies in IAS39 and to improve the accounting for financial instruments, 

particularly in response to the global financial crisis of 2007-2009, as well as to enhance 

transparency and comparability in financial statements. The standard became effective 

for annual periods beginning on or after January 1, 2018. (PWC: IFRS 9 impairment -  

Significant Increase in Credit Risk, 2017). IFRS9 regulations and basic concepts regard 

to: 

- Classification and measurement of financial instruments 

- Hedge accounting 

- Impairment 

For the “classification and measurement of financial instruments” and “hedge 

accounting” segments, only a brief summary will follow, since they refer to accounting 

modifications which are out of the scope of this thesis. However, the “impairment” 

segment regards to modifications in ECL modeling, and as described in the previous 

sub-section, PD plays an extremely crucial role for efficacious implementations and 
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estimations to be made. 

The IFRS9 regulations are briefly described below: 

- Financial instruments are classified and measured as follows: 

• Amortized cost: For stable, low-risk investments like bonds and loans 

held until maturity. 

• Fair Value through Other Comprehensive Income (FVOCI): For assets 

with the intent to be held for a while but may be sold in the future, like 

certain debt securities. 

• Fair Value through Profit or Loss (FVTPL): For assets primarily held for 

trading, such as stocks and derivatives. 

- Hedge accounting under IFRS 9: 

• IFRS 9 improved hedge accounting to help companies manage financial 

risks more accurately and transparently. It allows them to offset the 

impact of market changes, like currency or interest rate fluctuations, on 

their financial statements, aligning their accounting with risk 

management strategies. This makes financial reporting clearer and more 

aligned with a company's actual financial health. 

- Impairment: 

• Financial institutions are required to account for expected credit losses 

on financial instruments, considering both the PD and the overdue 

amount at the time of the default event -that is the magnitude of loss. 

Before the implementation of IFRS9, the accounting standards were 

based on an “Incurred Loss” model. The “Incurred Loss” model was 

used by banks and financial institutions in the past-recognizing 

impairment losses on financial instruments when there was evidence that 

a loss had already taken place (i.e, an estimation-given-default event 

approach), which often resulted in delayed recognition of credit losses. 

With IFRS9, the approach to recognizing credit losses shifted to an 

"Expected Credit Loss" -instead of the “Incurred Loss” model. Hence, 

under IFRS9, financial institutions need to predict and account for losses 

at all times, taking into account past events, current conditions, and 

future predictions. This is a more forward-looking approach and results 

into a much quicker recognition of losses, compared to that of the 

“Incurred Model” which predicted too little and too late.  

Below are presented the main components of the IFRS9 approach -some of which have 

already been introduced in the current thesis: 

- PD: Entities need to assess the probability that a borrower will default on their 

obligations. This is the PD which has already been described. The PDs that are 

calculated are the 12-month PDs or the Lifetime-PDs. The 12-month PD is the 

probability assigned to each potential or current borrower to default in the next-
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12month period. On the other hand, the Lifetime-PD is the probability assigned 

for the whole lifetime of the asset, that is the period till maturity. For example, 

for a 20-year mortgage loan, the Lifetime-PD would be the probability of the 

borrower defaulting within the next 20 years, if calculated at the asset's 

origination date. In contrast, the 12-month PD would estimate the probability of 

default within the next year, without considering the remaining 19 years.  

- LGD: The percentage of the exposed amount that the financial institution 

estimates that will not be recovered. 

- EAD: In addition to the PD, the ECL model also considers the magnitude of 

loss that might be incurred if a default occurs. This involves estimating the 

Exposure at Default -that is the total overdue amount at the time of the default 

event. 

- ECL: Under the ECL model, banks and financial institutions are required to 

consider the future credit losses that are expected to occur over a 12-month 

period (12-month ECL) or over the life of a financial instrument (Lifetime 

ECL), rather than waiting until a loss has actually happened. 

There are 3 stages of impairment for each financial instrument -and each subsequent 

exposure is classified in one of these 3 stages -based on the impairment recognition. 

Specifically: 

- Stage 1: By the time an exposure is recognized (i.e., origination date), the ECLs 

that may occur from potential defaults within the next 12 months are calculated. 

Hence, for each existing exposure, the financial institution is obliged to estimate 

the corresponding credit losses. For each subsequent reporting date (i.e. for each 

subsequent month), accounts that maintain their credit stability (i.e. no SICR - 

Significant Increase in their corresponding Credit Risk is occurred since their 

initial recognition), also have the 12-month ECLs applied to them. Finally, 

when it comes to the estimation of the interest revenue originating from an 

exposure classified as Stage 1, the full amount of the exposure is used (i.e. Gross 

amount) -that is without deduction of the ECL.  

- Stage 2: These accounts are underperforming or having a specific event 

occurred, resulting to significant increase in credit risk. Hence, their 

corresponding ECL is estimated over the expected lifetime of the asset (Lifetime 

ECLs). The interest revenue is calculated as in Stage 1 (i.e. over the full amount 

of the exposure – gross amount), however the ECL are calculated by using the 

Lifetime-PD (and not the 12-month PD). 

- Stage 3: In this category belong all the non-performing exposures, having 

objective evidence of impairment, and thus the financial instrument is 

considered as credit-impaired. The lifetime ECLs are calculated as in Stage 2, 

however interest revenue is determined using the exposures' amortized cost (i.e., 

the gross carrying amount minus the loss allowance – or else net carrying 

amount).  
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Table 2.4.1: IFRS9 Impairment Stages 

It should be noted that the term “Significant Increase in Credit Risk” is not 

strictly defined under IFRS9, making it a judgmental area (PWC: IFRS 9 impairment -  

Significant Increase in Credit Risk, 2017). To assess it, entities need to consider specific 

factors based on the financial asset and how they manage credit risk. More specifically, 

the factor that give shape to SICR estimation are classified as quantitative & qualitative 

indicators that have to be assessed. A concise summary is presented below: 

- Quantitative indicators: 

• Comparison of 12-month and Lifetime-PD: This involves comparing the 

12-month PD  to the Lifetime-PD. Generally, a Lifetime-PD is used, but 

a 12-month PD may suffice if changes in it reasonably approximate 

changes in the Lifetime-PD -since LPD leads to a more accurate 

estimation, though being more difficult to be modelled. 

• Changes in Lifetime-PD instead of monitoring the volatility of ECL: 

IFRS 9 requires assessing the significant increase in credit risk (SICR) 

based on changes in the Lifetime-PD over the assets' remaining years to 

maturity and not based on changes in the ECLs. Hence, if a PD model is 

used, the PD measure is used and not the LGD. 

• Relative assessment: It's a relative comparison between the PD at the 

reporting date and the PD at the initial recognition date. For example, if 

the PD of a loan is estimated at 1% at the initial recognition date, and the 

next month (i.e. reporting date) is estimated at 2%, it exhibits a 

percentage increase of 100%. Absolute assessments, in combination with 

the use of a PD threshold, will not suffice -unless it in-line with the 

relative assessment approach. 

• Residual life of instrument: At the initial recognition date (i.e. initial 

IFRS9 Impairment Stages

Stage 1

•Performing
Accounts/Exposures

•Based on 12-month 
Probability of Default

•12-month Expected 
Credit Losses

•Interest Rate Revenue 
based on Gross 
Carrying Amount

Stage 2

•Under-performing
Accounts/Exposures -
Significant Increase in 
Credit Risk (SICR)

•Based on Lifetime-
Probability of Default

•Lifetime Expected 
Credit Losses

•Interest Rate Revenue 
based on Gross 
Carrying Amount

Stage 3

•Non-performing
Accounts/Exposures -
Objective evidence of 
Impairment

•Based on Lifetime-
Probability of Default

•Lifetime Expected 
Credit Losses

•Interest Rate Revenue 
based on Net Carrying 
Amount
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date) of an exposure, the Lifetime-PD is estimated. It is generally and 

conceptually expected that for the performing exposures the Lifetime-

PD will decrease month-by-month (i.e. for the subsequent reporting 

dates), as the remaining months till maturity will be reduced. At the 

origination date, additional Lifetime-PDs are estimated and assigned to 

all the corresponding upcoming months (i.e. upcoming reporting dates) 

till maturity. The Lifetime-PD of each reporting date is compared with 

the corresponding initial expectation for the Lifetime-PD. In other 

words, instead of comparing the currently estimated Lifetime-PD of each 

month with the Lifetime-PD of the starting date of the exposure, the 

comparison is made with the Lifetime-PD that was expected at the 

beginning for the corresponding month. Hence, the change in the 

Lifetime-PD is assessed by comparing the remaining Lifetime-PD at the 

reporting date with the Lifetime-PD that was expected at initial 

recognition for that point in time. Since PD often decreases as time 

passes, the initial Lifetime-PD might not capture the SICR. 

• Variability with initial risk: What is considered a significant change 

depends on the initial risk (i.e. initially estimated Lifetime-PD). For 

example, assuming that a loan or bond was initially assessed with a 0.5% 

PD, and this PD later changes to 1%, resulting to double the initial risk 

as well as to a percentage increase of 100%. In contrast, assuming that 

the instrument started with a 4% PD and then increased to 4.5%, the 

absolute increase remained the same (i.e. 0.5%), whereas the percentage 

increase stood at 12.5%, which is significantly lower than that of the 

previous example, nevertheless the risk level is greatly higher on the 

latter. Therefore, when all other factors remain constant, the threshold 

for what is considered a significant change in default risk should be 

smaller for the high-grade instrument compared to the lower-grade ones. 

• Stage 2 monitoring: Instruments in Stage 2 should be monitored for a 

significant increase in credit risk. Not all exposures in Stage 2 will transit 

into Stage 3, as some may revert to Stage 1. However, an 

underperforming exposure indicates that the probability of a default 

event increases, since the borrower has already shown a potential 

inability to meet the contractual obligations, by generating a material 

overdue amount. 

• Reasonable thresholds: Judgment is used in determining what threshold 

is significant, thus creating a balance between recognizing expected 

losses too early or too late. More specifically, financial institutions do 

not want to set the risk (i.e. PD) threshold too low because it might 

trigger the recognition of expected losses too frequently, leading to 

unnecessary adjustments and increased volatility in financial reporting. 

On the contrary, setting the risk (i.e. PD) threshold too high will increase 

the probability of recognizing expected losses too late, meaning waiting 
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too long to account for potential future defaulted exposures, thus 

resulting to financial statements that do not accurately reflect the true 

credit risk. 

- Qualitative indicators: Qualitative factors, separate from quantitative 

assessment, should be considered if relevant. These include factors mentioned 

in IFRS 9. 

- Backstop indicator: If contractual payments are more than 30 days past due, 

there's a presumption of a significant increase in credit risk. This presumption 

can be rebutted with reasonable evidence to prove the contrary. 

The EL model encourages financial institutions to be proactive in recognizing 

potential credit losses and to set aside provisions for these losses. This helps in 

providing a more accurate and forward-looking representation of an entity's financial 

health and risk exposure. 

Basel I, Basel II, and Basel III: 

These are international banking supervisory frameworks developed by the Basel 

Committee on Banking Supervision (BCBS). They were created in response to financial 

crises to ensure the stability and safety of the banking system. (Capgemini, The ABCs 

of Basel I, II & III. (2014)). Below follows a brief overview of each: 

- Basel I (released rule in 1988): 

• Basel I introduced the concept of minimum capital requirements for 

banks. It required banks to maintain a minimum capital adequacy ratio 

of 8% of their risk-weighted assets. Assets were categorized into broad 

risk buckets, and capital requirements were set accordingly -based on the 

risk category in which the asset was classified. 

• It was a relatively simple framework, primarily focused on credit risk. 

- Basel II (released rule in 2007): 

• Basel II was more comprehensive and risk-sensitive compared to Basel 

I. It introduced three pillars:  

1. Minimum capital requirements: Similar to Basel I but with more 

complex risk calculations. 

2. Supervisory Review Process (SRP): Encouraged banks and 

regulators to assess their risk management practices and set 

additional capital requirements based on internal assessments. 

3. Market discipline: Disclosures and transparency requirements to 

make banks more accountable to stakeholders. 
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Basel II introduced more advanced risk modeling techniques and allowed for a more 

detailed assessment of credit, operational, and market risks. 

- Basel III (released rule in 2013): 

• Basel III was developed in response to the 2007-2009 global financial 

crisis. It significantly strengthened the regulatory framework by 

addressing various shortcomings. Key components include:  

1. Common Equity Tier 1 (CET1): Banks must maintain a higher 

proportion of common equity as a percentage of risk-weighted assets. 

2. Liquidity Coverage Ratio (LCR): Banks must maintain a minimum 

amount of highly liquid assets to meet short-term liquidity -if needed. 

3. Leverage ratio: Introduced to prevent excessive leverage. 

4. Counterparty credit risk: Improved measurement and management of 

counterparty credit risk. 

5. Risk management and supervision: The framework emphasizes 

improved risk management practices, enhanced supervision, and 

stress testing to identify and mitigate potential risks in the banking 

system. 

6. Systemically Important Banks (SIBs): Additional capital 

requirements and stricter regulations for globally systemically 

important banks (G-SIBs). 

Basel III aimed to enhance the resilience and stability of the global banking system by 

addressing capital, liquidity, and risk management concerns. 

In summary, IFRS 9 focuses on accounting, reporting and in modelling risk for 

financial instruments, while Basel I, Basel II, and Basel III are international banking 

regulatory frameworks that evolved over time to strengthen the stability and safety of 

the banking system by imposing more stringent capital, liquidity, and risk management 

requirements on banks. Both IFRS 9 and Basel III are important components of the 

global financial regulatory framework, contributing to the transparency, stability, and 

resilience of financial institutions and markets. It is apparent that financial institutions 

and banks, when engaged in activities associated with inherent credit risk, must assess 

it and quantify it as accurate as possible. This involves estimating the PD, and among 

others, the LGD & the EAD -which have already been described in the previous 

sections. By obliging financial institutions to operate by making data-oriented 

decisions, both financial-stability will be maintained within the economies they operate 

-a goal that is in accordance with their profits’ maximization, and additionally, potential 

economic recessions will be mitigated, promoting sound investments, with the overall 

economic growth being fostered. In doing so, they contribute to the enhancement of 



 

21  

societies' standards of living. To this extend, as described in this chapter, assessing and 

estimating accurately the of PD is pivotal as to attain all the aforementioned goals.  
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C H A P T E R  3  
 

A Concise Literature Review  

on Credit Risk and PD 
 

In this chapter, a concise literature Review on Credit Risk and PD will be 

presented, by pinpointing the importance of some specific topics and scientific research 

that have been done throughout the years that have contributed and given shape to the 

latest statistical and more complex ML methods which are used for the estimation of 

PD nowadays.  

 

3.1 From Markowitz Portfolio Theory to More Sophisticated 

Statistical Models 

For too many years, financial institutions heavily relied on subjective analysis 

or so-called "expert" systems, where bankers assessed credit risk based on borrower 

characteristics like reputation, leverage, earnings stability, and collateral, known as the 

"4 Cs" of credit, which led to scaled rating. As shown by Sommerville R. and Taffer R. 

(1995) in their work “Banker judgement versus formal forecasting models: The case of 

country risk assessment”, these subjective ratings tended to be overly pessimistic, 

prompting a shift towards more objective methods. However, the transition from 

relying solely on "expert judgment" to incorporating statistical models for measuring 

credit risk did not happen overnight and took several years and scientific studies. This 

shift was gradual and part of a broader movement towards quantitative risk management 

techniques that gained momentum in the late 20th century. The development and 

adoption of these statistical models were also influenced by several other factors, 

including advances in computing technology, the increasing availability of data, and 

evolving regulatory requirements.  

The main problem in the approval/rejection process of loan applications -in 

terms of modeling- that is to approve the potential “good” borrowers (i.e. those that will 

eventually fulfill their contractual agreement) and subsequently reject applications of 

potential “bad” ones (i.e. those that will eventually not fulfill their contractual 

agreement) by maintaining the risk at low levels, has its roots back in the 1950s. 

Specifically, Markowitz H. (1952) through his groundbreaking work and through his 

book (Portfolio Selection: Efficient Diversification of Investments, 1959), established 

the foundations of modern portfolio theory. Though not studying or measuring credit-

risk directly, his pioneering book and article were the first to systematically present the 

concepts of the portfolio optimization theory in general, laying the groundwork for 

future advancements in the field. Markowitz introduced the idea of approaching 

portfolio construction based on the mean and variance of a collection of assets. He 

established a key theorem; the mean-variance portfolio theory -which involves 

minimizing variance for a given level of expected returns, thus creating an efficient 
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frontier, offering investors a range of portfolios to select from based on their individual 

risk and return preferences. A crucial insight from Markowitz's theory is the need to 

consider the correlation of assets rather than evaluating them in isolation, hence, by 

acknowledging how each security's movements are correlated with that of others, 

investors can construct portfolios that achieve the desired returns with lower risk 

compared to portfolios that did not take into account these correlations. Additionally, 

Markowitz's theory emphasized the importance of diversification in reducing portfolio 

risk. This principle is crucial in credit risk management, where diversifying the types 

of credit exposures (across different sectors, geographies, borrower types) can reduce 

the risk of significant losses from defaults, while also aiming for the best possible 

returns (risk-return trade-off). Markowitz's modern portfolio theory not only 

revolutionized investment management but also laid the conceptual and methodological 

foundations for significant advancements in credit risk management.  

Fair & Isaac Company - FICO (1956), introduced the FICO Score, that was the 

first risk score developed to evaluate credit risk, as stated by Amos T. (2019). Designed 

as a generic score, it assesses the risk level of potential or existing customers using 

information from their credit files held by credit bureaus or credit reporting agencies 

like Experian, Equifax, or TransUnion in the U.S., Tiresias Bank Information Systems 

SA in Greece. Although many vendors have since developed similar generic, one-size-

might-fit-all risk scores, there is an increasing trend towards developing customized in-

house risk scores due to a variety of influencing factors. For the following years, the 

literature on measuring credit risk mainly focused on the creation and evaluation of 

univariate models -that compared borrowers' accounting ratios with industry norms, 

and multivariate models -that combined and weighted these variables to produce credit 

risk scores or default probability measures. If these metrics exceeded a critical risk level 

threshold -that corresponds to a certain probability threshold, loan applications were 

either rejected or subject to closer scrutiny. Among the techniques and models studied 

during that time, three principal techniques gained a lot of attention and used in multi-

variable credit-scoring systems: logit and probit models (part of the generalized linear 

models family), and discriminant analysis. Between the aforementioned statistical 

models, discriminant analysis and the logit model established as leading methodologies, 

not only due to the accuracy of their predictions, but also for their interpretable results. 

The Z-score model, developed by Altman E. (1968) and based on discriminant 

analysis, employs a formula derived from a study of 66 companies, half of which had 

declared bankruptcy. This formula assesses a company's financial stability or ability to 

remain solvent, using a metric referred to as the Z-score:  

𝑍 = 1.2𝑋1 + 1.4𝑋2 + 3.3𝑋3 + 0.6𝑋4 + 1.0𝑋5 

where 

X1 = Working Capital / Total Assets 

X2 = Retained Earnings / Total Assets 

X3 = Earnings Before Interest and Taxes (EBIT) / Total Assets 

X4 = Market Value of Equity / (Book Value of) Total Liabilities 
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X5 = Sales / Total Assets 

Utilizing this particular formula, Altman constructed a decision-making 

guideline. According to this guideline, a Z-score greater than 2.99 indicates that a client 

is financially stable, whereas a Z-score of 1.80 or less suggests financial instability. For 

Z-scores that fall between 1.8 and 2.99, the model is unable to definitively classify the 

client as either solvent or insolvent. 

In 1977, Altman et al. (1977) developed an advanced version of the original Z-

Score model, introducing significant improvements. This study aimed to create, 

analyze, and evaluate a novel bankruptcy prediction model that takes into account the 

trends -of that time- in business failures, by refining the use of discriminant statistical 

methods. The authors outlined multiple reasons for developing a new model, with 

empirical evidence supporting this initiative. They named the model ZETA, and this 

model successfully identified companies at risk of bankruptcy up to five years before 

their failure, focusing on a dataset of manufacturing and retail corporations. The Z-

Score model has been further revised (Altman E., 2000), so that it could be applied to 

firms of the private sector as well. 

Another notable research that was conducted is that of Martin D. (1977), which 

focused on estimating the probability of bank failure. In his work, Martin D. pinpoints 

the significance of various financial ratios and their combinations to predict bank 

failures, by utilizing historical data of Federal Reserve member banks from 1970 to 

1976, where 58 banks identified as failures. As predictors were use specific financial 

ratios, which were categorized into asset risk, liquidity, capital adequacy, and earnings. 

The study compared the logit model's predictions with those from linear discriminant 

models, finding that while the discriminant models could classify banks into failed or 

non-failed categories similarly to the logit model, the latter provided more useful 

probability estimates for different levels of risk. Finaly, it was presented that for simple 

classification purposes, discriminant analysis could suffice, but for more accurate 

probability estimates -which is a focal point in risk assessment analyses, the logit model 

is preferred. 

A lot of research was also done by focusing on specific problems that the credit 

scoring models of that time had. Specifically, as seen through the work of Eisenbeis R. 

A. (1978), a more holistic and statistically robust approach to credit scoring model 

development was critical, stating that models that not only should minimize default 

rates -but also optimize profitability, taking into account the broader implications and 

dynamics of granting credit loans. It underscored the complexity of designing 

statistically sound credit scoring models, by making special referral to various statistical 

violations that credit models of that time suffered, such as violating statistical 

assumptions upon certain models were based on, misinterpreting individual variables 

and thus misleading the decision-making process, sampling bias that might be 

introduced to the analysis by using non-representative samples, etc. Finaly, it 

pinpointed the importance of addressing these issues as crucial for creating models that 

are both reliable and compliant with regulatory standards of that time. 
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Another research that resonated on the same wavelength by further highlighting 

issues faced by existing models of that time, was that of Myers G. and Siera S. (1980). 

This study was focused on the alarming increase in student loan default rates in Mexico, 

with national rates rising from 4.3% in 1972 to 18.5% by 1975. The research aimed to 

develop and test a discriminant analysis model that could predict the likelihood of loan 

default based on characteristics available at the time of loan application and subsequent 

academic performance (i.e. GPA of each student). While the derived discriminant 

analysis models offered some insights, they fall short of providing reliable predictions 

and to accurately forecast default probabilities. A call for additional research to uncover 

more effective predictive variables and to refine analytical models was made. 

In 1984, the Credit Valuation KMV model was introduced by Vasicek A. (1984). 

This innovative approach leveraged market signals and quantitative models to evaluate 

the PD and the ELs. Among others, it emphasized on incorporating key elements such 

as market-based valuation instead of subject-based valuation, EL calculation and loan 

pricing into the methodology for loan pricing and the analysis of systematic risk in 

portfolio management. This model assumed the efficiency of markets in reflecting all 

available information in the prices of securities and views a borrower's creditworthiness 

through the prism of their asset value. It enabled the calculation of loan default 

probability and expected loss based on a myriad of factors including the initial market 

value, debt amount, and the volatility of asset returns. The paper also underscores the 

importance of portfolio diversification in reducing the variance of expected loss. 

Significant research was also made for finding specific predictors for estimating 

PD. Such study was that of Mona J. and Dixie L. M. (1989). This research focused on 

analyzing the characteristics of borrowers and loan contracts to determine factors 

associated with the resolution of overdue accounts. Through logit regression analysis, 

the study pinpoints the significance of certain traditional variables assessed at the time 

of the loan application, such as borrower's occupation, property age and location, in 

predicting PD. Additionally, it examined variables available only at the time of 

delinquency (i.e. performance information), like the reason for becoming delinquent 

and the borrower's payment history, as important indicators of default risk. The study 

is based on data from a major mortgage lender but suggests that its findings could be 

relevant for broader credit risk management practices -given the commonalities in data 

analysis across different lending scenarios, including the evaluation of credit history, 

financial status and the demographic information of the potential borrower. 

Notable research was also made by Lawrence et al. (1992), analyzing the default 

risk in mobile home credit. This paper, building on a foundation laid by numerous 

studies over the previous decades, sought to enhance the understanding of factors 

influencing borrowers' defaulting on their obligations by analyzing both traditional 

variables that considered at the loan's inception -and those observable at the time of the 

default. Acknowledging the limitations cited in previous research regarding the scarcity 

of detailed, publicly available databases, this study aimed to broaden the analytical 

framework by incorporating a more extensive dataset. The research uniquely 
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contributed by focusing on the underexplored -at that time- area of mobile home 

lending, utilizing one of the most comprehensive loan datasets from the 1980s. The 

findings pinpointed the importance of traditional variables like loan-to-value ratios, 

debt size, and payment coverage in assessing the PD. However, they highlighted the 

paramount significance of borrowers' payment history in predicting default risk for 

older loans, including the duration of the loan (i.e. number of tenors), recent 

delinquency status (i.e. current/last month, previous two months, previous six months, 

etc. perfromance history), as well as patterns of 30-day and 60-day delinquencies. The 

study also stated that recent delinquency patterns (i.e. historical delinquencies within 

the last year of the observation date) emerge as the most reliable and strong indicators 

of the PD estimation. 

Among the years, several studies focused on the sampling bias introduced in the 

credit risk models, which constituted a significant issue with the way credit scoring 

models are typically developed, applied and monitored. More specifically, PD models 

are built using historical data from individuals who have previously been accepted for 

loans or credit. This approach inherently introduces a bias because the data only reflects 

the behavior and characteristics of people who have already been approved -and thus 

have passed through the approval/rejection decision making process. The core problem 

here is that the models are intended to evaluate all the forethcomening applicants -both 

that will be approved and rejected as well. The rejected population is expected to be 

qualitatively and significantly different from the approved population, since the rejected 

population is of higher credit risk. Hence, if these models are based solely on the data 

from accepted applicants, they may not accurately predict the risk or behavior of the 

broader applicant pool, which includes both potentially accepted and rejected 

applicants. This sampling bias raised many concerns about the appropriateness and 

effectiveness in evaluating new applications, which could come from anyone in the 

general population, not just those similar to previously accepted applicants. Greene W. 

(1998) pinpointed this issue, stating that such sample selection biases could lead to 

inferior classification results. 

The aforementioned issue, however, is suggested to be confronted by not only 

utilizing the science of statistics, but also incorporating the business credit risk logic. 

As Sabato G. (2008) wrote in his relevant work “Solving Sample Selection Bias in 

Credit Scoring: The Reject Inference, Bank of Scotland”, in page 1, “… Some 

statisticians argue that reject inference can solve the nonrandom sample selection 

problem (e.g. Copas and Li (1997), Joanes (1994), Donald (1995) and Green (1998)). 

In particular, reject inference techniques attempt to get additional data for rejected 

applicants or try to infer the missing performance (good/bad) information. The most 

common methods explored in the literature are: enlargement, reweighting and 

extrapolation (see Ash and Meester (2002), Banasik et al. (2003), Crook and Banasik 

(2004) and Parnitzke (2005)). However, some authors (e.g. Hand and Henley (1993)) 

demonstrate that the reject inference methods typically employed in the industry are 

often not sound and rest on very tenuous assumptions. They point out that reliable reject 

inference is impossible and that the only robust approach to reject inference is to accept 
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a sample of rejected applications and observe their behaviour”, and further continued 

“… in contrast with most of the available literature, we consider the business 

perspective more relevant than the statistical one in the financial industry context. As 

such, we conclude that increasing the prediction accuracy of scoring models should not 

be regarded as the main goal of reject inference techniques. The possibility of including 

rejects in the development sample should be considered, instead, as an opportunity to 

replicate the experience and the decision taken by underwriters, credit analysts or 

branch managers when assessing applicants’ creditworthiness”.  

Hence, throughout the years, many statistical methodologies have been 

implemented in the wider context of credit risk and more specifically in analyses 

involving the PD estimation, to mitigate this inherent sampling bias. Nevertheless, since 

not all of these could be covered, the most important will be mentioned. Some of the 

most prevalent are represented in the paper by Ehrhardt A. et al. (2021), where re-

weighting, re-classification, as well as fuzzy parcelling/augmentation are examined. 

The fuzzy parcelling/augmentation technique is a statistical method that offers 

versatility and constitutes a great solution to the aforementioned problem. Specifically, 

the fuzzy parcelling/augmentation method is the procedure in which each rejected 

applicant is hypothetically considered one time as if he/she has been approved and has 

been classified as “good” applicant, and one time as if he/she has been rejected and has 

been classified as “bad”. However, each inferred observation receives a specific weight 

-which in the fuzzy parcelling/augmentation method corresponds to a probability. This 

probability is a model estimate (in previous years it was mainly based on a LR model, 

nowadays it could be a ML model as well) based on the approved/known population, 

for which the financial institution has obtained enough historical data (historical 

payments, credit bureau information, demographic characteristics, etc). Hence, each 

doubled observation of the rejected population is inferred as approved and “good” 

applicant - with the corresponding probability of being “good”, and inferred as 

approved and “bad” - with the corresponding probability of being bad, constituting 

complementary probabilities that add up to 1. Finally, by obtaining the revised 

obsevations with each approved (known) applicant being represented one time, and 

each rejected applicant being represented 2 times with their corresponding weights, a 

weighted modeling analysis takes place with each rejected applicant being represented 

as one observation. The fuzzy parcelling/augmentation, as well as the rest of the 

aforementioned reject inference methods, are also presented by Raymond A. (2007)  

through his book “The Credit Scoring Toolkit”, which constitutes a great reference for 

credit risk assessment and for the estimation of the PD.  

 

In his work, Amos T. O. (2019) presents consicely the model development 

proceedure, as well as various statistical metrics (i.e.industry standards) upon the 

performance of the model is being monitored. More specifically, during the initial steps 

of the development proceedure of a credit risk model, the event definition should be 

established (i.e. the criterion upon which the “good” - “bad” classification will be made) 

and the historical data that will be used (i.e. demographic, transactional, performance 

and credit bureau data, etc.). Furthermore, the sample that will be used as development 
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sample should be defined -that is the Known Good-Bad population (KGB)- which is 

nececarry to have enough time after the issuance of each loan -in order for the loans to 

have enough time to “mature” and make the Good-Bad classification possible. As a 

next step, variable analyses take place, by proceeding with qualitative and quantitave 

checks, variable creations (such as the debt-to-income ratio characteristic), outlier 

handling, variable discretization -that is to segment continuous and categorical 

variables into classes based into patterns which associate the corresponding predictor 

with response variable (i.e. good-bad classification) by using statistical metrics such as 

the Weight of Evidence (Douglas L Weed, 2006) and the IV criterion (Bruce L., David 

B., 2013), that is known as KGB variable analysis. Subsequently, the development of 

the KGB Scorecard takes place, where only information from the approved population 

is utilized. Right after, the reject inference procedure follows, where duplicate values 

are created for the rejected applicants with each receiving a probability/weight of being 

“good” and “bad” respectively -probabilities that are estimated by using the KGB 

scorecard. By utilizing the KIGB sample that has been created (i.e. Known Inferred 

Good Bad), the same procedure as previously descibed follows. Hence, by 

incorporating the rejected applicants to the analysis -as if they have been approved, the 

KIGB variable analysis and KIGB Scorecard development follows. As final step, the 

final Scorecard is being evaluated by utilizing out-of-sample data (i.e. data that were 

not included to the development sample), in order for an unbiased estimation of the 

generalization ability of the model to be made. Some of the most common metrics that 

are widely used in the context of credit scoring and upon which the validation of the 

model’s generalization ability and stability over-time are being made, are the KS 

statistic, the Gini’s Index,  AUC, PSI and the IV criterion -that has already been 

mentioned. 

The KS statistic quantifies the separation between the score (or the probability) 

distributions of the “good” and “bad” borrowers (Zheng Y., Yue W. et al., 2004). The 

Receiver Operating Characteristic (ROC) Curve plots the True Positive Rate (TPR) 

against the False Positive Rate (FPR) at various probability threshold settings. The TPR 

indicates the proportion of actual positives correctly identified by the model, while the 

FPR indicates the proportion of actual negatives incorrectly classified as positive. The 

area under this ROC curve -AUC (Andrew P. Bradley, 1997), quantifies the overall 

ability of the model to correctly classify the positives and negatives across all possible 

classification thresholds. An AUC of 0.5 indicates no discrimination ability  -equivalent 

to random guessing, whereas an AUC of 1 indicates perfect discrimination. The Gini 

Index (Gastwirth J. L., 1972) is another popular discrimination metric used in credit 

risk, and is a linear transformation of the AUC of the ROC curve, and measures in 

essence the same thing -just in different scale. The PSI (Bilal Y. and Joshua N., 2021) 

is a statistical measure used to determine how much a variable's distribution has shifted 

over time between different samples, typically between a baseline (e.g. model 

development sample) and a more recent or validation sample.   

https://www.researchgate.net/scientific-contributions/Douglas-L-Weed-43624554?_sg%5B0%5D=3U9Cb6crIZQwIhfmiiY4GsV12qKS7kCFCALbRwkzLhyN-0gUpooeX9Ppk6wfjMbBCztROBI.frlquitA7Hl7_EKGYYCE4RBc5c5gLudmBGMivS5zEfEI5LUjZSUMeJRnSPqqsAFLnu6bzOQIm3PdatXB9gWrbg&_sg%5B1%5D=K4rXFJThkC2PsNvCeN6mLnmDc4VPxhr1-WRKbK4GCGhT7scZZo_0lq1XQTJbkX7tIJJ1lzo.ZvhUgm0KLhp8WgtkbCWnuZqLmseOWKZ9Ta7YdgX-ALvmgjne8anX7gI-Bt53qGIv3QWJ1MqzzxL22Fnv5AT-lQ&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
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3.2 Supervised Statistical Machine Learning Methods in Credit Risk: 

 Literature Review and Recent Advancements 

In the 1990s, some pioneering studies at the time focused on supervised ML 

methods for assessing credit risk. However, these efforts were hindered by limited 

computational power, scarce data availability, and challenges in interpreting the 

algorithms -a problem that persists even today. This prevented ML from flourishing in 

the area of credit risk and PD estimation, where the model intrepretation is a 

prerequisite, and not just and extra advantage. Nowadays, however, the scenario is 

different, since technological advancements and the abundance of data have ignited the 

growth of the ML field. Consequently, there has been a surge in research on statistical 

ML algorithms, particularly in the assessment of credit risk and the estimation of the 

PD.  

In 1992, triggered by the high rate of bank failures in the US, Tam K.Y. and 

Kiang M. (1992) highlighted the urgent need for developing predictive models to 

anticipate such downturns. In their work, a comparison between discriminant analysis, 

LR, KNN, ID3 (i.e. an early classification tree method) and NN modeling was made. 

After presenting the pros and cons of each method, it was found that the discriminant 

analysis model was outperformed by the other, and that among the rest of the models, 

no single model uniformly was the best across all scenarios tested, emphasizing the 

need for model comparison and selection based on specific predictive requirements and 

constraints. Nevertheless, the paper suggested that while NN, particularly those with 

complex architectures, generally provided superior predictive performance for bank 

failures, the choice of model should be guided by -among other- the economic context, 

and the available data's time frame relative to the prediction target. Additionally, NN 

were suggested as potentially beneficial for other financial applications -such as PD 

estimation and loan evaluation, beyond just bankruptcy prediction. 

However, Banu Y. and Jonathan C. (2000), by conducting a comparative 

analysis of predictive performances across LDA, NN, GAs (i.e. Genetic Algorithms), 

and Decision Trees -using credit scoring data, revealed LDA's superiority in terms of 

both accuracy and computational efficiency. The study suggested the need for further 

research, especially to explore the impact of different sample sizes and the cost 

implications of incorrect classifications, to better understand the strengths and 

limitations of each technique in practical applications. The study also notes that even 

though NN and GAs are robust enough to model non-linear relationships, they might 

got trapped in local optima and thus not generalize well in hold out samples.  

In the following years, with the help of the groundbreaking technological 

innovations, the availability of data as well as the computational power both increased 

dramatically. So did the studies regarding the statistical ML models in the credit risk 

assessment. Loris N. and Alessandra L. (2009), cocnluded that ensemble methods, 

particularly the Random Subspace (RS) method, can effectively improve the accuracy 

and reliability of bankruptcy prediction and credit scoring systems. As noted, the 

concept of ensemble classifiers is to leverage multiple classifiers to achieve better 
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predictive performance than individual classifiers. In this study, four ensemble methods 

were assessed: Bagging (random subsets of training data are used to train individual 

classifiers), RS (each classifier is trained using a random subset of features), Class 

Switching (random switching of class labels in training data) and Rotation Forest 

(application of PCA to subsets of features -followed by recombination). The classifiers 

that were tested were NN, Support Vector Machines (SVM) and K-Nearest Neighbors 

(KNN). Different international credit datasets were utilized (in order to ensure the 

robustness of the predictions), and the evaluations were made upon using the metrics 

of Accuracy, AUROC and Type I/II errors. It also was shown that the Levenberg-

Marquardt NN, provided the best results across the tested datasets, also suggesting that 

feature correlation (which RS exploits by selecting random feature subsets) is 

significant in bankruptcy prediction and credit scoring tasks. Finaly, this study 

contributed to the broader understanding of applying statistical ML techniques in the 

context of credit risk assessment, demonstrating the potential to surpass traditional 

statistical methods. 

Another notable paper that strongly focused on implementations of statistical 

ML algorithms in the field of credit risk, is that of Stefan L., Bart B. et al., (2015). As 

pinpointed, previous studies often use limited datasets, neglecting newer methods and 

comprehensive statistical metrics. The study benchmarked 41 classification methods -

across eight significant credit risk datasets, some of which were heavily imbalanced, 

hence evaluated the impact that imbalance datasets could have to the performance of 

each classifier. The need for interpretable credit scoring models is also stressed, as these 

models must not only be accurate -but also interpretable to ensure they meet regulatory 

standards, so they could effectively be managed and monitored. Additionally, the 

evaluation of the different statistical ML models was made upon using multiple 

performance metrics, which reflected the complexity of evaluating classifiers in a credit 

scoring context, as different metrics provide different insights.  

In terms of model comparison, in the same study, Artificial NN ranked better 

than LR -indicating advancements since earlier studies, however the empirical evidence 

suggested that no single advanced method consistently outperformed simpler statistical 

techniques. Furthermore, as noted, the complexity or novelty of a classifier does not 

necessarily correlate with better predictive performance. The paper also explored how 

small increases in the accuracy of classifiers such as LR, artificial NN, RF , and HCES-

Bag can lead to notable reductions in misclassification costs, directly impacting the 

bottom line of the financial data of the credit institution. When the cost of misclassifying 

a bad customer is significantly higher than misclassifying a good one, classifiers like 

RF and NN sometimes perform better than HCES-Bag. This outcome suggested that 

these models might be less conservative, potentially producing fewer false negatives, 

which become more financially punitive under these respective cost settings. Finally, a 

balanced and pragmatic approach to adopting new technologies is suggested -

considering both statistical performance and the potential business added value of more 

accurate predictions in high-stakes financial environments.  
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In credit risk and PD assessment, the calibration of the estimated probability of 

the statistical ML models should also be examined. As presented by Pedro G. F. and 

Hugo D. L., (2017), while much attention was given to the discrimination and risk 

ranking abilities of these models, calibration  -the accuracy of mapping a credit score 

to the actual (observed) probabilities of default- is less explored, especially with 

realistic, noisy, and imbalanced datasets, and the increasing use of ML in the field of 

credit risk requires careful calibration -as the more comple ML models often do not 

naturally produce calibrated probabilities. Instead of focusing solely on the industry 

standards (i.e. KS, Gini, AUROC), the Brier Score metric is utilized to assess 

calibration. This metric measures the mean squared difference between predicted 

probabilities and the actual outcomes, allowing an evaluation of how close the 

predictions are to reality without relying on predefined risk categories. LR, RF and GB 

models were compared, by using Isotonic Regression and Sigmoid function (i.e. Platt 

Scaling) for the probability calibration, and both the RF and GB showed significant 

improvements when Isotonic calibration was used. 

A thorough literature review in credit risk assesment with specific focus in the 

predictors used among the years for the PD estimation, was made by Büşra A. Ç. and 

Erman C., (2021). The integration of big data -in general and not only in credit risk, 

have indeed flourished the field of ML, however it also raises concerns about data 

privacy, security, and the need for regulations to ensure fair and transparent credit risk 

assessments. The move towards integrating non-financial data, such as socioeconomic 

and behavioral factors, into credit scoring models reflects a broader trend towards more 

holistic approaches. The field of credit risk assessment is evolving from a model based 

primarily on historical financial data to one that integrates a wider spectrum of data 

sources, including those derived from digital footprints -that is behavioral data from 

mobile usage and social networks, user-generated content, and other non-structured 

data available through online platforms. The use of financial predictors has decreased, 

while psychometric and alternative variables have gained prominence, especially in the 

latest years. Though this shift is facilitated by advancements in big data analytics and 

the increasing availability of non-traditional data source, it also necessitates careful 

consideration of ethical implications and regulatory requirements to ensure that these 

innovations benefit both financial institutions and borrowers without compromising 

privacy or fairness.  

Büşra A. Ç. and Erman C., (2021) also make special references to some 

predictors being consistent over-time, whereas some other seem to have lost 

discriminatory power or may have stopped being used that much from credit risk model 

developers. Factors such as home ownership, number of dependents, and wealth (i.e. 

socioeconomic characteristics) are consistently significant across studies over the years, 

highlighting their robustness in predicting the PD. Other socioeconomic factors like 

social class and employment status also show strong predictive power, but are not as 

universally significant across all studies. Furthermore, personality characteristics such 

as self-control, emotional stability, and intelligence are significant predictors, and 

factors like risk-taking (such as betting activities), and spending patterns are also 
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critical, indicating that how individuals perceive and handle money correlate with their 

financial stability. Finally, factors such as life-altering events and educational contexts 

(e.g. field of study, GPA) are correlated with the borrower’s financial behavior, 

indicating that personal circumstances can profoundly impact financial decision-

making. 

 

3.3 Summary of Literature Review 

The historical evolution of credit risk assessment in financial institutions has 

undergone a significant transformation from subjective judgment-based methods to 

advanced statistical models, a shift documented thoroughly in scholarly research across 

several decades. Initially, credit decisions were largely influenced by personal 

evaluations and basic financial metrics. However, the inherent biases and inefficiencies 

in such systems led to the development of more objective and data-driven models, 

driven by the need to manage portfolios of credit exposures systematically. The 

introduction of the FICO Score marked a critical turning point in credit risk assessment, 

paving the way for the development of standardized risk scoring systems that assess 

borrower risk based on comprehensive credit data. More sophisticated statistical models 

such as discriminant analysis, LR and probit models were utilized, for more precise and 

consistent PD estimates. Studies have also highlighted the need for models to not only 

predict credit risk but also optimize profitability and comply with regulatory standards. 

Additionally, the development of PD models -which relies on historical data from 

individuals previously accepted for loans or credit, introduces an inherent sampling bias 

that has been extensively studied throughout the years. This sampling bias, being one 

of the most diachronic issues confronted in credit-scoring modelling, should be 

confronted with the incorporation of business credit logic, in order for the credit scoring 

models to produce sound and robust estimates. 

The performance of these models should be monitored on a regular basis. 

Metrics such as the KS statistic, Gini Index, AUROC,  PSI, and the IV criterion help 

measure the model's ability to differentiate between good and bad loans, as well as to 

monitor its stability over time. Through these methodologies and metrics, credit scoring 

models aim to mitigate inherent biases and improve their predictive accuracy, 

ultimately enhancing financial decision-making processes. 

Over the past few decades, significant technological and methodological 

advancements have marked the evolution of ML applications in credit risk assessment 

and PD estimation. The traditional statistical models that were immensly studied among 

earlier years, were favored by low computational need and by the inherent 

interpretability they offer. These traditional Statistical models made the PD assessment 

an imperative need for financial institutions, as investments of higher risk could be 

avoided, and greatly assisted financial institutions to effectively segment and rank risk. 

Nevertheless,  groundbreaking innovations and the abudancy of various types of data, 

gave way to various studies in the field of ML. Various complex predictive models have 
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been studied and implemented in the wider context of credit risk, and based on specific 

requirements and constraints, the need for an appropriate model selection is now 

necessity. Furthermore, studies began to challenge and refine the accuracy of different 

credit scoring models, emphasizing the importance of model comparisons in practical 

and business applications. Additionally, a shift towards integrating non-financial data 

underscores a broader trend in credit risk assessment. This trend moves beyond using 

traditional financial predictors,  incorporating socio-economic and behavioral data, 

thereby enhancing the models' predictive power and reflecting a holistic view of 

borrower risk. This, nevertheless, raises many concerns about data privacy issues and 

poses new challenges regarding ethical considerations and regulatory compliance. 
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C H A P T E R  4  
 

Theoretical Background of the  

Statistical Machine Learning Methods  

That Will Be Studied 
  

4.1 Statistical and Machine Learning Models 

Data science and statistics encompass a robust set of theoretically solid 

techniques that enable us to either learn from data or tackle significant problems in 

everyday life. We often deal with classification problems, where observations are 

identified by various features (characteristics) and a corresponding label (response 

variable). In such cases, we need to develop a rule that can predict the label from a 

predetermined set of possible values when provided with the appropriate features. 

These types of problems are diverse, appearing in various forms and across different 

sectors. However, before making a label prediction for each observation based on its 

features, a probability estimate is calculated for the observation belonging to each 

potential class label. This process is particularly important in fields like credit risk, 

where estimating the PD is crucial. For instance, when evaluating potential loan  

applicants, the focus is more on the probability estimates provided by the model for 

each applicant being "good" or "bad", rather than merely predicting just a label.  

 

4.1.1 Logistic Regression 

LR stands out as a particularly effective model for estimating probabilities and 

solving classification issues (supervised statistical learning). It belongs to the broader 

family of generalized linear models (GLM). These models were essential because 

traditional Linear Regression was either inadequate for handling a wide array of 

conceptuall soundness issues or failed to meet the necessary underlying assumptions 

for proper implementation. When tackling a classification problem where the expected 

label adheres more closely to a discrete distribution like that of Bernoulli, (Multinomial) 

LR can be used, which is adept at modelling such problems. This chapter was written 

upong using notes of the following professors: Iliopoulos G. (2022), Politis K. (2022), 

Koutras M., Boutsikas M. (2011).  

LR is employed to predict the probability of an event occurring. The response 

distribution used is the Bernoulli distribution, which falls within the exponential family 

of distributions. Therefore, in the case of X following the Bernoulli distribution we find 

that  

𝑋~𝐵(1, 𝑝) => 𝐸(𝑋) = 𝑝 
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where p  is the probability of an even occuring (or not occuring).  

As a link function Logit is mainly used: 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑖) = log⁡(
𝑝𝑖

1 − 𝑝𝑖
) 

 
Figure 4.1.1: Logit link function 1 

Other known link functions are the probit and the Complementary log-log, that will not 

be further discussed throughout the current thesis. 

The logit model is the 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑖) = log (
𝑝𝑖

1−𝑝𝑖
) = 𝑏0 + 𝑏1𝑥1𝑖 +⋯𝑏𝑘𝑥𝑛𝑖             (4.1.1.1) 

The need for a link function stems from the fact that in traditional regression models, 

based on the types and values of the explanatory variables, the response variable could 

potentially vary within the entire range of real numbers. In our scenario, however, 

where the response variable is a probability, it becomes evident that often the 

fundamental condition -that the values are constrained within the interval [0,1]-would 

be frequently violated. The link function helps us resolve this issue by appropriately 

adjusting the response variable's range. The parameters are estimated using the 

maximum likelihood method. 

We aim to estimate the vector 

𝛽𝑇 = (𝛽0, … , 𝛽) 

The system that emerges from setting the logarithm of the derivative to zero needs to 

be solved 

𝑑𝛽

𝑑𝛽𝑖
= 0 

 
1 Figure from https://math.stackexchange.com/questions/3816925/how-to-adjust-logit-functions-input-domain 

https://math.stackexchange.com/questions/3816925/how-to-adjust-logit-functions-input-domain
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for each i. 

For a random variable that follows the Binomial distribution with parameters n,p 

𝑓𝑌(𝑦; 𝑝) = exp[𝑦𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) + 𝑛𝑙𝑜𝑔(1 − 𝑝) + 𝑙𝑜𝑔 (

𝑛

𝑦
)] 

Since n=1, we result to a Bernoulli distribution, thus 

𝑓𝑌(𝑦; 𝑝) = exp[𝑦𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) + 𝑙𝑜𝑔(1 − 𝑝)]𝑐(𝑦) 

where the function c(y) does not depend on the parameter p. 

Subsequently, the likelihood of the sample is the  

𝐿(𝑝; 𝑦) = exp[∑𝑦𝑖

𝑛

𝑖=1

𝑙𝑜𝑔 (
𝑝𝑖

1 − 𝑝𝑖
) +∑log⁡(1 − 𝑝𝑖)

𝑛

𝑖=1

]𝑐𝑛(𝑦) 

with pT = (𝑝1, … , 𝑝𝑛), ⁡y
T = (𝑦1, … , 𝑦𝑛) 

Ignoring the cn term -which is not connected to the parameters, the logarithm of the 

likelihood function is expressed as 

𝑙(𝑝; 𝑦) = ⁡ ∑ 𝑦𝑖
𝑛
𝑖=1 𝑙𝑜𝑔 (

𝑝𝑖

1−𝑝𝑖
) + ∑ yilog⁡(1 − 𝑝𝑖)

𝑛
𝑖=1                   (4.1.1.2) 

Substituting the original linear relationship (4.1.1.1) into the equation (4.1.1.2), we find 

that 

𝑙(𝛽; 𝑦) = ⁡∑ ⁡

𝑛

𝑖=1

∑𝑦𝑖𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

−⁡∑log⁡(1 + 𝑒𝑥𝑝∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

)

𝑛

𝑖=1

 

 

By solving equation (4.1.1.2) for pi, we find that 

𝑝𝑖 =⁡
exp⁡(∑ 𝛽𝑗𝑥𝑖𝑗)

𝑘
𝑗=0

1+⁡exp⁡(∑ 𝛽𝑗𝑥𝑖𝑗)
𝑘
𝑗=0

                             (4.1.1.3) 

Subsequently, by substituting equation (4.1.1.3) into equation (4.1.1.2), we obtain 

𝜕𝑦

𝜕𝛽𝑟
=⁡∑𝑦𝑖𝑥𝑖𝑟

𝑛

𝑖=1

−⁡∑𝑝𝑖𝑥𝑖𝑟 =⁡∑(𝑦𝑖 − 𝑝𝑖)𝑥𝑖𝑟

𝑛

𝑖=1

𝑛

𝑖=0

 

which, when set to zero for each r, results in a system of k+1 equations with respect to 

the parameters βr contained within pi from equation (4.1.1.3). This system can only be 

solved using numerical analysis methods through a statistical package. To find the 
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values, the iterative method of Newton-Raphson is utilized. 

From the equation (4.1.1.3), once we have obtained the estimates of βj from the 

statistical package, we can find the corresponding estimates of pi through the 

𝑝̂𝑖 =⁡
exp⁡(∑ 𝛽̂𝑗𝑥𝑖𝑗)

𝑘
𝑗=0

1+⁡exp⁡(∑ 𝛽̂𝑗𝑥𝑖𝑗)
𝑘
𝑗=0

                                    (4.1.1.4) 

In the context of statistical inference, we can conduct tests on the model and its 

parameters. The most basic tests concern the parameters βi. Often, we need to test 

whether the true value of a parameter is equal to zero, as this implies that the response 

variable is not statistically significant connected with the corresponding explanatory 

variable, or given that also other explanatory variables are present in the model, the 

specific one is not deemed statistically significant. 

Thus, for the test of the statistical hypothesis  

H0: βi = 0 

H1: otherwise 

we leverage the asymptotic property of the normality of the maximum likelihood 

estimators and use the Wald test statistic  

𝑤 =⁡
𝛽̂

𝑠(𝛽̂𝑖)
 

which under the null hypothesis approximately follows the standard normal distribution 

Ν(0,1).  

Therefore, we reject the null hypothesis when  

|
𝛽̂

𝑠(𝛽̂𝑖)
| > 𝑧𝛼/2⁡ 

where α is the level of significance set by the analyst and zα/2 is the upper percentile 

point of the standard normal distribution. 

A significant concept in LR modeling is the Deviance 

𝐷 =⁡−2𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑚𝑜𝑑𝑒𝑙) 

With this quantity, and through the generalized likelihood ratio test, we can proceed to 

tests for the contribution of new incoming variables in nested models. Nested models 

are considered two models for which the set of explanatory variables of one model is a 

subset of the explanatory variables of the other model. 

Therefore, having a model m1 and a nested model m2, we can calculate  
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𝐷2 − 𝐷1 = ⁡−2[𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑚2) − ⁡𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑚1)] 

where the difference in deviations follows approximately a χ2 distribution with p 

degrees of freedom, that is the difference in the degrees of freedom of the regression of 

the 2 models. 

Specifically,  the following hypothesis is being tested 

H0: m1 – m2 the difference between m1 & m2 is not statistically significant 

H1: the models differ significantly  

As we have seen, LR can estimate the probabilities pi through the formula 

(4.1.1.4). Therefore, the way we can use the LR model as a classification tool is as 

follows. We choose a threshold for pi which is between 0 and 1, and if the vector of 

explanatory variables for the new observation, adjusted to the estimated parameters of 

the true parameters of βi, gives us an estimate above the threshold we have set, then we 

classify this observation as a success, hence as 1. Otherwise, we consider it as a failure 

and label it with the value 0. The most common threshold is 0.5, but it can significantly 

vary across difference industries, studies, as well as it greatly depends on the metric 

that need to be optimized. 

 

4.1.2 Decision Trees 

Before moving on to the RF model, an introduction to the wider family of the 

Decision Trees will be made. Decision Trees are adept at addressing both regression 

and classification (in which we will focus on) issues. The principle behind decision 

trees is to establish a pathway from the root to the leaves, dictated by the 

interconnections of the data at hand. These trees comprise several nodes, each 

containing conditions relevant to our observations' predictors. The process moves 

forward depending on whether these conditions are satisfied. The bibliography for this 

sub-section is Bersimis S. (2021), Iliopoulos G. (2023), Jerome H. F., Robert T., et al. 

(2009). 

A decision tree consists of nodes, which fall into one of the following categories: 

• Root Node (or Parent Node) 

• Internal Nodes 

• Leaf Nodes 

The Root Node (also known as Parent Node) is the initial node, unique in that it 

feeds other nodes but is not fed by any other node. Following the Root Node, there are 

the Internal Nodes, which both receive input from and provide output to other nodes, 

branching out two or more other Internal Nodes. Lastly, the Leaf Nodes are those that 

only receive input from other nodes -producing no other node. The connections between 

the nodes are referred to as Branches. 
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Decision trees start from the root and filter through the given features (or 

Characteristics or Predictors) of the observation we wish to classify within the internal 

nodes, eventually leading to a leaf. This leaf determines the final category into which 

the observation will be classified. The process works through a condition related to the 

node; depending on whether the outcome of this condition is True or False, it decides 

the next step of the process. If the condition is met, we continue to the left internal node 

or leaf node; otherwise, we proceed to the right, as shown in Figure 4.1.2.1. 

 
Figure 4.1.2.1: Representation of a Decesion Tree 2 

In constructing the model, consider a dataset 

D = {xi, yi} 

where x𝑖 is the vector of observation features -which may be categorical or quantitative, 

and 𝑦𝑖 is the label of the observation. Our objective is to develop a set of criteria applied 

to xi. Fulfilling or violating these criteria directs to specific leaf nodes that provide 

predictions for yi. Importantly, upper-level nodes play a crucial role because once a 

pathway is selected, it cannot be changed, making the placement of conditions within 

the nodes essential for the model’s effectiveness. 

One common approach for structuring the model and arranging the nodes is 

through the use of the Gini Impurity, which calculates the probability of k label 

categories appearing within a set, effectively measuring the uniformity. 

Gini Impurity is calculated by using the below formula 

 
2 Figure from https://medium.com/geekculture/all-about-decision-trees-part-i-cfa148c75631 

https://medium.com/geekculture/all-about-decision-trees-part-i-cfa148c75631
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𝐺𝑖𝑛𝑖𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐷) = ⁡1 −⁡∑𝑝𝑗
2

𝑘

𝑗=1

 

Where pj is the probability of class j appearing from a set of k classes in a dataset D 

consisting of n observations. When the dataset D is split into two subsets D1 and D2 of 

sizes n1 and n2 respectively, then  

𝐺𝑖𝑛𝑖𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐷) = (
𝑛

𝑛1
) × 𝐺𝑖𝑛𝑖𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐷1) + (

𝑛

𝑛2
) × 𝐺𝑖𝑛𝑖𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐷2) 

meaning that the Gini Impurity is weighted according to the number of observations in 

each subset. The Gini Impurity is an indicator of purity or, alternatively, the degree of 

impurity of a node. The lower the Gini Impurity is, the “purer” the node is, indicating 

a good separation between the different categories. 

When dealing with large datasets that contain too many observations and 

variables, reaching the leaf nodes in a decision tree is not straightforward. Instead, there 

are numerous internal nodes that repeatedly filter the observations through various 

conditions to reach a decision at a leaf node. Often, these decisions appear to have been 

determined at higher levels of the tree. Therefore, to avoid excessive complexity in the 

Decision Tree, the model developer might choose to “prune” some of the branches, 

converting the last level of internal nodes into leaf nodes. The depth and the point of 

pruning are determined by the analyst (or by some iterative procedures that will be 

presented till the end of this chapter), provided that it does not significantly reduce the 

performance of the model. 

Another useful widely used metric which is used for the development (or 

training) of Decision Tree models is that of Entropy. In information theory, the entropy 

of a random variable represents the average amount of "information" or "uncertainty" 

associated with the variable's potential outcomes. Within the framework of Decision 

Trees, entropy is utilized to quantify the level of disorder or impurity present within a 

node. 3 

Entropy is calculated by using the formula 

𝐸 =⁡−∑𝑝𝑗 log2(𝑝𝑗)

𝑘

𝑗=1

 

where the pj is the probability of randomly selecting an example in class j. 

Hence, to identify the root node, a Decision Tree calculates the entropy for each 

variable and its (all) possible divisions. This involves determining a potential division 

for each variable, computing the Average Entropy across all resulting nodes, and then 

 
3 Source https://towardsdatascience.com/decision-trees-explained-entropy-information-gain-gini-index-ccp-pruning-

4d78070db36c 

https://towardsdatascience.com/decision-trees-explained-entropy-information-gain-gini-index-ccp-pruning-4d78070db36c
https://towardsdatascience.com/decision-trees-explained-entropy-information-gain-gini-index-ccp-pruning-4d78070db36c


 

41  

assessing the reduction in entropy compared to the parent node. This reduction in 

entropy is known as Information Gain, and it measures the amount of information a 

feature contributes towards predicting the target variable. 

Subsequently, Information Gain is calculated as follows 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛⁡𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑃𝑎𝑟𝑒𝑛𝑡 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 

where “Parent” is denoted each node that undergoes a split into smaller groups -based 

on a certain attribute or feature, as presented previously, and as “Children” are denoted 

the nodes that result from splitting the parent node, hence each child node represents a 

subset of the data from the parent node. 

 

4.1.3 Random Forest 

RF belongs to the wide family of Decision Trees. By incorporating many 

statistical methods, a much more complex model can be made and produce accurate 

predictions -even in cases where the underlying relationships of the data are non-linear 

and too complex. 

Ensemble learning is a statistical (machine) learning technique that combines 

multiple models to produce a single predictive model that typically performs better than 

any single contributing model. The predictions from multiple models, often achieve 

more accurate and robust results than using any single model alone. Ensemble methods 

use multiple learning algorithms or multiple instances of the same algorithm with 

different parameters or training data subsets. This diversity helps in making more stable 

and accurate predictions by reducing the bias of an individual model. 

 Bootstrap is a statistical technique primarily used to estimate the distribution, 

variance, or confidence intervals of a statistic by resampling with replacement from the 

original sample when direct calculation or traditional methods are not feasible. For 

example, there is no statistical formula to estimate the variance (and as such the 

standard deviation as well) of statistical functions such as the Pearson correlation 

coefficient. Bootstrap can make it possible, allowing for robust statistical inferences to 

be made through uncertainty quantification (Bootstrap Confidence Intervals). 

Let T a dataset  

𝑇 = {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} 

where x represents the vector of p predictors and y is the label of the corresponding 

observation. A bootstrap sample, denoted as T*, is a random sample selected with 

replacement from T. Practically, this means that each pair (xi,yi) from the dataset, listed 

as 

𝑇∗ = {(𝑥1
∗, 𝑦1

∗), … , (𝑥𝑛
∗ , 𝑦𝑛

∗)} 
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 is chosen with a probability of 1/N, independently from each other. This procedure 

(random sampling with replacement) creates T* samples which are composed of 

independent and interchangeable observations, with some pairs from the original 

dataset appearing multiple times in some of the obtained bootstrap samples, while 

others might not appear at all. The probability that a bootstrap sample exactly replicates 

the original dataset is extremely low, and the probability of a specific observation (xi, 

yi) not being included in a bootstrap sample is 

(1 −
1

𝑁
)
𝑁

 

As N grows (number of observations of the original sample), this probability 

approaches approximately e-1 (or about 0.368). This implies that for a sufficiently large 

N, each observation from the original dataset is expected to be absent in about to 36.8% 

of the B bootstrap samples. 

To illustrate, for different values of N, the probabilities are as follows: 

• With N=25, the probability is approximately 0.360. 

• With N=50, the probability is approximately 0.364. 

• With N=100, the probability is approximately 0.366. 

• With N=200, the probability is approximately 0.367. 

• With N=500, the probability is approximately 0.368. 

Consider a regression scenario where a model is fitted to predict the value of a 

continuous random variable 𝑓(x), where  𝑥 = ⁡ {𝑥1, 𝑥2, …⁡ , 𝑥𝑛}. Bagging, an ensemble 

learning technique, leverages the average of several predictions made by the same 

model but on different bootstrap samples to refine its estimate. By obtaining multiple 

bootstrap samples 𝑇∗ =⁡ {𝑇1
∗, 𝑇2

∗, …⁡, 𝑇𝐵
∗}, using each sample at a time, a calculation for 

the prediction of 𝑓 is being made, thus calculating the corresponding predictions of 

𝑓∗1(x), 𝑓∗2(x), ..., 𝑓∗B(x). The bagging prediction, 𝑓bag(x), is then determined by taking 

the average of these predictions: 

𝑓bag(x) =⁡
1

𝐵
 ∑ ⁡𝑓̂𝐵

𝑏=1

∗𝑏
(𝑥) 

If f(x) is linear, practically there's no substantial difference in proceeding with the 

estimation directly from the original dataset and from using the bagging method. 

However, if f(x) involves complex or non-linear relations, then 𝑓bag(x) not only differs 

-but typically offers an improvement since it reduces the variance of the prediction. 

Subsequently, given that decision trees can capture complex and non-linear 

relationships, bagging can be especially useful. Each bootstrap sample generates a tree 

based on different rules (thresholds) for dividing the data into different sub-populations. 

The bagging technique then averages the predictions from these multiple trees to 

produce a final estimate. For classification trees, the bagging prediction  𝐺̂bag(x), is the 

category most frequently selected by the B trees generated from the bootstrap samples. 
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Alternatively, the vector that contains the average probabilities calculated from 

the B bootstrap samples for the observation belonging in each class 1,2, …, K is first 

calculated, and subsequently the observation is classified in the class with the highest 

estimated probability. This approach not only offers improved estimates of the 

probabilities for each of the K categories -but also tends to lower the error in 

classification. 

RF constitutes an ensemble learning technique used for both classification and 

regression tasks. This method employs bagging with "weak" decision trees to create a 

powerful model that exhibits lower variance. In this approach, trees are built from 

bootstrap samples, and each split in the tree is determined by selecting from a random 

subset of the available predictors -thus not using all the potential predictors for the 

construction of each tree, with each independent tree being "weaker" when compared 

to trees where all the potential predictors were used.  

Since the B trees are constructed using the same process, each specific statistical 

function produced by them has an identical mean, which aligns with the mean of their 

corresponding average. The average of B independent and identically distributed 

random variables -each one with a variance of σ2, yields a variance of σ2/B. 

In the case where these random variables are identically distributed but exhibit a 

positive correlation ρ, the variance calculation is as follows 

Var(𝑍̅) = ρσ2 + 
1−𝜌

𝛣
σ2 

and for sufficiently large B, the contribution of the second term in the equation becomes 

negligible and the variance of the average being determined by the first term ρσ2. 

The concept of RF aims to mitigate the variance of estimations generated 

through the bagging method by reducing the correlation among tree decisions. This 

reduction is achieved without significantly diminishing the variance of each tree 

individually. Hence, the strategic random selection of variables for splitting helps 

maintain a relatively low correlation between predictions derived from different trees. 

The optimal number of predictors to use for constructing each tree depends heavily on 

the nature of the problem and the dataset. However, a smaller subset of predictors 

typically reduces the correlation among the trees within the forest, thereby decreasing 

the variance in the final output. 

Once B trees are constructed, they offer predictions of 

𝑓(𝑥; 𝜃1), 𝑓(𝑥; 𝜃2), …⁡ , 𝑓(𝑥; 𝜃𝛣)⁡ 

where x is a given point with the values of the p-predictors used and θb is the parameters 

of each trained tree. 

The overall prediction from the RF is calculated as  
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𝑓rf (x) = 
1

𝐵
 ∑ ⁡𝑓̂𝐵

𝑏=1

⁡
(𝑥; 𝜃𝑏) 

A crucial aspect of RF is the use of Out-Of-Bag (OOB) samples -which are 

available due to the bootstrap procedure during the training of each forest. Specifically, 

for each bootstrap sample used to construct a tree, the observations which are not 

included in this sample form the corresponding OOB sample comprise B such samples. 

For each observation (xi, yi), the corresponding prediction 𝑓OOB (xi) of the RF is 

determined by averaging the predictions from only those trees built from bootstrap 

samples that do not contain that observation. The contribution of this observation to the 

total error estimation is 

𝐸𝑟𝑟𝑜𝑟𝑂𝑂𝐵𝑖 = (𝑦𝑖 −⁡𝑓𝑂𝑂𝐵̂(𝑥𝑖))
2

  

Subsequently, when confronting a classification problem, the contribution of each ith 

observation to the OOB error is the majority vote of the trees that have been constructed 

from samples not containing that observation. OOB error is very helpful in evaluating 

the model because it effectively performs cross-validation, by approximating leave-

one-out CV alongside the training of the model - despite overestimating the real error. 

 

4.1.4 Gradient Boosting 

GB are a class of non-parametric supervised ML algorithms that are widely used 

across different industries, both in regression and classification tasks. Unlike traditional 

methods which rely either on single model outputs (regression models such as LR), or 

in ensemble learning models such are RF and NN ensembles, GB construct models by 

sequentially adding weaker models (base-learners), thereby creating a robust predictive 

model through a stage-wise optimization process. In contrast to the ensemble methods, 

the main idea of GB is to add new models to the ensemble sequentially and not train 

them in parallel, thus each subsequent model (new “weak” base-learner) is driven by 

the results of the whole ensemble up until that point. This is where the term “Boosting” 

refers to. This methodology offers flexibility and high performance (Alexey N. and 

Alois K., 2013). 

As supervised ML mandates, data must be pre-labeled. 

The dataset is denoted as  

(𝑥, 𝑦)𝑖
𝑁 

where 𝑥 = (𝑥1, … , 𝑥𝑛) represents the input variables and y represents the corresponding 

target labels of the response variable.  

The objective is to approximate the unknown functional dependency x 
𝑓
→ y using an 

estimate 𝑓(x) that minimizes a predefined loss function 𝐿 = (𝑦, 𝑓) as follows 
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𝑓(𝑥) = argmin
𝑓(𝑥)

𝐿(𝑦, 𝑓(𝑥))                                   (4.1.4.1) 

Since the parameters of the model need to be estimated, the functional dependency is 

written as  

𝑓(𝑥, 𝜃) 

where θ is a vector containing the parameters of the function and thus, 𝑓(𝑥, 𝜃) describes 

a parametric family of functions. This converts the problem of function optimization as 

a problem of parameter estimation 

𝑓(x) = 𝑓(x, 𝜃)                                           (4.1.4.2) 

𝜃 = argmin
𝜃

𝐸𝑥[𝐸𝑦(𝐿(𝑦, 𝑓(𝑥, 𝜃)]|𝑥]                          (4.1.4.3) 

and for these estimation, iterative numerical procedures are utilized. 

For M iteration steps, the parameter estimates are written as 

𝜃 =⁡ ∑ 𝜃𝑖̂
𝑀
𝑖=1                                                      (4.1.4.4) 

The most frequently used parameter estimation procedure is the Steepest Gradient 

Descent. Given N data points the empirical loss function J(θ) over the observed data is 

aimed to be decreased 

𝐽(𝜃) = ⁡∑𝐿(𝑦𝑖

𝑁

𝑖=1

, 𝑓(𝑥𝑖, 𝜃))⁡ 

The classical steepest descent optimization method involves iterative improvements in 

the direction of the gradient of the loss function 

∇⁡𝐽(𝜃) 

Since parameter estimates θ are updated incrementally, different notations are used for 

clarity. The subscript  𝜃t represents the estimate at the tth incremental step, while the 

superscript  𝜃t denotes the collapsed estimate up to step t, which is the sum of all 

incremental updates from step 1 to step t. The steps for the steepest descent optimization 

are as follows: 

• Initialization of the parameter estimates as θ0 and for each iteration t, repeat: 

• Calculate the cumulative parameter estimate θt from all previous iterations 

𝜃𝑡̂ = ∑ 𝜃𝑖̂
𝑡−1
𝑖=0  

Evaluate the gradient of the loss function ∇⁡𝐽(𝜃) 

•  using the current cumulative parameter estimates: 
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∇⁡𝐽(𝜃) = {∇⁡𝐽(𝜃𝑖)} = [
∂J(θ)

∂J(θi)
]
θ⁡=𝜃̂𝑡

 

• Compute the new incremental parameter estimate θt: 

𝜃𝑡 ←⁡−⁡∇⁡𝐽(𝜃) 

• Add the new estimate 𝜃𝑡  to the ensemble. 

The key attribute of boosting methods lies in the domain of optimization: Boosting is 

being operated in the function space. This means the function estimate 𝑓 is expressed 

in an additive form as 

𝑓(x) = 𝑓𝑀̂(x) = ∑ 𝑓𝑖̂
𝑀
𝑖=0 (x)                                 (4.1.4.5) 

where M is the number of iterations, 𝑓0̂ is the initialization guess (in order for the 

algorithm to start searching for the optimal gradient), and {𝑓𝑖}𝑖
𝑀are the incremental 

functions, referred to as "boosts". 

To practically implement this functional approach, a similar strategy of parameterizing 

the function family is used. Parameterized "base-learner" functions are denoted as 

ℎ(𝑥, 𝜃) 

to distinguish them from the overall ensemble function estimates of 𝑓(x). Various types 

of base-learners, such as decision trees or splines, can be employed.  

For more information about different types of base learners refer to Alexey N. and Alois 

K., (2013).  

The "greedy stagewise" method of function incrementing with base-learners can now 

be formulated. At each iteration, the optimal step-size ρ needs to be determined. For the 

function estimate at the tth iteration, the optimization rule is defined 

𝑓𝑡 ← 𝑓𝑡−1 + 𝜌𝑡ℎ(𝑥, 𝜃𝑡) 

The parameters (𝜌𝑡, 𝜃𝑡) are such that minimize the relationship 

(𝜌𝑡, 𝜃𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌,𝜃∑L(yi, 𝑓𝑡−1) ⁡+ ⁡ρh⁡(xi, θ)

𝑁

𝑖=1

 

In GB, both the loss function and the base-learner can be defined as needed by 

the model developer/analyst. When dealing with a specific loss function and/or a 

custom base-learner, finding the parameter estimates can be challenging. To address 

this, it was proposed to select a new function of h(x,θ𝑡) that closely aligns with the 

negative gradient of  
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𝑔𝑡(𝑥) = −⁡𝐸𝑦 [
𝜕 𝐿 ((𝑦,𝑓(𝑥))

𝜕𝑓(𝑥)
⁡ |⁡𝑥]

𝑓(𝑥)=𝑓̂𝑡−1(𝑥)
                         (4.1.4.6) 

Rather than searching for a comprehensive solution for the boost increment in the 

function space, one can choose the new function increment to be the most correlated 

with −⁡𝑔𝑡(𝑥). This transforms a potentially difficult optimization problem into a more 

manageable least-squares minimization problem  

(𝜌𝑡, 𝜃𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌,𝜃 ∑ [−gt(xi) + ⁡ρh(xi, θ)]
2𝑁

𝑖=1                 (4.1.4.7) 

This process continues iteratively, sequentially enhancing the model by fitting new 

base-learners to the residuals (errors) of the combined ensemble of previous learners, 

thereby improving the overall prediction accuracy. As stated previously, GB offers 

great flexibility in choosing the loss function and the base-learner model, thus being 

adept at handling various type of non-linear and complex relationships of the data at 

hand. 

Loss functions are categorized based on the type of response variable 𝑦. Various 

boosting algorithms have been developed for different response families, including 

regression, classification. The most commonly used loss functions are organized as 

follows: 

• For continuous response variable some of the most common ones are 

Gaussian, Laplace, Huber and Quantile loss functions. 

• For categorical response variable some of the most common ones are 

Binomial and AdaBoost loss functions. 

For more information about the loss functions used in GB algorithms, refer to Alexey 

N. and Alois K., (2013). 

Below is presented the summary of (Friedman’s) Gradient Boost Algorithm: 

Inputs: 

• Input data (𝑥, 𝑦)𝑖
𝑁 

• Number of iterations M 

• Choice of the loss function 𝐿(𝑦, 𝑓) 

• Choice of the base-learner model ℎ(𝑥, 𝜃) 

Algorithm: 

• Initialize 𝑓 with a constant → 𝑓0. 

• For t=1 to M do: 

Compute the negative gradient 𝑔𝑡(𝑥)                                       (4.1.4.6) 

Fit a new base-learner function ℎ(𝑥, 𝜃𝑡).  

Find the optimal gradient descent step-size ρt:                         (4.1.4.7) 
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(𝜌𝑡, 𝜃𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌,𝜃∑[−gt(xi) + ⁡ρh(xi, θ)]
2

𝑁

𝑖=1

 

Update the function estimate: 𝑓𝑡 ← 𝑓𝑡−1 + 𝜌𝑡ℎ(𝑥, 𝜃𝑡) 

• End for. 

In conclusion, GB can be designed with various base-learner models, and 

numerous types have been introduced in the literature. Base-learner models are 

typically categorized into three main groups: linear models, smooth models, and 

decision trees. An important feature of GB is the flexibility to combine different classes 

of base-learner models within a single GB -since a model can simultaneously include 

smooth additive components and decision trees. Additionally, explanatory variables can 

be handled with different boosted base-learner models fitted to each subspace. 

 

4.1.5 Neural Networks 

Some ML algorithms, inspired from the functioning of biological learning 

systems and particularly from the human brain, are comprised of complex networks of 

interconnected neurons. Known as artificial NN, these algorithms mimic this structure 

with a dense network of interconnected “simple” units. Each unit processes a set of 

numerical inputs and produces numerical outputs. This processing occurs across three 

main levels in a typical NN: the input layer, the hidden layer, and the output layer. Some 

NN are designed with additional layers, especially an increased number of hidden 

layers, and contain a vast number of neurons. The development and analysis of such 

highly complex NN fall under a specialized subfield of ML known as “Deep Learning”. 

The bibliography used for this sub-chapter is Tasoulis, S., (2021), Pan Z., Jiashi F. et 

al., (2020). 

 To apprehend the properties and advantages of NN, it is essential to present the 

most significant architectures that have been widely used in recent years and examine 

their distinct characteristics. Apart from the three fundamental layers – input layer 

(contains the Input Nodes), hidden layer(s) (contain the Hidden Layer Nodes), and 

output layer (contains the Output Nodes) - mentioned previously, typical artificial NN 

include various other parameters that define their functionality and behavior. Two key 

parameters are the Input and Activation functions, which regulate the operations of the 

individual units that make up the network's layers. These functions are generally 

consistent across each layer of the NN. 

The term “Input” to a node in a NN refers to the weighted sum of the outputs 

from the nodes connected to it. A typical input function usually takes the form 

𝐼𝑛𝑝𝑡𝑖 =⁡∑𝑤𝑖𝑗𝑥𝑗 + 𝜇𝑖 
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where Inpti represents the weighted sum of the input elements xj to unit i, wij denotes 

the weights connecting neuron j to neuron i, and μ𝑖 is the constant for neuron i. The 

threshold acts as a constant -thus is a reference point in the absence of other input 

values. Each unit in the NN then takes these input values described by Inpt𝑖 and applies 

an activation function to them. For example, the output of the j-th unit (or activation 

value), is inserted into a function 𝑓(. ) as 

𝑓 (∑𝑤𝑖𝑗𝑥𝑖) = 𝑎𝑖 

where 𝑓(. ) is the activation function, and xi is the output from the i-th unit connected 

to unit j, and αi is the corresponding output value. 

Some of the most well-known and widely used activation functions include: 

1. Sigmoid Function: 

• Formula: f(z) = 
𝑒𝑧

1+𝑒𝑧
 = 

1

1+𝑒−𝑧
 

• Characteristics: Maps input values to a range between 0 and 1, 

making it particularly useful for binary classification problems. 

However, it may suffer from “vanishing” gradients during 

backpropagation -thus slowing down the learning rate. 

2. Hyperbolic Tangent (tanh) Function: 

• Formula: f(z) = 
(𝑒𝑧−𝑒−𝑧)

𝑒𝑧+𝑒−𝑧
  

• Characteristics: Maps input values to a range between -1 and 1, and 

also is zero-centered, which can make it easier for the network to 

model inputs that have strongly negative or strongly positive values. 

Like the sigmoid, it can also suffer from “vanishing” gradients. 

3. ReLU (Rectified Linear Unit): 

• Formula: f(z) =  {⁡
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 < 0
𝑧⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• Characteristics: Introduces non-linearity by outputting the input 

directly if it is positive; otherwise, it outputs zero. It is simple and 

computationally efficient, and also helps mitigate the vanishing 

gradient problem. However, it can suffer from issues as become 

“inactive” and only output zero values. 

4. ELU (Exponential Linear Unit): 

• Formula: f(z) = {
𝑧,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑧 > 0
𝑎𝑒𝑧 − 1, 𝑧 < 0

  

where α>0 is parameter (that can be tuned). 

• Characteristics: It allows for smooth and non-zero gradients when 

the input is negative, which can speed up learning. 

5. Softmax Function: 
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• Formula: f(z)i = 
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

 

• Characteristics: Converts logits (raw network outputs) into 

probabilities. It is commonly used in the output layer of classification 

networks where the classes are mutually exclusive. 

These activation functions -having their advantages and drawbacks- are chosen 

depending on the specific use case.  Choosing the appropriate activation function is 

crucial for the performance of a NN. Additionally, the goal of activation functions is to 

prevent extreme values in the output results, which could hinder the network's learning 

process. 

Thus, in summary, the key components that make up the architecture and 

structure of a typical NN are: 

• Number of hidden layers: A NN can have one or more hidden layers, enabling 

it to identify complex relationships within the data. Networks with just one or 

two hidden layers can perform well if they contain a significant number of 

neurons -and/or if the underlying correlations and interactions between the data 

are not too complex. For datasets with extremely complex underlying 

relationships, increasing the number of hidden layers could help the model to 

produce more accurate preditictions. 

• Number of hidden nodes: There is no definitive method for selecting the optimal 

number of hidden nodes in an artificial NN. This selection requires experimental 

trials and performance evaluation for each test -being itself a hyperparameter to 

be tuned. More about the hyperparameter tuning in machine learing are 

presented in sub-chapter 4.5.4. 

• Number of output nodes: The number of output nodes is crucial and depends on 

whether the problem is a regression one or a classification (binary or multiclass). 

In classification tasks, the number of output nodes typically corresponds to the 

number of classes we want to predict. 

• Activation and input functions: Activation functions that convert linear 

relationships into non-linear -and help determine the outcome of the processing 

steps on the input data through the input functions.  

The above presented points can be apprehended more intuitively by the following 

figures 
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Figure 4.1.5.1: NN Node and the role of the Activation Function 4 

 

 
Figure 4.1.5.2: NN Architecture 5 

Thus, it becomes apparent that there is no single architecture for artificial NN; 

each architecture includes the components mentioned above but differs in how it 

processes information and produces results. Depending on the nature of the problem, 

an appropriate NN architecture must be chosen. 

The main and most-well known types of NN (at the time this thesis is being 

written), are the Feedforward Neura Networks (FNN), the Recurrent NN (RNN), the 

Convolutional NN (CNN), and the Generative Adversial Networks (GAN). 

Specifically, due to their corresponding characteristics and methodology, each type is 

typically suited for specific tasks: 

1. FNN: The simplest type of NN, where data flows in one direction from input to 

output. Used for pattern recognition, regression, and classification. FNN are 

basic and versatile, ideal for straightforward tasks without temporal 

dependencies. 

 
4 Figure from https://levelup.gitconnected.com/a-review-of-the-math-used-in-training-a-neural-network-9b9d5838f272 
5 Figure from https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/ 

https://levelup.gitconnected.com/a-review-of-the-math-used-in-training-a-neural-network-9b9d5838f272
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
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2. RNN: Designed for sequential data, these networks use loops to process data, 

making them suitable for time series predictions and language translation. 

3. CNN: Specialize in image and pattern recognition by using convolutional and 

pooling layers. Commonly used in computer vision. 

4. GAN: Consist of two networks, a generator and a discriminator, that work 

together to generate realistic data. Thus, GAN are powerful for generating new, 

realistic data by learning the underlying distribution of the training data. Used 

in image generation and data augmentation.  

For the purpose of this thesis, only FNN will be presented, as the objective is to 

predict the PD in the context of credit risk. For example, RNN are designed for 

sequential data, and the data used in PD estimation are not interconnected in a 

sequential manner. Therefore, employing complex models like RNN would be 

unnecessary and too complex for this task. 

A FNN has the architecture previously described. For this type of network, additional 

details worth mentioning include: 

• Forward propagation: 

- Input layer: The input data enter the network. 

- Hidden layers: Each neuron processes its input using a weighted sum 

and an activation function (as already described), passing the result to 

the next layer. 

- Output layer: The final prediction is produced after data has passed 

through all layers. 

• Loss function: 

- Quantifies how well the network's predictions match the actual data. 

- Common choices include Mean Squared Error (MSE) for regression 

tasks and cross-entropy loss for classification tasks. 

• Training and backpropagation 

- Feedforward NN are trained using a process called backpropagation. 

Backpropagation involves computing the gradients of the loss function 

with respect to the network's weights and biases (errors). These 

gradients are then used to update the weights and biases to minimize the 

loss. 

• Hyperparameters: The learning rate, the number of hidden layers, and the 

number of neurons in each layer, must be initialized before training begins. 

Effective initialization and continuous testing of these hyperparameters play a 

crucial role in the network's performance. Specifically: 

- Learning rate: Controls the step size during gradient descent updates. 

- Number of hidden layers: More layers can capture more complex 

patterns but may lead to overfitting (mentioned previously). 

- Neurons per layer: Affects the model's capacity to learn from the data 
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(mentioned previously). 

The careful selection and tuning of these aspects are critical for the successful training 

and performance of a feedforward NN. 

Finally, the weights of the interconncted nodes used in the NN model need to 

estimated. In linear models, simpler methods are being used such as Maximum 

Likelihood Estimators (MLE) and Least Squares. However, NN are more complex than 

linear models, and different approches have been utilized for estimating the weights of 

the model. Some of the most well-known and widely-used methods are the Adam and 

Stochastic Gradient Descent (Pan Z., Jiashi F. et al., 2020). 

 

4.2 Data Management & Pre-Processing 

Different models require different approaches when it comes to data 

management. Many things must be considered before training/developing a predictive 

statistical model. Nevertheless, some things are in common -regardless of the model 

that will be used. (Brown I., 2014). In specific: 

• Relevance: The data collected is relevant to the problem trying to be solved. 

• Quality checks: For accuracy and consistency in the data. For example, 

extremely high or low values for some characteristic may indicate inaccuracy 

and data integrity issues.  

• Missing values: Identification and handling of missing values through 

imputation, flagging or removal. In credit risk modelling, the most common 

approach is to flag the missing values (i.e. to encode with special codes such as 

-9999), since the missing value contains itself useful information, and thus if 

imputed or dropped the predictive power of the corresponding variable will be 

negatively affected and/or be biased.  

• Outlier detection: Detection of outliers through univariate and/or multivariate 

methods. However, some extremely high or low values might also indicate that 

the data are not accurate, and thus this specific data points will not constitute 

real observed values. 

• Duplicates: removal of multiple completely identical records, to prevent bias 

from preventing the statistical models from overly getting trained and validated 

on the same patterns again-and-again. 

• Data transformation:  

- Normalization/standardization, thus scaling features to a standard range 

or distribution. This is more common in linear models, such as LR, 

where the difference in scale between the used predictors may prevent 
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the model from identifying true and valid relationships between the data. 

It is also a common approach when using NN. In contrary, tree-based 

models are not affected by the difference in scales of the predictors used. 

- Encoding: conversion of categorical variables into numerical values and 

moreover, in ordinal order (ordinal encoding) or into binary/dummy 

variables. 

• Exploratory Data Analysis (EDA): 

- Descriptive statistics: Summary of the main characteristics of the 

dataset. 

- Data visualization: Plots and graphs to understand patterns and the 

distribution of the data, as well as to search for potential relationships 

between the used predictors as well as with the target variable. 

• Over-time consistency checks: Verification of the integrity and consistency of 

the data over time. For example, when handling a dataset consisting of loan 

applications, the model developer should always check whereas the data are 

available for all the months of each year. If specific dates/months are missing, 

then sampling biased might be introduced into the analysis and the model may 

not be able to predict well on unseen data. 

 

4.3 Train-test split 

The train-test split procedure is a fundamental method in ML used to evaluate 

the performance of predictive models. It involves dividing the available dataset into two 

separate subsets -train and test sets, or into three -training, validation and test sets. Each 

subset serves a specific purpose in the model development and evaluation process, 

ensuring that the model generalizes well to new data (Jerome H. F., Robert T. et al., 

2009). The train-test split procedure can be described in the following setps: 

1. Shuffling the dataset: Random shuffling of the dataset, to ensure that the data 

distribution is uniform and that any inherent order does not bias the split. 

2. Dividing the data: Split the shuffled dataset into three parts: the training set, 

validation set, and test set. A common split ratio is 70/15/15 or 60/20/20, where 

70% (or 60%) of the data is allocated to the training set, 15% (or 20%) to the 

validation set, and the remaining 15% (or 20%) to the test set. 

3. Ensuring representative distribution: For imbalanced datasets, it is crucial to 

maintain the same class distribution in all subsets. This can be achieved using 

stratified sampling, which ensures that each subset has a similar proportion of 

each class. In credit risk, handling imbalanced datasets is very usual, as the 

proportion of defaulted (i.e. “bad”) applicants is too small.  
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4. Separating features and the target variable: Divide each subset into features 

(input variables) and target variable (output variable) to prepare them for the 

model training, validation, and evaluation phases. 

5. Training the model: Use the training set to train the ML model. The model learns 

patterns and relationships within the training data by adjusting its parameters to 

minimize errors. 

6. Validating the model: The validation set is used during the training phase to 

fine-tune the model. By evaluating the model on the validation set, we can tune 

hyperparameters, prevent overfitting, and make decisions about model 

improvements. The validation set acts as a proxy for the test set, allowing 

adjustments without biasing the final evaluation. 

7. Evaluating the model: After the model is trained and validated, the test set is 

used for the final evaluation. This involves applying the model to the test data 

and comparing the predicted labels with the actual labels to calculate metrics 

such as Accuracy, Precision, Recall, and F1 score. The test set should not be 

used during training to provide an unbiased assessment of the model's 

performance on unseen data. 

By incorporating a validation set in addition to the training and test sets, the 

train-test split procedure ensures a robust evaluation framework. This approach helps 

in developing a model that not only performs well on the training data but also 

generalizes effectively to new, unseen data, ensuring its practical applicability. It is also 

extremely important to note that all the data pre-processing steps applied, as well as the 

feature engineering, should be done upon using only the training set, in order to obtain 

an unbiased estimation of the model’s capability to generalize well on unseen data, 

hence to prevent what is called “data leakage”. In specific, if Min-Max scaling is 

applied to the feature engineering phase, if all the dataset is being used, the Min and 

Max values will potentially differ from the corresponding Min-Max values of the 

training set alone. If done so, information from the test set (i.e. different Min-Max 

values) will have been used for the scaling of the features, thus the valuation metrics 

will be biased, by under-estimating the true error. 

 In credit risk and PD modelling, the training set is often called as the 

“Development sample”, and the test set is often called as the “Validation sample” 

(Brown I., 2014).  

 

4.4 Evaluation of Potential Predictors 

The evaluation of potential predictors is a crucial step in the development of 

robust predictive models. When dealing with dataset of hundreds of potential 

predictors, it is essential to evaluate each individual predictor and assess its predictive 

power (on univariate level). This procedure should be done by having in mind not only 
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the predictive power of each individual characteristic, but also the conceptual 

soundness of the patterns captured by the potential predictor. This step can also be 

regarded as an initial “manual feature selection” step, as predictors with low predictive 

power and/or predictors with no conceptually sound interpretation will be excluded 

from the pool of the potential predictors, hence, pruning the number of potential 

features that will be assessed during the training of the model. This not only saves up 

valuable time, but also allows the statistical packages to identify stronger and more 

robust underlying relationships, thus reducing potential noise (Raymond A., 2007). 

In binary problems and in PD modelling, two widely used techniques for 

assessing the predictive power of potential variables are the “Weight of Evidence” 

(WoE) and IV. These methods provide insights regarding the relationship between 

predictor variables and the target variable. This can be achieved by segmenting (or 

discretizing, or binning) the potential predictor into groups -based on its relationship 

with the target variable. Such methods are often called as “target-guided encoding”. 

These methods also create models which are robust to outliers, since extremely low 

values of the corresponding predictor will be assigned to the lowest bin, whereas 

extremely high values will be assigned to the top bin.  

Hence, WoE and IV are measures used to quantify the predictive power of each 

individual predictor in relation to a binary target variable, by transforming categorical 

and continuous variables into a more interpretable form, facilitating the comparison of 

different predictors. WoE and IV not only handle outliers by also providing a clear 

indication of the relationship between each bin of the predictor and the target variable 

-but also handle missing values effectively (as missing values can also be categorized 

on a specific segment) and ensure that the transformed variable has either a monotonic 

relationship with the target variable -or a non-linear relationship- such as “U-shape”. 

Identifying linear and non-linear relationships is crucial in credit risk modelling. For 

example, the relationship of the applicant’s “age” has a U-shape relationship with the 

default-rate (i.e. the risk-level of the applicant) (Douglas L. W., 2006), (Bruce L., David 

B., 2013).  

For example, it is usual seen that applicants of Age 18-25 and 60+, are the most 

risky segments, whereas applicants between the Age of 40-50 are the best performing 

applicants. The other remaining age groups are more of a middle risk-level, thus having 

a U-shape relationship with the corresponding risk (i.e. PD). Of course, the above 

segmentations can change, based on the product of loan, the country in which the 

financial institution operates, and various other factors, whereas the relationship of the 

applicants age with the corresponding risk level can also have a monotonic (i.e. linear) 

relationship. It is now more evident that identifying the underlying relationship between 

the potential predictor with the target variable is crucial. 

The WoE for the i-th bin of a predictor is calculated by using the formula 
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WOEi = ln⁡(
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖

𝑇𝑜𝑡𝑎𝑙⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖

𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

) = ln⁡(
%⁡𝑜𝑓⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖⁡(𝑜𝑣𝑒𝑟⁡𝑡𝑜𝑡𝑎𝑙⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)⁡

%⁡𝑜𝑓⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖⁡(𝑜𝑣𝑒𝑟⁡𝑡𝑜𝑡𝑎𝑙⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
)    (4.4.1) 

In the context of credit risk, WoE is calculated as follows 

WoEi = ln⁡(
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐺𝑜𝑜𝑑𝑠𝑖

𝑇𝑜𝑡𝑎𝑙⁡𝐺𝑜𝑜𝑑𝑠
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐵𝑎𝑑𝑠𝑖

𝑇𝑜𝑡𝑎𝑙⁡𝐵𝑎𝑑𝑠

) = ln⁡(
%⁡𝑜𝑓⁡𝐺𝑜𝑜𝑑𝑠𝑖⁡(𝑜𝑣𝑒𝑟⁡𝑡𝑜𝑡𝑎𝑙⁡𝐺𝑜𝑜𝑑𝑠)⁡

%⁡𝑜𝑓⁡𝐵𝑎𝑑𝑠𝑖(𝑜𝑣𝑒𝑟⁡𝑡𝑜𝑡𝑎𝑙⁡𝐵𝑎𝑑𝑠)
)  

The percentage of goods (or positive events) of the i-th bin is the proportion of non-

defaulters (e.g. good applicants) in the i-th bin of the predictor variable over the total 

number of good applicants (or positive events). In essence, it quantifies how many of 

the total good applicants (or positive events) belong to the i-th bin of the corresponding 

predictor. Subsequently, the percentage of bads (or negative events) of the i-th category 

measures the same thing -but for the population of defaulted applicants (i.e. bad 

applicants).  

IV is a metric that summarizes the predictive power of a variable across all its 

bins. IV is calculated using the WoE values and the distributions of goods and bads 

across the bins: 

IV = ∑(
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖

𝑇𝑜𝑡𝑎𝑙⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
−⁡

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖

𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) ⁡× 𝑊𝑜𝐸𝑖 ⁡× 100 

IV = ∑(%⁡𝑜𝑓⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 −%⁡𝑜𝑓⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖) ⁡× 𝑊𝑜𝐸𝑖 ⁡× 100       (4.4.2) 

In the context of credit risk, IV is calculated as follows 

IV = ∑(
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐺𝑜𝑜𝑑𝑠𝑖

𝑇𝑜𝑡𝑎𝑙⁡𝐺𝑜𝑜𝑑𝑠
−⁡

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐵𝑎𝑑𝑠𝑖

𝑇𝑜𝑡𝑎𝑙⁡𝐵𝑎𝑑𝑠
) ⁡× 𝑊𝑜𝐸𝑖 ⁡× 100 

IV = ∑(%⁡𝑜𝑓⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑖 −%⁡𝑜𝑓⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠𝑖) ⁡× 𝑊𝑜𝐸𝑖 ⁡× 100 

with the notations being the same as those in WoE.  

The IV value helps in ranking predictors and identifying the most significant variables 

for the model. Generally, the IV can be interpreted as follows: 

• IV < 2: Predictors with no predictive power. 

• 2 ≤ IV < 10: Predictors with weak predictive power. 

• 10 ≤ IV < 30: Predictors with medium predictive power. 

• IV ≥ 30: Predictors with strong predictive power. 

 

Steps for evaluating predictors using WoE and IV: 

1. Data Preparation: 

• Split of the data into bins for each predictor variable. Binning (or 

segmentation/discretization) can be done using techniques like 

equal-width binning, equal-frequency binning, or based on domain 
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knowledge. The optimal binning is to proceed manually, thus 

segmenting the features based on the corresponding outcome 

variable -also incorporating the domain knowledge.  

• Calculation of the proportion of goods and bads for each bin. 

2. Calculation of WoE: 

• Computation of the WoE for each bin of the predictor variables using 

the formula of (4.4.1). 

3. Calculate IV: 

• Using the WoE values and the proportions of positives (goods) and 

negatives (bads), the IV for each predictor variable is being 

calculated. 

4. Interpretation of the results: 

• Analyzation of the WoE/IV values, to understand the relationship 

between predictor variables and the target variable. 

• By utilizing the IV values, the predictors can be ranked in descending 

order based on the predictive power -which is now quantified. The 

most significant variables are being selected as potential predictors 

for the training of the model. 

In conclusion, by systematically applying WoE and IV, we can effectively 

evaluate and select the most relevant predictors for our model. These techniques not 

only help in understanding the impact of each predictor but also improve the overall 

predictive performance of the model by focusing on the most informative variables. 

 

4.5 Model Training 

Model training is a critical phase in ML where a chosen algorithm learns from 

data to make predictions or decisions. The objective is to optimize the model's 

performance by adjusting its parameters to minimize errors. This involves several key 

steps, including data preprocessing, selecting appropriate features, choosing an 

optimization metric, and tuning hyperparameters. Techniques such as cross-validation 

ensure the model generalizes well to new data, preventing overfitting. Effective model 

training leads to robust, accurate, and reliable models capable of solving real-world 

problems. As already described, it is crucial that all the data pre-processing and feature 

engineering have to be implemented using only the training set. The validation/test sets 

must be used only for fine-tuning and for unbiased measure of the model’s performance 

respectively. 

 

4.5.1 Optimization Metrics 

In model training, various metrics can be optimized to evaluate and enhance the 

performance of predictive models. KS, Gini, and AUROC are widely used in credit 
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scoring to measure the discriminatory power of the models, and all three metrics 

constitute industry standards. In the following section are presented some of the most 

well-known and widely used metrics (Zheng Y., Yue W., et al. 2004), (Joseph L. G., 

1972), (Andrew P. B., 1997). 

 

4.5.1.1 Kolmogorov-Smirnov (KS) Statistic 

The KS statistic measures the maximum difference between the cumulative distribution 

functions (CDF) of the predicted positive (good) and negative (bad) events (i.e. 

defaults, non-defaults).  

𝐾𝑆 = max⁡ |𝐹1(𝑥) − 𝐹0(𝑥)| 

where F1(x) and F0(x) are the CDFs of the positive and negative classes, respectively. 

 

4.5.1.2 Gini Index 

The Gini Index has already been presented. Nevertheless, for completeness purposes, 

the formula is presented below.  

𝐺𝑖𝑛𝑖 = 2 × AUC − 1 

where AUC is the Area Under the Receiver Operating Characteristic Curve. 

 

4.5.1.3 Area Under the ROC Curve - AUROC 

In binary classification, predictions are often based on a continuous score for 

each instance, such as an estimated probability from LR. A threshold parameter T is 

used to make the classification: if the score X is greater than T (X > T), the instance is 

classified as "positive"; otherwise, it is classified as "negative". The score X follows a 

probability density function f1(x) for positive instances and f2(x) for negative instances. 

Therefore, the true positive rate is given by 

𝑇𝑃𝑅(𝑇) = ⁡∫ 𝑓1(𝑥) 𝑑𝑥
∞

𝑇

 

and the false positive rate is given by 

𝐹𝑃𝑅(𝑇) = ⁡∫ 𝑓0(𝑥) 𝑑𝑥
∞

𝑇

 

The ROC curve plots parametrically TPR(T) versus FPR(T) with T as the varying 

parameter. The AUROC is the Area Under the ROC curve and is calculated as follows 

AUC = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0
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where t is the false positive rate. 

AUROC provides a single metric to evaluate the model’s performance across all 

classification thresholds. 

 

4.5.1.4 Accuracy – Precision – Recall - F1 Score - Confusion Matrix 

Precision measures the proportion of true positive predictions among all positive 

predictions.  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

where TP is True Positives and FP is False Positives. 

Hence, it indicates the accuracy of positive predictions. 

Recall, or Sensitivity, measures the proportion of true positive predictions 

among all actual positive instances 

Recall (or Sensitivity) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

where FN is False Negatives. 

Hence, it reflects the model’s ability to capture all actual positive instances. 

The F1-score is the harmonic mean of precision and recall, providing a balanced 

measure of those two 

F1-Score = 
2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

It constitutes a balanced metric of precision and recall, particularly useful in imbalanced 

datasets. 

Accuracy measures the proportion of true results (both true positives and true 

negatives) among the total number of cases examined  

Accuracy = 
𝑇𝑃⁡+⁡𝑇𝑁

𝑇𝑃⁡+⁡𝐹𝑁⁡+⁡𝑇𝑁⁡+⁡𝐹𝑃
 

where TN is True Negatives. 

Hence, it provides an overall “correctness” measure, though it can be misleading in 

imbalanced datasets. 

 

4.5.2 Cross-Validation 
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In many ML and statistical models, parameters must be selected by the model 

developer according to the specific case being examined. Therefore, the developer must 

choose a value for each parameter that will affect the overall performance of the model. 

A common technique for selecting such parameter values is cross-validation (Jerome 

H. F., Robert T. et al., 2009). A quick summary of the procedure follows: 

1. Data partitioning: Split of the training set into k mutually exclusive subsets 

(folds). 

2. Model tuning: 

• Choose a metric (e.g., accuracy) to evaluate performance. 

• For a parameter (e.g. β), select a range of possible values. 

• Train k models using k−1 folds for training -and the remaining fold for 

validation of the performance on unseen data. 

• Repeat this process k times -each time with a different fold as the 

validation set. 

3. Evaluation: computation of the average performance metric (e.g. accuracy) 

across all k models for each parameter value. 

4. Selection: Choose the parameter value that yields the highest average 

performance metric. 

Hence, cross-validation provides a more reliable estimate of model performance 

by using multiple train-test splits. It also helps in identifying the parameter values that 

optimize the model’s performance. By employing cross-validation, model developers 

can ensure that their models are both accurate and generalizable to unseen data. This 

technique is essential for fine-tuning model parameters and achieving the best possible 

performance. 

 

4.5.3 Feature Selection Methods 

When building a model, it is often necessary to select a subset of features that 

either maximize performance according to a metric or maintain performance while 

minimizing the number of variables used. This is especially crucial in problems with a 

large number of explanatory variables. Selecting the right features can enhance model 

performance or keep it satisfactory while limiting the number of variables, thus making 

it more interpretable (Jerome H. F., Robert T. et al., 2009). 

Specifically, feature selection enhances the model’s performance, by selecting 

the most relevant features, the model can achieve higher accuracy and generalizability. 

Additionally, it reduces overfitting by limiting the number of features and helps prevent 

the model from learning noise in the training data. Thus, a model with fewer features is 

easier to understand and interpret. Finally, reducing the number of features can lead to 

faster training and prediction times, thus saving up valuable computational time. 
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Here, we describe three classic feature selection techniques: Forward Selection, 

Backward Elimination and Stepwise Selection. 

 

4.5.3.1 Forward Selection 

In forward selection, the statistical package is initialized with an “empty” model 

and iteratively adds the variable that maximizes model performance according to a 

chosen metric. The process continues until adding more variables does not significantly 

improve the model's performance or until a pre-defined limit on the number of variables 

is reached. 

Steps: 

• Begin with no variables. 

• Add the variable that provides the highest performance improvement. 

• Repeat until adding more variables yields minimal performance gains or a limit is 

reached. 

 

4.5.3.2 Backward Elimination 

Backward elimination starts with the full model containing all variables. The 

statistical package iteratively removes variables that do not meet a statistical or 

mathematical criterion or whose removal negligibly impacts model performance. This 

process continues until the desired number of variables is achieved or significant 

information loss occurs. 

Steps: 

• Start with all variables. 

• Remove the least significant variable. 

• Repeat until performance degrades significantly or a target number of variables is 

reached. 

 

4.5.3.3 Stepwise Selection 

Stepwise selection is a combination of forward selection and backward 

elimination. It allows variables to be added or removed at each step based on specific 

criteria. This method iteratively evaluates both the inclusion and exclusion of variables 

to optimize the model. 

Steps: 

• Begin with an empty model. 

• Add the variable that adds the most significant information (based on the 

optimization criterion). 
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• Right after the addition of a variable, check whether the removal of each variable 

contained on the model -on the corresponding step, will improve the performance 

metric. 

• Continue until no further significant improvements can be made by adding or 

removing variables. 

 

4.5.4  Hyperparameter Tuning 

Hyperparameter tuning is essential for optimizing ML models. Hyperparameters 

are configuration settings used to control the learning process and model architecture, 

such as learning rate, number of layers, and regularization parameters. Proper tuning of 

these hyperparameters can significantly improve model performance, prevent 

overfitting, and ensure the model generalizes well to unseen data. It involves searching 

for the best set of hyperparameters that result in the highest model performance based 

on a specified evaluation metric (Petro L. and Pavlo L., 2019), (Jia W., Xiu-Yun C. et 

al., 2019). 

 

4.5.4.1 Grid Search 

Grid Search is an exhaustive search method that evaluates all possible 

combinations of a predefined set of hyperparameters. It systematically builds and 

assesses a model for every combination of hyperparameter values provided in a grid-

like structure. 

Advantages: 

• Simple to implement. 

• Guarantees finding the optimal combination within the provided pre-defined 

search space. 

Disadvantages: 

• Computationally expensive, especially with large datasets and many 

hyperparameters. 

• Can be extremely inefficient if the search space is large or contains many 

irrelevant combinations. 

 

4.5.4.2 Randomized Search 

Randomized search, unlike grid search, samples a fixed number of 

hyperparameter combinations from the specified range randomly. It does not try every 

possible combination but rather a random subset.  

Advantages: 
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• More efficient than grid search, as it evaluates fewer combinations. 

• Can potentially find a good combination faster, especially in large search 

spaces. 

Disadvantages: 

• Does not guarantee finding the optimal combination. 

• The results may vary between runs due to its random nature. 

 

4.5.4.3 Bayesian Optimization  

Bayesian Optimization is a more advanced method that builds a probabilistic 

model of the function mapping hyperparameters to the objective function (model 

performance). In the following part of this sub-section, a description of Bayesian 

optimization will follow. For more detailed information refer to Jia W., Xiu-Yun C. et 

al. (2019). 

Bayesian optimization is an effective method for solving functions that are 

computationally expensive to find the extrema. It can be applied for solving a function 

which does not have a closed-form expression, is expensive to calculate or has 

derivatives that are hard to evaluate. The optimization goal in bayesian optimization is 

to find the maximum value at the sampling point for an unknown function f(x) 

𝑥+ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝐴𝑓(𝑥) 

where A denotes the search space of x. Bayesian optimization derives from Bayes' 

theorem, which states that the posterior probability P(M∣E) of a model M -for given the 

data E- is proportional to the conditional likelihood P(E∣M) of observing E given model 

M, multiplied by the prior probability P(M). Thus, the following relationship describes 

the main idea of Bayesian Optimization 

𝑃(𝑀|𝐸) ∝ 𝑃(𝐸|𝑀)𝑃(𝑀) 

The principle of Bayesian optimization is to combine the prior distribution of the 

function f(x) with the sample information E, to obtain the posterior of the function. The 

posterior information is then used to find where the function f(x) is maximized 

according to a specified criterion. This criterion is represented by a utility function u(.) 

that is also known as the Acquisition Function. This function is used to determine the 

next sample point to maximize the expected utility. 

In bayesian optimization, the prior distribution of the function f(.) is often 

assumed to be a gaussian process due to its flexibility and ease of handling. A gaussian 

process is a collection of random variables, any finite number of which have a joint 

gaussian distribution, and this particular characteristic makes it suitable for modeling 

the distribution over functions. The gaussian process is used to fit the data and update 

the posterior distribution as new data points are observed. 
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The acquisition function u(.) is a crucial component in bayesian optimization - 

it determines the next point to sample by balancing exploration (sampling from areas 

of high uncertainty) and exploitation (sampling from areas with high predicted values). 

This balance helps reduce the number of samples needed to find the maximum of the 

function, especially when the function has multiple local maxima. Common acquisition 

functions include Expected Improvement (EI), Probability of Improvement (PI), and 

Upper Confidence Bound (UCB). 

Due to its nature of exploring areas with high uncertainty and exploiting areas 

with high predictive values, bayesian optimization is extremely suitable for 

hyperparameter tuning in ML models due to its efficiency in finding optimal values 

with fewer samples and without needing the explicit expression of the function. This 

method is applied to various complex models such as RF, artificial NN. Experiments 

carried out on standard datasets, demonstrate that bayesian optimization can achieve 

high accuracy and significantly reduce runtime compared to manual search (Jia W., 

Xiu-Yun C. et al., 2019).  

Advantages: 

• Much more sample-efficient than grid and randomized search. 

• Can find better hyperparameter combinations with fewer evaluations. 

Disadvantages: 

• More complex to implement efficiently -since it has many different aspects that 

the developer should take into account 

• Requires more computational overhead to maintain and update the probabilistic 

model. 

 

4.6 Performance Monitoring 

Monitoring the performance of statistical and ML models is crucial for several 

reasons. Effective monitoring ensures that the model remains accurate, reliable, and 

relevant over time, especially when deployed in real-world applications where data can 

evolve (Amos T. O., 2019), (Bruce L. and David B., 2013), (Andrew P. B., 1997), (Bilal 

Y. and Joshua N., 2021), (Brown I., 2014). 

Below are the key points highlighting the importance of monitoring model 

performance: 

• The model’s performance should be regularly validated using out-of-sample 

data (i.e. data not used during training). In credit risk, industry-standard metrics 

include the KS, Gini Index, and AUC. The goal of PD-model validation is to 

ensure the model continues to effectively discriminate between “good” and 

“bad” applicants. Performance validation quantifies how accurately the model’s 

predictors produce estimates by comparing metrics from the training 

(development) sample with those from the test (validation) sample 
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(multivariate-level analysis). 

• Additionally, apart from evaluating the overall performance of the model 

(multivariate level), it is crucial to validate the performance of each independent 

predictor that is used in the model. In PD modelling, this can be achieved by 

using the IV criterion (Bruce L. and David B., 2013). Thus, the performance of 

each characteristic is examined upon comparing the distributions and the 

defaults versus non-default events within each segment of the used predictors, 

in both the training (development) and test (validation) samples. 

• Apart from the above mentioned, it is crucial to check whether the used 

characteristics are being stable over-time. If the distribution(s) of the used 

predictor(s) change over-time, then the model’s estimations are likely to change 

as well. To achieve this, the PSI is used, by comparing the distributions of the 

characteristics that were used during the training of the model, with the 

distributions of the characteristics on the test set (Bilal Y. and Joshua N., 2021). 

In summary, these monitoring activities help stakeholders determine if the model 

continues to perform as expected or if there is any deviation. If performance 

deterioration is detected, IV and PSI analyses provide insights into why the model is 

underperforming and what actions can be taken to retrain or recalibrate it to restore 

satisfactory performance.  
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C H A P T E R  5  
 

Implementation of Supervised Statistical  

and Machine Learning Methods  

for PD Estimation 
  

5.1 Introduction to the dataset and the analyses that will follow 

The data used for the following analyses are sourced from LendingClub.com, 

where they were publicly shared. Below is a dictionary providing descriptions for the 

corresponding columns of the dataset that were used. Some variables lacked 

descriptions, and those that were not self-explanatory were omitted. Additionally, some 

variables that were not relevant to the analysis (i.e. the information was unavailable at 

the time of the application and/or was retrospectively updated) were further dropped. 

Further analyses were made (conceptual soundness & correlation checks) before 

concluding to the final set of variables that were used for the analysis.  

Below follows a description of each characteristic contained on then dataset: 

 

Column Description 

acc_now_delinq 
The number of accounts on which the borrower is 
now delinquent. 

acc_open_past_24mths Number of trades opened in past 24 months. 

addr_state 
The state provided by the borrower in the loan 
application 

annual_inc 
The self-reported annual income provided by the 
borrower during registration. 

annual_inc_joint 
The combined self-reported annual income provided 
by the co-borrowers during registration 

application_type 
Indicates whether the loan is an individual application 
or a joint application with two co-borrowers 

avg_cur_bal Average current balance of all accounts 

chargeoff_within_12_mths Number of charge-offs within 12 months 

delinq_2yrs 
The number of 30+ days past-due incidences of 
delinquency in the borrower's credit file for the past 
2 years 

delinq_amnt 
The past-due amount owed for the accounts on 
which the borrower is now delinquent. 

dti 

A ratio calculated using the borrower’s total monthly 
debt payments on the total debt obligations, 
excluding mortgage and the requested LC loan, 
divided by the borrower’s self-reported monthly 
income. 
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Column Description 

dti_joint 

A ratio calculated using the co-borrowers' total 
monthly payments on the total debt obligations, 
excluding mortgages and the requested LC loan, 
divided by the co-borrowers' combined self-reported 
monthly income 

earliest_cr_line 
The month the borrower's earliest reported credit 
line was opened 

emp_length 
Employment length in years. Possible values are 
between 0 and 10 where 0 means less than one year 
and 10 means ten or more years. 

fico_range_high 
The upper boundary range the borrower’s FICO at 
loan origination belongs to. 

fico_range_low 
The lower boundary range the borrower’s FICO at 
loan origination belongs to. 

funded_amnt 
The total amount committed to that loan at that 
point in time. 

home_ownership 
The home ownership status provided by the 
borrower during registration. Our values are: RENT, 
OWN, MORTGAGE, OTHER. 

il_util 
Ratio of total current balance to high credit/credit 
limit on all install acct 

inq_last_12m Number of credit inquiries in past 12 months 

inq_last_6mths 
The number of inquiries in past 6 months (excluding 
auto and mortgage inquiries) 

installment 
The monthly payment owed by the borrower if the 
loan originates. 

issue_d The month which the loan was funded 

last_fico_range_high 
The upper boundary range the borrower’s last FICO 
pulled belongs to. 

last_fico_range_low 
The lower boundary range the borrower’s last FICO 
pulled belongs to. 

loan_amnt 

The listed amount of the loan applied for by the 
borrower. If at some point in time, the credit 
department reduces the loan amount, then it will be 
reflected in this value. 

loan_status Current status of the loan 

mort_acc Number of mortgage accounts. 

mths_since_last_delinq 
The number of months since the borrower's last 
delinquency. 

mths_since_last_major_derog Months since most recent 90-day or worse rating 

mths_since_last_record The number of months since the last public record. 

mths_since_recent_bc_dlq Months since most recent bankcard delinquency 

mths_since_recent_inq Months since most recent inquiry. 

mths_since_recent_revol_delinq Months since most recent revolving delinquency. 

num_accts_ever_120_pd Number of accounts ever 120 or more days past due 

num_rev_accts Number of revolving accounts 

open_acc 
The number of open credit lines in the borrower's 
credit file. 

open_acc_6m Number of open trades in last 6 months 
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Column Description 

open_il_12m 
Number of installment accounts opened in past 12 
months 

open_il_24m 
Number of installment accounts opened in past 24 
months 

open_rv_12m 
Number of revolving trades opened in past 12 
months 

open_rv_24m 
Number of revolving trades opened in past 24 
months 

out_prncp 
Remaining outstanding principal for total amount 
funded 

policy_code 
publicly available policy_code=1 new products not 
publicly available policy_code=2 

pub_rec Number of derogatory public records 

pub_rec_bankruptcies Number of public record bankruptcies 

purpose 
A category provided by the borrower for the loan 
request. 

recoveries post charge off gross recovery 

revol_bal Total credit revolving balance 

revol_util 
Revolving line utilization rate, or the amount of credit 
the borrower is using relative to all available 
revolving credit. 

term 
The number of payments on the loan. Values are in 
months and can be either 36 or 60. 

tot_coll_amt Total collection amounts ever owed 

tot_cur_bal Total current balance of all accounts 

total_acc 
The total number of credit lines currently in the 
borrower's credit file 

total_bal_ex_mort Total credit balance excluding mortgage 

total_bal_il Total current balance of all installment accounts 

total_cu_tl Number of finance trades 

total_pymnt Payments received to date for total amount funded 

total_rec_prncp Principal received to date 

verification_status 
Indicates if income was verified by LC, not verified, or 
if the income source was verified 

zip_code 
The first 3 numbers of the zip code provided by the 
borrower in the loan application. 

Table 5.1.1: Dataset Dictionary 

 

5.1.1 Target Variable 

The target variable was created based on the “loan_status” column. Specifically, 

the mapping of good-bad applicants (i.e. the creation of the target variable) is based on 

the descriptions provided by LendingClub for the values of the “loan_status” field: 

• Current: Loan is up to date on all outstanding payments. 

• In Grace Period: Loan is past due but within the 15-day grace period. 

• Late (16-30): Loan has not been current for 16 to 30 days. 

• Late (31-120): Loan has not been current for 31 to 120 days. 
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• Fully paid: Loan has been fully repaid, either at the expiration of the 3-year or 

5-year term or as a result of a prepayment. 

• Charged Off: Loan for which there is no longer a reasonable expectation of 

further payments. 

Thus, borrowers are defined as “Defaulted” if the “loan_status” field is equal to 

“Charged Off ”, “Late (16-30 days)”, or “Late (31-120 days)”. The following mapping 

is applied: 

Current 

Good In Grace Period 

Fully paid 

  

Charged Off 

Bad Late (16-30) 

Late (31-120) 

Table 5.1.1.1: Target variable mapping – G/B definition 

5.1.2 Dropped Variables 

Some variables eirther had too many values or were constant/quasi-constant and 

thus were further dropped. Specifically: 

• Zip_code – It has too many values and no concentration is identified in any 

specific value. If kept, the ML models would probably overfit. 

• policy_code – Constant, having only one value, and thus was dropped. 

• chargeoff_within_12_mths - Quasi-constant, having only two values, and thus 

was dropped. 

 

 Table 5.1.2.1: Chargeoff_within_12_months – Quasi-constant  

 

• acc_now_delinq - Quasi-constant, having only two values, and thus was 

dropped. 

 

Table 5.1.2.2: acc_now_delinq– Quasi-constant 

The resulted dataset contained 60 columns and 238,638 obsevations, with applications 

spawning from 01/2018 to 2018/06. 
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5.2 Train-Test Split 

In credit risk and PD model development, the training and test sets cover 

different time periods, with the test set representing data from a later period than the 

training set. This means the test set is an out-of-period sample rather than being drawn 

from the same timeframe as the training data. As a result, the test set will include data 

from months that follow the period covered by the training set. Due to the very large 

volumes of the dataset, and for time-efficiency purposes, as training set were selected 

applications from to 01/2018 to 03/2018, covering a period of 3 months and containing 

107,864 approved applications. As a test set, applications from 04/2018 to 05/2018 were 

selected, covering a period of 2 months and containing 42,928 approved applications. 

The train-test-split was made prior to any data management/feature engineering actions, 

as to prevent any data leakage from the training to the test set. 

 

5.3  Correlation Data Analysis and more Data pruning 

In any analysis multicollinearity can be a significant issue. Multicollinearity 

occurs when two or more predictors are highly correlated, leading to redundancy and 

potentially misleading the results of a model. To address this, one common approach is 

to drop one feature from each pair of highly correlated predictors. Here, we will also 

consider the conceptual soundness of the analysis to ensure that we retain the most 

meaningful predictors. 

Below, are depicted the features that are correlated with a pearson’s statistic of 

0.85 or above -in absolute terms: 

 

Table 5.3.1: Correlated Pairs (absolute value) 

From the above pairs, “fico_range_low”, “mths_since_last_delinq”, ”total_pymnt”, 

mths_since_recent_bc_dlq” were kept. Hence, the following variables were dropped:  

• loan_amnt 

• funded_amnt 

• fico_range_high 

• mths_since_recent_revol_delinq 

• pub_rec_bankruptcies 

• total_rec_prncp 
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• last_fico_range_low 

• total_bal_il 

• total_bal_ex_mort 
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5.4 Feature Engineering & Information Value Segmentation Analysis 

Figures for the distributions and the outliers of the (unsegmented) potential predictors 

are presented in Appendix. 

Before proceeding with the IV analyses, missing values were encoded as “-1” for 

continuous variables, and as “MISSING” for string values. 

Furthermore, rounded versions of the continuous variables were created, in order to be 

processed more efficiently, by capturing potential higher concentrations in certain 

values. Thus, the following variables were created: 

• dti_rounded 

• instlmnt_round 

• Annual_Inc_round 

• instlmnt_to_Annual_Inc 

• revol_bal_round 

• revol_util_round 

• total_pymnt_round 

• recoveries_round 

• avg_cur_bal_round 

Another variable was created, named as “years_with_Credit_line”, which counts the 

years since the first credit line of the applicant, based on the existing variable of the 

dataset, that of “earliest_cr_line”. 

To analyze the distribution of "Good" and "Bad" borrowers in a training dataset, 

a Python function that outputs these distributions into separate excel files was created. 

Additionally, this function calculates the WoE and IV for each value of the 

corresponding variable. The primary goal of this analysis is to group the variable values 

into meaningful categories (being conceptually sound and not misaligned), with each 

category consisting from population with similar default rates (a process known as 

binning or discretization). The objective is to assign borrowers with similar risk levels 

(i.e. default rates) to the same category while maximizing the Information Value (IV), 

which helps improve the predictive power of the model. Hence, the aim is to create a 

categorical version of the initial variable that better discriminates “Good” and “Bad” 

applicants. This approach allows for a direct categorization of predictors based on their 

observed relationship with the target variable. Hence, the IV analysis is conducted for 

each variable individually, ensuring optimal segmentation of their characteristics. 

Moreover, this methodology helps in creating variables that are robust to outliers, 

thereby enhancing the stability of predictive algorithms. By mitigating the risk of 

overfitting, this approach ensures more reliable and consistent predictions over time. 
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Finally, 26 potential predictors were optimally segmented. The categories for 

each predictor, along with their corresponding bad rates and the percentage of the total 

distribution within each category, are depicted in the figures below: 

Figure 5.4.1: Months Since Last Inquiry 

The predictor "Months Since Last Inquiry" is segmented into four categories 

based on the time elapsed since the borrower's last credit inquiry. The segments and 

their corresponding bad rates indicate that borrowers with more recent inquiries tend to 

have higher default rates. For instance, borrowers with inquiries within the last 2 

months exhibit a higher bad rate compared to those with inquiries older than 3-10 

months, and also to those of 11 months or more. This segmentation helps to identify 

higher-risk borrowers and contributes to more accurate risk assessments. 

 

 

Figure 5.4.2: Verification Status  

The "Verification Status" predictor is divided into Verified, Source Verified and 

Non-verified categories. Typically, verified borrowers show a lower bad rate compared 

to non-verified borrowers. However, in our case, the opposite is observed. This is 
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probably the outcome of a targeted verification from the financial institution. 

Specifically, the bank seems that does not look to verify the potential good profiles, 

whereas it does try to verify the riskier clients. Verification Status is a useful predictor 

in credit risk modeling. 

 

Figure 5.4.3: Total Payment Rounded  

The "Total Payment Rounded" predictor segments borrowers based on their total 

payment amount, categorized into four distinct ranges. These segments are associated 

with varying default rates, reflecting the relationship between the total amount paid and 

the PD. By analyzing these segments, lenders can better understand how different 

payment levels impact default risk. 

 

Figure 5.4.4: Inquiries Last 6 Months  

The "Inquiries Last 6 Months" characteristic segments borrowers based on the 

number of credit inquiries made within the last six months. Higher numbers of inquiries 
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correlate with increased bad rates, indicating that frequent credit seeking behavior is 

associated with higher risk. Borrowers with no recent inquiries exhibit the lowest bad 

rates. 

 

Figure 5.4.5: Inquiries Last 12 Months 

Similar to the 6-month inquiry predictor, the "Inquiries Last 12 Months" 

predictor segments borrowers by the number of credit inquiries over the past year. 

Borrowers with multiple inquiries within this period tend to have higher bad rates, 

underscoring the risk associated with frequent credit applications. 

 

Figure 5.4.6: Fico Range Low  

The "Fico Range Low" predictor segments borrowers based on their FICO 

scores (i.e. scored credit bureau information). Lower FICO score ranges correspond to 

higher bad rates, reflecting the well-established relationship between credit scores and 
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default risk. This segmentation is robust in identifying high-risk borrowers who might 

require closer monitoring or stricter lending criteria. 

 

Figure 5.4.7: Instalment Rounded 

The "Installment Rounded" characteristic groups borrowers by the rounded 

amount of their loan installments. Segments with higher installment amounts have 

higher bad rates, suggesting that the burden of larger loan repayments can impact the 

PD of the borrower. 

 

 

Figure 5.4.8: Accounts Open Last 24 Months 

This predictor, "Accounts Open Last 24 Months" segments borrowers by the 

number of new accounts opened in the past two years. Higher numbers of newly opened 

accounts correlate with increased bad rates, indicating that aggressive credit seeking 
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behavior within this period is a risk factor. 

 

Figure 5.4.9: Loan Term 

The "Loan Term" predictor categorizes borrowers based on the duration of their 

loans (e.g. 36 months, 60 months). Longer loan terms tend to have higher bad rates 

compared to shorter terms, suggesting that longer repayment periods is associated with 

greater uncertainty and risk. 

 

Figure 5.4.10: Open Revolving Accounts Last 24 Months 

The "Open Revolving Accounts Last 24 Months" characteristic segments 

borrowers by the number of revolving credit accounts opened in the last two years. 

Higher numbers of open revolving accounts are associated with higher bad rates, 

reflecting the risk of “over-leveraging” through revolving credit. 
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Figure 5.4.11: Open Accounts Last 6 Months 

This predictor segments borrowers by the number of new accounts opened in 

the last six months. Similarly, a higher number of new accounts in this period correlates 

with higher bad rates, indicating increased risk. 

 

Figure 5.4.12: Mortgage Accounts 

The "Mortgage Accounts" predictor categorizes borrowers based on the number 

of active mortgage accounts. Borrowers with multiple mortgage accounts tend to have 

lower bad rates, suggesting that owning multiple properties might be associated with 

greater financial stability. In specific, having more mortgage accounts indicates that the 

borrower has been approved for a number of mortgage loans in the past, indicating good 

repayment history. 
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Figure 5.4.13: Open Revolving Accounts Last 12 Months 

Similar to the 24-month predictor, the "Open Revolving Accounts Last 12 

Months" segments borrowers by revolving accounts opened in the past year. More 

revolving accounts opened in this period are linked to higher bad rates, indicating 

increased credit risk. 

 

Figure 5.4.14: Balance of Revolving Accounts 

The "Balance of Revolving Accounts" predictor segments borrowers based on 

the total balance across their revolving credit accounts. Higher balances are often 

associated with higher bad rates, reflecting the risk of having significant revolving debt. 
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Figure 5.4.15: Years of Employment 

The "Years of Employment" characteristic segments borrowers by their length 

of employment. Longer employment durations typically correlate with lower bad rates, 

indicating that stable employment is a positive indicator of creditworthiness. 

 

Figure 5.4.16: Installment Accounts Opened in Last 12 Months 

This predictor segments borrowers by the number of installment accounts 

opened in the past year. More recent installment accounts are linked to higher bad rates, 

indicating that taking on multiple installment loans within a short period is a risk factor. 
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Figure 5.4.17: Months Since Last Major Derogation 

The "Months Since Last Major Derogation" predictor segments borrowers based 

on the time elapsed since their last major derogatory mark. Longer periods since the 

last major derogation correspond to lower bad rates, highlighting the decreasing impact 

of past derogatory events over time. 

 

Figure 5.4.18: Annual Income Rounded 

The "Annual Income Rounded" predictor categorizes borrowers based on their 

rounded annual income. Higher income brackets generally exhibit lower bad rates, 

suggesting that higher income is associated with lower default risk. 
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Figure 5.4.19: Debt-to-Income Rounded 

The "Debt-to-Income Rounded" characteristic segments borrowers by their 

rounded debt-to-income ratios. Higher debt-to-income ratios are linked to higher bad 

rates, indicating that borrowers with higher debt relative to their income are at greater 

risk of default. 

 

Figure 5.4.20: Months Since Last Record 

The "Months Since Last Record" predictor segments borrowers by the time since 

their last record (e.g. bankruptcy etc). Longer periods since the last record are associated 

with lower bad rates, indicating that the impact of past records being decreased over 

time. 
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Figure 5.4.21: Months Since Last Delinquency 

The "Months Since Last Delinquency" predictor categorizes borrowers based on 

the time since their last delinquency. Longer periods since the last delinquency 

correspond to lower bad rates, suggesting that the risk associated with past 

delinquencies decreases over time. 

 

Figure 5.4.22: Delinquency Last 2 Years 

This predictor segments borrowers based on the number of delinquencies in the 

past two years. More frequent delinquencies in this period are linked to higher bad rates, 

indicating that recent delinquency behavior is a significant risk factor for future 

delinquencies. 
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Figure 5.4.23: Application Type 

The "Application Type" predictor categorizes borrowers based on the type of 

credit application (e.g. individual, joint). Joint applications tend to have lower bad rates 

compared to individual applications, suggesting that shared financial responsibility 

might reduce default risk. 

 

Figure 5.4.24: Home Ownership 

The "Home Ownership" characteristic segments borrowers by their home 

ownership status (e.g. own, rent, mortgage). Homeowners generally exhibit lower bad 

rates compared to renters, reflecting the stability and financial security associated with 

owning a home. 
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Figure 5.4.25: Years With Credit Line 

The "Years With Credit Line" predictor segments borrowers based on the length 

of time they have had credit lines. Longer credit histories correlate with lower bad rates, 

indicating that more extensive credit experience is associated with lower risk. 

 

 

Figure 5.4.26: Purpose of Loan 

The "Purpose of Loan" predictor segments borrowers based on the stated 

purpose of their loan (e.g. debt consolidation, home improvement, major purchase, etc). 

As indicated by the corresponding groups, credit card applications are of the lowest 

risk, whereas “Debt Consolidation”, “Home Improvement”, “Renewable Energy”, 

“Vacation” and “Wedding” are of mid-level risk. Finally, loans for “Car”, “House”, 

“Medical”, “Moving” and “Small business” purposes, are of the highest risk. 
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It is important to be noted that many of the above relationships can vary for 

different financial institutions, different types of loan products, that can also vary across 

different countries and continents. 

Finally, the IV criterion is a univariate measure used to assess the predictive 

power of each predictor in relation to the target variable -as it has already been 

presented in the current thesis, which in this context is the PD. A higher IV indicates a 

stronger predictive capability. Below is an analysis of the IVs for the potential 

predictors, in ascending order: 

# Potential Predictor IV 

1 total_pymnt_round 55.60 

2 mths_since_recent_inq_segm 7.76 

3 verification_status_segm 7.54 

4 inq_last_6mths_segm 7.34 

5 fico_range_low_segm 6.50 

6 inq_last_12m_segm 4.93 

7 term_segm 4.77 

8 purpose_segm 3.34 

9 instlmnt_round_segm 3.04 

10 mort_acc_segm 2.97 

11 emp_length_segm 2.74 

12 open_acc_6m_segm 2.63 

13 acc_open_past_24mths_segm 2.51 

14 open_rv_24m_segm 2.24 

15 open_rv_12m_segm 2.04 

16 revol_bal_segm 1.64 

17 Annual_Inc_round_segm 1.61 

18 mths_since_last_major_derog_segm 1.04 

19 open_il_12m_segm 0.76 

20 delinq_2yrs_segm 0.50 

21 mths_since_last_delinq_segm 0.40 

22 mths_since_last_record_segm 0.39 

23 dti_rounded_segm 0.37 

24 application_type_segm 0.37 

25 years_with_Credit_line_segm 0.10 

26 home_ownership_segm 0.06 

Table 5.4.1: IVs on the Training Set (Segmented Variables) 

 

5.5 Statistical and Machine Learning Model Implementations 

In this section, we focus into the implementation of four statistical and ML 

models -aimed at predicting PD. These models are chosen for their diverse approaches 

to handling complex datasets and their proven efficacy in predictive analytics in 

general. Each model will be implemented upon using the segmented predictors, in the 
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versions that previously presented, aiming to extract meaningful patterns and 

relationships that can forecast PD with high accuracy. The models implemented are LR, 

RF, GB and NN. For the LR, extra handling was done, by creating binary variables (or 

dummy variables) from the already segmented ones, with each variable with k 

categories producing k-1 new binary variables. This handling was determined by the 

inefficiency of linear models capturing non-linearities. On the contrary, RF, GB and 

NN are models that can capture complex and non-linear relationships -nevertheless 

being much more prune to overfitting issues. 

For each of the implementations that will follow, the estimated PD will be 

converted into Credit Score, by applying the following formula: 

Credit⁡Score = 400 + 28.85 × log⁡[
ProbGood

ProbBad
] 

where the second addend has been rounded (in order to obtain only integers as the 

Credit Score) and 400 is used as a constant to adjust the heights of the score. The 

coefficient of 28.85 is used in order to create a score-odds correspondence, in which for 

each +/-20 points of score, the Good:Bad-odds will be doubled or cut in half 

respectively. 

 

5.5.1 Logistic Regression Implementation 

As mentioned, for the LR, dummy variables were created. By proceeding to 

feature selection (between the binary predictors). The forward feature selection process, 

which aimed to maximize the ROC-AUC metric, identified several key dummy 

variables that are critical in predicting PD. These dummy variables represent various 

segments of categorical predictors, with each segment providing unique insights into 

the risk profile of borrowers. The selected dummy variables include various segments 

of predictors such as "total payment", "verification status", "months since recent 

inquiry", "inquiries in the last six months", "FICO range", "loan purpose", "installment 

amount", "accounts opened in the past 24 months", "loan term", "open accounts in the 

last six months", "mortgage accounts", "employment length", "annual income", 

"months since last delinquency", and "application type". 

More specifically, each dummy variable corresponds to a specific level of a 

categorical variable. For instance, "total_pymnt_round_segm_1" indicates the first 

level of the total payment rounded predictor. If this dummy variable is equal to 1, it 

means the borrower falls into the first segment of total payment rounded, which is <= 

4999, otherwise, it is 0. Similarly, "total_pymnt_round_segm_2" represents the second 

level of this predictor, indicating total payments in the range of 5000-9999. The same 

logic applies to other dummy variables, where the suffix "_segm_X" denotes the Xth 

segment of the categorical variable.  
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All the dummy variables that were selected for LR throughout the stepwise 

procedure, are presented in the following table: 

Dummy Variable Segment Description 

total_pymnt_round_segm_1 Segment 1 Total payment rounded ≤ 4,999 

total_pymnt_round_segm_2 Segment 2 
Total payment rounded between 5,000 - 
9,999 

total_pymnt_round_segm_3 Segment 3 
Total payment rounded between 10,000 
- 14,999 

verification_status_segm_1 Segment 1 Verification status: Verified 

verification_status_segm_2 Segment 2 Verification status: Source Verified 

mths_since_recent_inq_segm_1 Segment 1 
Months since recent inquiry: 0-2 
months 

inq_last_6mths_segm_4 Segment 4 0 inquiries in the last 6 months 

inq_last_6mths_segm_3 Segment 3 1 inquiry in the last 6 months 

fico_range_low_segm_1 Segment 1 FICO score ≤ 680 

fico_range_low_segm_2 Segment 2 FICO score between 685-700 

fico_range_low_segm_4 Segment 4 FICO score between 725-790 

fico_range_low_segm_5 Segment 5 FICO score ≥ 791 

purpose_segm_2 Segment 2 
Loan purpose: debt consolidation, home 
improvement, other, renewable energy, 
vacation, wedding 

purpose_segm_1 Segment 1 
Loan purpose: car, house, major 
purchase, medical, moving, small 
business 

instlmnt_round_segm_1 Segment 1 Installment amount rounded ≤ 479 

instlmnt_round_segm_2 Segment 2 
Installment amount rounded between 
480-699 

instlmnt_round_segm_3 Segment 3 
Installment amount rounded between 
700-879 

acc_open_past_24mths_segm_3 Segment 3 
Accounts opened in the past 24 months: 
7+ 

term_segm_2 Segment 2 Loan term: 36 months 

open_acc_6m_segm_1 Segment 1 Open accounts in the last 6 months ≤ 1 

mort_acc_segm_1 Segment 1 Mortgage accounts: 0 

emp_length_segm_2 Segment 2 Employment length: 0-8 years 

emp_length_segm_1 Segment 1 Employment length: 9+ years 

Annual_Inc_round_segm_3 Segment 3 
Annual income rounded between 
110,000-214,999 

mths_since_last_delinq_segm_2 Segment 2 Months since last delinquency: 46+ 

application_type_segm_2 Segment 2 Application type: Individual 

Table 5.5.1.1: Logistic Regression – Dummy Variables 

 

Below are presented the KS, AUC and Gini metrics on the Training and Test sets 

respectively:  
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Figure 5.5.1.1: KS Logistic Regression – Training Set 

 

Figure 5.5.1.2: KS Logistic Regression – Test Set 

The KS statistic is slightly higher in the training set when compared to the test 

set (46.86% vs 43.40%), suggesting that the model performs well in separating "Goods" 

and "Bads" in the training data. However, it still indicates good separation on unseen 

data. The model generalizes well to the test set with a moderate reduction in 

performance, which is normal and indicates stability. Furthermore, from the cumulative 

distributions of “goods” and “bads”, it can be observed that there is a slight difficulty 

in discriminating the population of the middle credit scores. That means that the model 

separates quite satisfactorily the goods and bads in general, but the distribution of the 

hard-to-classify cases (middle scores) indicate that there is room for improvement. 
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Figure 5.5.1.3: ROC Curve Logistic Regression – Training Set 

 

Figure 5.5.1.4: ROC Curve Logistic Regression – Test Set 

The AUC on the training set stands at 0.83, whereas on the test set is equal to 

0.81. This suggests that the model is doing a good job in distinguishing between "Good" 

and "Bad" borrowers in the test data as well, keeping the overfit in minimal levels. 
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Figure 5.5.1.5: Output Metrics - Logistic Regression – Training Vs Test Set 

 

 

Figure 5.5.1.6: Credit Score PSI - Logistic Regression – Training Vs Test Set 

The PSI statistic of 0.166 indicates a moderate shift between the training and 

test set distributions. Although there is some difference between the scoring 

distributions, it is not extreme, implying that the model performs consistently across 

both datasets. However, it might still need further monitoring or refinement to improve 

stability. Finally, this shift could be attributed to the fact that some of the characteristics 

that entered the model, over-penalize the applicants of the test set -thus increasing the 

concentration to the lower credit scores. Alternatively, the population of the test set 

might be indeed riskier, and thus is correctly ranked by the model to the lower scoring 

pools. 
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Figure 5.5.1.7: IV Comparison - Logistic Regression – Training Vs Test Set 

“Total Payment Rounded Segment 1” has the highest IV in both training and test sets, 

making it (by far) the most significant variable in this model. There is a noticeable 

increase in IV for some variables in the test set (e.g. fico_range_low_segm_5, 

inq_last_6mths_segm_4, fico_range_low_segm_5), indicating increased predictive 

power in the test set, without noticing any notable drop in the IV of all the other 

variables that were used in the model. Overall, the important variables retain their 

influence across both sets, indicating that the model captures the most meaningful 

predictors. 

5.5.2 Random Forest Implementation 

RF can handle categorical variables exceptionally well and is robust to 

correlated features. Hence, the variables will be inserted to the model in their segmented 

formats, and not through dummy variables as in LR. 

The forward feature selection process, applied within the RF algorithm, 

identified several segmented variables for PD estimation. This method iteratively added 

predictors to the model based on their contribution to maximizing the ROC-AUC 

metric, ensuring that each selected variable significantly enhanced the model's 

discriminatory power. The variables identified as significant are the following: 

Segmented Variable Segments Description 

total_pymnt_round_segm 1: ≤ 4,999 

0 5 10 15 20 25 30 35

total_pymnt_round_segm_1

inq_last_6mths_segm_4

verification_status_segm_1

fico_range_low_segm_1

mort_acc_segm_1

open_acc_6m_segm_1

mths_since_recent_inq_segm_-1

fico_range_low_segm_5

inq_last_6mths_segm_3

purpose_segm_2

instlmnt_round_segm_3

application_type_segm_2

verification_status_segm_2

mths_since_last_delinq_segm_2

LR - IV comparison

IV_Test IV_Train
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Segmented Variable Segments Description 

2: 5,000-9,999 
Total payment rounded into 
different ranges 

3: 10,000-14,999 

4: ≥ 15,000 

verification_status_segm 

1: Verified 
Borrower’s verification 
status 

2: Source Verified 

3: Not Verified 

mths_since_recent_inq_segm 

1: 0-2 months 
Months since the 
borrower’s most recent 
inquiry 

2: 3-10 months 

3: 11+ months 

-1: MISSING 

inq_last_6mths_segm 

1: 3+ inquiries 

Number of inquiries in the 
last 6 months 

2: 2 inquiries 

3: 1 inquiry 

4: 0 inquiries 

fico_range_low_segm 

1: ≤ 680 

Borrower’s FICO credit 
score range 

2: 685-700 

3: 705-720 

4: 725-790 

5: ≥ 791 

instlmnt_round_segm 

1: ≤ 479 

Installment amount 
rounded into ranges 

2: 480-699 

3: 700-879 

4: ≥ 880 

term_segm 
1: 60 months 

Loan term length 
2: 36 months 

open_acc_6m_segm 

1: ≤ 1 
Number of open accounts in 
the last 6 months 

2: > 1 

-1: MISSING 

mort_acc_segm 

1:00 

Number of mortgage 
accounts 

2:01 

3:02 

4: 3+ 

revol_bal_segm 

1: ≤ 9,999 

Revolving balance amount 
ranges 

2: 10,000-19,999 

3: 20,000-39,999 

4: ≥ 40,000 

emp_length_segm 

1: 10+ years 
Employment length 
segmented into ranges 

2: 1-8 years 

-1: MISSING 

dti_rounded_segm 

1: 0-7 
Debt-to-income ratio 
rounded into segments 

2: ≥ 8 

-1: MISSING 

delinq_2yrs_segm 

1: 3+ delinquencies 

Number of delinquencies in 
the past 2 years 

2: 2 delinquencies 

3: 1 delinquency 

4: 0 delinquencies 
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Segmented Variable Segments Description 

application_type_segm 
1: Joint Application 

Type of loan application 
2: Individual Application 

home_ownership_segm 
1: ANY, OWN 

Home ownership status 
2: MORTGAGE, RENT 

Table 5.5.2.1: Random Forest Variables 

Below are presented the KS, AUC and Gini metrics on the Training and Test sets:

 

Figure 5.5.2.1: KS -Random Forest – Training Set 

 

 

Figure 5.5.2.2: KS – Random Forest– Test Set 

The KS statistic is quite higher in the training set when compared to the test set 
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(48.74% vs 42.39%), suggesting that the model has overfitted to the training set. 

However, it still indicates good separation on unseen data though, with the KS 

remaining in high levels in the test set as well. Again, same as in the LR 

implementation, from the cumulative distributions of “goods” and “bads”, it can be 

observed that there is a slight difficulty in discriminating the population of the middle 

credit scores. That means that the model separates quite satisfactorily the goods and 

bads in general, but the distribution of the hard-to-classify cases (middle scores) 

indicate that there is room for improvement. 

 

 

Figure 5.5.2.3: ROC Curve – Training Set 

 

Figure 5.5.2.4: ROC Curve – Test Set 

The AUC metric (0.84 training vs 0.81 test set) also indicates a slight overfit, with the 

generalization remaining in high levels nevertheless. 
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Figure 5.5.2.5: Output Metrics - Random Forest – Training Vs Test Set 

 

 

 

Figure 5.5.2.6: Credit Score PSI – Random Forest – Training Vs Test Set 

Again, the PSI statistic of 0.150 indicates a moderate shift between the training 

and test set distributions. The above figure depicts the shift in the score that was also 

observed in the RF model. As mentioned, this shift could be attributed to the reasons 

that were also discussed in the LR implementation (either some characteristics over-

penalize the population of the test set, or the population of the test set is indeed of higher 

risk). 
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Figure 5.5.2.7: IV Comparison – Random Forest – Training Vs Test Set 

No significant shifts are observed in the predictive power of the characteristics 

used by the model, indicating that these characteristics continue to capture the patterns 

that were observed on the training set on unseen data. However, it should be mentioned 

that a slight increase in the predictive power is observed in the characteristics of 

“inq_last_6_mths_segm” and “mths_since_recent_inq_segm”. 

 

5.5.3 Gradient Boosting Implementation 

GB can also handle categorical variables exceptionally well -as RF does, and is 

also robust to correlated features. Hence, the variables will be inserted to the model in 

their segmented formats, and not through dummy variables as in LR. 

The forward feature selection process was also used in this implementation, in 

order to assess the contribution of predictors into maximizing the ROC-AUC metric, 

ensuring that each selected variable significantly enhanced the model's discriminatory 

power. The variables identified as significant are the following: 

Segmented Variable Segments Description 

total_pymnt_round_segm 1: ≤ 4,999 
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Segmented Variable Segments Description 

2: 5,000-9,999 Total payment 
rounded into 
different ranges 

3: 10,000-14,999 

4: ≥ 15,000 

verification_status_segm 

1: Verified 
Borrower’s 
verification status 

2: Source Verified 

3: Not Verified 

mths_since_recent_inq_segm 

1: 0-2 months 
Months since the 
borrower’s most 
recent inquiry 

2: 3-10 months 

3: 11+ months 

-1: MISSING 

inq_last_6mths_segm 

1: 3+ inquiries 

Number of inquiries 
in the last 6 months 

2: 2 inquiries 

3: 1 inquiry 

4: 0 inquiries 

fico_range_low_segm 

1: ≤ 680 

Borrower’s FICO 
credit score range 

2: 685-700 

3: 705-720 

4: 725-790 

5: ≥ 791 

purpose_segm 

1: car, house, major 
purchase, medical, moving, 
small business 

Loan purpose 
categories 
segmented 

2: debt consolidation, home 
improvement, other, 
renewable energy, vacation, 
wedding 

3: credit card 

instlmnt_round_segm 

1: ≤ 479 

Installment amount 
rounded into ranges 

2: 480-699 

3: 700-879 

4: ≥ 880 

term_segm 
1: 60 months 

Loan term length 
2: 36 months 

open_acc_6m_segm 

1: ≤ 1 Number of open 
accounts in the last 
6 months 

2: > 1 

-1: MISSING 

mort_acc_segm 

1:00 

Number of 
mortgage accounts 

2:01 

3:02 

4: 3+ 

open_rv_12m_segm 

1: ≤ 1 Number of open 
revolving accounts 
in the last 12 
months 

2: > 1 

-1: MISSING 

revol_bal_segm 

1: ≤ 9,999 
Revolving balance 
amount ranges 

2: 10,000-19,999 

3: 20,000-39,999 
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Segmented Variable Segments Description 

4: ≥ 40,000 

emp_length_segm 

1: 10+ years Employment length 
segmented into 
ranges 

2: 1-8 years 

-1: MISSING 

application_type_segm 
1: Joint Application Type of loan 

application 2: Individual Application 

home_ownership_segm 
1: ANY, OWN Home ownership 

status 2: MORTGAGE, RENT 

Table 5.5.3.1: Gradient Boosting Variables 

Below are presented the KS, AUC and Gini metrics on the training and test sets 

respectively:  

 
Figure 5.5.3.1: KS – Gradient Boosting – Training Set 

 

Figure 5.5.3.2: KS – Gradient Boosting – Test Set 
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The KS statistic is quite higher in the training set when compared to the test set 

(49.23% vs 44.15%), suggesting that the model has overfitted to the training set. 

However, it still indicates good separation on unseen data though, with the KS 

remaining in high levels in the test set as well. Furthermore, from the above 

distributions, it seems that GB is discriminating satisfactorily the good-bad populations 

in the middle scores (i.e. hard-to-classify cases), with the difference between the two 

cumulative distributions being distinguishable.   

 

Figure 5.5.3.3: ROC Curve – Gradient Boosting – Training Set 

 

Figure 5.5.3.4: ROC Curve – Gradient Boosting – Test Set 

The AUC metric (0.84 training vs 0.82 test set) indicates a minimal overfit, with the 

generalization on unseen data remaining in high levels. 
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Figure 5.5.3.5: Output Metrics – Gradient Boosting – Training Vs Test Set 

 

 

 

Figure 5.5.3.6: Credit Score PSI – Gradient Boosting – Training Vs Test Set 

Again, same as in the previous model implementations, the PSI statistic of 0.152 

indicates a moderate shift between the training and test set distributions. The above 

figure depicts the shift in the score that was also observed in the GB model. As 

mentioned, this shift could be attributed to the reasons that were also described in the 

previous two implementations (i.e.LR and RF). 
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Figure 5.5.3.7: IV Comparison – Gradient Boosting – Training Vs Test Set 

No significant shifts are observed in the predictive power of the characteristics 

used by the model, indicating that these characteristics continue to capture the patterns 

that were observed on the training set on unseen data. However, it should be mentioned 

that a slight increase in the predictive power is observed in the characteristics of 

“inq_last_6_mths_segm” and “mths_since_recent_inq_segm”. 

 

5.5.4 Neural Networks Implementation 

For the implementation of the NN model, the training set has been further 

segmented into training and validation sets, with the validation set being 20% of the 

initial training set. Validation set will be used during the training of the model, in order 

to reduce the potential overfit of the algorithm to the training data. All the 26 potential 

predictors will be used, as NN are known for their ability to automatically detect and 

leverage important features from the data. Of course, this can lead to overfitting, 

especially if the model becomes too complex relative to the amount of training data, 

but the segmentation of the characteristics also aim to reduce the complexity of the 

predictors used in the model. 

The architecture of the implemented NN is designed to balance complexity and 

regularization, aiming to provide robust predictions while minimizing overfitting. 

Here's a detailed overview of the architecture: 

Input Layer: 

- Shape: The input shape is set to (26,) to match the 26 predictors. 
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- This layer feeds the input data into the network, ensuring that each 

feature is considered. 

Hidden layers: 

- First hidden layer: 

• Nodes: 16 

• Activation function: ReLU  

• Dropout: 20% dropout rate to prevent overfitting by randomly 

setting 20% of the nodes to zero during training. 

- Second hidden layer: 

• Nodes: 32 

• Activation function: ReLU 

• Dropout: 20% dropout rate. 

- Third hidden layer: 

• Nodes: 64 

• Activation function: ReLU 

• Dropout: 20% dropout rate. 

Output layer: 

- Nodes: 1 

- Activation function: Sigmoid, producing a single output between 0 and 

1 -suitable for binary classification problems. 

Optimizer: 

- Adam optimizer: The Adam optimizer is chosen for its efficiency and 

adaptive learning rate capabilities, which help in faster convergence and 

better handling of noisy gradients. 

- Learning Rate: Specified within the Adam optimizer settings, tuned 

conservatively to avoid overfitting. 

Loss function: 

- Binary crossentropy: Used for binary classification tasks, this loss 

function measures the performance of the model by comparing the 

predicted probabilities to the actual binary labels. 

Metrics: 

- AUC: Monitored during training and evaluation to optimize the model’s 

performance. 

The model is trained with a focus on to prevent overfitting. Dropout layers are 

used to randomly deactivate neurons during training, encouraging the model to 

generalize better to unseen data. Additionally, conservative hyperparameter tuning aims 

to make the model not too simple nor too complex thus aiming to minimize overfitting. 
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The training process involves running the model for 50 epochs with a batch size 

of 16, updating weights after processing small groups of data, which improves 

computational efficiency and stability. Performance is monitored on a validation set to 

prevent the model from overfitting to the training data. These methods collectively help 

create a robust model that generalizes well to new data while avoiding overfitting. 

The characteristics that entered the model are presented below: 

Segmented Variable Segments Description 

home_ownership_segm 

1: ANY, OWN Home 
ownership 
status 

2: MORTGAGE, 
RENT 

years_with_Credit_line_segm 

1: 10-18 years, 
40+ years 

Number of 
years with a 
credit line 2: Other 

application_type_segm 

1: Joint 
Application Type of loan 

application 2: Individual 
Application 

dti_rounded_segm 

1: 0-7 Debt-to-
income ratio 
rounded into 
segments 

2: ≥ 8 

-1: MISSING 

mths_since_last_record_segm 

1: 1-68 months Months since 
the 
borrower's 
last public 
record 

2: 69+ months 

-1: MISSING 

mths_since_last_delinq_segm 

1: 0-45 months Months since 
the 
borrower's 
last 
delinquency 

2: 46+ months 

-1: MISSING 

delinq_2yrs_segm 

1: 3+ 
delinquencies 

Number of 
delinquencies 
in the past 2 
years 

2: 2 
delinquencies 

3: 1 
delinquency 

4: 0 
delinquencies 

open_il_12m_segm 

1: ≤ 1 Number of 
installment 
loans opened 
in the last 12 
months 

2: > 1 

-1: MISSING 

mths_since_last_major_derog_segm 

1: 0-45 months Months since 
the last major 
derogatory 
mark on credit 

2: 46-78 
months 

3: 79+ months 
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Segmented Variable Segments Description 

-1: MISSING 

Annual_Inc_round_segm 

1: ≤ 84,999 

Annual 
income 
rounded into 
ranges 

2: 85,000-
109,999 

3: 110,000-
214,999 

4: ≥ 215,000 

revol_bal_segm 

1: ≤ 9,999 
Revolving 
balance 
amount 
segmented 
into ranges 

2: 10,000-
19,999 

3: 20,000-
39,999 

4: ≥ 40,000 

open_rv_12m_segm 

1: ≤ 1 Number of 
revolving 
accounts 
opened in the 
last 12 
months 

2: > 1 

-1: MISSING 

open_rv_24m_segm 

1: ≤ 1 Number of 
revolving 
accounts 
opened in the 
last 24 
months 

2: 2-6 

3: 7+ 

-1: MISSING 

acc_open_past_24mths_segm 

1: ≤ 1 Number of 
accounts 
opened in the 
past 24 
months 

2: 2-6 

3: 7+ 

-1: MISSING 

open_acc_6m_segm 

1: ≤ 1 Number of 
open accounts 
in the last 6 
months 

2: > 1 

-1: MISSING 

emp_length_segm 

1: 10+ years Employment 
length 
segmented 
into ranges 

2: 1-8 years 

-1: MISSING 

mort_acc_segm 

1:00 
Number of 
mortgage 
accounts 

2:01 

3:02 

4: 3+ 

instlmnt_round_segm 

1: ≤ 479 Installment 
amount 
rounded into 
ranges 

2: 480-699 

3: 700-879 

4: ≥ 880 

purpose_segm 

1: car, house, 
major 
purchase, 
medical, 

Loan purpose 
segmented 
into 
categories 
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Segmented Variable Segments Description 

moving, small 
business 

2: debt 
consolidation, 
home 
improvement, 
other, 
renewable 
energy, 
vacation, 
wedding 

3: credit card 

term_segm 
1: 60 months Loan term 

length 2: 36 months 

inq_last_12m_segm 

1: ≤ 1 Number of 
inquiries in 
the last 12 
months 

2: 2-6 

3: 7+ 

-1: MISSING 

fico_range_low_segm 

1: ≤ 680 

Borrower’s 
FICO credit 
score range 

2: 685-700 

3: 705-720 

4: 725-790 

5: ≥ 791 

inq_last_6mths_segm 

1: 3+ inquiries Number of 
inquiries in 
the last 6 
months 

2: 2 inquiries 

3: 1 inquiry 

4: 0 inquiries 

verification_status_segm 

1: Verified 
Borrower’s 
verification 
status 

2: Source 
Verified 

3: Not Verified 

mths_since_recent_inq_segm 

1: 0-2 months Months since 
the 
borrower’s 
most recent 
inquiry 

2: 3-10 months 

3: 11+ months 

-1: MISSING 

total_pymnt_round_segm 

1: ≤ 4,999 
Total payment 
rounded into 
different 
ranges 

2: 5,000-9,999 

3: 10,000-
14,999 

4: ≥ 15,000 

Table 5.5.4.1: Neural Networks Variables 

 

. 
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Figure 5.5.4.1: NN Diagnostic Plot 

As can be seen from the diagnostic plot, the improvement of the model can be 

observed almost up to the 10th epoch, where AUC metric is close to its maximum value, 

and the corresponding loss curves have almost stabilized. This probably indicates that 

the data fed to the algorithm are not complex enough for this kind of problems, as the 

characteristics have been segmented -having also in mind the credit risk logic (hence 

that the patterns within the variables should be intuitively interpretable), as well as to 

prevent potential overfit of the algorithm.  



 

109  

 

Figure 5.5.4.2: KS - NN – Training Set 

 

Figure 5.5.4.3: KS – NN – Test Set 

The KS statistic is quite high in both the training and test sets (46.46% vs 44.02% 

respectively), indicating that the model generalizes well on unseen data. However, it 

can be seen from the corresponding good-bad distributions, that the model fails to 

discriminate the two populations in the middle scores. Specifically, it seems that the 

model is not discriminating well between the scores of around 420-500, with the 

cumulative distributions abruptly increasing in this scoring interval.  
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Figure 5.5.4.4: ROC Curve – NN – Training Set 

 

Figure 5.5.4.5: ROC Curve - NN – Test Set 

The AUC metric (0.83 training vs 0.81 test set) indicates a minimal overfit, with 

the generalization on unseen data remaining in high levels. 

 



 

111  

          

  

Figure 5.5.4.6: Output Metrics – NN – Training Vs Test Set 

 

 

 

Figure 5.5.4.7: Credit Score PSI – NN – Training Vs Test Set 

Again, same as in all the previous model implementations, the PSI statistic of 

0.145 indicates a moderate shift between the training and test set distributions. 
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Figure 5.5.4.8: IV Comparison – NN - Training Vs Test Set 

No significant shifts are observed in the predictive power of the characteristics 

used by the model, indicating that these characteristics continue to capture the patterns 

that were observed on the training set on unseen data. However, it should be mentioned 

that a slight increase in the predictive power is observed in the characteristics of 

“inq_last_6_mths_segm” and “mths_since_recent_inq_segm”, as also discussed in the 

previous implementations. 

 

5.5.5 Model Comparison – Performance Metrics  

Below are presented the separation metrics, as well as the corresponding PSI tests: 

Model 
KS 

Training 
KS - 
Test 

Gini - 
Training 

Gini - 
Test 

AUC - 
Training 

AUC - 
Test 

PSI 

LR 46.86% 43.40% 0.66 0.63 0.83 0.81 0.16 
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dti_rounded_segm

application_type_segm
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home_ownership_segm

NN IVs Comparison

IV_Test IV_Train
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RF 48.74% 42.39% 0.68 0.62 0.84 0.81 0.15 

GB 49.23% 44.15% 0.68 0.63 0.84 0.82 0.15 

NN 46.46% 44.02% 0.65 0.63 0.83 0.81 0.14 

Table 5.5.5.1: Model Performance Comparison 

 In evaluating the model performance metrics, it is evident that the segmentation 

of the variables significantly contributed to preventing overfitting across all models. 

This is reflected in the relatively close performance between the training and test sets 

for the various algorithms. For instance, the LR model demonstrated a KS statistic of 

46.86% on the training set and 43.40% on the test set, alongside Gini coefficients and 

AUC scores that show minimal drop-off from training to testing. This indicates strong 

generalization capabilities. 

While being the simplest model among the evaluated ones, LR stands out for its 

high interpretability and robust generalization. Despite its simplicity, LRs’ performance 

in terms of AUC and Gini on both training and test sets is competitive with more 

complex models such as RF, GB and NN. The respective AUC scores for the training 

and test sets in LR are 0.83 and 0.81, which are only marginally lower than those of the 

other models, underscoring LRs effectiveness without the complexity of "black-box" 

models. 

It is important to mention (once again) that the segmentation of characteristics 

played a pivotal role in stabilizing the model predictions and avoiding overfitting. For 

example, variables like total_pymnt_round_segm, verification_status_segm, and 

fico_range_low_segm have high IVs, indicating robust predictive power, with no shifts 

in the predictive power being observed when compared to the test set -except in the LR 

implementation (as discussed to the corresponding analysis). 

The PSI values indicate that the credit scores of the test set were more 

concentrated in the lower score ranges, probably attributed to potential over-

penalization of certain population segments. That means that some certain variables 

may over-penalize some specific characteristics of the customer. Variables with 

augmented IVs between training and test sets, such as mths_since_recent_inq_segm 

and inq_last_6mths_segm, suggest improved separation power in the test set, but may 

also imply that these predictors are disproportionately impacting specific segments. 

This underscores the need for a comprehensive characteristic analysis to understand 

why lower scores are prevalent in the test set across all the implemented models -as to 

ensure balanced PD assessment. Therefore, it's crucial to perform a detailed comparison 

of the training and test characteristics to identify and address any underlying biases, 

ensuring that the scoring models remain fair and accurate across different populations. 

However, apart from the characteristic analysis, another thing that could cause the shift 

of the score towards the lower scoring pools, could also be attributed to the fact that the 

customers of the test set are indeed riskier, and thus are correctly scored in lower scoring 

pools by the corresponding models. 
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To conclude, all the tested models demonstrated strong separation statistics, 

indicating high discriminatory power. The discrimination statistics (i.e. KS, Gini, AUC) 

indicate that both the LR and NN models exhibited minimal overfitting to the training 

set, while the GB and RF models showed slightly more overfitting. 

Between the LR and NN models, LR is more suitable for this type of modeling, 

primarily because of its high interpretability. While Neural Networks are often 

considered “black-box” models, making them harder to interpret, LR provides clear 

insights into the relationship between variables and the predicted outcome. Although 

the LR model produced satisfactory discrimination statistics, there is room for 

improvement, particularly in its performance on hard-to-classify cases, as shown in the 

middle score ranges of the cumulative distributions for "goods" and "bads." Despite 

this, the combination of high discriminatory power and interpretability makes LR the 

better choice for this analysis. 
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C H A P T E R  6  
 

Conclusion 

This thesis analyzed the critical role of PD estimation in financial institutions. 

Initially, it detailed the risks and challenges faced by financial institutions, highlighting 

the fundamental importance of accurate PD estimation. A comprehensive literature 

review was conducted, covering both traditional statistical models and recent 

advancements in ML, along with industry-standard performance metrics such as KS, 

Gini, and AUC. 

The theoretical background of LR, RF, GB, and NN was thoroughly discussed. 

In the fifth chapter, these models were implemented using real data from 

LendingClub.com, each in order to create a corresponding application scorecard. All 

tested models achieved high separation statistics, indicating strong discriminatory 

power. Specifically, the discriminatory power was measured using KS, Gini, and AUC 

metrics. 

The analysis revealed that LR and NN exhibited minimal overfitting to the 

training set, whereas GB and RF displayed slightly more overfitting. Between LR and 

NN, LR emerged as more suitable for such modeling purposes due to its high 

interpretability, whereas NN are regarded as “black-box” models. 

Additionally, the IV criterion and PSI test were utilized for the segmentation 

analysis and monitoring of the models. These metrics provided further insights into the 

stability and predictive power of the models over-time. 

In summary, this thesis demonstrated that statistical ML methods can be 

effectively applied to estimate the PD. The results underscore the importance of 

selecting appropriate models based on the specific requirements of credit risk 

assessment, as well as the need for continuous optimization and evaluation to achieve 

the best possible outcomes.  
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Appendix 
 

The dataset was downloaded from the following link: 

https://www.kaggle.com/datasets/wordsforthewise/lending-club 

The dictionary of the dataset can be found on the following link: 

https://github.com/dosei1/Lending-Club-Loan-Data/blob/master/LCDataDictionary.csv 

  

https://www.kaggle.com/datasets/wordsforthewise/lending-club
https://github.com/dosei1/Lending-Club-Loan-Data/blob/master/LCDataDictionary.csv
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