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Abstract 
Electroencephalography (EEG) together with a Brain-computer interface (BCI), is a 
common approach in brain monitoring and control of prosthetic devices. One common 
challenge in research applications is the cross-subject classification of the motor 
movement and motor imagery signals, as the EEG recordings are highly individualized. 
In this project, a Shallow 2D Convolutional Neural Network was developed, which was 
trained on lightly preprocessed EEG data. The data was provided by the PhysioNet EEG 
dataset. The dataset contained 109 subjects, with each subject having recordings of 
motor imagery and motor movements. The developed model in combination with the 
segmented data achieved high statistical results (2 classes: 80%, 4 classes: 58%), 
comparable to other results from research papers in this domain.  

The code for this assignment is provided at the link bellow 
https://github.com/VasilhsXart/EEGClassification.git  

 

Η ηλεκτροεγκεφαλογραφία (EEG) σε συνδυασμό με ένα σύστημα διεπαφής εγκεφάλου-
υπολογιστή (Brain-computer interface BCI), αποτελεί μια συνήθης προσέγγιση για την 
παρακολούθηση των ηλεκτρικών σημάτων του εγκεφάλου και τον χειρισμό 
προσθετικών συσκευών. Μια κοινή πρόκληση στον ερευνητικό τομέα είναι η ταξινόμηση 
των σημάτων που απεικονίζουν σωματική και πλασματική κίνηση ανάμεσα σε 
διαφορετικά πρόσωπα, καθώς τα εγκεφαλοεγραφήματα διαφέρουν από άτομο σε 
άτομο. Στην παρούσα πτυχιακή, αναπτύχθηκε ένα ρηχό συνελεκτικό νευρωνικό δίκτυο 
(CNN), το οποίο εκπαιδεύτηκε σε ελαφρώς προεπεξεργασμένα σήματα EEG. Τα 
δεδομένα προήλθαν από την βάση δεδομένων της PhysioNet. Το σύνολο των 
δεδομένων περιλάμβανε 109 εθελοντές, με κάθε εθελοντή να έχει καταγραφές σημάτων 
κίνησης και πλασματικής κίνησης. Το ανεπτυγμένο μοντέλο, σε συνδυασμό με τα 
προεπεξεργασμένα δεδομένα, απέδωσε υψηλά στατιστικά αποτελέσματα( 2 κλάσεις 
80%, 4 κλάσεις: 58%), συγκρίσιμα με άλλα αποτελέσματα από ερευνητικές εργασίες σε 
αυτόν τον τομέα. 

Ο κώδικας της εργασίας βρίσκεται στον παρακάτω σύνδεσμο 
https://github.com/VasilhsXart/EEGClassification.git  

 

https://github.com/VasilhsXart/EEGClassification.git
https://github.com/VasilhsXart/EEGClassification.git
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1. Introduction 
Electroencephalogram (EEG) is a low 
cost, typically non-invasive method 
that is used to record the 
spontaneous electrical activity of the 
brain [1]. EEG is used in the medical 
sector to monitor and identify 
various neurological conditions, as 
well as in neuroscience where it’s 
used to monitor consciousness 
states and brain activity during 
various tasks and behaviors.  

Brain-computer interfaces (BCIs) 
facilitate a communication link 
between an external device and a brain’s electrical signals. Frequently used in research 
and medicine, BCIs can have many applications, such as controlling prosthetics in 
rehabilitation cases or recordings of brain activity for diagnostic purposes [2]. 

By combining these two technologies as shown in Figure 1, we can have real-time brain 
monitoring in combination with the control of an external device such as the 
forementioned prosthetics to record Motor Movements (MM) or Motor Imagery (MI). One 
such example is given to us by Schalk et al. [4], where it showcases the capabilities of 
the BCI2000 system, which ‘can incorporate alone or in combination any brain signals, 
signal processing methods, output devices, and operating protocols’ (p.1034). The EEG 
signals that were recorded are publicly available at PhysioNet [5]. 

Due to the highly individualized nature of the EEG recordings, it is difficult to analyze 
signals, which come from cross-subject sessions, and be able to figure out correlations 
between them [6]. This in turn becomes a classification problem. One common 
technique that is used in classification problems, is the use of machine learning 
techniques, more specifically Neural Networks. 

Neural Networks are inspired by the structure and function of biological neural 
networks in animal brains. It consists of several connected artificial neurons that 
constantly update based on custom parameters. A Neural Network is used for various 
tasks where the purpose is to derive conclusions from complex information. 

With the help of a Neural Network, the software can identify similar and relevant 
features between the signals produced by the EEG recordings and captures by the BCI 
device. That way the Neural Network can classify, process or decode these signals.  

Figure 1. EEG in combination with a BCI device. [3] 



6 
 

There have been many different research studies in EEG MM/MI classification using 
different models that categorize the signals with high accuracy. In existing research, the 
review by Altaheri et al. [7] shows that the most common approach is by using a 
Convolutional Neural Network (CNN) alone or in combination with other NNs to work as 
the classifying model as presented in Figure 2. Another notable point in the review, is 
the high preference for raw 2D matrices when training a CNN. 

Amongst the many studies, the work done by 
Dose et al. [8] is noteworthy for also using 
PhysioNet’s EEG data and achieving a very 
high accuracy of 80.4% in 2 class 
classification by using raw 2D matrices on a 
1D CNN model. Despite the model being 
shallow, with only 2 convolutional layers, the 
researchers achieved high results showcasing 
what can be achieved with raw data and a 
simple model. 

While using an LSTM is a less popular 
method, some studies were able achieve 
results comparable to the CNN approach. For 
example, the study by Wang et al. [9] achieved 

an accuracy of 79.6% while using an LSTM on the BCI-C IV-2a dataset. The study used 
feature extraction, specifically the statistical measures analysis technique instead of 
raw signals. 

Most of the research studies identified in [7], use 2D matrices or extract features out the 
signal for the purpose of classification. There is a lack of 2D CNN research done to 
show the effect of using 2D convolutional layers and treating the input signal as an 
image. When treating the signal as an Image, the 2D convolutional layers can capture 
and learn patterns across all channels simultaneously providing better results for 
sequential data [10]. 

The purpose of this thesis is to provide a 2D CNN solution, with results comparable to 
previously mentioned research studies, by using 2D convolutional layers with the intent 
of treating the EEG signals as images. There will also be experiments made to customize 
the data to test the model on different inputs. This attempt will be made using the 
Python Tensorflow Keras library for the development of the model, on the PhysioNet 
using the MNE package [11] on the EEG database, by cutting down the signals into 
smaller sections which contain only a specific motor movement. Afterwards the signals 
will be processed by the 2D CNN and will be classified into their corresponding 
categories. 

Figure 2.  Deep learning methods across all studies. 
[7] 
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2. Methods 

2.1. Dataset 

The data provided by the EEGMMIDB [5] 
dataset is of 109 participants, with each 
subject going through 14 experimental 
runs. The data was recorded is using the 
BCI2000 System [2], which is an open-
source general-purpose software used for 
BCI research, as it handles the acquisition 
and preprocessing of the EEG data. The 
dataset is provided in the European Data 
Format (EDF) with each file containing the 
64 signals, which are sampled at 160 
samples per second. The 64 electrodes 
were recorded as per the international 10-
10 system as shown in Figure 3. 

 

The first 2 experiments are two-minute experimental baseline runs with the participants 
having his eyes open and closed respectively. The rest of the 12 experimental runs are 4 
tasks which are repeated 3 times. The 4 tasks are: 

1. A target appears on either the left or the right side of the screen. The subject 
opens and closes the corresponding fist until the target disappears. Then the 
subject relaxes. 

2. A target appears on either the left or the right side of the screen. The subject 
imagines opening and closing the corresponding fist until the target disappears. 
Then the subject relaxes. 

3. A target appears on either the top or the bottom of the screen. The subject opens 
and closes either both fists (if the target is on top) or both feet (if the target is on 
the bottom) until the target disappears. Then the subject relaxes. 

4. A target appears on either the top or the bottom of the screen. The subject 
imagines opening and closing either both fists (if the target is on top) or both feet 
(if the target is on the bottom) until the target disappears. Then the subject 
relaxes. 

  

Figure 3. The 64 electrodes as per the international 10-10 
system. [12] 
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In summary, the experimental runs were: 

 Run 1 Run 2 Run 3 
Baseline, eyes 
open 

open and close left 
or right fist 

Task 1 Task 1 

Baseline, eyes 
closed 

imagine opening 
and closing left or 
right fist 

Task 2 Task 2 

 open and close 
both fists or both 
feet 

Task 3 Task 3 

 imagine opening 
and closing both 
fists or both feet 

Task 4 Task 4 

 
Table 1. Summary of the experimental runs. 2 Baseline runs, followed by 4 experimental runs repeated 3 times. 

Each EDF file is annotated with each annotation corresponding to the movement the 
subject is performing at the specified timepoint. 

Each annotation includes one of three codes (T0, T1, or T2): 

• T0 corresponds to rest 

• T1 corresponds to onset of motion (real or imagined) of 

o the left fist (in runs 3, 4, 7, 8, 11, and 12) 

o both fists (in runs 5, 6, 9, 10, 13, and 14) 

• T2 corresponds to onset of motion (real or imagined) of 

o the right fist (in runs 3, 4, 7, 8, 11, and 12) 

o both feet (in runs 5, 6, 9, 10, 13, and 14) 

 

The MNE Package is used for the purpose of reading the EDF files from the EEGMMIDB 
dataset, specifically the SxxxRxx.edf files, as they contain the signal we want to use. The 
MNE package was used as it contains easy-to-use functions for the purpose of reading, 
processing, and handling the EEG signals. 

2.2. Preprocessing 

The processing of the EDF files starts with simple techniques used for preprocessing 
signals: 

A second-order IIR zero-phase notch filter is applied on the signal per frequency, with 
the targeted frequency being 50 Hz. The FIR filter is provided by the MNE package, with 
its window type being Hamming. 
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A bandpass filter is applied on the signal with the low cutoff frequency being at 0 Hz and 
the high cutoff frequency being at 40 Hz. The FIR filter is provided by the MNE package, 
with its window type being Hamming.  

The sampling frequency of the signal was adjusted to 160 samples. 

After applying the above techniques on the signal, the annotated sections of the signal 
are extracted to be cut down into chunks, where each chunk contains a specific activity. 
The chunks are then categorized for training, based on the activity that the subject is 
doing. The classes that were chosen are shown in Table 2. 

Action Imagination 
LeftHand LeftHand 
RightHand RightHand 
BothHands BothHands 
BothFeet BothFeet 

 
Table 2. The labelled Action Movements and Imagery Movements from the experimental runs. 

The T0 data, which corresponds to rest periods, was not used in this study therefore it 
was removed. 
 
Afterwards the data is organized into two lists, one containing the Chunks which 
contain the segmented activities, and the other containing their Classes which are 
presented in their categorical form (example left hand = 2 → class = 2 → class → [1,0]) 
for more efficient classification. At the same time, the maximum length of a Chunk 
sequence is being stored in a value, while also ignoring Chunks with a length sequence 
of above 1000 as they are problematic Signals from the original dataset. 
 
After labeling each chunk with the forementioned classes, each chunk is then padded 
to reach the highest sample size using the stored maximum length.  
 
With the now padded chunks, we go through each channel and apply Z-Score 
normalization shown in Equation 1 to standardize the data, so that it can fit a normal 
distribution and improve the machine learning performance. 
 

𝛧 =
𝜒 − 𝜇

𝜎
 

 
Equation 1. Z-Score normalization. Z equals to the standard score, χ equals to 
the observed value, μ equals to the mean of the sample and σ equals to the 
standard deviation of the sample.  
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2.3. Baseline Model Architecture 

For this thesis, a feed-forward Neural Network is used. Specifically, a shallow 
Convolutional Neural Network (CNN) is used to classify each MM/MI signal to its 
respective class. Table 3 is the structure obtained from Python’s TensorFlow Keras 
package. The developed model is portrayed in Figure 4. 

 

Layer (Type) Output Shape Param # 
reshape (Reshape)   (None, 616, 64, 1) 0 
conv2d (Conv2D) (None, 607, 1, 32) 20,512 
activation (Activation) (None, 607, 1, 32) 0 
max_pooling2d 
(MaxPooling2D) 

(None, 151, 1, 32) 0 

batch_normalization 
(BatchNormalization) 

(None, 151, 1, 32) 128 

spatial_dropout2d 
(SpatialDropout2D) 

(None, 151, 1, 32) 0 

conv2d_1 (Conv2D) (None, 147, 1, 64) 10,304 
activation_1 (Activation) (None, 147, 1, 64) 0 
max_pooling2d_1 
(MaxPooling2D) 

(None, 36, 1, 64) 0 

batch_normalization_1 
(BatchNormalization) 

(None, 36, 1, 64) 256 

flatten (Flatten) (None, 2304) 0 
dense (Dense) (None, 128) 295,040 
dropout (Dropout) (None, 128) 0 
dense_1 (Dense) (None, 4) 516 

 
Table 3. The developed neural network in array form. Each row of the table 
corresponds to a layer in the Neural Network. 

 

Figure 4. The developed model. 
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The developed Neural Network model starts by reshaping the input data using the 
Reshape Layer. This transforms the data from [data, channels] to [data, channels, 
layers] as that allows the application of 2D Convolutional Layers on 3D matrixes.  

 At the core of the CNN model, the 2D Convolutional Layer functions as a small 
window (which is the kernel) that goes through the input serially (sliding), adjusting its 
variables as it moves along the array. By configuring a [x,64] kernel in the first layer, the 
model can learn patterns across all channels simultaneously. 

Following the convolutional layers, the Activation layer (or Activation function), 
determines if a neuron should be activated or not based on the input value. By applying 
a non-linear activation function, the model can capture complex patterns and 
relationships in the data. 

Next, the model has a Max Pooling 2D layer. This layer reduces the spatial dimensions 
of the data by down-sampling, which means it only retains the most important features 
by selecting the maximum value from each small region within the convolutional 
output. By reducing the dimensionality, the Max Pooling layer preserves important 
information while decreasing computational load, which helps make the model more 
efficient. 

To further improve performance and training stability, a Batch Normalization layer is 
then used. This layer normalizes the input data, which helps to reduce the sensitivity of 
the model to initial weight parameters. In turn, batch normalization contributes to faster 
convergence and better generalization, making the model both more stable and less 
likely to overfit. 

With this architecture, the segmented data is processed through the Neural Network, 
where the Convolutional layer extracts the most important features from all channels, 
allowing the model to recognize the most important features of the segmented signals.   

A Spatial Dropout layer is used which unlike traditional dropout, which randomly drops 
individual neurons, Spatial Dropout randomly drops entire feature maps during training. 
By removing entire feature maps, Spatial Dropout reduces the model’s reliance on 
specific sets of features and prevents overfitting. 

Finally, after further layers of convolution, activation, max pooling, and normalization, 
the data is flattened and fed into a Dense (fully connected) Layer with 128 units, 
followed by a dropout layer to further stop overfitting. The network concludes with 
another Dense layer that outputs the class predictions using the loss function.  
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2.4. Training and Testing Strategy 

Table 4 shows the values of the hyperparameters used for the training of the model. 

Parameter Value 
Optimizer Adam 
Activation ELU 
Padding Valid 
Pool Size [4, 1] 
Loss function Categorical cross-entropy 
Batch size 256 
Epochs 10 

 
Table 4. The hyperparameters of the developed Neural Network. 

For the hyperparameters of the model, the Adam optimizer shown in Equation 2 is used 
as its optimization algorithm. Its widely used in Neural Network development as it is 
effective and efficient in training [13]. The loss function is set as categorical cross-
entropy as it is commonly used for classification problems. 

 

𝐻(𝑦, 𝑦̂) = − ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑦̂𝑖)

𝑖

 

 
Equation 2. The categorical cross-entropy function. y is the true class 
distribution while ŷ is the predicted class distribution. 

Categorical cross entropy compares the output given from the previous soft max 
function, which the output contains the probabilities of the classes the signal belongs 
to. The highest probability is the one that the signal belongs to. 

For the Convolutional Layer, the Exponential Linear Unit (ELU) shown in Equation 3 is 
chosen as the activation function as it can handle negative inputs. The activation 
function is used to determine the output of each node in the neural network. They are 
crucial as they determine whether a neuron is activated or not. If a neuron is not 
activated, the value is not passing through the rest of the Neural Network. 

 

𝑓(𝑥) = {
𝑥                 𝑥 > 0
𝑎(ⅇ𝑥 − 1) 𝑥 ≤ 0

 

 
Equation 3. The Exponential Linear Unit function. y is the true class distribution 
while ŷ is the predicted class distribution. x is the input of the function, and a is 
the parameter that controls the negative values. The default value of a is 0. 
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It is computationally more expensive than ReLU, but it allows for faster learning, while 
also preventing dead neurons (if their output is zero, a common problem in ReLU) as it 
allows the negative values. 

The Convolutional Layer also supports padding, and the parameter for it is set as Valid. 
This is done as to not extend the window size by adding zeroes which may introduce 
artifacts near the borders of the signal. 

The Max Pooling 2D layer allows for the parameterization of its pool size. This value is 
set at [4, 1], as the objective of the layer is to focus on the most important features of 
the timesteps but keep the number of channels intact. 

Finally, for the training of the model, the batch size has been set to 256 with 10 epochs 
of training. The batch size can be changed as it does not affect the training results. The 
epochs have been set to 10, as after that the model starts overfitting. 

Below are the shapes and sizes of the inputs in the 3 executions made for the dataset. 
The final arrays are stated like [all signals, channels, signal size] 

Afterwards the data is split into Train, Test and Validate sets with them being shown in 
Table 5. 

Data Percentage 
Train Data 70% 
Test Data 15% 
Validation Data 15% 

 

Table 5. Represents the percentages chosen to split the data into Train, Test and Validate sets. 

2.5. Experiments 

2.5.1. Comparative Models 

For this thesis, different models were introduced to compare their results against the 
baseline model using the same data.  

At first, a shallow Long Short-Term Memory (LSTM) Model was introduced. 

Layer (Type) Output Shape 
lstm (LSTM) (None, 821, 16) 
batch_normalization 
(BatchNormalization) 

(None, 821, 16) 

lstm_1 (LSTM) (None, 32) 
batch_normalization_1 
(BatchNormalization) 

(None, 32) 

dense (Dense) (None, 32) 
dense_1 (Dense) (None, classes) 

 
Table 6. The model architecture of the LSTM model. 
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The LSTM model is a recurrent neural network, which is particularly effective for working 
with sequential data, such as an EEG signal. LSTM models are not often used in EEG 
classification problems on their own (Figure 2), so an attempt had been made to 
benchmark it against the developed model. The architecture of the model is shown in 
Table 6.  

The second model is a CNN with 1D convolutional layers. 

Layer (Type) Output Shape 
conv1d (Conv1D) (None, 814, 32) 
activation (Activation) (None, 814, 32) 
max_pooling1d 
(MaxPooling1D) 

(None, 203, 32) 

batch_normalization 
(BatchNormalization) 

(None, 203, 32) 

spatial_dropout1d 
(SpatialDropout1D) 

(None, 203, 32) 

Conv1d_1 (Conv1D) (None, 196, 64) 
activation_1 (Activation) (None, 196, 64) 
max_pooling1d_1 
(MaxPooling1D) 

(None, 49, 64) 

batch_normalization_1 
(BatchNormalization) 

(None, 49, 64) 

spatial_dropout1d 
(SpatialDropout1D) 

(None, 49, 64) 

global_average_pooling1d 
(GlobalAveragePooling1D) 

(None, 64) 

dense (Dense) (None, 64) 
dense_1 (Dense) (None, 4) 

 
Table 7. The model architecture of the 1D CNN model. 

A 1D CNN model was introduced as to compare it with its 2D counterpart. The 1D 
convolutional layer uses a kernel, which goes through each channel, unlike its 
counterpart which can go through the whole signal at the same time. The architecture of 
the model is shown in Table 7. 
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2.5.2. Data Experiments 

In the data preparation phase, experiments have been made on the EEG Signals to 
further customize the data, as to provide better results in the baseline model’s training. 

The first approach was to select specific channels, which have been shown to provide 
information related to the MM/MI signals. Numerous studies [14] have been made to 
identify which channels have been shown to affect motor imagery classifications the 
most. For this thesis 17 prevalent channels have been chosen out of 64. The 17 
channels are depicted in Figure 5. 

 

Figure 5. The selected channels on the 10-10 international system [C3, C4, Cz, 
Cp3, Cp4, Cpz, Fc3, Fc3, Fcz, F3, F4, Fz, P3, P4, Pz, T7, T8]. [15] 

By using less channels that focus on precise information from the brain, an attempt to 
train the model with more specialized data can be made, as to verify the significance of 
the channels. This can be done by choosing the channels before processing the signal. 

The second approach was to use a method to remove artifacts from the EEG signal. 
ICA is a popular method used for artifact removal in EEG data. Artifacts can be eye 
blinks, muscle movements, and heartbeats that are often mixed with the brain signals. 
ICA can separate the artifacts from the brain signal as shown in Figure 6 allowing for a 
clearer overview of the neural activity. 

By using ICA, an attempt to train the model with less noise caused during the recording 
session can be made, as to verify the significance of the noise. The function used in the 
program was provided by MNE. For proper application of the ICA method, in 
preprocessing, the band pass filter was adjusted to start from 1.0 Hz as it improves the 
results.  
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Figure 6. (left) A 5-sec portion of an EEG time series. (center) ICA components 
accounting for eye movements, cardiac signals, and line noise sources. (right) 
The same EEG signals corrected for artifacts by removing the ve selected 
components. [16] 
 

The algorithm used in the parameters was Infomax, as it is more robust than FastICA, 
and FastICA was not able to converge on the dataset that was provided. The number of 
components chosen was 20. 

The third approach is to combine the specialized channels and the ICA method to train 
the model with more specialized data inputs rather than the general data given from the 
start.  
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3. Results 

3.1. Baseline Model 

Using the developed baseline model in combination with lightly processed data, 3 
different executions were made with 2, 4 and 8 classes. 

The results of the executions are shown in Table 8. 

 2 Classes 4 Classes 8 Classes 
 Accuracy Loss Accuracy Loss Accuracy Loss 

Fit 0.8617 0.3105 0.6495 0.8982 0.4217 1.5438 
Evaluation 0.8024 0.4382 0.5859 1.0887 0.3460 1.7515 
Prediction 0.8005 0.4461 0.5801 1.0995 0.3486 1.7361 

 

Table 8. The results of the developed model’s executions on 2, 4 and 8 classes. 

The model achieves good results, 30% above the random base chance of 50% and it is 
comparable to the research paper [8] with an accuracy of 80.4%, which also works with 
two classes. It shows signs of overfitting after the preselected 10 epochs. 

The input data is [4927, 64, 821] and the distribution of the two classes is shown in 
Table 9. 

Classes  Size 
LeftHandAction 2471 
RightHandAction 2456 

 
Table 9. Data distribution on 2 Classes. 

For the 2 classes, the confusion matrix on Table 10 shows that the data is preferring the 
right hand over the left hand in training. 

  
                    Predicted Classes 

 
 
Actual 
Classes 

Classes LH RH 
LH 0.79 0.21 
RH 0.18 0.82 

 
Table 10. The 2 Class Confusion Matrix of the baseline model. LH stands for 
Left hand and RH stands for right hand. 
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The classification graph on Figure 7 shows that after the 9th epoch the model slowly 
starts overfitting. 

 

Figure 7. 2 Class classification graph. 

The second execution features 4 classes. The classes selected were Left-hand, Right-
hand, both feet and Both hands action movement. The input data size is [9836, 64, 821] 
and the distribution of the classes is shown in Table 11. 

Class Size 
LeftHandAction 2471 
RightHandAction 2456 
BothHandsAction 2469 
BothFeetAction 2440 

 
Table 11. Data distribution on 4 Classes. 

As per Table 8, The model seems to work relatively well on 4 classes, achieving an 
accuracy higher than the random baseline of 25%. 

For the 4 classes, the confusion matrix on Table 12 shows that the model predicts Left-
Hand and Right-Hand movements more accurately than Both Feet or Both Hands. 

                    Predicted Classes 
 

 
 

Actual 
Classes 

Classes LH RH BF BH 
LH 0.64 0.08 0.11 0.17 
RH 0.12 0.65 0.12 0.12 
BF 0.14 0.13 0.57 0.16 
BH 0.16 0.20 0.17 0.47 

 
Table 12. The 4 Class Confusion Matrix of the baseline model. LH stands for 
Left hand, RH stands for right hand, BF stands for Both feet and BH stands for 
Both hands. 
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Figure 8. 4 Class classification graph. 

For the third execution features 8 classes. The classes selected were all the action and 
imagery movements. the data size is [19674, 64, 821] and the distribution of the classes 
is shown in Table 13. 

Label Size 
LeftHandAction 2471 
RightHandAction 2456 
BothHandsAction 2469 
BothFeetAction 2440 
LeftHandImagination 2480 
RightHandImagination 2438 
BothHandsImagination 2465 
BothFeetImagination 2455 

 
Table 13. Data distribution on 8 Classes. 

As per Table 8, the model seems to struggle with 8 classes, but still achieving results 
higher than the random baseline of 12.5% 
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Table 14 Showcases that the model struggles in half of the classes but performs better 
in some others. 

                    Predicted Classes 
 
 
 

Actual 
Classes 

Classes LHa LHi BHa BHi RHa RHi BFa BFi 
LHa 0.41 0.25 0.07 0.07 0.06 0.04 0.06 0.03 
LHi 0.31 0.39 0.03 0.08 0.04 0.03 0.15 0.05 
BHa 0.12 0.09 0.25 0.21 0.12 0.07 0.75 0.05 
BHi 0.08 0.11 0.15 0.29 0.09 0.11 0.10 0.07 
RHa 0.04 0.04 0.06 0.07 0.40 0.30 0.07 0.03 
RHi 0.05 0.05 0.04 0.08 0.26 0.42 0.05 0.06 
BFa 0.09 0.05 0.08 0.06 0.08 0.06 0.37 0.21 
BFi 0.06 0.08 0.06 0.12 0.06 0.11 0.26 0.26 
 
Table 14. The 8 Class Confusion Matrix of the baseline model. LH stands for 
Left hand, RH stands for right hand, BF stands for Both feet and BH stands for 
Both hands. The a stands for action and the i stands for imagery. 

The classification graph shows that after the 9th epoch the model slowly starts 
overfitting. 

 

Figure 9. 8 Class classification graph. 
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3.2. Experiment Results 

3.2.1. Baseline Model compared to the Comparative Models 

The execution for the comparison of the 3 models, is done on the same lightly 
preprocessed data.  The input data size is the same as the baseline model, shown in 
Table 8. 

 
The classes selected were Left-hand and Right-hand action movement. The results of 
the executions are shown on Table 15 and Table 16. 

 Baseline 2D CNN LSTM 1D CNN 
 Accuracy Loss Accuracy Loss Accuracy Loss 

Fit 0.8617 0.3105 0.7231 0.5642 0.6388 0.6386 
Evaluation 0.8024 0.4382 0.5131 0.6958 0.6388 0.6081 
Prediction 0.8005 0.4461 0.5321 0.6932 0.6727 0.6065 

 
Table 15. Prediction results on all the models used. The 2D CNN solution 
outperforms the shallow LSTM and the 1D CNN. 

Model Accuracy Precision Recall F-Score Training 
Time Left Right Left Right Left Right 

Baseline 80% 81% 80% 79% 82% 80% 81% 37s 
LSTM 53% 53% 54% 62% 45% 57% 49% 70s 

1D CNN 67% 69% 63% 55% 76% 61% 68% 20s 
 

Table 16. The precision, recall and F-score of the models. 

The 2D CNN outperforms the other two models, with its higher accuracy and lower loss 
values. The LSTM Model underperforms severely on the data. In Table 17, the 
differences in training can be seen, as the two other models are classifying the two 
classes properly. 

  Baseline Model LSTM 1D CNN 
 Classes LH RH LH RH LH RH 

Actual 
Classes 

LH 0.79 0.21 0.62 0.38 0.55 0.45 
RH 0.18 0.82 0.55 0.45 0.24 0.76 

 
Predicted Classes 

 
Table 17. The confusion matrixes of the models. 

The LSTM model quickly overfits and does not perform above the random baseline of 
50% as per Figure 10. 
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Figure 10. LSTM classification graph. 

 

The 1D CNN model trains well on the data, but 10 epochs are not enough for the model 
to train completely on the data. 

 

Figure 11. 1D CNN classification graph. 

3.2.2. Baseline Model on the Data Experiments 

For the execution of the baseline model with different techniques, the data is of variable 
length. 

 Baseline Data 17 Channels ICA 17 Ch + ICA 
 Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

Fit 0.8617 0.3105 0.8595 0.3277 0.8639 0.3107 0.8527 0.3341 
Evaluation 0.8024 0.4382 0.7932 0.4595 0.8050 0.4259 0.7835 0.4953 
Prediction 0.8005 0.4461 0.7775 0.4727 0.8059 0.4368 0.7707 0.5080 

 
Table 18. Prediction results on all the different data techniques. The data with 
ICA artifact removal and the data with no techniques applied to it bring similar 
results. 

Table 18 depicts that the data with ICA and the data with no methods applied to it, bring 
similar results. 
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Model Accuracy Precision Recall F-Score Training 
Time Left Right Left Right Left Right 

Baseline 80% 81% 80% 79% 82% 80% 81% 37s 
17 Channels 77% 76% 79% 81% 75% 78% 77% 23s 

ICA 80% 82% 79% 79% 82% 80% 81% 51s 
17 Ch + ICA 77% 82% 74% 70% 84% 75% 79% 23s 

 
Table 19. The precision, recall and F-score of the different techniques. 

Table 19 in combination with Table 20, depicts that the data with ICA is much more 
consistent, because the data with no processing is more biased towards left hand 
movements. 

 

  Baseline Data 17 Channels ICA 17 Ch + ICA 
 Classes LH RH LH RH LH RH LH RH 

Actual 
Classes 

LH 0.75 0.25 0.81 0.19 0.79 0.21 0.70 0.30 
RH 0.15 0.85 0.25 0.75 0.18 0.82 0.16 0.84 

 
Predicted Classes 

 
Table 20. The confusion matrix of the different methods. 

 

 

 

 

Figure 12. 2 Class 17 Channels classification graph. 

 

The model trained on 17 channels seem to overfit early, and the final prediction 
percentage is lower as per Table 19. Figure 12 shows that the model starts to struggle 
after the 5th epoch. A shallower model may provide better results. 
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Figure 13. 2 Class ICA classification graph. 

 

The results on Table 19 and Table 20 showcase that using ICA does give some 
improvements in the categorization of the classes. A deeper Neural Network or changes 
to the parameters of the model’s layers may provide even better results in the future. 

 

Figure 14. 2 Class 17 Channels ICA classification graph. 

 

The final accuracy with the 2 techniques is lower than the implementation without 
them. Just as the implementation with only the selected channels, it may require a 
shallower Neural Network, as the developed model overfits quickly. 
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4. Discussion 
This project attempted to provide alternative and efficient model for classifying EEG 
data, by treating the small segments of MM/MI signals as images using 3D arrays. The 
CNN model developed using 2D Convolutional Layers, captures spatial dependencies 
from all the channels which helps with classification. The data contains only the motor 
or imagery movements without the sections where the participants rest, which were cut 
according to the annotations provided within PhysioNet’s dataset. The model developed 
in combination with limited preprocessing, is an efficient approach, as the accuracy is 
comparable to similar studies handling EEG cross-subject classification.  

The model was tested as a baseline against other simple models with similar structure 
as the baseline using the same preprocessed data, specifically an LSTM and a 1D CNN. 
The results provide evidence that using a 2D CNN with this setup can produce better 
results. 

Experiments were also done to see how the model performs when using different 
preprocessing techniques on the original data. Unlike using less channels, Table 20 
shows that using ICA improves the results by being more consistent, because the data 
with no processing is more biased towards left hand movements. 

One of the limitations is that this model was only tested on the PhysioNet dataset. 
Further research is needed to test the model on other datasets, as they may have 
recorded the data using different techniques.  

More research could be done by introducing different models or customizing the 
experimented ones to further support the preprocessed data. Further research can also 
be done on the techniques involving less channels, by adjusting and improving the 
Model to the new requirements.  

In summary, the 2D Convolutional Neural Network that was developed, combined with 
slightly processed segmented data, provided a quick and efficient classifier for EEG 
motor-based data, with results comparable to other studies.  
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5. List of Acronyms 
 

 

 

  

EEG Electroencephalogram 
BCI Brain-Computer Interface 
MI Motor Imagery 
EEGMMIDB Electroencephalogram Motor 

Movement/Imagery Dataset Bank 
EDF European Data Format 
MNE Magnetoencephalography 
CNN Convolutional Neural Network 
ICA Independent Component 

Analysis 
ELU Exponential Linear Unit 
LSTM Long Short-Term Memory 
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