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Abstract

Electroencephalography (EEG) together with a Brain-computer interface (BCl), is a
common approach in brain monitoring and control of prosthetic devices. One common
challenge in research applications is the cross-subject classification of the motor
movement and motor imagery signals, as the EEG recordings are highly individualized.
In this project, a Shallow 2D Convolutional Neural Network was developed, which was
trained on lightly preprocessed EEG data. The data was provided by the PhysioNet EEG
dataset. The dataset contained 109 subjects, with each subject having recordings of
motor imagery and motor movements. The developed model in combination with the
segmented data achieved high statistical results (2 classes: 80%, 4 classes: 58%),
comparable to other results from research papers in this domain.

The code for this assignment is provided at the link bellow
https://github.com/VasilhsXart/EEGClassification.git

H nAektpoeykedparoypadia (EEG) oe cuvduacuo pe eva cvotnua dlemadng eykedaiou-
uttoAoyloth (Brain-computer interface BCI), amoteAel ylia ocuvndng mpooeyylon ya tnv
TTAPaKoAoUONGCN TWV NAEKTPLIKWY CNUATWY TOU EYKEPAAOU KL TOV XELPLOHO
TIPOOBETIKWY CUCKEVWYV. MLa Ko T(POKANGH GTOV EPELVNTLKO TopEa ival n tavopnon
TWYV oNUATWY TIOU ATtElKoVi{oUV CWHATLKN KAl TTAQCHATLKA Kivnon avaueoda oe
OlapopETIKA IPOCWTIA, KABwG ta eykedparoeypadnuata dlapEPouv armo AToHo o
ATOMO. ZTNV TTapoV oA TITUXLAKN, avantuXBnKe Eva pnxo GUVEAEKTIKO VEUPWVIKO OIiKTUO
(CNN), to omoio ekntadeutnKe oe eAadpw ipoenieéepyacpeva onuata EEG. Ta
dedopéva mponAbav amo tnv Bacn dedopevwy tne PhysioNet. To cuvoAo Twyv
dedopevwy eplAapBave 109 eBeAovteg, pe KABe eBeAovtn va €xel kataypadEg onUATwyY
Kivnong kat TAacpatikng kivnong. To avemtuyuevo JoviEAo, o€ cuvdUACHO UE Ta
poeneepyacpeva dedopeva, anedwaoe LPNAA oTATIoTIKA amoteAeopata( 2 KAAoELG
80%, 4 kAAoelg: 58%), cuyKpiola e AAAA ATTOTEAECHATA ATIO EPEUVNTIKEG EPYyATieg OE
AUTOV TOV TOHEQ.

O kwdikag tng epyaciag Bpioketal otov MApakdAtw cVVOECHO
https://github.com/VasilhsXart/EEGClassification.git
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1. Introduction

Electroencephalogram (EEG) is a low
cost, typically non-invasive method
thatis used to record the
spontaneous electrical activity of the
brain[1]. EEG is used in the medical
sector to monitor and identify

various neurological conditions, as
well as in neuroscience where it’s
used to monitor conscioushess
states and brain activity during
various tasks and behaviors. \

Brain-computer interfaces (BCls) ] ] . ]
. . ) ) Figure 1. EEG in combination with a BCI device. [3]

facilitate a communication link

between an external device and a brain’s electrical signals. Frequently used in research

and medicine, BCls can have many applications, such as controlling prosthetics in

rehabilitation cases or recordings of brain activity for diagnostic purposes [2].

By combining these two technologies as shown in Figure 1, we can have real-time brain
monitoring in combination with the control of an external device such as the
forementioned prosthetics to record Motor Movements (MM) or Motor Imagery (Ml). One
such example is given to us by Schalk et al. [4], where it showcases the capabilities of
the BCI2000 system, which ‘can incorporate alone or in combination any brain signals,
signal processing methods, output devices, and operating protocols’ (p.1034). The EEG
signals that were recorded are publicly available at PhysioNet [5].

Due to the highly individualized nature of the EEG recordings, it is difficult to analyze
sighals, which come from cross-subject sessions, and be able to figure out correlations
between them [6]. This in turn becomes a classification problem. One common
technique that is used in classification problems, is the use of machine learning
techniques, more specifically Neural Networks.

Neural Networks are inspired by the structure and function of biological neural
networks in animal brains. It consists of several connected artificial neurons that
constantly update based on custom parameters. A Neural Network is used for various
tasks where the purpose is to derive conclusions from complex information.

With the help of a Neural Network, the software can identify similar and relevant
features between the signals produced by the EEG recordings and captures by the BCI
device. That way the Neural Network can classify, process or decode these sighals.



There have been many different research studies in EEG MM/MI classification using
different models that categorize the signals with high accuracy. In existing research, the
review by Altaheri et al. [7] shows that the most common approach is by using a
Convolutional Neural Network (CNN) alone or in combination with other NNs to work as
the classifying model as presented in Figure 2. Another notable point in the review, is
the high preference for raw 2D matrices when training a CNN.

Amongst the many studies, the work done by
Dose et al. [8] is noteworthy for also using
PhysioNet’s EEG data and achieving a very
high accuracy of 80.4% in 2 class
classification by using raw 2D matrices on a
1D CNN model. Despite the model being
shallow, with only 2 convolutional layers, the
researchers achieved high results showcasing
what can be achieved with raw data and a
simple model.

While using an LSTM is a less popular
method, some studies were able achieve

Figure 2. Deep learning methods across all studies.
[71 results comparable to the CNN approach. For

example, the study by Wang et al. [9] achieved
an accuracy of 79.6% while using an LSTM on the BCI-C IV-2a dataset. The study used
feature extraction, specifically the statistical measures analysis technique instead of
raw signals.

Most of the research studies identified in [7], use 2D matrices or extract features out the
signal for the purpose of classification. There is a lack of 2D CNN research done to
show the effect of using 2D convolutional layers and treating the input signal as an
image. When treating the signal as an Image, the 2D convolutional layers can capture
and learn patterns across all channels simultaneously providing better results for
sequential data [10].

The purpose of this thesis is to provide a 2D CNN solution, with results comparable to
previously mentioned research studies, by using 2D convolutional layers with the intent
of treating the EEG signals as images. There will also be experiments made to customize
the data to test the model on different inputs. This attempt will be made using the
Python Tensorflow Keras library for the development of the model, on the PhysioNet
using the MNE package [11] on the EEG database, by cutting down the signals into
smaller sections which contain only a specific motor movement. Afterwards the signals
will be processed by the 2D CNN and will be classified into their corresponding
categories.



2. Methods

2.1. Dataset

The data provided by the EEGMMIDB [5]
dataset is of 109 participants, with each
subject going through 14 experimental
runs. The data was recorded is using the
BCI2000 System [2], which is an open-
source general-purpose software used for
BCl research, as it handles the acquisition
and preprocessing of the EEG data. The
dataset is provided in the European Data
Format (EDF) with each file containing the
64 signals, which are sampled at 160
samples per second. The 64 electrodes
were recorded as per the international 10-

10 system as shown in Figure 3. Figure 3. The 64 electrodes as per the international 10-10

system. [12]

The first 2 experiments are two-minute experimental baseline runs with the participants

having his eyes open and closed respectively. The rest of the 12 experimental runs are 4

tasks which are repeated 3 times. The 4 tasks are:

1.

A target appears on either the left or the right side of the screen. The subject
opens and closes the corresponding fist until the target disappears. Then the
subject relaxes.

. Atarget appears on either the left or the right side of the screen. The subject

imagines opening and closing the corresponding fist until the target disappears.
Then the subject relaxes.

A target appears on either the top or the bottom of the screen. The subject opens
and closes either both fists (if the target is on top) or both feet (if the target is on
the bottom) until the target disappears. Then the subject relaxes.

A target appears on either the top or the bottom of the screen. The subject
imagines opening and closing either both fists (if the target is on top) or both feet
(if the target is on the bottom) until the target disappears. Then the subject
relaxes.



In summary, the experimental runs were:

Run 1
Baseline, eyes open and close left
open or right fist
Baseline, eyes imagine opening
closed and closing left or
right fist
open and close
both fists or both
feet
imagine opening
and closing both
fists or both feet

Table 1. Summary of the experimental runs. 2 Baseline runs, followed by 4 experimental runs repeated 3 times.

Each EDF file is annotated with each annotation corresponding to the movement the

Run 2

Task 1

Task 2

Task 3

Task 4

subjectis performing at the specified timepoint.

Each annotation includes one of three codes (T0, T1, or T2):

e TOcorresponds to rest

e T1 corresponds to onset of motion (real or imagined) of
o theleftfist(inruns3,4,7,8,11,and 12)
o bothfists (inruns 5, 6, 9, 10, 13, and 14)

e T2 corresponds to onset of motion (real orimagined) of
o therightfist(inruns3,4,7,8,11,and 12)

o bothfeet(inrunsb5, 6,9, 10,13, and 14)

The MNE Package is used for the purpose of reading the EDF files from the EEGMMIDB
dataset, specifically the SxxxRxx.edf files, as they contain the signal we want to use. The
MNE package was used as it contains easy-to-use functions for the purpose of reading,

processing, and handling the EEG signals.

2.2. Preprocessing

The processing of the EDF files starts with simple techniques used for preprocessing

signals:

A second-order IIR zero-phase notch filter is applied on the signal per frequency, with
the targeted frequency being 50 Hz. The FIR filter is provided by the MNE package, with

its window type being Hamming.

Run3

Task 1

Task 2

Task 3

Task 4



A bandpass filter is applied on the signal with the low cutoff frequency being at 0 Hz and
the high cutoff frequency being at 40 Hz. The FIR filter is provided by the MNE package,
with its window type being Hamming.

The sampling frequency of the signal was adjusted to 160 samples.

After applying the above techniques on the signal, the annotated sections of the signal
are extracted to be cut down into chunks, where each chunk contains a specific activity.
The chunks are then categorized for training, based on the activity that the subject is
doing. The classes that were chosen are shown in Table 2.

Action Imagination
LeftHand LeftHand
RightHand RightHand
BothHands BothHands
BothFeet BothFeet

Table 2. The labelled Action Movements and Imagery Movements from the experimental runs.

The TO data, which corresponds to rest periods, was not used in this study therefore it
was removed.

Afterwards the data is organized into two lists, one containing the Chunks which
contain the segmented activities, and the other containing their Classes which are
presented in their categorical form (example left hand = 2 - class = 2 - class 2 [1,0])
for more efficient classification. At the same time, the maximum length of a Chunk
sequence is being stored in a value, while also ignoring Chunks with a length sequence
of above 1000 as they are problematic Signals from the original dataset.

After labeling each chunk with the forementioned classes, each chunk is then padded
to reach the highest sample size using the stored maximum length.

With the now padded chunks, we go through each channel and apply Z-Score
normalization shown in Equation 1 to standardize the data, so that it can fit a normal
distribution and improve the machine learning performance.

X H
o

/ =

Equation 1. Z-Score normalization. Z equals to the standard score, x equals to
the observed value, u equals to the mean of the sample and o equals to the
standard deviation of the sample.



2.3. Baseline Model Architecture

For this thesis, a feed-forward Neural Network is used. Specifically, a shallow

Convolutional Neural Network (CNN) is used to classify each MM/MI signal to its

respective class. Table 3 is the structure obtained from Python’s TensorFlow Keras

package. The developed modelis portrayed in Figure 4.

Layer (Type)

reshape (Reshape)
conv2d (Conv2D)
activation (Activation)
max_pooling2d
(MaxPooling2D)
batch_normalization
(BatchNormalization)
spatial_dropout2d
(SpatialDropout2D)
conv2d_1 (Conv2D)
activation_1 (Activation)
max_pooling2d_1
(MaxPooling2D)
batch_normalization_1
(BatchNormalization)
flatten (Flatten)

dense (Dense)
dropout (Dropout)
dense_1 (Dense)

Table 3. The developed neural network in array form. Each row of the table

Output Shape

(None, 616, 64, 1)
(None, 607, 1, 32)
(None, 607, 1, 32)
(None, 151, 1, 32)

(None, 151, 1, 32)
(None, 151, 1, 32)
(None, 147, 1, 64)
(None, 147, 1, 64)
(None, 36, 1, 64)
(None, 36, 1, 64)
None, 2304)
None, 128)

None, 128)
None, 4)

—_— o~~~

corresponds to a layer in the Neural Network.

Convolution
607x1x32

Input
614x64x1

Kernel 10x64

Max-pooling 4x1

Convolution
147x1x64

Batch
Normalization
151x1x32

Spatial Dropout 2D
0.5

Kernel 5x1
Max-pooling 4x1

Figure 4. The developed model.

Param #
0

20,512
0

0

128

10,304

256

0
295,040
0

516

Batch
Normalization
36x1x64

Flatten
2304

Dense
128

Dropout
0.5

Output

10



The developed Neural Network model starts by reshaping the input data using the
Reshape Layer. This transforms the data from [data, channels] to [data, channels,
layers] as that allows the application of 2D Convolutional Layers on 3D matrixes.

At the core of the CNN model, the 2D Convolutional Layer functions as a small
window (which is the kernel) that goes through the input serially (sliding), adjusting its
variables as it moves along the array. By configuring a [x,64] kernel in the first layer, the
model can learn patterns across all channels simultaneously.

Following the convolutional layers, the Activation layer (or Activation function),
determines if a neuron should be activated or not based on the input value. By applying
a non-linear activation function, the model can capture complex patterns and
relationships in the data.

Next, the model has a Max Pooling 2D layer. This layer reduces the spatial dimensions
of the data by down-sampling, which means it only retains the most important features
by selecting the maximum value from each small region within the convolutional
output. By reducing the dimensionality, the Max Pooling layer preserves important
information while decreasing computational load, which helps make the model more
efficient.

To further improve performance and training stability, a Batch Normalization layer is
then used. This layer normalizes the input data, which helps to reduce the sensitivity of
the model to initial weight parameters. In turn, batch normalization contributes to faster
convergence and better generalization, making the model both more stable and less
likely to overfit.

With this architecture, the segmented data is processed through the Neural Network,
where the Convolutional layer extracts the most important features from all channels,
allowing the model to recognize the most important features of the segmented signals.

A Spatial Dropout layer is used which unlike traditional dropout, which randomly drops
individual neurons, Spatial Dropout randomly drops entire feature maps during training.
By removing entire feature maps, Spatial Dropout reduces the model’s reliance on
specific sets of features and prevents overfitting.

Finally, after further layers of convolution, activation, max pooling, and normalization,
the data is flattened and fed into a Dense (fully connected) Layer with 128 units,
followed by a dropout layer to further stop overfitting. The network concludes with
another Dense layer that outputs the class predictions using the loss function.

11



2.4. Training and Testing Strategy

Table 4 shows the values of the hyperparameters used for the training of the model.

Parameter Value

Optimizer Adam

Activation ELU

Padding Valid

Pool Size [4, 1]

Loss function Categorical cross-entropy
Batch size 256

Epochs 10

Table 4. The hyperparameters of the developed Neural Network.

For the hyperparameters of the model, the Adam optimizer shown in Equation 2 is used
as its optimization algorithm. Its widely used in Neural Network development as it is
effective and efficient in training [13]. The loss function is set as categorical cross-
entropy as itis commonly used for classification problems.

H(y,y) = — Z yilog(®;)

Equation 2. The categorical cross-entropy function. y is the true class

distribution while y is the predicted class distribution.
Categorical cross entropy compares the output given from the previous soft max
function, which the output contains the probabilities of the classes the signal belongs
to. The highest probability is the one that the signal belongs to.

For the Convolutional Layer, the Exponential Linear Unit (ELU) shown in Equation 3 is
chosen as the activation function as it can handle negative inputs. The activation
function is used to determine the output of each node in the neural network. They are
crucial as they determine whether a neuron is activated or not. If a neuron is not
activated, the value is not passing through the rest of the Neural Network.

X x>0

f(x)zia(ex—l)xso

Equation 3. The Exponential Linear Unit function. y is the true class distribution
while y is the predicted class distribution. x is the input of the function, and a is
the parameter that controls the negative values. The default value of a is 0.

12



Itis computationally more expensive than RelLU, but it allows for faster learning, while
also preventing dead neurons (if their output is zero, a common problem in ReLU) as it
allows the negative values.

The Convolutional Layer also supports padding, and the parameter for it is set as Valid.
This is done as to not extend the window size by adding zeroes which may introduce
artifacts near the borders of the signal.

The Max Pooling 2D layer allows for the parameterization of its pool size. This value is
set at [4, 1], as the objective of the layer is to focus on the most important features of
the timesteps but keep the number of channels intact.

Finally, for the training of the model, the batch size has been set to 256 with 10 epochs
of training. The batch size can be changed as it does not affect the training results. The
epochs have been set to 10, as after that the model starts overfitting.

Below are the shapes and sizes of the inputs in the 3 executions made for the dataset.
The final arrays are stated like [all sighals, channels, sighal size]

Afterwards the data is splitinto Train, Test and Validate sets with them being shown in
Table 5.

Data Percentage
Train Data 70%
Test Data 15%
Validation Data 15%

Table 5. Represents the percentages chosen to split the data into Train, Test and Validate sets.

2.5. Experiments

2.5.1. Comparative Models

For this thesis, different models were introduced to compare their results against the
baseline model using the same data.

At first, a shallow Long Short-Term Memory (LSTM) Model was introduced.

Layer (Type) Output Shape
lstm (LSTM) (None, 821, 16)
batch_normalization (None, 821, 16)
(BatchNormalization)

lstm_1 (LSTM) (None, 32)
batch_normalization_1 (None, 32)
(BatchNormalization)

dense (Dense) (None, 32)

dense_1 (Dense)

(None, classes)

Table 6. The model architecture of the LSTM model.

13



The LSTM model is a recurrent neural network, which is particularly effective for working
with sequential data, such as an EEG signal. LSTM models are not often used in EEG
classification problems on their own (Figure 2), so an attempt had been made to
benchmark it against the developed model. The architecture of the model is shown in
Table 6.

The second modelis a CNN with 1D convolutional layers.

Layer (Type) Output Shape
convid (Conv1D) (None, 814, 32)
activation (Activation) (None, 814, 32)
max_pooling1d (None, 203, 32)
(MaxPooling1D)

batch_normalization (None, 2083, 32)
(BatchNormalization)

spatial_dropoutid (None, 2083, 32)
(SpatialDropout1D)

Conv1d_1 (Conv1D) (None, 196, 64)
activation_1 (Activation) (None, 196, 64)
max_pooling1d_1 (None, 49, 64)
(MaxPooling1D)

batch_normalization_1 (None, 49, 64)
(BatchNormalization)

spatial_dropout1d (None, 49, 64)

(SpatialDropout1D)
global_average_poolingld (None, 64)
(GlobalAveragePooling1D)

dense (Dense) (None, 64)
dense_1 (Dense) (None, 4)

Table 7. The model architecture of the 1D CNN model.

A 1D CNN model was introduced as to compare it with its 2D counterpart. The 1D
convolutional layer uses a kernel, which goes through each channel, unlike its
counterpart which can go through the whole sighal at the same time. The architecture of
the model is shown in Table 7.

14



2.5.2. Data Experiments

In the data preparation phase, experiments have been made on the EEG Signals to
further customize the data, as to provide better results in the baseline model’s training.

The first approach was to select specific channels, which have been shown to provide
information related to the MM/MI signals. Numerous studies [14] have been made to
identify which channels have been shown to affect motor imagery classifications the
most. For this thesis 17 prevalent channels have been chosen out of 64. The 17
channels are depicted in Figure 5.

Figure 5. The selected channels on the 10-10 international system [C3, C4, Cz,

Cp3, Cp4, Cpz, Fc3, Fc3, Fcz, F3, F4, Fz, P3, P4, Pz, T7, T8]. [15]
By using less channels that focus on precise information from the brain, an attempt to
train the model with more specialized data can be made, as to verify the significance of
the channels. This can be done by choosing the channels before processing the signal.

The second approach was to use a method to remove artifacts from the EEG signal.
ICA is a popular method used for artifact removal in EEG data. Artifacts can be eye
blinks, muscle movements, and heartbeats that are often mixed with the brain signals.
ICA can separate the artifacts from the brain signal as shown in Figure 6 allowing for a
clearer overview of the neural activity.

By using ICA, an attempt to train the model with less noise caused during the recording
session can be made, as to verify the significance of the noise. The function used in the
program was provided by MNE. For proper application of the ICA method, in
preprocessing, the band pass filter was adjusted to start from 1.0 Hz as it improves the
results.

15



Original EEG ICA Components Corrected EEG
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Figure 6. (left) A 5-sec portion of an EEG time series. (center) ICA components
accounting for eye movements, cardiac signals, and line noise sources. (right)
The same EEG signals corrected for artifacts by removing the ve selected
components. [16]

The algorithm used in the parameters was Infomax, as itis more robust than FastICA,
and FastICA was not able to converge on the dataset that was provided. The number of
components chosen was 20.

The third approach is to combine the specialized channels and the ICA method to train
the model with more specialized data inputs rather than the general data given from the
start.
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3. Results

3.1. Baseline Model

Using the developed baseline model in combination with lightly processed data, 3
different executions were made with 2, 4 and 8 classes.

The results of the executions are shown in Table 8.

2 Classes 4 Classes 8 Classes
Accuracy Loss Accuracy Loss Accuracy Loss
Fit 0.8617 0.3105 0.6495 0.8982 0.4217 1.5438
Evaluation | 0.8024 0.4382 0.5859 1.0887 0.3460 1.7515
Prediction 0.8005 0.4461 0.5801 1.0995 0.3486 1.7361

Table 8. The results of the developed model’s executions on 2, 4 and 8 classes.

The model achieves good results, 30% above the random base chance of 50% and it is
comparable to the research paper [8] with an accuracy of 80.4%, which also works with
two classes. It shows signs of overfitting after the preselected 10 epochs.

The input data is [4927, 64, 821] and the distribution of the two classes is shown in

Table 9.
Classes Size
LeftHandAction 2471
RightHandAction 2456

Table 9. Data distribution on 2 Classes.

For the 2 classes, the confusion matrix on Table 10 shows that the data is preferring the
right hand over the left hand in training.

Predicted Classes

Classes LH RH
Actual LH 0.79 0.21
Classes RH 0.18 0.82

Table 10. The 2 Class Confusion Matrix of the baseline model. LH stands for
Left hand and RH stands for right hand.

17



The classification graph on Figure 7 shows that after the 9th epoch the model slowly
starts overfitting.

Training and Validation Accuracy

—e— Training Accuracy
—e— Validation Accuracy

0.80 -

2 4 6 8 10
Epochs

Figure 7. 2 Class classification graph.

The second execution features 4 classes. The classes selected were Left-hand, Right-
hand, both feet and Both hands action movement. The input data size is [9836, 64, 821]
and the distribution of the classes is shown in Table 11.

Class Size
LeftHandAction 2471
RightHandAction 2456
BothHandsAction 2469
BothFeetAction 2440

Table 11. Data distribution on 4 Classes.

As per Table 8, The model seems to work relatively well on 4 classes, achieving an
accuracy higher than the random baseline of 25%.

For the 4 classes, the confusion matrix on Table 12 shows that the model predicts Left-
Hand and Right-Hand movements more accurately than Both Feet or Both Hands.

Predicted Classes

Classes LH RH BF BH

LH 0.64 0.08 0.11 0.17

Actual RH 0.12 0.65 0.12 0.12
Classes BF 0.14 0.13 0.57 0.16
BH 0.16 0.20 0.17 0.47

Table 12. The 4 Class Confusion Matrix of the baseline model. LH stands for
Left hand, RH stands for right hand, BF stands for Both feet and BH stands for
Both hands.
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Figure 8. 4 Class classification graph.

For the third execution features 8 classes. The classes selected were all the action and
imagery movements. the data size is [19674, 64, 821] and the distribution of the classes
is shown in Table 13.

Label Size
LeftHandAction 2471
RightHandAction 2456
BothHandsAction 2469
BothFeetAction 2440
LeftHandimagination 2480
RightHandImagination 2438
BothHandsImagination 2465
BothFeetlmagination 2455

Table 13. Data distribution on 8 Classes.

As per Table 8, the model seems to struggle with 8 classes, but still achieving results
higher than the random baseline of 12.5%
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Table 14 Showcases that the model struggles in half of the classes but performs better
in some others.

Actual
Classes

The classification graph shows that after the 9th epoch the model slowly starts

overfitting.

Predicted Classes

Classes | LHa LHi BHa BHi RHa RHi BFa BFi
LHa 0.41 0.25 0.07 0.07 0.06 0.04 0.06 0.03
LHi 0.31 0.39 0.03 0.08 0.04 0.03 0.15 0.05
BHa 0.12 0.09 0.25 0.21 0.12 0.07 0.75 0.05
BHi 0.08 0.11 0.15 0.29 0.09 0.11 0.10 0.07
RHa 0.04 0.04 0.06 0.07 0.40 0.30 0.07 0.03
RHi 0.05 0.05 0.04 0.08 0.26 0.42 0.05 0.06
BFa 0.09 0.05 0.08 0.06 0.08 0.06 0.37 0.21
BFi 0.06 0.08 0.06 0.12 0.06 0.11 0.26 0.26

Table 14. The 8 Class Confusion Matrix of the baseline model. LH stands for
Left hand, RH stands for right hand, BF stands for Both feet and BH stands for
Both hands. The a stands for action and the i stands for imagery.
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Figure 9. 8 Class classification graph.
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3.2. Experiment Results

3.2.1. Baseline Model compared to the Comparative Models

The execution for the comparison of the 3 models, is done on the same lightly
preprocessed data. The input data size is the same as the baseline model, shown in

Table 8.

The classes selected were Left-hand and Right-hand action movement. The results of
the executions are shown on Table 15 and Table 16.

Baseline 2D CNN LSTM 1D CNN
Accuracy Loss Accuracy Loss Accuracy Loss
Fit 0.8617 0.3105 0.7231 0.5642 0.6388 0.6386
Evaluation 0.8024 0.4382 0.5131 0.6958 0.6388 0.6081
Prediction 0.8005 0.4461 0.5321 0.6932 0.6727 0.6065
Table 15. Prediction results on all the models used. The 2D CNN solution
outperforms the shallow LSTM and the 1D CNN.
Model Accuracy Precision Recall F-Score Training
Left Right Left Right Left Right Time
Baseline 80% 81% 80% 79% 82% 80% 81% 37s
LSTM 53% 53% 54% 62% 45% 57% 49% 70s
1D CNN 67% 69% 63% 55% 76% 61% 68% 20s

Table 16. The precision, recall and F-score of the models.

The 2D CNN outperforms the other two models, with its higher accuracy and lower loss
values. The LSTM Model underperforms severely on the data. In Table 17, the
differences in training can be seen, as the two other models are classifying the two
classes properly.

Actual
Classes

Baseline Model LSTM 1D CNN
Classes LH RH LH RH LH RH
LH 0.79 0.21 0.62 0.38 0.55 0.45
RH 0.18 0.82 0.55 0.45 0.24 0.76

Table 17. The confusion matrixes of the models.

Predicted Classes

The LSTM model quickly overfits and does not perform above the random baseline of

50% as per Figure 10.
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Figure 10. LSTM classification graph.

T
10

The 1D CNN model trains well on the data, but 10 epochs are not enough for the model

to train completely on the data.
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Figure 11. 1D CNN classification graph.

3.2.2. Baseline Model on the Data Experiments

For the execution of the baseline model with different techniques, the data is of variable

length.
Baseline Data 17 Channels ICA 17Ch+ICA
Accuracy Loss | Accuracy Loss | Accuracy Loss | Accuracy Loss
Fit 0.8617 0.3105| 0.8595 0.3277| 0.8639 0.3107 | 0.8527 0.3341
Evaluation | 0.8024 0.4382 | 0.7932 0.4595| 0.8050 0.4259 | 0.7835 0.4953
Prediction | 0.8005 0.4461 | 0.7775 0.4727 | 0.8059 0.4368 | 0.7707 0.5080

Table 18. Prediction results on all the different data techniques. The data with
ICA artifact removal and the data with no techniques applied to it bring similar

results.

Table 18 depicts that the data with ICA and the data with no methods applied to it, bring
similar results.
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Model

Baseline

17 Channels

ICA
17Ch +ICA

Accuracy

80%
77%
80%
77%

Precision
Left Right
81% 80%
76% 79%
82% 79%
82% 74%

Recall
Left Right
79% 82%
81% 75%
79% 82%
70% 84%

F-Score
Left Right
80% 81%
78% 77%
80% 81%
75% 79%

Table 19. The precision, recall and F-score of the different techniques.

Training
Time
37s
23s
51s
23s

Table 19 in combination with Table 20, depicts that the data with ICA is much more
consistent, because the data with no processing is more biased towards left hand

movements.
Baseline Data 17 Channels ICA 17 Ch +ICA
Classes LH RH LH RH LH RH LH RH
Actual LH 0.75 0.25 0.81 0.19 0.79 0.21 0.70 0.30
Classes RH 0.15 0.85 0.25 0.75 0.18 0.82 0.16 0.84

Predicted Classes

Table 20. The confusion matrix of the different methods.
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Figure 12. 2 Class 17 Channels classification graph.

The model trained on 17 channels seem to overfit early, and the final prediction

percentage is lower as per Table 19. Figure 12 shows that the model starts to struggle

after the 5" epoch. A shallower model may provide better results.
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Figure 13. 2 Class ICA classification graph.

The results on Table 19 and Table 20 showcase that using ICA does give some
improvements in the categorization of the classes. A deeper Neural Network or changes
to the parameters of the model’s layers may provide even better results in the future.
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Figure 14. 2 Class 17 Channels ICA classification graph.

The final accuracy with the 2 techniques is lower than the implementation without
them. Just as the implementation with only the selected channels, it may require a
shallower Neural Network, as the developed model overfits quickly.
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4. Discussion

This project attempted to provide alternative and efficient model for classifying EEG
data, by treating the small segments of MM/MI signals as images using 3D arrays. The
CNN model developed using 2D Convolutional Layers, captures spatial dependencies
from all the channels which helps with classification. The data contains only the motor
or imagery movements without the sections where the participants rest, which were cut
according to the annotations provided within PhysioNet’s dataset. The model developed
in combination with limited preprocessing, is an efficient approach, as the accuracy is
comparable to similar studies handling EEG cross-subject classification.

The model was tested as a baseline against other simple models with similar structure
as the baseline using the same preprocessed data, specifically an LSTM and a 1D CNN.
The results provide evidence that using a 2D CNN with this setup can produce better
results.

Experiments were also done to see how the model performs when using different
preprocessing techniques on the original data. Unlike using less channels, Table 20
shows that using ICA improves the results by being more consistent, because the data
with no processing is more biased towards left hand movements.

One of the limitations is that this model was only tested on the PhysioNet dataset.
Further research is needed to test the model on other datasets, as they may have
recorded the data using different techniques.

More research could be done by introducing different models or customizing the
experimented ones to further support the preprocessed data. Further research can also
be done on the techniques involving less channels, by adjusting and improving the
Model to the new requirements.

In summary, the 2D Convolutional Neural Network that was developed, combined with
slightly processed segmented data, provided a quick and efficient classifier for EEG
motor-based data, with results comparable to other studies.
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5. List of Acronyms

EEG

BCI

Ml
EEGMMIDB

EDF
MNE
CNN
ICA

ELU
LSTM

Electroencephalogram
Brain-Computer Interface
Motor Imagery
Electroencephalogram Motor
Movement/Imagery Dataset Bank
European Data Format
Magnetoencephalography
Convolutional Neural Network
Independent Component
Analysis

Exponential Linear Unit

Long Short-Term Memory
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