

MSc Thesis

Enhancing Sales Forecasting: Leveraging

Retail Sales Data for Advanced AI Predictive

Models

by

Vasileios Karlis

Submitted

in partial fulfilment of the requirements for the degree of

Master of Artificial Intelligence

at the

UNIVERSITY OF PIRAEUS

February 2024

University of Piraeus, NCSR “Demokritos”. All rights reserved.

Author . Vasileios Karlis

II-MSc “Artificial Intelligence”

Month 02, 2024

Certified by. Michael Filippakis

Professor at

University of

Piraeus

Thesis Supervisor

Certified by. Ilias Maglogiannis

Professor at

University of

Piraeus

Member of

Examination
Committee

 Certified by. Maria Halkidi

Associate Professor
at University of

Piraeus

Member of

Examination
Committee

3

Enhancing Sales Forecasting: Leveraging Retail Sales

Data for Advanced AI Predictive Models

By

Vasileios Karlis

Submitted to the II-MSc “Artificial Intelligence” on Month 02, 2024, in

partial fulfillment of the
requirements for the MSc degree

Abstract

This thesis aims to improve sales forecasting in the retail sector through the application

of advanced Artificial Intelligence techniques. It addresses the issue of fluctuations in

retail sales, which are influenced by a variety of external factors, including economic

changes and shifts in consumer behavior. The study develops and evaluates multiple AI

forecasting models, such as FBProphet, NeuralProphet, XGBoost, LSTM, TFT and

TimeGPT, to enhance the accuracy and flexibility of predictions. Moreover, the thesis

provides an in-depth comparison between conventional time series forecasting methods

such as ARIMA and the aforementioned machine and deep learning approaches. The

findings underscore the superior performance of state-of the-art AI-based models in

handling complex patterns and adapting to new data, thereby providing more accurate

and adaptable sales forecasts. Additionally, the thesis emphasizes the importance and

impact of thorough data preprocessing.

Thesis Supervisor:

Michael Filippakis

Title:

Professor at University of

Piraeus

 -i-

Acknowledgments

Any opinions, findings, conclusions or recommendations expressed in this

material are those of the author and do not necessarily reflect the views of

the «funding body» or the view of University of Piraeus and Inst. of

Informatics and Telecom. of NCSR “Demokritos”.

This thesis was prepared and submitted as part of the requirements for the

Inter-institutional Postgraduate Program "Artificial Intelligence," a

collaborative effort between the University of Piraeus and NCSR

Demokritos. I extend my deepest gratitude to my supervisor, Prof. Michael

Filippakis, whose unwavering support, guidance, and advice have been

instrumental throughout my journey in completing this master's thesis. His

invaluable assistance was essential for the fruition of this work.

I would also like to express my sincere appreciation to all the professors

and researchers of the program for their valuable knowledge and insights

into the field of artificial intelligence, which have greatly enriched my

learning experience.

Lastly, I must extend my heartfelt thanks to my family and friends, who

have provided me with endless support and encouragement during this

period. Their presence and backing have been a constant source of strength

for me. Special thanks go to my dog, Kevin, who patiently waited for my

research and studies to conclude, so we could enjoy our walks together. His

companionship has been a comforting and cherished part of this journey.

 -3-

Content

CONTENT ..3

LIST OF FIGURES... 5

LIST OF TABLES ... 6

1 INTRODUCTION .. 8

1.1 PROBLEM DESCRIPTION ... 8

1.2 MOTIVATION ... 9

1.3 THESIS OUTLINE ... 10

2 PROBLEM DEFINITION ... 11

3 RELATED WORK ... 13

4 METHODS ... 15

4.1 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE – (ARIMA) 16

4.2 FBPROPHET .. 17

4.3 NEURALPROPHET .. 19

4.4 XGBOOST.. 20

4.5 LONG SHORT-TERM MEMORY (LSTM) ... 22

4.6 TEMPORAL FUSION TRANSFORMER (TFT) ... 26

4.7 TIMEGPT .. 28

5 EXPERIMENTS .. 31

5.1 EXPERIMENTAL SETTING ... 31

5.1.1 Dataset .. 31

5.1.2 Metrics ... 42

5.1.3 Models Hyperparameters ... 47

5.2 RESULTS .. 53

5.2.1 Monthly Results ... 54

5.2.2 Daily Results ... 56

-4-

6 CONCLUSION AND FUTURE WORK .. 60

7 REFERENCES .. 63

 -5-

 List of Figures

FIGURE 1: WEEKLY SALES (ANSPRACHE) IN EUROS (×1000) [1] ... 9

FIGURE 2: STRUCTURE OF THE LSTM CELL. .. 25

FIGURE 3: TFT ARCHITECTURE. TFT INPUTS STATIC METADATA, TIME-VARYING PAST INPUTS AND TIME

VARYING A PRIORI KNOWN FUTURE INPUTS. VARIABLE SELECTION IS USED FOR JUDICIOUS

SELECTION OF THE MOST SALIENT FEATURES BASED ON THE INPUT. GATED RESIDUAL NETWORK

BLOCKS ENABLE EFFICIENT INFORMATION FLOW WITH SKIP CONNECTIONS AND GATING LAYERS.

TIME-DEPENDENT PROCESSING IS BASED ON LSTMS FOR LOCAL PROCESSING, AND MULTI-HEAD

ATTENTION FOR INTEGRATING INFORMATION FROM ANY TIME STEP [13]. 28

FIGURE 4: INFERENCE OF NEW TIME SERIES. TIMEGPT TAKES THE HISTORICAL VALUES OF THE TARGET

VALUES AND ADDITIONAL EXOGENOUS VARIABLES AS INPUTS TO PRODUCE THE FORECASTS. WE

RELY ON CONFORMAL PREDICTIONS BASED ON HISTORIC ERRORS TO ESTIMATE PREDICTION

INTERVALS [14]. ... 30

FIGURE 5: MONTHLY DATASET SPLITS INTO TRAIN AND TEST SETS. .. 34

FIGURE 6: BOXPLOT FOR MONTHLY TRAIN DATASET. ... 35

FIGURE 7: BOXPLOT FOR MONTHLY TEST DATASET. .. 35

FIGURE 8: DAILY DATASET SPLITS INTO TRAIN AND TEST SETS. ... 37

FIGURE 9: BOXPLOT FOR DAILY TRAINING DATASET BEFORE THE REMOVAL OF THE OUTLIERS. 38

FIGURE 10: BOXPLOT FOR DAILY TESTING DATASET BEFORE THE REMOVAL OF THE OUTLIERS. 38

FIGURE 12: DAILY DATASET SPLITS INTO TRAIN AND TEST SETS AND AFTER REMOVAL OF THE OUTLIERS.

 .. 40

FIGURE 13: BOXPLOT FOR DAILY TRAINING DATASET AFTER THE REMOVAL OF THE OUTLIERS. 41

FIGURE 14: BOXPLOT FOR DAILY TESTING DATASET AFTER THE REMOVAL OF THE OUTLIERS. 41

FIGURE 15: ARIMA DIFFERENCING PLOT .. 49

FIGURE 16: ARIMA ACF PLOT ... 49

FIGURE 17: ARIMA PACF PLOT .. 50

FIGURE 18: NEURALPROPHET LOSS FUNCTIONS MONTHLY. .. 55

FIGURE 19: NEURALPROPHET LOSS FUNCTION DAILY. .. 57

FIGURE 20: LSTM LOSS FUNCTION DAILY. ... 57

FIGURE 21: TFT LOSS FUNCTION DAILY. .. 58

-6-

 List of Tables

TABLE 1: INITIAL COLUMNS OF THE DATASET .. 32

TABLE 2: DATASET COLUMNS AFTER FIRST CLEANING PROCESS. .. 32

FINALLY, FOR THE MONTHLY PREDICTION PROBLEM, FIVE DIFFERENT MODELS WERE USED: ARIMA,

FBPROPHET, NEURALPROPHET, XG-BOOST, TIMEGPT. THE TABLE 3 PRESENTS THE COLUMS,

I.E., THE COLUMNS THAT WERE UTILIZED FOR EACH MODEL. ... 35

TABLE 4: COLUMNS ARE USED IN EACH MODEL OF THE MONTHLY DATASET .. 36

TABLE 5: COLUMNS ARE USED IN EACH MODEL OF THE DAILY DATASET .. 42

TABLE 6: NEURALPROPHET HYPERPARAMETERS. .. 51

TABLE 7: XGBOOST HYPERPARAMETERS. .. 51

TABLE 8: TIMEGPT HYPERPARAMETERS. ... 52

TABLE 9: LSTM HYPERPARAMETERS. .. 53

TABLE 10: TFT HYPERPARAMETRS. ... 53

TABLE 11: MEAN AND STANDARD DEVIATION OVER 10 INDEPENDENT EXPERIMENTS FOR MONTHLY TEST

SET. ... 56

TABLE 12: MEAN AND STANDARD DEVIATION OVER 10 INDEPENDENT EXPERIMENTS FOR DAILY TEST

SET. ... 59

 -7-

List of Abbreviations

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

ARIMA Autoregressive Integrated Moving Average

XGBoost Extreme Gradient Boosting

SVM Support Vector Machines

LSTM Long Short Term Memory

TFT Temporal Fusion Transformers

RNN Recurrent Neural Network

GRU Gated Recurrent Units

MAE Mean Absolut Error

MAPE Mean Absolute Percentage Error

MSE Mean Square Error

ADF Augmented Dickey-Fuller

PACF Partial Auto - Correlation Function

ACF Auto - Correlation Function

-8-

1 Introduction

Sales forecasting in retail is a multifaceted problem, influenced by a myriad of

factors ranging from market trends to unforeseen global events. The retail

sector's susceptibility to various external influences, including economic shifts,

technological advancements, and consumer behavior changes, makes forecasting

a particularly challenging task. This thesis seeks to unravel these complexities by

employing advanced artificial intelligence (AI) techniques, aiming to transcend

traditional forecasting methods and provide more accurate, adaptive, and robust

predictions.

1.1 Problem Description

The primary challenge in retail sales forecasting arises from the unpredictability

of external events. Factors such as severe weather conditions, global pandemics

like COVID-19, and socio-economic changes significantly impact consumer

behavior and sales patterns. These events often lead to anomalies in data, making

it difficult for traditional forecasting models to adapt and maintain accuracy. The

current reliance on models like moving averages in the retail sector has proven

inadequate, as they often fail to capture the nuances and irregularities of the

market. Therefore, there is the need to address these shortcomings and provide a

more effective forecasting approach for a company where the gap between

forecasted and actual sales has been notably wide.

 -9-

Figure 1: Weekly Sales in Euros (×1000) [1]

To overcome the challenges posed by the unpredictability of external events on

retail sales forecasting, it is imperative to adopt more dynamic and resilient

forecasting methods. Advanced techniques, such as predictive analytics and

machine learning, hold the key to enhancing forecasting accuracy by

incorporating a broader spectrum of data inputs, including real-time market

trends, consumer behavior analytics, and external environmental factors. These

models are adept at identifying complex patterns and adapting to new

information, enabling them to adjust forecasts in light of unexpected events more

effectively than traditional methods. By integrating these technologies, retailers

can achieve a more nuanced understanding of market dynamics, allowing for

more accurate and flexible sales predictions. This strategic shift not only helps

bridge the gap between forecasted and actual sales but also empowers retailers to

make informed decisions in a rapidly changing marketplace.

1.2 Motivation

The primary goal of this thesis is to explore and train artificial intelligence (AI)

models with the aim of achieving optimal forecasting accuracy. It is noteworthy

that this work endeavors to offer solutions to a real-world business problem faced

by a company with an annual turnover of approximately 4.5 billion euros.

-10-

This research is motivated by the substantial gap between forecasted and actual

sales figures observed in the company's current forecasting practices. The

reliance on moving averages and other traditional statistical methods has proven

inadequate for capturing the full spectrum of factors influencing sales trends. The

adoption of AI-based forecasting models promises a more nuanced

understanding of these dynamics, offering the potential for more accurate,

timely, and actionable predictions. This thesis aims to bridge the gap between

traditional forecasting methodologies and the advanced capabilities offered by

AI, providing a comprehensive comparison to demonstrate the value added by AI

techniques. Consequently, there is a strong motivation to apply AI methods and

compare them with the techniques currently in use.

1.3 Thesis Outline

In the second section, "2. Problem Definition", the nature of the problem is

described and defined using mathematical formulas. The third section, "3.

Related Work", references the bibliography and presents both traditional and

contemporary approaches that have been made in forecasting time series. In the

"4. Methods" section, the theoretical framework of the models and methods to be

used in this thesis is presented. This chapter will introduce both traditional and

state-of-the-art methods. The "5. Experiments" section provides a detailed

reference to the experimental process. Specifically, it analyses the dataset and the

methods of cleaning and data preprocessing, as well as the results of each model

used. Additionally, it examines the parameters in the models that were utilized.

It also presents the theoretical background of the metrics used in the evaluation

of the forecasting models. Furthermore, this chapter includes an ablation study

that concerns experimental processes with suboptimal results. In the semi-final

chapter, "6. Conclusion and Future Work", a summary of the results of this thesis

is provided, and further work that could be conducted in future research based

on the results and conclusions of this thesis is suggested. The "7. References"

section contains the bibliographic references in IEEE format.

 -11-

2 Problem Definition

This thesis endeavors to encapsulate the challenge into forecasting models

capable of generating both monthly and daily sales predictions. It is crucial to

highlight that daily forecasting presents a greater challenge due to the increased

complexity of the problem. The data exhibit higher variation on a daily basis

compared to monthly figures, and a large number of factors influence daily sales,

making the forecasting task significantly more intricate. The primary challenge

in retail sales forecasting stems from the unpredictability of the aforementioned

external events as profoundly impact consumer behavior and sales patterns.

These events frequently result in data anomalies, posing significant challenges

for traditional forecasting models to adapt and maintain accuracy. The prevalent

reliance on methods like moving averages has been found wanting, as these

approaches often fail to account for the nuances and irregularities present in the

market. This inadequacy underscores the pressing need for a more sophisticated

forecasting approach, especially given the notable discrepancy between

forecasted and actual sales experienced by the company.

Consider a dataset D comprising a sequence of values (Yt, Yt+1, Yt+2, … , Yt+n),

where n represents the total sample size. Here, 𝐘 is the dependent variable,

indicating the outcome or the response that we aim to explain or predict through

our model.

Correspondingly, we have an independent variable X, which consists of features

{Xt, Xt+1, Xt+2, … , Xt+n}. Each 𝑌 is a numeric value, whereas each 𝑋 is a vector that

can contain an arbitrary number of numeric values, representing different

attributes or characteristics that may influence the outcome Y.

The relationship between the dependent variable 𝑌 and the independent variables

𝑋 can be expressed as follows:

-12-

Yt = f(Xt) + ϵt

Where f represents the functional form that models the relationship between 𝑌

and 𝑋, and ϵt denotes the error term at time t, capturing the deviation of the

observed outcomes from those predicted by the model.

The objective of this thesis is to explore and model the underlying relationship

between the dependent and independent variables, employing appropriate

machine and deep learning techniques to accurately predict or explain the

behavior of 𝑌 based on the information contained in 𝑋. By addressing the

limitations of traditional models and adapting to the volatile nature of retail sales,

this research aims to close the gap between predicted and actual sales outcomes.

 -13-

3 Related Work

In previous sections it introduced the necessary need of time series sales

forecasting. These concepts tend to get more and more necessary to create

advanced analytics. That is why a lot of research effort has been addressed

towards that domain and different approaches, based on statistical methods and

machine learning and deep learning have been proposed.

ARIMA and multifactorial linear regression, applied in diverse sectors such as

energy and e-commerce. This comparison underscores the criticality of model

selection, tailored to specific data traits and forecasting needs, to enhance sales

trend predictions and parameter accuracy. This examination aids in

substantiating the theoretical underpinnings and practical applications of these

models in enhancing business decision-making processes [2].

Early efforts in sales forecasting have predominantly relied on statistical models

due to their simplicity and effectiveness in capturing linear trends. The ARIMA

model stands out for its ability to model a wide range of time series data with its

integrated approach to smoothing out data irregularities. Studies have

demonstrated ARIMA's utility in forecasting newspaper sales, showcasing its

relevance in sectors undergoing digital transformation [3].

Another approach in time series forecasting is XGBoost. XGBoost has been used

in time series analysis, focusing on the sales volume in the retail industry. It was

employed due to its superior performance over traditional methods such as

ARIMA, SVM, and others, thereby enhancing prediction accuracy. XGBoost has

demonstrated efficiency and effectiveness in real-world retail sales forecasting

scenarios [4].

In the realm of sales forecasting, the evolution from statistical methods to

machine learning and deep learning has marked significant advancements.

Traditional statistical approaches, while foundational, often fall short in

capturing the dynamic nature of market changes and consumer behavior.

-14-

Machine learning techniques, such as random forests and support vector

machines, have improved forecast accuracy by utilizing a broader range of sales-

related factors. However, their inability to process time-series data directly has

led to the exploration of deep learning methods. Among these, Long Short-Term

Memory (LSTM) networks have demonstrated superior performance in

harnessing the temporal dependencies of sales data. This progression

underscores the continuous quest for more precise and adaptive forecasting

models in the business sector. [5]

The application of deep learning models such as RNN, LSTM, GRU, and

Transformer, In the Time Series Forecasting, has been explored to predict future

values based on past data. Among these, Transformer models have shown

superior performance due to their ability to handle longer-term dependencies

and their use of attention mechanisms. This advancement is particularly evident

in experiments with varying look-back window sizes, where Transformers

outperform traditional models, especially when predicting further into the future.

This shift highlights the evolving landscape of Time Series Forecasting

techniques, underscoring the increasing reliance on deep learning methodologies

for enhanced prediction accuracy.

 -15-

4 Methods

In the methods section of this thesis, we explore a comprehensive suite of

forecasting techniques applied to two distinct types of problems. Our objective is

to evaluate and compare the effectiveness of six advanced forecasting methods:

ARIMA (AutoRegressive Integrated Moving Average), FB Prophet (developed by

Facebook for forecasting with daily observations), Neural Prophet (an extension

of FB Prophet integrating neural network components), XGBoost (eXtreme

Gradient Boosting for regression and classification problems), LSTM (Long

Short-Term Memory networks for sequential data), TFT (Temporal Fusion

Transformers) for interpretable multi-horizon forecasting, and TimeGPT

(leveraging generative pre-trained transformers for time series forecasting). This

diverse array of methodologies encompasses both traditional statistical models

and cutting-edge machine learning algorithms, providing a broad perspective on

the current state of forecasting technology. Through rigorous experimentation,

this section aims to delineate the strengths and limitations of each approach

within the context of our specific forecasting challenges, thereby contributing

valuable insights to the field.

At this point, it is important to briefly mention the definition of time series. Time

series analysis is a statistical technique that deals with time-ordered sequence of

data points. It is widely used in various fields such as economics, finance,

environmental science, and engineering to analyze temporal data, forecast future

trends, and understand patterns over time. All the models used have applications

in time series, and their theoretical background and architecture are described

below.

-16-

4.1 AutoRegressive Integrated Moving Average –

(ARIMA)

The ARIMA model, which stands for AutoRegressive Integrated Moving Average,

is a cornerstone in time series forecasting. This model combines three key

components: autoregression (AR), differencing (I), and moving average (MA), to

capture different aspects of the time series data. The ARIMA model's flexibility in

modeling data with various patterns of temporal dependence makes it a widely

applied tool in economic forecasting, stock market analysis, and many other

fields.

The AR part of the model captures the momentum or the continuation of the time

series from one time point to the next. It is predicated on the assumption that the

current value of the series can be explained as a linear combination of its previous

values. This can be mathematically represented as:

Yt = ϕ1Yt−1 + ϕ2Yt−2 + ⋯ + ϕpYt−p + ϵt,

where(Yt) is the value of the series at time (t), (ϕ1, ϕ2, … , ϕp) are the parameters

of the model, and (ϵt) is white noise.

The I component, standing for "integrated," involves differencing the series to

make it stationary. A series is stationary if its statistical properties, such as mean

and variance, are constant over time. Non-stationary data are differenced until

stationarity is achieved. This process is represented as:

ΔYt = Yt − Yt−1,

where (ΔYt) is the difference between the (tth) and ((t − 1)th) observations. For a

series that requires (d) differences to become stationary, this process can be

extended to (ΔdYt).

 -17-

The MA part models the error of the series as a linear combination of error terms

from the past. The idea is that the current value of the series can be affected by

previous forecast errors. This is represented as:

Yt = ϵt + θ1ϵt−1 + θ2ϵt−2 + ⋯ + θqϵt−q

where θ1, θ2, … , θq are the parameters of the model, and ϵt is white noise.

Combining these components, the ARIMA model can be expressed as:

ϕ(B)ΔdYt = θ(B)ϵt,

 where ϕ(B)and θ(B) are the polynomials of the lag operator (B) corresponding

to the AR and MA parts, respectively. The model is typically denoted as

ARIMA(p,d,q) [6], where p is the order of the AR term, d is the degree of

differencing, and q is the order of the MA term.

The ARIMA model was first introduced by George Box and Gwilym Jenkins [7] in

the early 1970s, revolutionizing the way statistical analysis of time series data was

conducted. Their seminal work, "Time Series Analysis: Forecasting and Control,"

laid the foundation for the ARIMA model's theoretical background and its

application to real-world data. The model's comprehensive approach to

understanding and forecasting time series data has made it a standard tool in the

statistical analysis toolkit.

4.2 FBProphet

FBProphet [8] is a forecasting model developed by Facebook to address the

challenges of producing reliable and high-quality forecasts for a variety of time

series data, especially in scenarios where there is a scarcity of time series

-18-

modeling expertise. It is designed as a decomposable model with three main

components: trend, seasonality, and holidays, which are combined in a way that

allows for easy adjustments by analysts without deep statistical training. The

model is formulated as:

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡

 where 𝑔(𝑡)models non-periodic changes (trend), 𝑠(𝑡) captures periodic changes

(seasonality), and ℎ(𝑡) accounts for effects of holidays on potentially irregular

schedules, with 𝜖𝑡 representing any idiosyncratic changes not captured by the

model.

FBProphet utilizes a flexible trend model that can accommodate both linear and

logistic growth trends, with the capability to automatically detect points of

significant change in the trend (changepoints) and adjust the forecast

accordingly. This model's trend component can be modified to incorporate

domain knowledge through adjustable parameters like carrying capacity in the

logistic growth model, providing a practical way for analysts to include their

expertise.

For seasonality, FBProphet leverages Fourier series to model complex seasonal

patterns, allowing for flexible representation of cyclical behaviors in the data. The

model also uniquely handles holidays and special events by including them

explicitly in the forecast, enabling it to predict unusual changes in the trend that

regular seasonal or trend components might miss.

FBProphet emphasizes the role of the analyst in the modeling process, providing

a framework that combines automated forecasting with the ability to manually

adjust and improve forecasts based on domain knowledge. This approach is

encapsulated in the "analyst-in-the-loop" concept, where the model's intuitive

and interpretable parameters enable analysts to refine forecasts without needing

extensive statistical training.

 -19-

Theoretical aspects of FBProphet, including its model components and fitting

process, are detailed in the paper "Forecasting at Scale" by Taylor and Letham,

which outlines the rationale behind the model's development and its application

to real-world forecasting problems.

4.3 NeuralProphet

The theoretical foundation of NeuralProphet [9] is predicated on extending the

Prophet forecasting model through the integration of neural networks, thereby

enhancing its predictive accuracy and flexibility. At its core, NeuralProphet is

designed to model time series data by decomposing it into several interpretable

components, such as trend, seasonality, and holidays, similar to its predecessor,

Prophet. However, it distinguishes itself by leveraging neural networks to model

these components more effectively, especially for capturing complex patterns and

dependencies.

NeuralProphet models trends using a piece-wise linear or logistic growth curve,

allowing for flexibility in capturing shifts in the trend over time. This is achieved

through the specification of changepoints at which the growth rate is allowed to

change. The trend component 𝑇(𝑡) can be expressed as a function of time 𝑡, with

adjustments made at changepoints to account for shifts in trend direction or

magnitude.

Seasonality is captured using Fourier series to allow for the modeling of complex

seasonal patterns. For each seasonality component 𝑆(𝑡), a Fourier series is used

to model cyclic changes based on the frequency of the seasonality (e.g., daily,

weekly, yearly). This approach enables the model to capture both regular and

irregular seasonal effects.

NeuralProphet can incorporate the impact of holidays and special events by

including additional regressors 𝐻(𝑡) in the model. This allows for the adjustment

of forecasts based on known events that are expected to impact the time series.

-20-

A significant enhancement introduced by NeuralProphet is the AR-Net, an auto-

regressive neural network that models the dependency of future values on past

values. This component 𝐴𝑅(𝑡) enables the model to capture temporal

dependencies and autocorrelations within the time series data, improving

forecast accuracy for series with strong auto-regressive patterns.

The final forecast 𝑌(𝑡) is obtained by summing the contributions from each

component:

𝑌(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝐻(𝑡) + 𝐴𝑅(𝑡) + 𝜖𝑡,

where 𝜖𝑡 represents the error term.

NeuralProphet's use of neural networks not only enhances its ability to model

complex relationships within the data but also introduces greater flexibility in

handling various types of seasonality and trends. The model is trained using

stochastic gradient descent (SGD), optimizing a loss function that is typically the

Huber loss to mitigate the influence of outliers. This model architecture facilitates

the development of highly accurate, scalable, and interpretable forecasts for a

wide range of time series forecasting applications.

4.4 XGBoost

XGBoost [10] stands for eXtreme Gradient Boosting, a scalable and efficient

implementation of gradient boosting framework. The theoretical background of

XGBoost is based on the principle of gradient boosting, which involves

constructing new models that predict the residuals or errors of prior models and

then combining these models through a weighted sum to make the final

prediction. XGBoost improves upon the traditional gradient boosting method by

introducing a regularized model formalization to control over-fitting, which

makes it effective for a wide range of data science problems.

 -21-

The objective function in XGBoost is a combination of a loss function that

measures the difference between the predicted and actual outcomes, and a

regularization term that penalizes complex models to prevent overfitting.

Mathematically, the objective function can be written as:

𝐿(𝜙) = ∑ 𝑙(𝑦𝑖, 𝑦�̂�)𝑖 + ∑ Ω(𝑓𝑘) 𝑘

Where 𝐿(𝜙) is the total loss to be minimized, 𝑙(𝑦𝑖, 𝑦�̂�) is the loss function that

measures the difference between the actual value 𝑦𝑖 and the predicted value (𝑦�̂�),

and Ω(𝑓𝑘) is the regularization term that penalizes the complexity of the model.

The regularization term is composed of both the number of leaves in the tree, to

control the model's complexity, and the magnitude of the leaf weights, to

encourage simpler models that generalize better. The regularization term Ω(𝑓𝑡)

is defined as:

Ω(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆||𝜔||

2

where 𝑇 is the number of leaves in the tree, 𝜔 are the scores on the leaves, 𝛾

is the penalty on the number of leaves, and 𝜆 is the L2 regularization term on

the weights.

XGBoost also introduces several system-level optimizations for model training

and prediction, such as a sparsity-aware algorithm for handling missing data, a

weighted quantile sketch for efficient split finding, and parallel and distributed

computing to speed up computations. These optimizations enable XGBoost to

efficiently handle large-scale and sparse data, making it a powerful tool for a wide

range of machine learning tasks.

To tailor the XGBoost algorithm for time series forecasting [4], the dataset is

transformed into a supervised learning problem, incorporating lagged

observations as features to predict future values. This transformation allows the

-22-

algorithm to capture temporal dependencies essential for accurate forecasting.

The effectiveness of this approach is validated through extensive experiments,

demonstrating the algorithm's capability to provide precise forecasts,

highlighting its potential for application in various time series forecasting

scenarios.

This methodological approach combines theoretical rigor with practical

application, ensuring that the forecasting model not only captures the underlying

patterns in the data but also remains generalizable and efficient in handling new,

unseen data.

4.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) [11] networks represent a significant

advancement in the field of deep learning, particularly for processing sequences

such as time series, language, and other ordered data. Developed by Sepp

Hochreiter and Jürgen Schmidhuber in 1997, LSTMs were designed to overcome

the limitations of traditional Recurrent Neural Networks (RNNs), especially the

difficulty in learning long-range dependencies due to the vanishing gradient

problem. This problem arises during the training of standard RNNs, where the

gradients, essential for updating network weights through backpropagation, tend

to either shrink to insignificance (vanish) or grow excessively large (explode) as

they propagate back through time in the network, making it challenging to learn

dependencies between distant elements in a sequence.

The architecture of LSTM networks is specifically crafted to address this issue. It

consists of a series of recurrently connected blocks, known as LSTM cells or units,

each designed to regulate the flow of information. The central component of an

LSTM cells is the cell state, which acts like a conveyor belt, running straight down

the entire chain of the network. It has the ability to add or remove information,

regulated by structures known as gates.

 -23-

LSTMs possess three gates, each performing a specific function: the forget gate

decides which information should be discarded from the cell state; the input gate

updates the cell state with new information; and the output gate controls the

output to the next hidden state. The forget gate takes the previous hidden state

and the current input, applies a sigmoid function, and outputs a number between

0 and 1 for each number in the cell state, indicating whether to retain or discard

the information. The input gate filters out certain information from the current

state and the previous hidden state through a sigmoid function and

simultaneously, a tanh layer creates a vector of new candidate values. These

candidates are then scaled by the output of the sigmoid gate and added to the cell

state, thus updating it with new information. The output gate applies a sigmoid

function to the current input and the previous hidden state, deciding which parts

of the cell state will be output. Then, it passes the cell state through a tanh

function (to normalize the values) and multiplies it by the output of the sigmoid

gate, determining the next hidden state, which is used for predictions and passed

to the next time step.

The mathematical formulations that govern these operations in an LSTM cell

include equations for each gate's operation. The forget gate's operation is

described by:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

the input gate's workings are captured by:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

and the candidate layer by:

𝐶�̃� = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

-24-

the cell state is updated as:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃�

and the output gate's function is represented by:

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

and the new hidden state as:

(ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡))

In these equations, 𝜎 denotes the sigmoid activation function, (tanh)is the

hyperbolic tangent function, 𝑊 and 𝑏 represent the weights and biases

associated with each gate, and [ℎ𝑡−1, 𝑥𝑡] symbolizes the concatenation of the

previous hidden state and the current input. The element-wise multiplication is

denoted by ∗ , and  𝐶𝑡 , and ℎ𝑡 are the cell state and hidden state at time 𝑡,

respectively. Figure 2 summarizes the above operation.

The elegance of LSTM lies in its ability to selectively remember patterns for long

durations of time and its efficacy in dealing with the vanishing gradient problem.

This selective memory is achieved through the intricate interplay of its gates,

which learn what to retain and what to discard. As a result, LSTMs are

particularly suited for tasks where the understanding of context, spread over long

sequences, is crucial.

LSTMs have been widely applied in various domains, showcasing their versatility

and effectiveness. In natural language processing, they are used for tasks like

language modeling, text generation, and sentiment analysis. They have also been

pivotal in the development of machine translation systems and speech

 -25-

recognition technology. Beyond language, LSTMs have found applications in

time-series analysis, such as predicting stock market movements or weather

patterns.

Training LSTMs, however, is not without its challenges. The complexity of their

architecture can lead to a substantial computational overhead. Moreover, the

design of the network architecture and the tuning of hyperparameters require

careful consideration and experimentation. Despite these challenges, the benefits

of LSTMs in learning from and making predictions based on long sequences of

data have solidified their position as a key tool in the deep learning toolkit.

In summary, the development of LSTM networks marked a significant

advancement in the field of deep learning, offering a robust solution to the

problem of learning long-term dependencies. Their unique structure,

characterized by the interplay of the cell state and multiple gates, enables them

to effectively capture temporal relationships in data, a capability that is crucial in

many complex sequence modeling tasks. The theoretical understanding of

LSTMs, from their architecture to the mathematical principles governing their

operation, is essential for leveraging their full potential in a wide range of

applications, particularly those involving intricate sequential data.

Figure 2: Structure of the LSTM cell.

-26-

4.6 Temporal Fusion Transformer (TFT)

The Temporal Fusion Transformer (TFT) [12], represents a sophisticated

approach to multi-horizon time series forecasting that integrates multiple data

inputs—including static, known future inputs, and historical time series data—to

accurately predict future values. By leveraging deep learning techniques, TFT

addresses the challenges of capturing complex temporal relationships and

providing interpretable insights into how different features and their temporal

dynamics influence forecasts. This extended and analytical exploration delves

into the architecture, functionality, and mathematical formulations that

underpin TFT's forecasting capabilities.

At the heart of TFT's architecture are gating mechanisms that enable the model

to manage information flow effectively. These mechanisms are crucial for filtering

out irrelevant features and focusing on the most informative aspects of the input

data for forecasting tasks. By employing a combination of input, forget, and

output gates—similar to those found in LSTM networks—TFT can selectively

remember or forget information, thus capturing long-term dependencies in time

series data.

Variable selection networks within TFT further refine its ability to concentrate on

relevant features. These networks employ attention mechanisms to dynamically

adjust the importance of different input features based on their predictive power.

This not only enhances model performance but also contributes to the

interpretability of the forecasting process, allowing users to understand which

features are most influential in predicting future values.

A key feature of TFT is its use of interpretable multi-head attention mechanisms,

which enable the model to attend to different segments of the input sequence

simultaneously. This is expressed mathematically as:

 -27-

Attention (𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉

where 𝑄, 𝐾, and 𝑉 represent queries, keys, and values respectively, and 𝑑𝑘 is the

dimension of the keys. This mechanism allows TFT to capture complex temporal

patterns and dependencies, enhancing its forecasting accuracy.

TFT combines convolutional layers for local temporal processing with recurrent

layers (or LSTM) to capture global temporal dependencies. This hybrid approach

enables the model to understand both short-term fluctuations and long-term

trends within the data, making it adept at forecasting over multiple horizons.

For probabilistic forecasting, TFT employs a quantile loss function, allowing it to

predict a distribution of possible outcomes rather than just point estimates. The

quantile loss is defined as:

𝑄𝐿𝜏(𝑦, �̂�) = 𝑚𝑎𝑥 (𝜏(𝑦 − �̂�), (𝜏 − 1)(𝑦 − �̂�))

Where y is the true value, y ̂ is the predicted value, and τ is the quantile level. This

approach provides valuable insights into the uncertainty of forecasts, which is

essential for risk management and decision-making processes.

The Temporal Fusion Transformer offers a powerful and interpretable

framework for multi-horizon time series forecasting. By integrating various data

inputs and employing advanced techniques such as gating mechanisms, variable

selection networks, and multi-head attention, TFT can accurately capture

complex temporal dynamics. Its use of quantile loss for probabilistic forecasting

further enhances its utility in real-world applications, providing not only precise

forecasts but also measures of uncertainty. Through this extended exploration,

we gain deeper insights into the theoretical underpinnings and practical

applications of TFT, highlighting its significance in the field of time series

analysis. The architecture of TFT is depicted by Figure 3.

-28-

Figure 3: TFT architecture. TFT inputs static metadata, time-varying past inputs and time varying

a priori known future inputs. Variable Selection is used for judicious selection of the most salient

features based on the input. Gated Residual Network blocks enable efficient information flow

with skip connections and gating layers. Time-dependent processing is based on LSTMs for local

processing, and multi-head attention for integrating information from any time step [13].

4.7 TimeGPT

TimeGPT [14] introduces a groundbreaking approach to time series forecasting

by leveraging the advanced capabilities of foundation models, specifically

designed to address the complexities inherent in predicting future values from

historical time series data. At its core, TimeGPT is a model that capitalizes on the

Transformer architecture, renowned for its self-attention mechanism, to enhance

the forecasting of time series across diverse datasets and domains. This model is

distinctive for its ability to perform robust predictions without the necessity for

retraining on new datasets, thus embodying the principles of transfer learning

and generalization.

The theoretical foundation of TimeGPT is anchored in its unique ability to process

and learn from a vast array of time series data, thereby encapsulating the rich

 -29-

temporal dynamics and patterns prevalent across various fields such as finance,

healthcare, and energy, among others. The model is pre-trained on a substantial

corpus of time series data, encompassing over 100 billion data points from

multiple domains, enabling it to capture a broad spectrum of temporal

dependencies and nuances.

Mathematically, TimeGPT's forecasting capability can be formulated as

estimating the conditional probability distribution:

P(y[t + 1: t + h]|y[0: t], x[0: t + h])

where 𝑦[𝑡 + 1: 𝑡 + ℎ] represents the future values to be forecasted, 𝑦[0: 𝑡]

 denotes the historical observations, and 𝑥[0: 𝑡 + ℎ] encompasses any exogenous

variables that may influence the forecast. The model, denoted by (𝑓θ)

parameterized by θ, learns to approximate this distribution through a training

process that optimizes for prediction accuracy across a wide range of time series

characteristics, including trend, seasonality, and volatility.

The process of transfer learning in TimeGPT is twofold: zero-shot learning and

fine-tuning. Zero-shot learning allows the model to be directly applied to new

forecasting tasks without any additional training, leveraging the knowledge it has

acquired during the pre-training phase. In contrast, fine-tuning involves

adjusting the model's parameters slightly on a target dataset to tailor its

predictions more closely to the specific characteristics of the new task. This dual

approach ensures that TimeGPT is not only versatile across different domains but

also capable of delivering high precision forecasts.

Furthermore, TimeGPT introduces a novel method for uncertainty quantification

in forecasts. By employing probabilistic forecasting techniques, the model

provides not just point forecasts but also prediction intervals, offering insights

into the confidence levels of the forecasts and the potential range of future values.

This aspect is particularly crucial for decision-making processes where

-30-

understanding the uncertainty of predictions can significantly impact the

outcomes.

In conclusion, TimeGPT represents a significant leap forward in the realm of time

series forecasting. By harnessing the power of large-scale pre-trained models and

the Transformer architecture, TimeGPT sets a new standard for accuracy,

efficiency, and generalization in forecasting tasks. Its ability to perform zero-shot

learning and fine-tuning, along with its proficiency in uncertainty quantification,

positions TimeGPT as a versatile and powerful tool for a wide array of forecasting

applications.

Figure 4: Inference of new time series. TimeGPT takes the historical values of the target values

and additional exogenous variables as inputs to produce the forecasts. We rely on conformal

predictions based on historic errors to estimate prediction intervals [14].

 -31-

5 Experiments

5.1 Experimental Setting

In this section, we delve into an in-depth examination of the dataset employed in

this study, offering comprehensive insights into its structure, origin, and the

preprocessing methods applied to ensure its suitability for the analysis

conducted. Furthermore, we provide a thorough explanation of the metrics used

to evaluate the performance and effectiveness of the methodologies

implemented. This includes both the rationale behind the selection of these

metrics and an explanation of how they contribute to a nuanced understanding

of the results obtained.

In our approach towards evaluating the effectiveness of stochastic models, we

conduct a series of 10 independent experiments. This methodology is deliberately

chosen to rigorously assess the variability and reliability of these methods,

thereby capturing the inherent randomness and providing a robust statistical

foundation for our conclusions. In contrast, for deterministic models, where

outcomes are the at every iteration, we perform a single experiment. This

differentiation in experimental design between stochastic and deterministic

models is critical, as it allows for an appropriate evaluation framework that aligns

with the nature of each model type, ensuring that our analysis is both accurate

and reflective of the underlying model characteristics.

5.1.1 Dataset

In this section, we will provide a detailed description of the dataset provided to

us. The initial dataset consists of 788,620 rows, encompassing daily total sales in

euros for the entirety of the company's physical stores as well as its online store.

Chronologically, the dataset spans five calendar years, starting from January 1,

2018, and ending on December 31, 2023. The dataset originally contained 9

columns as described in the Table 1 below:

-32-

Table 1: Initial columns of the dataset

Column Name Description

year The year of sales (e.g. 2019)

month The year of sales (e.g. 11)

week The week of the year (e.g. 44)

week_day The day of the week (e.g. Tue from

Tuesday)

date The date (e.g. 2022-08-20)

store_id The distinct alphanumeric (id) of the

store

store_descr The description of the according to the

address and area

sales_dt The net sales (before tax)

sales The gross sales (after tax)

However, from the aforementioned columns, the [sales_dt] column, which

pertain to pre-tax sales, and [store_descr] and [store_id], which provide

information (ID and Description for each store), were dropped. These columns

were dropped because the problem at hand focuses on predicting the company's

total gross sales rather than sales for each store individually. Therefore, after the

initial data cleaning stage, the dataset comprises the following columns, as

detailed in the Table 2 below. It is noted that the reduction in rows results from

aggregating store sales by date.

Table 2: Dataset columns after first cleaning process.

year month week week_day date sales

At this point, it is important to reference the lags that result from the differences

in sales, which we utilize as features in the XGBoost and LSTM models.

 -33-

Let's assume the current day is t, the day before the forecast begins, then the sales

will be Yt . Thus, the lags can describe as:

Y(t−1) − Y(t−2), 𝑌(𝑡−1) − 𝑌(𝑡−3), . .. , 𝑌(𝑡−1) − 𝑌(𝑡−n)

Subsequently, the dataset is divided into two cases:

• monthly

• daily

Monthly dataset

For the dataset used for monthly predictions, total sales per month are added,

resulting in a dataset with 60 rows, i.e., 12 months for the five years.

Next, the dataset is split into train and test sets. Thus, we keep four years for

training, from 2018 to 2022, and predictions and model evaluations are

conducted for 2023 into test set. In the Figure 5 is presented the train set with

blue color and the test set with orange color. Furthermore, from the Figure 5, we

can observe an increasing trend as well as seasonality. Additionally, we can

identify certain unexpected events, primarily in the period between 2020 and

2022, which are likely attributable to the variations in demand during the

COVID-19 period.

-34-

Figure 5: Monthly dataset splits into train and test sets.

In Figure 6 and Figure 7 present two boxplots. Figure 6 relates to the boxplot for

the training dataset, while Figure 7 pertains to the boxplot for the test set. These

diagrams assist in understanding the differences between the populations. The

distances between various segments of the boxplot reveal the extent of dispersion

and the asymmetry of the data.

However, outliers, in the case of monthly data, are observed in only a few

instances in both the test and train datasets. Therefore, it is not deemed necessary

to apply methods for their removal.

 -35-

Figure 6: Boxplot for monthly train dataset.

Figure 7: Boxplot for monthly test dataset.

Finally, for the monthly prediction problem, five different models were used:

ARIMA, fbProphet, NeuralProphet, XG-Boost, TimeGPT. The Table 3 presents

the colums, i.e., the columns that were utilized for each model.

-36-

Table 4: Columns are used in each model of the monthly dataset

ARIMA FBProphet NeuralProphet XG - Boost Time GPT

date, sales date, sales date, sales date, month, week,

week_day,

sales

date, sales

Daily Dataset

The daily data, as well as the monthly dataset, is split into train and test sets. We

keep 5 years and 10 months, 2134 days(01/01/2018 -05/11/2023) for training

and 6 days(06/11/2023 – 11/11/2023) as test set for predictions and model

evaluations. Additionally, after the split, we kept 20% of the train set for

validation. More specifically, we kept 20% from the beginning of the train for

validation and not random values, so as not to break the continuity of the time

series. The reason we chose this specific period for our test set is because it

represents a typical period. We aim to obtain results for our models that reflect a

standard time frame where national holidays, movable feasts, or the beginning of

the month, which often involves salary and pension payments, are not included.

These events do not follow a specific frequency but are determined by various

decisions from companies, governments, and trade associations. All these factors

can influence demand according to domain experts.

In the Figure 8 the train set is presented with blue color and the test set with

orange color. Furthermore, from the Figure 8, we can observe an increasing trend

as well as seasonality. We can also discern many zero or very low values. These

arise from days with no sales, such as holidays and Sundays. However, since the

original data for days with zero sales had no entries, resulting in a disruption of

the time series continuity, we decided to perform a left join of a calendar data-

frame onto our data, thereby creating zero entries.

 -37-

Figure 8: Daily dataset splits into train and test sets.

Regarding the challenges in daily dataset are different. Sundays are removed

from the entire dataset because only a small subset of stores, which are not open

all year but only for a specific period decided by the management based on

undefined factors, operate on Sundays. Additionally, some Sundays throughout

the year the stores remain open, but again, their frequency is not fixed and

certain. Therefore, it was decided to exclude Sundays from the dataset to avoid

confusion in the time series.

Another challenge is that on days with no sales, such as holidays, these do not

appear as zero values in the time series, thereby breaking the continuity of the

series. For this reason, we created a dataset as a complete calendar and merged it

with our dataset to generate zero entries on these dates.

The next challenge was dealing with outliers. These outliers, apart from zero

values, were also due to unexpected events. For example, the quarantine period ,

during COVID-19, and certain periods with extreme weather conditions

negatively affected sales. Additionally, system errors or system tests on holidays

would create data-entries in the database (e.g., 0.7 euros when the average weekly

-38-

sale is 12,000,000 euros). We can discern the accumulated low outliers in the

boxplots in Figure 9 and Figure 10.

Figure 9: Boxplot for daily training dataset before the removal of the outliers.

Figure 10: Boxplot for daily testing dataset before the removal of the outliers.

Therefore, it was considered appropriate to remove all these extreme values since

they did not reflect real demand. As their simple removal would cause continuity

issues in the time series, it was decided to replace very low outliers based on the

following conditions which cover all cases of outlier and are be detailed with

pseudocode in Algorithm 1.

 -39-

After the process of removing outliers, we can see in Algorithm 1 that we have a

-40-

clean dataset without extreme fluctuations that resulted from unexpected events

or system errors in data entry.

Figure 11: Daily dataset splits into train and test sets and after removal of the outliers.

Additionally, it is necessary to examine the variance of the dataset after the

removal of the low outliers. As seen in the Figure 11 and Figure 12 for both the

train set and the test set, low outliers are no longer observed. Regarding the high

outliers, we decided not to take any action because in most cases they represent

an increase in sales during periods of high demand, such as Christmas, which is

something we want the prediction model to learn.

 -41-

Figure 12: Boxplot for daily training dataset after the removal of the outliers.

Figure 13: Boxplot for daily testing dataset after the removal of the outliers.

Finally, for the daily prediction problem, five different models were used:

fbProphet, NeuralProphet, LSTM, TFT, TimeGPT. The Table 5 presents the

colums, i.e., the columns that were utilized for each model.

-42-

Table 5: Columns are used in each model of the daily dataset

FBProphet NeuralProphet LSTM TFT TimeGPT

date, sales date, sales date, month,

week,

week_day,

sales

date, month,

week,

week_day,

sales

date, sales

5.1.2 Metrics

In this section of the thesis, we present the metrics utilized for the evaluation of

the models. Specifically, we employ Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE), and Mean Squared Error (MSE) as detailed below.

The differences between Mean Squared Error (MSE), Mean Absolute Error

(MAE), and Mean Absolute Percentage Error (MAPE) primarily lie in how they

quantify the accuracy of models in regression analysis, forecasting, and other

predictive analytics applications. Each of these metrics evaluates the difference

between the actual values and the predicted values generated by a model, but they

do so in different ways, leading to distinct sensitivities and interpretations.

The differences between Mean Squared Error (MSE), Mean Absolute Error

(MAE), and Mean Absolute Percentage Error (MAPE) primarily lie in how they

quantify the accuracy of models in regression analysis, forecasting, and other

predictive analytics applications. Each of these metrics evaluates the difference

between the actual values and the predicted values generated by a model, but they

do so in different ways, leading to distinct sensitivities and interpretations.

Mean Square Error (MSE)

 -43-

The Mean Square Error (MSE) is a widely used measure in statistics, signal

processing, and machine learning for estimating the performance of predictive

models. It quantifies the difference between the values predicted by a model and

the actual values observed. The MSE is particularly useful because it provides a

single value that encapsulates the quality of a predictor in predicting outcomes

across a dataset, making it an essential tool for model evaluation and comparison.

Mathematically, the MSE is defined as the average of the squares of the errors.

The error is the amount by which the prediction deviates from the actual value.

For a set of 𝑛 predictions, where 𝑦𝑖 represents the actual value and 𝑦�̂� represents

the predicted value for the 𝑖𝑡ℎ observation, the MSE is given by the formula:

MSE =
1

𝑛
∑(𝑦�̂� − 𝑦𝑖)

2

𝑛

𝑖=1

This formula encapsulates the essence of MSE by squaring the difference between

the predicted and actual values before averaging these squared differences over

all observations in the dataset. The squaring is crucial because it ensures that

errors are positive and emphasizes larger errors more than smaller ones, making

MSE sensitive to outliers in the dataset.

One of the key properties of MSE is that it is always non-negative, as the square

of a real number cannot be negative. The best possible score is 0, which indicates

that the model predictions perfectly match the actual values. However, achieving

a zero MSE is often impossible in practical scenarios, especially in the presence

of noise in the data or when the model does not perfectly capture the underlying

data generation process.

Despite its widespread use, MSE has limitations. It is highly sensitive to outliers

due to the squaring of errors. This means that a small number of very large errors

can dominate the MSE, potentially giving a misleading impression of the overall

model performance. Furthermore, MSE does not necessarily provide a clear

-44-

indication of how the model performs on different segments of the data unless it

is decomposed or analyzed in conjunction with other metrics.

In conclusion, MSE is a fundamental metric for assessing the accuracy of

predictive models. Its simplicity and the rich theoretical background make it an

indispensable tool in the repertoire of methods for model evaluation.

Nonetheless, it is essential to consider its characteristics and limitations when

interpreting its value and to complement it with other metrics for a

comprehensive assessment of model performance.

Mean Absolute Error

Mean Absolute Error (MAE) is a widely used statistical measure to evaluate the

performance of predictive models in various fields such as finance, weather

forecasting, and machine learning. It quantifies the accuracy of a model by

calculating the average magnitude of errors between predicted values and

observed (actual) values, without considering the direction (positive or negative)

of those errors. The simplicity and interpretability of MAE make it a popular

choice for assessing model performance, especially when it is important to

understand the average error magnitude in the same units as the data being

predicted.

Mathematically, the MAE is defined as the average of the absolute differences

between the predicted values 𝑦�̂� and the observed values 𝑦𝑖 over a dataset of 𝑁

observations. The formula for MAE is given by:

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦�̂� − 𝑦𝑖|𝑁

𝑖=1 ,

where 𝑁 is the total number of observations in the dataset, 𝑦�̂�is the predicted

value for the 𝑖𝑡ℎ observation, 𝑦𝑖is the actual value for the 𝑖𝑡ℎ observation, |𝑦�̂� − 𝑦𝑖|

 -45-

represents the absolute difference between the predicted and actual values for the

𝑖𝑡ℎ observation.

The absolute value in the MAE formula ensures that all errors are treated equally,

regardless of their direction. This contrasts with other metrics such as the Mean

Squared Error (MSE), where the squaring of errors amplifies the influence of

larger errors on the overall metric.

One of the main advantages of MAE is its interpretability. Because it is expressed

in the same units as the data, the MAE can be easily understood and

communicated to non-technical stakeholders. It tells us how wrong the

predictions are on average in the dataset. For example, in the context of

predicting house prices, an MAE of 50,000 means that, on average, the predicted

prices are \$50,000 away from the actual prices.

However, while MAE provides a straightforward measure of average model error,

it has its limitations. It treats all errors equally, which may not be desirable in

applications where larger errors are more significant than smaller errors.

Moreover, MAE does not provide any indication of the error distribution,

meaning it could be the same for models that make consistently small errors and”

for models that make a few large errors along with many accurate predictions.

In conclusion, Mean Absolute Error is a valuable metric for assessing the average

error magnitude of predictive models, offering clear interpretability in the same

units as the predicted variable. Despite its simplicity, researchers and

practitioners should consider its characteristics and limitations in the context of

their specific application to ensure it aligns with their model evaluation

objectives.

Mean Absolute Percentage Error (MAPE)

-46-

The Mean Absolute Percentage Error (MAPE) is a statistical measure used to

assess the accuracy of a forecasting model. It calculates the average of the

absolute percentages by which forecasts differ from actual values, providing a

clear, intuitive measure of forecast accuracy that can be easily interpreted. The

MAPE is particularly useful in scenarios where the magnitude of the prediction

error relative to the actual value is more important than the error's absolute size.

The formula for MAPE is defined as follows:

MAPE =
100%

𝑛
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖
|

𝑛

𝑖=1

where 𝑛 is the number of observations, 𝐴𝑖 represents the actual values, and 𝐹𝑖

denotes the forecasted values. The absolute value of the difference between the

actual and the forecasted values is divided by the actual value to calculate the

percentage error for each observation. This process ensures that all errors are

treated equally, regardless of their direction (positive or negative). The errors are

then averaged across all observations and multiplied by 100 to convert the result

into a percentage.

One of the main advantages of MAPE is its interpretability. A MAPE of 5%, for

example, tells us that the forecasted values are, on average, within 5% of the

actual values, which provides a straightforward way to understand the model's

accuracy. However, the MAPE also has its limitations. It can be heavily influenced

by zero or near-zero actual values, as these can lead to undefined or infinitely

large percentage errors, skewing the overall MAPE. Furthermore, because it is

based on percentage errors, the MAPE can be more sensitive to relative errors in

lower actual values than to the same absolute error in higher actual values.

Despite these limitations, the MAPE remains a popular choice for evaluating

forecast accuracy in various fields, including finance, supply chain management,

and economics. It provides a useful benchmark for comparing the performance

of different forecasting models or methods under consistent conditions. When

 -47-

using MAPE in research or practical applications, it's important to be aware of its

assumptions and limitations, considering complementary metrics if necessary to

obtain a comprehensive evaluation of a model's performance.

We can summarize the evaluation metrics as follows:

• Sensitivity to outliers : MSE > MAE > MAPE

• Interpretability: MAE (units of the original data) > MSE (squared units) >

MAPE (percentage, but can be skewed by values close to zero)

• MSE is often preferred in machine learning because it penalizes larger

errors more harshly, which can be desirable in many contexts.

• MAE is used when you want a measure that is robust to outliers.

• MAPE is useful when you want to express the error as a percentage of

actual values, making it easier to communicate the magnitude of errors in

a more understandable way, particularly in business settings or

forecasting.

5.1.3 Models Hyperparameters

In the current section, we will introduce the hyperparameters of the models. To

the extent that it was feasible, given computational resources, time constraints,

and literature review, fine-tuning of the model hyperparameters was conducted.

Fine-tuning is a critical process that involves adjusting the hyperparameters of a

model to optimize its performance. This process is heavily dependent on the

availability of computational resources, as extensive experiments can be

computationally expensive. Time is also a significant factor, as finding the

optimal set of hyperparameters can be time-consuming, requiring multiple

iterations of training and evaluation. Furthermore, the literature plays a crucial

role in guiding the initial selection of hyperparameters and fine-tuning strategies,

offering insights from previous research on effective ranges and values for

different model architectures and problem domains. Through this meticulous

process, we aimed to enhance the accuracy, efficiency, and generalizability of our

models, ensuring that they are well-suited to address the specific challenges and

complexities of our research tasks.

-48-

ARIMA. In determining the optimal parameters for our ARIMA model, we began

by examining the stationarity of the time series. The Augmented Dickey-Fuller

(ADF) test yielded a p-value of 0.991603 and a test statistic of 0.797977, which

was higher than the critical values at the 1%, 5%, and 10% levels. This indicated

the presence of a unit root and non-stationarity in the original series,

necessitating differencing. Despite the lack of explicit visual evidence of

stationarity in the 1st and 2nd order differenced plots Figure 14, we proceeded

under the assumption of a potentially required second order of differencing,

informed by the conservative interpretation of the ADF test results, setting d = 2.

Next, we identified the autoregressive term p by examining the Partial

Autocorrelation Function (PACF) plot Figure 16, where the first lag was significant

outside of the limit and the second one is also out and negative so we can select

the order of the p=0.

Finally, the Moving Average term q was estimated from the Autocorrelation

Function (ACF) plot Figure 15. Given the gradual decline and the fact that all lags

quickly fell within the confidence interval, we hypothesized a non-existent MA

component, setting q=1. So the hyperparameters ARIMA(0, 2, 1) were test and

provide the best results.

 -49-

Figure 14: ARIMA Differencing plot

Figure 15: ARIMA ACF plot

-50-

Figure 16: ARIMA PACF plot

FBProphet. If the model does not have hyperparameters except for seasonality

which is set to M (Monthly) for the monthly problem and D (Daily) for the daily

issue.

Neuralprophet. The model used the following hyperparameters in Table 6.

Despite being a neural model, Neural Prophet is designed in such a way that it

does not require scaling, except in cases where there are exogenous variables as

features, such as weather conditions.

 -51-

Table 6: NeuralProphet hyperparameters.

Hyperparameters Daily Monthly

epochs [200]

early stop

[100]

early stop

yearly_seasonality [True] [True]

weekly_seasonality [False] [False]

daily_seasonality [daily] monthly

period 24 [30.5]

fourier_order [5] [5]

n_changepoints [300] [300]

optimizer [AdamW] [AdamW]

batch_size [32] [32]

learning_rate [0.04] [0.01]

XGBoost. The model xgb.XGRegressor() used the following hyperparameters as

presented in the Table 7. Regarding scaling, it is observed that XGBoost is

indifferent to scaling, therefore no scaling was applied to this model.

Table 7: XGBoost hyperparameters.

n_estimators [50]

max_depth [2]

seed [42]

objective [reg: squared_error]

n_changepoints [300]

optimizer [AdamW]

batch_size [32]

learning_rate [0.04]

-52-

TimeGPT. The GPT model is a pre-trained model that is executed through an API.

However, there are hyperparameters that optimize its predictions. The most

important of these is the finetune_steps. As indicated in the Table 8, we need a

large value for this parameter for the daily dataset, which is large, and a small

value for the monthly dataset, which consists of only 60 lines.

Table 8: TimeGPT hyperparameters.

Hyperparameters Daily Monthly

h [6] [12]

freq [D] [MS]

time_col [timestamp] [timestamp]

target_col [value] [value]

finetune_steps [60] [10]

LSTM. In the table Table 9, the hyperparameters of the model are presented. Also,

for this specific model, scaling is essential for its optimal performance and is

described below the StandardScaler which is used. The mathematical formula

applied by the StandardScaler to each feature is:

Z =
(X − μ)

σ
(1)

Here:

o 𝑍 is the scaled value.

o 𝑋 is the original value of the feature.

o 𝜇 is the mean of the feature values.

o 𝜎 is the standard deviation of the feature values.

 -53-

Table 9: LSTM Hyperparameters.

epochs [200] early stop

patience [20]

batch_size [32]

lstm_units [20]

lr [0.01]

n_changepoints [300]

optimizer [Adam]

loss_function [mse]

TFT. In the table Table 10, the hyperparameters of the model are presented. For

this model, scaling is also essential, and the Standard Scaler was used as

described in (1).

Table 10: TFT Hyperparametrs.

epochs [1000] - early stop

patience [10]

batch_size [128]

limit_train_batches [50]

gradient_clip_val [0.1]

optimizer [Ranger]

loss_function [Quantileloss]

hidden_size [16]

attention_head_size [4]

dropout [0.1]

hidden_continuous_size [8]

5.2 Results

-54-

In this section, we delve into the experimental results, from all methods used,

derived from our study. This part of the document is methodically divided into

two distinct segments to facilitate a clearer understanding and comparison of the

findings. The first segment is dedicated to the presentation of the monthly

prediction results. Following this, the second segment focuses on the daily

prediction results.

5.2.1 Monthly Results

ARIMA. This model is a conventional approach employed for forecasting time

series. The primary rationale for its application in our experimental setup was to

facilitate a comparative analysis with machine learning (ML) and deep learning

(DL) models. As demonstrated in the table, this particular model exhibits the

highest error margin among all the models evaluated, deviating from the actual

data by 24.28% MAPE as presented in the Table 11: Mean and standard deviation

over 10 independent experiments for monthly test set.. Based on the data utilized, it is

evident that the ARIMA model does not serve as a dependable option for our

forecasting needs.

FBProphet. This model represents a modern tool developed by Facebook's

engineers in 2017 to address the problem of business forecasting for time series.

Model delivered outstanding performance in our experiment. Exhibiting a mere

2.77% discrepancy from the actual data Table 11, it establishes itself as a credible

tool for predicting monthly sales, thus affirming the findings reported in the

literature. It is important to mention that this specific model is very user-friendly

in terms of implementation, as it can be executed simply by providing it with the

correct format of the date and sales data.

Neuralprophet. It represents an advancement of the FBProphet model,

integrating neural networks to tackle more intricate issues. Within the context of

monthly data, it fails to outperform FBProphet in terms of performance,

exhibiting a MAPE of 6.12% and a standard deviation of 1.9%, as indicated in the

 -55-

Table 11. This seems to arise from the fact that the data for the monthly problem

is too limited for a neural model

Figure 17: NeuralProphet loss functions monthly.

XGBoost. Represents the decision tree-based approach to the issue at hand. The

outcomes achieved are moderate, showcasing a MAPE (Mean Absolute

Percentage Error) of 9.13%, as illustrated in the Table 11. However, it is

noteworthy that the model exhibits a significantly low standard deviation,

signifying its stability as a forecasting model and suggesting that it has been

sufficiently trained.

TimeGPT. Is a pre-trained model that utilizes historical data via an API. The

performance of this model is outstanding, outperforming other models in our

monthly forecasting challenge. According to the table, it achieves a MAPE of

2.23%, closely rivaling the FBProphet, which has a MAPE of 2.77%. Despite its

superior performance, it is crucial to note that TimeGPT is not open-source. For

our experiment, we secured a trial version from NIXTLA, specifically for

academic use, which allotted us 1000 credits to facilitate our experimental

procedure.

In summary, our experiment demonstrates that TimeGPT delivered the most

superior performance, while FBProphet produced the second-best results overall

and stands as the top-performing open-source mode.

-56-

Table 11: Mean and standard deviation over 10 independent experiments1 for monthly test set.

Model Metric 12 Months Average Error

ARIMA

MAE 9023 × 104
MAPE 24.28%

MSE 8587× 1012

FBProphet

MAE 1079 × 104

MAPE 𝟐. 𝟕𝟕%

MSE 200 × 1012

NeauralProphet

MAE 2342 × 104 ± 772× 104

MAPE 6.12% ± 1. 99%

MSE 927× 1012 ± 3150 × 1012

XGBoost

MAE 3513 × 104 ± 575× 104

MAPE 9. 13% ± 0.8%

MSE 1461 × 1012 ± 200.8 × 1012

TimeGPT

MAE 831 × 104

MAPE 𝟐. 𝟐𝟑%

MSE 110 × 104

5.2.2 Daily Results

FBProphet. In terms of this model's daily forecasting abilities, as highlighted in

the table, it ranks as the least effective, showing a MAPE of 14.53%, Table 12.

Given this significant deviation from the actual data, FBProphet does not prove

to be a dependable model for predictions across a large dataset.

Neuralprophet. Contrary to the FBProphet, the NeuralProphet demonstrates

improved outcomes. Nonetheless, the results still do not meet expectations, and

it cannot be considered a dependable forecasting model since it has a MAPE of

9.99%, as detailed in theTable 12. However, it is worth noting that it maintains a

consistent performance with minimal variations across the 10 independent

experiments performed, a fact highlighted by the analysis of the loss function

Figure 18.

1 Mean and standard deviation are calculated only for stochastic models which is NeuralProphet and

XGBoost.

 -57-

Figure 18: NeuralProphet loss function daily.

LSTM. This model embodies the conventional DL methodology. As indicated by

the table, showing a MAPE of 6.68%, Table 12, and from the analysis of the loss

functions Figure 19, this particular model demonstrates strong performance and

yields favorable outcomes in addressing the complex challenge of daily

forecasting.

Figure 19: LSTM loss function daily.

TimeGPT. TimeGPT here delivered exceptional results also for daily forecasting,

with a MAPE (Mean Absolute Percentage Error) of 5.19%, as shown in the table.

-58-

TFT. This model represents a state-of-the-art approach for daily forecasts. With

an outstanding performance of 3.90% MAPE and a standard deviation of 1.91%,

as indicated in the Table 12: Mean and standard deviation over 10 independent

experiments for daily test set., it is the best model for monthly forecasting. This

particular model is open source and stands out as the superior option for daily

forecasting, outperforming both open source models and proprietary models that

are not free and require some cost. Additionally, from the loss functions Figure

20, we can see that it trains quickly and does not exhibit significant discrepancies

across the 10 independent experiments.

Figure 20: TFT loss function daily.

 -59-

Table 12: Mean and standard deviation over 10 independent experiments2 for daily test set.

Model Metric 6 Days Average Error

FBProphet

MAE 1923 × 104

MAPE 14.53%

MSE 4119× 1012

Neauralprophet

MAE 145.5 × 104 ± 13.69 × 104

MAPE 9.99% ± 2. 96%

MSE 3.548× 1012 ± 0.218 × 1012

LSTM

MAE 108.1 × 104 ± 15.27 × 104

MAPE 6.68% ± 1.18%

MSE 2.312 × 1012 ± 0.528 × 1012

TimeGPT

MAE 255× 104

MAPE 5.19%

MSE 0.984 × 1012

TFT

MAE 53.94 × 104 ± 26.78 × 104

MAPE 𝟑. 𝟗𝟎% ± 1. 𝟗𝟏%

MSE 0.509× 1012 ± 0.574 × 1012

2 Mean and standard deviation are calculated only for stochastic models which are Neuralprophet, LSTM

and TFT.

-60-

6 Conclusion and Future
Work

In summary, our findings indicate that monthly prediction is a more accessible

issue compared to daily forecasting. Simpler methodologies, even without the

integration of neural networks, have shown to be effective. This contrasts with

complex neural network models, which may underperform due to their inability

to train effectively with small datasets. Additionally, monthly forecasts can be

influenced by unforeseen events and temporary demand fluctuations, such as

early salary payments, holidays, or weather conditions that unexpectedly increase

or decrease demand. However, consumer demand in this context tends to remain

stable monthly, significantly aiding in producing accurate forecasts without

overcomplicating the models.

On the other hand, daily forecasting presents a different scenario. This problem

is considerably more intricate due to the potential for outliers caused by

unexpected events, which can disrupt model performance and time series

analysis. Yet, once these outliers are addressed, the results significantly improve.

The models that succeed in daily forecasting tend to be more complex and rely

heavily on neural networks. This is supported by literature, considering the larger

volume of data available for daily forecasting, where deep learning methods tend

to perform better. The main challenges in daily forecasting extend beyond the

complexity of the models; they also encompass the preparation and processing of

data, especially the identification and correction of outliers.

Looking forward, there are several avenues for future work. One area involves

feature engineering, specifically the identification of variables that significantly

impact sales. Initial factors for consideration should include weather conditions

and oil prices. However, the incorporation of holidays as a feature is anticipated

to be particularly impactful. We suggest developing a feature that encompasses

holidays and other significant events, in collaboration with domain experts, to

 -61-

inform the model about unexpected events that have historically affected

demand, as well as predictable fluctuations such as weekends and holidays.

Furthermore, it would be beneficial to experiment with a larger dataset to assess

how effectively a forecasting model can learn from and adapt to holidays that shift

annually, such as Easter. Lastly, a more extensive exploration of model

parameters is warranted. Due to previous computational constraints, there was a

limitation in the extent of fine-tuning achievable. Addressing this could

potentially enhance model performance and forecasting accuracy.

 -63-

7 References

[1] B. Pavlyshenko, "Machine-Learning Models for Sales Time Series Forecasting,"

Data, vol. 4, p. 15, January 2019.

[2] Z. Zhang, "Sales Prediction Based on ARIMA Time Series and Multifactorial

Linear Model," Highlights in Science, Engineering and Technology, vol. 38, pp. 1-

8, March 2023.

[3] C. Permatasari, W. Sutopo and M. Hisjam, "Sales forecasting newspaper with

ARIMA: A case study," 2018.

[4] L. Zhang, W. Bian, W. Qu, L. Tuo and Y. Wang, "Time series forecast of sales

volume based on XGBoost," Journal of Physics: Conference Series, vol. 1873, p.

012067, April 2021.

[5] Y. Dai and J. Huang, "A Sales Prediction Method Based on LSTM with Hyper-

Parameter Search," Journal of Physics: Conference Series, vol. 1756, p. 012015,

February 2021.

[6] R. Ospina, J. A. M. Gondim, V. Leiva and C. Castro, "An Overview of Forecast

Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and

Case Study in Brazil," Mathematics, vol. 11, 2023.

[7] J. Fattah, L. Ezzine, Z. Aman, H. Moussami and A. Lachhab, "Forecasting of

demand using ARIMA model," International Journal of Engineering Business

Management, vol. 10, p. 184797901880867, October 2018.

[8] S. Taylor and B. Letham, Forecasting at scale, 2017.

[9] O. Triebe, H. Hewamalage, P. Pilyugina, N. Laptev, C. Bergmeir and R. Rajagopal,

"NeuralProphet: Explainable Forecasting at Scale," CoRR, vol. abs/2111.15397,

2021.

-64-

[10] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," CoRR,

vol. abs/1603.02754, 2016.

[11] S. Hochreiter and J. Schmidhuber, "Long Short-term Memory," Neural

computation, vol. 9, pp. 1735-80, December 1997.

[12] B. Lim, S. O. Arik, N. Loeff and T. Pfister, Temporal Fusion Transformers for

Interpretable Multi-horizon Time Series Forecasting, 2020.

[13] B. Lim, S. Ö. Arık, N. Loeff and T. Pfister, "Temporal Fusion Transformers for

interpretable multi-horizon time series forecasting," International Journal of

Forecasting, vol. 37, pp. 1748-1764, 2021.

[14] A. Garza and M. Mergenthaler-Canseco, TimeGPT-1, 2023.

[15] Z. Zhang and J. C. Moore, "Chapter 8 - Autoregressive Moving Average Models,"

in Mathematical and Physical Fundamentals of Climate Change, Z. Zhang and J.

C. Moore, Eds., Boston, Elsevier, 2015, pp. 239-290.

