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NepiAnyn

To &adiktuo Twv Tpayudtwy (Internet of Things — loT) eival éva dikTuo dloCUVOESEUEVIWLV
OUCKEUWV Kal aigdntipwyv TTou oUAAéyouv, etteEepydlovtal Kal PeTadidouv TTAnpogopia HeTaguy
TOUG Kal Tou TrePIBAAAoVTOG. Ta TeAeuTaia xpovia, oTo TTedio Tou 10T £xel uTTdpEel peyaAn €CENIEN e
OA0 Kal TTEPICOOTEPEG XPNOoeIg e Tedia OTTWG N YeEwpyia, N uyeia, n €Eutrvn KaTOIKia Kal Ol
Biounxavikég epapuoyég. Kabe éva ammd autd Ta 1edia €xel OIAQPOPETIKEG AVAYKES KAl OTTAITACEIG
atd TNV UTTOKEiPEVN TEXVOAoyia, TTou TTEpIAaUBAvel did@opa TTPWTOKOAAO OTA SIOPOPETIKA ETTITTESO
NG oToifag Tou loT. H trapouca peAéTn €0TIGlel OTO €TTITTEDO EQOAPUOYAS KOl O€ E€TTIAEyUEVA
TTPWTOKOAAO ETTIKOIVWVIAG TTOU PTTOPOUV va XpnolyoTroinbouv oe pia uttodoun loT. Zuykekpiyéva,
Ta MQTT, CoAP, HTTP, kai XMPP peAetwvTal o€ eTiTTed0 AEITOUPYIWV KAl APXITEKTOVIKAG PE IO
oUyKpIon O€ ETTIXEIPNOIOKS Kal TEXVIKO TTedio. MpayuaToTTolEiTal ETTiONG Yia TTEIPAPATIKY) UAOTTOINON,
€€€TACOVTAG KOl OUYKPIVOVTAG TO TTPOOavVAQEPBEVTA TTPWTOKOANG e BAon €TTIAeyPéva KpITAPIA,
€0TIAZOVTAG OTIG SUVATOTNTEG AOPAAEING TOUG KOI TA AEITOUPYIKA TOUG XOPOKTNPIOTIKA.

Abstract

The Internet of Things (IoT) is a network of interconnected devices and sensors collecting,
processing and transmitting information between them and the environment. In the latest years, the
field of loT has seen great advancements with more and more uses in fields such as agriculture,
health-care, smart home and industrial applications. Each of these fields has different needs and
requirements from the underlying technology, comprised of multiple protocols in the different layers
of the loT stack. This study focuses on the application layer and a selection of communication
protocols that can be used in an loT setup. Specifically, MQTT, CoAP, HTTP, and XMPP is studied
on a functional and architectural level with a comparison on the operational and technical scope. An
experimental implementation is also realized, examining and comparing the aforementioned
protocols based on selected criteria, focusing on their security capabilities and functional
characteristics.
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1 Introduction

In the last few years, one of the fastest growing sectors in the field of information technology is the
Internet of Things. The Internet of Things (IoT) is a global network of smart devices communicating
with each other to exchange information, through private networks and the Internet. These devices
are typically used to gather data or perform computations and often include sensors that allow the
collection of information from the environment so it can then be transmitted to a central node or
communicated to other devices for further processing. The Internet of Things has applications in
many different fields, such as health-care, agriculture and monitoring, smart home and city, and
commercial and industrial systems. [1]

Nowadays, the advancement of technological solutions has allowed a huge growth in the
sector of loT. Smart devices and sensors are used more and more in commercial environments but
also in everyday life, constantly collecting and transmitting data through public and private
networks. This development has produced an ever-growing need for secure protocols to be used in
the communication between loT devices but also for their communication with other devices of the
Internet.

However, the IoT field is large, and applications in different sectors do not have the same
needs for features while also having different requirements when it comes to technical limitations
and security levels. This is reflected in the technical characteristics of the protocols used during the
transfer of data between devices. As an example, a network of sensors designed to collect data
about soil properties in an agricultural application may have very different requirements from the
smart card authentication system of a large company building when it comes to features, energy
consumption and security. At the same time, the specific devices used in each application could
pose additional restrictions to the features supported by the system, through the use of limited
memory, processing power and need for low power consumption.

As a result, to cover every need, multiple underlying technologies have been developed and
proposed for the communication between devices in IoT networks. These provide different
functionality to the devices and applications that use them and can result in different technical and
functional characteristics like power and processing requirements, use under low-bandwidth
conditions and different security features. As a result, when designing and developing an loT
solution, the selection of the most appropriate communication protocols for the occasion can prove
particularly hard.

1.1 Objectives

Some of the most popular communication protocols used in applications of the IoT field are MQTT,
CoAP, HTTP and XMPP. The goal of this thesis is to study the aforementioned protocols,
understand and analyze their features, on a functional and architectural level, and make a
comparison based on operational and technical criteria. We'll also explore an experimental client-
server implementation using selected protocols, with the purpose of studying those protocols in
practice, and comparing their security characteristics in the context of Confidentiality, Integrity and
Availability. The ultimate objective is a presentation of the aforementioned protocols and a final
comparison of the functions and security level they provide, aiming at simplifying the selection of the
appropriate protocol depending on the domain and requirements of each application.

1.2 Related Work

There are multiple studies providing an overview of loT communication protocols and performing
comparisons. MQTT, CoAP and XMPP are usually part of those comparisons. Most of them focus
on their general characteristics on a theoretical level, without an experimental comparison. There
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are also studies performing practical evaluations on performance and energy consumption in low-
bandwidth setups.

Bayilmis et al. [2] gave a theoretical overview of multiple protocols and executed performance
tests on MQTT, CoAP and Websocket based on average delay time, throughput and energy
consumption at different payload sizes, quality of service levels and methods (GET, POST, PUT).
Al-Fuqgaha et al. [3] provided an overview of the loT stack and made comparisons between CoAP,
MQTT, XMPP, AMQP, DDS and HTTP. Reddy et al. [4] compared the characteristics and use
cases of MQTT, XMPP, AMQP, DDS, CoAP, MQTT-SN and analyzed their performance based on
tests on latency, bandwidth and data loss. Karagiannis et al. [5] presented a detailed description of
COAP, MQTT, XMPP, Restful Services, AMQP, Websocket and their state at the time of writing.
Silva et al. [6] performed several tests with MQTT, CoAP and OPC-UA evaluating performance and
packet loss.

Not many studies focus on the security scope of loT applications. At the same time, the
protocol standards keep evolving so older studies may not take into account changes in the latest
versions of the protocols, especially MQTTv5 and HTTP/3. In this paper we will go more in-depth on
the architecture of each protocol and give a larger focus on the security side of IoT, while also
presenting the differences introduced in their latest versions. An experimental comparison will also
provide better insights on the current state of these protocols, the performance of their latest
versions, and tools that are available, focusing on the challenges an engineering team may face in
their integration. The result is a more well-rounded study, making a comparison on both theoretical
and practical level, with a major focus on the aspects of confidentiality, integrity and availability.

OewPNTIKN KAl TTEIPAUOTIKA JEAETN aOQAAEIQG TTPWTOKOAAWY ETTIKOIVWVIAG
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2 Theoretical background

2.1 loT architecture

lIoT is a combination of several technologies and protocols that work together across a universal
network. It includes devices — nodes that interact with the environment, remote servers that manage
incoming data, storage solutions and network infrastructure. 10T devices can be sensors or
actuators. Sensors function as inputs, collecting information from their internal state or their
environment and supplying it to the IoT network. There are no size or power limitations on the
definition of sensor, a thermometer or a mobile phone can both function as sensors but usually
small devices with limited resources are used. Actuators function as outputs, effecting a change to
their environment based on loT requests, for example turning on/off lights or adjusting air
conditioner temperature. [7]

There is no single loT architecture that is agreed upon by researchers. Various architectures
have been proposed while specific 10T systems may differ in their implementation details. The most
common architectures are the Three-, Four- and Five-Layer Architectures.

~

Architecture of loT
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Tt Tl LR
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Figure 1. loT architectures [8]

The Three-Layer Architecture is the simplest one, comprising of the Perception Layer, the
Network Layer and the Application Layer.

The Perception Layer operates as the senses of the network. It detects physical parameters in the
environment or other smart devices in the network. Devices used in this layer can include RFID
tags, barcodes and various sensors for collecting information about the environment, such as
location data, temperature and humidity or motion.

The Network Layer is responsible for transmitting and processing data in the IoT network and
connecting smart devices. It works as the intermediary layer between the perception and application
layer. The communication between devices can be either wired or wireless.

The Application Layer defines the applications where loT has been deployed. It provides specific
services to the user depending on the type of application (eg. smart home, smart health, animal
tracking).
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The Four-Layer Architecture adds a separate Support Layer responsible for storing and
processing data coming from the perception layer. Data in loT often requires high reliability where
cloud computing can play a crucial role. [9]

In the Five-Layer Architecture three different layers are added.

The Transport Layer is similar to the Network Layer of the Three-Layer Architecture, transferring
data between the perception and processing layer through networks.

The Processing Layer acts as a middleware. It processes and stores large amounts of data coming
from the transport layer before passing it to the higher layers. Cloud computing and database
solutions can be used when processing the data.

The Business Layer is at the top of the architecture with control of the whole loT system. It
manages applications and services, along with user privacy and other business logic of the specific
application.

2.2 Application layer protocols

Various technologies and protocols are used in the different layers of the loT architecture. The
protocols that define application-specific behavior when processing and transmitting collected data
can be found in the Application Layer in all proposed architectures. These control the format of the
transmitted data, how it should be transported between devices and the role of different
components in the network. As a result they can vary a lot depending on the requirements and
capabilities of the specific system.

As a general rule, devices act as clients or servers in a network. Clients may communicate with
servers or with each other through messages sent in a format predefined by the communication
protocol. The communication can be stateful or stateless and provide some quality of service
selected by the protocol or the user. Depending on the specifics of the connection process and
payload formats, some protocols may result in more lightweight communication while others may
include a larger overhead.

Some of the most popular protocols used in this layer are listed below and will be the subject of

this paper.

e MQTT (MQ Telemetry Transport) is an OASIS standard messaging protocol designed as a
lightweight transport for the Internet of Things. It uses a publish/subscribe architecture for
communication between clients and a central MQTT broker. Built for efficiency, it's mostly
used in environments with limited resources where reliability is important. It's currently used
in a variety of industries, including automotive, manufacturing, smart home and
transportation.

e CoAP (Constrained Application Protocol) is another lightweight transfer protocol for use in
constrained networks in the Internet of Things. It uses a RESTful (Representational State
Transfer) architecture with standard HTTP methods (GET, POST, PUT etc.) for
communication between low-power devices. It's designed to use minimal resources with
small messages in stateless communication over UDP, with optional reliability. Use cases
include smart home automation, industrial applications, wearables and energy
management.

e HTTP (Hypertext Transfer Protocol) is a communication protocol for the transfer of
hypermedia documents, such as HTML. Its main architecture is client-server
communication, where clients send requests (eg. GET, POST, DELETE) to a server and
wait for a response in a stateless environment. It operates over a TCP connection (HTTP/2
or lower) or a UDP connection (HTTP/3). It is most commonly used for the communication
between web browsers and web servers but can also be used in loT applications.

e XMPP (Extensible Messaging and Presence Protocol) is a protocol designed for real-time
communication, focused on applications around instant messaging, presence and
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collaboration, based on the XML standard. It uses XML streams through which messages
(XML stanzas) are sent for client—server or server—server communication. lts most typical
use case is instant messaging but it has various uses in loT as well, for smart home
automation, remote control of devices and connectivity of microcontrollers.
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3 Protocol Breakdown

3.1 MQTT

3.1.1 Functions and Features

The MQTT protocol relies on a publish/subscribe architecture, using topics to communicate
between clients and a central MQTT broker. Clients can act as a publisher or a subscriber.
Publishers push messages to specific topics of the MQTT broker and subscribers subscribe to
topics which then receive those messages. MQTT uses TCP as the underlying protocol with default
ports 1883 (mqtt) and 8883 (mgqtts).

There are four versions of MQTT:
¢ 1.2: the initial version
¢ 3.1: adding most functionality used today
¢ 3.1.1: became an OASIS standard
¢ 5: latest version, adding more functionality
Most applications today use either version 3.1.1 or version 5.

As an loT protocol MQTT includes some basic communication features and extra features related to
its architecture.

Pub/Sub Communication: Due to its topic-based structure, MQTT allows only one-way
communication between client and server, that is, a client that publishes to a topic can only send
messages from that topic without receiving anything back. However, a client can function both as a
subscriber and a publisher and a broker can specify a response topic for the publisher to subscribe
to and receive relevant messages. Each client has a unique Client ID which identifies it to the
broker.

Statefulness: MQTT is a stateful protocol, relying on a persistent TCP connection. Clients can
also specify if their connection to the broker should be persistent, in which case the broker stores
some information about the client so that it can continue on the same connection after reconnecting
in case the initial connection was disrupted due to network issues. Clients that do not need a
persistent session can set the clean session flag to disable this feature and start a new connection.

Reliability: MQTT supports three different levels of QoS (Quality of Service), defined by the
clients.

¢ QoS 0 (at most once) offers no guarantee of message delivery. A sender sends its message
once to the receiver without expecting an acknowledgment. It is the most efficient and can
be used when the network is expected to be stable or in cases where some data loss is
acceptable.

* QoS 1 (at least once) guarantees that the message will reach the receiver at least once. A
PUBACK packet is used to confirm the receipt and, if not sent, the sender retransmits the
message to ensure successful delivery. This method can produce duplicate messages, in
case the PUBACK packet was lost, which are handled by the receiver.

¢ QoS 2 (exactly once) ensures that the message is delivered exactly once, without producing
duplicates. A four-part handshake is required where, after receiving the initial PUBLISH
packet, the receiver sends a PUBREC packet, the sender responds with a PUBREL packet
and the receiver finishes with a PUBCOMP packet. In this way both parties can be sure that
the message has been delivered. If something is lost in transmission, the sender is
responsible for retransmitting the lost packet while the receiver stores the initial packet
identifier to avoid processing the same message again.

OewPNTIKN KAl TTEIPAUOTIKA JEAETN aOQAAEIQG TTPWTOKOAAWY ETTIKOIVWVIAG
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Security: MQTT supports the use of TLS (mqtts) for encrypted communication. When it comes
to authentication, clients can authenticate using a username and a password and most MQTT
brokers support workflows for authentication and authorization based on username, password,
client id and requested topic. In version 5, a special AUTH packet was added, supporting more
advanced authentication methods such as OAuth. Brokers may also support x.509 certificates for
client authentication.

Error Handling: Negative acknowledgments, or reason codes, can be used by the broker to
notify the client of potential errors and unsuccessful operations. Version 5 introduced a much bigger
number of reason codes and the ability to use them in more types of packets that previously lacked
them (eg. PUBACK). It also added a bi-directional DISCONNECT packet, notifying the recipient of
the reason of disconnection.

Retained Messages: In the general case, topics are not persisted and messages are lost if
there are no subscribers to receive them. To combat this, publishers can specify a retained
message per topic that will be stored and sent as a first message to any client that subscribes to
that topic, even if the publisher isn't currently sending any messages.

Last Will and Testament (LWT): When working in unreliable networks, a client may disconnect
ungracefully, without sending a DISCONNECT packet. To deal with this scenario, clients can
include a last will message and topic in their initial CONNECT packet. If the server detects an
abnormal disconnection, it broadcasts this message to all clients subscribed to that topic, letting
them know of the disruption.

User Properties: Version 5 of MQTT added an extra field to its messages, called user
properties, containing a collection of key — value pairs. These can be used by clients to provide
extra metadata about the client or the message itself. Developers can use this information for
application-specific purposes such as making decisions about the packet's routing and next steps.

3.1.2 Architecture

As mentioned, MQTT uses a publish/subscribe architecture. The components include a single
server, called MQTT broker, and multiple clients, acting as publishers or subscribers. Clients
connect to the MQTT broker and send/receive messages through topics. A topic is an entity with a
unique name to which clients can subscribe or publish messages. When a client subscribes to a
topic, the MQTT broker keeps track of this subscription. When a client publishes a message to a
topic, the MQTT broker is responsible for forwarding that message to the clients subscribed to this
topic. A topic can have subtopics specified by a forward slash, so a topic name is of the format
topic/subtopic/subsubtopic/... with a variable number of subtopics. Wildcards can be used to
subscribe to multiple topics in a single subscription. "#" matches any number of topic levels under a
specified topic and "+" matches a single level under a specified topic. So a client subscribing to
topicname/# will receive any messages published in fopicname or any of its subtopics. Topics are
temporary and only defined by the clients when publishing or subscribing to them. A client can act
as both a publisher and subscriber and can publish and subscribe to messages of a single or
multiple topics. Clients do not have addresses but are identified by the broker by their unique client
ids.
An example of the general flow of messages can be seen in the following diagram.
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Figure 2. MQTT architecture

When a client wishes to publish or subscribe to a topic, the following procedure is executed.
First, the client communicates with the MQTT broker and exchanges some initial connection
information. Authentication information is also sent by the client if required. Once a connection is
established, the client can send a subscription request or a publish packet with a payload to the
broker. Depending on the Quality of Service level, one or more acknowledgments are then
exchanged between server and client. An unsubscribe request by the client is also possible, with its
own acknowledgment. The server can also send a publish packet to the client, when a message
has been published to one of their subscribed topics. Finally, a disconnect packet is sent by either
the client or the server when they wish to terminate the connection.

The communication between nodes is carried out via control packets. A control packet adheres
to the following format.

Fixed Header, present in all MQTT Control Packets

Variable Header, present in some MQTT Control Packets

Payload, present in some MQTT Control Packets

Table 1. MQTT Control Packet format [18]

In the part of the fixed header, the control packet type is specified. There are 15 control packet
types which are used for the entire flow of communication in MQTT.
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Name Value | Direction of flow Description
Reserved 0 Forbidden Reserved
CONNECT 1 Client to Server Connection request
CONNACK 2 Server to Client Connect acknowledgment
PUBLISH 3 Client to Server Publish message
or
Server to Client
PUBACK 4 Client to Server Publish acknowledgment (QoS 1)
or
Server to Client
PUBREC 5 Client to Server Publish received (QoS 2 delivery part 1)
or
Server to Client
PUBREL 6 Client to Server Publish release (QoS 2 delivery part 2)
or
Server to Client
PUBCOMP 7 Client to Server Publish complete (QoS 2 delivery part 3)
or
Server to Client
SUBSCRIBE 8 Client to Server Subscribe request
SUBACK 9 Server to Client Subscribe acknowledgment
UNSUBSCRIBE 10 Client to Server Unsubscribe request
UNSUBACK 11 Server to Client Unsubscribe acknowledgment
PINGREQ 12 Client to Server PING request
PINGRESP 13 Server to Client PING response
DISCONNECT 14 Client to Server Disconnect notification
or
Server to Client
AUTH 15 Client to Server Authentication exchange
or Server to
Client

Table 2. MQTT Control Packet types [18]

The variable header and payload are optional and depend on the control packet type. One or
more reason codes, indicating the result of an operation can be present in the variable header or
the payload. The payload can also contain other values depending on the control packet type. The
message in PUBLISH packets is sent in the payload field.

3.2 CoAP

3.2.1 Functions and Features

The CoAP protocol follows a client — server architecture, where a client requests an action on a
resource and the server responds with a response code and a payload. The payloads are binary
and can follow any format. Unlike other protocols, nodes can result in both client and server roles.
Its underlying protocol is UDP and default ports are 5683 (coap) and 5684 (coaps). The main
protocol is defined in RFC 7252 [20] and has been extended in separate specifications.

Its basic features include the following.

OewPNTIKN KAl TTEIPAUOTIKA JEAETN aOQAAEIQG TTPWTOKOAAWY ETTIKOIVWVIAG
yia epiBaAAov loT (MQTT, CoAP, HTTP, XMPP) 15



MeTaTrTuxiaki AlaTpiBn Mapia Kapaunvé

REST: CoAP uses a RESTful approach in its messages. The client makes a request to a
resource specified by a URI, making use of one of the methods GET, POST, PUT or DELETE.
These methods are designed to function similar to corresponding HTTP methods, so a GET request
retrieves a resource while POST, PUT and DELETE affect resources on the server.

Statelessness: CoAP is stateless and due to the use of the UDP protocol all messages are
asynchronous. In order to match requests to responses, a client-generated token is used in the
request header which is then repeated in its corresponding response from the server.

Reliability: Messages can be transmitted in two modes: Confirmable and Non-Confirmable.
Messages marked as Confirmable (CON) expect an acknowledgment message (ACK) from the
receiver. If an acknowledgment is not received, the message is retransmitted using a default
timeout and exponential back-off between retransmissions. The messages include a Message ID in
the header which is matched by the acknowledgment message. Messages marked as Non-
Confirmable (NON) do not provide any reliability mechanisms but still use a Message ID for
duplicate detection. In both cases, if the server cannot process the request a reset (RST) response
is sent.

Security: CoAP supports the use of DTLS over UDP (coaps). Four security modes are
supported.

e NoSec: DTLS is disabled.

¢ PreSharedKey: a list of pre-shared keys is used which includes which nodes every key can be
used to communicate with.

¢ RawPublicKey: the device has an asymmetric key pair without a certificate and a list of nodes
it can communicate with.

e Certificate: the device has an asymmetric key pair with an X.509 certificate, signed by a
common trust root, and a list of root trust anchors used for validating certificates.

Matching requests and responses share the same DTLS session. CoAP does not provide further
authentication or authorization options on the protocol level.

Error Handling: CoAP provides error handling through response codes. These follow a similar
format to HTTP response codes and can describe successful requests or client or server errors.
Response codes follow the format of a 3-digit code and are separated into three categories: 2.xx,
4 xx and 5.xx.

Discovery: Clients can discover servers by learning the URI of one of its resources.
Alternatively, multicast CoAP can be used for server discovery. The Constrained RESTful
Environments (CoRE) Link Format (RFC 6690) [21] is used for referencing hosted resources and
can be used for constructing a resource directory through which clients can discover resources on
the network's servers.

Block-Wise Transfer: Block-wise transfer is an extension that allows big payloads to be
fragmented on the protocol level, avoiding IP fragmentation which can be problematic in
constrained networks. (RFC 7959) [22]

Resource Observing: Resource observing is an extension that allows CoAP to operate in a
publish/subscribe mode. A client registers its interest to a resource with a GET request with the
observe option enabled. The server then adds this client to a list of observers of this resource and,
whenever the state of this resource changes, sends a notification to the client. The notification
message is structured as an additional response to the original GET request made by the client.
(RFC 7641) [23]

End-to-end protection: When proxies are used between endpoints, an extra protection against
eavesdropping and modification of messages can be used, called Object Security for Constrained
RESTful Environments (OSCORE). OSCORE provides encryption and integrity protection for any
CoAP options not relevant to proxies as well as message contents. It ensures that only the sender
and receiver nodes can read and modify the messages between them, regardless of any operations
in intermediary nodes. (RFC 8613) [24]
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3.2.2 Architecture

CoAP is designed to work with a network of devices acting as clients or servers. Its architecture
usually involves multiple devices — servers that provide data based on sensors or other sources and
one or more devices acting as clients that request and then process the data from the servers.
Devices can also act as both servers and clients, forming a network of nodes that communicate
sensor information between them.

The communication between clients and servers is done through RESTful requests to
resources. A resource is identified by its URI which follows the format “coap:” "//" host [ ":" port ]
path-abempty [ "?" query ]. The coap or coaps protocol is used, followed by the host and optionally
a port number if the default is not used, and an absolute path to the resource is specified, along
with an optional query string. An example URI is coap:/example.com/temperature?unit=c. When a
request is sent to a resource by the client, a response with a response code and payload is
returned by the server, after applying the relevant actions to the resource.

Another way of getting information about a resource is by using the resource observing
extension, where a subscription is created to a resource specified by a URI. The server keeps track
of those subscriptions and sends a response with information to the subscribed clients every time
the state of this resource changes.

The following diagram shows the general flow of messages in CoAP.

Sensor

Response

CoAP P CoAP

Server .
Request /temperature Client

Send temperature Request /humidity

Subscribe to
/temperature
Response
CoAP CoAP
Client Client

Figure 3. CoAP architecture

A client that wishes to make a request to an endpoint sends a message to the specific URI,
using one of the available request methods. If security is desirable, a DTLS handshake takes place
first and all messages are then sent as DTLS "application data". The message sent includes a client
generated token that identifies that request and may be reliable (CON) or non-reliable (NON). In the
case of a non-reliable message the server sends another non-reliable message with the response
to the request. In the case of a reliable message, the server sends an acknowledgment to the
client's message with the response embedded in the acknowledgment message or a separate
acknowledgment and response message. In both cases the same client generated token is used in
the response to identify the corresponding request.
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All communication in CoAP is carried out via messages, with the same format for both requests
and responses. A message consists of a 4-byte header, a token value, and optionally more CoAP
options and a payload. The header field includes a version number, an integer specifying the type
of message (NON, CON, ACK, or RST), the token length, a code identifying the request method or
response code carried by the message and a unique message id.

The code part of the header follows the format c.dd where the first digit denotes the code class
and the two digits after the dot denote the detail. For requests, the class part is a 0 while the details
specify the request method. The code can take one of the following values.

Code Name
0.01 GET
0.02 POST
0.03 PUT
0.04 DELETE

Table 3. CoAP Request Methods [20]

For responses, the code part of the header specifies the response code. Successful responses
use a class digit of 2, client errors a class digit of 4 and server errors a class digit of 5. Response
codes using a class digit of 3 are not defined but are reserved for future use. The full list of
response codes can be found in [20].

Further optional options and a payload may follow the header depending on the type of
message being sent.

3.3 HTTP

3.3.1 Functions and Features

The HTTP protocol uses a client — server architecture with a request — response model. Clients
request resources or actions from servers through methods sent in requests and servers respond
with appropriate response codes and payloads. The message payload is binary and can follow
different formats. It is designed for use in web environments, between web servers and browsers.
Its underlying protocol can be TCP or QUIC (in the case of HTTP/3) and its default ports are 80
(http) and 443 (https).

HTTP has been through the following versions over the years:
¢ HTTP/0.9 and HTTP/1.0: are older versions obsoleted by HTTP/1.1
e HTTP/1.1: defines the basic protocol and semantics
¢ HTTP/2: adds features improving efficiency and performance
® HTTP/3: transfers the same HTTP semantics over the new QUIC protocol

Versions HTTP/1.1, HTTP/2 and HTTP/3 are all in use today, with HTTP/3 slowly being adopted by
more applications while already supported by most browsers [26].
The main features across versions are the following:

Request Methods: HTTP requests make use of methods to fetch, post or affect changes on
resources of the server. The client makes a request to a resource identified by a URI using one of
the available HTTP methods (eg. GET, POST, PUT). The server then applies that change to its
state and returns the appropriate response and response code. These methods are standardized
and the list of available methods can be expanded by separate specifications.

Response Codes: HTTP responses reply to HTTP requests with a response code and
optionally a payload. These response codes are used to notify the client about the result of the
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request or any possible errors that have occurred. Response codes follow the format of a 3-digit
code and are separated into five categories: 1xx, 2xx, 3xx, 4xx, 5xx.

Statelessness: HTTP is a stateless protocol, meaning that each request is processed in
isolation and there is no persistent connection between a server and a client. Any information
required for identifying or authenticating a client should be included in the request payload or
header.

Security: HTTP supports the use of TLS (https). Authentication can be implemented through
fields in request and response headers, for example through Basic Authentication, JWT tokens or
Cookies.

Efficiency: Since HTTP/2, the protocol uses binary frames in its messages, greatly increasing
efficiency. TCP connections can be reused for multiple requests and headers are compressed
through the use of HPACK (in HTTP/2) or QPACK (in HTTP/3). In HTTP/3, the QUIC protocol is
used which implements multiple streams over UDP connections and handles retransmission of lost
packets per stream, meaning that multiple streams are not blocked when sending packets reliably.
This makes HTTP/3 much more efficient and friendlier to the network as retransmissions take up
less bandwidth.

3.3.2 Architecture

HTTP follows an architecture where clients make requests to servers, which then send back
responses. One side of the communication has the role of client and the other side has the role of
server, while usually there are fewer servers than clients in a network.

The communication is done similar to CoAP, through requests to resources on the server,
identified by a URI. The URI follows the format of "http" ".//" authority path-abempty [ "?" query ]
where authority defines the hostname and optionally a port, path-abempty the path to the resource
and query extra parameters. When a client sends a request to the server, the appropriate actions
are taken by the server and a response with a response code and optionally a payload is returned
to the client.

The general flow of messages can be seen in the following diagram.

Request HTTP
Client

HTTP
Server Response

Request
Response

Figure 4. HTTP architecture
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A client that wishes to make a request to the server, first identifies the HTTP version that will be
used and can then send a message using one of the available request methods.

In the case of HTTP/2, a connection preface is sent by both sides, with a SETTINGS frame
defining the settings of the connection and confirming the use of HTTP/2. If TLS is desired, the TLS
negotiation must be completed before this step. Afterward, the client is free to start sending
additional frames.

In the case of HTTP/3, the client first establishes a QUIC connection with the server, which
includes a TLS handshake. After the QUIC connection is established, both sides need to send a
SETTINGS frame to establish the settings of the HTTP connection before sending any other
frames.

Since HTTP/2, requests are made in the form of frames in a stream. Multiple frames are sent
through the same stream, structuring the client's request and the server's response. The request
and response are sent in the same stream. A frame consists of a type, some flags and a stream
identifier for specifying which stream the frame is part of. Frames of different types control the
stream or are used for sending requests and responses. A request or response consists of a single
HEADER frame followed by some CONTINUATION frames containing the header section, zero or
more DATA frames containing the message content and optionally a HEADERS and some
CONTINUATION frames for the trailer section. The message itself is sent in one or more DATA
frames which contain the request method, options and payload, or the response code in the case of
a response. Request and response data is the same as defined in HTTP/1.1.

The request methods defined by the main HTTP protocol are the following.

Method Description
Name
GET Transfer a current representation of the target resource.
HEAD Same as GET, but do not transfer the response content.
POST Perform resource-specific processing on the request content.
PUT Replace all current representations of the target resource with the request
content.

DELETE Remove all current representations of the target resource.
CONNECT Establish a tunnel to the server identified by the target resource.
OPTIONS Describe the communication options for the target resource.

TRACE Perform a message loop-back test along the path to the target resource.

Table 4. HTTP Request Methods [27]
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The response sent by the server includes a response code as a 3-digit number, belonging to
one of five types of responses.

Code Type Description
1xx Informational Request received, continuing
process.
2xx Success The action was successfully
received, understood, and
accepted.
3xx Redirection Further action must be taken in

order to complete the request.

4xx Client Error The request contains bad
syntax or cannot be fulfilled.

Bxx Server Error The server failed to fulfill an
apparently valid request.

Table 5. HTTP Response Types [27]

3.3.3 Differences Between HTTP/2 and HTTP/3

HTTP/3 made a transition from TCP to UDP, porting HTTP semantics defined in HTTP/1.1 and
HTTP/2 to the QUIC transport protocol. The main reason for this transition is to bypass the
overhead of TCP connections and provide a much more flexible protocol that is better suited for the
needs of the modern web. Many of the features of HTTP/2 are delegated to QUIC while others are
implemented on top of QUIC. The main differences between the two versions of the protocol are
presented below.

QUIC streams: In HTTP/3 request — response pairs are defined through QUIC streams. Within
each stream, HTTP/3 uses frames similar to HTTP/2 frames. Streams are independent of each
other and concurrency and multiplexing are handled by QUIC, resulting in efficient request
multiplexing since a single request does not block others when dealing with packet loss. Flow
control is also provided per stream, allowing flow control on all types of frames, unlike HTTP/2
where only the DATA frame payload is subject to flow control. Both the client and server can initiate
a QUIC stream. They can be unidirectional, with content flowing only from sender to receiver, or
bidirectional, with data flowing in both directions. These changes greatly increase efficiency without
sacrificing reliability.

Frames: HTTP/3 frames are mostly based on HTTP/2 frames. However, because many of the
features implemented by HTTP/2 are handled directly by QUIC in HTTP/3, several frame types are
not re-implemented in HTTP/3 while others have slightly different semantics. Some examples
include the PRIORITY, PING, WINDOW_UPDATE and CONTINUATION frames which are missing
from HTTP/3 and the DATA, HEADERS, PUSH_PROMISE and GOAWAY frames of HTTP/3 which
do not contain some of the fields defined in HTTP/2.

In-order delivery: HTTP/2 streams guarantee in-order delivery of streams. Several of its
features, such as field compression and prioritization, rely on this quality. In HTTP/3, QUIC
guarantees in-order delivery within each stream, but not across different streams. As a result,
HTTP/3 redefines the way some HTTP/2 features work so in-order delivery of frames is not
assumed, while priority signaling is removed from frames.

Use of TLS: A secure connection can be established in HTTP/2 through the use of TLS over
TCP. HTTP/2 allows the use of TLS 1.2 or higher while some TLS 1.2 cipher suites are prohibited
due to inadequate security. The use of TLS is highly encouraged but not required by the HTTP/2
protocol. In contrast HTTP/3 incorporates TLS 1.3 on the transport layer through QUIC. That means
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that TLS is required for any HTTP/3 connections, providing comparable integrity and confidentiality
in all uses of the protocol.

3.4 XMPP

3.4.1 Functions and Features

XMPP is designed for an environment with multiple clients, communicating with each other through
one or more federated servers. Similar to email, each client registers with a server and gets a
unique address that allows it to send and receive messages with other clients that may be
registered on the same or a different server. It is mainly used for instant messaging applications but
can also be useful for the communication between multiple devices in a network. XMPP uses TCP
as its underlying protocol on the default port 5222.

The XMPP protocol is designed to be extendable. The core features are defined in RFCs 6120
[30], 6121 [31] and 7622 [32] while further functionality is added through XMPP Extension Protocols
(XEPs). Including proposed and rejected XEPs, there are 484 XEPs as of this writing. Each
application is free to implement any of those extensions.

The following features are provided by the core protocol and most common XEPs.

Asynchronous Communication: In order to send and receive messages, a client needs to
connect to an XMPP server. The client opens a long-lived TCP connection to the server and
negotiates an XML stream. The same process happens from the server side resulting in two XML
streams for each client — server connection. Those streams are in the format of an incrementally
built up XML document and each message contains an XML snippet (eg. <message/>) that gets
added to it. Whenever one of the sides needs to send a message, it can push a snippet through the
already open connection, resulting in asynchronous communication between the entities.

JabberID: Each node in the network is identified by a unique id called JabberID or JID. This is a
string following the format of an email address (eg. name@example.com). The first part of the JID
is a string selected by the user and the second part is the domain name of the XMPP server on
which they are registered. The JID is used as an address when a client wishes to communicate with
another, similar to email. If a user is connected to their server from multiple devices/clients, each
device requests a resource that is appended to the JID and identifies that particular device (eg.

name@example.com/phone). This address is known as a Full JID.

Security: XMPP provides support for message encryption and client authentication. The core
protocol supports the use of TLS for encrypting communication and uses SASL (Simple
Authentication and Security Layer) for authentication purposes through username and password.
Different SASL mechanisms, such as PLAIN and DIGEST-MD5 are supported. Of them, the
EXTERNAL mechanism allows for authentication through a certificate and can be used for
communication between servers. An ANONYMOUS mechanism is also available when there is no
need for authentication of users. Further security features can be added through extensions, such
as end-to-end encryption defined by XEP-0384 [33].

Presence: XMPP allows clients to broadcast their availability status to a group of other clients
on the network. Through the implementation of presence and rich presence, a client can let others
know if it is currently online along with further details about its status. This information is generally
shared with the users that the client has selected to add to its contact list (roster). At the same time
the client also subscribes to the presence information of the other clients in the contact list.

Publish/Subscribe: A publish/subscribe mechanism is also possible in XMPP through the use of
XEP-0060 [34]. A client can subscribe to a resource (node) of another client. When that client
publishes something, specifying that node, a notification is sent to all clients that have subscribed to
this node.
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3.4.2 Architecture

XMPP relies on an architecture with a big number of clients and smaller number of servers. Each
client communicates with a specific server after, optionally, registering and authenticating on it and
servers are federated with each other in order to receive messages and forward them to their
connected clients. Each client has a unique address in the form of a JabberID, following the format
of name@host where the host is the server they receive messages from. Clients communicate with
each other using those JIDs as addresses and relying on their servers to forward their messages to
the recipient's server which will then pass it on to the target client.

The general flow of messages is the following.

XMPP
Message Client
XMPP -
Message
Presence Message Server
Presence
Message
XMPP :
Server Presence Message "\, 4 XMPP
Client

Figure 5. XMPP architecture

A client that wishes to come online first opens a connection to their own server by opening a
stream. This step includes a stream negotiation where the server imposes certain conditions on the
client such as authentication via SASL or encryption through TLS and available stream features are
presented. After the connection has been established the client and server can keep sending
messages to the open stream until one of them closes it to disconnect. The communication
between servers is similar but usually imposing different conditions such as using different
authentication mechanisms.

The open stream between two endpoints is in the format of an XML document that is
incrementally built up by the messages sent by the two sides. Every message is in the form of an
XML stanza. XML stanzas are in the format of an XML element with a number of attributes and,
optionally, a body. The core protocol defines three types of stanzas: <message/>, <presence/>, and
<ig/> while extensions can define the specifics of elements used within them.

The <message/> stanza provides a way to push information and is the main way of sending a
message to another entity. The <presence/> stanza functions as a broadcast mechanism that
sends information to any entities that have subscribed to the entity broadcasting. The <ig/> or
info/query stanza provides a way of making a request and receiving a response similar to other
request-response protocols.

Some attributes are sent with each stanza. The five common attributes defined by the main
protocol are the following:
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¢ to: identifying the recipient of a message by their JID.
¢ from: identifying the sender of a message by their JID.

e id: set by the originating entity for tracking responses or error messages related to a
stanza.

e type: specifying the purpose or context, depending on the type of stanza.

e xml:lang: specifying the language of the stanza if it contains data that will be presented in
a human-readable format.

In the case of an error, the receiving entity sends back the same kind of stanza using
type="error" with an <error/> child element specifying the error that occurred.

In an loT environment <iq/> stanzas can be mapped to requests — responses while
<presence/> stanzas can be used as a publish/subscribe mechanism.

3.5 Comparison

3.5.1 Criteria Definition

We will proceed to compare the above protocols based on some criteria that are important when
building an application. These are divided in the operational scope, ie related to the business side
of the application, and the technical scope, related to technical details of the protocol and the
application that uses it.

On the operational side the examined criteria are the scope of application, extensibility, and
adoption. The scope of application defines the usual and intended uses of the protocol and for
which type of application it will be best suited. The extensibility of the protocol describes any
existing extensions or the ease with which it can be extended so it can be applied to further use
cases. Finally, the adoption it has globally, including current popularity, support and integrations
shows how easily it can be set up and combined with other tools and services.

On the technical side, the selected criteria will be performance, reliability, efficiency, and
security. Performance affects the speed by which messages are transmitted. Reliability includes the
availability of options for reliable transmission of messages, so no messages are lost if that is
required by the application. Efficiency includes the consumption of memory, CPU and power as well
as the protocol's behavior in constrained loT environments. Finally, security, includes any
encryption options and algorithms provided by the protocol as well as possible built-in mechanisms
for authentication and authorization.

3.5.2 Operational Scope

Looking at the scope of application of the examined protocols it's clear that MQTT and CoAP are
more geared towards loT use cases as that is their primary design with a bigger focus on low-power
devices as clients. MQTT is better suited for an environment where multiple devices-sensors need
to communicate with a single server while CoAP may be better when dealing with many small
devices with different roles. HTTP, on the other hand, is designed for basic client-server
applications without a focus on 10T or constrained devices and XMPP is geared towards messaging
applications where it is assumed that clients belong to different end users.

Examining extensibility, MQTT doesn't appear to provide any options. CoAP has some defined
extensions beside the base protocol which provide significant help in loT environments. HTTP
includes many features and is generic enough that applications can build their own mechanisms on
top of it, which may, however, require more engineering effort. Finally XMPP is designed with
extensibility in mind, with many extensions already developed and covering different use cases and
the option for new applications to roll out their own if not covered by the existing.
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Finally, when looking at global adoption, MQTT seems widely supported and used in multiple
technologies, with a good selection of software and libraries for it. A small limiting factor could be
that not all tools support version 5, but it is steadily getting more adoption. CoAP has wide support
through multiple open source libraries both for constrained devices and larger servers. HTTP/1.1
and HTTP/2 are widely adopted and supported by most programming languages and tools. HTTP/3
however may not have as much support as adoption is slower. XMPP has wide support and
adoption by different applications but most of them have a focus on instant messaging, and not all
tools implement the same extensions so some research is important when selecting tools for

working with it.

MQTT CoAP HTTP XMPP
Scope of loT loT Generic Instant messaging
Application Client-server
Extensibility Only base Some defined Extra functionality Many extensions
protocol extensions can be builtontop | Option to roll out
of the protocol own
Adoption Wide adoption Wide support Wide adoption and | Wide adoption in
and support through libraries | support for HTTP/2 | instant messaging
Smaller support Small support for Support varies for
for version 5 HTTP/3 different
extensions

Table 6. Protocol comparison on operational scope

3.5.3 Technical Scope

On the performance side, according to their specifications and previous studies, MQTT and CoAP
are both pretty performant, even in environments with significant constraints, with messages flowing
fast between entities. CoAP should generally be more performant due to the use of UDP. In both
cases performance varies based on the quality of service selected which affects the number of
requests [2]. HTTP is not designed to be performant on constrained devices, however, HTTP/3 has
made significant improvements over HTTP/2. XMPP is also not designed for constrained devices
but its asynchronous nature or the use of relevant extensions can make it relatively performant.

For reliability MQTT provides different options of Quality of Service (QoS) that allow the user to
specify the level of reliability that they need with guarantees of message transmission at least or
exactly once. CoAP also allows the user to select whether communication will be reliable or not,
through the use of server acknowledgments and duplicate detection. HTTP relies on the reliability of
the underlying protocol, TCP in the case of HTTP/2 and QUIC in the case of HTTP/3, with QUIC
taking care of retransmitting lost packets and detecting duplicates on the stream level. The core of
XMPP doesn't provide any mechanisms of reliability itself but that can be added through
extensions. Specifically XEP-0198 [35] adds a stream management mechanism with
acknowledgments to XMPP.

For efficiency, MQTT and CoAP are both built to support constrained devices that may be low
in CPU and memory resources but are also designed to work under low bandwidth environments.
However, in the case of MQTT, a broker with higher consumption needs is required while in CoAP,
smaller 10T devices can operate without a central node. Consumption of network bandwidth may
also be greater in the case of MQTT due to the use of the TCP protocol and its overhead. HTTP/2
has improved on the efficiency of HTTP/1.1 with the use of frames and streams but is still fairly
heavy on resource and network usage due to the larger packages and underlying TCP connection.
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HTTP/3 improves on it with the use QUIC and its own, more efficient, streams. However, the
features of HTTP remain large and resource-heavy for lIoT environments [10]. XMPP has a larger
overhead due to the use of XML in XML stanzas. However this has been addressed by extensions
such as XEP-0322: Efficient XML Interchange (EXI) Format [36].

Examining security options, all protocols provide encryption, through either TLS or DTLS but
with differences in the implementation as well as in other security features. MQTT provides optional
TLS encryption along with built-in methods for authentication and authorization. The protocol itself
allows for different options but it's important to note differences between broker implementations as
not all methods are always supported. CoAP only provides optional encryption through DTLS
without any built-in mechanisms for authentication and authorization but also supports end-to-end
protection through OSCORE which can be combined with DTLS. HTTP provides encryption through
TLS. In the case of HTTP/2 it is optional and limited only to the newest algorithms while in the case
of HTTP/3 it is required and only allows use of the latest TLS 1.3. Both HTTP/2 and HTTP/3 provide
the authentication mechanisms of the HTTP specification, which make use of header fields such as
the Authorization field for use with Basic Authentication and JWTs as well as Cookies. XMPP also
uses optional TLS and provides multiple ways of authenticating. As it is designed for use with user
accounts, it makes use of SASL for authenticating clients to servers with several different options,
while servers are usually authenticated to each other using certificates. Extensions can also add

more security options such as end-to-end encryption for messages sent between clients.

MQTT CoAP HTTP XMPP
Performance Performant Performant even Not designed for Not designed for
even in in constrained constrained constrained
constrained environments environments environments
environments Depends on HTTP/3 has Better
Depends on quality of service improved performance can
quality of performance be achieved
service through
extensions
Reliability 3 quality of Option for reliable Underlying TCP Through
service levels messages and QUIC reliability extensions
Efficiency Clients Both clients and Resource-heavy Heavy but can be
designed for servers can run improved through
constrained on constrained extensions
devices devices
Broker may
require more
resources
Security Optional TLS Optional DTLS Optional TLS for Optional TLS
Multiple Optional end-to- HTTP/2, required SASL for client
authentication end protection TLS 1.3 for HTTP/3 | authentication or
and through OSCORE Multiple certificates for
authorization No exira authentication and server
mechanisms authentication authorization authentication
and authorization mechanisms End-to-end
mechanisms encryption
through extension

Table 7. Protocol comparison on technical scope
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4 Experimental Implementation

4.1 Infrastructure Configuration for Testing

To examine the above characteristics in practice, an experimental implementation has been made
featuring client — server connections for MQTT, CoAP, HTTP/2 and HTTP/3. For this purpose, a
testing environment has been set up where different scripts were implemented, acting as the clients
and servers for each protocol. For those scripts, Python 3.12 was used along with a collection of
open-source libraries providing the base functionality of each protocol. The implementation was
tested on machines running Linux where, for the simplest cases, a script simulating the server and
a script simulating the client were running on the same machine and communicating with each
other. For other cases, one or more scripts ran on two separate machines, connected through a
WiFi network, to simulate a more realistic environment.

A set of tests was performed for each protocol. As a starting point, the simple case of a single
request was tested, using a publish/subscribe architecture where possible, where a client requests
and/or subscribes to a resource on a server that returns the current time as a string. After the
simple case, further tests were performed, exploring the available features of the protocols and
measuring the transfer speed of connections under different scenarios.

4.1.1 MQTT

For MQTT a pub/sub architecture was used, using a broker and two clients — one acting as a
publisher and one as a subscriber. The two clients connect to the MQTT broker using MQTTv5. The
publisher posts a payload with an ISO timestamp to a specific topic (metrics/time) every 10
seconds. The client subscribes to this same topic and receives and prints the messages posted by
the publisher. The two clients and the broker are different entities on the same network and the
clients connect to the broker on port 1883 using its IP address.

The libraries used for the above implementation are:
e Paho MQTT for the implementation of publisher and subscriber
e Mosquitto Broker as an out-of-the box configurable broker

4.1.2 CoAP

For CoAP an intermediate server is not required, so the end providing the resource works as a
CoAP server with different clients requesting the resource. Both a request — response and a
pub/sub architecture were tested, with a script working as a CoAP server and two clients, one
requesting the current time with a GET request to the URI coap://coap-server/time, and another
subscribing to changes of the resource at the same URI using an observation. The server provides
a route that answers to normal GET requests with an ISO timestamp of the current time and also
pushes updates to observations on the same route at random intervals. The clients connect to the
server on port 5683 using its IP address.

For the above implementation the aiocoap library was used.

4.1.3 HTTP

For HTTP a server — client architecture was used with a server running and listening to a /time
route, and two clients, one working as a publisher and making a POST request to that route with the
time payload every 10 seconds and another making a GET request to the server to get the latest
posted time. The server supports both HTTP/2 and HTTP/3 and separate clients were created for
the two HTTP versions. The clients connect to the server on port 8000 using its IP address.
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The libraries used for the above implementation are:
e httpx for the main client HTTP functionality
e aioquic for HTTP/3 support on the clients
e Fastapi for the server implementation
e Hypercorn as a web server configured with HTTP/3 support
For HTTP/3, the client examples of aioquic were used as a baseline.

4.2 Encryption and Authentication

There are multiple attacks that can be applied to loT applications and their networks, many of which
are related to a lack of encryption and proper authentication and authorization [11]. The above
implementations are simple examples that create connections without taking into account other
nodes in the network. As such, any actors in the network are free to read their packets and possibly
modify them. At the same time, within the scope of the application, all clients have the same rights
to send and receive packages without authenticating with the server. These points can compromise
the integrity and confidentiality of the application. To combat this, the connections should be
encrypted and some authentication mechanism applied where the protocol supports it.

4.2.1 MQTT

MQTT supports encryption through TLS which can be enabled on the broker by specifying a
certificate and key file. By default the mosquitto broker selects TLS 1.3 if it's supported by the host
machine and the clients, with default ciphers TLS_ AES 256 GCM_SHA384,
TLS_CHACHA20_POLY1305_SHA256 and TLS_AES_128_GCM_SHA256. This is configurable
through its configuration file. A dhparamfile can also be provided for the DH exchange parameters
in the ciphers that utilize them. Pre-shared-key based TLS support is also provided.

To test the encrypted behavior, a Certificate Authority (CA) was created and an X.509
certificate for the server was created and signed, along with a 4096-bit RSA key. The broker's
listener was also changed to the mqtts port 8883. The default configuration of TLS 1.3 was used.
On the client side, the new port was also specified and the CA's certificate added to the trusted CAs
list. MQTT traffic is now encrypted and using the mqtts protocol with encrypted TLS packets
appearing now on the network.

50.0001195.. 127.6.0.1 127.0.6.1 TCP 66 59417 . 1883 [ACK] Seq=1 ACk=1 Win=33280 Len=0 TSval=3761165398 TSecr=3761165398

60.0001880.. 127.0.0.1 127.0.0.1 MQTT 98 Connect Command

7 0.0001993.. 127.0.0.1 127.0.0.1 TCP 66 1883 - 59417 [ACK] Seq=1 Ack=33 Win=33280 Len=0 TSval=3761165398 TSecr=3761165398
80.0002376.. 127.0.0.1 127.0.0.1 MQTT 77 Connect Ack

9 0.0002514.. 127.0.0.1 127.0.0.1 TCP 66 59417 — 1883 [ACK] Seq=33 Ack=12 Win=33280 Len=0 TSval=3761165398 TSecr=3761165398
16 0.0005800.. 127.0.0.1 127.6.0.1 MQTT 86 Subscribe Request (id=1) [metrics/time]

11 0.0006459.. 127.0.0.1 127.0.0.1 MQTT 72 subscribe Ack (id=1

12 0.0407585.. 127.0.0.1 127.0.0.1 TCP 66 59417 - 1883 [ACK] Seq=53 Ack=18 Win=33280 Len=0 TSval=3761165439 TSecr=3761165398

Figure 6. MQTT packets

3 0.0000406.. 127.0.0.1 127.0.0.1 TCP 66 35453 . 8883 [ACK] Seq=1 Ack=1 Win=33280 Len=0 TSval=3761284631 TSecr=3761284631
4 0.0002519.. 127.0.0.1 127.0.06.1 TLSv1.3 583 Client Hello
5 0.0002637.. 127.0.0.1 127.0.0.1 TCP 66 8883 . 35453 [ACK] Seg=1 Ack=518 Win=33024 Len=0 TSval=3761284631 TSecr=3761284631
6 0.0050260.. 127.0.0.1 127.0.0.1 TLSv1.3 2183 Server Hello, Change Cipher Spec, Application Data, Application Data, Application Data, Application Data
7 ©.0050362.. 127.0.0.1 127.0.0.1 TCP 66 35453 . 8883 [ACK] Seq=518 Ack=2118 Win=33280 Len=0 TSval=3761284636 TSecr=3761284636
8 0.0056055.. 127.6.0.1 127.0.0.1 TLSv1.3 146 Change Cipher Spec, Application Data
9 0.0056840.. 127.0.0.1 127.0.0.1 TLSv1.3 337 Application Data
10 0.0057012.. 127.0.0.1 127.0.0.1 TLSv1.3 120 Application Data
11 6.0057174.. 127.0.0.1 127.0.0.1 TLSv1.3 337 Application Data
12 0.0457756.. 127.0.0.1 127.0.0.1 TCP 66 35453 — 8883 [ACK] Seq=652 Ack=2660 Win=33280 Len=0 TSval=3761284677 TSecr=3761284636
13 ©.0458024.. 127.0.0.1 127.0.0.1 TLSv1.3 99 Application Data
Figure 7. MQTTS packets

For authorization purposes, the mosquitto broker supports the use of an access control list
(ACL), specifying which clients have read or write access to which topics, by username.

user publisher

topic write metrics/time
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user subscriber
topic read metrics/time

To identify the clients, two authentication mechanisms are supported, username — password
authentication and certificate authentication, implemented on the broker side. For the password
authentication, an encrypted password file is created, which is checked by the broker every time a
client connects, using MQTT's username and password fields. For the certificate authentication, a
TLS certificate — key pair is created for each client and signed by a CA which is added to the
broker's trusted CA list. A certificate revocation list can also be provided. With a setting on the
broker, the CN value of the certificate is used as a username to identify the client for authorization
purposes. It is also possible to block the connection of any client who does not provide an identity
through a certificate. Certificate client authentication and ACL were used in conjunction in the
experiments.

mgttc.t t(ca s="../CAfca.crt", certfile="keys/subscriber.crt", le="keys/subscri

mqttc.connect("mqtt-broker", 8883)

Figure 8. MQTT secure connection to the broker

4.2.2 CoAP

CoAP provides two mechanisms for the assurance of integrity and confidentiality. Through
OSCORE, end-to-end protection can be applied between nodes when intermediary proxies are
used, so that message contents as well as any internal options are not exposed to the proxy. At the
same time, DTLS can be used on the connection for encrypting the messages on the network. Use
of DTLS and OSCORE can be combined when use of proxies is required. A built-in authorization
mechanism for does not exist in CoAP but can be implemented on a higher level in the application.

In the aiocoap library, DTLS can be enabled on the server through the
AIOCOAP_DTLSSERVER_ENABLED environment variable. Current support is limited to the use of
pre-shared keys (PSKs) between the server and the client and different clients can be configured
with different keys and ids. The PSKs can be loaded from json files and added to the configuration
of both servers and clients and clients can now communicate with servers through the coaps
protocol for an encrypted connection. By default DTLS 1.2 is used and the PSK is defined by the
user in ascii format.

1 6.0000000. it
2 0.0012844.. ::1

CoAP 84 CON, MID:40321, GET, TKN:ci 76, coap://localhost/time
CoAp 96 ACK, MID:40321, 2.05 Content, TKN:cl 76, coap://localhost/time

a
i
32.0041778. ::1 ii1 CoAP 97 CON, MID:17518, 2.05 Content, TKN:c1 76, coap://localhost/time
42.0047299.. ::1 1 CoAP 66 ACK, MID:17518, Empty Message
5 3.0060000.. ::1 $£l CoAP 97 CON, MID:17519, 2.05 Content, TKN:c1 76, coap://localhost/time
6 3.0065605.. ::1 24 CoAP 66 ACK, MID:17519, Empty Message
7 7.0098885, 1 1 CoAP 97 CON, MID:17520, 2.05 Content, TKN:cl 76, coap://localhost/time
8 7.0103322.. ::1 i1 CoAP 66 ACK, MID:17520, Empty Message
Figure 9. COAP packets
10.0000000.. 127.0.0.1 127.0.0.1 DTLSV1.2 109 Client Hello
2 0.0007211.. 127.0.0.1 127.06.0.1 DTLSvi.2 86 Hello Verify Request
3 0.0010388.. 127.0.0.1 127.0.0.1 DTLSv1.2 125 Client Hello
40.0013417.. 127.0.0.1 127.0.0.1 DTLSv1.2 105 Server Hello
5 0.0013989.. 127.0.0.1 127.6.06.1 DTLSv1.2 67 Server Hello Done
6 0.0017463.. 127.0.0.1 127.0.0.1 DTLSv1.2 75 Client Key Exchange
7 0.0019006.. 127.0.0.1 127.0.0.1 DTLSv1.2 56 Change Cipher Spec
8 0.0019597.. 127.0.0.1 127.6.6.1 DTLSv1.2 95 Encrypted Handshake Message
9 0.0024363.. 127.0.0.1 127.0.0.1 DTLSV1.2 56 Change Cipher Spec
10 0.0025085.. 127.0.0.1 127.0.0.1 DTLSv1.2 95 Encrypted Handshake Message
11 6.0029513.. 127.6.0.1 127.0.0.1 DTLSV1.2 83 Application Data
12 ©.0051345.. 127.0.0.1 127.0.0.1 DTLSV1.2 105 Application Data

Figure 10. COAPS packets
OSCORE can be similarly enabled using the module OscoreSiteWrapper and setting the client
id and a secret on both client and server. Each client can have its own id and use a different secret
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string for the encryption. The packets now appear as OSCORE packets and only expose routing-
related packets and options required for proxying. For the time being, use of OSCORE and DTLS at
the same time is not possible through the aiocoap library.

1 0.0000000.. 127.0.0.1 127.0.0.1 OSCORE 69 CON, MID:20007, FETCH, TKN:fe 75, /time
2 0.0109200.. 127.0.0.1 127.0.0.1 OSCORE 90 ACK, MID:20007, 2.05 Content, TKN:fe 75
3 4.0221219.. 127.0.0.1 127.0.0.1 0OSCORE 93 CON, MID:43046, 2.05 Content, TKN:fe 75
4 4.0229410.. 127.0.0.1 127.0.0.1 CoAP 46 ACK, MID:43046, Empty Message
9 9.0232716.. 127.0.0.1 127.0.0.1 0SCORE 93 CON, MID:43047, 2.05 Content, TKN:fe 75
10 9.0239642.. 127.0.0.1 127.0.0.1 CoAP 46 ACK, MID:43047, Empty Message
11 18.632292.. 127.0.0.1 127.0.0.1 OSCORE 93 CON, MID:43048, 2.05 Content, TKN:fe 75
12 18.032952.. 127.0.0.1 127.0.0.1 CoAP 46 ACK, MID:43048, Empty Message
13 23.037962.. 127.0.0.1 127.0.0.1 OSCORE 93 CON, MID:43049, 2.05 Content, TKN:fe 75
Figure 11. COAP with OSCORE packets

An authorization mechanism was not used in the experiments as one is not provided by the
protocol but it could be implemented by each application using the client identity set in the DTLS
configuration as separate PSKs can be used for each client.

server aiocoap.Context.create_ser (t (bind-("coap-server",
server.server_credentials.load_from_dict({

":clientl": { "dtls": clientl_credentials },
":client2": { "dtls": client2_credentials }

})

Figure 12. COAP server DTLS configuration

4.2.3 HTTP

HTTP provides an encrypted connection through https, using TLS. Hypercorn enables https when
providing a certificate and key for the server. Those were created and signed with a local CA, as
before, which was then added to the clients' trusted CA list. The clients also use the https protocol
when contacting the server. For HTTP/3, the use of TLS is required. The same certificate and key
are needed and the QUIC protocol is bound to a port with the option of —quic-bind on the server.

For HTTP/2 TLS 1.3 is selected by default if the clients support it, using the cipher
TLS_AES 256 _GCM_SHA384, while more insecure ciphers and versions of TLS are also
supported if required. HTTP/3 requires the use of at least TLS 1.3 as it is part of the QUIC protocol
so enabling more insecure connections is not possible.

3 0.0000411.. 127.0.0.1 127.0.0.1 TCP 66 38744 . 8000 [ACK] Seq=1 Ack=1 Win=33280 Len=@ TSval=3721235627 TSecr=3721235627
4 0.0007106.. 127.0.0.1 127.0.0.1 TCP 148 38744 . 8000 [PSH, ACK] Seq=1 Ack=1 Win=33280 Len=82 TSval=3721235628 TSecr=3721235627
5 0.0007237.. 127.0.0.1 127.0.0.1 TCP 66 8000 - 38744 [ACK] Seq=1 Ack=83 Win=33280 Len=0 TSval=3721235628 TSecr=3721235628
6 0.0012509.. 127.0.0.1 127.0.0.1 TCP 117 8000 . 38744 [PSH, ACK] Seg=1 Ack=83 Win=33280 Len=51 TSval=3721235628 TSecr=3721235628
7 0.0012627.. 127.0.0.1 127.0.0.1 TCP 66 38744 . 8000 [ACK] Seq=83 Ack=52 Win=33280 Len=0 TSval=3721235628 TSecr=3721235628
8 0.0014830.. 127.0.0.1 127.6.6.1 TCP 75 8000 - 38744 [PSH, ACK] Seq=52 Ack=83 Win=33280 Len=9 TSval=3721235629 TSecr=3721235628
9 0.0014919.. 127.6.0.1 127.6.0.1 TCP 66 38744 . 8000 [ACK] Seq=83 Ack=61 Win=33280 Len=6 TSval=3721235629 TSecr=3721235629
10 0.0021420.. 127.0.0.1 127.0.8.1 TCP 149 38744 . 8000 [PSH, ACK] Seq=83 Ack=61 Win=33280 Len=83 TSval=3721235629 TSecr=3721235629
11 0.0022646.. 127.6.6.1 127.06.6.1 TCP 113 38744 - 80060 [PSH, ACK] Seq=166 Ack=61 Win=33280 Len=47 TSval=3721235629 TSecr=3721235629
Figure 13. HTTP/2 packets
3 0.0000405.. 127.0.0.1 127.0.0.1 TCP 66 55090 . 8000 [ACK] Seq=1 Ack=1 Win=33280 Len=@ TSval=3721114249 TSecr=3721114249
4 0.0010984.. 127.0.0.1 127.0.0.1 TLSv1.3 583 Client Hello
5 0.0011123.. 127.0.0.1 127.0.0.1 TCP 66 8000 —~ 55090 [ACK] Seq=1 Ack=518 Win=33024 Len=0 TSval=37211142560 TSecr=37211142560
6 0.0057807.. 127.0.0.1 127.0.0.1 TLSv1.3 3638 Server Hello, Application Data, Application Data, Application Data, Application Data
7 ©.0057993.. 127.0.0.1 127.0.0.1 TCP 66 55090 . 8000 [ACK] Seq=518 Ack=3573 Win=332860 Len=0 TSval=3721114255 TSecr=3721114254
8 0.0065336.. 127.0.0.1 127.6.0.1 TLSv1.3 146 Change Cipher Spec, Application Data
9 0.0067008.. 127.6.0.1 127.0.0.1 TLSv1.3 576 Application Data, Application Data
10 0.0069992.. 127.0.0.1 127.0.0.1 TLSv1.3 170 Application Data
11 0.0670128.. 127.6.6.1 127.0.0.1 TLSv1.3 139 Application Data
Figure 14. HTTPS packets

1 0.0000000.. 127.6.0.1 127.0.0.1 QUIC 1242 Initial, DCID=27048b15bf2eadlb, SCID=a6ab926602b3fe6c, PKN: ©, CRYPTO, PADDING
2 0.0081277.. 127.0.0.1 127.0.0.1 QUIC 1242 Handshake, DCID=a6ab926602b3fe6c, SCID=d232d73f2b6774f9

3 0.0081601.. 127.0.0.1 127.0.0.1 QuUIC 1166 Handshake, DCID=a6ab926602b3fe6c, SCID=d232d73f2b6774f9

4 0.0081707.. 127.6.0.1 127.0.0.1 QUIC 95 Protected Payload (KP®), DCID=a6ab926602b3fe6c

5 0.0093067.. 127.0.0.1 127.0.0.1 QUIC 141 Handshake, DCID=d232d73f2b6774f9, SCID-a6ab926662b3fe6c

6 0.0163816.. 127.0.0.1 127.0.0.1 QUIC 399 Protected Payload (KP@), DCID=d232d73f2b6774f9

7 0.0166306.. 127.6.0.1 127.0.08.1 QUIC 77 Protected Payload (KP®), DCID=d232d73f2b6774f9

8 0.0170442.. 127.0.0.1 127.0.08.1 QUIC 274 Protected Payload (KP©), DCID=a6ab926602b3feéc

9 0.0171447.. 127.0.0.1 127.0.0.1 QUIC 177 Protected Payload (KP@), DCID=d232d73f2b6774f9

Figure 15. HTTP/3 packets
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For authentication and authorization, multiple mechanisms are supported by using HTTP
headers. In the case of Basic Authentication, a username and password are passed to the server
through the Authorization header, or in the case of JWTs, a token is passed through the same
header. Other mechanisms such as OAuth or session ids stored in Cookies are also available. In
any case, when using authorization, the connection should be encrypted, so credentials are not
exposed to the rest of the network. For these experiments Basic Authentication was used.

f = open("keys/credentials.json")

credentials = json.load(f)

auth (credentials["username"], credentials["password"])
f.close()

response client.post('https://http-server:8000/time’', json-payload, auth=auth)

Figure 16. HTTP connection with credentials

4.3 Connection Assessment

Availability is another important aspect of an application. After creating and testing the basic
connections, we can assess them on the amount of data they can transport, number of messages
and their speed, and see if there is any loss when dealing with higher volumes. We will also enable
the different quality of service options on the protocols that provide that functionality. Due to
differences in architecture, MQTT and CoAP will be compared, using the pub/sub architecture, with
a publisher/server sending multiple messages with big payloads at different speeds, and a
subscriber/client calculating the transfer speed and detecting possible data losses, while HTTP wiill
be tested with GET requests initiated by the client and big responses returned by the server.

4.3.1 MQTT

For testing the connection, a publisher script was created, which sends multiple payloads of a
specified size to a topic, at an interval. A subscriber script listens to the same topic, validating the
payload size of each packet to detect possible losses and calculating the transfer speed. The
payload size, number of packets and interval are configurable, and different combinations were
tested. When no interval is specified, the script tries to push packets at the maximum possible
speed, which is then calculated on the subscriber side.

For minimizing data loss, MQTT provides three quality of service levels. Level 0 is a simple
transmission, level 1 guarantees the packet is received at least once, and level 2 guarantees the
packet is received exactly once without duplicates. Higher levels use more packets for the
transmission of acknowledgments and retransmission of messages in cases of packet loss. To
minimize data loss and ensure correct tracking of received messages, quality of service 2 was used
for the main tests.

The selected security configuration from the previous section was also applied. That is, the
following tests were conducted using the default TLS attributes provided by the broker (TLS 1.3,
cipher TLS_AES_256_GCM_SHA384) with certificate authentication for both the broker and clients,
using 4096-bit RSA keys.

Testing with different transfer speeds no data loss was detected at speeds of 1, 100 and 1000
messages/second. For smaller payloads of 1 to 1000 bytes, there is no data loss or big loss in
transfer speed measured by the client. However, at higher frequencies of sending about 100
messages/second the requested speed cannot be maintained for larger payloads.
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Payload Size Speed

1 byte 94.683 messages/second

10 bytes 94.733 messages/second
100 bytes 94.942 messages/second
1000 bytes 95.215 messages/second
10000 bytes 93.579 messages/second
100000 bytes 84.330 messages/second
1000000 bytes 47.525 messages/second
10000000 bytes 8.357 messages/second

Table 8. MQTT 100 messages/second test per payload size

During the transfer, the recorded transfer speed may change. Here, a higher speed is recorded
at the beginning of the transfer for smaller payloads that then decreases and stays mostly stable,
while for larger payloads, there is a smaller speed from the start that then fluctuates a lot.
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Figure 17. MQTT speeds in time for 100 messages/second per payload size

For even larger payloads some data loss is also observed, with the maximum safe payload at
around 25000000 bytes, and very low transfer speeds.
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When not specifying a transfer speed, the publisher will try to send messages as fast as
possible and the subscriber will receive them as soon as they pass through the broker. This defines
the maximum transfer speed and is affected by the payload size. Higher quality of service also
means lower transfer speeds. Specifically for QoS 2 (highest level), the below speeds are recorded.

Payload Size Speed
1 byte 7283.225 messages/second
10 bytes 7592.324 messages/second
100 bytes 7193.931 messages/second
1000 bytes 6878.299 messages/second

10000 bytes

4719.285 messages/second

100000 bytes

2354.147 messages/second

1000000 bytes

67.170 messages/second

10000000 bytes

3.237 messages/second

Table 9. MQTT max transfer speeds per payload size

At smaller payload sizes transfer speed is not greatly affected but with larger payloads, the
speed decreases significantly. Some big drops may also be experienced during the transfer, even
in smaller payloads, possibly due to lost packages that get retransmitted. The speed also
decreases at the end of the transfer which may depend on the method of measuring it. For
payloads over 5000000 bytes per message, data loss is observed.
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Figure 18. MQTT max speeds in time per payload size

Using a small payload size (10 bytes), increasing the quality of service level results in a
decrease in speed as more packets are now exchanged during the transfer of one message.

QoS Speed
0 13419.334 messages/second
1 8608.695 messages/second
2 7176.055 messages/second

Table 10. MQTT max transfer speeds per Quality of Service level (payload size 10)

The observed speed for the duration of the transfer shows a lot of variation in all cases, with
QoS 2 being generally more stable but slower due to the increase in packets for each message,
except for a big decrease at the end. Higher quality of service also results in less frequent data loss.
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Speed

When multiple clients subscribe to the same topic, all of them receive the messages published
on that topic. And when multiple clients publish to the same topic, subscribers of that topic receive
the messages from all publishers. The number of clients running at the same time affects the speed
with which messages are transmitted to subscribers. Tests bellow were conducted on the same
machine. When clients run on separate machines, the speed decrease is less dramatic but still

noticeable.

Number of subscribers

Speed

1

7621.712 messages/second

2 6796.350 messages/second
5 3250.519 messages/second
10 1463.447 messages/second

Table 11. MQTT max transfer speeds per number of subscribers

Number of publishers Speed Speed per client
1 7376.656 messages/second 7376.656 messages/second
2 7675.428 messages/second 3837.714 messages/second
5 11619.026 messages/second 2323.805 messages/second
10 12142.995 messages/second 1214.300 messages/second

Table 12. MQTT max transfer speeds per number of publishers

Number of
publishers/subscribers

Speed

Speed per client

1

7250.901 messages/second

7250.901 messages/second

2 7872.237 messages/second | 3936.119 messages/second
5 4870.221 messages/second 974.044 messages/second
10 2121.840 messages/second 212.184 messages/second

Table 13. MQTT max transfer speeds per number of publishers and subscribers

Examining the transfer speed during the transfer in one of the subscribers, the plots are similar
to the tests with a single subscriber, with a drop in speed at the end of the transfer, but as the
number of subscribers increases the general transfer speed decreases, both due to the increase in
process power required in the host machine and due to the extra load on the broker.
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Figure 20. MQTT max speeds in time per number of clients (10 bytes payload)

When the subscriber, publisher and broker need to communicate through a network that may
be less stable, the speed can be affected significantly. Placing the subscriber, publisher or both on
a network where they communicate with the broker through Wi-Fi greatly reduces the max transfer

speed.
Payload Size Speed
1 byte 306.546 messages/second
10 bytes 307.129 messages/second
100 bytes 304.222 messages/second
1000 bytes 249.009 messages/second

10000 bytes

227.382 messages/second

100000 bytes

180.568 messages/second

1000000 bytes

27.315 messages/second

10000000 bytes

14.185 messages/second

Table 14. MQTT max transfer speeds per payload size on wifi

The transfer starts at a relatively high speed which is decreased later. Some spikes in speed
may also be observed, possibly due to the medium being less reliable and causing retransmissions,
as quality of service 2 was used, to minimize data loss.
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Figure 21. MQTT max speeds in time per payload size on wifi

When messages are sent at a steady rate of 100 messages/second, that speed is maintained
in the final output, but with big drops for larger payloads.

Payload Size Speed

1 byte 98.474 messages/second

10 bytes 98.550 messages/second
100 bytes 98.741 messages/second
1000 bytes 100.267 messages/second
10000 bytes 98.031 messages/second
100000 bytes 90.756 messages/second
1000000 bytes 28.173 messages/second

10000000 bytes 2.580 messages/second

Table 15. MQTT 100 messages/second test per payload size on wifi

The plots of observed speed for the duration of the transfer are similar to before, with a higher
speed at the beginning but with less variation during the transfer. The results on WiFi are generally
not too different to the results of the 100 messages/second test on a single machine, showing that
the unreliable connection may not be as apparent in slower speeds and acts more as a bottleneck
for the observed transfer speed.
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Figure 22. MQTT speeds in time for 100 messages/second per payload size on wifi

4.3.2 CoAP

Similar to MQTT, a server script was used that transmits multiple messages of a specified payload
size at intervals when a client subscribes to a resource. The client then validates the sizes of
received payloads and calculates the transfer speed. The maximum transfer speed, with no interval,
was also tested.

When assessing availability, CoAP offers two types of messages, confirmable (CON) and non-
confirmable (NON). To minimize data loss, confirmable messages were used in tests, which verify
that a message was received by sending back a confirmation for each message and, if not
received, retransmits it.

Again the security configuration of the previous section was used in all tests, with the default
DTLS configuration provided by the library, using PSKs for securing the connection.

During testing with different delays between messages, no data loss was observed. Speeds of
1, 100 and 1000 messages/second were tested. Likewise, an increase in payload size did not
impact the measured transfer speed, with payloads of 1, 10, and 1000 bytes. However the DTLS
implementation of the library seems to have issues with larger payloads and transmissions with a
size over 1300 bytes are rejected and retransmitted without reaching the client. Without using
DTLS, a similar problem is observed for payload sizes over 4087 bytes. At a higher payload size of
65498 bytes, a socket error is triggered on the server side for the message being too long. This
could be related to the implementation of Block-Wise Transfers (RFC 7959 [22]).
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When sending messages at a speed of 100 messages/second, the requested speed cannot be
maintained but the final recorded speed does not seem correlated to the payload size.

Payload Size Speed
1 byte 85.952 messages/second
10 bytes 85.664 messages/second
100 bytes 85.924 messages/second
1000 bytes 87.440 messages/second

Table 16. CoOAP 100 messages/second test per payload size

In all cases, the transfer starts fast and then the speed decreases but doesn't fluctuate too
much, possibly due to the lower rate at which messages are sent, which doesn't reach any limits of
the protocol. As CoAP is stateless, there is probably a connection delay on each message that is
responsible for the final ~85 messages/second transfer speed.
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Figure 23. CoAP speeds in time for 100 messages/second per payload size
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When not specifying a transfer speed, the server will try to send messages as fast as possible.
This defines the maximum transfer speed and is affected by the payload size. Specifically, for the
tested sizes, while using DTLS, the below transfer speeds are observed.

Payload Size Speed
1 byte 1151.144 messages/second
10 bytes 1163.623 messages/second
100 bytes 1156.274 messages/second
1000 bytes 1109.002 messages/second

Table 17. CoAP max transfer speeds per payload size

Again the speed is not affected much by the payload size. However, now it starts slower and
increases with time, varying more for the duration of the transfer, as it is not limited by the rate it is

pushed but reaches the limits of the protocol.
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Figure 24. CoAP max speeds in time per payload size

Speed

Time

When multiple clients connect to the same server, updates to resources that multiple clients
observe are transmitted to all of them. Resources on the server are shared between them and the
maximum speed decreases as the number of clients increases. Tests with multiple clients on the
same and separate machines show a similar decrease in speed, showing the main limiting factor

being the server.
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Number of clients

Speed

1 1192.428 messages/second
2 857.847 messages/second
5 509.915 messages/second
10 316.340 messages/second

Table 18. CoAP max transfer speeds per number of clients (10 bytes payload)

Examining the changes in transfer speed during time in one of the clients, there are large
increases in speed at specific points in time. This is possibly due to the transfer finishing for other
clients and more resources getting allocated for the current client.
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Figure 25. COAP max speeds in time per number of clients (10 bytes payload)
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When server and client are running on different machines connected through a Wi-Fi network,

the max transfer speed is decreased significantly but increasing the payload has no effect.

Payload Size Speed
1 byte 93.781 messages/second
10 bytes 83.221 messages/second
100 bytes 85.309 messages/second
1000 bytes 82.720 messages/second

Table 19. CoAP max transfer speeds per payload size on wifi

Transfer speed starts high and then decreases, with more fluctuation than before, which makes

sense given the unreliable nature of the connection.
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Figure 26. COAP max speeds in time per payload size on wifi
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While sending messages at a rate of 100 messages/second, however, a steady pace can be
kept regardless of payload size, showing that a WiFi connection may offer a more reliable speed for
connections with limited sending rates.

Payload Size Speed
1 byte 93.524 messages/second
10 bytes 93.587 messages/second
100 bytes 93.352 messages/second
1000 bytes 93.542 messages/second

Table 20. CoAP 100 messages/second test per payload size on wifi

Here too, the transfer starts at a relatively higher speed and then varies a lot throughout the
transfer, similarly to the previous non-limited case.
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Figure 27. CoAP speeds in time for 100 messages/second per payload size on wifi

4.3.3 HTTP

Since HTTP operates on a request — response model, tests were conducted in a different way to
the previous protocols. A client script was created which sends a number of requests to a server
that then replies with a payload of a specified size. The transfer speed is calculated on the client
based on the rate of received responses and the size of received data is also validated.
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The security configuration used for all tests is the same as that of the previous section. HTTP/2
uses TLS 1.3 with cipher TLS_AES 256 GCM_SHA384 and Basic Authentication for the clients.
HTTP/3 uses the same encryption algorithm through QUIC with Basic Authentication again for the
clients.

Two methods can be used when sending requests. The HTTP client can send the requests
sequentially, waiting for a response before sending the next request, or send all requests in parallel.
Both approaches were tested to calculate the maximum transfer speeds.

HTTP/2 and HTTP/3 were tested separately and presented differences in calculated times.
Both are slower than the other protocols when executing requests sequentially, with HTTP/3 being
considerably faster, due to using UDP which skips the overhead of the TCP handshake. No data
loss was observed even with payloads of 50000000 bytes but the speed is greatly decreased to
less than 1 message/second.

Payload Size HTTP/2 HTTP/3
1 byte 18.810 messages/second 429.113 messages/second
10 bytes 18.806 messages/second 443.050 messages/second
100 bytes 19.017 messages/second 412.914 messages/second
1000 bytes 18.735 messages/second 441.086 messages/second

10000 bytes

18.789 messages/second

262.795 messages/second

100000 bytes

19.879 messages/second

57.465 messages/second

1000000 bytes

15.854 messages/second

5.796 messages/second

10000000 bytes

4.083 messages/second

0.348 messages/second

Table 21. HTTP max transfer speeds per payload size

Throughout the transfer HTTP/2 maintains a relatively stable speed while HTTP/3 shows
multiple spikes, possibly due to its use of UDP as an underlying protocol. HTTP/3 generally remains
faster than HTTP/2 but its speed decreases a lot more as the payload size increases until it
becomes slower than HTTP/2 at around 500000 bytes of payload.
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Figure 28. HTTP max speeds in time per payload size (HTTP/2 green, HTTP/3 blue)

Since the transfer speed is already low, no tests were conducted at a frequency of 100
messages/second for HTTP/2 as it cannot be reached. HTTP/3 can maintain a speed of around 81
messages/second for smaller payloads which then decreases a lot as the payload increases.

Payload Size HTTP/3
1 byte 81.052 messages/second
10 bytes 81.921 messages/second
100 bytes 81.687 messages/second
1000 bytes 81.891 messages/second

10000 bytes

45.982 messages/second

100000 bytes

45.736 messages/second

1000000 bytes

5.011 messages/second

10000000 bytes

0.314 messages/second

Table 22. HTTP/3 100 messages/second test per payload size

Again there are big drops in speed, especially towards the end of the transfer, proving HTTP/3
as not particularly stable when it comes to transfer speed.
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Figure 29. HTTP/3 speeds in time for 100 messages/second per payload size

When executing requests in parallel, the transfer speed is much higher for both HTTP/2 and
HTTP/3 as all messages are sent at the same time, opening different connections with the server.
However, the size of data that can be processed in parallel is limited so increases in payload size
decrease the speed. HTTP/2 in this case is faster, possibly due to the server holding less
information for each connection. The amount of messages that can be sent in parallel is also limited
in HTTP/2 and, depending on the payload size, connections may be dropped after 100-1000
messages. HTTP/3 does not experience errors or drops but connections are much slower.

Payload Size HTTP/2 HTTP/3
1 byte 6022.219 messages/second 2993.113 messages/second
10 bytes 4514.652 messages/second 3609.967 messages/second
100 bytes 5119.543 messages/second 2820.474 messages/second
1000 bytes 5458.627 messages/second 1344.232 messages/second
10000 bytes 5262.394 messages/second 133.014 messages/second
100000 bytes 3658.901 messages/second 37.544 messages/second
1000000 bytes 703.013 messages/second 5.284 messages/second
10000000 bytes - 0.236 messages/second

Table 23. HTTP max transfer speeds per payload size with parallel requests
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When sending requests in parallel, batches of requests return at the same time, causing spikes
to appear in the measurements. HTTP/2 and HTTP/3 work similarly but HTTP/3 maintains a much
slower stable speed at higher payloads.
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Figure 30. HTTP max speeds in time per payload size with parallel requests (HTTP/2 green, HTTP/3
blue)

Usually multiple clients will be communicating with a single server. Testing the connection with
multiple clients sending requests at the same time does not show a decrease in speed in HTTP/2,
probably because the server is designed to serve multiple clients with higher loads. In the higher
speeds of HTTP/3 the difference is visible as the bandwidth seems to be distributed to the clients.

Number of clients HTTP/2 HTTP/3
1 18.870 messages/second 444 894 messages/second
2 18.422 messages/second 286.334 messages/second
5 18.517 messages/second 94.667 messages/second
10 16.401 messages/second 43.123 messages/second

Table 24. HTTP max transfer speeds per number of clients (10 bytes)

Speeds here are similar to the other cases with HTTP/3 having variable speeds during the
transfer and HTTP/2 being slow but stable, meaning that the increase in clients does not greatly
affect the behavior of the server, only the average transfer speed.
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Figure 31. HTTP max speeds in time per number of clients (10 bytes payload) (HTTP/2 green,
HTTP/3 blue)

When server and client are running on different machines connected through a Wi-Fi network,
the speed is decreased even more but stays relatively stable at smaller payloads. HTTP/3 sees a
bigger drop in speed and does worse than HTTP/2 at bigger payloads.

Payload Size HTTP/2 HTTP/3
1 byte 10.326 messages/second 68.584 messages/second
10 bytes 11.110 messages/second 68.843 messages/second
100 bytes 11.026 messages/second 74.287 messages/second
1000 bytes 9.221 messages/second 70.526 messages/second
10000 bytes 14.310 messages/second 67.358 messages/second
100000 bytes 6.604 messages/second 26.127 messages/second
1000000 bytes 5.209 messages/second 3.091 messages/second
10000000 bytes 1.767 messages/second 0.206 messages/second

Table 25. HTTP max transfer speeds per payload size on wifi

On Wi-Fi, speeds during the transfer are not as stable for HTTP/2 while HTTP/3 shows drops
for larger time periods due to the unstable nature of the network causing delays. The use of QUIC
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as an underlying protocol may also affect HTTP/3 in unreliable network conditions as it handles
retransmissions of lost packages over UDP.
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Figure 32. HTTP max speeds in time per payload size on wifi (HTTP/2 green, HTTP/3 blue)

4.3.4 Speed comparisons

After testing the connections under the same conditions, some comparisons can be made on their
efficiency where possible.

When sending messages at a specific rate, both MQTT and CoAP maintain a relatively high
transfer speed with MQTT being closer to the original rate (here 100 messages/second). MQTT is
also able to transfer much larger payloads, however the transfer speed greatly decreases at
payloads over 10000 bytes. When testing connections of a single server or publisher and multiple
clients or subscribers, depending on the architecture, MQTT and CoAP see a similar decrease in
transfer speed as clients increase, while MQTT remains the faster protocol. When traffic has to
pass through the unreliable connection of a Wi-Fi network all protocols see a big decrease in
speed, with the change being more dramatic for MQTT and HTTP/3. HTTP, when used
sequentially, is slower than the other two. HTTP/3 is much faster than HTTP/2 in all scenarios, due
to the underlying UDP connection, but has issues with very large payloads. Sending requests in
parallel with HTTP can be faster but limited and much heavier on the clients, which may not be able
to support it well when running on constrained devices. When not using encryption MQTT and
CoAP see a sizable increase in speed, with the change being more dramatic for CoAP.
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Payload Size MQTT CoAP HTTP/2 HTTP/3
1 byte 94.683 m/s 85.952 m/s - 81.052 m/s
10 bytes 94.733 m/s 85.664 m/s - 81.921 m/s
100 bytes 94.942 m/ 85.924 m/s - 81.687 m/s
1000 bytes 95.215 m/s 87.440 m/s - 81.891 m/s
10000 bytes 93.579 m/s - - 45.982 m/s
100000 bytes 84.330 m/s - - 45.736 m/s
1000000 bytes 47.525 m/s - - 5.011 m/s
10000000 bytes 8.357 m/s - - 0.314 m/s
Table 26. 100 messages/second test per payload size
Payload Size MQTT CoAP HTTP/2 HTTP/3
1 byte 7283.225 m/s 1151.144 m/s 18.810 m/s 429.113 m/s
10 bytes 7592.324 m/s 1163.623 m/s 18.806 m/s 443.050 m/s
100 bytes 7193.931 m/s 1156.274 m/s 19.017 m/s 412.914 m/s
1000 bytes 6878.299 m/s 1109.002 m/s 18.735 m/s 441.086 m/s
10000 bytes 4719.285 m/s - 18.789 m/s 262.795 m/s
100000 bytes 2354.147 m/s - 19.879 m/s 57.465 m/s
1000000 bytes 67.170 m/s - 15.854 m/s 5.796 m/s
10000000 bytes 3.237 m/s - 4.083 m/s 0.348 m/s
Table 27. max transfer speeds per payload size
Number of clients MQTT CoAP HTTP/2 HTTP/3
1 7621.712 m/s 1192.428 m/s 18.870 m/s 444.894 m/s
2 6796.350 m/s 857.847 m/s 18.422 m/s 286.334 m/s
5 3250.519 m/s 509.915 m/s 18.517 m/s 94.667 m/s
10 1463.447 m/s 316.340 m/s 16.401 m/s 43.123 m/s
Table 28. max transfer speeds per number of clients/subscribers (10 bytes payload)
Payload Size MQTT CoAP HTTP/2 HTTP/3
1 byte 306.546 m/s 93.781 m/s 10.326 m/s 68.584 m/s
10 bytes 307.129 m/s 83.221 m/s 11.110 m/s 68.843 m/s
100 bytes 304.222 m/s 85.309 m/s 11.026 m/s 74.287 m/s
1000 bytes 249.009 m/s 82.720 m/s 9.221 m/s 70.526 m/s
10000 bytes 227.382 m/s - 14.310 m/s 67.358 m/s
100000 bytes 180.568 m/s - 6.604 m/s 26.127 m/s
1000000 bytes 27.315 m/s - 5.209 m/s 3.091 m/s
10000000 bytes 14.185 m/s - 1.767 m/s 0.206 m/s

Table 29. max transfer speeds per payload size on wifi
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4.3.5 Assessment with Security Configurations

As mentioned above, all the tests so far have been conducted with a basic level of security, using
the defaults provided by each protocol and strong encryption keys. We can also study how much
different security attributes affect the connections and whether changing the key sizes or
authentication mechanisms has a visible effect in the observed final speed of the connection.

Like above, separate tests were conducted for MQTT, CoAP, HTTP/2 and HTTP/3. Three
different configurations were tested with different modes of security, aiming at a high security level,
a lower security level and finally a connection without any security features applied.

For MQTT, the high security configuration includes the use of TLS 1.3 with the
TLS_AES_256_GCM_SHA384 cipher, client authentication through certificates and both clients and
broker certificates using 4096-bit RSA keys. Access to topics is given to the clients through an
access control list configured on the broker, using the identifiers in the client certificates.

For the lower security configuration, TLS 1.2 is requested by the client, with the weaker
TLS_RSA_WITH_AES 128 GCM_SHA256 cipher and a shorter 2048-bit RSA key for the broker.
The clients use username-password authentication which does not require a certificate but sends
some extra data through the appropriate user fields of the requests. Access to topics is given to the
clients through an access control list configured on the broker, using the username as an identifier
of the client.

Finally the no security configuration does not apply any encryption to the connection, nor
authentication for the clients and anyone is allowed access to all topics.

After executing some tests, it appears that the different security configurations do not have a
big effect on the transfer speed. The high and low security levels show very similar results, even
while using different protocols and key sizes. The no security configuration is a bit faster but not
enough to have a visible effect in a real-world application.

Payload Size High Security Low Security No Security
1 byte 9802.732 m/s 9868.822 m/s 10919.696 m/s
10 bytes 9855.493 m/s 10196.775 m/s 10692.769 m/s
100 bytes 9798.191 m/s 9796.615 m/s 11133.855 m/s
1000 bytes 9265.471 m/s 9360.552 m/s 10045.032 m/s

10000 bytes

6188.022 m/s

6019.881 m/s

6103.334 m/s

100000 bytes

2873.458 m/s

2897.456 m/s

1953.625 m/s

1000000 bytes

785.130 m/s

312.094 m/s

331.078 m/s

10000000 bytes

3.235 m/s

3.167 m/s

3.410 m/s

Table 30. MQTT max transfer speeds on different security levels

The changes in speed throughout the transfer are also fairly similar between different modes
for the same payload size. The modes using encryption do show some bigger drops at times. These
are more frequent for the low security mode, which may be explained by TLS 1.2 generally being
considered less efficient than TLS 1.3.
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Figure 33. MQTT max speeds in time per payload size (high security blue, low security green, no

security yellow)

Overall, different security configurations in MQTT affect the performance of the connection in a

small way.

For CoAP, the utilized library doesn't provide much configuration when it comes to security.

The protocol itself supports DTLS with pre-shared keys, raw public key certificates or X.509
certificates but the current implementation of DTLS is limited to PSKs. The OSCORE extension is
also supported, which provides end-to-end encryption of the message content for use with proxies
that may require access to the packet properties for correct routing.

Therefore three modes were selected for this test, the first using the default configuration of
DTLS (DTLS 1.2 with a PSK), the second utilizing OSCORE but without DTLS and the third without
any encryption. The PSK selected was a 10-character word.

In these results, like before there isn't a great difference in the performance of the connections,
however DTLS appears very efficient and even faster than the no security configuration on average,
possibly due to maintaining an open connection. OSCORE makes a bigger difference, being the
most inefficient.
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Payload Size DTLS OSCORE No Security
1 byte 3507.193 m/s 2115.931 m/s 2574.217 m/s

10 bytes 3144.243 m/s 1956.630 m/s 2426.122 m/s
100 bytes 3357.649 m/s 2101.629 m/s 2350.175 m/s
1000 bytes 3279.234 m/s 2177.636 m/s 2592.119 m/s

Table 31. CoAP max transfer speeds on different security levels

Looking at the progression during the transfer, all connections start a bit slower and then pick

up speed. This generally happens when the server has finished sending the requests and the client
can now receive them faster. The DTLS mode starts faster from the beginning and raises the
transfer much faster than the other modes, showing that it's not causing a big overhead to the
server, while OSCORE is heavier on the server as it takes longer to finish sending the messages.
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Figure 34. COAP max speeds in time per payload size (DTLS blue, OSCORE green, no security
yellow)

Overall, DTLS is very efficient in CoAP, while OSCORE affects performance in a negative way.

HTTP/2 also provides TLS for encrypted connections and several authentication mechanisms
that can be customly applied through code. Here, again, three modes of security will be tested with
similar features to the MQTT tests.
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The high security mode includes the use of TLS 1.3 with the TLS_AES 256 _GCM_SHA384
cipher and a server certificate with a 4096-bit RSA key.

The low security mode uses TLS 1.2 with the TLS_RSA_ WITH_AES_128_GCM_SHA256
cipher and a server certificate with a shorter 2048-bit RSA key and no authentication for the clients.

Finally the no security mode does not apply any encryption or authentication to the connection.

After conducting some tests it is clear that the high and low security modes have a very similar
performance. The low security mode is marginally faster but in a negligible way. The no security
mode actually proved less efficient. It is possible that is due to the way TLS connections are
handled by the machine, possibly keeping a persistent connection. Part of the initial HTTP/2
negotiation is also included in the TLS handshake, making up for any delays due to the TLS
handshake as HTTP/2 is designed to be used with HTTPS.

Payload Size High Security Low Security No Security
1 byte 21.220 m/s 21.577 m/s 18.867 m/s
10 bytes 21.228 m/s 21.638 m/s 19.083 m/s
100 bytes 21.293 m/s 21.851 m/s 18.912 m/s
1000 bytes 21.291 m/s 21.610 m/s 18.951 m/s
10000 bytes 21.234 m/s 21.521 m/s 18.819 m/s
100000 bytes 19.731 m/s 19.876 m/s 17.092 m/s
1000000 bytes 17.995 m/s 18.057 m/s 16.708 m/s
10000000 bytes 4.530 m/s 4.689 m/s 6.293 m/s

Table 32. HTTP/2 max transfer speeds on different security levels

Looking at the progress throughout the transfer, all three connections seem to follow the same

pattern of a fast start that then becomes stable, just at different speeds.
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Figure 35. HTTP/2 max speeds in time per payload size (high security blue, low security green, no
security yellow)

Finally, for HTTP/3 there is no option to remove encryption as it is required by the protocol. TLS
1.3 is also included as a requirement in QUIC, making it the most secure protocol so far. As HTTP/3
support on the server is experimental there aren't many configurations that can be made to the
underlying QUIC connection. In this case two modes were tested.

The high security mode uses the default TLS 1.3 connection of QUIC, with the
TLS_AES 256 _GCM_SHA384 cipher, a 4096-bit RSA key for the server certificate and Basic
Authentication for the clients.

The low security mode uses the same encryption configuration but with a shorter 2048-bit RSA
key and no authentication for the clients.

In this case the low security configuration is slightly faster than the high security but mostly in
smaller payloads and the difference is again small enough that it would probably not be detectable
in a real-life scenario. This shows that the key size does not greatly affect the connection
performance while the authentication parameters are only a few bytes in request headers which
should not slow down the connection in any visible way.
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Payload Size High Security Low Security
1 byte 538.403 m/s 629.023 m/s
10 bytes 524.310 m/s 503.902 m/s
100 bytes 546.044 m/s 563.509 m/s
1000 bytes 541.800 m/s 529.499 m/s
10000 bytes 393.524 m/s 342.990 m/s
100000 bytes 96.166 m/s 71.111 m/s
1000000 bytes 8.378 m/s 8.002 m/s
10000000 bytes 0.661 m/s 0.768 m/s

Table 33. HTTP/3 max transfer speeds on different security levels

Looking at the progress throughout the transfer, both types of connections seem very unstable,
with the high security mode being slightly more stable. For larger payloads they are slow enough

that not much data can be gathered. In any case the two configurations behave in a similar way.
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Figure 36. HTTP/3 max speeds in time per payload size (high security blue, low security green)

Overall for HTTP, higher security configurations are worthwhile as they do not negatively affect the
performance of the connection.
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4.4 Comparison

Based on the implemented setup we can compare the protocols on their features in practice. On the
security scope, integrity, confidentiality and availability are considered, through the use of
encryption, authentication and authorization, and availability tests conducted. On the functional
scope, ease of setup and observed support for each protocol is considered, along with the amount
of resources they consume and number of features that are made available to implementations.

As the implementation was made in Python, only Python libraries were studied during the setup
process and some of the metrics regarding protocol support may be different for other languages.

4.4.1 Security Scope

On the security scope, all protocols offer encryption, with HTTP/3 enforcing TLS 1.3 with the newest
algorithms. While it is optional in the other protocols, TLS 1.3 is also supported, except in the case
of CoAP which uses DTLS. Key length and use of different ciphers does not seem to affect much
the performance of the connection so opting for the more secure options is probably better.
Authentication and authorization may depend on the tools used but both MQTT and HTTP versions
offer multiple mechanisms. CoAP is more susceptible to availability issues, while the others have
generally good performance on larger payloads and can configure limits and protections on their
servers. For MQTT a small overhead may be added by the TLS handshake but it shouldn't be
noticeable in real use cases.

In general HTTP versions offer more customization on their security setups while MQTT can be
good for loT setups, especially when looking for availability in constrained environments. CoAP can
be useful in simpler setups where only smaller payloads are expected and authorization can be
managed through more static keys and certificates.
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MQTT CoAP HTTP/2 HTTP/3
Encryption Optional TLS Optional DTLS Optional TLS TLS 1.3 required
Supports newest | Extra layer for proxies Supports Full forward
algorithms (OSCORE) newest secrecy by
Good support Limited support algorithms default

Small effect on

Does not lower

Good support

Good support

performance performance Does not lower Does not lower
performance performance
Authentication Username — Custom mechanisms Basic Basic
& password through DTLS keys or | Authentication Authentication
Authorization Certificates certificates JWT JWT
Other Cookies Cookies
dmechzhisms OAuth OAuth
epte)p oklgg on Other custom Other custom
implementation mechanisms mechanisms
Availability Faster transfer Slower transfer Very slow Slower transfer
speeds speeds transfer speeds speeds but
Can handle Only smaller payloads Can handle faster

large payloads

Limits can be
configured on
the broker side

Servers can have
fewer resources when
running on loT nodes

large payloads

Limits can be
configured for
servers

than HTTP/2

Connections are
more robust due
to multiple
streams

Can handle
large payloads

Limits can be
configured for
servers

Different attack
vectors through
UDP

Table 34. Protocol comparison on security scope

4.4.2 Functional Scope

On the functional scope, it is relatively easy to set up a connection for all protocols but available
resources and support vary, especially on the server side. MQTT and HTTP/2 seem to be the most
supported protocols, with multiple tool options and the most feature support at the time of selecting
libraries for the implementation. On the consumption of resources, MQTT and CoAP are generally
lighter as they are designed for constrained environments, while HTTP protocols are focused on
more generic uses and are generally heavier in resource and power consumption [10, 12]. Similarly,
HTTP offers a greater set of features with more customization but many loT-focused features
should be available in MQTT and CoAP as well.

In general MQTT and HTTP/2 connections are the easiest to set up with the best support, while
the features of MQTT and CoAP may be better suited for constrained 10T environments, with CoAP
having the simplest and lightest structure.
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MQTT CoAP HTTP/2 HTTP/3
Setup Easy when Simpler architecture Easy with more More
using off-the- Easy setup for clients options experimental
shelf broker Harder setup on Can support Less available
Many available | gerver side due to less different resources
resources support architectures Can support
More familiarity different
architectures
Similar setup to
HTTP/2
Support Well supported Not all features are Well supported Supported,
Many tools and supported by different Many tools and sometimes
options libraries options experimental
support
Fewer tool
options than
HTTP/2
Resources Light clients Light clients and Heavier on Heavier on
Broker servers resources resources
consumes more Low network Depends on Heavier than
resources bandwidth architecture HTTP/2 on the
Low network Works in low resource server side
bandwidth conditions Depends on
Works in low architecture
resource
conditions
Features Good set of Smaller set of features | Many features Many features
features Focused on loT use Customizable Customizable
Focused on loT cases More generic More generic
use cases use cases use cases
Table 35. Protocol comparison on functional scope
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5 Conclusions and Future Work

5.1 Conclusions

In the end, each of the studied protocols can be used in applications in an loT environment,
bringing their unique characteristics. The selection of protocol should depend on the specific use-
case of the application and the environment and conditions it's expected to work in.

One of the most important aspects is probably the architecture, where depending on
requirements, devices of different capabilities will be set up in an loT network, implementing
different functions. In this aspect, CoAP and HTTP provide the most flexibility, by supporting
different possible architectures. If a decentralized architecture is desired XMPP can provide that
while MQTT provides the more common publish/subscribe architecture.

Then, the selection will depend on individual features, on the functionality level as well as on
the security requirements. From this analysis MQTT checks most of the boxes for a usual loT
application as it provides the main functionality for clients to communicate with each other in a
publish/subscribe architecture, plus some other useful features aimed at working with multiple
clients. It can work in constrained environments and also supports a good level of security, with TLS
encryption and authentication and authorization mechanisms, while being fairly resilient when
working with many and big payloads. CoAP can cover simpler cases when transporting smaller
payloads through networks of low-powered devices. It can be used in cases where security is not as
important, where encryption can be used, with possible end-to-end encryption if proxies are used,
but where authentication can be limited to pre-generated certificates instead of a more complex
solution. HTTP provides more familiarity at development time and will allow for more custom
solutions and integrations with other protocols but can be resource-heavy in an loT environment
and slower than the other protocols. It can also provide the most security features and be more
robust, especially in setups where HTTP/3 is supported and used. Finally XMPP, while designed for
instant messaging can be adapted to an loT setup and provide a wide range of features through
selected extensions, including end-to-end encryption and authorization mechanisms.

All in all, in use-cases where low resource use is a requirement, the lighter CoAP and MQTT
protocols will be more fitting. But if transfer of larger payloads is expected and a more powerful
device is available for the role of broker, MQTT may be a better option. MQTT and HTTP will also
provide better features when working with more complicated authorization structures like access
control lists. If integration with other services and protocols or more customization is required, HTTP
can prove easier to work with but may need more configuration to fit the IoT use-case. When
selecting HTTP, HTTP/3 will fit the loT case more, by skipping the slow TCP handshake at the
beginning of each transmission.

Based on the above, loT setups where high performance is a requirement along with strong
security, such as health-care applications, will benefit more from MQTT. On the other hand,
environments that do not have complicated security requirements, for example because
communication is executed in a trusted network without unknown nodes, could also utilize CoAP.
An example would be smart-home applications where payloads are usually smaller. Finally if speed
is not as important but interoperability and customizations might be needed, such as in industrial
applications which also require a good level of security, HTTP/3 is a good candidate as long as it is
supported by the relevant devices.

Of course the final thing to take into account is the state of adoption and support at the time of
development of the loT solution. During the experimental implementation not all protocols proved to
have the same level of support, with some features not being available at this time. At the time of
writing, in Python, MQTT and HTTP/2 are fully supported with multiple tools and libraries to choose
from. HTTP/3 is available on an experimental level with a more limited selection of tools and may be
lucking support in some setups. CoAP is generally supported but without all features being
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implemented. Adoption may differ when using other programming languages so it is important to
research before making a final decision.

5.2 Future Work

When developing an loT solution, the selection of communication protocol is an important step. This
selection depends on the specific needs of the application as different protocols operate under
different architectures and provide different features. In this work we presented some of the most
common options for protocols on the application level, with a detailed analysis of their features and
architecture, following by an experimental implementation to get a better idea of how they work in
practice. A final comparison was presented, highlighting the conditions and use cases where each
protocol will prove most useful, trying to aid engineers in making the right selection for their
application. As a next step, more tests can be made under constrained conditions, such as running
on low-powered devices or limited networks and deploying the client software to a larger number of
devices, communicating with the same central points, simulating a big loT network that may be
constructed as part of a real-life application.
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