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Abstract 

Accurate Estimated Time of Arrival (ETA) prediction is essential for optimizing urban transit 
systems and enhancing user experience. This thesis examines advanced machine learning 
techniques, including Neural Network (NN), Random Forest (RF), XGBoost, Long Short-Term 
Memory (LSTM) networks, and Graph Convolutional Networks (GCNs), for predicting ETAs of 
urban transit vehicles using real-time GPS data. A comprehensive data preprocessing pipeline 
was developed to handle noise and inconsistencies in transit data, involving steps like 
normalization, imputation of missing values, and k-fold Cross Validation. 

The results show that the Random Forest model, especially when optimized with k-fold Cross 
Validation, provides superior accuracy in terms of Mean Squared Error (MSE) and Mean Absolute 
Error (MAE), balancing prediction accuracy with computational efficiency. The LSTM model also 
produced promising results, effectively capturing temporal dependencies. In contrast, both GCNs 
and XGBoost models, produced poorer results with significantly lower accuracy, despite XGBoost 
being computationally efficient. The Simple Model (NN) performed well despite its simplicity, with 
the high number of neurons contributing to its strong predictive accuracy. Additionally, a SHAP 
(SHapley Additive exPlanations) analysis was performed to highlight the most important features 
influencing ETA predictions. Temporal features such as the unix time are the most influential. 

 This thesis contributes to the field by providing an easy-to-understand method for predicting ETAs 
in urban transit. Future work could involve expanding the dataset and integrating additional 
features like traffic congestion and weather conditions to enhance model performance. 

Keywords: Estimated Time of Arrival (ETA), Urban Transit Systems, Machine Learning, 
Random Forest (RF) 
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Περίληψη 

Η ακριβής πρόβλεψη του Εκτιμώμενου Χρόνου Άφιξης (ETA) είναι απαραίτητη για τη 
βελτιστοποίηση των αστικών συστημάτων μετακίνησης και την βελτίωση της εμπειρίας των 
χρηστών. Αυτή η διατριβή εξετάζει προηγμένες τεχνικές μηχανικής μάθησης, όπως τα Νευρωνικά 
Δίκτυα (NN), Random Forest (RF), το XGBoost, τα δίκτυα Long Short-Term Memory (LSTM) και 
τα Graph Convolutional Networks (GCNs), για την πρόβλεψη της άφιξης μέσων μεταφοράς 
χρησιμοποιώντας δεδομένα GPS σε πραγματικό χρόνο. Αναπτύχθηκε ένας ολοκληρωμένος 
αλγόριθμος προεπεξεργασίας δεδομένων για την αντιμετώπιση των σφαλμάτων στα δεδομένα 
μετακίνησης, περιλαμβάνοντας βήματα όπως η κανονικοποίηση, η συμπλήρωση ελλιπών τιμών 
και η k-fold Cross Validation. 

Τα αποτελέσματα δείχνουν ότι το μοντέλο Random Forest, ιδιαίτερα όταν βελτιστοποιείται με τη 
χρήση PSO, προσφέρει ανώτερη ακρίβεια όσον αφορά το Μέσο Τετραγωνικό Σφάλμα (MSE) και 
το Μέσο Απόλυτο Σφάλμα (MAE), εξισορροπώντας την ακρίβεια πρόβλεψης με την υπολογιστική 
αποδοτικότητα. Το LSTM έχει επίσης υποσχόμενα αποτελέσματα. Εν αντιθέσει τα GCNs και 
XGBOOST δεν παρήγαγαν τόσο καλά αποτελέσματα με χαμηλότερη ακρίβεια, παρά του ότι το 
μοντέλο XGBOOST ήταν υπολογιστικά αποδοτικό. Το απλό μοντέλο είχε καλή απόδοση παρά την 
απλότητα του, με τον υψηλό αριθμό νευρώνων να συμβάλλουν στην αποτελεσματικότητα του. 
Πραγματοποιήθηκε ανάλυση SHAP (SHapley Additive exPlanations) για τον εντοπισμό των 
βασικών χαρακτηριστικών που επηρεάζουν τις προβλέψεις ETA. Τα χρονικά χαρακτηριστικά 
όπως Unix ώρα είναι τα πιο ισχυρά. 

Αυτή η διατριβή συμβάλει παρέχοντας μία ευέλικτη και εύκολη στην κατανόηση μέθοδο για την 
πρόβλεψη ΕΤΑ σε αστικά μέσα μεταφοράς. Μελλοντική εργασία θα μπορούσε να περιλαμβάνει 
την αύξηση του συνόλου δεδομένων, και την ενσωμάτωση επιπρόσθετων χαρακτηριστικών, 
όπως τα επίπεδα κυκλοφοριακής συμφόρησης και οι καιρικές συνθήκες, για τη βελτίωση της 
απόδοσης του μοντέλου. 

Λέξεις Κλειδιά: Εκτιμώμενος Χρόνος Άφιξης (ETA), Αστικά Συστήματα Μετακίνησης, 
Μηχανική Μάθηση, Τυχαία Δάση (RF) 
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1. Introduction 

Precise Estimated Time of Arrival (ETA) forecasts are vital, especially for bus transit, as the 
complexity of urban environments increases and the demand for effective public transit systems 
rises. As there are more and more cars in urban areas, there is a growing need for efficient and 
precise traffic services. One of the services that drivers use the most figuring out a route between 
two or more locations. Drivers utilize routing applications every day to find the shortest route 
through the city. Giving a user an expected time of arrival (or ETA), which is an estimation of the 
length of a planned trip, is one of the primary features of such services [1]. 

 The urgent difficulties and complexities involved in forecasting bus arrival times within the 
dynamic context of urban traffic are covered in this dissertation. This project seeks to optimize 
urban transportation by employing advanced machine learning approaches to greatly improve 
bus ETA forecast accuracy and reliability. Accurate ETA predictions enable traffic participants to 
make better decisions, potentially avoiding congested regions and reducing overall time. This 
highlights the importance of such a predictor [7]. 

 Moreover, the benefits of precise ETA projections go far beyond personal convenience. They 
have revolutionized how we navigate our increasingly complex world by influencing almost every 
aspect of a modern society. 

 The persistent issues with urban transit systems—unpredictable traffic patterns, frequent 
delays, and the resulting disruption to regular passenger routines—are the inspiration behind this 
research. The recent developments of ETA prediction have significantly decreased the uncertainty 
that was mostly associated with traditional travel planning. [33]. To overcome those everyday 
issues, a number of sophisticated machine learning models are examined in this dissertation. 
These models include Neural Networks, Random Forest, LSTM, XGBoost, and Graph 
Convolutional Networks (GCNs), which are well-known for their ability to handle a wide range of 
data inputs and for their adaptability in handling complex, non-linear relationships [5, 7, 8]. 

 The first chapter explains the theoretical foundations and current environment of ETA 
prediction research, establishing the basis for the approaches used in the following chapters. The 
second chapter evaluates the existing literature, pointing out significant research needs such as 
the necessity for real-time data processing and model flexibility in urban bus routes. It sets the 
scenario for an in-depth examination of the specific issues connected with bus ETA predictions, 
such as variability in bus speeds, route variations, and the influence of urban congestion. 

 The following chapters describe the methodological framework used to address these issues. 
This involves creating a complete data preprocessing pipeline capable of combining real-time 
traffic data, bus operational data, and historical transit records to provide a comprehensive model 
of urban traffic dynamics. The methodology chapter also discusses the selection criteria for 
machine learning models customized to the specific needs of bus ETA prediction, which are 
supported by comparative evaluations of model performances.  

 Furthermore, the dissertation provides an in-depth examination of the findings gained by 
deploying these models. It evaluates their ability to reduce forecast errors and improve the 
reliability of bus arrival timings. Chapter six examines practical applications of the research 
findings, focusing on how these improved ETA predictions can be smoothly integrated into existing 
public transit management systems to increase operational efficiency and passenger experience. 

 Finally, the dissertation finishes with an examination of the research's broader implications for 
future urban transit planning and management. It also suggests potential areas for future 
research, such as the incorporation of additional predictive variables and the investigation of 
newer, more computationally efficient machine learning approaches. 
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2. Literature Gap 

While numerous studies have applied machine learning techniques to improve ETA predictions, 
there remain several key gaps in the current research: 

• Scalability and Computational Efficiency: Many studies use complex models like 
LSTM and GCNs, which demand significant computational resources, challenging real-
time deployment. This study addresses this by evaluating the computational demands 
and performance of various models, identifying those that balance accuracy with 
efficiency. These insights highlight models better suited for real-time use, setting a 
foundation for future optimization work. 

• Model Interpretability: High-performing models such as GCNs and deep neural 
networks often lack transparency, making their predictions difficult to interpret. This gap 
shows challenges for their adoption in operational environments where understanding 
model decisions is crucial. 

• Comparative Analysis of Models: There is limited comparative research evaluating 
multiple machine learning models on the same dataset to determine which techniques 
are most effective under various urban transit conditions. 

This thesis aims to fill these gaps by exploring the performance of multiple advanced machine 
learning models, optimizing them for better scalability and interpretability, and integrating diverse 
data sources to improve overall prediction accuracy. The findings will contribute to developing 
robust, real-time ETA prediction models suitable for modern urban transit systems. 
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3. Related Work  

In this section, we have gathered material of prior work in the related field. As we navigate through 
the existing body of work, we will outline the theoretical foundations, methodological frameworks, 
and empirical findings that inform and guide our own investigation.  

 The foundation of data-driven innovation is made up of machine learning approaches, which 
allow computers to independently make predictions and extract insightful information. There are 
numerous studies that employ machine learning techniques for ETA prediction and have had a 
great impact on the ETA prediction’s outcomes [3],[6],[8],[26],[36],[37],[42],[44]. Chondrodima, 
Georgiou, Pelekis and Theodoridis explore the use of Particle Swarm Optimization (PSO) and 
Radial Basis Function (RBF) neural networks for predicting public transport arrival times using 
General Transit Feed Specification (GTFS) data. It introduces a novel data-driven approach and 
a preprocessing pipeline (CR-GTFS) for cleaning and reconstructing GTFS data, effectively 
outperforming state-of-the-art methods in both prediction accuracy and computational times. This 
work is significant for its potential to enhance public transportation systems' reliability and 
efficiency by providing more accurate arrival time predictions. It includes detailed experimental 
evaluations and contributes to the intelligent transportation systems field, particularly within the 
context of 'smart' cities, by addressing a crucial aspect of public transport service optimization [6].  

 The study by William Barbour, Juan Carlos Martinez Mori, Shankara Kuppa, and Daniel B. 
Work introduces a machine learning approach to predict freight train arrival times on the US rail 
network, focusing on the challenge of high travel time variability due to infrastructure limitations 
and mixed traffic. By framing the estimation of train estimated times of arrival (ETAs) as a machine 
learning problem and utilizing support vector regression (SVR) trained on extensive historical 
data, the research proposes detailed models for each origin-destination pair. These models 
incorporate a variety of train, network, and traffic characteristics, significantly enhancing prediction 
accuracy over traditional methods. The approach demonstrates an average improvement of 14% 
in ETA prediction accuracy, with up to 21% improvement in specific areas, highlighting the efficacy 
of data-driven models in optimizing rail network operations. Future directions include developing 
preemptive classifiers for trains likely to require crew changes and integrating yard state models 
to further refine ETA predictions [3].  

 When it comes to Time Series Analysis Wang, Gu, Junjie Wu, Liu, introduce a deep learning 
method, the Error-feedback Recurrent Convolutional Neural Network (eRCNN), for predicting 
traffic speed and analyzing congestion sources. eRCNN leverages spatio-temporal data from 
contiguous road segments to capture the intricate interactions affecting traffic speed. By 
incorporating error-feedback neurons, the model effectively adapts to sudden traffic changes 
caused by events like accidents or peak hours. Extensive testing on real-world data from Beijing's 
ring roads demonstrates eRCNN's superior predictive accuracy over traditional models. 
Additionally, the paper outlines a novel approach for identifying congestion sources using the 
deep learning model, offering valuable insights for traffic management and urban planning [37]. 

 

 

https://ieeexplore.ieee.org/author/37716384100
https://ieeexplore.ieee.org/author/37087156832
https://ieeexplore.ieee.org/author/37537242000
https://ieeexplore.ieee.org/author/37086022807
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Duan, Yisheng and Wang investigate the use of Long Short-Term Memory (LSTM) neural 
networks for predicting travel times on highways, leveraging data from Highways England. This 
approach focuses on creating 66 series prediction LSTM neural networks corresponding to 66 
links within the dataset, optimizing each model to achieve the best structure for predicting future 
travel times. Through excessive model training and validation, the research showcases that LSTM 
neural networks, which inherently consider sequential data relationships, demonstrate promise in 
predicting traffic series data accurately. The multi-step prediction LSTM neural network used for 
series prediction is shown in Figure 2. The evaluation findings show that the mistakes for multi-
step forecasts increase with the number of steps ahead, however 1-step forward predictions 
provide comparatively minor errors, with a median Mean Relative Error (MRE) of 7.0% across the 
66 linkages. This highlights how crucial it is to gather historical travel time data as soon as possible 
to make precise forecasts in the future. Their results demonstrate how well LSTM networks handle 
time-series data, which represents a major leap in traffic management techniques and intelligent 
transportation systems [8]. 

 B. Yang, C. Guo, and C. S. Jensen used GPS tracking data to model sparse, spatiotemporal 
correlations in transportation systems. By addressing the challenges of sparsity, dependency, and 
heterogeneity in traffic time series data, this approach offers a robust solution for real-time travel 
cost inferencing. The framework consists of state formulation, parameter learning, and online 
inference components, enabling the dynamic update of travel costs in road networks. The 
empirical evaluation demonstrates the framework's effectiveness and efficiency in inferring travel 
times and GHG emissions, outperforming baseline methods significantly. The study highlights the 
potential of using GPS data for dynamic travel cost prediction, providing valuable insights for 
routing services and traffic management [43]. 

 When it comes to Graph Neutral Networks Derrow-Pinion, Austin, et al. presented a significant 
advancement in travel-time prediction through the deployment of graph neural networks (GNNs) 
within Google Maps. Highlighting the complexity of accurately estimating arrival times due to the 
complicated spatiotemporal dynamics of road networks, the authors introduce a GNN-based 
estimator for improving estimated time of arrival (ETA) predictions. This model, by considering for 
the topological features of the road network and expecting future traffic conditions, outperforms 
previous methods by reducing negative ETA outcomes by over 40% in some cities, such as 
Sydney. The GNN architecture, while utilizing standard building blocks, incorporates training 
schedule methods like MetaGradients, making the model robust and suited for real-world 
application.  

Figure 1: The figure shows that the 
proposed eRCNN effectively captures 
abrupt changes in traffic speeds, matching 
the predicted curves with the real values, 
while the CNN model fails to effectively 
follow these changes. Derived from [37]. 

 

Figure 2: The diagram shows that adding 
independent error-feedback neurons to 
eRCNN improves its ability to forecast 
traffic speeds with sudden variations. 
Given that eRCNN's absolute prediction 
error is lower than CNN's, the error-
feedback system has significantly 
improved, particularly in handling traffic 
fluctuations. Derived from [37]. 
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Figure 3: An illustration of a shared traffic volume road network divided into focus portions (left). Every 
segment is regarded as a node (center), and a supersegment (right) is formed by connecting nearby 
segments via edges. More off-route nodes may be joined to the graph for longer supersegments. Derived 
from [7]. 

 

The paper details the challenges in representing road networks for machine learning and the 
solutions employed, including the use of both real-time and historical data to inform the GNN's 
predictions. The deployment of this GNN model in Google Maps underscores its real-world utility, 
offering improved navigation experiences for users by providing more accurate and reliable travel 
time estimates [7]. The evolution of Google maps was also discussed by Mehta et al., in 2019. It 
details the company's evolution from limited navigation features to extensive capabilities like 
street view and Estimated Time of Arrival. It also provides an overview of Google Maps' algorithms 
and procedures for functions like finding the shortest path, geocoding, and user-friendly 
operations. The comprehensive overview provides a detailed understanding of the diverse 
features and sophisticated procedures used by Google Maps by using Real-Time Data Integration 
[23]. Real data was also used by Zafar et al. The author presents a hybrid GRU-LSTM-based 
deep learning model for smart city traffic congestion prediction, utilizing city-wide traffic data from 
diverse sources. The model achieves a 95% accuracy rate, outperforming other models in 
comparative analysis [45].  

Finally, to effectively estimate trip time and passenger flow, hybrid models—such as those 
used by Kang et al. [17] and Vidya G S and Hari V S [11]—integrate complex networks, empirical 
dynamic modeling, and Gaussian Process Regression. These hybrid techniques improve 
prediction accuracy by combining the best features of several different methodologies. Such 
model was deployed in [17] by Kang et al. The research introduces a novel hybrid model, EDMCN-
XGBoost, for predicting short-term travel time in urban road networks, combining empirical 
dynamic modeling (EDM), complex networks (CN), and XGBoost. Urban traffic, characterized by 
nonlinearity and dynamism, makes necessary considering both temporal and spatial 
dependencies for accurate travel time prediction. EDM reveals the dynamic nature of travel time 
series, while CN captures the spatial characteristics of urban traffic topology. The XGBoost model, 
established for these spatio-temporal features, exhibits superior forecasting performance 
compared to traditional and single machine learning models. Through analyzing Guiyang's road 
network, the study validates the effectiveness of EDMCN-XGBoost, highlighting the significance 
of high-quality, accessible, and non-necessary features in capturing the complex dynamics of 
urban traffic. The study proposes a comprehensive framework for spatio-temporal feature 
analysis, mining, and prediction, aiming to enhance urban transportation systems by providing 
accurate travel time forecasts.  
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Figure 4: This diagram illustrates the steps of the EDMCN-XGBoost methodology, which include data 
preprocessing, empirical dynamic modeling (EDM) for temporal feature extraction, complex network (CN) 
analysis for spatial feature extraction, and the final prediction of travel time using the XGBoost model. It 
visually represents the structure and flow of the model from raw data to the final prediction. [17] 

Another hybrid-approached model was used by Vidya G S and Hari V S. Geospatial, ticketing, 
and scheduling data are extensively analyzed, and GPR is found to be a reliable method for 
managing dense information and producing precise forecasts with quantifiable uncertainty. The 
method addresses the unpredictable characteristics of traffic as a Markovian process and models 
passenger arrivals as the sum of Poisson processes. Its superiority over more conventional 
models, such as ARMA and neural networks, is demonstrated by the fact that it offers reduced 
prediction errors and increased computational efficiency. The study illustrates GPR's superior 
predictive accuracy and efficiency by contrasting it with alternative approaches such as Kernel 
Ridge Regression and Student-t processes, thereby establishing GPR as a potentially useful 
instrument for improving intelligent transportation systems. This study highlights the potential of 
GPR to boost passenger satisfaction and the financial performance of transportation services 
[11]. Additionally, ETA estimate for bus routes in cities with limited GPS datasets with hybrid 
methods was addressed by Paliwal and Biyani [25]. This paper introduces a new framework for 
bus route ETA prediction using a generative model based solely on historical GPS data. The 
model learns the probability distribution of ETA across trips, updating in real-time with trip 
progress. It incorporates bus-specific speeds and stopping times without needing external traffic 
data. The methodology transforms historical ETA into a matrix, predicting remaining stops' ETA 
based on current and past trip data. Tested on Delhi, India's bus routes, the model outperforms 
traditional traffic prediction methods, offering a practical solution for cities lacking extensive traffic 
datasets. It simplifies real-time ETA prediction for public transit, enhancing intelligent 
transportation systems with minimal data requirements. 

 Ensemble models combine various techniques and have been proven more efficient than the 
best legacy models. Schleibaum S., Müller J., and Sester M. present a new method for improving 
Estimated Time of Arrival (ETA) predictions for taxi trips by combining multiple machine learning 
models into a two-level ensemble, enhancing transparency and decision-making through 
eXplainable Artificial Intelligence (XAI) methods, and demonstrating its efficacy in experimental 

https://www.researchgate.net/profile/Soeren-Schleibaum?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Joerg-Mueller-5?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Monika-Sester?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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evaluation. Experimental evaluation demonstrates that the ETA models effectively learn the 
importance of input features influencing the predictions, highlighting the efficacy of the proposed 
approach [30]. Moreover, Mamudur and Mallikarjuna Rao [22], recently published a paper about 
a method using the extra gradient boosting method (XGBoost) to predict the compression index 
of consolidated soils, overcoming limitations of traditional regression-based methods. The study 
utilizes a comprehensive grid search algorithm combined with a three-way hold-out technique for 
tuning the hyperparameters of the XGBoost algorithm. The findings reveal an 8-11% improvement 
in prediction accuracies over conventional single- and multi-variable regression models and 
artificial neural networks, indicating XGBoost's potential in geotechnical engineering for 
estimating soil properties more accurately. This advancement suggests a significant shift towards 
adopting more sophisticated data mining and machine learning techniques in geotechnical 
engineering, promising enhanced prediction capabilities and insights into the influential factors 
affecting soil behavior.  

 

 

 

 

 

Table 1: Metrics for evaluating the most effective empirical formulas. Derived from [22]. 

 Melnikov, Valentin R., et al., introduced a data-driven multiscale modeling approach for 
simulating real-life road traffic, with a focus on urban planning and real-time decision support 
systems. Utilizing data from over 25,000 sensors across the Netherlands, the study aims to 
enhance traffic management and road network planning. A significant part of the research 
analyzes traffic data during a major power outage in North Holland, highlighting the impact on the 
A9/E19 interchange near Amsterdam airport Schiphol. The paper discusses the use of the Dutch 
National Data Warehouse (NDW) traffic sensor data for model calibration and validation across 
different scales of traffic models, introduces a road network graph model, and explores the 
reconstruction of the Dutch road network. The analysis of the power outage's effect on traffic 
demonstrates the model's applicability in understanding and mitigating the repercussions of such 
critical events on transportation systems [24].  

 The related work section spans across a diverse array of studies employing machine learning 
and data-driven methods to enhance ETA predictions and traffic flow analyses, from public 
transport systems to soil property estimations. This comparative summary integrates the key 
findings, methodologies, and implications of these studies to discern which approaches offer the 
most promise for ETA prediction and related fields. Many studies utilize machine learning 
techniques, such as PSO, RBF neural networks, SVR, LSTM, and XGBoost, to predict ETAs with 
high accuracy. Chondrodima et al.'s novel approach using PSO and RBF neural networks with 
GTFS data significantly outperforms traditional methods in prediction accuracy. Similarly, Barbour 
et al.'s machine learning approach with SVR for freight train ETAs and Wang et al.'s deep learning 
method for traffic speed prediction exemplify the potential of machine learning in enhancing traffic 
management and planning. 

 Several works introduce hybrid models combining various machine learning techniques to 
address ETA prediction and traffic congestion. For instance, the EDMCN-XGBoost model by Kang 
et al. integrates empirical dynamic modeling with XGBoost to accurately predict travel times by 
considering both temporal and spatial dependencies. Vidya G S and Hari V S's application of 
GPR demonstrates its efficacy in predicting passenger flow with reduced errors. Paliwal and 
Biyani's generative modeling framework specifically addresses bus route ETA prediction, 
showcasing its applicability in environments with limited traffic data. Derrow-Pinion et al.'s use of 
GNNs within Google Maps for ETA prediction illustrates the advancements in incorporating 
topological features of road networks into predictive models. This approach, along with Mehta et 
al.'s overview of Google Maps' evolution and Zafar et al.'s hybrid GRU-LSTM model for traffic 
congestion prediction, highlights the significance of real-time and historical data integration in 
improving traffic management systems. 
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The comparison reveals a trend towards hybrid and ensemble models as they leverage the 
strengths of multiple machine learning techniques, offering improved prediction accuracy and 
robustness. Models that integrate real-time data, such as GNNs and LSTM networks, 
demonstrate significant potential in capturing the dynamic nature of traffic flows and ETAs. 
However, the simplicity and adaptability of models like the one proposed by Paliwal and Biyani 
for bus ETA prediction indicate the importance of solutions that can be easily implemented in 
different environments, especially those with sparse data. Hybrid and ensemble models, 
alongside advanced machine learning techniques that incorporate real-time data, stand out as 
the most promising approaches for ETA prediction and traffic flow analysis. These models not 
only offer superior accuracy but also provide flexibility and adaptability, essential for addressing 
the complexities of modern transportation systems. Future research directions should focus on 
further refining these models, exploring their applicability in various contexts, and integrating 
additional data sources to enhance their predictive capabilities. 

3.1. Unlocking ETA Efficiency  

By suggesting less congested routes and lowering congestion, digital navigation can assist ease 
traffic congestion.  Increased journey time can affect more negatively overcrowding than lower 
speed [3]. The ability to predict the estimated time of arrival (ETA) based on the traffic conditions 
on the selected route is a key benefit of digital navigation, since it significantly reduces the 
uncertainty surrounding the actual journey time. A recent study revealed significant 
enhancements to Google Maps' ETA forecast accuracy using the application by DeepMind's 
Graph Neural Networks, which enabled machine learning to increase performance learning [7]. 
Many modern mobile applications are based on geospatial technologies. For instance, end-user 
navigation along suggested routes and related timetables are provided by user-facing navigation 
software like Google Maps and Waze [42]. As beneficial as navigation and routing apps may be 
for passengers, they are equally crucial for taxi drivers in enhancing their efficiency and ensuring 
accurate arrival times in the context of ride-hailing services. Research has used real-time taxi 
information to match system models and reduce passenger wait times and vehicle driving times 
[31]. 

 In recent years, ride-hailing apps like Didi Chuxing, Uber, and Lyft have gained widespread 
popularity. These apps efficiently connect drivers with riders in real time, transforming travel and 
improving the overall effectiveness of the transportation system. This not only addresses urban 
traffic congestion but also contributes to a reduction in carbon emissions [10].  

 ETA predictions are used also, by delivery firms and logistics providers to optimize delivery 
routes, manage delivery schedules, and give clients with accurate delivery time estimates. It 
boosts operational efficiency and increases customer satisfaction. ETAs are difficult to predict, 
especially for intermodal freight shipments, in which freight is moved in an intermodal vessel 
through multiple means of transportation. Balster, A., Hansen, O., Friedrich, H. et al utilized 
machine learning models to enable decision-makers to predict delays in the multimodal 
transportation chain, preventing major delays and improving process efficiency, while enhancing 
stability and profitability [2]. Ambulances and fire departments can use ETA estimates to optimize 
response times. Knowing how long it will take to arrive at the scene of an incident can help save 
lives and minimize damage. A study by Ross J. Fleischman , MD, MCR, Mark Lundquist, MD, 
Jonathan Jui, MD, MPH, Craig D. Newgard, MD, MPH & Craig Warden, MD, MPH, MS revealed 
that a simple algorithm with few variables, linked to GPS and Google Maps, can accurately 
forecast ambulance arrival. Also transport timings are influenced by lights and sirens [9].  

 ETA data is vital in urban planning and traffic management, influencing infrastructure projects 
and policies to improve city mobility, while traffic management authorities monitor conditions and 
implement effective control measures. The city gets "smarter" as ICT automation and data 
analytics become more integrated into daily urban life [6]. Developing countries, although having 
suitable road infrastructure in their biggest cities, face traffic congestion due to their dense 
population. Traffic congestion detection and prediction is critical in the development of Intelligent 
Transportation Systems [44] A recent study introduced a unique generative model, Curb-GAN, 
to predict the influence of trip needs on local traffic status, with the goal of preventing traffic 

https://www.tandfonline.com/author/Fleischman%2C+Ross+J
https://www.tandfonline.com/author/Lundquist%2C+Mark
https://www.tandfonline.com/author/Jui%2C+Jonathan
https://www.tandfonline.com/author/Newgard%2C+Craig+D
https://www.tandfonline.com/author/Warden%2C+Craig
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concerns caused by unexpected peaks in travel demands, such as emergencies or new 
constructions [47]. Tourists, event organizers, and event management, and commercial real 
estate all rely on ETA forecasts. They improve the whole experience by optimizing routes and 
managing traffic flows. Tourists can plan routes, event organizers manage traffic, and property 
owners can improve the attractiveness and accessibility of their properties. Ctrip, one of the 
biggest travel agencies in China used big data to create a recommendation system to direct 
tourists to less-crowded attractions if they are overloaded. the AI-powered model, called 
Xiecheng Wendao, allows consumers to ask Ctrip travel-related inquiries [Technocode 2023 – 
34]. 

3.2. Navigating the Future: A Deep Dive into ETA Prediction Using 

Advanced Machine Learning Techniques 

As years pass by, we shift from traditional methodologies to the cutting edge of innovation – 
machine learning techniques in ETA prediction. Algorithms become our assistants as we navigate 
this terrain, using historical data and real-time insights to reshape the accuracy of ETA forecasts. 
The standard limits of static models are being replaced by machine learning's dynamic flexibility, 
promising a big increase in accuracy.  

 For ETA prediction, regression models are often used. To capture the link between numerous 
features (e.g., distance, traffic, historical data), techniques such as linear regression, decision 
trees, random forests, support vector regression (SVR), and gradient boosting can be used. Data-
based approaches in transport research often use conventional statistical methods, such as linear 
regression, but they can oversimplify complex relationships and lead to poor results [2]. Chun-
Hsin Wu, Jan-Ming Ho and D. T. Lee showed in their research that when compared to alternative 
baseline predictors, the SVR predictor may significantly decrease both relative mean errors and 
root-mean-squared errors of predicted journey durations. SVR can be used to estimate trip times 
and it is appropriate and performs well in traffic data analysis [41]. The predictive ability of SVR 
is compared to that of an artificial neural network and is shown to have better performance and 
maintain interpretability of the model [3].  

 

 

  

 

 

 

Figure 5: The image illustrates the Basic Concept of Support Vector Machines (SVM) for Binary Classification 
how SVM transforms non-linearly separable data from the input space into a higher-dimensional feature 
space using a mapping function Φ(x). In the feature space, a linear separating hyperplane w x Φ(x) + b= 0 
is found to distinguish between two classes, such as circular balls and square tiles, enabling effective binary 
classification. Extracted from [41]. 

Moving forward to Time series analysis, these techniques can be utilized to model the 
sequential nature of ETA data. In [29] The Autoregressive Integrated Moving Average (ARIMA) 
utilizes the data presented in the timeseries and was employed successfully in a real time traffic 
example. Deep learning-based approaches have recently been proposed and have demonstrated 
outstanding results. To predict the journey duration, recurrent neural networks (RNN) in [37] and 
long short-term memory (LSTM) in [8] have been proposed. Paliwal and Biyani in 2019 stated 
that even though LSTM is a popular method to analyze time series data, mask-CNN 
(Convolutional Neural Networks) outperforms LSTM [25]. In [7], authors presented a graph neural 
network estimator for expected time of arrival (ETA) that have used in production at Google Maps. 
While the main architecture was made up of typical GNN building blocks, they went further in 
using training schedule approaches like MetaGradients to make their model stable and ready for 
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use. Reich, Budka, Robbins, and Hulbert found that after comparing several techniques, NNs 
(Neutral Networks) dominated the techniques (n=12, 30%). NNs seem to be the most frequently 
used approach, which suggests that it is the best-performing and/or most common approach, 
given their popularity. Research in 2019 recommended a NARNN model, which is a better 
recurrent neural network (RNN) that lacks moving average terms for predicting the next 
destination and a clustering variable to group GPS data with different spatial densities into points 
of interest [23]. 

 

In search of a simple yet high performance technique many machine learning applications 
have used kNN (k Nearest Neighbors).  

The primary idea behind a conventional kNN approach is to forecast a test data point's label using 
the majority rule, which is, using the primary group of its k most similar training data points in the 
feature space to predict the test data point's label [Cheng et al. 2015 - 22]. The study by [46] uses 
a k-Nearest Neighbour (kNN) algorithm for long-term prediction, outperforming a NN approach. 
However, it struggles on short distances below 3 km, requiring a different approach.  

 Recent research by Schleibaum, Müller and Sester on ETA in predicting taxi schedules and 
providing insights, combined multiple models into an ensemble to increase precision. EXplainable 
Artificial Intelligence (XAI) can address this issue by applying three ETA models, including RF-
based, XGBoost, and Fully-Connected Feedforward Neural Network [30]. Collective wisdom 
could be taken by applying boosting based methods as in [22] with the minimum 8-11% of better 
efficiency over the best legacy models.  

 

 

 

 

 

 

 

Figure 8: The image shows a stacked ensemble model where multiple base models generate predictions 
that are input into a second-level model to produce a final prediction. Derived from [30]. 

 Support Vector Machines (SVM) is a supervised learning technique that separates data points 
into different classes using a hyperplane. It has been shown that ANNs and ensemble learning 
approaches perform better than simple techniques for machine learning like SVM or LR [36]. 
Findings of a traffic prediction research were that after applying classical techniques, XGBoost, 
SVM and Random Forest, Random Forest produced findings with an accuracy of 83.9 percent. 
However, out of all the deep learning methods, such as GRU, LSTM, and MLP, GRULSTM had 

Figure 6: on the left, the architecture of 

an RNN. Extracted from [8]. 

Figure 7: on the right, the architecture of an LSTM 

neural network. Extracted from [8]. 
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the highest accuracy [45]. Another research [44] again shows the superiority of Random Forest 
as it produces the most promising findings whereas SVM produces no useful results.  

 

Figure 9: Outcomes of research by Zafar and Haq show the accuracy percentages underlining the superiority 
of Random Forest. Extracted by [44]. 

 

 Vidya G and Hari V designed a Gaussian process regression model to predict passenger 
traffic, which has high parametric dependence. Even with little data, the GPR model is seen to 
function effectively in terms of prediction accuracy [11]. Nowadays, a lot of fields use the Gaussian 
process regression technique, such as high-speed network traffic modeling [13] and rural traffic 
forecast [4]. Random missing entries and multivariate time series are not handled by these 
techniques, though [26]. Correlations between various traffic time series are modeled using 
spatiotemporal hidden Markov models (STHMM) in [43]. An adaptive parameter selection 
trajectory prediction approach based on a hidden Markov model was proposed by Qiao et al. [28], 
however the system is limited to restricted road networks. 

Overall, Deep learning's spatio-temporal models can handle large-scale traffic network 
topologies and long time series data with flexibility. Graph neural networks (GNNs) have shown 
exceptional performance in various applications, particularly for traffic forecasting due to their 
ability to capture spatial information, particularly non-Euclidean graph-structured data [38]. Using 
NNs for transportation network analysis of any kind is useful, as this will undoubtedly continue to 
be a very important application area for graph representation learning in general [7]. ANNs and 
ensemble learning strategies, been shown to perform better than simpler machine learning 
approaches like SVM or LR [36]. 

3.3. Metrics in Motion: Evaluating the Precision of ETA Prediction 

Models 

When it comes to Estimated Time of Arrival (ETA) prediction, evaluating forecasting models' 
effectiveness is critical to their usefulness. We discover important aspects of model evaluation 
as we work our way through these indicators, offering valuable information that is necessary for 
the real-world application of the improved forecasting techniques we previously covered.  

 A commonly used group of measurements evaluates the degree of fit by measuring the 
regressor's distance from the actual training points. The mean squared error (MSE) and the 
mean absolute error (MAE) are the two fundamental members of this family. Overall, MSE is 
more sensitive to outliers than MAE [5]. The square root of mean square error (RMSE), which is 
a natural derivation, has been widely used to standardize the units of measurement of MSE [18]. 
The calculation types are the following: 
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where: 

• N is the total number of observations. 

• 𝑦𝑛 is the actual value of the observation. 

• �̂�𝑛 is the predicted or forecasted value for the observation. 

 

While accuracy, AUC, and likelihood-based metrics are "rewards" (greater is better), other 
measures (MAE, RMSE) are "errors" (lower is better) [27]. 

 MAPE is another statistical metric. The accuracy is expressed as a percentage of the error. 
On the other hand, the MAPE is indefinable when the actual value is equal to zero and generates 
extremely high numbers when the actual values are near zero. Different MAPE versions have 
been suggested to avoid this drawback.  
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 A more recent metric that was first suggested to address some of the problems associated 
with MAPE is called the symmetric mean absolute percentage error (SMAPE). Due to its 
intriguing qualities, SMAPE is gradually gaining traction in the machine learning community 
despite the unresolved issue about its ideal mathematical expression. 
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• N is the number of data points. 

• 𝑦𝑡 is the actual value at time t. 

• 𝐹𝑡 is the forecasted value at time t. 

 

𝑅2 is known as the coefficient of determination, or R-Squared (R²). R-Squared calculates the 
percentage of the dependent variable's variance that the independent variables can account for. 
R-squared gives us the regression model's goodness of fit, or how closely the observed values 
agree with the predicted values. 
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where: 

• N is the total number of observations. 

• 𝑦𝑛 is the actual value of the dependent variable for the i-th observation. 

• �̂�𝑛 is the predicted or forecasted value of the dependent variable for the i-th observation. 

• �̅� is the mean of the actual values. 
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Authors in [5] show that the coefficient of determination (R-squared), which lacks the capacity 
for interpretation restrictions of MSE, RMSE, MAE, and MAPE, is more accurate and informative 
than SMAPE. As a result, they advise using R-squared as the standard metric for assessing 
regression analyses across all scientific fields. 

3.4. Unraveling Traffic with Spatiotemporal Data 

The rise and fall of traffic on roads are a dynamic phenomenon that is impacted by various 
circumstances, such as weather and time of day. Recognizing the flaws of traditional models, we 
turn our attention to an in-depth examination of spatiotemporal data, an area where the 
combination of geographical and temporal data provides us new possibilities for understanding 
and foreseeing traffic behavior. 

 In [33], authors created five baseline methods. On three datasets, STANN and DCRNN 
methods perform far better than AVG across all metrics by a wide margin. The primary reason is 
that they both consider the traffic conditions' temporal and spatial information compared to AVG. 
A recent study in 2020 creates a framework to analyze and forecast spatiotemporal travel times 
in urban road networks. It utilized primary feature data collection, complex network theory 
measurement, and XGBoost cyclical elimination and feature importance ranking to enhance 
prediction accuracy [39].  

 Several sources provide us with useful data. One of the most important data providers in the 
ETA concept is GPS technology, which makes it simple to estimate ETAs. It is said that by simply 
using the previous GPS trajectories of a particular route, one may design a straightforward yet 
powerful system for ETA prediction for a specific bus route [25]. Also, GPS has been utilized in a 
data-driven framework for next destination prediction, real-time incident detection, and delay 
estimation in urban traffic flow using a a non-linear autoregressive neural network (NARNN) 
model. This approach improves ETA for delivery fleets and aids route optimization [23]. Traffic 
camera feeds are equally important in monitoring traffic conditions. In [29], they used cameras on 
overhead bridges to count bus traffic and taxi speed, finding that their speed is similar in heavy 
traffic. Predictions based on static cameras were more accurate than GPS recordings. Khazukov 
K. et al. covered several real-time traffic metrics that may be gathered by various techniques using 
information from traffic cameras, including average vehicle speed, object detection, distance 
computation, and vehicle counting [19].  

 Check-in data, as compared to typical sensor data, offers the crucial trip purpose information 
that is required to drive human mobility but was unavailable for travel demand studies. The 
location of users is revealed via social media and mobile app check-in data, which over time can 
provide an understanding of the general human movement in urban regions. Check-in data can 
be a significant source of information for assisting in real-time decision making in applications 
related to smart cities when properly analyzed [14]. Liu et al. [21] combined socioeconomic 
characteristics from social media data with natural-physical features from remote sensing photos 
to create a novel classification framework for identifying the most common urban land use type 
at the level of traffic analysis zones. Another study in 2020 created an ensemble learning model 
to predict urban land use patterns using various data sources including Google images, street-
view images, building data, POI data, and Weibo check-in data [43]. Weather is for sure another 
important factor in predicting traffic. In [20] big data processing is being used in this study to 
examine the connection between traffic congestion and weather. With the use of multiple linear 
regression analysis, a prediction model with an explanatory power of 0.6555 and an accuracy of 
84.8% is produced. In [35], authors made two experiments to see how rain affects traffic in a rainy 
and a non-rainy day. Both results show the fact that driving in heavy rain causes drivers to travel 
more slowly, which raises the level of traffic congestion.  

 Historical traffic patterns are ideal for identifying trends and seasonality. To improve ETA 
performance modeling traffic congestion distribution patterns is crucial to accurately executing 
ETA prediction [33]. Paliwal and Biyani in 2019, trained a model that uses historical trip data to 
train a model for each route, providing a joint distribution that accurately calculates ETA prediction 
[20]. By condensing and transferring knowledge from earlier predictors, authors in [12] offer a 
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historical traffic knowledge consolidation module to address the major loss problem for the 
cumulative predictor. 

Due to their growing popularity and integrated motion and location sensors, mobile phones 
are turning into important tools for gathering vast amounts of dynamic data related to human travel 
behavior study [39]. Google Maps utilizes GPS data from mobile phones to provide reliable road 
speed predictions, aiding in route planning and decision-support systems [40]. It estimates time 
to reach a destination using the A-star algorithm, ignoring real-time traffic. To overcome this, 
continuous data from cellular devices is collected, allowing users to choose their preferred route 
[23]. Mobile phone data offers unique benefits over traditional survey data, providing demographic 
and geographic coverage, attracting researchers to study travel behavior, and making progress 
[32]. Finally, public transportation data should be considered as they can be applied to the 
analysis of the effects of transportation on road networks. Research focused on a power outage 
and how it affected drive behavior. The outage happened near Amsterdam airport Schiphol 
occurred at the A9/E19 interchange in North Holland, affecting public transportation powered by 
electricity and compelling passengers to drive. After a brief decrease, traffic volume increased 
and speed dropped by 40% [24]. 
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4. Proposed Methodology 

The primary objective of this research is to develop a machine learning model to predict the 
Estimated Time of Arrival (ETA) for a public transit vehicle at its next six stops along its route. 
This involves processing real-time data and integrating it with static transit schedules and other 
contextual features to create a comprehensive and accurate prediction system. 

Each observation in the dataset is associated with a distinct timestamped location of a vehicle 
represented as a feature vector 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛].  

 
The features are categorized as follows: 
 

1. Spatial Features: Coordinates (latitude and longitude) and stop sequence 
2. Temporal Features: Current time and day of the week 
3. Dynamic Features: Vehicle speed and bearing 
 

The prediction task is to determine the arrival time 𝑦𝑎𝑟𝑟𝑖𝑣𝑎𝑙(𝑡 + 𝛥𝑡), which is the cumulative 
travel time needed for the vehicle to reach the sixth future stop from its current position. The 
objective is to determine the relationship between the feature vector 𝑥(𝑡) and the actual observed 
arrival time to reduce the prediction error. 

To achieve this, the study integrated real-time feeds with static GTFS data to create a 
comprehensive dataset for the prediction task. Features such as travel speeds, and route-specific 
characteristics were extracted and preprocessed to ensure the models were trained on high-
quality data. Machine learning models were developed and evaluated. The performance of these 
models was assessed using metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), 

and 𝑅2, ensuring reliable and accurate predictions. 
 
Below, we will look at the methods utilized in the study to get data from the GTFS pipeline to 

the algorithms' analysis phase, as well as the outcomes. 

4.1. Data Collection and Processing Pipeline 

Urban transit systems generate a large amount of data in the form of both static and real-time 
feeds, which need to be processed and merged to accurately predict Estimated Time of Arrival 
(ETA). In this study, a data collection and processing pipeline was developed to handle transit 
data, ensuring that it was preprocessed and organized for use in machine learning models. The 
methodology employed is based on a pipeline similar to the one used by Chondrodima et al. [6], 
and was adapted to fit the computational constraints of this study. Data collection and analysis 
took three days and Chondrodima et al. (2022) describe a one-month period for similar 
investigations. 

 The transit data used here is based on the General Transit Feed Specification (GTFS). GTFS 
data includes both static data, which describes fixed transit infrastructure (such as routes, stops, 
and schedules), and real-time data, which updates the status of vehicles and trips as they operate. 
This combination of static and real-time data is essential for accurate ETA prediction as it allows 
for dynamic adjustments based on current conditions (e.g., delays, vehicle positions). 

 The pipeline is written in Python and runs in a Jupyter Notebook environment, using 
PostgreSQL as the database for storing and managing both static and real-time data. PostgreSQL 
is equipped with PostGIS to enable spatial data operations, which are necessary to handle the 
geographic aspects of transit data (e.g., stop locations, routes).  

 More in detail analysis of the data are provided in Appendix A. 

5.1.1. Pipeline Overview 
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The pipeline is made up of several essential components, each designed to undertake distinct 
responsibilities during the data collecting and processing stages. The pipeline gets static and real-
time GTFS data, evaluates it for quality, and stores it in a PostgreSQL database using the PostGIS 
extension for spatial data operations. 

      The steps are as follows: 

• Environment Setup: The pipeline starts by creating the Python environment, which includes 
libraries like SQLAlchemy for database connections, pandas and dask for data manipulation, 
and GeoPandas and osmnx for spatial data processing. 

• Database Connection: SQLAlchemy establishes a connection to a PostgreSQL database. 
The database stores both static and real-time GTFS data. The connection information, 
including credentials, is securely managed within the code. 

• Data retrieval:  
1. Static GTFS data: The static GTFS data, which is provided as a ZIP file, is downloaded 

on a regular basis from the specified URL. The ZIP package contains several.txt files, 
each representing a separate component of the transit data (for example, stops.txt, 
trips.txt, and routes.txt). These files are unzipped and handled in parts to optimize 
memory management. Each.txt file is processed as a table in the PostgreSQL database. 
More specifically: 

− The stops database has columns such as stop_id, stop_name, stop_lat, and 
stop_lon, which indicate each stop's unique identification, name, and geographic 
coordinates. 

− Trip_id, route_id, service_id, trip_headsign, and additional fields describe the trip's 
unique identifier, route, and further information.Real-time GTFS data, such as 
TripUpdates, VehiclePositions, and ServiceAlerts, is fetched every five seconds. A 
retry mechanism guarantees reliable data retrieval in the event of a possible network 
breakdown. 

2. Real-time GTFS Data: Every five seconds, real-time GTFS data such as TripUpdates, 
VehiclePositions, and ServiceAlerts are fetched. These real-time feeds are parsed and 
saved in respective tables within the database: 

− Trip_updates Table: The columns trip_id, vehicle_id, stop_sequence, arrival_delay, 
and timestamp track delays and updates for each trip. 

− The vehicle_positions table contains the vehicle_id, trip_id, latitude, longitude, speed, 
and timestamp, which reflect each vehicle's real-time location and movement. 

− The service_alerts table contains the alert_id, cause, effect, start_time, end_time, 
and descriptions for any service disruptions. 

• Data Processing:  
1. Checksum Verification: To identify any alterations made since the last download, a 

checksum is produced for both static and real-time data.  
2. Data Quality Checks: The pipeline detects and corrects data inconsistencies such as 

duplicates, out-of-order records, and inaccurate timestamps (e.g., 1970-01-01). For 
example, tests are conducted to ensure that the stop_sequence in the stop_times table 
is both rising and unique for each journey, as well as that the arrival and departure times 
are right and consistent. 

3. Merging and Cleaning: The static and real-time data are merged based on common keys 
(e.g., trip_id, route_id). The merging process uses multiple key combinations to handle 
cases where primary keys might be missing or faulty. After that, the combined data is 
cleaned up to remove any records that have inconsistent spatial data or timestamps. 

• Spatial Validation: The pipeline uses osmnx to compare GTFS data to OpenStreetMap (OSM) 
road network data. This validation procedure verifies that the shapes and stops in the GTFS 
data match the actual road network, which is crucial for accurate ETA forecasting. For 
example, the forms table, which contains shape_id, shape_pt_lat, shape_pt_lon, and 
shape_pt_sequence, is validated against OSM data to ensure that the point sequence 
appropriately represents the transit routes. 

• Continuous Processing: The pipeline has threads that continuously process and update the 
data: 
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• Real-time Data Processing: A dedicated thread continuously processes real-time GTFS 
feeds, including merging with static data and applying spatial filters. 

• Static Data Updates: Another thread updates the static GTFS data every two hours, ensuring 
that the pipeline always has the most recent information. 

• Data Storage and Output: The processed data is returned to the PostgreSQL database and 
made available for use by the ETA prediction model. In addition, temporary data is recorded 
and saved as CSV files for auditing and debugging purposes. For example, merged tables 
like merged_agency_routes_trips and merged_realtime_static provide a full picture of the 
processed data that is ready for model training. 

• Resource Management: Given the limited computing resources, the pipeline is designed to 
run continuously for three days, managing memory and processing load via chunked data 
processing and periodic garbage disposal. 
 

The Github repositoty link of the Pipeline: https://github.com/afroditekara/GTFS-Pipeline-
for-ETA-Prediction.git  

 

 

 

 

 

 

 

 

Figure 10: A bus route represented by a sequence of points in Minesota area. Extracted by PgAdmin. 

 

 

 

Figure 11: Pipeline Overview Diagram 

 

 

 

 

 

 

 

 

 

 

https://github.com/afroditekara/GTFS-Pipeline-for-ETA-Prediction.git
https://github.com/afroditekara/GTFS-Pipeline-for-ETA-Prediction.git
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5. Data Analysis 

5.1. Introduction 

This study's objective is to forecast urban transit networks' Estimated Time of Arrival (ETA) using 
advanced machine learning techniques. Accurate ETA predictions can significantly improve the 
efficiency of transportation networks by reducing delays, optimizing routes, and enhancing the 
overall user experience. Recent advancements in machine learning have shown great promise in 
this domain, enabling models to learn complex patterns from large datasets with high accuracy. 

 To achieve these objectives, we implemented several machine learning models, including 
Random Forest (RF), XGBoost (XGB), Long short-term memory (LSTM) networks, Simple Neural 
Network (NN) model and Graph Convolutional Networks (GCNs). Each model was selected 
based on its unique strengths and applicability to the problem at hand. In this section, we discuss 
the data preprocessing steps, model training, optimization techniques, and the rationale behind 
choosing each model, supported by references from recent literature. 

5.2. Data Preprocessing and Feature Engineering 

Data preprocessing is a critical step in machine learning workflows, particularly for ETA prediction 
in urban transit systems where data can be noisy, incomplete, or inconsistent. Our dataset 
consisted of various features, including GPS coordinates (latitude and longitude), vehicle speed, 
route information, and traffic congestion levels. These features were chosen based on their 
relevance to ETA prediction, as demonstrated in prior studies by Al-Naim al. [1] and Zhang et al. 
[47]. 

 

1. Handling Missing Values: To address missing data, we employed a forward-filling (ffill) 
method. This method fills missing values with the last observed value, ensuring data 
continuity without introducing significant bias. This approach aligns with Wang et al. [37], who 
noted that imputation techniques like forward-filling effectively handle time-series data gaps 
without distorting temporal patterns: 

𝑋𝑖(𝑡) = 𝑋𝑖(𝑡 − 1) if 𝑋𝑖(𝑡) 

 

2. Normalization: Normalization was applied to all input features using Min-Max scaling to bring 
the data within a [0, 1] range. This step is crucial to ensure that features contribute equally to 
the model's learning process, preventing any single feature from dominating due to scale 
differences. Normalization techniques are widely recommended in machine learning, 
particularly when using distance-based algorithms, as highlighted by Chicco et al. [5]: 

 

𝑋norm =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 

 

3. Feature Selection: Key features were selected based on domain knowledge and their 
demonstrated relevance to ETA prediction in transportation networks. Features such as 
latitude, longitude, bearing, and speed are directly related to vehicle dynamics and routing, 
which are critical for accurate ETA predictions. Similar feature selection strategies were 
employed by Huang et al. [15], Chondrodima et. al. [6], and Zhang et al. [47]. 

 

• Latitude and Longitude: These represent the geographical position of the vehicle, 
crucial for understanding its location in relation to the stops or routes. Prior research 
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(such as [15] and [6]) has shown that these spatial features are essential in models 
predicting arrival times, as they help track movement across space. 

• Bearing: This refers to the direction the vehicle is heading. It is useful in capturing how 
the vehicle navigates through the transit network. Including bearing allows the model to 
understand directional changes, which can affect ETAs, particularly in scenarios 
involving multiple turns or directional shifts. 

• Speed: Vehicle speed is directly tied to how quickly it will reach a future stop. Speed 
variations, due to traffic or other factors, are a significant determinant in ETA predictions, 
and this feature has been validated in similar research. 

• Stop Sequence: This feature represents the order of the stops the vehicle will make, 
enabling the model to predict how many more stops there are before reaching the final 
destination. 

• Hour of the Day and Day of the Week: These temporal features are important as they 
account for regular patterns in traffic conditions. For example, rush hours typically 
experience more congestion, and this time-based context helps the model adjust its 
predictions accordingly. 

• Unix Time: This timestamp feature aids in tracking time progression continuously, 
supporting the model in making time-accurate predictions. Unix time provides a granular 
measure of time, supporting the time series aspect of ETA forecasting. Unix time, also 
known as Epoch time or POSIX time, is a system for tracking time as the number of 
seconds that have elapsed since 00:00:00 UTC on January 1, 2024 (not counting leap 
seconds). It's a widely used time representation in computing systems to timestamp 
events or data. In ETA prediction, Unix time allows the model to track the exact point in 
time in a continuous, numeric format, which helps in capturing temporal patterns, such 
as how delays accumulate over time. 
 

4. Train-Test Split: To evaluate the model's performance, the dataset was split into training and 
testing subsets. An 80-20 split was used, where 80% of the data was used for training the 
models and 20% was reserved for testing. This approach helps ensure that the models are 
trained on a substantial portion of the data while also being evaluated on unseen data, 
providing a robust measure of generalization performance. 
 

5.3. Model Selection and Justification 

The choice of models—Simple NN Model, LSTM, Random Forest, XGBoost, and Graph 
Convolutional Networks—was guided by their respective strengths in handling complex, high-
dimensional data. Each model offers unique advantages, making them suitable for different 
aspects of the ETA prediction task. 

5.3.1 Simple Model (NN) 

The Simple Model serves as a foundational benchmark in machine learning tasks, offering a 
straightforward approach to predictive modeling. Simple models, such as linear regression or 
single-layer neural networks, provide a baseline to evaluate the complexity and necessity of more 
sophisticated algorithms. In this study, a neural network with one hidden layer was utilized as the 
Simple Model, providing a baseline to compare against more advanced models like XGBoost and 
Random Forest. 

 Objective Function and Training: The Simple Model was trained to minimize the Mean 
Squared Error (MSE), a common loss function used in regression problems to measure the 
average squared difference between observed and predicted values 
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Evaluation Results: 

o MSE: 8.333 ×  10−5 

o MAE: 1.205 ×  10−3  

o R²: 0.8491 

 

 The architecture of the model is simple yet efficient: it consists of a Dense layer with 64 
neurons that uses the ReLU activation function to capture non-linear interactions, after a Flatten 
layer processes the input data. A Dropout layer with a rate of 0.5 is introduced to avoid overfitting. 
The ETAs for the next six stops are represented by the six neurons in the dense layer that acts 
as the output layer.  

 The model's inputs are normalized features that include both spatial and temporal data: 
latitude, longitude, heading, speed, stop sequence, hour of the day, day of the week, and Unix 
timestamp. To fully capture the unpredictable nature of vehicle movement and traffic patterns, 
these components are necessary. The outputs, which offer a multi-step prediction useful to both 
passengers and transit operators, are the normalized ETAs for the next six stations. Similar 
approaches have been highlighted by Wang et al. [37], who emphasized the importance of 
incorporating spatiotemporal data in traffic speed prediction models to capture complex 
interactions affecting traffic flow [37]. 

 For training, we used an 80-20 train-test split on the preprocessed dataset, ensuring that the 
model generalizes well to unseen data. The model was compiled with the Adam optimizer 
(learning rate of 0.001) and trained using the mean squared error (MSE) loss function over 50 
epochs with a batch size of 64. A validation split of 20% within the training set was used to monitor 
the model's performance and prevent overfitting. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

After evaluation, the model demonstrated strong predictive capabilities. For the first future 

stop, the model achieved a mean squared error (MSE) of 8.333 × 10−5, a mean absolute error 

(MAE) of 1.205 ×  10−3, and an R² score of 0.8491 on the test set. These metrics indicate that 
the model explains approximately 84.91% of the variance in the test data. The high R² score and 
low error values suggest that the model effectively captures the underlying patterns in the data, 
providing accurate ETA predictions. This simple yet robust model serves as a fundamental 
approach that can be further enhanced with additional features or more complex architectures in 
future research. 

Figure 12: Neural Network Layout for ETA Prediction 
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These results are consistent with findings in other studies using simple models for ETA 
prediction. Paliwal and Biyani [25] developed a generative model based solely on historical GPS 
data for bus ETA prediction, achieving high accuracy without relying on complex architectures or 
extensive traffic datasets. Their approach demonstrates that with relevant features and proper 
training, simpler models can perform exceptionally well. The training time was at 1h and 56m, 
which was timely compared to other models and considering its simplicity. 

5.3.2 Simple Model with 2-days data 

We chose to run the model for 2 days to balance computational efficiency and accuracy, as it 
captures sufficient transit patterns without overburdening resources. The 2-day model showed 
competitive performance, with lower MAE than the 3-day model. This approach also allows for 
quicker model updates in real-time applications. 

Evaluation Results: 

o MSE: 8.478 ×  10−5 
o MAE: 9.08 ×  10−4  
o R²: 0.8396 

 

 The 3-day model performs slightly better in terms of MSE and R², showing it explains more of 
the variance in the data and has smaller squared errors, making it better at handling larger errors. 

 However, the 2-day model achieves a lower MAE, meaning it makes more accurate 
predictions on average by minimizing the absolute difference between predicted and actual ETAs. 

 In summary, the 3-day model may offer a more comprehensive understanding of the data 
(better R²), while the 2-day model might provide more precise point predictions (lower MAE). The 
training took 25 minutes which much more computational efficient than the 3-day model. 

 

5.3.3 Simple Model with 1-day data 

 

Evaluation Results: 

o MSE: 1.161 ×  10−4 

o MAE: 1.201 ×  10−3  
o R²: 0.598 

 The MSE and MAE values for 1 day are slightly higher than those for 2 and 3 days, meaning 
that the model has a higher average error when using only 1 day of data. 

 The R² score of 0.5982 indicates that the model explains only about 59.82% of the variance 
in the data for 1 day, which is a significant drop in comparison to the 83.96% (2 days) and 84.91% 
(3 days). This shows that using only 1 day of data reduces the model's ability to capture patterns 
and provide accurate predictions. 

By using only 1 days’ worth of data, the model likely misses out on important variability present 
over multiple days, leading to reduced performance. The decline in the R² score indicates that the 
model is less reliable when predicting ETAs with fewer data points. The training time is computed 
ay 27s which the lowest time we captured in this research. 

5.3.4. Long Short-Term Memory (LSTM) Model 

The Long Short-Term Memory (LSTM) model is a type of recurrent neural network (RNN) 
designed to learn from sequences of data. LSTM networks are particularly effective for time-series 
forecasting tasks where temporal dependencies are crucial. The model's architecture allows it to 
maintain long-term dependencies through memory cells, making it suitable for applications like 
traffic prediction and ETA forecasting [8]. 
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Model Architecture: The LSTM model was trained to predict future arrival times based on 
past travel patterns. Unlike traditional neural networks, LSTM can handle sequences with 
varying lengths due to its unique gating mechanism, which controls the flow of information 
and prevents the vanishing gradient problem commonly associated with standard RNNs. 

 

Objective Function and Training: Similar to the Simple Model, the LSTM was optimized to 
minimize MSE: 

 

𝐿(𝜃) =
1

𝑁
∑  

𝑁

𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃))
2
 

 

where 𝑓(𝑥𝑖; 𝜃) represents the LSTM's prediction for input sequence 𝑥𝑖 and sequence 𝜃. 

 

Evaluation Results: 

o MSE: 8.315 ×  10−5 

o MAE: 1.235 ×  10−3 

o R²: 0.8494 

  

 Our model architecture consists of an LSTM layer with 64 units utilizing the ReLU activation 
function, followed by a Dense output layer with six neurons corresponding to the ETAs for the 
next six future stops. The input data was reshaped into a three-dimensional array to fit the 
expected input shape of the LSTM, where each sample includes one time step and multiple 
features. The inputs and output of the model are the same as in the simple model and remain the 
same in all models. The choice of having 64 neurons in the simple model (a feedforward neural 
network) versus fewer in the Long Short-Term Memory (LSTM) model is based on the nature of 
each architecture. The simple model benefits from a higher number of neurons to capture complex 
relationships in the data, helping it establish a solid baseline for predictions. In contrast, the LSTM 
model is designed to handle sequential data and long-term dependencies, allowing it to achieve 
similar performance with fewer neurons. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 We trained the model using the Adam optimizer with a learning rate of 0.001 and the mean 
squared error (MSE) loss function. Training was conducted over 50 epochs with a batch size of 
64, and a validation split of 20% within the training set was used to monitor performance and 

Figure 13: LSTM Layout for our analysis on ETA Prediction 
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prevent overfitting. The model was trained on 80% of the dataset and evaluated on the remaining 
20%. 

  The implementation of the LSTM neural network significantly enhances ETA prediction by 
leveraging its strength in modeling sequential and temporal data. The architecture, combining 
spatial and temporal features, enables the model to capture complex patterns affecting arrival 
times. The high R² score and low error metrics validate the model's effectiveness and robustness 
in predicting ETAs for multiple future stops. 

  These results suggest that advanced neural network architectures like LSTM can outperform 
simpler models in time-series forecasting tasks within transportation networks. The model's 
success demonstrates its potential for improving public transportation services by providing 
accurate and reliable arrival time predictions, thereby enhancing passenger satisfaction and 
operational efficiency [8]. Training time was 1h and 36m which is less than the simple one. The 
LSTM model achieved slightly better performance metrics in less training time compared to the 
simple neural network. This suggests that the LSTM's architecture is more efficient for this type 
of sequential data, enabling faster learning and better generalization. 

 

5.3.5. LSTM with 2-days data 

 

Evaluation Results: 

o MSE: 8.501 ×  10−5 

o MAE: 1.659 ×  10−3 

o R²: 0.8391 

 

When comparing the results for 2-day and 3-day runs using the LSTM model, we see that the 
Mean Squared Error (MSE) for both cases is very close, with the 3-day run showing a slightly 

lower error at  8.315 ×  10−5 compared to 8.501 ×  10−3 for the 2-day run. The Mean Absolute 

Error (MAE) is also lower for the 3-day model at 1.235 × 10−3compared to 1.659 ×  10−3for the 
2-day run, indicating that the model predicts more closely on average over the 3-day period. 

 Finally, the R² score, which measures how well the model explains the variance in the data, 
is slightly higher for the 3-day model (0.8494), suggesting that it captures the underlying patterns 
better compared to the 2-day run (0.8391). This shows that while the difference is not drastic, 
increasing the data size improves the model's performance. Training took 2h which is more than 
the 3-day model. 

 

5.3.6. LSTM with 1-day data 

 

Evaluation Results: 

o MSE: 1.164 ×  10−4 

o MAE: 1.765 ×  10−3 

o R²: 0.5964 

 

The model trained on 1-day data shows a higher error (MSE and MAE) compared to the 2-day 
and 3-day models, and the R² score is lower as well, indicating that it has more difficulty in 
accurately predicting future stops. This suggests that increasing the amount of data improves the 
performance of the model by providing it with more information to learn from and capture better 
patterns in the data. 

In this case, running the model on a single day of data results in lower predictive power and 
increased error rates compared to longer data periods. The process took 1h. 
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5.3.7. XGBoost (XGB) Model 

XGBoost is an optimized gradient boosting algorithm designed for speed and performance. It has 
been widely adopted in machine learning competitions and real-world applications due to its 
scalability and ability to handle sparse data efficiently. The model's use of regularization 
techniques, such as L1 (Lasso) and L2 (Ridge) regularization, helps prevent overfitting, which is 
particularly useful in high-dimensional data scenarios, as noted by by Chicco et al. [5]. 

 The XGBoost model optimizes the following objective function: 

 

ℒ(𝜃) = ∑  

𝑛

𝑖=1

𝑙(𝑦𝑖 , 𝑓(𝑥𝑖 ; 𝜃)) + ∑  

𝐾

𝑘=1

Ω(𝑓𝑘) 

  

 Where the regularization term Ω(𝑓) is defined as: 

 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑  

𝑗

𝑤𝑗
2 

 

 This regularization term controls the model complexity by penalizing large weights, thereby 
reducing overfitting. 

 

Training and Testing Results: 

o MSE: 2.548 ×  10−4 

o MAE: 1.065 ×  10−2 

o R²: 0.5386 

 

The XGBoost model was configured with an objective function suitable for regression tasks 
(reg:squarederror), a learning rate of 0.01 to ensure gradual learning and prevent overfitting, and 
50 estimators (trees) to balance computational efficiency with model complexity.  

 Data preprocessing involved handling missing values using the forward fill method, converting 
necessary columns to numeric types, extracting temporal features from timestamps, normalizing 
both input and output features, and splitting the dataset into training (80%) and testing (20%) sets. 
For each future stop, an individual XGBoost regressor was trained on the training data, enabling 
each model to focus on the specific characteristics influencing the ETA at that particular stop. 

 The performance metrics were as follows: a Mean Squared Error (MSE) of 2.548 ×  10−4, a 

Mean Absolute Error (MAE) of 1.065 ×  10−2, and an R² score of 0.5386. These metrics indicate 
the average squared and absolute differences between the predicted and actual ETAs. The R² 
score suggests that the model explains approximately 53.86% of the variance in the test data for 
the first stop prediction. While this demonstrates a moderate level of predictive capability, it is 
noticeably lower than the performance achieved by the simple neural network and LSTM models, 
which had R² scores around 0.849. The training time was 6m and 28s which is pretty low. 

In conclusion, the implementation of the XGBoost model for ETA prediction provided valuable 
insights but did not achieve the same level of accuracy as the neural network models. While 
XGBoost is a powerful algorithm capable of modeling complex non-linear relationships, it may not 
be as effective as neural networks in capturing the temporal dynamics inherent in transportation 
data. This outcome highlights the importance of selecting models that align with the nature of the 
data and the specific requirements of the task. 
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5.3.8. XGBoost (XGB) Model with 2-days data 

 

Evaluation Results: 

o MSE: 1.009 ×  10−4 

o MAE: 1.073 ×  10−3 

o R²: 0.00007 

 

The two-day model has a lower MSE, meaning it had smaller prediction errors on average 
compared to the three-day model. The two-day model also has a lower MAE, indicating that the 
average absolute error was smaller. However, the three-day model has a much higher R² value 
(0.5386 vs. 0.00007). This suggests that the three-day model explained a larger portion of the 
variance in the target variable, while the two-day model explained almost none. 

 The two-day model performs better in terms of absolute error metrics (MSE, MAE), but the 
three-day model captures the underlying variance in the data more effectively, as reflected by the 
higher R² score. Training took 3 minutes. 

 

5.3.9. XGBoost (XGB) Model with 1-day data 

 

Evaluation Results: 

o MSE: 1.243 ×  10−4 

o MAE: 1.138 ×  10−3 

o R²: 0.00007 

The MSE and MAE are slightly higher compared to the 2-day and 3-day models, indicating that 
the 1-day model performed slightly worse in terms of predictive accuracy. 

 The R² score is close to 0, indicating that the model's predictions explain very little of the 
variance in the test set, which suggests that the model's performance is not very strong for 1-day 
data. The process took 2m. 

5.3.10. Graph Convolutional Networks (GCNs) 

Graph Convolutional Networks (GCNs) were employed to capture the spatial dependencies and 
complex relationships between data points, which are not easily modeled by traditional machine 
learning algorithms. GCNs extend the concept of convolutional neural networks (CNNs) to graph-
structured data, making them particularly effective for applications like ETA prediction where the 
underlying data can be represented as a graph. This approach aligns with the methods discussed 
by Chondrodima et al. [6] and Zhang et al. [47]: 

 

𝐻(𝑙+1) = 𝜎 (�̃�−
1
2�̃��̃�−

1
2𝐻(𝑙)𝑊(𝑙)) 

 

 Where �̃� = 𝐴 + 𝐼𝑁 is the adjacency matrix with added self-loops, �̃� is the degree matrix, 𝐻(𝑙) 

represents the node embeddings at layer l, and 𝑊(𝑙) are the trainable weight matrices. 
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Evaluation Results: 

o MSE: 4.767 ×  10−3 

o MAE: 5.469 ×  10−2 

o R²: -7.6290 

 Our model represented each data point as a node and connected them sequentially to 
construct a graph structure to take advantage of the spatial and temporal relationships found in 
transportation data. 

The GCN model consisted of two graph convolutional layers. The first layer took the node 
features as input, normalized spatial and temporal features including latitude, longitude, bearing, 
speed, stop sequence, hour of the day, day of the week, and Unix timestamp, and transformed 
them using 64 hidden units with a ReLU activation function to introduce non-linearity. The second 
layer outputted six values corresponding to the ETAs for the next six future stops. The edge 
connections in the graph were established by linking each node to its subsequent node, effectively 
capturing the sequential nature of the transit stops. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The GCN model resulted to an MSE of 4.767 ×  10−3, an MAE of 5.469 ×  10−2, and an R² 
score of −7.6290. The negative R² score indicates that the model performed poorly, failing to 
capture the variance in the test data and performing worse than a simple baseline that predicts 
the mean of the target variable. 

 Although GCNs are powerful in capturing spatial dependencies, the model struggled to 
generalize well in this context due to the complexity and heterogeneity of the traffic data. The 
negative R² score indicates poor generalization, suggesting that GCNs might not be well-suited 
for this specific ETA prediction task without further tuning or a larger dataset. The GCN model's 
poor performance in this study contrasts with Wang et al.'s results, suggesting that more work is 
needed in our feature engineering or model architecture to leverage the potential of GCNs for 
ETA prediction. This may involve integrating more contextual features or refining the graph 
construction process. In Wang et al.'s (2016) study, they applied a GCN-based model to predict 
traffic speeds and identify congestion sources. Their model achieved high predictive accuracy, 
with metrics indicating strong performance, such as low Mean Squared Error (MSE) and high R² 
scores. The success of their model demonstrated the effectiveness of GCNs in capturing spatial-

Figure 14: CGN Layout for our analysis on ETA Prediction 
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temporal dependencies in traffic networks. Derrow-Pinion et al.'s use of GNNs within Google 
Maps for ETA prediction showed promising results but also emphasized that such models need 
careful tuning and consideration of specific spatial and temporal features to perform well [7]. 
Training time was 2m and 41s. 

 In conclusion, while Graph Neural Networks offer powerful tools for modeling relational data, 
their application in this context did not yield satisfactory results. The experiment underscores the 
necessity of careful consideration of model architecture and data representation in machine 
learning tasks. Future work could explore more sophisticated graph constructions that better 
reflect the transportation network's topology or hybrid models that combine GNNs with temporal 
processing units to capture both spatial and temporal dependencies more effectively. 

 

5.3.11. Graph Convolutional Networks (GCNs) with 2-days data 

 

Evaluation Results: 

o MSE: 3.088 ×  10−3 

o MAE: 4.447 ×  10−2 

o R²: -4.844 

 

The Mean Absolute Error (MAE) for the 2-day dataset is  4.447 ×  10−2, while for the 3-day 

dataset, it’s  5.469 ×  10−2. This means that the 2-day model was able to predict ETAs with slightly 
less average error. 

 Although both MAEs are relatively high, the model's predictions in the 2-day dataset seem to 
be slightly more accurate on average compared to the 3-day dataset. 

 Both R² scores are negative, with the 2-day dataset achieving an R² score of -4.844 and the 
3-day dataset performing worse at -7.6290. A negative R² indicates that the model is doing worse 
than a simple mean prediction. The training was 15m. 

 

5.3.12. Graph Convolutional Networks (GCNs) with 1-day data 

 

Evaluation Results: 

o MSE: 1.631 ×  10−3 

o MAE: 3.141 ×  10−2 

o R²: -4.647 

 

1-day results show slightly better performance (lower MSE and MAE) than both the 2-day and 3-
day runs. The R² score, while still negative, is slightly less extreme, meaning the model is 
marginally closer to predicting the mean more accurately for 1 day than for 2 or 3 days. 

 These results show that while adding more data (2 or 3 days) allows the model to capture 
more variability, it doesn't improve prediction accuracy for the GCN architecture in this scenario. 
The training was 39m and 15s. 

5.3.13. Random Forest (RF) Model 

Random Forest (RF) is an ensemble learning method that combines multiple decision trees to 
improve predictive accuracy and control overfitting. RF was chosen due to its ability to handle 
large datasets with high-dimensional features and its robustness to noise, as evidenced by 
Paliwal et al [26]. The model's ensemble nature allows it to learn intricate patterns and 
relationships within the data by aggregating the results of multiple trees. 

The Random Forest model was trained using the following optimization problem: 
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RF Objective: 𝑚𝑖𝑛
𝜃

 ∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃))
2
 

  

 Where 𝑓(𝑥𝑖; 𝜃) represents the prediction of the ensemble model for input 𝑥𝑖with parameters 

𝜃. 

 This model was tuned using Grid Search Cross-Validation (GSCV) to identify the optimal 
hyperparameters (n_estimators and max_depth) that minimize the Mean Squared Error (MSE): 

 

 Evaluation Results: 

o MSE: 7.603 ×  10−5 

o MAE: 1.050 ×  10−3 

o R²: 0.8623 

 

 The Random Forest model was configured with 50 estimators (trees) and a maximum depth 
of 10 to balance model complexity and computational efficiency. The Random Forest model 

metrics were as follows: a Mean Squared Error (MSE) of 7.603 ×  10−5, a Mean Absolute Error 

(MAE) of 1.050 ×  10−3, and an R² score of 0.8623. These metrics indicate that the model explains 
approximately 86.23% of the variance in the test data for the first stop prediction. The low MSE 
and MAE values suggest that the model's predictions are very close to the actual ETAs, 
demonstrating high accuracy. 

 In summary, as compared to neural network models, the Random Forest regression model 
performed better at predicting ETAs for several future stops. It is especially well-suited for 
transportation data where multiple factors impact arrival times due to its robustness against 
overfitting and noise, as well as its capacity to represent intricate non-linear correlations and 
interactions between features. Because of the model's high level of explanation and low prediction 
errors, it appears that Random Forests can successfully identify and forecast ETAs by capturing 
the underlying patterns in the data. The execution time was 1h and 34m. 

 Chicco et al. (2018) emphasized the importance of regularization in improving model 
performance. Random Forest inherently achieves a balance between bias and variance due to 
its use of multiple decision trees and averaging results, which aligns with Chicco et al.'s findings 
on how reducing overfitting while retaining model complexity can lead to more accurate 
predictions. Chondrodima et al. (2022) discussed how RF models can efficiently capture non-
linear relationships between features in high-dimensional datasets. For ETA prediction, the 
relationships between spatial (e.g., GPS coordinates) and temporal (e.g., time of day, speed) data 
are complex and non-linear, which RF is well-equipped to handle. 

5.3.14. Random Forest (RF) Model with 2-days data 

We ran the model on data from two days to evaluate how a smaller sample size affects the model's 
performance compared to running the model on a larger time frame, such as three days. 

 

Evaluation Results: 

o MSE: 1.1954 × 10−4 

o MAE: 1.5686 × 10−3 

o R²: 0.7890 

 For the two-day dataset, the results showed an MSE of 1.1954 ×  10−4, an MAE of 

1.5686 × 10−3, and an R² score of 0.789, indicating reasonably good performance but with more 
error and less explained variance than expected. In contrast, when the model was trained and 
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tested on data from three days, the metrics improved significantly, with an MSE of 7.603 ×  10−5, 

an MAE of 1.050 ×  10−3, and an R² score of 0.8623. These results suggest that using a larger 
dataset from three days allows the model to capture more complex patterns, leading to better 
accuracy and more variance explained by the model. This comparison shows that increasing the 
size of the training data improves the model's performance, likely due to the broader range of 
conditions captured in the additional day's data. The training procedure took 15m which is very 
low compares to the 3-day training. 

 

5.3.15. Random Forest (RF) Model with 1-day data 

 

Evaluation Results: 

o MSE: 1.311 ×  10−4 

o MAE: 1.5698 × 10−3 

o R²: 0.7784 

Running the model for 1 day resulted in a Mean Squared Error (MSE) of 1.311 ×  10−4, a Mean 

Absolute Error (MAE) of . 5698 ×  10−3, and an R² score of 0.7784. These metrics indicate that 
while the model can still make reasonable predictions with a single day's worth of data, the 
performance has degraded compared to the results from 2 and 3 days.  

 When comparing these results to the model's performance over 2 and 3 days, we see a clear 
trend. For 2 days, the MSE was slightly higher at 1.1954 ×  10−4, but the MAE remained similar, 
at 1.5698 ×  10−4. However, the R² score for 2 days was higher, at 0.7891, and for 3 days, it was 
even better, at 0.8623. This demonstrates that increasing the amount of data improves the 
model's ability to generalize, capture more complex patterns, and provide more accurate 
predictions. As the dataset is reduced, the model loses some of its predictive power, highlighting 
the importance of a larger dataset for improving performance in time-series prediction tasks like 
this one. The training took 13m. 

5.3.16. Hybrid (LSTM + Random Forest) 

To leverage the strengths of our two best models, we used both Random Forest and LSTM. A 
hybrid model was developed that combines their predictions through simple averaging. Hybrid 
methods, as discussed by Paliwal et al. [26] and Chicco et al. [5], are known to improve prediction 
accuracy by reducing variance and bias: 

 

�̂�hybrid =
1

2
(�̂�RF + �̂�XGB) 

 

 This simple hybrid approach aims to harness the complementary strengths of the base 
models, as each model captures different patterns within the data. 

 

Evaluation Results: 

o MSE: 7.870 ×  10−5 

o MAE: 1.107 ×  10−3 

o R²: 0.8575 

  

 The hybrid model on the test set, we achieved a Mean Squared Error (MSE) of 7.870 ×  10−5, a 

Mean Absolute Error (MAE) of 1.107 ×  10−3, and an R² score of 0.8575 for the sixth future stop. 
These results indicate that the hybrid model explains approximately 85.75% of the variance. The 
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low error metrics demonstrate that the hybrid model's predictions closely align with the actual 
ETAs, confirming its high accuracy. 

Comparatively, the hybrid model's performance is competitive with, and in some respects 
surpasses, the individual models. The simple neural network and LSTM models previously 
implemented had R² scores around 0.849, while the Random Forest model achieved an R² score 
of 0.8623. The hybrid model's R² score of 0.8575 suggests that combining the models captures 
additional variance in the data that individual models might miss. Overall Random Forest had the 
best results solely. The training took 1h and 35m. 

 

5.4. K-Fold Cross-Validation 

 

Evaluation Results: 

o MSE: 2.500 ×  10−5 

o MAE: 5.500 ×  10−4 

o R²: 0.9500 

 

To evaluate the prediction ability and adaptability of our system, we used a Random Forest 
regression model together with a k-fold cross-validation. A common resampling technique in 
machine learning is K-fold cross-validation, which evaluates the performance of models on a small 
sample of data. We divide the dataset into five distinct subsets by setting 𝑘 = 5, with the remaining 
groups being the training set and each one acting as a test set in turn.  

 The combination of Random Forest with k-fold cross-validation reduces any biases 
associated with a single train/test split, ensuring that our model's evaluation is both detailed and 
reliable.  

 Below we demonstrate the plots of each metric using a 5-fold cross-validation, as there are 5 
distinct peaks in the plot, repeating the same pattern. Each fold is being evaluated for multiple 
stops. 

Each cycle (rise and fall of the MSE values) represents a single fold of the cross-validation. 
Since there are 6 future stops in each fold, there are 6 data points per fold. This gives us a total 
of 30 points on the x-axis (5 folds * 6 stops = 30). The y-axis represents the metrics values and 
the x-axis the folds and stops combined. 

 After applying k-fold cross-validation, the Mean Squared Error values were significantly lower 
and more stable across different folds, meaning that the model's errors were smaller on average 
when evaluated on multiple data subsets. The Mean Absolute Error also decreased after cross-
validation, indicating a better average prediction accuracy after considering different data splits 
and future stops. This shows that the model consistently makes small errors when tested on 
unseen data. The R² score saw the most noticeable improvement after cross-validation. The initial 
single-split R² of 0.8623 suggested good performance, but after cross-validation, the R² was 
consistently above 0.93, with some folds even reaching 0.99. This indicates that the model has a 
better capacity to explain the variance in the target data than originally thought. 

 In most cases, the error increases for later stops (i.e., the 6th stop has slightly higher errors 
than the 1st stop within each fold). This is common because predicting further into the future 
typically introduces more uncertainty, making it harder for the model to predict accurately. 

 The k-fold cross-validation has shown that the model is stronger and more consistent than 
what was suggested by the initial single-split evaluation, making the cross-validated results a 
more accurate reflection of its real-world performance. The training time was the highest of all at 
3h and 45m. 
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Figure 15: k-fold Cross-Validation per Metric plots (MSE, MAE & R²) 
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5.5. Comparative Analysis 

In comparing the various machine learning models across different datasets (1 day, 2 days, and 
3 days), several key insights emerge from the analysis. The Random Forest model consistently 
outperformed other models in terms of predictive accuracy, particularly when trained on 3 days of 
data, achieving the highest R² score of 0.8623 and the lowest MSE (7.603e-5) and MAE (1.050e-
3). This model also performed well with 2 days of data, but its performance slightly decreased 
when trained on only 1 day, indicating that larger datasets allow Random Forest to capture more 
complex patterns, thus improving its predictions. 

 In contrast, the Simple Neural Network (NN) model delivered strong results, especially in 
terms of training efficiency. Its performance with 2 and 3 days of data was competitive, achieving 
R² values of 0.8396 and 0.8491, respectively. However, the NN model showed a noticeable drop 
in predictive power when using only 1 day of data, with an R² score of 0.598 and an increased 
MSE, which indicates that, like Random Forest, the NN benefits from more extensive datasets. 
Despite this, the Simple NN was the fastest to train with just 27 seconds for 1 day of data, making 
it an efficient choice for quick model updates or real-time applications where lower accuracy is 
acceptable. 

 The LSTM model, known for handling sequential data, performed well with both 2 and 3-day 
datasets, achieving R² scores of 0.8391 and 0.8494, respectively. It performed similarly to the NN 
model but with longer training times. The LSTM's capacity to learn from temporal patterns made 
it a good fit for the problem, though its performance was significantly impacted when using only 1 
day of data, where it fell to an R² of 0.5964. This suggests that LSTM, like NN, benefits from more 
extensive time-series data to capture dependencies between features. 

 XGBoost, while efficient in training time, particularly on 1 day and 2-day data, struggled with 
low R² scores across all datasets, with a maximum of only 0.5386 on 3 days of data. This indicates 
that while XGBoost can model complex relationships, it was not as effective as the NN, LSTM, or 
Random Forest models in capturing the temporal and spatial patterns inherent in ETA prediction. 
It remained relatively fast to train but did not offer competitive accuracy compared to other models. 

 Graph Convolutional Networks (GCNs), though theoretically powerful for capturing spatial 
dependencies, underperformed across all datasets, particularly in terms of R², where it 
consistently returned negative scores. This indicates that GCNs struggled to generalize to this 
specific problem of ETA prediction. Even with 3 days of data, it yielded an R² of -7.6290, which 
shows that the model's complexity and architecture did not align well with the given problem, and 
additional tuning or different architectural choices would be needed for GCNs to be effective in 
this scenario. 

 Finally, the hybrid model, combining Random Forest and LSTM, provided a strong 
performance with an R² of 0.8575, which was close to the best-performing Random Forest model. 
This demonstrates the value of hybriding, which can combine the strengths of different models to 
produce more robust and generalized predictions. Additionally, Random Forest with k-fold cross-
validation achieved the best overall performance with an R² of 0.9500, showing that this method 
can further enhance the accuracy of predictions by reducing bias and variance. 

In conclusion, Random Forest was the most effective model overall, particularly when 
combined with k-fold cross-validation, while LSTM and NN models also performed well, 
particularly with larger datasets. XGBoost, despite its efficiency, struggled to achieve competitive 
accuracy, and GCNs underperformed in this context. The results highlight the importance of 
selecting the right model for the problem at hand, with Random Forest standing out for its balance 
between accuracy and computational efficiency in predicting ETA in urban transit networks. 
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Model Days of 
Data 

MSE MAE 𝑅2 Training Time 

Simple  (NN) 1 Day 1.161e-4 1.201e-3 0.5980 27s 

Simple  (NN) 2 Days 8.478e-5 9.080e-3 0.8396 25m 

Simple  (NN) 3 Days 8.333e-5 1.205e-3 0.8491 1h 56m 

LSTM 1 Day 1.164e-4 1.765e-3 0.5964 1h  

LSTM 2 Days 8.501e-5 1.659e-3 0.8391 2h 

LSTM 3 Days 8.315e-5 1.235e-3 0.8494 1h 36m 

XGBoost 1 Day 1.243e-4 1.138e-3 0.00007 2m 16s 

XGBoost 2 Days 1.009e-4 1.073e-3 0.00007 3m 

XGBoost 3 Days 2.548e-4 1.065e-2 0.5386 6m 28s 

CGN 1 Day 1.631e-3 3.141e-2 -4.6470 39m 15s 

CGN 2 Days 3.088e-3 4.447e-2 -4.8440 39m 15s 

CGN 3 Days 4.767e-3 5.469e-2 -7.6290 2m 41s 

Random Forest 1 Day 1.311e-4 1.569e-3 0.7784 27s 

Random Forest 2 Days 1.195e-4 1.568e-3 0.7890 15m 

Random Forest 3 Days 7.603e-5 1.050e-3 0.8623 1h 34m 

Hybrid (LSTM + 
RF)  

3 Days 
7.870e-5 1.107e-3 0.8575 

1h 35m 

RF + K-Fold 3 Days 2.500e-5 5.500e-4 0.9500 4h 45m 

PSO-NSFM 
(Chondrodima 
et.al) 

 

30 Days 
6251.598 58.978 0.786 

 

 

 

Table 2: Metrics (MSE, MAE, R²) of all models 

5.6. SHAP Analysis and Results Discussion 

We also implemented our final code SHapley Additive exPlanations (SHAP) to interpret the results 
of our Random Forest model, which was used for predicting the estimated time of arrival (ETA) in 
an urban transit system. SHAP values provide a unified measure of feature importance, allowing 
us to understand the contribution of each feature to the model's output. By analyzing the SHAP 
values, we can gain insights into how different variables impact the model's predictions, thus 
enhancing the interpretability of our machine learning approach. As the dataset is large, we 
conducted the analysis in a smaller sample (1000). The eight selected features chosen are unix 
time, stop sequence, hour of day, day of week, longitude, latitude, bearing, and speed. The 
selected features are not only theoretically grounded but have also been empirically validated in 
various studies. By implementing these features in the model, we leverage their established 
relevance in the literature to enhance the accuracy and robustness of our ETA predictions. 
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Figure 16: SHAP summary plot 

 

 The features are listed on the y-axis in descending order of importance, with the most 
impactful features at the top. The SHAP values on the x-axis show the impact each feature has 
on the model's output. Positive SHAP values push the prediction higher (to a later ETA), while 
negative SHAP values push the prediction lower (to an earlier ETA). 

 According to the SHAP analysis, the most important factor in determining when the bus will 
arrive at this stop is Unix time.  Unix time, being the most important feature, suggests that the 
exact time (in seconds) has a significant impact on predicting the arrival time at the 6th stop. High 
Unix time values (red dots) seem to push the predictions toward positive SHAP values (increasing 
the ETA), while low Unix time values (blue dots) push predictions lower. This indicates that the 
model is capturing long-term temporal trends, such as how delays may build up over the course 
of a journey. The anticipated ETA tends to grow with high Unix time values (later in the route) and 
decreases with lower Unix time values (earlier in the journey), indicating that the precise point in 
time is important for the prediction. The second most significant aspect is the stop sequence, 
which specifies the order in which the stops occur. This suggests that delays tend to build up as 
the bus travels the route. Longitude and latitude also offer useful data, perhaps capturing 
geographic elements like traffic patterns in certain locations that can impact the bus's route 
duration. 

 Other features, such as bearing (direction) and speed, also contribute to the predictions but 
with slightly less impact, reflecting the bus's current movement and its proximity to the next stop. 
The hour of the day and day of the week have less influence but still provide insights into daily 
and weekly traffic patterns that might affect delays.   
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6. Practical Application and Next Steps 

Considering the performance of our models, the Random Forest with k-fold Cross Validation 
could be the best model for practical deployment in urban transit systems. However, exploring 
more advanced ensemble methods beyond simple averaging could yield additional gains, aligning 
with techniques reported in other literature, such as stacking or meta-learning frameworks. 

 Apart from enhancing the evaluation process, exploring more advanced ensemble methods 
beyond simple averaging could also yield further performance improvements. Techniques such 
as stacking or meta-learning frameworks could dynamically combine multiple models' predictions, 
capturing different patterns in the data more effectively. These methods have been successfully 
applied in other studies, suggesting they could offer additional gains over the current ensemble 
approach. 
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7. Contributions to Literature 

This study contributes to the literature on ETA prediction in urban transit systems by focusing on 
three critical aspects: (a) training times, (b) prediction accuracy, and (c) model stability and 
robustness. These dimensions are essential for evaluating the practical application of machine 
learning models in real-world urban transit environments. 

 Training Time: Across all models, Random Forest and the Simple Neural Network (NN) model 
demonstrated the fastest training times. The Simple NN trained in just 27 seconds for 1-day data, 
while Random Forest required 15 minutes for 2-day data and 1 hour and 34 minutes for 3-day 
data. These results highlight their suitability for environments requiring rapid model updates and 
deployment. The speed of these models stems from their relatively simple architectures and 
efficient computation processes. In contrast, models such as Long Short-Term Memory (LSTM) 
and Graph Convolutional Networks (GCNs) required significantly longer training times, 
particularly when working with larger datasets. The LSTM, while showing good performance, took 
longer to train with increased data, particularly when utilizing more extensive sequential patterns. 
GCNs, despite their potential to capture spatial relationships in transportation data, showed the 
highest training times without providing superior results, indicating a potential mismatch between 
model complexity and the dataset used. 

 Prediction Accuracy: In terms of accuracy, Random Forest consistently outperformed other 
models, achieving the lowest Mean Squared Error (MSE) and the highest R² score across 

datasets. For example, Random Forest reached an MSE of 7.603 ×  10−5) and an R² of 0.8623 
when trained on 3-day data, highlighting its position as the most effective model for ETA 
prediction. LSTM and the Simple NN models also demonstrated strong predictive capabilities, 
especially when trained on larger datasets, with R² scores close to 0.8491 for the 3-day Simple 
NN model and 0.8494 for the 3-day LSTM model. These results suggest that these models can 
capture the underlying spatiotemporal patterns critical for accurate ETA predictions. In contrast, 
Graph Convolutional Networks struggled significantly, producing negative R² scores across 
datasets, which questions their suitability for this specific task without further tuning. XGBoost, 
while known for its efficiency in handling high-dimensional data, failed to achieve the high 
accuracy of Random Forest and LSTM, particularly with smaller datasets, though it maintained 
fast training times. 

 Stability and Robustness: Random Forest emerged as the most stable and robust model 
across datasets, consistently delivering reliable results with low error variance. Its ability to 
generalize well across different datasets indicates that Random Forest is less sensitive to 
variations in the data, making it ideal for practical deployment in urban transit systems. The Simple 
NN model, despite its computational efficiency, exhibited reduced performance when trained on 
smaller datasets, indicating that it benefits significantly from larger, more comprehensive data 
inputs. LSTM models, while effective, also showed slight performance dips with smaller datasets, 
which suggests that their strength lies in handling larger sequences of temporal data. On the other 
hand, GCNs and XGBoost exhibited greater variability, with GCNs struggling to provide 
meaningful predictions in this context, demonstrating their limitations in handling the dataset used 
in this study. 

 Conclusion: This study confirms the effectiveness of Random Forest as a robust, accurate, 
and efficient model for ETA prediction in urban transit networks, offering the best balance between 
training time, accuracy, and stability. While more complex models such as LSTM and GCNs show 
potential, their longer training times and reduced accuracy, especially with smaller datasets, may 
limit their practical application in real-time systems. The Simple NN model presents a viable option 
for faster deployment but benefits from larger datasets for better accuracy. XGBoost, though 
efficient in training time, underperformed in terms of accuracy, making it less suitable for this task 
compared to Random Forest. Overall, the findings suggest that while sophisticated models offer 
the potential to capture more complex patterns, simpler models like Random Forest provide the 
best trade-off between performance and computational efficiency in urban transit ETA prediction 
tasks.  
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8. Research Implications 

This work addresses several real-world issues and suggests solid solutions, advancing the latest 
developments in urban ETA prediction problems. The main contributions include: (a) utilizing a 
large, real-time dataset to enhance the realism and applicability of the model predictions, (b) 
implementing advanced machine learning models such as Random Forest, XGBoost, and GCNs 
optimized for complex, high-dimensional data, and (c) conducting comparative experiments to 
evaluate model performance across different metrics, including speed and accuracy. 

 One significant practical implication of this study is the handling of a large-scale dataset. 
Given the real-time nature of the data, the dataset was extremely large, posing challenges in 
terms of computational resources and processing time. Due to these constraints, the analysis 
was conducted on a subset of the data spanning several days instead of a full month's worth of 
data. This decision was necessary to manage the available computational resources effectively 
and ensure timely completion of the study. 

 The data, originally stored in the PGAdmin database, was extracted into CSV format and then 
uploaded to Google Drive. This allowed seamless integration with Google Colab, where the data 
preprocessing, model training, and evaluation were performed. Google Colab's cloud-based 
computational resources were essential for managing the large dataset and conducting the 
analysis, which would have been unmanageable on standard local machines. This approach 
underscores the importance of scalable and flexible computing resources when dealing with big 
data in urban ETA prediction tasks. 

 Moreover, the size and complexity of the dataset required substantial computational power. 
While models such as LSTM required more extensive computational time due to their complexity, 
simpler models like Random Forest were quicker to train, demonstrating the trade-offs between 
model complexity and computational efficiency. This balance is crucial in real-world applications 
where both online and offline processing scenarios may be encountered, necessitating different 
levels of accuracy and speed. 

 Finally, as urban transit data continues to grow in scale, volume, and velocity, especially in 
modern, data-rich environments, it is crucial for proposed solutions to be robust, scalable, and 
adaptable. This study underscores the need for advanced methodologies and scalable 
infrastructure to effectively manage and analyze such large datasets, which is essential for the 
ongoing development of smart cities and intelligent transportation systems. 

 

 

 

 

 

 

 



Master’s Thesis                                                                                                                                                                            Afroditi Karatrantou 
 

 
44 Traffic prediction on road networks 

 

9. Conclusion 

In conclusion, this study has provided a comprehensive comparison of various machine learning 
models for predicting Estimated Time of Arrival (ETA) in urban transit systems. By evaluating 
models across key factors such as training time, prediction accuracy, and stability, the results 
highlight the strengths and limitations of each approach within the context of real-world 
application. 

 The Random Forest model consistently emerged as the top performer, demonstrating a strong 
balance between training efficiency and high prediction accuracy. Its robustness across different 
datasets underscores its suitability for dynamic urban transit environments where consistent, 
reliable performance is crucial. The integration of K-fold cross-validation further validated Random 
Forest's performance, showing reduced variance and a significant increase in the R² score, 
reaching 0.9500 after cross-validation, which speaks to its generalizability and adaptability across 
varying data splits. While advanced models such as Long Short-Term Memory (LSTM) networks 
offered competitive accuracy, particularly with larger datasets, their longer training times may limit 
their practicality in real-time or resource-constrained systems. Similarly, while models like Graph 
Convolutional Networks (GCNs) show promise for capturing complex spatial relationships, they 
underperformed in this specific context, indicating the need for further refinement or alternative 
approaches for urban traffic prediction. 

 In contrast, simpler models like the Simple Neural Network (NN) excelled in terms of 
computational speed, offering a viable solution for quick deployments in situations where model 
updates are frequent. However, their performance was more reliant on the size of the training 
dataset, with accuracy decreasing when smaller datasets were used. XGBoost, though quick to 
train, failed to match the prediction performance of Random Forest and LSTM, indicating that its 
potential lies more in high-dimensional, tabular data rather than temporal-spatial data like those 
found in transit networks. 

 Furthermore, the SHAP analysis revealed that Unix time is the most significant factor in 
predicting bus arrival times, as it captures long-term temporal trends that affect delays. Stop 
sequence and geographic features, like longitude and latitude, also play crucial roles, indicating 
that both route progression and location-specific factors impact ETA. Other factors like speed, 
direction, and time of day contribute less but still provide meaningful insights into traffic patterns. 

 Overall, the study concludes that while more complex machine learning models can capture 
intricate patterns and dependencies, simpler models like Random Forest often provide the best 
trade-off between computational efficiency and prediction performance in ETA tasks. In future 
work, a combination of models or ensemble approaches may further enhance prediction accuracy 
by leveraging the strengths of different models, creating a more adaptable and accurate system 
for real-time ETA forecasting in urban transit networks. Additionally, further exploration of feature 
engineering and model tuning, particularly with graph-based models like GCNs, could lead to 
improved outcomes for tasks that involve both spatial and temporal complexity. 

Future Enhancements 

Looking ahead, several avenues for future research could further enhance the outcomes of this 
study. Incorporating more diverse datasets, including real-time traffic congestion levels, weather 
conditions, and localized events, could provide a richer context for model training, thereby 
improving predictive accuracy.  

 Additionally, exploring more sophisticated ensemble learning techniques, such as stacking 
and meta-learning frameworks, could combine the strengths of multiple models, capturing a wider 
range of patterns in the data. Leveraging advanced computational resources, including distributed 
computing and cloud-based platforms, would also enable more efficient processing of large-scale, 
real-time datasets. 

By addressing these areas, future studies can develop even more accurate, scalable, and 
resilient ETA prediction models, contributing to the ongoing evolution of smart cities and 
enhancing the overall user experience in urban transit systems. 
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Appendix A: GTFS Datasets 

The GTFS (General Transit Feed Specification) data exists in two main variants: the GTFS static 
(GTFS-s) feed and the GTFS real-time (GTFS-rt) feed. 

 

A.1. GTFS Static (GTFS-s) Feed Files 

The GTFS-s feed is typically a collection of comma-separated values (CSV) files containing 
relatively static information about a public transit (PT) network. This static information includes 
details that change infrequently, such as routes, stops, and schedules. Updates to these files may 
occur periodically, for example, when schedules are adjusted seasonally or when a new route is 
introduced. 

 The GTFS-s feed consists of several mandatory and optional files that together provide a 
comprehensive description of a PT network: 

1. agency.txt: This file includes information about the transit agencies providing the data in 
the feed. Each transit agency is identified by an agency_id. It contains fields such as 
agency_name, agency_url, and agency_timezone, which describe the agency's name, 
website, and timezone, respectively. 

2. routes.txt: Contains the routes within the PT network, each identified by a route_id. 
Routes represent a specific path taken by a PT vehicle, and this file includes fields such 
as route_short_name, route_long_name, and route_type to provide a more detailed 
description of each route. 

3. trips.txt: This file lists all the trips that occur on the routes in the PT network, each 
identified by a trip_id. A trip describes the movement of a PT vehicle along a specific route 
at a certain time. This file also includes fields such as service_id, trip_headsign, and 
direction_id. 

4. stops.txt: Details all the stops in the PT network, each identified by a stop_id. This file 
provides information such as stop_name, stop_lat, and stop_lon, which indicate the stop's 
name and geographic coordinates (latitude and longitude) based on the WGS 84 datum. 

5. stop_times.txt: Provides detailed scheduling information by listing the times that each 
trip stops at each stop. Each entry is identified by the associated trip_id and stop_id and 
includes fields such as arrival_time, departure_time, and stop_sequence. 

6. calendar.txt (Conditionally Required): Defines the days of service for the trips, each 
identified by a service_id. This file specifies a weekly schedule, with fields indicating 
whether the service operates on each day of the week. 

7. calendar_dates.txt (Conditionally Required): Provides exceptions to the regular 
schedule defined in calendar.txt, also associated with a service_id. This file includes fields 
such as date and exception_type to indicate specific dates when service is added or 
removed. 

8. shapes.txt (Optional): Defines the physical path that the vehicle travels for each trip, 
identified by a shape_id. This file contains a series of points defined by shape_pt_lat and 
shape_pt_lon that outline the route's shape on a map. 

9. feed_info.txt (Optional): Contains metadata about the dataset itself, including 
information such as feed_publisher_name, feed_publisher_url, and feed_version. 

 

These files, when combined, provide a complete set of static information for a PT network. In 
a PT network, stops represent specific locations where passengers can board or disembark from 
PT vehicles. A route is defined by a fixed sequence of stops, and a trip represents a single 
journey along a route, occurring at a specific time. 
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A.2. GTFS Real-Time (GTFS-rt) Feed 

While the GTFS-s feed provides static information about the transit network, the GTFS-rt feed 
supplies dynamic, real-time data collected during vehicle trips. This data is typically based on 
GPS tracking and provides up-to-the-minute updates on the status of the transit network. The 
GTFS-rt feed is used to provide passengers with current information about vehicle positions, 
service alerts, and trip updates. The real-time data is encoded using the Protocol Buffers 
(protobuf) format, an open-source standard for efficiently serializing structured data. 

 The GTFS-rt feed supports three main types of information: 

1. Trip Updates: Include predicted arrival and/or departure times for stops along each trip. 
This data helps in estimating real-time ETAs (Estimated Time of Arrival) for each stop a 
vehicle will serve. 

2. Vehicle Positions: Provide updates on the current location of individual transit vehicles. 
The data includes the vehicle's geographic coordinates and additional information like 
bearing and speed, allowing for real-time tracking of vehicles. 

3. Service Alerts: Include updates on disruptions in the transit network, such as delays, 
detours, or route closures. These alerts are provided as human-readable messages that 
help passengers understand the current state of the transit network and plan their 
journeys accordingly. 

 By integrating the GTFS-s and GTFS-rt feeds, transit agencies can provide a comprehensive 
view of their operations, combining scheduled information with real-time updates to deliver 
accurate and reliable transit data to passengers.  

 

Below the links for the data stacks: 

Static schedule data 

https://svc.metrotransit.org/mtgtfs/gtfs.zip  

 

GTFS-realtime data 

• TripUpdate feed: https://svc.metrotransit.org/mtgtfs/tripupdates.pb 

• VehiclePosition feed: https://svc.metrotransit.org/mtgtfs/vehiclepositions.pb 

• ServiceAlerts feed: https://svc.metrotransit.org/mtgtfs/alerts.pb 

 

 

 

 

 

 

 

 

 

 

 

https://svc.metrotransit.org/mtgtfs/gtfs.zip
https://svc.metrotransit.org/mtgtfs/tripupdates.pb
https://svc.metrotransit.org/mtgtfs/vehiclepositions.pb
https://svc.metrotransit.org/mtgtfs/alerts.pb
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Appendix B: Metro Transit 

Metro Transit is the largest public transportation operator in Minnesota, serving the 
Minneapolis/St. Paul metropolitan area. The agency provides transit services, including buses, 
light rail, and commuter rail, and makes its transit data available in the General Transit Feed 
Specification (GTFS) format. This data can be accessed by the public through Metro Transit’s 
official website (MetroTransit, 2021). 
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